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Abstract

[Tomasetti and Vogelstein| (2015a) find that the incidence of a set of
cancer types is correlated with the total number of normal stem cell di-
visions. Here, we separate the effects of standing stem cell number (i.e.,
organ or tissue size) and per stem cell lifetime replication rate. We show
that each has a statistically significant and independent effect on explain-
ing variation in cancer incidence over the 31 cases considered by Tomasetti
and Vogelstein. When considering the total number of stem cell divi-
sions and when removing cases associated with disease or carcinogens, we
find that cancer incidence attains a plateau of approximately 0.6% inci-
dence for the cases considered by these authors. We further demonstrate
that grouping by anatomical site explains most of the remaining varia-
tion in risk between cancer types. This new analysis suggests that cancer
risk depends not only on the number of stem cell divisions but varies
enormously (~10,000 times) depending on the stem cell’s environment.
Future research should investigate how tissue characteristics (anatomical
site, type, size, stem cell divisions) explain cancer incidence over a wider
range of cancers, to what extent different tissues express specific protective
mechanisms, and whether any differential protection can be attributed to
natural selection.

Introduction

[Tomasetti and Vogelstein| (2015a) (hereafter T&V) compiled data on 31 cancer
types to assess the variation in incidence explained by random factors, as op-
posed to environmental and inherited factors. They quantified random factors
as the total lifetime number of stem cell divisions per tissue or organ type, as-
suming that cancer has a fixed probability of emerging per stem cell division,
and therefore that tissues with more total cell divisions should be more prone
to cancer due to stochastic mutations, or “bad luck”. This analysis uncovered a
strong positive association between cancer incidence and the lifetime number of
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stem cell divisions, indicating that random mutations due to replication and re-
pair errors could explain a large part of the variance in risk among cancer types
(Fig. 1 in |Tomasetti and Vogelstein| (2015a))). Furthermore, the authors quan-
tified the contribution from external environment and inherited factors by an
Extra Risk Score (ERS). Cancers with high ERS are indeed known to be associ-
ated with carcinogenic exposure (Fig. 2 in [Tomasetti and Vogelstein| (2015al)).

In this article, we reanalyse the dataset of Tomasetti and Vogelstein to reveal
more about sources of variation in risk between cancer types. We show that c.
50% of this variation is due to tissue size, indicating that independent of stem cell
divisions, larger tissues are more likely to harbor cancers than smaller tissues.
A simpler measure of Extra Cancer Risk (a classification of cancers most likely
to be caused by carcinogens) yields similar findings to T&V, with some notable
differences. Moreover, when using the total number of stem cell divisions as a
metric and only considering cancers that are not typically the result of disease or
carcinogenic exposure, we find that cancer incidence plateaus at approximately
0.6% for the cases in T&V’s dataset. We further demonstrate that most of
the remaining variation in cancer risk can be explained by grouping cancers
by anatomical site (e.g., pancreas, bone, intestine), and that each site has a
very different risk per stem cell division. Our study indicates new directions
for research in showing how tissue characteristics may independently explain
variation in cancer incidence. We suggest that evolution by natural selection
may contribute to the basic pattern.

Results

Independent contributions of division rate and stem cell
number

Tomasetti and Vogelstein calculated the total lifetime number of stem cell repli-
cations (lscd) as the product of the size of the organ’s stem cell population
(s) and the lifetime number of divisions per stem cell (d). They then tested
for a correlation between lscd and cancer incidence. One way in which their
analysis could be extended is to differentiate the individual contributions of s
and d to cancer risk. For instance, a small stem cell population with many
replications (e.g., esophageal cells) may have the same lscd as a large stem cell
population with few replications (e.g., lung cells, see Table S1 in Tomasetti and
Vogelstein| (2015a))). However, in the former case, cancer risk may result mainly
from replication error, while the latter has a considerably larger number of cells
potentially exposed to carcinogenic environments at any point in time.

We conducted a multiple regression analysis with cancer incidence as the
response variable, and log(d + 1) and log s the explanatory variables:

log cancer risk ~ log(d + 1) X log s. (1)

There was no significant correlation between the two explanatory variables
(r =0.16,n = 31,p > 0.3), indicating that variation in s is largely independent
of variation in d. The multiple regression revealed significant positive effects of
both log s and log(d + 1) on cancer risk (Fy 27 > 18, p < 0.0002); the interaction
between and logs and log(d + 1) was not significant (Fj 27 = 0.21,p > 0.6).
Overall, as expected, the model explained 65% of the variation in cancer risk,
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Figure 1: Relationships between the number of stem cells per tissue (s), the lifetime
number of replications per stem cell in that tissue (d) and lifetime cancer risk, across
31 cancer types (data from Table S1 in Tomasetti and Vogelstein| (2015a))). A Rela-
tionship between stem cell replication (d) and cancer risk, after statistically correcting
for the effect of stem cell number (s). This correction was done by regressing cancer
risk on s, and then performing the partial regression of residual cancer risk on d. The
r2 value is the square of the partial regression coefficient and quantifies the amount
of variation in residual cancer risk explained by stem cell division. B Relationship
between stem cell number (s) and cancer risk, after statistically correcting for the
effect of stem cell replication (d). The partial r*> quantifies the variation in residual
cancer risk explained by stem cell replication. C Illustration of the combined positive
effects of stem cell number (s) and stem cell replication (d) on predicted cancer risk.
Predicted values were obtained from the multiple regression of cancer risk on d and s
(see text). In 0.5 log-intervals we assigned a colour gradient to the predicted values,
ranging from light orange (low predicted risk) to dark red (high predicted risk). Thus,
cancer risk increases with increasing values of both s and d. All analyses and figures
use log-transformation of s, d and cancer risk. The black lines in A and B represent
regression lines, and the shaded areas the 95% confidence intervals around the regres-
sion. Colour-coding based on Fig. 2 in |Tomasetti and Vogelstein (2015a)), denoting
deterministic D-tumours (blue) and replicative R-tumours (green).
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Figure 2: Residual lifetime risk of 31 cancer types, calculated as the difference between
observed values and predictions of our multiple regression model (Figures, C). Most
of the cancers that T&V classed as deterministic D-tumours (blue bars) also have high
residual risks according to our alternative metric. Many such cancers are associated
with known causative factors (oncoviruses, chemical carcinogens, or inherited cancer
susceptibility genes). The additional identification of cancers with very low residual
lifetime risks (red bars) suggests that some tissue types may be differentially resistant
to tumours arising from replication events or “bad luck”.

which is identical to the estimate for the composite Iscd in Tomasetti and Vogel-|
(2015a). When correcting for effects of s, stem cell division explains 40%
of the variation in risk; conversely, tissue stem cell number explains 44% of the
variation after correcting for per stem cell divisions (Figures , B). Figure
depicts the combined positive effects of log(d+1) and log s: cancer risk increases
with both increasing stem cell number and replication in the organ.

Based on our regression model, we propose a simple alternative evaluation
of the replication-independent Extra Cancer Risk (ERS) score. Whereas T&V
calculate the ERS as the product of the logarithms of lifetime risk and total
stem cell replications, we use the residual lifetime risk, describing the difference
between observed and predicted values from the regression (Figures , C).
Like the ERS, our more intuitive method identifies a subset of cancers that
occur more often than we would expect from the lifetime number of stem cell
divisions, including most of those that T&V classed as deterministic D-tumours
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Figure 3: A hypothetical one-factor, non-linear model of the relationship between
cancer risk and lifetime number of stem cell divisions (Iscd). If each stem cell division
has the same probability of causing cancer then there should be a linear relationship
between cancer risk and lscd with a gradient of 1. However, we argue that the risk
cannot rise indefinitely but must be bounded by a maximum limit, either due to the
primacy of other causes of mortality and/or due to differential cancer prevention in
tissues with larger total numbers of stem cell divisions.

(Figure blue bars). Of equal importance for understanding possible causation,
the residual lifetime risk also quantifies the extent to which some cancer rates
are lower than expected. Carcinomas of the small intestine, duodenum and
pancreas are more than ten times less frequent than one would predict from
the total number of stem cell divisions (Figure [2| red bars). We note that very
similar results can be obtained using the residuals from the regression of risk
against lscd, as has been proposed by [Tomasetti and Vogelstein| (2015b)) and
Altenberg) (2015)) since the publication of Tomasetti and Vogelstein! (2015a)).

The saturation of cancer risk

The relatively shallow gradients of the linear regression models (¢. 0.5) present
a challenge to the hypothesis that the variation in cancer risk is largely due to
differences in lifetime numbers of stem cell divisions. If each stem cell division
carries the same risk of initiating cancer, then doubling the number of stem cell
divisions should correspond to doubling the cancer risk. Therefore the slope
of the correlation between cancer risk and lscd should be close to 1. Instead,
the gradient of the one-factor linear regression model of T&V is only 0.53. This
discrepency has been noted before (Tomasetti and Vogelstein, |2015b; |Altenberg)
2015) but has not, in our view, been sufficiently investigated.

We suggest that the overall gradient is shallower than expected because life-
time risk cannot increase indefinitely, but rather saturates at a maximum level.
Mathematically, no risk can exceed 100%. However, there are two more likely
(non-mutually exclusive) reasons for a saturating effect. First, different causes
of mortality (e.g., cancers, heart disease, cerebrovascular disease, accidents, etc.)
each have a characteristic probability distribution as a function of age. Because
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Figure 4: A Relationship between cancer risk and lifetime number of stem cell divisions
(Iscd) in 31 cancer types, according to a model that assumes that the gradient of the
correlation is 1 for small Iscd, and is 0 for large Iscd. B The same model fitted to
the set of 24 cancer types not associated with a high-risk subpopulation (the excluded
data points are shown as filled circles in A). The model assymptotes are included as
dashed lines.

of the primacy of mortality events, increases in the probability of a given mortal-
ity type will tend to be reflected as increased incidence as the age at which the
event occurs decreases. Thus, all else being equal, a given source of mortality
will not exceed approximately 1/N, where N is the total number of possible at-
tributed causes of mortality. Of course, all else is not equal, but nevertheless we
would expect a saturation effect since the cancers in T&V’s dataset tend to be
life threatening at older ages (and therefore have less primacy). Second, to the
extent that different tissues are differentially vulnerable to life-threatening can-
cers, natural selection is expected to result in tissue specific protection (Nunney,
1999). That all tissues do not employ the same protection mechanisms would be
suggestive of either a fitness cost of cancer protection to the organism (i.e. that
the cost of added protection in terms of reductions in survival and reproduction
outweighs the benefits of lowered risks of life-threatening cancer), or that the
phylogenetic emergence of tissue specific protection was somehow linked with
tissue differentiation during ontogeny. Therefore, for either or both of the two
hypotheses, we would expect the correlation of risk and Iscd to have a gradient
of 1 only for tissues that have relatively few lifetime stem cell divisions. For
high-lIscd tissue types we would expect the risk to be bounded by a maximum
limit, as illustrated in Figure
A simple model that is consistent with these assumptions is

y=—logla+e™*™"), (2)

where y is cancer risk and z is Ised (both log-transformed). For small z this
function approaches y = = + b (slope = 1), and for large z it approaches y =
—loga (slope = 0).

Figure A shows the result of fitting the above model to the data for all
31 cancer types. Most of the types with higher than expected risk, according
to this model, belong to subpopulations exposed to carcinogens (filled circles
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Figure 5: A hypothetical two-factor, linear model of the relationship between cancer
risk and lifetime number of stem cell divisions (Iscd). In this case the cancer types are
divided into subsets according to tissue type. A The subsetting pariations variation
into within-subset variation (due to lscd) and between-subset variation (due to tissue
type). The gradient of the correlation within subsets is expected to be close to 1. The
dashed line indicates a maximum risk threshold. B For each tissue type, the cancer
risk per stem cell division can be estimated by extrapolating the regression line to the
point where Iscd = 1 (i.e. log Iscd = 0).

in Figure ) These include lung cancer in smokers, intestinal cancer in those
with certain inherited genetic alterations, liver and head and neck cancer in
those infected with an oncovirus, and basal cell carcinoma, which is generally
correlated with a combination of genetic factors and UV-light exposure, and
which is very rarely fatal (Wong et al.| [2003]).

When the risks related to specific subpopulations are omitted, the lifetime
risk per cancer type saturates at around 0.6% (with s.e.: 0.4-1.1%, Figure 4B).
Therefore the data appear to be consistent with a model in which the risk of
life-threatening cancer increases with Iscd with a slope 1, until it is bounded by
a threshold of ¢. 0.6%, i.e., that is well below the theoretical maximum of 100%.
Although the fit of this model is statistically similar to that of the linear model
(residual standard errors 0.59 and 0.61, respectively), it is more biologically
plausible, and it may therefore reveal more about the multiple factors that
determine cancer risk, including natural selection.

Variation between tissues

We next aim to account for some of the approximately one third of variation
that is not explained by our linear and non-linear models. First consider the case
of osteosarcoma: the dataset of 'Tomasetti and Vogelstein| (2015a)) includes four
types of this bone and joint cancer corresponding to different parts of the body
(arms, legs, head, pelvis) and another data point for the entire body. These
tissues are thought to derive from similar stem cells in similar environments
(Bianco et al., [2001)). Therefore we would expect osteosarcoma risk to increase,
with slope 1, according to Iscd (or equivalently, with the number of stem cells per
tissue, since the division rates are assumed to the same for all osteocarcinomas
(Spalding et al., [2005])). In fact, the gradient for the five osteosarcomas is 1.25
(s.e. £0.30), consistent with the hypothesis.



Taking this idea one step further, we can split the T&V data set into subsets
of related cancer types and thus divide the variation in risk into two parts
(Figure[5JA). If the members of each subset have the same cancer risk per stem
cell divsion then variation within subsets will be mostly due to Iscd, whereas
variation between subsets will be related to tissue type and/or environment.
In this case, we would expect the slope of each subset regression line to be
approximately 1. We could then estimate the cancer risk per stem cell division
by finding where each regression line intercepts the vertical axis (i.e. log lscd =
0), as illustrated in Figure [5B.

We chose to define subsets of cancer types according to the widely-used
International Classification of Diseases for Oncology (ICD-O) (Fritz et al., 2000).
The ICD-O assigns a topographical code for the site of the cancer (e.g. thyroid,
skin, lung), corresponding to the environment in which the cancer arises, and
a morphological code (e.g. adenocarcinoma, follicular carcinoma, glioblastoma)
describing the type of cell. We hypothesised that differences in topography
and/or morphology might help explain variation in risk among cancer types.

We first divided the cancer types in the T&V dataset into topographical
subsets, excluding six risk values that apply only to particular subpopulations
(Table [1] in Appendix). We then fitted a two-factor regression model to the
subsets containing at least two data points (8 subsets, 20 cancer types):

log cancer risk ~ loglscd + subset. (3)
This means that we assumed, for each cancer type 1,
log cancer risk(i) = Aloglsed(i) + B(subset(7)). (4)

In this model, the slope (A) of the linear regression line is assumed to be the
same for all subsets, but the intercept (B) is allowed to vary depending on the
subset. Therefore there are nine parameters (one slope, and eight subset-specific
intercepts).

The two-factor regression model explains 90% of the variation in cancer risk
among the 20 cancer types (Fg 11 = 12.3, Figure @A) Log Iscd by itself explains
69% of the variation, similar to the figure for the full set of 31 analyzed by T&V,
whereas the subset factor explains an additional 21% (subset effect: p = 0.04).
In other words, by assuming that the topographical subsets have the same slope
but different intercepts, we can explain significantly more of the variation in
risk. Moreover, the gradient within the subsets is 0.98 (£0.19 s.e.), which is, as
predicted, very close to 1.

Note that we chose to include skin cancers in this analysis even though
most of the skin cancer risk in the T&V data set is associated with UV-light
exposure (Scotto et al. [1983). Since UV-light exposure is assumed to increase
the mutation risk per stem cell division, we would expect this environmental
factor to shift the regression line for the skin cancer subset upwards, towards
higher cancer risk, but we would still expect the slope to be approximately 1.
Indeed, the model fit for skin cancer is similar to that for the other subsets
(Figure [6JA).

Much of the remaining variation is due to the brain cancer subset, but it can
be argued that this subset is poorly defined. Whereas glioblastoma is thought
to develop in the mature brain, medulloblastoma is believed to originate in the
different environment of the early embryo (Roussel and Hatten [2011)), and it is
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Figure 6: A Relationship between cancer risk and lifetime number of stem cell di-
visions (Iscd) in eight topographically-defined subsets of 20 cancer types (Table [1] in
Appendix). The model assumes that the risk per stem cell division may differ between
subsets but that the slope of the correlation is the same for each subset. B Rela-
tionship between cancer risk and lifetime number of stem cell divisions (Iscd) in four
morphologically-defined subsets of 15 cancer types (Table [2|in Appendix). C Cancer
risk per stem cell division for 25 cancer types, calculated by dividing risk by lscd. This
formula assumes that the correlation between risk and Iscd has a gradient of 1 for each
tissue type, which is supported by the results of the regression model (Equation .
Cancer types are coloured by topographic subset, according to the scheme shown in
A. Five types that belong to topographic subsets with only one member (and so were
excluded of the analysis shown in A) are shown in grey.



the only cancer in the T&V data set that predominantly occurs during childhood
(median age 9 years at diagnosis). When the brain cancer subset is excluded,
the two-factor regression model explains 93% of the variation (F719 = 19.1) and
the subset factor has a more significant effect (p = 0.01).

Apart from brain cancers, there is only one cancer type that substantially
deviates from the topographical subsets model: although colorectal and duode-
num adenocarcinomas lie almost exactly on a line of slope 1 (also grouping with
pancreatic cancers), small intestine adenocarcinoma falls well below this line,
being approximately ten times less common than predicted. Therefore a testable
prediction of our model is that small intestine adenocarcinoma differs in some
important way from the two other intestinal cancers (colorectal and duodenum
adenocarcinomas), or that the data for this cancer type is inaccurate.

We also divided the data according to ICD-O morphological code, resulting
in four subsets containing at least two data points, which together included
15 cancer types (Table [2[ in Appendix). In the two-factor regression model
(Equation , the morphological subset factor is not significant (p = 0.38).
Therefore we found no evidence that cancer risk in this dataset is related to cell
type, independent of anatomical site (Figure ) Neverthless, since topography
and morphology are moderately correlated in the T&V dataset, our results do
not rule out a combined effect.

Given that the gradient of the correlation between cancer risk and Iscd ap-
pears to be close to 1 for each topographical type, we can calculate

cancer risk per stem cell division = risk + lscd. (5)

The estimated risks per stem cell division for each individual cancer type are
shown in Figure [6C. These estimated risks vary by nearly four orders of mag-
nitude — from less than 10~'* for small intestine adenocarcinoma, to approx-
imately 10~!! for osteocarcinoma and thyroid cancers — yet our eight subsets
explain 92% of this variation in twenty cancer types (Fy 12 = 18.7,p = 1x107°).
Therefore variation in cancer incidence in the dataset of T&V can be ex-
plained by the total number of stem divisions (Iscd; (Tomasetti and Vogelstein,
2015al)), but can also be understood as variation explained by tissue size and by
per stem cell divisions (this study). When using the composite quantity lscd and
only considering cancers that are not linked to heredity, disease or mutagenic
exposure, we find that anatomical site explains most of the residual variation.
The code used to implement each of our models is provided in an Appendix.

Discussion

Despite limitations in the Tomasetti and Vogelstein dataset, it contains a wealth
of information that goes beyond their initial analysis. We have made four new
findings based on their dataset. First, the total number of stem cells and the
lifetime number of divisions per stem cell each significantly, and independently
of one another, explain variation in cancer incidence (Figure . Indeed, our
finding of a significant correlation of s with cancer risk is consistent with the
prediction that cancer incidence increases with the standing population size of
an organ (Albanes and Winick| [1988; Roychoudhuri et al 2006). One possible
mechanism for the tissue size effect is mutations associated with the 2s cell
divisions during ontogeny for certain tissues (DeGregori, |2013). Whether such
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mutations are due to random effects is discussed below. Second, our more
intuitive measure of Extra Cancer Risk yields results that largely concord with
T&V, but also yield certain notable differences (Figure. Third, when assessing
a subset of 24 cancers that are not primarily linked to pathogens, disease, or
carcinogenic exposure, we find a saturating effect of total stem cell divisions
on cancer incidence, with a plateau at about 0.6% (Figure [4)). This could be
explained either by the primacy of mortality events limiting maximal mortality
for any single type of event and/or increased cancer prevention mechanisms
in tissues with the most total stem cell replications. Fourth, when dividing a
subset of 20 cancers by anatomical site, we find that each type shows the same
slope of ¢. 1, but is displaced over 4 orders of magnitude in risk per stem cell
division, consistent with the hypothesis that different tissues have contrasting
protection mechanisms against cancer. We provide testable estimates for each
anatomical site of the probability that a single stem cell division will result in
cancer. We briefly discuss the implications of these findings below.

Our analysis clarifies one of the main findings of Tomasetti and Vogelstein
(2015a): there is indeed a direct contribution of stem cell division rate (d) to
cancer risk, independent of the size of the organ (s). This division rate effect is
weaker than that found by T&V, because our analysis is based on replications
per stem cell rather than over the population of stem cells. We argue that it
is important to distinguish between effects of d and s, because stem cells may
be replaced by mutated daughter cells following mutagenic exposure in S-phase
of the cell cycle (Cairnsl, [2002; Branzei and Foiani, [2005)). Thus, our untested
hypothesis is that as exposure to mutagens becomes increasingly chronic, the
probability that mutation should correlate with total number of ‘targets’ (that
is, with the size of the tissue cell population, and therefore with s), whereas,
as exposure is increasingly punctual, the probability will correlate with both
d and s (i.e., with total stem cell divisions). In either scenario therefore, we
suggest that actual ‘causes’ of cancer in Figure 1 of T&V cannot necessarily be
attributed to random mutations only, since these same stem cells may either
already carry inherited cancer susceptibility genes, or be replaced by mutated
daughter cells exposed to stressful environments. This means that ERS is a
conservative estimate of hereditary and environmental causes and that other
baseline effects may be indistinguishable from random mutations in the prin-
cipal dataset, and therefore amplifies T&V’s conclusion of the importance of
primary and secondary prevention for a range of cancers (Hochberg et al., |2013;
Vogelstein et al., [2013).

When considering the total number of stem cell divisions as a single metric
that explains most of the variation in incidence, our study provides evidence
for an effect of anatomical site, corresponding to the environment in which
cancer arises. The variation between tissues is analogous to Peto’s paradox,
whereby biological species of larger body mass and/or longer life span exhibit
smaller than expected incidences of cancer (Peto, 1977 |Leroi et al., [2003; |Caulin
and Maley| 2011; Nunneyl, [2013). |Caulin and Maley| (2011) review numerous
hypotheses to explain the observation, most of which involve cellular or tissue
level cancer prevention or suppression. Our results indicate a similar effect at
the level of a single population (humans), but show that the relationship is
not flat as in the interspecific comparison, but rather an increasing, saturating
function. Indeed, our analysis demonstrates that the saturation effect is due
to different families of tissues, which characteristically differ in their ranges
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of total stem cell divisions. Most of the cancer types in this dataset occur
at older ages and, as has been argued previously (e.g., Nunney| (2013))), such
cancers would be shielded from present-day natural selection. Our hypothesis
that natural selection for general cancer prevention and tissue-specific cancer
prevention acting over millions of generations is consistent with the present day
observations of occurrence shifted to older ages, yet maintaining the evolved
protection mechanisms that reduce incidences at younger ages (during which
the force of selection is expected to be greatest (e.g., Hamilton| (1966))).

Future research should extend Tomasetti and Vogelstein’s dataset to other
tissue types and cancer types within tissues (most notably high incidence cancers
of the breast and prostate). Moreover, we need to identify possible tissue-specific
mechanisms of cancer prevention to test the hypothesis that natural selection
has influenced not only age related patterns in cancer incidence, but also tissue
specific adaptations and cancer as a possible evolutionary constraint on tissue
size.
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Appendix: methods and data

All analyses were conducted in R (R Core Team), [2013]) (except that Figurewas
generated in JMP (SAS Institute Inc.) [2014)). We obtained the dataset from
the supplementary materials of [Tomasetti and Vogelstein! (2015a)) and assigned
the following variable names: type (Cancer type in T&V), risk (Lifetime cancer
incidence), s (Number of normal stem cells in tissue of origin), d (Number of
divisions of each stem cell per lifetime), Iscd (Cumulative number of divisions
of all stem cells per lifetime). We also added the factors “morphology_subset”
and “topography_subset”, as explained in our Results.

The multiple linear regression model (Equation [1)) was implemented in R for
all 31 cancer types as

> 1m(logl0(risk) ~ logl0(d + 1) * loglO(s), data = data)
The models illustrated in Figures [[]A and [I]B were implemented as

> modell <- Im(loglO(risk) ~ loglO(s), data = data)
> model2 <- 1m(loglO(risk) ~ loglO(d+1), data = data)
> Im(resid(modell) ~ loglO(data$d + 1))

> 1m(resid(model2) ~ loglO(data$s))

The non-linear saturating model (Equation [2} Figure [4]A) was implemented
for all 31 cancer types as

> logrisk <- loglO(data$risk)
> loglscd <- loglO(data$lscd)
> nls(logrisk ~ -log(a + exp(-loglscd - b)),
+ start = list(a = 0, b = -7),
+ lower = list(0, -20),
+ upper 1list (100, -1),
+ algorithm = "port")

This model was also run on the 24 cancer types not associated with a specific
subpopulation (Figure [B).

For the morphology subsets analysis (Equation , when there was more
than one risk value per cancer type (e.g. for lung cancer), we excluded the
values that apply only to particular subpopulations. We also excluded subsets
containing only one cancer type:

> data_morphology <- subset(data, (duplicated(morphology_subset)
+ | duplicated(morphology_subset, fromLast = TRUE))
+ & morphology_subset != "NA")

We then ran the following regression model:

> Im(loglO(risk) ~ loglO(lscd) + morphology_subset,
+ data = data_morphology)

Similarly for the topography subsets analysis:

> data_topography <- subset(data, (duplicated(topography_subset)
+ | duplicated(topography_subset, fromLast = TRUE))
+ & topography_subset != "NA")

> 1Im(logl0(risk) ~ loglO(lscd) + topography_subset,
+ data = data_topography)
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Finally, variation in cancer risk per stem cell division was modelled as

> data_topography$risk_per_div <-
+ logl0(data_topography$risk) - loglO(data_topography$lscd)
> Im(risk_per_div ~ topography_subset, data = data_topography)
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Cancer type

Topographical subset

Esophageal squamous cell carcinoma

Head and neck squamous cell carci-
noma

Duodenum adenocarcinoma

Small intestine adenocarcinoma
Colorectal adenocarcinoma
Hepatocellular carcinoma
Gallbladder non papillary adenocar-
cinoma

Pancreatic endocrine (islet cell) car-
cinoma

Pancreatic ductal adenocarcinoma
(acinar)

Lung adenocarcinoma (nonsmokers)
Osteosarcoma

Osteosarcoma of the arms
Osteosarcoma of the head
Osteosarcoma of the legs
Osteosarcoma of the pelvis
Chronic lymphocytic leukemia
Acute myeloid leukemia

Basal cell carcinoma
Melanoma

Ovarian germ cell

Testicular germ cell cancer
Glioblastoma
Medulloblastoma

Thyroid papillary/follicular
noma

Thyroid medullary carcinoma

carci-

C00-C15, C32 Mouth, Pharynx, Lar-
ynx, Esophagus

C00-C15, C32 Mouth, Pharynx, Lar-
ynx, Esophagus

C17-C20 Intestine, Rectum
C17-C20 Intestine, Rectum

C17-C20 Intestine, Rectum

C22 Liver

C23 Gallbladder

C25 Pancreas
(C25 Pancreas

C34 Lung
C40-C41 Bone
C40-C41 Bone
C40-C41 Bone
C40-C41 Bone
C40-C41 Bone
C42 Blood
C42 Blood
C44 Skin

C44 Skin

C56 Ovary
C62 Testis
C71 Brain
C71 Brain
C73 Thyroid

C73 Thyroid

Table 1: Topographical subsets assigned to cancer types in the T&V dataset, according
to the International Classification of Diseases for Oncology (Fritz et al., [2000]).
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Cancer type

Morphological subset

Esophageal squamous cell carcinoma
Head and neck squamous cell carci-
noma

Basal cell carcinoma

Gallbladder non papillary adenocar-
cinoma

Duodenum adenocarcinoma

Small intestine adenocarcinoma
Colorectal adenocarcinoma

Lung adenocarcinoma (nonsmokers)
Thyroid papillary/follicular carci-
noma

Pancreatic endocrine (islet cell) car-
cinoma

Hepatocellular carcinoma

Thyroid medullary carcinoma
Pancreatic ductal adenocarcinoma
(acinar)

Melanoma

Ovarian germ cell

Testicular germ cell cancer
Osteosarcoma

Osteosarcoma of the arms
Osteosarcoma of the head
Osteosarcoma of the legs
Osteosarcoma of the pelvis
Glioblastoma

Medulloblastoma

Chronic lymphocytic leukemia
Acute myeloid leukemia

MB8070 Squamous cell carcinoma,
MB8070 Squamous cell carcinoma,

M8&090 Basal cell carcinoma
M8140 Adenocarcinoma

M8140 Adenocarcinoma
M8140 Adenocarcinoma,
M8140 Adenocarcinoma
M8140 Adenocarcinoma
M8140 Adenocarcinoma

MRS&150 Pancreatic endocrine

MS8170 Hepatocellular carcinoma
M8510 Medullary carcinoma
MS8550 Acinar cell carcinoma

MS8720 Malignant melanoma
M9060-9085 Germ cell tumours
M9060-9085 Germ cell tumours
M9180 Osteosarcoma

M9180 Osteosarcoma

M9180 Osteosarcoma

M9180 Osteosarcoma

M9180 Osteosarcoma,

M9440 Glioblastoma,

M9470 Medulloblastoma,

M9823 B-cell lymphocytic leukemia
M9896 Acute myeloid leukaemia

Table 2: Morphological subsets assigned to cancer types in the T&V dataset, according

to the International Classification of Diseases for Oncology (Fritz et al., [2000]).
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