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Abstract: We study local operator insertions on 1/2-BPS line defects in ABJM theory.

Specifically, we consider a class of four-point correlators in the CFT1 with SU(1, 1|3) super-

conformal symmetry defined on the 1/2-BPS Wilson line. The relevant insertions belong to

the short supermultiplet containing the displacement operator and correspond to fluctua-

tions of the dual fundamental string in AdS4×CP3 ending on the line at the boundary. We

use superspace techniques to represent the displacement supermultiplet and we show that

superconformal symmetry determines the four-point correlators of its components in terms

of a single function of the one-dimensional cross-ratio. Such function is highly constrained

by crossing and internal consistency, allowing us to use an analytical bootstrap approach to

find the first subleading correction at strong coupling. Finally, we use AdS/CFT to com-

pute the same four-point functions through tree-level AdS2 Witten diagrams, producing a

result that is perfectly consistent with the bootstrap solution.
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1 Introduction and discussion

Wilson loops are fundamental non-local observables of any gauge theory, and admit a repre-

sentation in terms of the usual lagrangian fields employed in the weak coupling description.

At strong coupling their properties are naturally encoded into the degrees of freedom of

a semiclassical open string, when a gauge/gravity description is available [1–3]. Wilson

lines are also a prototypical example of defect in QFT, and could support a defect field
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theory characterising their dynamical behaviour. In the supersymmetric case, BPS Wil-

son lines provide one-dimensional supersymmetric defect field theories, explicitly defined

through the correlation functions of local operator insertions on the contour [4]. From

this perspective, 1/2 BPS Wilson lines in the four-dimensional N = 4 supersymmetric

Yang-Mills theory (SYM) have been actively studied in the last few years [5–7]. In this

case, the associated defect field theory is conformal (DCFT). Correlation functions can be

generated through a “wavy line” procedure and studied at weak coupling [8] using general

results for Wilson loops [9]. Further information has been gained by considering four-point

correlators of certain protected operator insertions [5] whose two-point functions control

the N = 4 SYM Bremsstrahlung function [10]. At strong coupling, these correlators are

evaluated studying the relevant AdS/CFT dual string sigma-model. The latter corresponds

to an effective field theory in AdS2, and correlations functions can be computed by means

of standard Witten diagrams [5]. The conformal bootstrap has been also applied to the

computation of the same four-point functions [11], recovering and extending the analytical

results at strong coupling and studying numerically the finite-coupling regime. Notably,

the same approach led to analogous results in a less supersymmetric scenario [12]. More

generally, line defects provide a useful and physically interesting laboratory for the applica-

tion of the analytical techniques developed in the context of one-dimensional CFTs [13–18].

Finite-coupling results on defect conformal data were also obtained using integrability via

the quantum spectral curve technology [19].

Here we study the DCFT associated to the 1/2 BPS Wilson line in N = 6 Super

Chern-Simons theory with matter (ABJM) [20]. The structure of Wilson loops in ABJM

theory is richer than in N = 4 SYM [21], admitting different realizations through the

fundamental lagrangian fields [22–24], sometimes leading to the same quantum expectations

values through a cohomological equivalence [24]. The relevant defect field theories should

be able to fully distinguish them, possibly describing different Wilson lines in terms of

marginal deformations [25]. Further motivations are the potential existence of topological

sectors, that could be associated to new supersymmetric localization procedures, and the

relations with integrability, that might lead to an alternative derivation of the elusive h(λ)

function of ABJM [26] (see also [27]).

In the following we shall be interested in the calculation of defect correlation functions,

i.e. correlators of local operators inserted along the 1/2 BPS Wilson line. Given some local

operators Oi(ti), one can define the gauge invariant Wilson line with insertions as

W[O1(t1)O2(t2) . . . On(tn)] ≡ TrP
[
Wti,t1O1(t1)Wt1,t2O2(t2) . . . On(tn)Wtn,tf

]
, (1.1)

where t parameterizes an infinite straight line and Wta,tb is the path-ordered exponential of

a suitable connection, that starts at position x(ta) and ends at position x(tb). We choose

ti = −∞ and tf = ∞. The local operators Oi(ti) are inserted between (untraced) Wilson

lines, and therefore are not invariant, but have to transform in the adjoint representation

of the gauge group. The (one-dimensional) defect correlators are then defined as

〈O1(t1)O2(t2) . . . On(tn)〉W ≡
〈W [O1(t1)O2(t2) . . . On(tn)]〉

〈W〉
. (1.2)

– 2 –
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This definition of correlators is actually more general than the specific realization in terms of

Wilson lines, and it extends to any one-dimensional defect conformal field theory (DCFT).

Only part of the original ABJM symmetry OSp(6|4) is preserved: the unbroken supergroup

is SU(1, 1|3), whose bosonic subgroup is SU(1, 1)× SU(3)R× U(1)J0 . Defect operators are

classified by a set of four quantum numbers [∆, j0, j1, j2] associated to the four Cartan gen-

erators of this bosonic subalgebra. The structure of short and long multiplets representing

this subalgebra has been studied thoroughly in [28] and will be reviewed in the main body

of the paper.

Our study will concentrate mainly on correlators associated to the components of a

short multiplet, the displacement multiplet, which plays a fundamental role in any su-

persymmetric DCFT. It contains the displacement operator D(t), that is supported on

every conformal defect [29] and describes infinitesimal deformations of the defect profile,

as well as other operators associated to the broken R-symmetries and supercharges. We

will consider three different, complementary realizations of this protected multiplet, that

are useful to probe its properties and to calculate its correlation functions, depending on

the coupling regime and the computational method. A first, more general, realization of

the displacement multiplet is obtained in terms of a superfield Φ associated to a short mul-

tiplet of SU(1, 1|3). A representation theory analysis shows that this superfield is neutral

under SU(3) and annihilated by half of the supercharges (and thus chiral or antichiral).

In four dimensions, the analogous superfield representation for the displacement multiplet

has been derived in [11], resulting in a superfield charged under the residual R-symmetry

group. A natural strong-coupling realization is provided by the AdS/CFT correspondence:

in ABJM theory a 1/2 BPS Wilson line is dual to the fundamental open string living in

AdS4 ×CP3, with the appropriate boundary conditions on the straight contour. The min-

imal surface spanned by the string encodes its vacuum expectation value at leading order

in the strong-coupling expansion. Fluctuations around the minimal surface solution nicely

organize in a AdS2 multiplet of transverse modes [30, 31], whose components precisely

match the quantum numbers of the displacement multiplet. A summary of this correspon-

dence is provided in table 1. A third realization is obtained by inserting field operators,

constructed explicitly from the elementary fields appearing in the ABJM lagrangian. In

our case the identification is trickier than in the N = 4 SYM case: the 1/2 BPS Wilson

line in ABJM is constructed as the holonomy of a superconnection living on a U(N |N) su-

peralgebra [24, 32], and our multiplet should be represented by the insertion of appropriate

supermatrices. Perturbative weak-coupling results for the correlation functions could be

obtained in this framework by ordinary Feynman diagrams. We construct explicitly the

supermultiplet in terms of supermatrices, taking into account the fact that the action of

the relevant supercharges is deformed by the presence of the Wilson line itself.1 We will

use the first two realizations of the displacement supermultiplet in the computation of the

four-point correlation functions at strong coupling, verifying their relative consistency. We

1A basic difference between 1/2 BPS Wilson lines in N = 4 SYM and ABJM is that in the first

case the relevant connection is invariant under supersymmetry, while in the second one it undergoes a

supergauge U(N |N) transformation [24, 32]. This fact will be important in deriving the correct field-

theoretical representation of the displacement supermultiplet.
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Grading Operator ∆ m2

Fermion F(t) 1
2 0

Boson Oa(t) 1 0

Fermion Λa(t) 3
2 1

Boson D(t) 2 2

Table 1. Components of the displacement supermultiplet with their scaling dimensions and the

masses of the dual AdS2 string excitations. The mass is obtained through the AdS/CFT dictionary

m2 = ∆(∆− 1) for the bosons and m2 = (∆− 1
2 )2 for the fermions.

leave an analogous weak-coupling calculation to future investigations.

Results. A first important result of our analysis concerns the general structure of the

four-point functions of the displacement supermultiplet. The superfield formalism, together

the underlying superconformal symmetry, enables us to determine all the non-vanishing

correlators for a given ordering of the external superfields in terms of a single function

f(z) of the relevant conformal cross-ratio z = t12t34
t13t24

. This function appears directly in the

correlator of the superconformal primary F(t) and its conjugate F̄(t)

〈F(t1)F̄(t2)F(t3)F̄(t4)〉 =
C2

Φ

t12t34
f(z) . (1.3)

Above, CΦ is the normalization of the superfield two-point function and has a physical

interpretation in terms of the Bremsstrahlung function which will be discussed below, in

section 3.5. In one dimensional CFTs, correlators come with a specific ordering and one

is allowed to take OPEs only for neighbouring operators. Therefore, crossing symmetry

implies that the exchange 1 ↔ 3 is a symmetry of the correlator (1.3), whereas 1 ↔ 2 is

not. This means that there could be independent functions of the cross-ratio associated to

different operator orderings, see section 3 for a thorough discussion of this issue.

Having encoded all the information into this function, we use the analytic bootstrap to

compute f(z) in a first-order perturbation around the generalized free-field theory result

obtained by Wick contractions. As a first step we carefully examine the OPE structure

for the superfield Φ. In our case, there are two qualitatively different OPE channels to

consider, depending on whether we take the chiral-antichiral OPE Φ×Φ̄ or the chiral-chiral

OPE Φ × Φ. We have derived the selection rules for the superconformal representations

appearing in these two channels, as well as the corresponding superconformal blocks.2

In the chiral-antichiral OPE only long multiplets appear and the associated superblocks

are explicitly obtained by diagonalizing the superconformal Casimir operator. The chiral-

chiral OPE is richer and we observe the presence of three short multiplets in addition

to the long ones: importantly the infinitely many long operators appearing here have

(unprotected) dimensions strictly higher than the short (protected) ones. This bound

is crucial in the solution of the bootstrap equations. After having settled the relevant

(super)block expansions, we impose symmetries and consistency with the OPE’s, obtaining

2Our analysis holds for a chiral short multiplet whose superprimary has generic U(1) charge.
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an infinite family of solutions. We then use a physical criterium to classify these solutions

and we select the “minimal” one leading to a function f(z)

f(z) = 1−z+ε

[
z−1+z(3−z) log(−z)− (1−z)3

z
log(1−z)

]
+O(ε2) , ε=

1

4πT
. (1.4)

The parameter ε controls the expansion around generalized free-field theory, and it will be

interpreted as the inverse string tension T appearing in the effective AdS2 sigma-model.3

We then extract the anomalous dimensions and the OPE coefficients of the composite

operators appearing in the intermediate channels. At leading order (generalized free-field

theory) the operators exchanged in the OPE channels are “two-particle” operators of the

schematic form F∂nt F̄ in the chiral-anchiral channel, and F∂nt F (with odd n) in the chiral-

chiral channel.4 We consider the following perturbation over their classical dimension

chiral-antichiral channel : ∆n = 1 + n+ εγ(1)
n +O(ε2) (1.5)

chiral-chiral channel : ∆n = 1 + n+ εγ(1)
n +O(ε2) n odd (1.6)

and comparing (1.4) with the associated block expansion, we find the following expression

for the anomalous dimensions

γ(1)
n = −n2 − 4n− 3 , γ(1)

n = −n2 − n+ 2 , n odd , (1.7)

and an analogous result for the OPE coefficients. One would be tempted to interpret these

formulas as the leading corrections to the classical dimension of the two-particle operators

defined above (or their supersymmetric generalization). However, as we discuss in section 4,

two-particle operators mix, in general, with multi-particle operators, and our result should

correspond to linear combinations of the actual anomalous dimensions weighted by OPE

coefficients.5 We stress anyway that, since we bootstrap directly the correlator (1.3), the

result (1.4) is not affected by mixing.

As mentioned above, the worldsheet fluctuations around the (AdS2) minimal surface

corresponding to the 1/2 BPS Wilson line are in direct correspondence with the compo-

nents of the displacement supermultiplet. Through AdS/CFT, correlators of these AdS2

fields evaluated at the boundary correspond to correlation functions of the dual defect

operators [5]. For large string tension T , their boundary-to-boundary propagator is free,

leading to a generalized free-field theory result for their four-point function. The 1/T ex-

pansion for the Nambu-Goto string action involves non-trivial bulk interactions, and the

associated boundary correlators are evaluated via AdS2 Witten diagrams.6 We derived

3The precise relation between the ε parameter and the string tension T can only be established after the

comparison with the explicit Witten diagram computation.
4At strong coupling these operators should represent worldsheet bound states, made of two of the

corresponding fluctuations, as discussed in [5].
5There is of course the possibility that, at the first non-trivial order, the degeneracy is not lifted. In this

case, the result (1.7) would provide the eigenvalues of the dilatation operator.
6We remark that, compared to the usual 1/N expansion in Witten diagrams for higher-dimensional

AdS/CFT, we are expanding the large-N string sigma-model in inverse powers of the string tension. See

related discussion in [5].

– 5 –
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the effective quartic Lagrangian governing the interactions of the AdS2 fields and obtained

the associated Feynman rules. The computation of all bosonic correlators confirms the

functional form of f(z), in perfect harmony with the bootstrap result once we identify the

two expansion parameters as in (1.4).

It is interesting to point out similarities and differences between the case of interest in

this paper and its four-dimensional counterpart [5, 11]. The structure of the displacement

multiplet for example is different: the superprimary is a fermion, a feature that from the

one-dimensional point of view simply amounts to give a Graßmann character to the related

field. The three-dimensional representation of the supermultiplet, in terms of Lagrangian

fields inserted into the Wilson line, is instead far from being trivial, and implies a sophisti-

cated construction in terms of supermatrices. At strong coupling, the fermionic nature of

the superprimary implies that the bosonic AdS2 excitations are dual to super-descendants

in the displacement supermultiplet. Therefore, their correlators do not provide a direct

result for the function f(z), which can be however obtained by comparing the superfield

expansion of the correlator with the Witten diagram computation. This results in a system

of differential equations, whose unique solution — f(z) in (1.4) — provides a non-trivial

consistency check of our procedure.

Another difference concerns the R-symmetry structure, since the chiral superfield Φ is

neutral under SU(3) and its four-point function does not require any R-symmetry cross-

ratio. This prevents the possibility to construct topological operators, whose correlation

functions on the line do not depend on the positions of the insertion. This is in sharp

contrast with the N = 4 case, where topological operators in the displacement multiplet

have been found [5, 11] and their correlation functions have been computed exactly by

localization [6, 7, 33]. In our setting topological operators seem instead to appear inside

another multiplet [34], making difficult to connect our computations to some all order result.

Outlook. A natural development of this work would be to calculate the four-point func-

tions of the displacement supermultiplet beyond tree-level at strong coupling, using loop

corrections to Witten diagrams in AdS2. The relevant AdS2 sigma-model should be UV

finite [5], but regularization subtleties are anyway expected in AdS2 models with derivative

interactions (for example, see discussion in [35–40]). A parallel attempt would be to com-

pute the anomalous dimensions of exchanged operators beyond the first non-trivial order

using the bootstrap approach: the potential mixing problem discussed above is expected

to arise at this level, and its resolution would require the analysis of different correlators.7

Another very interesting direction could be to apply integrability in this context, as done

recently in the N = 4 case [19]. Data at finite coupling for the correlators of interest here

may also be obtained with lattice field theory methods applied to the string worldsheet,

discretizing the Lagrangian of [41] expanded around the minimal surface corresponding

to the 1/2 BPS line, and using Monte Carlo techniques on the lines of [42–46] for the

correlators of the worldsheet excitations. Weak coupling computations represent also a vi-

able extension of the present work. A traditional perturbative field-theoretical calculation

7We thank Carlo Meneghelli for discussing with us this possibility.
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of the correlators, using the supermatrix representation of the displacement multiplet,8

should determine the function f(z) at small coupling. It can be done by generalising the

procedure developed in [28] for the Bremsstrahlung function and exploiting the Feynman

diagrams experience gained in [47]. Topological sectors, hopefully amenable to localiza-

tion, could appear considering other supermultiplets [34]: if this is the case, the study of

more general correlators might be interesting. It would be also interesting to extend these

investigations to non-supersymmetric lines in ABJM, as done in [48] for N = 4 SYM, or

to higher-dimensional defects [49].

This paper proceeds as follows. In section 2 we discuss the displacement supermultiplet

in ABJM, relating its components to the symmetries broken by the line defect. We present

its properties from the representation theory point of view, and derive the field theoretical

realization of its components as supermatrix-valued insertions in the 1/2 BPS Wilson

line. Section 3 is devoted to the chiral superfield approach to the study of the four-

point correlation functions, and to the discussion of the different OPE’s and selection

rules relevant for the bootstrap approach. The actual derivation of the functions f(z) is

contained in section 4, where the full bootstrap machinery is applied to the four-point

correlators and the extraction of the conformal data is discussed. In section 5 we turn our

attention to the computation of the correlators performed via Witten diagrams. A number

of technical appendices complete our manuscript.

2 1/2 BPS Wilson line and the displacement supermultiplet in ABJM

This section is devoted to the definition and construction of the displacement supermultiplet

for a line defect given by the 1/2 BPS Wilson line in ABJM. For completeness, we start by

recapitulating some basic facts about this theory. The gauge sector consist of two gauge

fields Aµ and Âµ belonging respectively to the adjoint of U(N) and Û(N). The matter

sector instead contains the complex scalar fields CI and C̄I as well as the fermions ψI and

ψ̄I . The fields (CI , ψ̄
I) transforms in the bifundamental (N, N̄) while the couple (C̄I , ψI)

lives in the (N̄ ,N). The additional capital index I = 1, 2, 3, 4 label the (anti)fundamental

representation of the R-symmetry group SU(4). The kinetic term for the gauge fields

consists of two Chern-Simon actions of opposite level (k,−k), while the ones for scalars

and fermions take the standard form in terms of the usual covariant derivatives. To ensure

super-conformality the action is also endowed with a suitable sextic scalar potential and

ψ2C2 Yukawa type interactions explicitly spelled out in [20, 50].

2.1 The 1/2 BPS line in ABJM

The construction of supersymmetric Wilson loops in ABJ(M) theory [24, 32] is notably

more intricate than in the four-dimensional relative N = 4 SYM [1, 2, 51, 52]. For instance,

when exploring the dynamics of the 1/2 BPS heavy massive particles obtained via the

Higgsing procedure [53], one discovers that they are coupled not only to bosons (as occurs

in D = 4) but to fermions as well. Then the low-energy theory of these particles turns out to

8See section 2.2.
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possess a U(N |N) supergauge invariance instead of the smaller but expected U(N)× Û(N)

gauge symmetry. Therefore the (locally) 1/2-BPS Wilson loop operator must be realized

as the holonomy of a superconnection L(t) living in u(N |N) [24, 32, 53]:

W = Str

[
P exp

(
−i
˛
dtL(t)

)
T
]
. (2.1)

This superconnection can be written in terms of the ABJ(M) fields and reads

L =

Aµẋµ − 2πi
k |ẋ|MJ

ICIC̄
J −i

√
2π
k |ẋ|ηI ψ̄

I

−i
√

2π
k |ẋ|ψI η̄

I Âµẋ
µ − 2πi

k |ẋ|M̂
I
J C̄

JCI

 (2.2)

Here xµ(t) parametrizes the contour while the matrices MJ
I(t) and M̂ I

J(t) and the spinors

ηI(t) and η̄I(t) are local couplings, determined in terms of the circuit xµ(t) by the require-

ment of preserving some of the supercharges. The invariance for this type of loop operators

does not follow from imposing δsusyL = 0 as usual, but the weaker condition

δsusyL = DtG = ∂tG + i[L,G] (2.3)

where G is a u(N |N) supermatrix. Namely the action of supersymmetry on the connection

L(t) can be cast as an infinitesimal supergauge transformation of U(N |N) [24, 32, 53]. This

directly implies a vanishing variation for the (super)traced Wilson loop, provided that G
is periodic along the contour. When G is not exactly periodic, one can correct the lack of

periodicity either by inserting a twist supermatrix T in the supertrace (see eq. (2.1)) [32]

or by adding to L(t) a background connection living on the contour [21]. The explicit form

of either T or the background connection is not relevant for the subsequent analysis.

Below we shall focus on the straight line case. The line is located at x2 = x3 = 0 and

the couplings in (2.2) are given by

MJ
I = M̂ I

J =

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , and ηαI =

 1
0
0
0


I

η+, η̄Iα = i (1 0 0 0)
I
η̄+ (2.4)

where η+ = η̄T+ =
(

1 1
)

. These couplings break the original symmetry OSp(6|4) to

SU(1, 1|3): in particular the original bosonic subsector of the supergroup containing the Eu-

clidean conformal group in three-dimensions Sp(4) ' SO(1, 4) and the R-symmetry group

SO(6) ' SU(4) reduces to SU(1, 1)× SU(3)R× U(1)J0 . The first factor SU(1, 1) ' SO(2, 1)

is simply the conformal algebra in one dimension, SU(3)R is the residual R-symmetry group

and the U(1)J0 factor is a recombination of the rotations around the line and a broken R-

symmetry diagonal generator. The preserved generators are given in appendix A. The

structure of the residual supergroup implies that we have a defect SCFT1 living along the

straight-line. Its operators are characterized by a set of four quantum numbers [∆, j0, j1, j2]

associated to the four Cartan generators of the above bosonic subalgebra.9 The structure of

9∆ is the conformal dimensions, j0 is the U(1)J0 charge and j1 and j2 are the SU(3)R labels.
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short and long multiplets representing this subalgebra has been studied thoroughly in [28]

and we review it in appendix A.1. Of particular relevance within them is the displacement

supermultiplet which we review in the next subsection.

In the following, we will also find convenient to accomodate the original scalar and

fermionic fields of ABJ(M) theory according the new R-symmetry pattern

CI = (Z, Ya) C̄I = (Z̄, Ȳ a) (2.5)

ψ±I = (ψ±, χ±a ) ψ̄I± = (ψ̄±, χ̄
a
±) (2.6)

where Y a (Ȳa) and χa± (χ̄a±) change in the 3 (3̄) of SU(3), whereas Z and ψ± (ψ̄±) are

singlet. Moreover, we have expressed them in a basis of eigenvectors of γ1 = σ1, e.g.

ψ+ = (ψ1 + ψ2) ψ− = (ψ1 − ψ2) (2.7)

with the rules ψ− = −ψ+ and ψ+ = ψ−. The two gauge fields and consequently the

covariant derivative can be instead split according to the new spacetime symmetry pat-

tern, namely

Aµ = (A1, A = A2− iA3, Ā = A2 + iA3) Âµ = (Â1, Â = Â2− iÂ3,
ˆ̄A = Â2 + iÂ3) (2.8)

and Dµ = (D1, D = D2 − iD3, D̄ = D2 + iD3). In terms of these new fields the super-

connection (2.2) for the case of the straight line takes the following form

L(t) =

(
A1 0

0 Â1

)
+

2πi

k

(
ZZ̄ − YaȲ a 0

0 Z̄Z − Ȳ aYa

)
+

√
2π

k

(
0 −iψ̄+

ψ+ 0

)
. (2.9)

2.2 The displacement supermultiplet

An infinitesimal variation of the Wilson line (2.1) translates into an operator insertion

according to the identity:

〈(δW) . . .〉
〈W〉

= −i
ˆ
C
dt 〈δL(t) . . . 〉W , (2.10)

where on the l.h.s. we are considering an arbitrary correlator with the deformed Wilson line,

while on the r.h.s. we are using the definition (1.2). Notice that δ could be any symmetry

generator that is not preserved by the Wilson line. When δ is the action of a broken

fermionic or bosonic charge inside the parent superalgebra, the resulting operators can be

related to an element of the super-multiplet of the displacement operator. Consider, for

instance, the six broken R-symmetry generators J1
a ≡ Ja and Ja

1 ≡ J̄a (see appendix A).

Their action will yield six bosonic defect operators by the symbolic action

[Ja,W] ≡ iδJaW =

ˆ
dt W[Oa(t)] [J̄a,W] ≡ iδJ̄aW =

ˆ
dt W[Ōa(t)] (2.11)

where we indicate by W[Oa(t)] an operator that is inserted on the Wilson line according to

the definition (1.1). The equations (2.11) are Ward identities and they need to be thought

as inserted in some correlation function. The defect operator Oa(t) has conformal dimension
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∆ = 1, since the line defect is dimensionless and the dilatations commute with Ja. The

U(1)J0 charge is 2 and it can be read from the commutator [J0, J
a] = −2[J1

1, Ja] = 2Ja.

Finally, it transforms in the fundamental representation of SU(3). Namely this operator is

characterized by the following set of four quantum numbers [1, 2, 1, 0]. Similarly for Ōa(t)
we have [1,−2, 0, 1].

Next to the R-symmetry broken generators, we also have six broken supercharges given

by Q1a
− ≡ iQ̄a and Qab+ = εabcQc and thus we can define six fermionic defect operators:

[Qa,W] =

ˆ
dt W[Λa(t)] [Q̄a,W] =

ˆ
dt W[Λ̄a(t)] (2.12)

The quantum numbers of these operators are again fixed by the quantum numbers of the

line defect and the commutation relations of the broken charges with the preserved ones.

We find [3
2 ,

5
2 , 0, 1] for Λa(t) and [3

2 ,−
5
2 , 1, 0] for Λ̄a(t).

Finally, we can consider the two broken translations P and P̄ in the directions orthog-

onal to the defect. They define the so-called displacement operators

[P,W] =

ˆ
dtW[D(t)] [P̄,W] =

ˆ
dtW[D̄(t)] (2.13)

with charges [2, 3, 0, 0] and [2,−3, 0, 0] respectively.

The above construction in general does not uniquely determine the above set of oper-

ators. Since they are defined as objects inserted in the defect and we integrate over the

position along the loop, we can add a total derivative with respect to t to the integrand

without altering the result.

The set of defect operators obtained through the action of the broken charges organizes

itself as a super-multiplet. The action of the preserved supercharges Qa = Q1a
+ and Q̄a =

i 1
2εabcQ

bc
− on them is essentially dictated by the commutation relations between broken

and preserved charges. For instance, to compute [Qa,Ob] one has simply to consider the

commutator [Qa, Jb] acting on W and we get

[Qa, Jb] = Qab+ = εabcQc ⇒ [Qa,Ob] = εabcΛc. (2.14)

From the commutation relation of Qa with the broken supercharges and translation we

immediately find

{Qa,Λb} = −2δabD and [Qa,D] = 0. (2.15)

Fixing the action of Q̄a on these defect operators requires more attention. In fact the naive

application of the above procedure would give zero since Q̄a commutes with all the broken

charges. But this is inconsistent with {Qa, Q̄b} = 2δabP where P generates the transla-

tions along the line. However, as stressed above, any result obtained from (2.11), (2.12)

and (2.13) is defined up to a derivative with respect to t, which yields zero when integrated.

To fix the form of these derivatives in the commutation relations is more convenient to use

the super-Jacobi identities. For instance, we can determine [Q̄c,D] as follows10

0 ={Q̄c, [Qa,D]} − {Qa, [D, Q̄c]}+ [D, {Q̄c, Qa}] = {Qa, [Q̄c,D]} − 2δac [P,D]

={Qa, [Q̄c,D]} − 2δac ∂tD = {Qa, [Q̄c,D] + ∂tΛc} ⇒ [Q̄c,D] = −∂tΛc, (2.16)

10We choose to represent P as −∂t and then [P,Φ] = ∂tΦ, see the discussion in [54].
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{Qa,F} = Oa {Q̄a,F} = 0

[Qa,Ob] = εabcΛc [Q̄a,Ob] = 2δba∂tF

{Qa,Λb} = −2δabD {Q̄a,Λb} = −2εabc∂tOc

[Qa,D] = 0 [Q̄c,D] = −∂tΛc

Table 2. Summary of the supersymmetry transformations of the displacement supermultiplet of a

1/2 BPS line-defect in N = 6 supersymmetric theories in D = 3.

where we assumed, as usual, that the action of the translation P is realized by −∂t to

be consistent with (3.10). Similarly we can show that {Q̄a,Λb} = −2εabc∂tOc. Finally

we have to consider the action, since we do not have an operator of lower dimension,

it would be natural to set [Q̄c,Ob] = 0: this choice is, however, inconsistent with the

super-Jacobi identity:

0 ={Q̄c, [Qa,Ob]} − {Qa, [Ob, Q̄c]}+ [Ob, {Q̄c, Qa}] = −2δbc∂tO
a + {Qa, [Q̄c,Ob]}. (2.17)

The consistency of (2.17) suggests the existence of an additional fermionic operator F, that

is a singlet under SU(3), which obeys the anticommutation relation:

{Qa,F} = Oa, (2.18)

which in turn implies [Q̄c,Ob] = 2δbc∂tF. The Jacobi identity for this new field immediately

shows that {Q̄a,F} can be consistently chosen to vanish. Furthermore, F has the correct

quantum numbers to be the superprimary of the chiral multiplet B̄
1
2
3
2
,0,0

(see appendix A.1)

with the structure

B̄
1
2
3
2
,0,0

:

[1
2 ,

3
2 , 0, 0]

[1, 2, 1, 0]

[3
2 ,

5
2 , 0, 1]

[2, 3, 0, 0]
(2.19)

In section 2.3 we will illustrate how the supermultiplet is realized a in terms of the funda-

mental fields of ABJM theory. An analogous actions of the supercharges can be derived

for the conjugated operators leading to the barred version of the commutation relations in

table 2 up to changing the signs of the terms involving an epsilon tensor.

The displacement supermultiplet (2.19) appearing in the defect CFT1 living along the

Wilson line should match the string transverse excitations via AdS/CFT. As reviewed in

the Introduction and below in section 5, the expansion of the Green-Schwarz string action

around the minimal surface solution results in a multiplet of fluctuations transverse to the
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string [30, 31] whose components match precisely the quantum numbers of the operators

in (2.19), once the two standard relations between AdS2 masses and the corresponding

CFT1 operator dimensions are taken into account, m2 = ∆(∆ − 1) for scalars and ∆ =
1
2 + |m| for spinors [56, 57]. In particular, in the scalar fluctuation sector one finds one

massive (with m2 = 2) complex scalar field X in AdS4, corresponding to the ∆ = 2

displacement operator D, and three massless complex scalar fluctuations wa, a = 1, 2, 3 in

CP3, corresponding to the ∆ = 1 operators Oa, a = 1, 2, 3. In the fermionic sector, there

are two massless fermions which should correspond to the ∆ = 1
2 fermionic superprimary

F of the multiplet and its conjugate, as well as six massive fermions (of which three with

mass mF = 1 and three with mF = −1) corresponding to the ∆ = 3
2 fermionic operator

Λa and its conjugate.

2.3 Weak coupling representation in terms of supermatrices

The goal of this subsection is to provide an explicit realization of the ABJM displacement

supermultiplet in terms of the fundamental fields of the underlying theory. Since these

fields live along the Wilson lines and in most cases they are obtained by varying the

superconnection (2.2), they naturally possess the structure of a supermatrix. The lowest

component of the multiplet F has quantum numbers [ 1
2 ,

3
2 , 0, 0] and thus we expect it to be

a merely fermionic object. On the other hand, the only field or combination of elementary

fields with these quantum numbers, which can appear in the entries of the super-matrix,

is the bosonic complex scalar Z. Therefore we shall write the following ansatz for F,

F = i

√
2π

k
ε̃

(
0 Z

0 0

)
, (2.20)

where ε̃ is a fermionic parameter endowing F with its anticommuting nature.11 To construct

the next element of the multiplet we have to act with θaQ
a on the operator inserted in the

Wilson line, where θa is a Graßmann-odd parameter that we can identify with one of the

fermionic coordinates of the superspace constructed in section 3. In the four-dimensional

case, the only contribution would come from the action of θaQ
a directly on the operator,

since the connection and thus the (open) Wilson line are both invariant. This is not the

case for operators inserted in the fermionic Wilson loop of ABJM theory. In fact there

is an additional contribution coming from the variation of the Wilson line. However this

11We remark that ε̃ is just a bookkeeping device to keep memory of the Graßmann nature of the operator

insertions when constructing their explicit representation in terms of super matrices, and it appears in the

definitions (2.20), (2.24), (2.26), (2.27) of F,O,Λ,D below. In any explicit gauge theory computation of

four-point functions the presence of such fermionic parameters (each of the fields in the correlator shold

have a different one) will result in an overall factor, which should be dropped when comparing the final

result with any alternative calculation. In particular, there is no ε̃ dependence in the correlators of the

quantum fluctuations of the dual fundamental string evaluated in section 5. The fermionic/bosonic nature

of these fluctuations is indeed already explicit in the corresponding fluctuation Lagrangian.
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amounts to “covariantize” the usual action of the supersymmetry on the operator as follows

δcov • = θaQ
a •+2

√
2π

k

[(
0 0

θa Ȳ
a 0

)
, •

]
, (2.21)

δ̄cov • = θ̄a Q̄a •+2

√
2π

k

[(
0 θ̄aYa
0 0

)
, •

]
, (2.22)

where θa and θ̄a are Graßmann odd parameters associated to supertranslations. The com-

mutators in (2.21) and (2.22) compensates the super-gauge transformation of the Wilson

line induced by the supersymmetry transformation (2.3) with the matrix G given by

G = 2

√
2π

k

(
0 θ̄aYa

θa Ȳ
a 0

)
. (2.23)

The action of δcov on F defined in (2.20) is quite straightforward to evaluate once we

use the transformations in appendix B. The final result is

δcovF = i

√
2π

k
θa ε̃

2
√

2π
k Z Ȳ

a −χ̄a+
0 2

√
2π
k Ȳ

a Z

 ≡ θa Oa , (2.24)

namely we have obtained the second component of our supermultiplet (2.19), the one asso-

ciated to the R-symmetry breaking. An identical expression can be obtained by exploiting

that the fields appearing in the super-connection (2.9) under the action of Ja transforms

as follows

δJa(Z, Yb) = (0, iδabZ), δJa(Z̄, Ȳ b) = (−iȲ a, 0), δJaψ
+ = 0, δJaψ̄+ = −iχ̄a+.

(2.25)

Using (2.11) one can apply the action of these broken generators on the superconnec-

tion (2.9) recovering the same result for Oa. Similarly, the form of Ōa(t) can be obtained

by looking at the explicit action of J̄a on the fields. Applying once more δcov, we reach the

third component

δcov

(
θa O

a
)

= 2i

√
2π

k
εnrs θrθs ε̃

√2π
k (εabn χ̄

a
+ Ȳ

b − Z χ−n ) −DYn

4π
k εabnȲ

a ZȲ b
√

2π
k (εabn Ȳ

b χ̄a+ − χ−n Z )


≡ −εnrs θr θs Λn . (2.26)

Also in this case, the expression (2.26) for Λn perfectly agrees with the one obtained by

acting with the broken generator on the superconnection (2.9) according to (2.12).

Finally, applying again δcov to (2.26) we obtain the top component D of the supermul-

tiplet (2.19), namely the displacement operator

δcov

(
−εnrsθrθsΛn

)
= 2

√
2π

k
εnrsθnθrθs ε̃

×

√2π
k i(2ZDZ̄−2DYaȲ

a+ χ̄a+χ
−
a ) −iDψ̄+

Dψ+− i D̃tψ−
√

2π
k i(2DZ̄ Z−2Ȳ aDYa−χ−a χ̄a+)


≡ 2εnrs θn θr θsD , (2.27)
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where D̃t is the covariant derivative constructed only with the bosonic part of the super-

connection. The D insertion can be also constructed out of its abstract definition (2.13) by

acting with a broken translation on the superconnection, as was done in equation (5.18)

of [28]. In this case, the two expressions are not identical and the difference between the

two definitions is proportional to the matrix

√2π
k ψ̄+ ψ

− 0

D̃tψ− −
√

2π
k ψ
− ψ̄+

∝Dt( 0 0

ψ− 0

)
. (2.28)

This difference is compatible with the construction (2.13), which is blind to total deriva-

tives. For the case of Wilson lines insertions, total derivatives are implemented [28] as the

following modification for an operator O(t) inserted into the loop

ˆ
dt W[O(t)] =

ˆ
dt [W[O(t)] + ∂t(W[Σ(t)])]

=

ˆ
dt (W[O(t)] +W[DtΣ(t)]) =

ˆ
dt W[O(t) +DtΣ(t)] , (2.29)

whereDt is the covariant derivative defined in (2.3). We then conclude that our supermatrix

construction perfectly agrees with the abstract structure outlined in section 2.2.

3 Chiral correlation functions in superspace

3.1 Algebra

The algebra preserved by the 1/2 BPS Wilson line is the one-dimensional N = 6 supercon-

formal algebra, or su(1, 1|3), generated by {D,P,K,Rab, J ;Qa, Qa, S
a, Sa}, a = 1, 2, 3,

where the identifications with the osp(6|4) generators are spelled out in appendix A.

The bosonic generators {D,P,K} are those of the one-dimensional conformal algebra

su(1, 1) ∼ so(2, 1), together with the SU(3) traceless generators Ra
b (a, b = 1, 2, 3) and

the additional u(1) R-symmetry current algebra generator J0. Their commutation rela-

tions read

[P,K] = −2D , [D,P ] = P , [D,K] = −K [Ra
b, Rc

d] = δdaRc
b − δbcRad , (3.1)

and J0 commutes with all of them. The anticommutation relations for the fermionic gen-

erators Qa, Qa and the corresponding superconformal charges Sa, Sa, a = 1, 2, 3 are

{Qa, Q̄b} = 2δabP , {Sa, S̄b} = 2δabK (3.2)

{Qa, S̄b} = 2δab

(
D +

1

3
J0

)
− 2Rb

a
{
Q̄a, S

b
}

= 2δab

(
D − 1

3
J0

)
+ 2Ra

b , (3.3)
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and the non-vanishing mixed commutators read

[D,Qa] =
1

2
Qa [D,Qa] =

1

2
Qa [K,Qa] =Sa [K,Qa] =Sa

(3.4)

[D,Sa] =−1

2
Sa [D,Sa] =−1

2
Sa [P,Sa] =−Qa [P,Sa] =−Qa

(3.5)

[Ra
b,Qc] = δcaQ

b− 1

3
δbaQ

c [Ra
b,Qc] =−δbcQa+

1

3
δbaQc [J0,Q

a] =
1

2
Qa [J0,Qa] =−1

2
Qa
(3.6)

[Ra
b,Sc] = δcaS

b− 1

3
δbaS

c [Ra
b,Sc] =−δbcSa+

1

3
δbaSc [J0,S

a] =
1

2
Sa [J0,Sa] =−1

2
Sa
(3.7)

The quadratic Casimir is

C(2) = D2 − 1

2
{K,P}+

1

3
J2

0 −
1

2
Ra

bRb
a +

1

4
[Sa, Q

a] +
1

4
[Sa, Qa] , (3.8)

and, when acting on a highest weight state [∆, j0, j1, j2] of su(1, 1|3), it has eigenvalue

c2 = ∆(∆ + 2) +
j2
0

3
− 1

3
(j2

1 + j1j2 + j2
2). (3.9)

To compute the superconformal blocks we need to represent the algebra above as an ac-

tion on superconformal primaries. For this purpose we introduce (t, θa, θ̄
a) as superspace

coordinates, where t is the coordinate along the Wilson line and θa and θ̄a are Graßmann

variables.12 We can then write the differential action of the N = 6 generators as

P = −∂t (3.10)

D = −t∂t − 1
2θa∂

a − 1
2 θ̄
a∂̄a −∆ (3.11)

K = −t2∂t − (t+ θθ̄)θa∂
a − (t− θθ̄)θ̄a∂̄a − (θθ̄)2∂t − 2 t∆ +

2

3
j0 θθ̄ (3.12)

Qa = ∂a − θ̄a∂t (3.13)

Q̄a = ∂̄a − θa∂t (3.14)

Sa =
(
t+ θθ̄

)
∂a −

(
t− θθ̄

)
θ̄a∂t − 2θ̄aθ̄b∂̄b − 2

(
∆ +

1

3
j0

)
θ̄a (3.15)

S̄a =
(
t− θθ̄

)
∂̄a −

(
t+ θθ̄

)
θa∂t − 2θaθb∂

b − 2

(
∆− 1

3
j0

)
θa (3.16)

J0 = −1

2
θa∂

a +
1

2
θ̄a∂̄a + j0 (3.17)

Ra
b = −θa∂b + θ̄b∂̄a +

1

3
δba
(
θc∂

c − θ̄c∂̄c
)

(3.18)

where ∂a = ∂
∂θa

, ∂̄a = ∂
∂θ̄a

, θθ̄ = θaθ̄
a and we are neglecting the SU(3) charges j1 and j2

because we will only be interested in neutral superfields. The superspace is also equipped

with supercovariant derivatives

Da = ∂a + θ̄a∂t , D̄a = ∂̄a + θa∂t . (3.19)
12The natural superspace to study correlation functions in the bulk has been introduced in [55], and the

setup adopted here could also be seen as the reduction of the one considered there.
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3.2 Chiral correlators

The representation theory analysis of the supergroup SU(1, 1|3) reviewed in the previous

section shows that the displacement operator belongs to a chiral multiplet with R-charge

j0 = 3
2 and dimension ∆ = 1

2 (the conjugate operator belongs to an antichiral multiplet

with opposite R-charge). For the purpose of this section we are going to consider a chiral

multiplet with arbitrary R-charge j0 and dimension ∆ = j0
3 . A chiral superfield Φj0 should

respect the chirality condition

D̄aΦj0 = 0 , (3.20)

for every value of a. By defining the chiral coordinate y = t+ θaθ̄
a, such that D̄ay = 0, one

simply has the component expansion

Φj0(y, θ) = φ(y) + θaψ
a(y)− 1

2
θaθb ε

abc ηc(y) +
1

3
θaθbθc ε

abcξ(y) , (3.21)

where the numerical coefficients of each component are fixed by consistency between the

action of the supercharges on the superfield and the commutation relations in table 2.

Similarly, the antichiral field is expanded as

Φ̄j0(y, θ) = φ̄(y) + θ̄aψ̄a(y) +
1

2
θ̄aθ̄b εabc η̄

c(y)− 1

3
θ̄aθ̄bθ̄c εabc ξ̄(y) . (3.22)

The two-point function of a chiral and antichiral superfield must be expressed in terms of

the chiral distance (D̄i 〈ij̄〉 = Dj 〈ij̄〉 = (Qi +Qj) 〈ij̄〉 = (Q̄i + Q̄j) 〈ij̄〉 = 0)

〈ij̄〉 = yi − yj − 2θaiθ̄aj , (3.23)

and reads

〈Φj0(y1, θ1)Φ̄−j0(y2, θ̄2)〉 =
cΦj0

〈12̄〉
2j0
3

, (3.24)

where cΦj0
is a normalization constant that in the case of the displacement supermultiplet

has a physical meaning, see section 3.5.

In this paper we are interested in the four-point functions

〈Φj0(y1, θ1)Φ̄−j0(y2, θ̄2)Φj0(y3, θ3)Φ̄−j0(y4, θ̄4)〉 =
c2

Φj0

〈12̄〉
2j0
3 〈34̄〉

2j0
3

f(Z) , (3.25)

〈Φj0(y1, θ1)Φ̄−j0(y2, θ̄2)Φ̄−j0(y3, θ̄3)Φj0(y4, θ4)〉 = −
c2

Φj0

〈12̄〉
2j0
3 〈43̄〉

2j0
3

h(X ) , (3.26)

where

Z =
〈12̄〉 〈34̄〉
〈14̄〉 〈32̄〉

X = −〈12̄〉 〈43̄〉
〈13̄〉 〈24̄〉

(3.27)

are the two superconformal cross ratios corresponding to the two different correlators.

These two invariants are built out of the chiral distance (3.23). In the general case one

may have a set of additional superconformal invariants which are nilpotent due to their
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Graßmann nature. For long-multiplet four-point functions, the use of such nilpotent invari-

ants guarantees a finite truncation in the superspace expansion (see e.g. [58]). However,

none of these invariants is compatible with the chirality condition (3.20). The absence of

nilpotent invariants is expected for correlators of 1/2 BPS operators, and in general for

4-point functions containing two chiral and two anti-chiral operators [59]. It is important

to notice that both correlators (3.25) and (3.26) are ordered such that t1 < t2 < t3 < t4. In

higher dimensions these two correlators would be related by crossing, but in one dimension

this is not the case. To make this more concrete, let us consider the bosonic part of the

cross ratios (3.27)

z =
t12t34

t14t32
χ =

t12t34

t13t24
(3.28)

where z is the bosonic part of Z and χ is the bosonic part of X . With our ordering we

have z < 0 and 0 < χ < 1. The two cross ratios are related by the transformation

z =
χ

χ− 1
. (3.29)

The absence of nilpotent invariants implies that the superprimary correlators

〈φ(t1)φ̄(t2)φ(t3)φ̄(t4)〉 = 〈φ(t1)φ̄(t2)〉 〈φ(t3)φ̄(t4)〉 f(z) , (3.30)

〈φ(t1)φ̄(t2)φ̄(t3)φ(t4)〉 = 〈φ(t1)φ̄(t2)〉 〈φ̄(t3)φ(t4)〉 h(χ) , (3.31)

fully determine the four-point functions of the whole superconformal multiplet, i.e. the

correlators of superconformal descendants can be obtained by the action of differential

operators on f(z). Of course, one is free to express the function f(z) in terms of the

cross-ratio χ by considering f( χ
χ−1). One can also take the analytic continuation of f(z)

for 0 < z < 1 (f(z) has branch cut singularities at coincident points, i.e. z = 0, 1,∞),

which would naively establish a relation between (3.30) and (3.31). Nevertheless, in one

dimension this is not the case and h(χ) is not the analytic continuation of f(z). Still,

we will see in section 3.4 that a relation between these two functions exists through their

s-channel block expansion.

3.3 Selection rules

Even though we consider half-BPS multiplets as external operators, more general multi-

plets can be exchanged when an OPE is applied to the correlator. In our case, there are

two qualitatively different OPE channels to consider, depending on whether we take the

chiral-antichiral OPE Φ × Φ̄ or the chiral-chiral OPE Φ × Φ. Each of them presents its

own selection rules for superconformal representations appearing in these two channels,

as well as corresponding superconformal blocks. We start from the chiral-antichiral chan-

nel. In [60] all the selection rules for the 1/6 BPS defect theory were derived, and it was

found that only the identity and long multiplets can appear in the chiral-antichiral OPE

for su(1, 1|1), a.k.a. N = 2 supersymmetry. For the N = 6 case of interest here, every pair

{Qa, Q̄a} at fixed a generates a su(1, 1|1) subgroup of su(1, 1|3), and a chiral multiplet of

su(1, 1|3) is also a chiral multiplet of all the three su(1, 1|1) subgroups. This implies that
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the operators appearing in the Φ×Φ̄ OPE must belong to long multiplets of all the su(1, 1|1)

subgroups, i.e. they must not be annihilated by any supercharge. Furthermore, three-point

functions with one chiral, one antichiral and one long multiplet are non-vanishing only

when the superprimaries R-charges sum to zero, namely a long multiplet enters only when

its superprimary can be exchanged. We conclude that

B̄j0 × B−j0 ∼ I +A∆
0,0,0 , (3.32)

where I is the identity and we use the notation of appendix A.1 for the su(1, 1|3) super-

multiplets. In this case the unitarity bound (A.24) simply reads ∆ ≥ 0 and every positive

dimension is allowed for long operators.

For the chiral-chiral channel, the situation is richer. To extract the selection rules

we will borrow an argument from [61]. Consider the chiral superprimary operator φ.

Chirality gives

[Q̄a, φ(t)] = 0 [S̄a, φ(t)] = 0 (3.33)

for any a and any t. The first condition is simply the definition of chirality, whereas the

second one comes from the requirement that φ is a superprimary at the origin together with

the commutation relation [P, S̄a] = −Q̄a. These two conditions imply that any operator O
appearing in the φ× φ OPE must respect

[Q̄a,O(t)] = 0 [S̄a,O(t)] = 0 (3.34)

for any a. It is then immediate to realize that the only superprimary operator which is

allowed to appear is a chiral operator of dimension ∆exc = 2j0
3 . All other multiplets will

contribute with a single superdescendant (and all its conformal descendants) generated by

the repeated action of Q̄a. Concretely, a long multiplet will contribute with the operator

generated by Q̄3O (here Q̄3 = εabcQ̄aQ̄bQ̄c), where O is the superprimary, and a similar

story holds for other short multiplets. The complete analysis yields

B̄j0 × B̄j0 ∼ B̄2j0 + B̄2j0+ 1
2
,1 + B̄2j0+1,0,1 +A∆

2j0+ 3
2
,0,0

(3.35)

In particular, in the OPE of the superprimary operator φ, every supermultiplet con-

tributes with a single conformal family, whose conformal primary has quantum numbers

[∆, 2j0, 0, 0]. As usual, for short multiplets the dimension is fixed in terms of j0. In table 3

we summarize the schematic form of the only relevant superdescendant operators and we

make explicit their conformal dimension, which can be easily obtained from the one of

the associated superprimary. The dimension of the long multiplet is clearly unfixed, but

it should respect the unitarity bounds (A.24). For this specific case we find that the di-

mension of the superprimary must be13 ∆ > 2j0
3 + 1

2 , while the relevant superdescendant,

obtained by acting with all the Q̄’s, must have dimension

∆long
exc >

2j0
3

+ 2 . (3.36)

13Here the equality is excluded because in that case the long multiplet decomposes as in table 4 and the

relevant superdescendant falls back into the B̄2j0+1,0,1 multiplet.
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Multiplet Exc. ∆exc

B̄2j0 O 2j0
3

B̄2j0+ 1
2
,1 Q̄O 2j0

3 + 1

B̄2j0+1,0,1 Q̄2O 2j0
3 + 2

A∆
2j0+ 3

2
,0,0

Q̄3O ∆ + 3
2

Table 3. The multiplets contributing to the chiral-chiral OPE with a schematic representation

of the only superconformal descendant (but conformal primary) contributing to the OPE (in this

table O indicates the superprimary of each multiplet).

This bound will be very important in the following, where we are going to focus on the

j0 = 3
2 case. In summary, the φ× φ spectrum admits three protected conformal primaries

of dimensions 2j0
3 , 2j0

3 + 1 and 2j0
3 + 2 and infinitely many operators with unprotected

dimensions strictly higher than the protected ones.

3.4 Superblocks

We now derive the superconformal blocks associated to the two channels. The chiral-chiral

channel is the easier one. Each supermultiplet only contributes with a single conformal

family, therefore one only needs to select the sl(2) conformal blocks with the appropriate

dimensions. Let us then start by introducing the sl(2) blocks which resum the contribution

of 1d conformal descendants [62]

gh(χ) = χh 2F1(h, h; 2h;χ) (3.37)

Each conformal primary listed in table 3 contributes with an sl(2) block with h = ∆exc.

Let us consider the specific correlator of interest for this paper14

〈φ(t1)φ̄(t2)φ̄(t3)φ(t4)〉 =
C2

Φ

t
2j0
3

14 t
2j0
3

23

ĥ(χ) (3.38)

where, comparing with (3.31) we defined ĥ(χ) = (1−χ
χ )

2j0
3 h(χ). The φ × φ channel corre-

sponds to the χ→ 1 limit and we have

ĥ(χ) = c 2j0
3

g 2j0
3

(1− χ) + c 2j0
3

+1
g 2j0

3
+1

(1− χ) + c 2j0
3

+2
g 2j0

3
+2

(1− χ) +
∑
∆

c∆g∆(1− χ)

(3.39)

where the sum runs over unprotected operators with dimension ∆ > 2j0
3 + 2, and c∆’s are

the squared moduli of the OPE coefficients (we use a different font to distinguish these

coefficients from the ones that will appear in the chiral-antichiral channel).

14The correlator (3.30) does not admit an expansion in this channel since one cannot take point φ(t1)

close to φ(t3).

– 19 –



J
H
E
P
0
8
(
2
0
2
0
)
1
4
3

In the chiral-antichiral channel, long multiplets with quantum numbers [∆, 0, 0, 0] con-

tribute with all the allowed superdescendants, and we can decompose the four-point cor-

relation function in terms of superconformal blocks. The latter are always expressed as a

linear combination of ordinary sl(2) blocks with shifted dimensions. Conformal blocks can

be seen as eigenfunctions of the Casimir differential operator [62]. Analogously, supercon-

formal blocks can be computed by considering the differential equation generated by the

action of the superconformal Casimir [59]. We start by the s-channel OPE expansion of the

superspace four-point function (3.25), namely we insert a resolution of the identity between

points t2 and t3, and we act on each term of the sum with the quadratic Casimir C1 + C2,

where Ci is the differential operator (3.8) acting on the supercoordinates (ti, θai, θ̄
a
i ). This

leads to the block expansion

f(z) = 1 +
∑
∆

c∆G∆(z) (3.40)

where the sum runs over the dimensions ∆ > 0 of the superprimary operators exchanged

in the chiral-antichiral channel and each conformal block satisfies the differential equation(
− z2(z − 1)∂2

z − z(z − 3)∂z
)
G∆(z) = ∆(∆ + 2)G∆(z) , (3.41)

where ∆(∆ + 2) is the Casimir eigenvalue (3.9) with zero R-charges. The equation above

is solved by the hypergeometric function15

G∆(z) = (−z)∆
2F1(∆,∆, 2∆ + 3; z) . (3.42)

As a check, we find that G∆(z) can be decomposed in terms of a finite sum of sl(2)

blocks (3.37) (here we use ĝ(z) = g( z
z−1) = (−z)∆

2F1(∆,∆; 2∆; z), implementing the

change of variable from χ to z)

G∆(z) = ĝ∆(z) +
3∆

2(2∆ + 3)
ĝ∆+1(z) +

3∆2(∆ + 1)

4(2∆ + 3)(2∆ + 1)(∆ + 2)
ĝ∆+2(z)

+
∆2(∆ + 1)

8(2∆ + 3)2(2∆ + 5)
ĝ∆+3(z) (3.43)

With the aim of finding a connection between the two correlators (3.30) and (3.31) it

is important to consider the s-channel expansion of (3.31)

h(χ) = 1 +
∑
∆

c̃∆ G̃∆(χ) (3.44)

where

G̃∆(χ) = χ∆
2F1(∆,∆, 2∆ + 3;χ) . (3.45)

15The appearance of a minus sign in (3.40) is due to our use of z, which takes real negative values, rather

than the more standard χ, see (3.28).

– 20 –



J
H
E
P
0
8
(
2
0
2
0
)
1
4
3

The similarity between this block expansion and (3.40) is apparent, especially when one

considers the relation between c̃∆ and c∆. Denoting by O∆ the exchanged operator of

dimension ∆, the expressions of c∆ and c̃∆ are given by

c∆ = fφφ̄O∆
fφφ̄O∆

c̃∆ = fφφ̄O∆
fφ̄φO∆

(3.46)

where fφφ̄O∆
is the three-point coefficient determining 〈φφ̄O∆〉. In one-dimensional CFT

the OPE coefficients depend on the signature of the permutation. In particular, despite

there is no continuous group of rotation, there is a Z2 parity transformation t → −t (this

symmetry was called S-parity in [63]). Operators are charged under this symmetry and

one has

〈O1(t1)O2(t2)O3(t3)〉 = (−1)T1+T2+T3 〈O3(−t3)O2(−t2)O1(−t1)〉 (3.47)

where T1, T2 and T3 are the charges of the operators under parity. For our example, if φ

is a bosonic operator we have

fφφ̄O∆
= (−1)TOfφ̄φO∆

(3.48)

whereas for a fermionic φ

fφφ̄O∆
= (−1)1+TOfφ̄φO∆

(3.49)

Therefore the two coefficients c∆ and c̃∆, for a fermionic φ are related by

c∆ = (−1)TO+1c̃∆ (3.50)

As an example, which will be useful in the following, operators of the schematic form

On = φ∂nt φ̄ have charge TO = n. In section 4 these relations will allow us to establish a

precise connection between the correlators (3.30) and (3.31) in a perturbative expansion

around the free theory result.

3.5 The displacement superfield and its four-point function

The displacement operator belongs, as shown in appendix 2.2, to a chiral supermultiplet

with j0 = 3
2 . In light of the application to string sigma-model in section 5, we use the super-

space analysis to extract the correlators of some relevant components of the displacement

supermultiplet. The component expansion of the chiral and antichiral superfield (compared

to (3.21) we renamed the components for the specific case j0 = 3
2) reads

Φ(y, θ) = F(y) + θaO
a(y)− 1

2
θaθb ε

abc Λc(y) +
1

3
θaθbθc ε

abcD(y) , (3.51)

Φ̄(y, θ) = F̄(y) + θ̄aŌa(y) +
1

2
θ̄aθ̄b εabc Λ̄

c(y)− 1

3
θ̄aθ̄bθ̄c εabcD̄(y) . (3.52)

From the Graßmann expansion of the two-point function (3.24) we extract to the following

two-point functions

〈F(t1)F̄(t2)〉 =
CΦ

t12
〈Oa(t1)Ōb(t2)〉 =

2 cΦ δ
a
b

t212

(3.53)

〈Λa(t1)Λ̄b(t2)〉 =
8CΦ δ

a
b

t312

〈D(t1)D̄(t2)〉 =
12CΦ

t412

(3.54)
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For the case of the displacement supermultiplet the normalization factor CΦ has an

important physical interpretation. As we showed in section 2.3 most of the components

in the displacement multiplet are obtained by the action of a broken symmetry generator.

Such generators have a natural normalization in the bulk theory and therefore the Ward

identities (2.13) fix the physical normalization of the displacement operator, making its

two-point function an important piece of defect CFT data. There is concrete evidence

that in the presence of a superconformal defect this coefficient is related to the one-point

function of the stress tensor operator [64–66]. Moreover, for the case of the Wilson line this

coefficient is particularly important as it computes the energy emitted by an accelerating

heavy probe in a conformal field theory [10, 67], often called Bremsstrahlung function.

The relation with the two-point function of the displacement operator in the context of

superconformal theories in three and four dimensions has allowed for the exact computation

of this quantity in a variety of examples [10, 28, 30, 60, 64, 65, 67–74]. In the present context

we have

CΦ(λ) = 2B1/2(λ) , (3.55)

where B1/2(λ) is the Bremsstrahlung function associated to the 1/2 BPS Wilson line in

ABJM theory (see, e.g., [28, 69]). In this paper we focus on the four-point correlators (3.30)

and (3.31), where the disconnected part has been factored out and the functions f(z) and

h(χ) are independent of the chosen normalization.

For their use below, we now extract some specific components of the correlator (3.25),

by expanding both sides in Graßmann variables

〈F(t1)F̄(t2)F(t3)F̄(t4)〉=
C2

Φ

t12t34
f(z) (3.56)

〈Oa1(t1)Ōa2(t2)Oa3(t3)Ōa4(t4)〉=
4C2

Φ

t212t
2
34

[
δa1
a2
δa3
a4

(
f(z)−zf ′(z)+z2f ′′(z)

)
−δa1

a4
δa3
a2

(
z2f ′(z)+z3f ′′(z)

)]
(3.57)

〈D(t1)D̄(t2)D(t3)D̄(t4)〉= (12CΦ)2

t412t
4
34

1

36

[
36f(z)−36(z4+z)f ′(z)+18z2(−14z3+3z2+1)f ′′(z)

−6z3
(
55z3−39z2+3z+1

)
f (3)(z)−3z4

(
46z3−63z2+18z−1

)
f (4)(z)

−3(z−1)2z5(7z−1)f (5)(z)−(z−1)3z6f (6)(z)
]

(3.58)

〈D(t1)D̄(t2)Oa3(t3)Ōa4(t4)〉=
24C2

Φ

t412t
2
34

δa3
a4

1

6

[
(1−z)z4f (4)(z)−(3z+1)z3f (3)(z)

+3z2 f ′′(z)−6zf ′(z)+6f(z)
]
, (3.59)

where for each correlator we factorized the (squared) two-point function contribution (3.53)

arising from the double OPE. In the next section we will use analytic bootstrap techniques

to evaluate, at leading and subleading order at strong coupling, the function f(z). In

section 5 we will confirm the superspace analysis of this section by evaluating directly the

correlators at strong coupling, using AdS/CFT, via Witten diagrams. We will namely

consider the correlation functions of the string excitations corresponding to the various
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defect operators and obtain that they are given in terms of (derivatives of) a uniquely

determined function f(z), verifying explicitly the relations above.

4 Bootstrapping the supercorrelator

In this section, by imposing symmetries and consistency with the OPE expansion, we

extract the leading strong coupling correction to the four-point function of the displacement

supermultiplet. We then extract the anomalous dimensions and the OPE coefficients of

the composite operators appearing in the intermediate channels.

Let us start from the expressions of the four-point functions of the superprimary (3.30)

and (3.31), which for this specific case read

〈F(t1)F̄(t2)F(t3)F̄(t4)〉 =
C2

Φ

t12t34
f(z) (4.1)

〈F(t1)F̄(t2)F̄(t3)F(t4)〉 =
C2

Φ

t12t34
h(χ) (4.2)

and we define

f̂(χ) =
f( χ

χ−1)

χ
(4.3)

such that the crossing equation simply reads

f̂(χ) = f̂(1− χ) . (4.4)

4.1 Leading order

The leading order result at strong coupling can be easily obtained from Wick contractions,

and reads

f (0)(z) = 1− z h(0)(χ) = 1− χ (4.5)

or, alternatively f̂ (0)(χ) = 1
χ(1−χ) . Unsurprisingly, the two correlators have the same

functional form. Looking at the s-channel expansion of the two correlators (3.40) and (3.44)

and using the well-known fact that in free theory the only exchanged operators are of the

schematic form [FF̄]n ∼ F∂nt F̄ with dimension hn = 1 + n, we immediately realize that

the mismatch factor (−1)1+n between (3.44) and (3.40) is compensated by an identical

factor from the relation (3.50) for the OPE coefficients, which in the case of the operators

[FF̄]n reads

c(0)
n = (−1)1+nc̃(0)

n (4.6)

As a result, in free theory the two expansions (3.40) and (3.44) are identical up to the

exchange z ↔ χ. It is also easy to extract the explicit form of the OPE coefficient at

leading order

c(0)
n =

√
π2−2n−3Γ(n+ 4)

(n+ 1)Γ
(
n+ 5

2

) (4.7)
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In a similar fashion one can read off the form of the coefficients c
(0)
n appearing in (3.39).

As expected, in the OPE of two identical fermions, only operators of the schematic form

[F∂nF]n with odd values of n appear. We find

c(0)
n =

√
π21−2nΓ(n+ 1)

Γ
(
n+ 1

2

) n odd (4.8)

c(0)
n = 0 n even (4.9)

In the following we would like to consider a first-order perturbation of this result.

4.2 Next-to-leading order

We are interesting in finding the first-order strong coupling correction to the correlator.

We expand the function f̃(χ) as

f̂(χ) = f̂ (0)(χ) + ε f̂ (1)(χ) h(χ) = h(0)(χ) + ε h(1)(χ) (4.10)

where ε is a small parameter, whose precise relation with the string tension cannot be

predicted by symmetry considerations. Following [11, 18], we start with the following

Ansatz for the first order correction to f̂

f̂ (1)(χ) = r(χ) log(1− χ) + r(1− χ) logχ+ q(χ) (4.11)

where r(χ) and q(χ) are rational functions and

q(χ) = q(1− χ) (4.12)

In appendix C we show explicitly that comparing the expansions (3.40) and (3.44) one can

express the function h(1)(χ) in (4.10) in terms of r(χ) and q(χ). Here we only report the

final result for the function ĥ(1)(χ) = 1−χ
χ h(1)(χ) introduced in (3.38)

ĥ(1)(χ) = −r
(

1

1− χ

)
logχ+

[
r

(
χ

χ− 1

)
+ r

(
1

1− χ

)]
log(1− χ)− q

(
χ

1− χ

)
(4.13)

The final result for h(1)(χ) is essentially what you would obtain by making the transforma-

tion χ→ χ
χ−1 in f̂ (1) and neglecting the imaginary part of the logarithm. This is equivalent

to the prescription, given in [5] of putting an absolute value in the argument of the loga-

rithm, but a precise justification of this fact can only be obtained by comparing the block

expansions (3.40) and (3.44) as we do in appendix C.

Now we would like to bootstrap the rational functions r and q imposing crossing and

consistency with the block expansions (3.39) and (3.40). First, we rewrite the latter for

f̂(χ) in the s- and t-channels

f̂(χ) =
1

χ
+
∑
∆

c∆Ĝ∆(χ) (4.14)

f̂(χ) =
1

1− χ
+
∑
∆

c∆Ĝ∆(1− χ) (4.15)
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with Ĝ∆(χ) = χ−1G∆( χ
χ−1) = χ∆−1

2F1(∆,∆+3; 2∆+3;χ). We consider the perturbation

∆n = 1 + n+ εγ(1)
n +O(ε2) (4.16)

cn = c(0)
n + εc(1)

n +O(ε2) (4.17)

which allows to write the expansion for f (1)(χ)

f̂ (1)(χ) =
∑
n

(
c(1)
n Ĝ1+n(χ) + c(0)

n γ(1)
n ∂∆Ĝ∆(χ)|h=1+n

)
(4.18)

This expansion is regular for χ → 0 and crossing obviously guarantees that f̂ (1)(χ) is

regular also at χ → 1. Staring at the Ansatz (4.11) one immediately concludes that r(χ)

is regular at χ → 1. Since we assume that r(χ) and q(χ) are rational functions and we

expect them to have poles for physical values of χ, i.e. χ = 0 and χ = 1, the most general

form for the function r(χ) is

r(χ) =

M2∑
m=−M1

rmχ
m (4.19)

where M2 and M1 take integer values and M2 ≥ −M1. Notice that, in general, r(χ) can

be singular at χ → 0 as it multiplies log(1 − χ) (which is regular in this limit) and the

divergence can be canceled by a pole in the function q(χ). The latter must respect the

symmetry (4.12) and its most general form is

q(χ) =

L2∑
l=−L1

qlχ
l(1− χ)l (4.20)

for integer values of L1 and L2 and L2 ≥ −L1. Imposing the aforementioned cancellation

of poles between r(χ) and q(χ) one finds several constraints which we derive in appendix C.

The final result is that all the coefficients rm in the expansion (4.19) are fixed in terms of

the coefficients ql in (4.20). Furthermore, we find

M1 = L1 + 1 M2 = 2L2 + 1 (4.21)

Therefore, we are left with an infinite number of solution parametrized by the L1 +L2 + 1

coefficients ql. In this respect, one can construct a minimal solution by keeping a single

term in the sum (4.20). One criterium to choose which term to keep is the analysis of

the large n behaviour of γ
(1)
n . In higher-dimensional examples of AdS/CFT the large twist

behaviour of the anomalous dimension of the so-called “double trace operators” (of the

schematic form O�n(∂)`O) is related to the relevance of the bulk interaction and it is

bounded from above [75, 76]. Nevertheless, there are at least two obstacle for the direct

application of this argument to the one-dimensional case [11]. First, there is no distinction

between the spin and the twist of the double trace operators, which are characterized,

in one dimension, by a single parameter n labeling the number of derivatives (O∂nO).

Secondly, in the higher-dimensional case the large N analysis allows to lift the degeneracy
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between double trace operators and other operators with identical quantum numbers at

the classical level. Here, as we will discuss in great detail in section 4.3, this degeneracy

is not lifted, preventing us from a clear identification of the operators appearing in the

tree-level OPE with the double-trace operators. Therefore, analogously to the N = 4 SYM

case [11], we use the large-n behaviour of the anomalous dimension simply as an organizing

principle for the infinite set of solutions. The term with the mildest large n behaviour has

l = −1. All the negative values of l give a large n behaviour of the order γn ∼ n−2l, while

for positive values of l the growth is much faster (already l = 0 gives a γn ∼ n5). We

conclude that the functions r(χ) and q(χ) yielding the mildest behaviour at large n are

r(χ) =
r−2

χ2
+
r−1

χ
q(χ) =

q−1

χ(1− χ)
(4.22)

As we show in appendix C all the rm coefficients can be fixed in terms of the ql. In this

specific case we get

r−2 = q−1 r−1 = 2q−1 (4.23)

It is instructive, though, to see how this result can be obtained in this very simple situa-

tion. The first relation in (4.23) simply arises by requiring that the pole at χ = 0 in the

function q(χ) is canceled by the product r(χ) log(1−χ). To fix the coefficient r−1, instead,

one needs to analyse the function ĥ(χ) in (4.13) and impose consistency with the block

expansion (3.44). In the chiral-chiral channel we perturb the leading order result by

∆n = 1 + n+ εγ(1)
n +O(ε2) n odd (4.24)

cn = c(0)
n + εc(1)

n +O(ε2) n odd (4.25)

In (3.36), we showed that unprotected exchanged operators in the chiral-chiral channel must

have dimension ∆ > 3. Therefore, in (4.24) we must impose γ1 = 0. This is translated

in the absence of terms like (1 − χ)2 log(1 − χ) in ĥ(χ). Using the Ansatz (4.13) with

the solution (4.22) one immediately finds r−1 − 2r−2 = 0. The presence of a protected

operator of dimension 2 of the form F∂F might be surprising and one may wonder what

is the reason for the large gap (3.36) for the unprotected spectrum. Since the origin of

this large gap is superconformal symmetry, one may answer this question by looking at the

correlators of superdescendants. This analysis shows that not imposing the absence of the

anomalous dimension γ1 translates in the appearance of unphysical exchanged operators

in the superdescendant block decompositions.

The remaining overall factor q−1 can be reabsorbed in the definition of ε leaving us

with the final solution for f̂ (1)(χ)

f̂ (1)(χ) = −
(

1

χ2
+

2

χ

)
log(1− χ)−

(
1

(1− χ)2
+

2

1− χ

)
log(χ)− 1

χ(1− χ)
(4.26)
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It is useful to write down also the explicit expressions of f (1)(z) and ĥ(1)(χ), which can be

simply obtained from (4.3) and (4.13) (see also appendix C)

f (1)(z) = −(1− z)3

z
log(1− z) + z(3− z) log(−z) + z − 1 (4.27)

ĥ(1)(χ) =
χ− 1

χ

[
(1− χ)3

χ
log(1− χ)− χ(3− χ) log(χ) + 1− χ

]
(4.28)

where the overall sign has been chosen to match the string theory analysis of section 5 with

ε > 0. Using this result, it is a straightforward exercise to extract the defect OPE data.

We summarize our results in the next section.

4.3 Extracting CFT data

Before computing the values of anomalous dimensions and OPE coefficients, we need to

comment on the class of operators one expects to appear in this context. When classifying

operators that can be exchanged in a given channel, one is interested in eigenstates of the

dilatation operators. When perturbing the leading order result, one can think of building

operators out of the fundamental fields in the worldsheet lagrangian (see section 5), which

are in one-to-one correspondence with the components of the superdisplacement multiplet.

In this respect, it is easy to realize that “two-particle” operators of the schematic form On ∼
F∂nF̄ will have a three-point function 〈FF̄On〉 that is leading compared to higher particle

operators. Nevertheless, these two-particle operators are not well defined eigenstates of

the dilatation operator. A simple example is the mixing between two- and four-particle

operators F∂2F̄ and FF̄FF̄. Only a linear combination of these two operators will be an

eigenstate of the one-loop dilatation operator, but both of them are allowed to appear in

the F × F̄ OPE.16 Of course the situation becomes increasingly more intricate for heavier

operators. Therefore, we are led to conclude that any operator which includes a two-particle

contribution will appear in the leading order OPE and the anomalous dimension we extract

is actually a linear combination of the anomalous dimensions of these operators, weighted

by their OPE coefficients. Given that part of this degeneracy is lifted by decomposing in

terms of superconformal blocks instead of ordinary conformal blocks there are a few cases,

where we can be certain that a single long multiplet with a given dimension can appear.

These are the n = 0 and n = 1 case for the F × F̄ channel associated to the operators FF̄
and F∂F̄ and the n = 1 case in the F×F channel associated to F∂F, which is protected. To

solve the mixing for heavier operators one would have to study a larger class of correlators,

a task which goes beyond the scope of this paper.

Given this caveat, we are ready to extract the values of anomalous dimensions and OPE

coefficients in the two channels. Let us start from the chiral-antichiral channel. Comparing

the expansion (C.1) with our result (4.27) one finds

z(3− z) =
∑
n≥0

c(0)
n γ(1)

n G1+n(z) (4.29)

16We would like to thank Pietro Ferrero, Shota Komatsu and Carlo Meneghelli for very useful discussions

on this point.
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The G1+n functions, for integer n, form an orthonormal basis of solutions of the differential

equation LGλ = λGλ with L = −z2(z − 1)∂2
z − z(z − 3)∂z in (3.41). Therefore one can

derive the orthogonality relation17

˛
dz

2πi

z

(1− z)3
G1+n(z)G−3−n′(z) = δn,n′ , (4.30)

where the contour circles 0 counterclockwise. Using this to invert the expansion (4.29)

we obtain

γ(1)
n =

1

c
(0)
n

˛
dz

2πi

z2(3− z)

(1− z)3
G−3−n(z) (4.31)

Solving the integral we get

γ(1)
n = −n2 − 4n− 3 (4.32)

The correction to the OPE coefficients can be easily obtained at each value of n finding

agreement with the general relation [75–77]

c(1)
n =

∂

∂n

(
c(0)
n γ(1)

n

)
(4.33)

Their explicit expression is

c(1)
n = c(0)

n

[
−2− 4n+ γ(1)

n

(
ψ (n+ 4)− ψ

(
n+

5

2

)
− 2 log (2)− 1

n+ 1

)]
(4.34)

where ψ(n) = Γ′(n)
Γ(n) .

A similar analysis can be carried out in the chiral-chiral channel. In this case the

expansion is in terms of ordinary conformal blocks and we have the orthogonality relation

−
˛

dχ

2πi

1

(1− χ)2
g1+n(1− χ)g−n′(1− χ) = δn,n′ (4.35)

where the contour is a circle around χ = 1. We use it to invert the OPE expansion

−(1− χ)4

χ2
=
∑
n≥3

c(0)
n γ(1)

n g1+n(1− χ) (4.36)

obtained comparing the coefficient of log(1− χ) in (4.28) with the perturbative expansion

of (3.39). This gives

γ(1)
n = −n2 − n+ 2 , n odd . (4.37)

As expected, γ
(1)
1 = 0. Also in this case, for the OPE coefficients we have

c(1)
n = ∂n(c(0)

n γ(1)
n ) , (4.38)

which gives

c(1)
n = c(0)

n

[
−1− 2n+ γ(1)

n

(
ψ (n+ 1)− ψ

(
n+

1

2

)
− 2 log 2

)]
n odd . (4.39)

17The weighted inner product is obtained requiring the differential operator L to be self-

adjoint 〈Gλ1 ,LGλ2〉w = 〈LGλ1 , Gλ2〉w, which is translated in the equation L−1w − Lw = 0 for the weight

w, solved by w = z
(1−z)3 which also ensures orthonormality.
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5 Correlators from Witten diagrams in AdS2

The Type IIA background AdS4 × CP3 is defined via

ds2 = R2
(
ds2

AdS4
+ 4ds2

CP3

)
, eφ =

2R

k
, R2 ≡ R̃3

4k
=
k2

4
e2φ , (5.1)

F2 = 2 k JCP3 , F4 =
3

8
R3 vol(AdS4) , (5.2)

where R is the AdS4 radius, φ the dilaton, k results from the compactification of the

original M-theory on AdS4 × S7/Zk background and coincides in the dual theory with the

Chern-Simons level number [20]. Above, F2, F4 are the 2-form and 4-form field strengths

with JCP3 the Kähler form on CP3. As they only play a role in the fermionic part of the

Lagrangian and we limit our analysis to the bosonic part, we report them here only for

completeness. Using a Poincaré patch for the AdS4 metric

ds2
AdS4

=
dz2 + dxrdxr

z2
, (5.3)

where xr = (x0, x1, x2) parametrize the Euclidean three-dimensional boundary of AdS4 and

z is the radial coordinate, the bosonic part of the superstring action in AdS4 × CP3 reads

SB =
1

2
T

ˆ
d2σ
√
hhµν

[
1

z2
(∂µx

r∂νx
r + ∂µz∂νz) + 4GCP3

MN ∂µY
M∂νY

N

]
. (5.4)

Here, σµ = (t, s) are Euclidean world-sheet coordinates and T is the effective string tension.

In its original “dictionary” proposal [20] it is related to the effective ’t Hooft coupling λ

of the dual N = 6 superconformal Chern-Simons theory (realized in the limit of k and N

large with their ratio fixed) via

T =
R2

2πα′
=

√
λ

2
, λ =

N

k
. (5.5)

In fact, as we are interested at leading, tree-level order in perturbation theory we may

disregard the corrections to the effective string tension T due to the geometry of the back-

ground [20, 78], which start at order 1√
λ

[27]. The classical solution to (5.4) which is relevant

here is the minimal surface corresponding to the straight Wilson line at the boundary

z = s , x0 = t , xi = 0 , i = 1, 2 , (5.6)

with all the remaining (CP3) coordinates vanishing. This is just the straightforward em-

bedding in the AdS4 background of the solution of [5, 79]. The induced metric is the

AdS2 metric

gµνdσ
µdσν =

1

s2
(dt2 + ds2) . (5.7)

We will consider correlators of small fluctuations of “transverse” string coordinates (the

xi, i = 1, 2 and the CP3 coordinates) near this minimal surface. The bosonic symmetry

of the defect conformal field theory associated to the 1/2 BPS Wilson line is SU(1, 1)×
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SU(3)×U(1)J0 , and it turns out to be the manifest symmetry of the bosonic string ac-

tion (5.4). The SU(1, 1) ' SO(2, 1) symmetry can be made manifest by fixing a static

gauge where z and x0 do not fluctuate and using the following parametrization for the

embedding of AdS2 into AdS4 [5]

ds2
4 =

(1 + 1
2 |X|

2)2

(1− 1
2 |X|2)2

ds2
2 +

dXdX̄

(1− 1
2 |X|2)2

, ds2
2 =

1

z2
(dx2

0 + dz2) , (5.8)

where we introduced the complex combination X = 1√
2
(x1 + ix2) in terms of the transverse

AdS coordinates xi . X and X̄ have opposite charge under U(1)J0 . Finally, adopting the

following parametrization of the CP3 metric

ds2
CP3 =

dw̄a dw
a

1 + |w|2
− dw̄aw

a dwb w̄b
(1 + |w|2)2

, |w|2 = w̄aw
a , a, b = 1, 2, 3 , (5.9)

the preserved SU(3) subgroup of the SU(4) global symmetry of CP3 is manifest.

The Nambu-Goto action with fixed static gauge reads then reads

SB =T

ˆ
d2σ

√√√√det

[
(1+1/2|X|2)2

(1−1/2|X|2)2 gµν+2
∂µX∂νX̄

(1−1/2|X|2)2 +4

(
∂µw̄a∂νwa

1+|w|2
− ∂µw̄aw

aw̄b∂νwb

(1+|w|2)2

)]
(5.10)

where gµν = 1
s2
δµν is the background AdS2 metric. Along the lines of [5], (5.10) can be

interpreted as the action of a straight fundamental string in AdS4×CP3 stretched from the

boundary towards the AdS4 center (so, stretched along z), as well as the action for a 2d

“bulk” field theory of 1+3 complex scalars in AdS2 geometry with SO(2, 1)× [U(1)×SU(3)]

as manifest symmetry. From the AdS/CFT point of view, this second interpretation leads

to a CFT1 dual living at the z = s = 0 boundary, namely the defect CFT defined by

operator insertions on the straight Wilson line.

Expanding the action above in powers of X and wa one gets

SB ≡ T
ˆ
d2σ
√
g LB , LB = L2 + L4X + L2X,2w + L4w + . . . , (5.11)

L2 = gµν∂µX∂νX̄ + 2|X|2 + gµν∂µw
a∂νw̄a , (5.12)

L4X = 2|X|4 + |X|2 (gµν∂µX∂νX̄)− 1

2
(gµν∂µX∂νX) (gρκ∂ρX̄∂κX̄) , (5.13)

L2X,2w = (gµν∂µX∂νX̄) (gρκ∂ρw
a∂κw̄a)− (gµν∂µX∂νw

a) (gρκ∂ρX̄∂κw̄a)

− (gµν∂µX̄∂νw
a) (gρκ∂ρX∂κw̄a) , (5.14)

L4w = −1

2
(waw̄a)(g

µν∂µw
b∂νw̄b)−

1

2
(waw̄b)(g

µν∂µw
b∂νw̄a) +

1

2
(gµν∂µw

a∂νw̄a)
2

− 1

2
(gµν∂µw

a∂νw̄b) (gρκ∂ρw̄a∂κw
b)− 1

2
(gµν∂µw

a∂νw
b) (gρκ∂ρw̄a∂κw̄b) . (5.15)

There are therefore one massive (X with m2 = 2) and three massless (wa, a = 1, 2, 3) com-

plex scalar fields propagating in AdS2, that correspond to the bosonic elementary CFT1

insertions represented in the displacement supermultiplet — respectively, to the ∆ = 2
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displacement operator D and to the ∆ = 1 operators Oa, a = 1, 2, 3. In fact, as written

above in section 2, to obtain the AdS/CFT dual of the full displacement supermultiplet one

has to consider also the fermionic fluctuations. At quadratic level, the fermionic spectrum

has been worked out in [30, 31], and consists of two massless and six massive fermions

(of which three with mass mF = 1 and three with mF = −1) which should correspond,

respectively, to the ∆ = 1
2 fermionic superprimary F of the multiplet and its conjugate

and to the ∆ = 3
2 fermionic operators Λa and their conjugates. Expanding the full Type

IIA Green-Schwarz action in AdS4 × CP3 background [80, 81] around the solution (5.6)

up to quartic order in fermions would yield the interaction vertices from which to evaluate

directly, via Witten diagrams, the four-point functions of fermionic fluctuations. Below we

will limit our analysis to the direct calculation of bosonic four-point functions from the ver-

tices in (5.11) above, and compare with the superspace results of section 3. We emphasize

however that in so doing we will in fact evaluate directly the function f(z) which governs

the four-point correlator (3.56) of the fermionic superprimary F — and thus all four-point

functions — as the unique solution of the differential equations in (3.56)–(3.59), arising

from the Graßmann-expansion of the correlator for the four chiral fields in superspace.

Below, we will use these vertices of the AdS2 bulk theory to compute the corresponding

tree-level Witten diagrams in AdS2, with bulk-to-boundary propagators ending at points

tn on the boundary. As in the AdS5 × S5 case, no cubic terms appear in the bosonic

Lagrangian above, so that at this level of perturbation theory the correlation functions are

only a sum of 4-point “contact” diagrams with four bulk-to-boundary propagators.

5.1 Four-point function of massless fluctuations in CP3

Here we compute the tree-level 4-point Witten diagram of the CP3 fluctuations w, w̄ ap-

pearing in the AdS2 action in (5.11)–(5.15). As discussed above, these are AdS/CFT dual

to the scalar operator insertions Oa, Ōa, a = 1, 2, 3 with protected dimension ∆ = 1.

Due to the SO(2, 1) conformal invariance the 4-point function is expected to take the

general form

〈wa1(t1) w̄a2(t2)wa3(t3) w̄a4(t4)〉 =

[
Cw(λ)

]2
t212t

2
34

Ga1 a3
a2 a4

(χ) . (5.16)

Here, χ is the conformally invariant cross-ratio defined in (3.28), and we used for the two

point function

〈wa1(t1)w̄a2(t2)〉 = δa1
a2

Cw(λ)

t212

. (5.17)

The function Ga1 a3
a2 a4

(χ) in (5.16) does not depend on the normalization of the wa fields, and

thus on Cw(λ). One can of course choose Cw(λ) ≡ 4B1/2(λ), so to realize a direct identifica-

tion of wa with the Oa in view of (3.53).18 This would just correspond to an overall rescaling

of the fields.19 By evaluating perturbatively the two-point function (5.17) (namely, calcu-

18This is the formal choice of [5], where the analogue relation is to the N = 4 SYM Bremsstrahlung

function [10, 82, 83]. See also a related discussion in [49].
19Given the leading strong coupling value of the Bremsstrahlung function B1/2(λ) =

√
2λ

4π
≡ T

2π
, and

given our choice (5.19) of the bulk-to-boundary propagator, at tree level this would amount to the rescaling

wa →
√

2Twa.
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w(t1) w̄(t2)

w(t3)w̄(t4)

w(t1) w̄(t2)

w(t3)w̄(t4)

Figure 1. Witten diagram for the disconnected contribution to the four-point function (5.16).

w(t1) w̄(t2)

w(t3)w̄(t4)

L4w

Figure 2. Witten diagram for the connected contribution to the four-point function (5.16).

lating loop corrections to the boundary-to-boundary propagator) one should then be able

to verify that the elementary excitations wa are protected, as well as reproduce the strong

coupling expansion of the corresponding 1/2 BPS Bremsstrahlung function (3.55).

The disconnected part of the four-point function (5.16) originates from Wick contrac-

tions, see figure 1, and reads

〈wa1 (t1) w̄a2 (t2) wa3 (t3) w̄a4 (t4)〉disconn. = [Cw (λ)]2
[
δa1
a2
δa3
a4

t212t
2
34

+
δa1
a4
δa3
a2

t214t
2
23

]
=

[Cw (λ)]2

t212t
2
34

[
δa1
a2
δa3
a4

+
χ2

(1−χ)2 δ
a1
a4
δa3
a2

]
. (5.18)

The first connected contribution to the four-point function comes from the tree-level con-

nected Witten diagrams obtained from the four-point interaction vertices L4w in (5.15)

with four bulk-to-boundary propagators attached, see figure 2, and therefore it is sublead-

ing in 1/T . As in [5], we will adopt the normalization [84, 85] of the bulk-to-boundary

propagator in dimension d = 1

K∆

(
z, t; t′

)
= C∆

[
z

z2 + (t− t′)2

]∆

≡ C∆ K̃∆

(
z, t; t′

)
, C∆ =

Γ (∆)

2
√
π Γ
(
∆ + 1

2

) , (5.19)

for which the tree-level two-point function of the dual boundary operator is

〈O∆(t1)O∆(t2)〉 = C∆
t2∆
12

. Then the connected correlator reads

〈wa1(t1) w̄a2(t2)wa3(t3) w̄a4(t4)〉conn =
1

T

(
C∆=1

)4 [Q1 δ
a1
a2
δa3
a4

+Q2 δ
a1
a4
δa3
a2

]
(5.20)

where C∆=1 = 1
π and Qa1 a2

a3 a4
is built out of the D-functions [86–88] reviewed in ap-
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pendix D, explicitly

Q1 = 3D1111 + t212D2211 + t234D1122 − 2t224D1212 − 2t213D2121

− 3t223D1221 − 3t214D2112 + 4(t214t
2
23 + t213t

2
24 − t212t

2
34)D2222 , (5.21)

Q2 = 3D1111 + t214D2112 + t223D1221 − 2t213D2121 − 2t224D1212

− 3t212D2211 − 3t234D1122 + 4(t212t
2
34 + t213t

2
24 − t214t

2
23)D2222 . (5.22)

This can be written in a conformally invariant way using the reduced D-functions D̄ defined

in (D.4) — for which we also list explicit expressions in (D.6)–(D.17), leading eventually

to the expression

〈wa1(t1) w̄a2(t2)wa3(t3) w̄a4(t4)〉conn. = ε

[
C∆=1

]2
t212t

2
34

[
δa1
a2
δa3
a4
G1(χ) + δa1

a4
δa3
a2
G2(χ)

]
(5.23)

where, according to (5.16), we factored out a [C∆=1

]2
and the expansion parameter ε = 1

4π T

has been chosen to make contact with the bootstrap calculation.

For the functions G1 and G2 above, one finds

G1(χ) = −3 +
1

(χ− 1)
− χ2

(1− χ)2
logχ+

(
1− 4

χ

)
log(1− χ) (5.24)

G2(χ) = −χ(3χ+ 1)

(1− χ)2
+
χ2(χ+ 3)

(χ− 1)3
logχ− log(1− χ) (5.25)

Using (3.29), the functions above may be conveniently expressed in terms of the invariant z.

Confronting then (5.18) and (5.23) with (3.57) leads to the following system of second-order

differential equations

f (z)−zf ′ (z)+z2f ′′ (z) = 1+ ε

[
−4+z−z2 log (−z)+

(
z2− 4

z
+3

)
log (1−z)

]
−z2f ′ (z)−z3f ′′ (z) = z2 +ε

[
z−4z2−z2(3−4z) log(−z)+(1+3z2−4z3) log(1−z)

]
(5.26)

whose solution reads

f(z) = 1− z + ε
[
z − 1 + z(3− z) log(−z)− (1− z)3

z
log(1− z)

]
, (5.27)

in agreement with (4.27).

One can now repeat the analysis for the correlator 〈wa1(t1) w̄a2(t2) w̄a3(t3)wa4(t4)〉.
The result coincides with the one obtained using on the f(z) above with the replacement

z → χ, and neglecting the imaginary part of the logarithm. This is in perfect agreement

with what observed in the bootstrap analysis of section 420 and discussed in appendix C.

Below we will check that the f(z) evaluated above solves also the corresponding differential

equations for the correlators of massive and mixed worldsheet excitations, once the nor-

malization factors defining the corresponding two-point functions are identified with the

ones of their field theory dual.

20See discussion below equation (4.13).
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5.2 Four-point function of fluctuations in AdS4

The complex field X appearing in the AdS2 action in (5.11)–(5.15) is the AdS/CFT dual

of the displacement operator insertion D, which has protected dimension ∆ = 2. Due to

conformal invariance, the 4-point correlator reads then

〈X(t1) X̄(t2)X(t3) X̄(t4)〉 =

[
CX(λ)

]2
t412t

4
34

G(χ) , (5.28)

where we have used

〈X(t1) X̄(t2)〉 =
CX(λ)

t412

. (5.29)

Again, the normalization factor CX(λ) may be chosen to be in direct correspondence with

the Bremmstrahlung function (3.55) to realize a direct identification of X with the dis-

placement operator D. In view of (3.53), this would mean CX(λ) ≡ 24B1/2(λ).

The disconnected contribution to (5.28) reads

〈X(t1) X̄(t2)X(t3) X̄(t4)〉disconn. =

[
CX(λ)

]2
t412t

4
34

[
1 +

χ4

(1− χ)4

]
. (5.30)

The subleading, connected contribution is obtained evaluating Witten diagrams from the

four-point interaction vertices L4X in (5.11)–(5.15) and reads

〈X(t1)X̄(t2)X(t3)X̄(t4)〉conn =
1

T

(
C∆=2

)4Q , C∆=2 =
3

2π
(5.31)

Q= 8(D2222+t212D3322+t234D2233+t223D2332+t214D3223

−8t224D2323−8t213D3232+16t213t
2
24D3333) . (5.32)

Explicitly, and adopting the standard normalization, one gets

〈XX̄XX̄〉conn. = ε

[
C∆=2

]2
t412t

4
34

[
115χ5 − 345χ4 + 543χ3 − 511χ2 + 246χ− 48

3(1− χ)5

+
2χ4(5χ+ 3)

(χ− 1)5
logχ+ 2

(
5− 8

χ

)
log(1− χ)

]
. (5.33)

Writing everything in terms of the invariant z, and confronting the superspace predic-

tion (3.58) with (5.30) and (5.33) we obtain

1

36

[
36f(z)−36(z4+z)f ′(z)+18z2(−14z3+3z2+1)f ′′(z)−6z3

(
55z3−39z2+3z+1

)
f (3)(z)

.−3z4
(
46z3−63z2+18z−1

)
f (4)(z)−3(z−1)2z5(7z−1)f (5)(z)−(z−1)3z6f (6)(z)

]
= 1+z4+ε

[
−16−2z−16z4−2z3− 7z2

3 +2(8z−3)z4 log(−z)

+
(
6− 16

z +6z4−16z5
)

log(1−z)
]
. (5.34)

This non-trivial sixth-order differential equation is immediately solved by the function f(z)

in (5.27).

Again, one may repeat the analysis for the correlator 〈X(t1) X̄(t2) X̄(t3)X(t4)〉. The

result coincides with (5.33) after the transformation χ → χ/(χ − 1), and neglecting the

imaginary part of the logarithm.
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5.3 Four-point function of mixed fluctuations

The 4-point correlator mixing two AdS X fluctuations and two CP3 w fluctuations reads

〈X(t1) X̄(t2)wa3(t3) w̄a4(t4)〉 =
CX(λ)Cw(λ)

t412t
2
34

δa3
a4
G(χ) . (5.35)

The disconnected contribution is

〈X(t1) X̄(t2)wa3(t3) w̄a4(t4)〉disconn. =
CX(λ)Cw(λ)

t412t
2
34

δa3
a4
. (5.36)

The connected contribution is obtained evaluating Witten diagrams from the four-point

interaction vertices L4X in (5.11)–(5.15), and reads

〈X(t1) X̄(t2)wa3(t3) w̄a4(t4)〉conn =
1

T

(
C∆=2

)2(C∆=1

)2
δa3
a4
Q2X 2w , (5.37)

Q2X 2w = 4
[
D2211 + 2t212D3311 + 2t234D2222 − 2t224D2312 − 2t23D2321

− 2t214D3212 − 2t213D3221 + 4(t214t
2
23 + t213t

2
24 − t212t

2
34)D3322

]
, (5.38)

explicitly

〈X(t1) X̄(t2)wa3(t3) w̄a4(t4)〉conn. = ε
C∆=2 C∆=1

t412t
2
34

δa3
a4

[
4(χ− 2) log(1− χ)

χ
− 8

]
. (5.39)

Once again, writing everything in terms of the invariant z and equating to the superspace

prediction, the differential equation obtained

(1−z)z4f (4)(z)−(1−3z)z3f (3)(z)+3z2 f ′′(z)+6zf ′(z)+6f(z) = 1+ε

[
−8+

4(z−2)

z
log(1−z)

]
(5.40)

is solved by the function f(z) in (5.27).
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A osp(6|4) algebra and its subalgebra su(1, 1|3)

We now list the commutation relations for the osp(6|4) superalgebra. Let us start from the

three-dimensional conformal algebra

[Pµ,Kν ] = −2δµνD − 2Mµν [D,P µ] = Pµ [D,Kµ] = −Kµ (A.1)

[Mµν ,Mρσ] = δσ[µMν]ρ + δρ[νMµ]σ [Pµ,Mνρ] = δµ[νP ρ] [Kµ,Mνρ] = δµ[νKρ] (A.2)

Then we have the SU(4) generators

[JI
J , JK

L] = δLI JK
J − δJKJIL (A.3)

Fermionic generators QIJα and SIJα respect the reality condition Q̄IJα = 1
2εIJKLQ

KL
α

and similarly for S. Anticommutation relations are

{QIJα , QKLβ} = 2i εIJKL(γµ)α
βPµ {SIJα , SKLβ} = 2i εIJKL(γµ)α

βKµ (A.4)

{QIJα , SKLβ} = εIJKL((γµν)α
βMµν + 2δβαD) + 2δβαε

KLMN (δJMJN
I − δIMJNJ) (A.5)

Finally, mixed commutators are

[D,QIJα ] =
1

2
QIJα [D,SIJα ] = −1

2
SIJα (A.6)

[Mµν , QIJα ] = −1

2
(γµν)α

βQIJβ [Mµν , SIJα ] = −1

2
(γµν)α

βSIJβ (A.7)

[Kµ, QIJα ] = −i (γµ)α
βSIJβ [Pµ, SIJα ] = −i (γµ)α

βQIJβ (A.8)

[JI
J , QKLα ] = δKI Q

JL
α + δLI Q

KJ
α − 1

2
δJI Q

KL
α [JI

J , SKLα ] = δKI S
JL
α + δLI S

KJ
α − 1

2
δJI S

KL
α

(A.9)

Inside the osp(6|4) it is possible to identify the su(2|3) (or, more precisely su(1, 1|3))

subalgebra preserved by the 1/2 BPS Wilson line. The su(1, 1) generators are those of the

one-dimensional conformal group, i.e. {D,P ≡ P1,K ≡ K1}, satisfying

[P,K] = −2D [D,P ] = P [D,K] = −K (A.10)

The SU(3) generators Ra
b are traceless, i.e. Ra

a = 0 and they are given in terms of the

original su(4) ones by

Ra
b =

J2
2 + 1

3J1
1 J2

3 J2
4

J3
2 J3

3 + 1
3J1

1 J3
4

J4
2 J4

3 −J3
3 − J2

2 − 2
3J1

1

 (A.11)

Their commutation relations are

[Ra
b, Rc

d] = δdaRc
b − δbcRad (A.12)

The last bosonic symmetry is the u(1) algebra generated by

J0 = 3iM23 − 2J1
1 (A.13)

and commuting with the other bosonic generators.
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The fermionic generators are given by a reorganization of the preserved supercharges

{Q12
+ , Q

13
+ , Q

14
+ , Q

23
− , Q

24
− , Q

34
− }, together with the corresponding superconformal charges.

Our notation is

Qa = Q1a
+ Sa = i S1a

+ Q̄a = i
1

2
εabcQ

bc
− S̄a =

1

2
εabcS

bc
− (A.14)

The i factors are chosen to compensate those in the algebra (A.4) so that{
Qa, Q̄b

}
= 2δabP

{
Sa, S̄b

}
= 2δabK (A.15){

Qa, S̄b
}

= 2δab

(
D +

1

3
J0

)
− 2Rb

a
{
Q̄a, S

b
}

= 2δab

(
D − 1

3
J0

)
+ 2Ra

b (A.16)

Finally, non-vanishing mixed commutators are

[D,Qa] =
1

2
Qa [D,Q̄a] =

1

2
Q̄a [K,Qa] =Sa [K,Q̄a] = S̄a (A.17)

[D,Sa] =−1

2
Sa [D,S̄a] =−1

2
S̄a [P,Sa] =−Qa [P,S̄a] =−Q̄a (A.18)

[Ra
b,Qc] = δcaQ

b− 1

3
δbaQ

c [Ra
b, Q̄c] =−δbcQ̄a+

1

3
δbaQ̄c [J0,Q

a] =
1

2
Qa [J0, Q̄

a] =−1

2
Q̄a (A.19)

[Ra
b,Sc] = δcaS

b− 1

3
δbaS

c [Ra
b, S̄c] =−δbcS̄a+

1

3
δbaS̄c [J0,S

a] =
1

2
Sa [J0, S̄

a] =−1

2
S̄a (A.20)

A.1 Representations of su(1, 1|3)

Here we present a summary of the representation theory of the su(1, 1|3) algebra. A

detailed analysis can be found in [28]. The algebra is characterized by four Dynkin labels

[∆, j0, j1, j2] associated to the Cartan generators of the bosonic subalgebra su(1, 1)⊕u(1)⊕
su(3). The two SU(3) Cartan generators are defined as

J1 = R1
1 −R2

2 J2 = R1
1 + 2R2

2 (A.21)

A highest weight state is characterized by

Sa |∆, j0, j1, j2〉hw = 0 S̄a |∆, j0, j1, j2〉hw = 0 E+
a |∆, j0, j1, j2〉

hw = 0 (A.22)

where E+
a are raising generators of SU(3) in the Weyl Cartan basis (see [28]). The long

multiplet is built by acting with supercharges, momentum and SU(3) lowering generators

on the highest weight state. The dimension of the long multiplet is

dimA∆
j0;j1,j2 = 27(j1 + 1)(j2 + 1)(j1 + j2 + 2) (A.23)

and unitarity requires

∆ ≥

{
1
3(2j1 + j2 − j0) j0 ≤ j1−j2

2
1
3(j1 + 2j2 + j0) j0 >

j1−j2
2

(A.24)

There are several shortening conditions one can impose. The multiplets Bj0;j1,j2 are

obtained by imposing

Qa |∆, j0, j1, j2〉hw = 0 (A.25)

– 37 –



J
H
E
P
0
8
(
2
0
2
0
)
1
4
3

for the three cases

a = 1 ∆ =
1

3
(2j1 + j2 − j0) Bj0,j1,j2 (A.26)

a = 1, 2 ∆ =
1

3
(j2 − j0) j1 = 0 Bj0,j2 (A.27)

a = 1, 2, 3 ∆ = −1

3
j0 j1 = j2 = 0 Bj0 (A.28)

where, compared to [28] we simplified notation leaving the number of indices to indicate

the fraction of supercharges annihilating each multiplet. The conjugate ones are simply

given by

Q̄a |∆, j0, j1, j2〉hw = 0 (A.29)

for the three cases

a = 3 ∆ =
1

3
(j1 + 2j2 + j0) B̄j0,j1,j2 (A.30)

a = 2, 3 ∆ =
1

3
(j1 + j0) j2 = 0 B̄j0,j1 (A.31)

a = 1, 2, 3 ∆ =
1

3
j0 j1 = j2 = 0 B̄j0 (A.32)

The remaining multiplets are listed for completeness, but they are not relevant for

our setup

B̂j0,j1,j2 ∆ =
j1 + j2

2
j0 =

j1 − j2
2

(A.33)

B̂j0,0,j2 ∆ =
j2
2

j0 =
−j2

2
j1 = 0 (A.34)

B̂j0,j1,0 ∆ =
j1
2

j0 =
j1
2

j2 = 0 (A.35)

We also list the recombination of long multiplets at the unitarity bound. For j0 <
j1−j2

2

the unitarity bound is for ∆ = 1
3(2j1 + j2 − j0) and we have

A−
1
3
j0+ 2

3
j1+ 1

3
j2

j0,j1,j2
= Bj0,j1,j2 ⊕ Bj0+ 1

2
,j1+1,j2

(A.36)

Similarly, for j0 >
j1−j2

2 one has

A
1
3
j0+ 1

3
j1+ 2

3
j2

j0,j1,j2
= B̄j0,j1,j2 ⊕ B̄j0− 1

2
,j1,j2+1 (A.37)

For j0 = j1−j2
2 we have

Aj1+j2
j1−j2

2
,j1,j2

= B̂ j1−j2
2

,j1,j2
⊕ B̂ j1−j2

2
+ 1

2
,j1+1,j2

⊕ B̂ j1−j2
2
− 1

2
,j1+1,j2+1

⊕ B̂ j1−j2
2

,j1+1,j2+1
(A.38)

For vanishing Dynkin labels the decomposition is different. We first list all short

multiplets with vanishing labels as

{B̄j0,0,j2 ,Bj0,j2 , B̂j0,0,j2} j1 = 0 j2 > 0 (A.39)

{Bj0,j1,0, B̄j0,j1 , B̂j0,j1,0} j1 > 0 j2 = 0 (A.40)

{Bj0 , B̄j0} j1 = 0 j2 = 0 (A.41)

The decompositions of long multiplet at the unitarity bound for these cases are shown in

table 4.
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j0 < − j2
2 A

1
3

(j2−j0)

j0,0,j2
= Bj0,j2 ⊕ Bj0+ 1

2
,1,j2

j1 = 0 j0 > − j2
2 A

1
3

(2j2+j0)

j0,0,j2
= B̄j0,0,j2 ⊕ B̄j0− 1

2
,0,j2+1

j0 = − j2
2 A

j2
2

− j2
2
,0,j2

= B̂− j2
2
,0,j2
⊕ B̂− j2+1

2
,0,j2+1

⊕ B̂ 1−j2
2

,1,j2
⊕ B̂− j2

2
,1,j2+1

j0 <
j1
2 A

1
3

(2j1−j0)

j0,j1,0
= Bj0,j1,0 ⊕ Bj0+ 1

2
,j1+1,0

j2 = 0 j0 >
j1
2 A

1
3

(j1+j0)

j0,j1,0
= B̄j0,j1 ⊕ B̄j0− 1

2
,j1,1

j0 = j1
2 A

j1
2
j1
2
,j1,0

= B̂ j1
2
,j1,0
⊕ B̂ j1+1

2
,j1+1,0

⊕ B̂ j1−1
2

,j1,1
⊕ B̂ j1

2
,j1+1,1

j1 = j2 = 0

j0 < 0 A−
j0
3

j0,0,0
= Bj0 ⊕ Bj0+ 1

2
,1,0

j0 > 0 A
j0
3
j0,0,0

= B̄j0 ⊕ B̄j0− 1
2
,0,1

Table 4. Decomposition of long multiplets into short ones for the case of some vanishing Dynkin la-

bels.

B Supersymmetry transformation of the fields

The supersymmetry transformations of the scalar fields under the preserved super-

charges read

QaZ = χ̄a+ Q̄aZ = 0 QaZ̄ = 0 Q̄aZ̄ = iχ+
a (B.1)

QaYb = −δab ψ̄+ Q̄aYb = iεabcχ̄
c
− QaȲ b = −εabcχ−c Q̄aȲ

b = −iδbaψ+ (B.2)

and similarly for fermions

Q̄aψ
+ = 0 Qaψ+ = −2iD1Ȳ

a − 4πi

k
[Ȳ alB − l̂BȲ a] (B.3)

Qaψ− = −2DȲ a Q̄aψ
− = −8π

k
εabcȲ

bZȲ c (B.4)

Q̄aχ
+
b = 2iεabcD̄Ȳ

c Qaχ+
b = 2iδabD1Z̄ +

8πi

k
[Z̄Λab − Λ̂ab Z̄] (B.5)

Qaχ−b = 2δabDZ̄ Q̄aχ
−
b = −2εabcD1Ȳ

c − 4π

k
εacd[Ȳ

cΘd
b − Θ̂d

b Ȳ
c] (B.6)

Qaψ̄+ = 0 Q̄aψ̄+ = 2D1Ya +
4π

k
[Ya l̂B − lBYa] (B.7)

Q̄aψ̄− = 2iD̄Ya Qaψ̄− = −8πi

k
εabcYbZ̄Yc (B.8)

Qaχ̄b+ = 2εabcDYc Q̄aχ̄
b
+ = −2δbaD1Z −

8π

k
[ZΛ̂ba − ΛbaZ] (B.9)

Q̄aχ̄
b
− = −2iδbaD̄Z Qaχ̄b− = −2iεabcD1Yc −

4πi

k
εacd[YcΘ̂

b
d −Θb

dYc] (B.10)

where we used the definitions

D = D2 − iD3 D̄ = D2 + iD3 (B.11)
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and the entries of the supermatrices(
Λba 0

0 Λ̂ba

)
=

(
YaȲ

b + 1
2δ
b
alB 0

0 Ȳ bYa + 1
2δ
b
a l̂B

)
(B.12)(

Θb
a 0

0 Θ̂b
a

)
=

(
YaȲ

b − δba(YcȲ c + ZZ̄) 0

0 Ȳ bYa − δba(Ȳ cYc + Z̄Z)

)
(B.13)(

lB 0

0 l̂B

)
=

(
(ZZ̄ − YaȲ a) 0

0 (Z̄Z − Ȳ aYa)

)
(B.14)

Notice that, due to the last identity the bosonic part of the superconnection reads

LB =
2πi

k

(
lB 0

0 l̂B

)
(B.15)

Finally we can list the transformation properties of the gauge fields

QaA1 =
2πi

k
(ψ̄+Ȳ

a− χ̄a+Z̄−εabcYbχ−c ) Q̄aA1 =
2π

k
(Zχ+

a −Yaψ+ +εabcχ̄
b
−Ȳ

c) (B.16)

QaA= 0 Q̄aA=−4πi

k
(Yaψ

−−Zχ−a +εabcχ̄
b
+Ȳ

c) (B.17)

QaĀ=
4π

k
(ψ̄−Ȳ

a− χ̄a−Z̄+εabcYbχ
+
c ) Q̄aĀ= 0 (B.18)

QaÂ1 =
2πi

k
(Ȳ aψ̄+− Z̄χ̄a+−εabcχ−c Yb) Q̄aÂ1 =

2π

k
(χ+

a Z−ψ+Ya+εabcȲ
cχ̄b−) (B.19)

QaÂ= 0 Q̄aÂ=−4πi

k
(ψ−Ya−χ−a Z+εabcȲ

cχ̄b+) (B.20)

Qa
¯̂
A=

4π

k
(Ȳ aψ̄−− Z̄χ̄a−+εabcχ+

c Yb) Q̄a
¯̂
A= 0 (B.21)

To check the closure of these transformations and to use them on local operators it is

important to keep in mind the equations of motion. For the gauge field we are interested

in the components F = F21 − iF31 and F̄ = F21 + iF31 of the field strength. In particular

we focus on the first one, which respects the equation

F =
2πi

k

(
Z
←→
D Z̄ + Ya

←→
D Ȳ a + ψ̄+ψ

− + χ̄a+χ
−
a 0

0 −Z̄
←→
DZ − Ȳ a←→DYa − ψ−ψ̄+ − χ−a χ̄a+

)
(B.22)

where the operator
←→
D has the usual definition Z

←→
D Z̄ ≡ ZDZ̄ −DZZ̄. For the fermions

we need the equation

/DψJ =
2π

k

(
C̄ICIψJ − ψJCIC̄I + 2ψICJ C̄

I − 2C̄ICJψI + 2εILKJ C̄
I ψ̄LC̄K

)
(B.23)

whose projection yields (we list just the components we needed for our computations)

Dψ+ = iD1ψ
− +

2πi

k

(
l̂Bψ

− − ψ−lB + 2Ȳ aZχ−a − 2χ−a ZȲ
a − 2Ȳ aχ̄b+Ȳ

cεabc

)
(B.24)

Dχ+
a = iD1χ

−
a +

2πi

k

(
χ−b Ωb

a − Ω̂b
aχ
−
b − 2Z̄Yaψ

− + 2ψ−YaZ̄+
)

(B.25)

+
4πi

k
εacd

(
Ȳ cψ̄+Ȳ

d + Ȳ dχ̄c+Z̄ − Z̄χ̄c+Ȳ d
)

(B.26)
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with

Ωb
a = Θb

a + Λba −
1

2
δbalB. (B.27)

C Details on the analytic bootstrap

As we highlighted in the main text, the relation between (3.30) and (3.31) is not simply

a consequence of crossing as in higher dimensional CFTs. Here, we show that, in per-

turbation theory one can establish a relation between these two correlators, finding the

expression (4.13). In free theory, we pointed out in section 4.1 that the s-channel ex-

changed operators [FF̄]n have charge n under the parity symmetry described at the end of

section 3.4 leading to the simple relation f (0)(χ) = h(0)(χ). We want to consider a small

perturbation of this solution such that the exchanged operators still have charge n, but

their dimension receives an anomalous contribution ∆n = 1 +n+ εγ
(1)
n . The two s-channel

expansions (3.40) and (3.44) at first order read

f (1)(z) =
∑
n

(−z)n+1
(
c(0)
n γ(1)

n ∂∆F∆(z)|∆=1+n + Fn+1(z)(c(0)
n γ(1)

n log(−z) + c(1)
n )
)

(C.1)

h(1)(χ) =
∑
n

χn+1
(
c̃(0)
n γ(1)

n ∂∆F∆(χ)|∆=1+n + Fn+1(χ)(c̃(0)
n γ(1)

n log(χ) + c̃(1)
n )
)

(C.2)

where F∆(z) = 2F1(∆,∆, 2∆− 3, z). We can use the relation

c(l)
n = (−1)1+nc̃(l)

n (C.3)

which only depends on the quantum number of the exchanged operator under parity and

therefore it remains true perturbatively. Therefore, we immediately see that the two ex-

pansions (C.1) and (C.2) are mapped to each other by the transformation χ → z, up to

the sign of the argument of the logarithm. Starting from the ansatz (4.11) for f̂(χ) one

only needs to use (4.3) and (3.29) to obtain

f (1)(z) =
z

z − 1

[
r

(
1

1− z

)
log(−z)−

[
r

(
z

z − 1

)
+ r

(
1

1− z

)]
log(1− z) + q

(
z

1− z

)]
(C.4)

From this expression, using the argument above we immediately find

h(1)(χ) =
χ

χ− 1

[
r

(
1

1− χ

)
log(χ)−

[
r

(
χ

χ− 1

)
+ r

(
1

1− χ

)]
log(1− χ) + q

(
χ

1− χ

)]
(C.5)

from which (4.13) descends immediately.

We now show that the bootstrap problem for the first order perturbation at strong

coupling has an infinite number of solutions parametrized by the coefficients ql in (4.20).

We start by considering f̂ (1)(χ) in (4.11) in the limit χ→ 0. As we mentioned in the main

text, we need to have a cancellation between the poles in r(χ) log(1−χ) and those in q(χ)
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to have a regular expansion for f̂ (1)(χ). We can then expand

r(χ) log(1− χ) = −
M2∑

m=−M1

∞∑
p=1

rm
p
χm+p (C.6)

q(χ) =

L2∑
l=−L1

∞∑
q=0

(−1)qql

(
l

q

)
χq+l (C.7)

After shifting the argument of the sums we find

r(χ) log(1− χ) = −
∞∑

p=−M1+1

min(p−1,M2)∑
m=−M1

rm
p−m

χp (C.8)

q(χ) =
∞∑

q=−L1

min(q,L2)∑
l=−L1

(−1)q−lql

(
l

q − l

)
χq (C.9)

The cancellation of the singular behaviour in the sum of these two functions requires that

M1 = L1 + 1 and that

p−1∑
m=−L1−1

rm
p−m

=

p∑
l=−L1

(−1)p−lql

(
l

p− l

)
(C.10)

valid for −L1 ≤ p ≤ −1. This is a matrix equation for the coefficients rm and the system

has maximal rank because the matrix multiplying rm is upper triangular. Therefore this

allows to fix all the coefficients rm for −M1 ≤ m ≤ −2 in terms of the coefficients ql.

Similarly, we can start from the expression of ĥ(χ) given in (4.13) and consider the

expansion around χ = 1. We have

r

(
1

1− χ

)
logχ = −

M2∑
m=−M1

∞∑
p=−m+1

rm
p+m

(1− χ)p (C.11)

q

(
χ

χ− 1

)
=

L2∑
l=−L1

∞∑
q=−2l

ql(−1)l+q

(
l

q + 2l

)
(1− χ)q (C.12)

By switching the order of the sums we get

r

(
1

1− χ

)
logχ = −

∞∑
p=−M2+1

M2∑
m=max(−M1,−p+1)

rm
p+m

(1− χ)p (C.13)

q

(
χ

χ− 1

)
=

∞∑
q=−2L2

L2∑
l=max(−L1,[− q2 ])

ql(−1)l+q

(
l

q + 2l

)
(1− χ)q (C.14)

In order for the poles to cancel in the sum of these two terms we need to have M2 =

2L2 + 1 and

2L2+1∑
m=−p+1

rm
p+m

=

L2∑
l=[− p

2
]

ql(−1)l+p

(
l

p+ 2l

)
(C.15)

– 42 –



J
H
E
P
0
8
(
2
0
2
0
)
1
4
3

for −2L2 ≤ p ≤ 0. This is another system of maximal rank, whose solution allows to

determine all the coefficients rm for 0 ≤ m ≤M2 in terms of the coefficients ql. Therefore

we are left with two unfixed coeffcients r0 and r−1. To fix these two coefficients one can

look at the term proportional to log(1−χ) in (4.13). In the χ→ 1 limit that term identifies

the anomalous dimensions of the operators exchanged in the chiral-chiral channel. We can

then expand its coefficient around χ→ 1

r

(
χ

χ− 1

)
+ r

(
1

1− χ

)
=

M2∑
m=−M1

rm
(1− χ)m

+

M2∑
m=−M1

∞∑
n=0

rm
(χ− 1)m−n

(
m

n

)
(C.16)

Requiring that this expansion starts at (1−χ)3 in the χ→ 1 limit leads to several relations

among the coefficients rm. Nevertheless, only two such relations are independent and they

allow to fix r0 and r−1 in terms of the other coefficients (and therefore in terms of ql).

These relations are

2r0 +
∑
m 6=0

rm = 0 r−1 = 2r−2 (C.17)

To sum up, we have found that all the coefficients rm in the expansion (4.19) are fixed

in terms of the ql in (4.20), leaving us with infinitely many solutions parametrized by

these coefficients.

D D-functions

Tree-level correlators obtained via contact diagrams may be written in terms of

D-functions [86, 87, 89], defined in the general case of AdSd+1 as

D∆1∆2∆3∆4(x1, x2, x3, x4) =

ˆ
dzddx

zd+1
K̃∆1(z, x;x1)K̃∆2(z, x;x2)K̃∆3(z, x;x3)K̃∆4(z, x;x4)

(D.1)

in term of the bulk-to-boundary propagator in d dimensions

K∆(z, x;x′) = C∆

[ z

z2 + (x− x′)2

]∆
≡ C∆ K̃∆(z, x;x′) , (D.2)

where C∆ is defined in (5.19). When dealing with derivatives in the vertices, the following

identity is useful

gµν∂µK̃∆1(z, x;x1) ∂νK̃∆2(z, x;x2)

= ∆1∆2

[
K̃∆1(z, x;x1)K̃∆2(z, x;x2)− 2x2

12K̃∆1+1(z, x;x1)K̃∆2+1(z, x;x2)
]
,

(D.3)

with gµν = z2δµν and ∂µ = (∂z, ∂r), r = 0, 1, 2, . . . , d−1. Reduced D-functions are defined

via (D.1) as [88] (Σ ≡ 1
2

∑
i ∆i)

D∆1∆2∆3∆4 =
π
d
2 Γ
(
Σ− d

2

)
2 Γ (∆1) Γ (∆2) Γ (∆3) Γ (∆4)

x
2(Σ−∆1−∆4)
14 x

2(Σ−∆3−∆4)
34

x
2(Σ−∆4)
13 x2∆2

24

D̄∆1∆2∆3∆4(u, v)

(D.4)
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and depend only on the cross-ratios u = x12x34
x13x24

, v = x14x23
x13x24

. Their explicit expression in

terms a Feynman parameter integral reads

D̄∆1∆2∆3∆4(u, v) =

ˆ
dαdβdγ δ(α+β+γ−1) α∆1−1β∆2−1γ∆3−1 Γ (Σ−∆4) Γ (∆4)(

αγ + αβ u+ βγ v
)Σ−∆4

,

(D.5)

while in d = 1 as usual they only depend on the single variable χ (u = χ2, v = (1 − χ)2).

Explicit expressions for the D̄-functions appearing in this paper read

D̄1,1,1,1 =−2 log(1−χ)

χ
− 2 log(χ)

1−χ
(D.6)

D̄2,2,1,1 =−(χ+2) log(1−χ)

3χ3
+

1

3(1−χ)χ2
+

log(χ)

3(1−χ)2
(D.7)

D̄1,2,2,1 =
log(1−χ)

3χ2
+

1

3(1−χ)2χ
− (χ−3) log(χ)

3(χ−1)3
(D.8)

D̄1,2,1,2 =−(2χ+1) log(1−χ)

3χ2
− 1

3(1−χ)χ
+

(2χ−3) log(χ)

3(1−χ)2
(D.9)

D̄2,2,2,2 =−
2
(
χ2−χ+1

)
15(1−χ)2χ2

+

(
2χ2−5χ+5

)
log(χ)

15(χ−1)3
−
(
2χ2 +χ+2

)
log(1−χ)

15χ3
(D.10)

D̄2,3,1,2 =−(χ(3χ+4)+3) log(1−χ)

15χ4
− χ(3χ−8)+3

15(χ−1)2χ3
+

(3χ−5) log(χ)

15(χ−1)3
(D.11)

D̄2,3,2,1 =
(2χ+3) log(1−χ)

15χ4
+

2(χ−1)χ−3

15(χ−1)3χ3
+

(5−2χ) log(χ)

15(χ−1)4
(D.12)

D̄3,3,1,1 =−2(χ(χ+3)+6) log(1−χ)

15χ5
+

3−χ(2χ+3)

15(χ−1)2χ4
+

2log(χ)

15(χ−1)3
(D.13)

D̄2,3,2,3 =

(
12χ3−42χ2 +56χ−35

)
log(χ)

105(χ−1)4
+
−24χ4 +48χ3 +5χ2−29χ+18

210(χ−1)3χ3

+

(
−12χ3−6χ2−8χ−9

)
log(1−χ)

105χ4
(D.14)

D̄2,3,3,2 =

(
9χ2 +10χ+9

)
log(1−χ)

105χ4
+

(
−9χ3 +35χ2−49χ+35

)
log(χ)

105(χ−1)5

+
18χ4−43χ3 +26χ2−43χ+18

210(χ−1)4χ3
(D.15)

D̄3,3,2,2 =

(
9χ2−28χ+28

)
log(χ)

105(χ−1)4
+

(
−9χ3−8χ2−6χ−12

)
log(1−χ)

105χ5

+
−18χ4 +29χ3−5χ2−48χ+24

210(χ−1)3χ4
(D.16)

D̄3,3,3,3 =

(
8χ4−36χ3 +64χ2−56χ+28

)
log(χ)

105(χ−1)5
+

(
−8χ4−4χ3−4χ2−4χ−8

)
log(1−χ)

105χ5

+
−24χ6 +72χ5−74χ4 +28χ3−74χ2 +72χ−24

315(χ−1)4χ4
. (D.17)
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Further expressions are found through the identities in [88]

D̄1,1,2,2 = χ2D̄2,2,1,1 =
χ2 log(χ)

3(1− χ)2
+

1

3(1− χ)
− (χ+ 2) log(1− χ)

3χ
(D.18)

D̄2,1,2,1 = D̄1,2,1,2 (D.19)

D̄2,1,1,2 = (1− χ)2D̄1,2,2,1 =
(1− χ)2 log(1− χ)

3χ2
+

1

3χ
+

(χ− 3) log(χ)

3(1− χ)
(D.20)

D̄3,2,2,1 = D̄2,3,1,2 = −(χ(3χ+ 4) + 3) log(1− χ)

15χ4
− χ(3χ− 8) + 3

15(χ− 1)2χ3
+

(3χ− 5) log(χ)

15(χ− 1)3

(D.21)

D̄3,2,1,2 = (1− χ)2D̄2,3,1,2

=
(2χ+ 3)(χ− 1)2 log(1− χ)

15χ4
+

2(χ− 1)χ− 3

15(χ− 1)χ3
+

(5− 2χ) log(χ)

15(χ− 1)2
(D.22)

D̄2,2,3,3 = χ2D̄3,3,2,2

=

(
−9χ3 − 8χ2 − 6χ− 12

)
log(1− χ)

105χ3
+
−18χ4 + 29χ3 − 5χ2 − 48χ+ 24

210(χ− 1)3χ2

+

(
9χ4 − 28χ3 + 28χ2

)
log(χ)

105(χ− 1)4
(D.23)

D̄3,2,2,3 = (1− χ)2D̄2,3,3,2

=

(
−9χ3 + 35χ2 − 49χ+ 35

)
log(χ)

105(χ− 1)3
+

18χ4 − 43χ3 + 26χ2 − 43χ+ 18

210(χ− 1)2χ3

+

(
9χ4 − 8χ3 − 2χ2 − 8χ+ 9

)
log(1− χ)

105χ4
(D.24)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] J.M. Maldacena, Wilson loops in large N field theories, Phys. Rev. Lett. 80 (1998) 4859

[hep-th/9803002] [INSPIRE].

[2] S.-J. Rey and J.-T. Yee, Macroscopic strings as heavy quarks in large N gauge theory and

anti-de Sitter supergravity, Eur. Phys. J. C 22 (2001) 379 [hep-th/9803001] [INSPIRE].

[3] N. Drukker, D.J. Gross and H. Ooguri, Wilson loops and minimal surfaces, Phys. Rev. D 60

(1999) 125006 [hep-th/9904191] [INSPIRE].

[4] N. Drukker and S. Kawamoto, Small deformations of supersymmetric Wilson loops and open

spin-chains, JHEP 07 (2006) 024 [hep-th/0604124] [INSPIRE].

[5] S. Giombi, R. Roiban and A.A. Tseytlin, Half-BPS Wilson loop and AdS2/CFT1, Nucl.

Phys. B 922 (2017) 499 [arXiv:1706.00756] [INSPIRE].

[6] S. Giombi and S. Komatsu, Exact Correlators on the Wilson Loop in N = 4 SYM:

Localization, Defect CFT, and Integrability, JHEP 05 (2018) 109 [Erratum ibid. 11 (2018)

123] [arXiv:1802.05201] [INSPIRE].

– 45 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1103/PhysRevLett.80.4859
https://arxiv.org/abs/hep-th/9803002
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9803002
https://doi.org/10.1007/s100520100799
https://arxiv.org/abs/hep-th/9803001
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9803001
https://doi.org/10.1103/PhysRevD.60.125006
https://doi.org/10.1103/PhysRevD.60.125006
https://arxiv.org/abs/hep-th/9904191
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9904191
https://doi.org/10.1088/1126-6708/2006/07/024
https://arxiv.org/abs/hep-th/0604124
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0604124
https://doi.org/10.1016/j.nuclphysb.2017.07.004
https://doi.org/10.1016/j.nuclphysb.2017.07.004
https://arxiv.org/abs/1706.00756
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1706.00756
https://doi.org/10.1007/JHEP05(2018)109
https://arxiv.org/abs/1802.05201
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1802.05201


J
H
E
P
0
8
(
2
0
2
0
)
1
4
3

[7] S. Giombi and S. Komatsu, More Exact Results in the Wilson Loop Defect CFT: Bulk-Defect

OPE, Nonplanar Corrections and Quantum Spectral Curve, J. Phys. A 52 (2019) 125401

[arXiv:1811.02369] [INSPIRE].

[8] M. Cooke, A. Dekel and N. Drukker, The Wilson loop CFT: Insertion dimensions and

structure constants from wavy lines, J. Phys. A 50 (2017) 335401 [arXiv:1703.03812]

[INSPIRE].

[9] A. Bassetto, L. Griguolo, F. Pucci and D. Seminara, Supersymmetric Wilson loops at two

loops, JHEP 06 (2008) 083 [arXiv:0804.3973] [INSPIRE].

[10] D. Correa, J. Henn, J. Maldacena and A. Sever, An exact formula for the radiation of a

moving quark in N = 4 super Yang-Mills, JHEP 06 (2012) 048 [arXiv:1202.4455]

[INSPIRE].

[11] P. Liendo, C. Meneghelli and V. Mitev, Bootstrapping the half-BPS line defect, JHEP 10

(2018) 077 [arXiv:1806.01862] [INSPIRE].

[12] A. Gimenez-Grau and P. Liendo, Bootstrapping line defects in N = 2 theories, JHEP 03

(2020) 121 [arXiv:1907.04345] [INSPIRE].

[13] D. Mazac, Analytic bounds and emergence of AdS2 physics from the conformal bootstrap,

JHEP 04 (2017) 146 [arXiv:1611.10060] [INSPIRE].

[14] J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev. D 94

(2016) 106002 [arXiv:1604.07818] [INSPIRE].

[15] D. Simmons-Duffin, D. Stanford and E. Witten, A spacetime derivation of the Lorentzian

OPE inversion formula, JHEP 07 (2018) 085 [arXiv:1711.03816] [INSPIRE].

[16] D. Mazac and M.F. Paulos, The analytic functional bootstrap. Part I: 1D CFTs and 2D

S-matrices, JHEP 02 (2019) 162 [arXiv:1803.10233] [INSPIRE].

[17] D. Mazac and M.F. Paulos, The analytic functional bootstrap. Part II. Natural bases for the

crossing equation, JHEP 02 (2019) 163 [arXiv:1811.10646] [INSPIRE].

[18] P. Ferrero, K. Ghosh, A. Sinha and A. Zahed, Crossing symmetry, transcendentality and the

Regge behaviour of 1d CFTs, JHEP 07 (2020) 170 [arXiv:1911.12388] [INSPIRE].

[19] D. Grabner, N. Gromov and J. Julius, Excited States of One-Dimensional Defect CFTs from

the Quantum Spectral Curve, JHEP 07 (2020) 042 [arXiv:2001.11039] [INSPIRE].

[20] O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal

Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091

[arXiv:0806.1218] [INSPIRE].

[21] N. Drukker et al., Roadmap on Wilson loops in 3d Chern-Simons-matter theories, J. Phys. A

53 (2020) 173001 [arXiv:1910.00588] [INSPIRE].

[22] N. Drukker, J. Plefka and D. Young, Wilson loops in 3-dimensional N = 6 supersymmetric

Chern-Simons Theory and their string theory duals, JHEP 11 (2008) 019 [arXiv:0809.2787]

[INSPIRE].

[23] B. Chen and J.-B. Wu, Supersymmetric Wilson Loops in N = 6 Super Chern-Simons-matter

theory, Nucl. Phys. B 825 (2010) 38 [arXiv:0809.2863] [INSPIRE].

[24] N. Drukker and D. Trancanelli, A supermatrix model for N = 6 super Chern-Simons-matter

theory, JHEP 02 (2010) 058 [arXiv:0912.3006] [INSPIRE].

– 46 –

https://doi.org/10.1088/1751-8121/ab046c
https://arxiv.org/abs/1811.02369
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1811.02369
https://doi.org/10.1088/1751-8121/aa7db4
https://arxiv.org/abs/1703.03812
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1703.03812
https://doi.org/10.1088/1126-6708/2008/06/083
https://arxiv.org/abs/0804.3973
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0804.3973
https://doi.org/10.1007/JHEP06(2012)048
https://arxiv.org/abs/1202.4455
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1202.4455
https://doi.org/10.1007/JHEP10(2018)077
https://doi.org/10.1007/JHEP10(2018)077
https://arxiv.org/abs/1806.01862
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1806.01862
https://doi.org/10.1007/JHEP03(2020)121
https://doi.org/10.1007/JHEP03(2020)121
https://arxiv.org/abs/1907.04345
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1907.04345
https://doi.org/10.1007/JHEP04(2017)146
https://arxiv.org/abs/1611.10060
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1611.10060
https://doi.org/10.1103/PhysRevD.94.106002
https://doi.org/10.1103/PhysRevD.94.106002
https://arxiv.org/abs/1604.07818
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1604.07818
https://doi.org/10.1007/JHEP07(2018)085
https://arxiv.org/abs/1711.03816
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1711.03816
https://doi.org/10.1007/JHEP02(2019)162
https://arxiv.org/abs/1803.10233
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1803.10233
https://doi.org/10.1007/JHEP02(2019)163
https://arxiv.org/abs/1811.10646
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1811.10646
https://doi.org/10.1007/JHEP07(2020)170
https://arxiv.org/abs/1911.12388
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1911.12388
https://doi.org/10.1007/JHEP07(2020)042
https://arxiv.org/abs/2001.11039
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2001.11039
https://doi.org/10.1088/1126-6708/2008/10/091
https://arxiv.org/abs/0806.1218
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0806.1218
https://doi.org/10.1088/1751-8121/ab5d50
https://doi.org/10.1088/1751-8121/ab5d50
https://arxiv.org/abs/1910.00588
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1910.00588
https://doi.org/10.1088/1126-6708/2008/11/019
https://arxiv.org/abs/0809.2787
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0809.2787
https://doi.org/10.1016/j.nuclphysb.2009.09.015
https://arxiv.org/abs/0809.2863
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0809.2863
https://doi.org/10.1007/JHEP02(2010)058
https://arxiv.org/abs/0912.3006
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0912.3006


J
H
E
P
0
8
(
2
0
2
0
)
1
4
3

[25] D.H. Correa, V.I. Giraldo-Rivera and G.A. Silva, Supersymmetric mixed boundary conditions

in AdS2 and DCFT1 marginal deformations, JHEP 03 (2020) 010 [arXiv:1910.04225]

[INSPIRE].

[26] N. Gromov and G. Sizov, Exact Slope and Interpolating Functions in N = 6 Supersymmetric

Chern-Simons Theory, Phys. Rev. Lett. 113 (2014) 121601 [arXiv:1403.1894] [INSPIRE].

[27] L. Bianchi, M.S. Bianchi, A. Bres, V. Forini and E. Vescovi, Two-loop cusp anomaly in

ABJM at strong coupling, JHEP 10 (2014) 013 [arXiv:1407.4788] [INSPIRE].

[28] L. Bianchi, L. Griguolo, M. Preti and D. Seminara, Wilson lines as superconformal defects in

ABJM theory: a formula for the emitted radiation, JHEP 10 (2017) 050

[arXiv:1706.06590] [INSPIRE].
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