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ABSTRACT, Historically most evolutionary models have considered infinite pop-
ulations with no structure. Recently more realistic evolutionary models have
been developed using evolutionary graph theory, which considered the evolu-
tion of structured populations. The structures invelved in these populations
are typically fixed, however, and real populations change their séructure over
both jong and short sime pericds. In this paper we consider the dynamics
of such a population structure. The timescales involved are sufficiently short
that no individuals are born or die, but the links between individuals are in a
constant state of flux, being actively governed by the preferences of the mem-
bers of the population. The process is modelled using a Markov chain over
the possible structures. We find that under the specified process the popula-
tion evolves to a closed class of structures, and we show a method to find the
stationary distribusion on this class. We also consider some special cases of
interest.

Keywords: degree-preferences, graphic sequences, Markov process, reversible pro-
cess, social networks, stationary distribution.

1. INTRODUCTION

1.1. Modelling biclogical populations. Traditional evolutionary models gener-
ally consider an infinite poputation of individuals whick is well-mixed in the sense
that each pair of individuals is equally likely to interact. This includes the classical
game theoretical models of [13, 14, 15, 21, 23, 16, 17]. Whilst real populations are
of course finite, the assumption of infinite size is offen a reasonable one provided
that the population is of sufficiently large size. Such game-theoretical models are
concerned with what strategies can evolve and persist within the population. Ex-
cept at equilibrium values, some strategies have a fitness advantage over others,
and this dominates any random effects for a sufficiently large population,
1
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Nevertheless there are some important differences between finite and infinite popu-
lations, in particular if there is no such fitness advantage. The classical mathemat-
ical genetic models of [10] and [38] dealt with finite well-mixed populations with no
selective differences, and were concerned with the speed of the evolutionary process.
More recently evolutionary games have also been investigated in finite populations,
for example in [34]. The distinction between a small (relative to the size of the pop-
ulation) invading group which is effectively infinite and a single invading mutant
mesnt that some refinement of the classical concepts of game theory was required.

1.2. Evolution on graphs. Real populations, as well as being finite, are not ho-
mogeneous, but contain structure. Evolutionary processes have been extended to
structured populations e.g. [39, 18, 24, 5], in the case of genetic models where pop-
ulations consisted of a number of sub-populations and interactions between and
within poputations were different. Recently population structure has been incor-
porated in a more general manner with the use of graphs, starting with [20}. In
these models a population consists of N individuals Iy,...,In. There is a set of
indicators {@y : 4,5 € {1,2,...N}}, and if z;; = 1 then individual i influences
individual j in some prescribed manner. We can represent the system by a graph
G = (V, X), where the set V of vertices correspond to the individuals and the edges
correspond to the interactions, there being an edge joining ¢ to j if, and only if,
zs; = 1. In the case where zy; = zy for all ¢ and § we will have one or no edge
between ¢ and j, and the graph is undirected. If we also have @y = 0 for all ¢, then
the graph is said to be simple. Throughout the paper we shall assume that our
graphs are simple.

In these models the population usually consists of two types of individuals (labelled
A and B, or resident and mutant) and the state of the population, described by
the set of mutant individuals, say, evolves according $o an evolutionary dynamics
and can be represented as a discrete time Markov chain, The question of whether
a mutant placed at a random vertex can invade is addressed, and it turns out that
the population structure, i.e. the graph, can have a significant effect on the fixation
probability, the probability that the mutant will eventually completely replace the
resident population [2, 3].

In this paper we shall consider networks of individuals represented, as described
above, by a simple graph. As described below, the population itself will not evolve,
but the connections between individuals will. Of course for real popuiations both
aspects change, see for example [28]. The emphasis here, in similar spirit to'some of
the above models, is to fix one aspect (the population) and consider simple models
of the other which can be analysed.

Such networks arise naturally in many contexts and there has recently been an
explosion of interest in networks in biology, as well as in economics and sociology.
In economics we might consider companies which trade with each other and in
sociology individuals who are friends or colleagues. In the biological context there
are many possible ways in which such a structure might arise. The spatial positions
of individuals will naturally define interactions through proximity, whether this be
for plants in a fixed position or for territorial animals. The use of networks in
biology is, by no means new. For example food webs, in which the interaction of
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predators and prey are illustrated, go back at least to the seminal work of [9]. In
social animals there will be dominance interactions and also mutuality ones which
can be represented using the above graph idea. Primate social structures can be
particularly complex and can influence key behavioural features such as the level of
cooperation, e.g. [85, 36].. The analysis of observed animal social networks has been
discussed in detail in [8] where various examples can been found, while aspects of
the modelling of networks is explored in [25].

1.3. Bvolution of graphs. The models that we have described so far have popu-
lation structure, but it is a fixed one. In real populations over time, and especially
as individuals die and are born, the links between individuals and the number of
individuals changes, so any graph of contacts will change over time. This was in-
vesigated in [31, 32, 33]. They considered a population and its interactions at time
i represented by the simple graph Gy = {V;, X;}. In their basic model the popula-
tions at time £+ 1 had graph Gy where Viy; consisted of all of the individuals in ¥,
together with one new individual {offspring) for each of these individuals. The set
of edges Fy.1 contained all of the edges of 5, plus additional new edges. Specifically
if (4,7) € V; and ¢* and j* were the offspring of ¢ and j respectively, then there were
eight models generated by the inclusion/exclusion of the edges (i*, 7*), (¢*, 7)U(4, 5*)
and (1,4*) U (7,7*). The underlying motivation was that the relationships between
individuals in a social population are often, as leagt partially, inherited, e.g. dom-
inance in baboons (see [1]). The addition or the removal of vertices through age
and/or vertex degree (number of edges) was also incorporated.

1.4. The effect of behaviour on graph structure. The above models consider
change over a long period of time. Many individuals are born and die and the
entire composition of the population changes many times. However, populations
can also change in important ways in short periods of time. The basic idea behind
our modelling is that within a population animals may show varying degrees of
willingness or desire to interact with others, because there are both benefits and
penalties attached o such interaction. These benefits and penalties may well vary
between individuals, and so we expect, and indeed observe, that individuals have
differing behaviours with respect to the establishment and severance of links with
others. ‘

This phenomenon has been labelled “sociability” and investigated in various species
across a wide evolutionary range. In non-human primates such differences have
been found to be stable across time, see for example [6], and references therein. In
bottlenose dolphing long term alliances are made between males, see e.g. [37], but
also relatively labile alliances are often made e.g. [7]. In sheep it was demonstrated
that different individuals differed in respect of the closeness they maintained to
other members of the flock, [30]. Thus as a secondary effect the number of nearest
neighbours to whom an individual was linked would vary. Thus a sheep who had
more than enough nearest neighbours would happily move away, and in so doing
reduce the number of nearest neighbours, and a sheep who had too few such “links”
would tend o move towards others to and in so doing establish additional links.
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Epidemics can be modelled on graphs where individuals move between a number
of states, containing at least two types, susceptibles and infectives. Individuals can
catch the disease and recover, and in such models there are usually no changes in
the population itself. Often the process occurs on a fixed graph and models are
similar to the evolutionary processes from [20] etc. However, recent models [19, 11]
have incorporated behavioural changes as a result of epidemics (e.g. knowledge
that the disease is prevalent makes individuals reduce their rate of contact) which
can have a significant effect upon whether an epidemic spreads.

In all of these examples we see a set of animals with temporary links between
various individuals. Of course the probability of a link existing between a pair of
individuals will often be affected by the relatedness of those individuals, by their
genders and by their position in any dominance hierarchy. There are also likely to
spatial components. In some of the examples e.g. in the bottlenose dolphin case the
links are reciprocal whereas in others they might be considered to be initiated, or
broken, by the action of one of the individuals, Similarly the absence of a connection
may benefit one but not the other (e.g. a female and a poor quality male}. This
falls into the theory of biological markets and partner choice, see (26, 271,

In this paper we do not attempt to model all of these complexities but instead
concentrate on a model which examinés only the network of interactions. Thus
the individuals (vertices) in our networks are distinguishable only by the number
of links they would like to form with others in the population, and they do not
differentiate in any way between those other individuals. They are indifferent to
who they link with. We consider such a dynamic process on a short timescale. We
follow a population where individuals have a desired number (or range) of links
to other individuals and the process evolves through each trying to achieve its de-
sired number. We do not address the issue of how these desired values arose in the
first place, they may well be secondary effects of intrinsic differences between the
individuals which might be subject to natural selection. Of course that selective
pressure will be affected to some extent by the outcomes resulting from the linking.
Bach individual will only make a change which improves its aumber of links, but
since all links involve two individuals, the actions of others can make an individual’s
situation worse, though in the transient phase it may improve it, or leave it unaf-
fected. In [4] we considered the possible transitions under this process and proved
some fundamental results. Here we discuss the Markov chain which results when a
probability is associated with the selection of the next individual who attempts to
improve their number of links. We are particulasly interested in situations where
the wishes of the members of the population are incompatible, meaning that the
links between the population members are continually changing. We show that
the Markov chain associated with what we term the minimal set (involving states
where no mutually beneficial addition or removal of a link can occur) is reversible,
and so there is always a unique stationary distribution.

2. THE GENERAL MODEL

2.1. The graph of the population and graphic deviations. We have some set
{the population) V = {1,2,...,n} and we consider simple graphs G = (V, X) where
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X describes the links (alternatively edges) between pairs of individuals. Whilst the
vertices are fixed, the edges evolve, We will consider a random process on the edge
set X . Thus the state of the process at time ¢ is the edge set X¢. Since the vertices
are fixed there is a one to one correspondence between the edge set and the graph,
and we will often refer to Xy as the graph.

At any given time ¢ individual 1 will have a number of edges ¢;; to other individuals.
We refer to the vector ey = (e1,4, €281 - - > €n,t) 25 the seguence ey

At each time point an individual is chosen and is allowed to add or remove an edge
to one other individual in the population. Each vertex has an accepiable range
[mg, M} of edges to other vertices, where 0 <y M; <n-—1.

If i is selected, and it has & number of edges &; < my (we shall call such a vertex a
Joiner) then it forms a new edge, connecting to one of the other vertices it s not
connected to at random. If e; > M; (we call this a Breaker) then it breaks one of
its edges at random. Otherwise, it neither breaks nor creates an edge {we call this
a Neutral vertex).

The distance between two sequences u and v is 2{u, v) = 3, , fui — vil.
The deviation of individual /vertex 4 is ¢; = max{(m; — e:), (e; — M), 0}.

The deviation of the above graph X is deflned as the sum of the vertex deviations,
'}Z‘t = Ziml,n (418

Clearly there will be a minimum value of the deviation for any given collection of
the ranges jm;, M}, and this is termed the score. There is a set of sequences, and
a corresponding set of graphs, which achieve this minimum, and these are termed
J(min) and K (min) respectively. In [4] we proved that there is always a path of al-
lowable mioves enabling the process to reach a member of the minimal set, K (min).
The set of sequences (graphs) with minimum deviation will of course depend upon
the values of the m; and M;, bul we shall just use J(min)(K (min)} for notational
convenience. Further we proved that, since our process could never increase the
deviation of the graph, once J(min)/K (min) is reached, that set cannot be left.

2.2. A random process. In [4] we investigated the possible paths and end states
of the process described above. In this paper we consider the random process
describing the changing population graph generated when individuals are allowed
(in a specific manner) to add and remove edges.

At successive time points, a vertex is chosen at random, with i being selected with
probability p; > 0, and it changes its. number of links according to the process
defined above. We thus have a random process which is a homogeneous Markov
chain, since the probability of each transition only depends upon the most recent
state and not the history of the process.

We thus wish to consider the Markov chain with transitions defined as follows:
1) For any x* which differs from x in a single entry, where 24; = 0,2j; = 1 for some



6 M. BROOM AND C. CANNINGS

&
. 1 . 1 . o .
pt’ﬂ-—l—-ei +p.’? n—1—e; e < My, €y < 'nlj
)
* p‘l S €,<m“ej,_>_m3
P(Xt%"lxxfxtﬂx)z '” 1~ei N " .
J rpmetieg €5 ~ 14, €y < n'i.j

0 € = My, &5 = T4,

2) For any x* which differs by x in a single entry, where z;; = 1,2]; = 0 for some
b

pigl: +pj—~3~_ 2y > My, 85 > My

N ;- e; > My, 5 < My

P(Xg+1 = X ¥Xt e X) e P e{ B e 7

pj"é"; eigmi,cj > My

0 e S My, e S Mmy.

3) Similarly for any other x*, differing from x in fwo or more entries,

P(Xt+1 = x*iXt == X) = 0,

The probability of the sequence being unchanged is simply 1 minus the sum of the
above probabilities.

2.3. The reversibility of the process. We now show that once the population
reaches J(min) then the process is a reversible one. This will later allow us to use
the detailed balance conditions to find the unique stationary distribution.

Theorem 1 The above described Markov process, when restricted to J{min), is
reversible,

Proof

We apply Kolmogorov's criterion. A Markov chain is reversible if, and only if, for ev-
ery finite sequence of states (G1,Gg, .oone , G = G, the probability of this sequence
cccurring is equal to the probability of the reverse sequence G = G, G-1y -ovens , G

Consider the system when it has reached K(min), and some sequence of states
Gy, Gy , G = Gy, All transitions involve one element ;; changing from 0 to
1 or vice versa. Since the process has reached K{man), for any pair of vertices i
and 7 without an edge, at most one can be & Joiner, since otherwise it would be
possible to reduce the score further. Similarly, for any pair of vertices with an edge,
at most one can be a Breaker. The probability of any transition which involves the
move = 0 <+ 1 (Joiner i selected and forming a link with j) is

bDi
n—1—e;
and the probability of any transition which involves the move zj; = 1 — 0 {Breaker
j selected and bresking a link with ) is
P
3] '
Suppose that in the sequence of changes in Gy, Ga, . on ,Gr = Gy xy changes
from 0 to 1 vi; times {and so it must change from 1 to 0 vy times also), then the
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probability of the whole sequence occurring is

Top ik 1 5 25 1
2ok Vik e Yk
H S e
gp El n1—e) g ()

where the elements e;{I} are the collection of the different numbers of edges con-
nected to j prior to all the increases in that number, and n — 1 — e;(l) are the
collection of the different nurmbers of edges absent from 1 prior to all the increases
in this number. '

It is clear that when reversing the sequence through the states GG vertex ¢ must
be selected to form an edge the same number of times as in the original sequence,
and must be selected to break an edge the same number of $iimes as in the original
sequence, since z; increases from 0 to 1 the same nwnber of times as it decreases
from 1 to 0 in the original sequence, which is the same number of increases from 0
to 1 in the reverse sequence.

1t is also clear that following the e;{I}s in the original sequence, every change from
e; t0 e; -+ 1 must have a corresponding change from e; + 1 to e;, which is a change
from e; to e; + 1 in the reverse sequence (and similarly for the n -1~ e;{1) terms).

Hence the probability in the reverse direction is identical to that in the original
sequence, and so the process is reversible.
o

“In what follows we will not attempt to be systematic in finding all of the results that
we can in fullest generality, bub will give more restrictive cases of specific interest
and show some important results at each stage. A more systematic analysis will
be left for later work. We start by resiricting each individual to a unique farget,
before in Section 3 looking at a specific class of target sets.

2.4. A unique target. It may be that m; = My = a4, in which case we call a; the
target of ¢, and the sequence a = (a1, ag, ..., an) the tazget sequence.

For some target sequences it is possible for all of the individuals in the population
o have precisely the required number ol edges, and so if this population state is
reached, no individual will want to change and the process that we will describe
will come to an end. If this is the case, the sequence is called graphic (see e.g. [12]).
Often this is not the case, however. The score of & sequence that we introduced
in Section 2.1 is here the distance of the nearest graphic sequence to a specific
target sequence. We investigated the score for certain classes of target sequence,
and properties of this set of minimal graphs.

We denote the set of graphic sequences by H.
The score of a is s(a) = min.epm z{a, u).
The minimal sel of a is J(a) = {u € H|z(u, a) = s{a)}.

The set of graphs which yield a minimal score (and so have sequence in J(a)} is
defined as K{a).
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Number | 0-3 0-4 1-3 1-4 | Sequence | Probability
1 N Y Y Y 43221 177
2 Y ¥ N Y 43212 1/7
3 N N Y Y 33220 1/7
4 N Y Y N 3321 1/14
5 N ¥ N Y 42211 /7
6 Y N N Y 33211 C1/14
7 N N Y N 23210 1/7
8 N N N Y 32210 1/7

TABLE 1. The steady state probability distribution over the eight
minimal score states in the arithmelic case with n = 5.

Following the random process previously defined, there is a path from any sequence
to a member of the set of sequences J(a) which has positive probability of being
followed, and so J{a) is an absorbing set, as is the corresponding set of graphs
K (a). Thus consideration of the process eventually comes down to a consideration
of the process within the set K(a). We note that it was shown in [4] that if the
target sequence is not graphic, then the set J{a) is connected {of course if the
target sequence is graphic, then [J(a)| = 1, so J{a) is connected by default).

Corollary 1 For the case with a unique non-graphic target a, there is a unique
stationary distribution over the sets J{a) and K(a} which can be found using the
detailed balance conditions,

This result follows immediately from the fact that J(a) and K(a) are connected,
and the process is reversible over this set. :

We shall now look at an example. Consider the target sequence a = (n— 1,n —
2,...,1,0), which we shall refer to as the arithmetic sequence. In a subseguent
paper we will investigate this target sequence more generally, but for now we shali
consider the case with n = 5 only. It is easy to see that, denoting each vertex by its
target score, all of the minimal score graphs have the edges 0-1, 0-2 and 1-2 broken
and the edges 2-3, 2-4 and 3-4 formed. Four of the twelve remaining combinations
do not lead to minimal score graphs, leading to 8 distinct graphs in total. We
show these in Table 1, together with their sequence and their probability in the
stationary distribution. '

The stationary distribution is found from the transition matrix M, which listing
the graphs in the order from Table 1, is given by

10 % M =

foe T T ww TS S I IR e )
i s T o B i e oo B0+
—— OO O OB
o= OO oo O
| e B T o> S - R o B e ]
—_ O ;o O OO
&0 DR e OO
oS e B N T N e T o e e
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3. THE ALL OR NOTHING SYSTEM

Tt will be of specific interest to consider graphs with a large score, as this will
generally lead to a set K (a) with a large number of elements, and a consequently
richer structure. Graphs of the form ny vertices with value my and np = n -
ny verbices with value mg < m; have large minimal scores for cerfain values of
my, me,n and ny. For sufficiently large my — myp, minimal scores are achieved
when we join all of the n; vertices to each other, and leave the ng broken from
each other. This leaves each of the n; with my -+ 1 — ny edges to find from links
to the ng. Whatever links are added between the two types, the score will then be
ny(my + 1 —ny) — namy if this is positive.

We now suppose that m; = n — 1 and my =0, so that for vertex ¢ either a; = 0
or a; = n — 1. Thus we have two types of individuals, which we will denote by J
and B. Js want to be linked to as many other individuals as possible, and will be
a Joiner unless they are connected to all other individuals, when they are Neutral
When chosen, they will pick a random individual that they are not connected to
and form a link to that individual. Bs want to be linked to as few individuals as
possible, and will be a Breaker unless they have no links, when they will be Neugral.
When, chosen, they will break one of their links at random. If a J is chosen which
is connected to every other individual, or a BB which is connected io no individuals,
then there is no change in the population.

Examples of systems which include two such types of individuals, one that likes high
connectivity and the other low connectivity, may inciude the following situations.
The interactions of parasites and their victims, where such interactions benefit
parasites and harm {but do not kill) the victims. Thus parasites are Js who want
to form as many links as possible, and victims are Bs who want to avoid all such
links. Alternatively an animal population in the breeding season may contain males
with territories which include females, and those without. Those without territories
want to maximise their interactions with the ferritories in the hope of gaining a
mating opportunity, territory owners want to expel those males. A non-biological
case may be advertisers on the web and the recipients of adverts, the advertisers
trying to maximise their links and the recipients to minimise them.

3.1. Dynamics within the minimal deviation set. We have assumed that p; >
G so that every individual has some positive probability of selection; thus after
sufficient time every J will be connected to every other, and no pair of Bs will be
connected, so that the only links that can form or be removed are those between
a J and & B, and the problem reduces to considering a bipartite graph, where the
score is always ming, since e.g. if there are no edges each of the ny Js would have
a deficit of ng.

The problem thus reduces to a Markov chain where all pairs of Js are linked, no
pair of Bs are linked, and so the states can be represented by an ni X ny matrix
A = (a;;) where ay = 1 if J; is connected to Bj, and ay = 0 otherwise. We see
an example of the states and transitions of such & Markov chain in Figure 2 later.

Further let ¢; be the number of Os in row ¢ of A, and s; be the number of Is in
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column j. Clearly
7y 1y
3=

Z‘L‘i -+ Z.Sj = 73419,
i1 e ‘
Let us denote the total number of 1s, the number of links, as [ = _J?f_:l 85.

We shail denote the set of Js by Sy and the set of Bs by Sp. Clearly |Ss| = nq,
|Sp| = ng and Sy U Sz ={1,2,...,n}.

Using Section 2.2 we see the following. If 4 has a;; = 1 for a given pair {1,7) and
A* is identical to A except that ay = 0, then the transition probability from A
to A* is p;/s; (clearly 5; > 1 here as ai; = 1).

Similarly, if 4 has ay; = 0 for a given pair (¢,7) and A¥ is identical to A except
that a;; = 1, then the transition probability from A to A¥ is py/t; {and again
t; > 1 here as ag; = 0).

Any transitions between matrices with more than one difference have zero proba-
bility.

There wiil be no change of state only when a) a J individual ¢ is picked which
is already joined to ail Bs so that the ith row of A contains only 1s, or b) & B
individual i is picked which has no edges so the ith column of A contains only Os.

3.9. The stationary distribution. As stated above, since the process is reversible
within J(a) and K(a), it satisfies the detailed balance conditions. This gives us
an easy way to find conditions for the unigue stationary distribution of the All or
Nothing system.

Theorem 2 .
For the All or Nothing system, the stationary distribution on J(e) is given by

52 {4t . §n2~ﬂi)
P(A) = HJ( 3!) Hz(t'b!) (H’&ES,] 7 ) P(0).

(nahm ﬁjesg ﬁ;j

Proaf :
We can use the detailed balance equations to find the relationship between the
probabiltities of being in states that differ by one entry. If A has az; = 1 for a
given pair (4,7) and A* is identical to A except that a;; = 0, then we obtain

P _ PATID | gy PA RIS

85 {t:+ 1) Pt +1)

Following any sequence from 0 the matrix with all zeros to A, we obtain
es, (55 Thies, P1°7°
Mjess i Llies, mal/ti!
which rearranges to the stated resuit,
1

P(A) = P(0).

We shall now suppose that all Js are equally likely to be selected, and the probability
that some J is selected is p, so that p; = p/ny for all Js. Similarly, all Bs are equally
likely to be selected, and so the probability that some B is selected s g = 1 —p,
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with ¢; = (1 — p)/ng for Bs, where we denote the selection probability of a B
as ¢; instead of p; for convenience. Thus if we are equally likely to select a J or
. a B, then p = 0.5 and if each individual is equally likely to be selected so that
p; = q; = 1/n = 1/{(ny +ng), then p = ny/(n1 + g ).

As before, if A has a;; = 1 for a given pair (4, 7) and A # i3 identical to 4 except
that a;; = 0, then the fransition probability from A to A* is q/s;ng. If A has
as; = O for a given pair (i,5) and A% is identical to A except that ay; = 1, then
the transition probability from A to A¥ is p/tiny.

Theorem 3
The stationary distribution on J{a) for the egual probability p; = p/na, ¢ = /N2
Al or Nothing system is given by

(1) p(ay = LG LG (?ﬁz)tp(o).

{ngl)m qny

Proof

Using the detailed balance equations again to find the relationship between the
probabiltities of being in states that differ by one entry, for A which has ay; = 1
for a given pair (i,7) and A* being identical to A except that a;; = 0, we obtain

_ PlA%)pnas;
.P(\A)W qnz(t«;+21} '

Following any sequence from & to A in the same way as in Theorem 2, we obtain
the stated result.
]

By sumining the above terms we can find P(0} to obtain the precise distzribution -
over the states. A problem is that there are 2" states and so this number quickly
becomes ungovernable.

3.3 The total number of edges and a problem of counting. We may be
interested in the long term distribusion of L, the number of is, rather than specific
states. Considering the matrix with all 1s (so yng in total), means that

{(na)™ (png\™™
2L = P S R P(L = B
P(L = ning) nyr \ g (L =10)

Note that finding the probability that L takes a particular value is still difficulf
in general to evaluate, as there are (”Tz) ways to have [ 1s, and many different
associated probabilities to add. A potential approach would be to consider the
possible values of s; and t;. For any given set of 5,5 and #;8, we need to:

1) find whether it is attainable (is there any matrix that gives this set?)

2) if it is attainable, how many matrices will give it. A lower bound is obtained as
follows.

Let ks{m) be the number of s; values that equal m, and k:(m) be the number of ¢;
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State 0 1 2 3 4 5 - 6 Mean
pe=().4 0.1047 0.2093 0.2442 0.2093  0.1395 0.0598 0.0233 | 2.372
p=(.5 0.0330 0.0089 0.1730 0.2225 0.2225 0.1668 0.0834 | 3.337
p=0.46517 | 0.0513 0.1338 0.2037 0.2278 0.1981 0.1292 .0562 | 3.000
TABLE 2. The steady state probability distribution over the values
of [, when ny = 2,ng = 3 for three values of p, representing cases
(i), {ii) and (iii) respectively..

values that equal m. Permuting rows and columns gives at least
71! g
Ey (0) ke ()1, . ky(mg) ks (O)ies (1)1 ks (mg)!
3) How many attainable combinations are there?

If we can answer 1) and 2), does this solve our problem for intermediate values of
nq and ng, or is the remaining number of combinations from 3) still too big?

3.4. Particular values of the J selection probability p. For a steady state
distribution, the overall probability of increase in L must be balanced by the prob-
ability of a decrease in L. Since all Js are equally likely to be selected, the prob-
ability of an increase is simply the probability that a J is selected multiplied by
the probability that the J is not already linked to all Bs i.e. the row associated
with it does not contain all 1s (we shall denote this probability by Pr). Similatly
the probability that a decrease occurs is the probability that a B is gelected muiti-
plied by the probability that its associated column does not contain ali 0s (we shall
denote this probability by FPg). Thus for a steady state we need

: pE|Pr] = qE[Pg]. ~
We shall consider three special cases. Each of the three cases is considered for
ny = 3,ng = 2 in Table 2,
Case (i) p = ny/{ny +ng), with equal probability for all individuals to be selected,
favours the type with the larger number, since p > ¢ if and only if iy > ng, as might
be expected. There is pressure to move towards all connected {none connected)
when n: > ng (ny < nz) until the probability of picking a row (column) which
cannot be used is sufficiently large to balance it.
Case (i) p = 0.5 favouwrs the type with the fewest number of individuals, since
even though B and Js are selected with equal probability, if there were exactly
half of the links formed, there is less chance of picking one of these which can then
not make/(break) a link for the type with the fewest number of individuals. Thus
the mean proportion of links will be slightly less {more) than one half if ny > ny
(ny < ng).
Case (iii) the value of p which gives an equal number of 1s and 0s on average.
Provided that 7y # ns, then this value will lie between the two values of p given
above, and we can find p for special cases computationally.
We note that for ny = na, cases {1)-(ili) are the same.

3.5. Equal selection probability for all individuals. We will now consider
case (i) above where each individual is selected with equal probability. We will
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L 0 1 3 3 i 5 8 7 "8
Prob | 0.0003 0.0013 0.0030 0.0085 0.0154 0.0245 0.035¢ 0.0463 0.0573
i ) 10 11 19 13 ia 15 16 7

Prob | 0.0673 0.0753 0.0810 0.0839 0.0839 0.0810 0.0753 0.0673 0.0573

L i8 19 20 21 22 23 24 25
Prob | 0.0463 0.0350 0.0245 ©.0154 00085 0.0039 0.0013 0.0003

TABLE 3. 1he steady state probabilily distribution over the values
of L in the ny = np = § case.

look at some special cases where we can evaluate an exact solution, an approximate
solution or at least say something about the form of the solution.

We note that in-this case there s a simple duality result. For & given set of edges for
ny Js and ny Bs, we can reverse the numbers of Js and Bs and replace every edge
with a non-edge and every non-edge with an edge, and the probability of obtaining
the new graph is identical to the probability of the original (this also works for
general p if we replace p by 1 - p, which automatically occurs in case (i)}. Thus
reversing n; and ng in the following yields identical results.

FIGURE 1 ABOUT HERE

Theorem. 4
When ny = 1, L has a truncated Poisson distribution {maximum value ns) with
parameter 1.

Proaof

In this case if there are [ columns containing a 1, then the row is chosen with
probability 1/(np + 1) and a column with a 1 entry is chosen with probability
[/(na +1). Thus we obtain

1 ! = Pk : = Bt
T 41 g -1

Pk

Thus py = po/l! which leads to the required truncated Poisson distribution.
0

Theorem 5
When ne >> n; the distribution of L is approximately Poisson {n).

Proof

In this case there is pressure to reduce the number of links and we can expect the
number to generally be small. For a small number of links k&, if any row is selected
it will be able to add a 1, so that the probability of an increase will be ny /(ry +ng).
Assuming that the small number of 1s are all in different columns {plausible for
large na), then the probability of a decrease is just kf(ny -+ n2) and so

7 l 3Pt
Pi-1 =P = pp R
7y -+ Ro 1 + Mg {

This gives us p; = n)pe/l!, which leads to the stated Poisson distribution.
O
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State ] 2000 1100 1010 1001 0200 0110 0101 0020 0011 c002
No. orig} 1 2 2 2 i 2 2 1 2 i
Prob | 2/17 2/17 2/17 2/17 1/34 2/17 2/17 1/34 2/17 2/17
TABLE 4. The steady state probability distribution over the states
in the 7 = ny = 2 cage. The states in row one are defined as (in
order) the number of Bs connected to; neither J, only Ji, only.
Ja, both Js. The entries in row 2 are the number of states in the
original notation that are equivalent to the corresponding new
form.

L 0 1 2 3 4
Prob | 2/17 4/17 5/17 4/17 2/17
TABLE 5. The steady state probability distribution over the values
of L in the n; = ny = 2 case.

For the case ny = ng, where shis number is large, there is some pressure away
from the extremes (the probability of going forward and back is equal if no rows
contain all 1s or columns all Os, but when the number of 1s is small or large, moves
towards the middle are increasingly likely). When the number of 1s is approximately
n?/2, the probability of increasing and decressing is exactly in balance. Thus the
distribution of X is approximately uniform in the region nf/2-K <l<ni/2+K
for some constant K. In fact calculations and simulations show that K is quite
small and this Hat region is thus narrow, and the probabilities tail off quickly. The
cage with ng = 7p = 5 is shown in Table 3 and Figure 1.

We finally briefly consider two of the simplest cases, starting with ny = 2,np = 2.

We can summarise any case with exactly two rows by four numbers: the number
of colummns with no 1s, the number with a 1 in row 1 only, the number with a 1 in
row 2 only, and the number with a 1 in both rows. Each of these will represent a
number of states in the original form. For the case with two columns there are 10
different states (7, allowing a swap between row 1 and row 2). The probabilities for
the states are shown in Table 4. Reducing just to considering L this gives Table 5.

FIGURE 2 ABOUT HERE

For the case with three columns, n; = 2,m2 = 3 ,there are 20 different states {13,
allowing & swap between row 1 and row 2). The possible transitions between the
states are shown in Figure 2. The probabilities for the states are given in Table G.
Reducing to just considering L this gives the p = 0.4 row from Table 2.

4. DISCUSSION

The modelling of finite populations with structure has become increasingly com-
mon, following [20]). In such models the members of the population are represented
by the vertices of the graph, and the links between them by the graph edges. Gen-
erally evolution happens on the graph, but the graph itself does not change (see
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Siate | BOO0 2100 3010 2001 1266 1110 ioi 1020 1011 1002
Prob | 18/172 18/172 18/172 12/172 9/172 12/172 12/172 9/172 12/172 6/172

Giate | 0300 0310 0201 0120 0111 0102 0080 0021 0012 0003
Prob | 3 /172 3/i72  6/172 /172 6/172 6/172  3/172 6/172 6/172 4/i72

TABLE 6. ©he steady state probability distribution over the states

_in the n; = 2,72 = 3 case. The states in row one are defined as
(in order) the number of By connected to; neither J, only Jy, only
Jz, both Js.

{31, 32, 33] for a model where a population and its graph evolves in & deterministic
way).

In this paper we have considered a population where the individuals themselves do
not change, but links between individuals change through time as a result of direct
actions by the population members, where each individual has a preferred total
number of links (a single number, or a range of allowable numbers). Transitions
follow a Markov chain on the set of edges of the graph, where a transition to a
new state occurs when an individual forms or breaks a link to another individual,
as it tries to achieve its preferred number of links. For any given graph there.
is an associated sequence which is the collection of the number of links for each
individual. Possible scenarios where this process is relevant are those of biclogical
partner selection [27, 26}, sociability {6, 7, 30, 37] and behavioural responses to
epidemics {19, 11}, as we have discussed in the Introduction.

As the population changes over time, it was proved in [4] that it gets ever closer to a
connected minimal set of sequences (using a distance measure called the deviation,
where the graph achieves minimal deviation), and so satisfies the conflicting prefer-
ences of the population members as much as possible. In some cases, all preferences
may be satisfied so that the number of edges in the graph is within the allowable
range for all individuals, and then the process stops. When all individuals have
a unique target, this occurs if the sequence of preferences is a graphical sequence,
and so can be attained by some graph.

We demonstrated that once the minimal set is reached, the Markov chain is re-
versible, and so that the detailed balance conditions apply. This then provided a
method for finding the stationary distribution for the case where there is a unique
target, both over the specific graphs and potentially the sequence of scores {but see
Section 3.3) within the population.

We considered a specific example, the “All or Nothing” system, where the popu-
Jation was split into two types, Js which want to maximise their number of links,
and Bs which want to minimise this number. We found an explicit form for the
stationary distribution for the general All or Nothing system, and also for some
special cases. One problem we encountered was that the total number of states
quickly becomes large, and so in practice it can still be difficult to explicitly write
the distribution of I, the total number of links (the probability of each graph can
be found, but there are too many that correspond to L to be added systematically}.
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We fnally considered some special cases of the All or Nothing system where we
could avoid the above problem by considering approximate results where either the
number of Be was pauch smaller that the number of Js, or vice versa, or finding
exact resulis when both numbers wele small.

There are a number of potential future developments. In this first paper we concen-
trated on introducing the random process and some basic results, and then moved
to look at the All or Nothing system. A more systematic investigation of the sys-
tem in its most general case still needs to be carried out, and similarly further
investigation of the unique target case in its most general form is needed.

Secondly, currently individuals break or form links to get closer to their ideal values,
but they make no choice in relation to which links are formed or broken. It may be
that some choices are better than others (e.g. jolning to another who is not averse to
the link may be better than to one who may subsequently break the link, especially
if there is some cost to the act of joining or breaking). Thus such choices could
be introduced. This could become particularly complicated, however, if individuals
had memories of the previous choices of others, and initially memoryless models
would be easiest to consider.

One way for some links to be preferable to others is if individuals prefer to be con-
nected to those also linked to their neighbours, so called “transitivity preferences”,
e.g. [22]. A friend of a friend may thus be more likely to be an individual’s friend
too than a random individual is, and in the extreme limit all connected individuals
would form non-overlapping cliques. We could incorporate this into our model by
having a target function that included not just the number of links of the individ-
ual, but also the iinks of connected individuals too (though it would be mportant
to consider what an individual would reasonably know about the connections of
those it is connected to).

A third possibility, is where only some of the possible links are allowed. Thus, we
may imagine a spatially distributed population and individuals may only be able
40 form links with their close neighbours, Thus a similar process to that described
in this paper woudl occur on a reduced edge set of allowable links. "This may help
with the problem of counting that we encountered in Section 3.3.

Ultimately, it will be of interest to introduce an evolving population into our model,
as in many of the models described in the Introduction. We can consider games
played across the network so that at any time point an individual plays a game
against all of its neighbours, as in standard evolutionary graph theory models.
Individuals would receive a payoff determined by (for example) the average of such
contests at that timepoint, and so given the distribution of different states on the
graph, we can evaluate the expected payoff of both Bs and Js in a system containing
ny Js and ng Bs. In any situation we can thus compare the fitnesses of both Js
and Bs, with the process evolving so that an individual is replaced by one of the
other type (because either individuals reproduce or change strategy according to
fitness).

As the composition of the population changes, the preferences of the individuals
also change, and so the dynamics of the network will alter. Thus there would be
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a co-evolutionary system where both the occupants of vertices and the edge set
of the graph evolve co-dependently (see [29, 28] for work in this area). What is
the Jong term distribution of Js and Bs? Can there be a number of equilibria?
If sophisticated strategies which base their likelihood of forming/breaking links
based upon previous games with the individuals concerned (e.g. prefer to connect
to cooperators in a Prisoner’s Dilemma) are allowed, then they will likely prevail.
There are many ways to make our model more reslistic (and more complicated),
and our priority will be to develop those which allow at least some analysis.
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