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Abstract

When the labelling information is not deterministic, traditional supervised

learning algorithms cannot be applied. In this case, stochastic supervision

models provide a valuable alternative to classification. However, these mod-

els are restricted in several aspects, which critically limits their applicabil-

ity. In this paper, we provide four generalisations of stochastic supervision

models, extending them to asymmetric assessments, multiple classes, feature-

dependent assessments and multi-modal classes, respectively. Corresponding

to these generalisations, we derive four new EM algorithms. We show the

effectiveness of our generalisations through illustrative examples of simulated

datasets, as well as real-world examples of two famous datasets, the MNIST
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dataset and the CIFAR-10 dataset.

Keywords: EM algorithms, imperfect supervision, finite mixture model,

stochastic supervision

1. Introduction1

Generally speaking, the aim of various statistical learning methods is to2

infer the real label y of an input instance x. Classification and clustering are3

two extreme ends in the sense of amount of labelling information provided4

for the inference of y. In classification, the deterministic labels {yn}Nn=1 of5

N training instances {xn}Nn=1, represented by a binary or multilevel cate-6

gorical random variable y, are usually provided in advance to train a clas-7

sifier f(y|x) on the information from both the input and output spaces via8

({xn}Nn=1, {yn}Nn=1). The trained (supervised) classifier is then used to infer9

the real label y of a test instance x. In contrast, in clustering, no labelling10

information is provided at all, hence a clustering method f(y|x) is built on11

the information from only the input space via {xn}Nn=1.12

In between classification and clustering, there exists partially-supervised13

classification [1–5] with various types of information provided to help in-14

ference. One example is called semi-supervised classification [6, 7], where15

only part of the deterministic labels {yn}Nn=1 are provided for classifier train-16

ing. Another example is called imperfect supervision [8–12], where there17

are some wrong deterministic labels provided in {yn}Nn=1. Multiple instance18

learning [13] also deals with partially-supervised setting, where determinis-19

tic labels are provided for bags of multiple instances rather than for each20

specific instance. In this paper, we discuss another partially-supervised21
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classification scheme called stochastic supervision, which, in contrast to all22

the cases aforementioned, provides no deterministic labels {yn}Nn=1 but only23

probabilistic assessments {zn}Nn=1 for inference of y. In other words, only24

some side information about the output is provided.25

A motivation of stochastic supervision is that, in practice, data are often26

labelled by certain experts or say supervisors with subjective labelling to27

some extent, and in many situations an expert cannot provide deterministic28

labels. For example, in medical diagnostic, an expert may not be perfectly29

sure whether a patient has a certain disease, and they can only provide a30

subjective assessment, which is often expressed in a probabilistic manner.31

These probabilistic assessments can be represented by continuous random32

variables, from a space different from the discrete space of output label y.33

On the basis of these assessments (or say probabilistic labels), the statistical34

classification problem, of fitting a model to the training data and inferring the35

real labels of the test data, was studied under the nomenclature of stochastic36

supervision [14–19].37

The research of stochastic supervision models for discriminant analysis38

was pioneered by Aitchison and Begg [14] and Krishnan and Nandy [15]. As39

with [15] we assume two classes, namely class 1 and class 2, with proportions40

π1 and π2 = 1− π1, respectively. In each class, the data available, including41

both the d-dimensional feature vector x of an instance and its supervisor’s42

assessment z that the instance belongs to class j, follow a class-dependent43

distribution fj(x, z), for j = 1, 2. The task is to infer the real label y of the44

instance (x, z).45

In [15], the class-dependent joint data-generating distribution fj(x, z) was46
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further factorised as fj(x, z) = fj(x)qj(z), by assuming that the features47

x and the assessment z are independent of each other in each class. By48

supposing the features x are continuous random variables in the range of49

(−∞,∞), it was assumed that x|y = 1 ∼ N(µ1,Σ) and x|y = 2 ∼ N(µ2,Σ),50

two class-dependent d-variate Gaussian distributions. We denote the pdfs of51

x|y = 1 and x|y = 2 as f1(x) and f2(x), respectively. In the meantime, as52

the probabilistic assessment z is a continuous random variable in the range53

of [0, 1], it was assumed that z|y = 1 ∼ Beta(a, b) and z|y = 2 ∼ Beta(b, a),54

two Beta distributions symmetric between the two classes. We denote the55

pdfs of z|y = 1 and z|y = 2 as q1(z) and q2(z), respectively. That is to say,56

the model in [15] assumes that the data-generating process in class j follows57

a Gaussian distribution fj(x) for features x and a Beta distribution qj(z) for58

assessment z. Although the assessment z is given for each training instance59

x, the real label (denoted by y) is unknown, which leads the likelihood of60

the training instance, or say the joint distribution of x and z, as p(x, z) =61

π1f1(x, z)+π2f2(x, z). Hence this is a latent variable (finite mixture) problem,62

and the model was fitted by an EM algorithm in [15].63

However, there are two technical issues with Krishnan and Nandy’s stochas-64

tic supervision model. Firstly, it cannot accept any assessment that z > 165

or z < 0, while in some real problems the assessment can be a random vari-66

able in the range of (−∞,∞). Secondly, the EM algorithm for this model is67

complicated, because there is no exact solution in the M-step for the estima-68

tion of certain parameters due to the adoption of the Beta distributions for69

assessment z.70

In order to overcome the two issues above, Titterington [16] introduced71
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a new supervisor’s assessment w = log z
1−z to replace the original z. This72

transformation is called additive logistic transformation [20], which extends73

the range of the assessment from [0, 1] to the real line and thus the assess-74

ment can be modelled by Gaussian distributions. In Titterington’s model,75

supervisor assessments q1(w) and q2(w) are assumed to follow two univariate76

Gaussian distributions N(−∆,Ω) and N(∆,Ω), respectively, where ∆ > 077

and Ω > 0. In this model, the constraints of equal variances and symme-78

try in the assessment distributions between the two classes are preserved.79

Then Titterington [16] provided an EM algorithm to estimate parameters80

{π1, µ1, µ2,Σ,Ω,∆}.81

In this paper, we aim to generalise Titterington’s model in four aspects,82

to make it more flexible and generic to deal with more complicated real-83

world classification tasks. We note that the first three aspects have been84

suggested and discussed by Titterington in section 5.2 of [16], though no85

detailed derivation was provided as we shall present in this paper. Our four86

generalisations are briefly described as follows.87

1. Asymmetric assessments. In both Krishnan and Nandy’s and Titter-88

ington’s models, the two class-dependent distributions of assessments89

qj(z) (or qj(w)) were symmetric and with equal variances. Our first90

generalisation aims to relax this restriction on the parameter setting of91

supervisor’s assessments.92

2. Multiple classes. The past models were for two-class discrimination.93

Our second generalisation is designed for classification of multiple classes.94

3. Feature-dependent assessments. In Krishhan and Nandy’s [15] and Tit-95

terington’s [16] work, the assessment and the features were modelled96
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independent of each other. Our third generalisation aims to model their97

dependence.98

4. Multi-modal classes. In the past research on stochastic supervision,99

each class was modelled by a Gaussian distribution, implying that there100

was only a single population for each class, which we call it a uni-modal101

class. In our fourth generalisation, we model the cases that each class102

contains multiple subclasses, making the class a multi-modal class.103

We shall detail the four generalisations in four subsections of section 2104

along with four EM algorithms and some numerical illustrations. In sec-105

tion 3, we present real-data examples to demonstrate the effectiveness of the106

generalisations.107

2. Generalised models and their EM algorithms108

2.1. Generalisation-1: asymmetric stochastic supervision109

Let us first make the parameter setting of stochastic supervision models110

more flexible. In Titterington’s model [16], the distributions of assessments111

in two classes are w|y = 1 ∼ N(−∆,Ω) and w|y = 2 ∼ N(∆,Ω). They are112

symmetric in the sense that their variances are the same and their means are113

the additive inverses of each other. Here as suggested by Titterington [16],114

we generalise them to w|y = 1 ∼ N(∆1,Ω1) and w|y = 2 ∼ N(∆2,Ω2). We115

denote the pdfs of w|y = 1 and w|y = 2 as q1(w) and q2(w), respectively.116

2.1.1. Formulation of generalisation-1117

Our notation is established as follows. The observable dataset is denoted118

by X = {X,W}, the latent variable set by Y = {Y }, and the parameter set119
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by θ = {π1, π2, µ1, µ2,Σ,Ω1,∆1,Ω2,∆2}, where X = {xn}, W = {wn} and120

Y = {yn}, for n = 1, . . . , N , are N instances, assessments and real labels121

of the instances, respectively. For each instance, yn = (yn1, yn2) is a latent122

variable vector (representing its real label) such that for class j we have123

ynj ∈ {0, 1} and for two classes together we have
∑2

j=1 ynj = 1. That is, yn124

is a latent indicator vector with only one element being true.125

Hence, for complete data (Y ,X ) = {(yn, xn, wn), n = 1, . . . , N}, the126

complete-data likelihood is127

p(Y ,X ) =
N∏
n=1

{yn1[π1f1(xn)q1(wn)] + yn2[π2f2(xn)q2(wn)]} .

Since this model contains latent variables yn, we can estimate the model128

parameters by deriving an EM algorithm. In general, an EM algorithm [21]129

is an iterative algorithm providing a maximum likelihood solution for in-130

complete data. We can also use the EM algorithm for models with latent131

variables. In each of its iterations, the EM algorithm has two alternating132

steps, the expectation (E-)step and the maximisation (M-)step.133

In the E-step, we fix current parameters and compute expectation of the134

complete-data log-likelihood function with respect to the conditional distri-135

butions of latent variables given observed data X : Q(θ, θold) = EY|X ,θold(log p(Y ,X|θ)).136

In the M-step, we find new parameters by maximising the expectation137

obtained in the E-step: θnew = arg maxθQ(θ, θold).138

2.1.2. EM algorithm of generalisation-1139

E-step. For the generalisation-1, in the E-step, we compute the posterior

probabilities of latent variables γ(ynj) = p(ynj = 1|X , θ). By the Bayes rule,
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we have

γ(ynj) =
p(xn, wn, ynj|θ)
p(xn, wn|θ)

=
πjN(xn|µj,Σj)N(wn|∆j,Ωj)∑2
j=1 πjN(xn|µj,Σj)N(wn|∆j,Ωj)

,

which are called responsibilities that class j takes for explaining xn [22].140

M-step. In the M-step, we take partial differential of l(θ) = Q(θ, θold) with141

respect to θ = {π1, π2, µ1, µ2,Σ,Ω1,∆1,Ω2,∆2} and set it equal to zero to142

obtain updated parameters θnew. It follows that143

µnew1 =

N∑
n=1

γ(yn1)xn

N∑
n=1

γ(yn1)

, µnew2 =

N∑
n=1

γ(yn2)xn

N∑
n=1

γ(yn2)

,

indicating that the updated mean µnewj of the features in class j becomes144

a weighted average of all data points from the two classes, weighted by the145

responsibilities; and similarly146

∆new
1 =

∑N
n=1 γ(yn1)wn∑N
n=1 γ(yn1)

,∆new
2 =

∑N
n=1 γ(yn2)wn∑N
n=1 γ(yn2)

,

i.e., the updated mean ∆new
j of assessments in class j becomes a weighted147

average of all assessments over the two classes.148

Also, the updated covariance matrix of the features is149

Σnew =

N∑
n=1

2∑
j=1

γ(ynj)(xn − µj)(xn − µj)T

N∑
n=1

2∑
j=1

γ(ynj)

,

a weighted pooled covariance matrix; and similarly the updated variances of150

class-specific assessments are151

Ωnew
1 =

∑N
n=1 γ(yn1)(wn −∆1)

2∑N
n=1 γ(yn1)

,Ωnew
2 =

∑N
n=1 γ(yn2)(wn −∆2)

2∑N
n=1 γ(yn2)

.
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Since the two mixing weights have to satisfy π0 + π1 = 1, we can set152

∂l(θ)/∂πj + λ = 0, where λ is a Lagrange multiplier. It then follows that153

πnew1 = 1
N

N∑
n=1

γ(yn1), π
new
2 = 1 − πnew1 , indicating that each of the updated154

mixing weights is an average of the responsibilities.155

2.1.3. Illustrative example for generalisation-1156
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Figure 1: (a) Supervisor assessments with equal variances and symmetrical means between

the two classes. Red curve: assessments density estimated by Titterington’s model. Blue

curve: assessments density estimated by the generalisation-1. (b) Supervisor assessments

with unequal variances and asymmetrical means between the two classes. The rest caption

is as for Figure 1(a).

As shown in Figure 1(a) and Figure 1(b), compared with Titterington’s157

original model, the generalisation-1 is more flexible in accommodating the158

distributions of supervisor’s assessments of various shapes. Let us appreciate159

it from two aspects.160

Firstly, we simulate the supervisor’s assessments from two Gaussian dis-161

tributions with equal variances and symmetrical means; this setting satisfies162

the assumption underlying Titterington’s model. In this case, as shown in163

Figure 1(a), the generalisation-1 performs similarly to Titterington’s model.164
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(a) (b)

(c)

Figure 2: Three extreme cases of supervisor assessments. (a) Supervisor assessments

with large unequal variances and symmetrical means between the two classes. Red curve:

assessments density estimated by Titterington’s model. Blue curve: assessments density

estimated by the generalisation-1. (b) Supervisor assessments with large equal variances

and asymmetrical means between the two classes. The rest caption is as for Figure 2(a).

(c) Supervisor assessments with large unequal variances and asymmetrical means between

the two classes. The rest caption is as for Figure 2(a).
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Secondly, we simulate the supervisor’s assessments from two Gaussian165

distributions with unequal variances and asymmetrical means; this setting166

does not satisfy the assumption underlying Titterington’s model. In this167

case, as shown in Figure 1(b), the generalisation-1 has much better fitting168

performance than Titterington’s model.169

Besides the moderate unequal variances and asymmetrical case shown170

in Figure 1(b), we also present the superior fitting performances of the171

generalisation-1 in three extreme cases in Figure 2: supervisor’s assessments172

simulated from two Gaussian distributions with large unequal variances and173

symmetrical means in Figure 2(a), large equal variances and asymmetrical174

means in Figure 2(b) and large unequal variances and asymmetrical means in175

Figure 2(c). Obviously, the generalisation-1 can provide better fittings than176

Titterington’s model under these extreme unequal variances and asymmet-177

rical cases.178

2.2. Generalisation-2: multi-class stochastic supervision179

Original stochastic supervision models were only for two-class discrim-180

ination. In practice multi-class classification problems are also prevailing.181

Hence here we extend Titterington’s model to multi-class cases, as suggested182

by Titterington [16].183

2.2.1. Formulation of generalisation-2184

Suppose there are J classes. As with [16], the supervisor’s assessment of185

an instance x is now a J-variate vector of ‘probabilities’, z = (z1, . . . , zJ),186

and we can define a new assessment vector wj = log
zj
zJ

for j = 1, . . . , J − 1,187

which extends the supervisor’s assessments from (0, 1) to (−∞,∞). Then we188
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can assume that, for each class j, the assessments w = (w1, . . . , wJ−1) follow189

(J − 1)-variate Gaussian distributions: qj(w) ∼ N(∆j,Ωj), where qj(w) is190

the pdf of w|y = j.191

Then, given the real label yn = (yn1, . . . , ynJ) is unknown, the joint dis-192

tribution of the observed features xn and assessment wn of the nth instance193

becomes p(xn, wn) =
∑J

j=1 πjfj(xn, wn), where fj(xn, wn) = fj(xn)qj(wn)194

and πj = p(ynj = 1) is the mixing weight of class j.195

Before going further, we recall some notation to be used for the generalisation-196

2:197

• set of the latent labels Y = {yn}, for n = 1, . . . , N , where yn is a198

J-variate latent vector of real labels, and we have ynj ∈ {0, 1} and199 ∑J
j=1 ynj = 1;200

• set of the class mixing weights Π = {πj}, for j = 1, . . . , J , where πj is201

a scalar;202

• set of the class means U = {µj}, for j = 1, . . . , J , where µj is a d-variate203

vector;204

• set of the class covariances Σ = {Σj}, for j = 1, . . . , J , where Σj is a205

d× d matrix;206

• set of the assessment means ∆ = {∆j}, for j = 1, . . . , J , where ∆j is a207

(J − 1)-variate vector; and208

• set of the assessment covariances Ω = {Ωj}, for j = 1, . . . , J , where Ωj209

is a (J − 1)× (J − 1) matrix.210
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In this notation, the parameter set for the generalisation-2 is θ = {Π, U,Σ,∆,Ω};211

the complete-data likelihood of observed data X and latent data Y is p(Y ,X|θ) =212 ∏N
n=1

∑J
j=1 ynj[πjN(xn|µj,Σj)N(wn|∆j,Ωj)], and the marginal likelihood of213

observed data X is p(X|θ) =
∏N

n=1

∑J
j=1 πjN(xn|µj,Σj)N(wn|∆j,Ωj).214

2.2.2. EM algorithm of generalisation-2215

E-step. In the E-step we can update posterior distribution of latent variables216

by setting qnew(Y) = p(Y|X , θold). Since217

p(Y|X , θold) =
N∏
n=1

∑J
j=1 ynj[πjN(xn|µj,Σj)N(wn|∆j,Ωj)]∑J
j=1 πjN(xn|µj,Σj)N(wn|∆j,Ωj)

,

we have the class responsibilities as218

γ(ynj) =
πjN(xn|µj,Σj)N(wn|∆j,Ωj)∑J
j=1 πjN(xn|µj,Σj)N(wn|∆j,Ωj)

.

219

M-step. In the M-step, we update θ by θnew = arg maxθ
∑
Y q

new(Y) log p(Y ,X|θ).220

Since the mixing weights πj satisfy the sum-to-one constraint, as in section 2.1221

we introduce a Lagrange multiplier λ and set ∂l(θ)/∂πj+λ(
∑J

j=1 πj−1) = 0,222

which results in the updated mixing weights as πnewj = 1
N

N∑
n=1

γ(ynj), which is223

again an average of the responsibilities over all the data points. Similarly to224

the M-step in section 2.1, we can obtain the updated means and covariance225

matrices as226

µnewj =

N∑
n=1

γ(ynj)xn

N∑
n=1

γ(ynj)

,Σnew
j =

N∑
n=1

γ(ynj)(xn − µjk)(xn − µjk)T

N∑
n=1

γ(ynj)

,

13



227

∆new
j =

N∑
n=1

γ(ynj)wn

N∑
n=1

γ(ynj)

,Ωnew
j =

N∑
n=1

γ(ynj)(wn −∆j)(wn −∆j)
T

N∑
n=1

γ(ynj)

.

228

2.2.3. Illustrative example for generalisation-2229

In Figure 3(a), we depict a simple example of three classes with a one-230

dimensional feature x (in the horizontal axis) and one dimension of the as-231

sessment w (in the vertical axis). The joint distribution of the feature and232

the assessment is thus a three-component mixture of Gaussian distributions.233

Figure 3(a) shows that the generalisation-2 works in this case. From Fig-234

ure 3(b), we can observe that the feature’s distributions of the three classes235

seriously overlap. However, with the assessments information added, we can236

see that the three classes are much more separable, as shown in Figure 3(a).237

2.3. Generalisation-3: feature-dependent stochastic supervision238

Titterington [16] suggested to generalise the stochastic supervision model239

to the scenarios that the supervisor’s assessment w is dependent on the fea-240

tures x. In the generalisation-3, we assume that there is a linear relationship241

between the assessment and the features. To check the validity of this as-242

sumption, we can calculate the Pearson correlation coefficient between x and243

w if there is one feature or the adjusted R2 [23] when regressing w against x244

for multiple features.245

2.3.1. Formulation of generalisation-3246

The formulation of this generalisation is quite similar to that of the origi-247

nal stochastic supervision model, except that the distribution of assessment is248
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Figure 3: (a) Joint distribution of feature and (one dimension of) assessment for three

classes in red, blue and green, respectively. The contour plots were estimated by the

generalisation-2. Each contour is labelled by its corresponding density. (b) Distributions

of the feature for three classes in red, blue and green, respectively.
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now conditional on the features by replacing qj(w) with qj(w|x). This makes249

the joint distribution of (xn, wn) as p(xn, wn) =
∑J

j=1 πjfj(xn)qj(wn|xn).250

As suggested in [16], a simple way to model qj(wn|xn) is to use the Gaus-251

sian distribution N(αj + βTj xn,Ωj), and in this case the joint distribution252

fj(xn, wn) is simply another Gaussian distribution N(νj,Ψj), where253

νj =
(
µj αj + βTj µj

)
,Ψj =

(
Σj Σjβj β

T
j Σj Ωj + βTj Σjβj

)
,

αj is a (J − 1)-variate vector, and βj is a d× (J − 1) matrix.254

2.3.2. EM algorithm of generalisation-3255

E-step. In the E-step, we can compute the responsibilities as256

γ(ynj) =
πjfj(xn, wn)∑J
j=1 πjfj(xn, wn)

.

M-step. In the M-step, we can update νj by setting257

νj =

∑N
n=1 γ(ynj)an∑N
n=1 γ(ynj)

,

where an is a concatenated vector of xn and wn. Similarly, the updated258

covariance matrix is259

Ψj =

∑N
n=1 γ(ynj)(an − νj)(an − νj)T∑N

n=1 γ(ynj)
.

2.3.3. Illustrative example for generalisation-3260

A simple example of dependent assessment and feature is illustrated in261

Figure 4. The joint distribution of assessment and feature follows a bivariate262

Gaussian distribution with positive non-diagonal elements in the covariance263

matrix. The y-axis in Figure 4 shows the assessment while the x-axis shows264

the feature. The Pearson correlation coefficient between the feature and265
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mated by Titterington’s original stochastic supervision models. Solid contour plots were
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assessment of the blue class is 0.8378 while that of the red class is 0.2994.266

It is clear that, compared with Titterington’s original model, which assumes267

the independence between features and assessments, the generalisation-3 fits268

the joint distribution of the feature and the assessment much better, when269

they are indeed dependent.270

2.4. Generalisation-4: Multi-modal classes271

In the original work of Krishnan and Nandy’s model [15] and Tittering-272

ton’s model [16] and the three generalisations we have presented, each class273

is modelled by a Gaussian distribution, implying that there was only a sin-274

gle population for each class, which we call a uni-modal class. In practice,275

however, the distribution of each class can be much complicated, often hav-276

ing multiple modes, which cannot be described by a standard probabilistic277

distribution. In this context, we propose our generalisation-4 to model the278

cases that each class contains multiple subclasses, which makes the class a279

multi-modal class.280

In fact, almost all continuous densities can be approximated with arbi-281

trary accuracy by a mixture of Gaussian distributions [22]. For supervised282

discriminant analysis, the mixture of Gaussians have been studied well in [24–283

27]. In the scenario of the stochastic supervision model, which is not deter-284

ministically supervised and is itself a mixture of Gaussians, we extend the285

model to a mixture of mixtures of Gaussian distributions [28, 29].286

2.4.1. Formulation of generalisation-4287

Suppose there are J classes and, for each class j, there are Kj subclasses.288

The total number of subclasses is K =
∑J

j=1Kj.289
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We assume for each subclass the features x follow a Gaussian distribution290

N(µjk,Σjk), such that each class can be modelled by a mixture of Gaussian291

distributions fj(x): fj(xn) =
∑Kj

k=1 φjkN(µjk,Σjk), where φjk = p(tnjk =292

1|ynj = 1) is the mixing weight of subclass k within class j, and tnj =293

(tnj1, . . . , tnjKj
) is a latent vector, such that tnjk ∈ {0, 1} indicating the294

membership of a subclass belonging to a class, and
∑Kj

k=1 tnjk = 1.295

Given that the real label is also unknown and the instances were generated296

from J different classes, we have the distribution of features x as a mixture of297

J different mixtures fj(x) of Gaussian distributions: p(xn) =
∑J

j=1 πjfj(xn),298

where πj = p(ynj = 1) is the mixing weight of class j in the whole dataset,299

and yn = (yn1, . . . , ynJ) is a latent variable vector of real class label such that300

ynj ∈ {0, 1} and
∑J

j=1 ynj = 1.301

Moreover, as before, for each class j, the supervisor’s assessment w follows302

a univariate Gaussian distribution N(∆j,Ωj).303

The notation for the generalisation-4 can be summarised as304

• set of features X = {xn}, for n = 1, . . . , N ;305

• set of the supervisor’s assessments W = {wn}, for n = 1, . . . , N ;306

• set of the latent class labels Y = {yn}, for n = 1, . . . , N ;307

• set of the latent subclass labels T = {tnjk}, for n = 1, . . . , N , j =308

1, . . . , J , k = 1, . . . , Kj};309

• set of the class mixing weights Π = {πj}, for j = 1, . . . , J ;310

• set of the subclass mixing weights Φ = {φjk}, for j = 1, . . . , J , k =311

1, . . . , Kj;312
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• set of the subclass means U = {µjk}, for j = 1, . . . , J , k = 1, . . . , Kj;313

• set of the subclass covariances Σ = {Σjk}, for j = 1, . . . , J , k =314

1, . . . , Kj;315

• set of the assessment means ∆ = {∆j}, for j = 1, . . . , J ; and316

• set of the assessment covariances Ω = {Ωj}, for j = 1, . . . , J .317

We also define X = {X,W}, T = {Y, T}, and θ = {Π,Φ, U,Σ,∆,Ω}.318

The complete-data likelihood becomes319

p(X , T |θ) =
N∏
n=1

J∏
j=1

Kj∏
k=1

ynjtnjk[πjφjkN(xn|µjk,Σjk)N(wn|∆j,Ωj)],

and the marginal likelihood of the features becomes320

p(X ) =
N∏
n=1

J∑
j=1

πjN(wn|∆j,Ωj)

Kj∑
k=1

φjkN(xn|µjk,Σjk)

 .

321

2.4.2. EM algorithm of generalisation-4322

The EM algorithm to fit the model can be derived as follows.323

E-step. In the E-step we can update distribution of latent variables by set-324

ting qnew(T ) = p(T |X , θold). We can update the class responsibilities by325

setting γ(ynj) = p(ynj = 1|X , θold), and the subclass responsibilities by set-326

ting r(tnjk) = p(tnjk = 1|X , θold), which lead to327

γ(ynj) =

∑Kj

k=1 πjφjkN(xn|µjk,Σjk)N(wn|∆j,Ωj)∑J
j=1

∑Kj

k=1 πjφjkN(xn|µjk,Σjk)N(wn|∆j,Ωj)

and328

r(tnjk) =
πjφjkN(xn|µjk,Σjk)N(wn|∆j,Ωj)∑J

j=1

∑Kj

k=1 πjφjkN(xn|µjk,Σjk)N(wn|∆j,Ωj)
.

329
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M-step. In the M-step, we can update θ by θnew = arg maxθ
∑
T q

new(T ) log p(T ,X|θ).330

It follows that331

πnewj =

N∑
n=1

γ(ynj)

N
, φnewjk =

N∑
n=1

r(tnjk)

N∑
n=1

γ(ynj)

, µnewjk =

N∑
n=1

r(tnjk)xn

N∑
n=1

r(tnjk)

,

332

∆new
j =

N∑
n=1

γ(ynj)wn

N∑
n=1

γ(ynj)

,Σnew
jk =

N∑
n=1

r(tnjk)(xn − µjk)(xn − µjk)T

N∑
n=1

r(tnjk)

,

333

Ωnew
j =

N∑
n=1

γ(ynj)(wn −∆j)(wn −∆j)
T

N∑
n=1

γ(ynj)

.

2.4.3. Illustrative example for generalisation-4334

Figure 5(a) and Figure 5(b) illustrate an example of generalisation-4 for335

two classes, Class-A with a mixture of two Gaussian subclasses while Class-336

B with a mixture of three Gaussian subclasses. In this case Class-A and337

Class-B are difficult to be modelled well by a single Gaussian distribution, if338

the original Titterington’s model is adopted. Our generalisation-4, however,339

can handle such a complicated dataset, as shown in Figure 5(a). Moreover,340

comparing Figure 5(a) and Figure 5(b), we can also observe that the data341

became more separable when the assessment information is added to the342

model: in Figure 5(b) there is a large overlap between the two classes when343

only the feature is used while in Figure 5(a) the two groups of points became344

separable when the feature and assessment are jointly modelled.345
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Figure 5: (a) Joint distributions of feature and assessment for two classes with subclasses:

Class-A with two subclasses (red); Class-B with three subclasses (blue). Dashed con-

tour plots were estimated by Titterington’s original stochastic supervision models. Solid

contour plots were estimated by the generalisation-4. Each contour is labelled by its cor-

responding density. (b) Distributions of feature for two classes with subclasses: Class-A

with two subclasses (red); Class-B with three subclasses (blue).22



3. Real-data experiments346

In stochastic supervision, as no deterministic labels were available to347

training, we cannot compare its classification performance to supervised348

learning methods such as linear discriminant analysis and support vector349

machines; on the other hand, it would also be unfairly to favour stochastic350

supervision if we evaluate it with unsupervised clustering methods such as351

k-means, given the latter does not even provide any assessment information.352

Hence we only compare our generalisations with other stochastic supervisors353

like Titterington’s model, the comparison with which has been demonstrated354

in the previous sections with simulated data, and in the following experiments355

with real-world data.356

In our experiments, the generalisation-1 and the generalisation-2 are not357

evaluated in the real-data experiments because their asymmetric and multi-358

class settings are also covered by the generalisation-3 and the generalisation-359

4.360

3.1. Real-world datasets361

We use three famous real-world datasets in our experiments: the MNIST362

dataset [30] is used to evaluate the effectiveness of the generalisation-3, the363

CIFAR-10 dataset [31] is used to evaluate that of the generalisation-4 and364

the EMNIST dataset [32] is used to evaluate both generalisations.365

In MNIST, we aim to classify handwritten digits 3 and 5, which are hard366

to distinguish. The assessment and features show strong linear relationship367

in these two classes, as shown in Table 1. In CIFAR-10, we divide the whole368

dataset into two large classes: the animal class (which includes bird, cat, deer,369
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dog, frog and horse) and the transportation class (which includes airplane,370

automobile, ship and truck). This setting is reasonable for the generalisation-371

4, because the two large classes contain several subclasses. In EMNIST, we372

aim to classify three large classes: the digits class, the capital letters class373

and the lower cases class. These three classes have 47 subclasses, including 10374

digits subclasses, 26 capital letters subclasses and 11 lowercases subclasses.375

The linear relationship between the assessment and features are shown in376

Table 1. Thus the EMNIST data is a mixture of feature-dependent assess-377

ments and multi-modal classes and is suitable to test both generalisations 3378

and 4.379

Table 1: Adjusted R2 when regressing the assessment against the features for the

MNIST and EMNIST datasets.

Dataset
MNIST EMNIST

Digit 5 Digit 3 Capital Letters Digits Lowercases

Adjusted R2 0.9801 0.9585 0.5585 0.6021 0.6050

380

3.2. Experiment settings381

3.2.1. Assessments generation382

Considering that stochastic supervision has assessments only and thus is383

not a supervised learning model, during the model training we need to ignore384

the labelling information and before the training we need to ‘generate’ the385

supervisor’s assessments.386

For the MNIST data, to generate such assessments we use logistic regres-387

sion to generate the probabilities that an instance belongs to two classes as388
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appropriate assessments. Note that the dependency between features and389

assessments in the generalisation-3 is satisfied when such an approach is390

adopted to generate assessments, because the posterior probabilities gener-391

ated are dependent on the features. For the EMNIST data with more than392

two classes, we use Naive Bayes to generate the posterior probabilities as393

assessments.394

Based on the assessments only, a simple intuitive approach to inferring y395

is to directly compare different elements of assessments. For example, for a396

two-class problem, let y = 1 if w > 0 and y = 0 otherwise; and for a J-class397

problem, set y = arg maxj∈{1,...,J} zj (or y = arg maxj∈{1,...,J−1}wj if at least398

one wj > 0, and y = J otherwise).399

3.2.2. Parameters initialisation400

Note that in the following initialisation settings, the samples that belong401

to class j are determined by assessments rather than true labels, because we402

cannot use true-label information for stochastic supervision methods.403

In Titterington’s model, the EM algorithm needs initial values of param-404

eters πj, µj, Σ, ∆ and Ω. Here we use the sample estimates to initialise these405

parameters: πj is the fraction of the estimated number of samples in class j406

over the total number of samples N , µj is the sample mean of the samples,407

∆ is the sample mean of the assessments of class 1 and −∆ for class 2, and Σ408

and Ω are the pooled covariance matrices of the features and the assessments409

over all J classes, respectively.410

In the generalisation-3, αj and βj are obtained from the linear regression411

of the samples in the jth class against their associated w. The EM algorithm412

of this model needs initial values of πj, µj, Σj and Ωj. We use the same ini-413
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tialisation settings of πj and µj as those for Titterington’s model. Similarly,414

Σj and Ωj are initialised as the sample covariances of the features and the415

assessments of class j, respectively.416

In the generalisation-4, for CIFAR-10 there are 6 subclasses for animal417

and 4 for transportation and for EMNIST there are 10 subclasses for digits,418

26 for capital letters and 11 for lowercases. The EM algorithm of this model419

needs initial values of the following parameters: πj, φjk µjk, Σjk, ∆j and Ωj.420

The initialisation of πj and Ωj is the same as that for the generalisation-3;421

∆j is initialised as the sample mean of the assessments of samples in class j.422

To initialise the subclass mean µjk, covariance matrix Σjk and mixing weight423

φjk, we apply k-means to class j: µjk and Σjk are set to the subclass means424

and covariance matrices estimated by k-means on class j, respectively, and425

φjk is set to the fraction of the number of samples in subclass k of class j426

over the total number of samples in class j.427

3.2.3. Validation settings428

We divide each dataset into a validation set, a training set and a test set429

with no overlapping. The validation set is used to train a logistic regression430

model or a Naive Bayes model, in order to generate assessments for the train-431

ing set and the test set, which are used to train and evaluate the stochastic432

supervision models, respectively.433

In the MNIST dataset, we randomly select 2500 samples from each class434

to generate the validation set. The training set is generated by randomly435

selecting 2500 samples from the rest of each class. The rest samples form436

the test set. For each experiment, we use all the training samples to train437

the model; 20 tests are performed to evaluate the model, with each test438
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containing 1000 samples randomly selected from the test set; and thus 20439

classification accuracies are recorded for the tests.440

In the CIFAR-10 dataset, we use the training-test split provided by441

Krizhevsky and Hinton [31], where the training set contains 50000 images442

with 30000 for the animal class and 20000 for the transportation class. In or-443

der to construct the validation set, we further divide the 50000 images in the444

training set into two datasets: a validation set of 25000 images and a train-445

ing set of 25000 images. The test set contains 10000 images with 6000 for446

the animal class and 4000 for the transportation class. For each experiment,447

we use all the training images to train the model and randomly select 1000448

images from the test set to evaluate the model. We repeat the procedure 20449

times and record 20 classification accuracies. All images are transformed to450

greyscale in the experiments.451

In the EMNIST dataset, we divide the 3000 images from each subclass to452

a training set with 1200 images, a validation set with 1200 images and a test453

set with 600 images. For each experiment, we use all 1200×47 training images454

to train the model and randomly select 1000 images from the whole test set455

with 600× 47 images to test. We repeat the procedure 20 times and record456

20 classification accuracies. The pixel values of the margin part of images in457

EMNIST are zeros, which lead to singular covariance matrices. Thus we add458

small white noises to these images to make the covariance matrices invertible.459

Since Titterington’s model is used for binary classification and we have three460

classes here, the one-versus-all strategy [33] is applied here for Titterington’s461

model.462
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3.3. Results463

Classification accuracies on the 20 test sets of MNIST, CIFAR-10 and EM-464

NIST are boxplotted in Figure 6(a), Figure 6(b) and Figure 6(c), respectively.465

It is clear that the generalisation-3 and the generalisation-4 have higher boxes466

than Titterington’s model in Figure 6(a) and Figure 6(b). This indicates467

the effectiveness of our generalisations when the data satisfy the associated468

conditions: in our experiments, the MNIST dataset satisfies the feature-469

assessment dependency condition in the generalisation-3 and the CIFAR-10470

dataset satisfies the multi-modality condition in the generalisation-4.471

For the EMNIST data, the generalisation-3 and generalisation-4 produce472

higher boxes than Titterington’s model and the generalisation-4 has the best473

classification performance. This also shows the effectiveness of our models.474

Note that here the generalisation-4 has much better classification perfor-475

mance than the generalisation-3. One possible reason is that the multi-modal476

classes have more effect on the final results than the feature-dependent as-477

sessment, since the subclasses in each large class are clearly defined while478

the linear relationship between the assessment and features is not strong, as479

shown in Table 1. We also note that there is a large space for improvement480

in classification accuracy of EMNIST. By developing a new method that can481

deal with feature-dependent assessments and multi-modal classes together,482

we may further improve the classification performance on complex data such483

as EMNIST. We list this as our future work in the conclusions section.484
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Figure 6: (a) Classification accuracies of Titterington’s model and the generalisation-3

on 20 test sets of MNIST. (b) Classification accuracies of Titterington’s model and the

generalisation-4 on 20 test sets of CIFAR-10. (c) Classification accuracies of Titterington’s

model, generalisation-3 and generalisation-4 on 20 test sets of EMNIST.
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4. Conclusions485

In this paper, we extended stochastic supervision models in four as-486

pects, generalising them to asymmetric assessments, multiple classes, feature-487

dependent assessments and multi-modal classes, respectively, to enhance488

their applicability. The experiments on both simulated data and real-world489

data demonstrate the effectiveness of our generalisations. In the future, to490

enhance further our models’ flexibility and generality, we shall explore non-491

linear modelling for the relationship between assessments and features, as492

well as more sophisticated techniques for multi-modality modelling. More-493

over, instead of using a fixed threshold of w to infer y, we propose to learn494

this threshold from data. Since we use the transformation wi = log zi/zJ495

to transform a softmax vector to a (J − 1) dimensional normal distributed496

random variable, learning the threshold of w is equivalent to giving different497

weights to different classes. By utilising the learned threshold, our model498

can adapt to more real-world scenarios where different classes have different499

importance. In addition, we propose to develop new algorithms that can500

provide superior classification performances under more complex situations,501

e.g. with both feature-dependent assessment and multi-modal classes.502
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