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Abstract

We provide general conditions under which a class of discrete-time volatility models

driven by the score of the conditional density converges in distribution to a stochastic

differential equation as the interval between observations goes to zero. We show that

the form of the diffusion limit depends on: (i) the link function, (ii) the conditional

second moment of the score, (iii) the normalization of the score. Interestingly, the

properties of the stochastic differential equation are strictly entangled with those of

the discrete-time counterpart. Score-driven models with fat-tailed densities lead to

continuous-time processes with finite volatility of volatility, as opposed to fat-tailed

models with a GARCH update, for which the volatility of volatility is explosive. We

examine in simulations the implications of such results on approximate estimation and

filtering of diffusion processes. An extension to models with a time-varying conditional

mean and to conditional covariance models is also developed.
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1 Introduction

Volatility modeling and forecasting is a topic of prominent interest in theoretical and applied

finance. Since the seminal works of Engle (1982) and Bollerslev (1986), GARCH-type models

have become very popular in the academic community and many extensions have been

proposed over the years. Recently, there was a growing interest in score-driven volatility

models, introduced by Creal et al. (2013) and Harvey (2013). Score-driven models provide

a general framework for volatility modeling based on the score of the conditional density.

This methodology has been proved to be optimal from an information theoretic criterion

(Blasques et al., 2015) and encompasses several existing models, like the GARCH model of

Bollerslev (1986) and the EGARCH model of Nelson (1991). In addition, it leads to new

models with a different update rule for volatility. Thanks to their generality, score-driven

models have been applied successfully in many different areas (see, among others, Creal et al.,

2011; Barunik et al., 2016; Harvey and Lange, 2017, 2018; Blasques et al., 2018). However,

nothing has been studied on the relation between the score-driven stochastic difference

equations and the continuous-time stochastic differential equations that are usually found

in the theoretical finance literature. This lack of knowledge is in sharp contrast with the

literature on GARCH models, for which the continuous-time limit is known since the seminal

work of Nelson (1990).

It is the purpose of the present paper to partially fill this gap. We provide a set of

general conditions for the weak convergence toward an Itô diffusion of a class of score-

driven volatility models based on scale family conditional densities. The latter include

the Student-t and the General Error distributions, which are commonly employed when

modeling volatility through score-driven models (see e.g. Creal et al., 2013; Harvey, 2013).

We show that the form of the coefficients characterizing the diffusion limit is determined by

the link function, the conditional second moment of the score, and the scaling quantity used

to normalize the score. Interestingly, it turns out that the properties of the diffusion limit

are strictly entangled with those of the corresponding discrete-time process. Compared to

a GARCH update, the score of a fat-tailed density is less responsive to large returns. This

different behavior is reflected into the diffusion limit process. In models with a GARCH

update, the volatility of volatility of the diffusion limit can diverge as the density becomes

more and more fat-tailed. In contrast, in score-driven models, the volatility of volatility

of the diffusion limit remains finite, even for extremely fat-tailed densities. Similar results

are obtained when comparing score-driven models with an exponential link function to the

EGARCH model of Nelson (1991).

The conditions guaranteeing the weak converge of score-driven volatility models to dif-

fusions are easy to verify in practice, since they are related to the existence and finiteness of

the moments of the score and of the conditional density up to a certain order. Furthermore,

we need conditions guaranteeing the existence and uniqueness of the solution of the limiting
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stochastic differential equation. We show that these conditions are satisfied for the class of

score-driven models based on scale-family conditional densities. Our results can be regarded

as a generalization of the well-known diffusion limit of Nelson (1990). In the case of the

normal density, we exactly recover Nelson’s limit. For non-normal densities, we obtain the

limiting stochastic differential equation of a class of volatility models characterized by a

different update rule. Extension of our results to models with a time-varying conditional

mean and to conditional covariance models is also provided.

The likelihood of discrete-time observations generated by a continuous-time process is

rarely available in closed form. Common techniques employed for parameter estimation of

diffusion models include simulation-based methods (Gourieroux et al., 1993; Gallant and

Tauchen, 1996), generalized method of moments (Hansen and Scheinkman, 1995; Duffie

and Glynn, 2004), asymptotic expansions of the transition density (Ait-Sahalia, 2002; Ait-

Sahalia and Yu, 2006). Similarly, the estimation of volatility in continuous-time models is a

non-linear, infinite dimensional filtering problem which often requires numerical integration

(see e.g. Kitagawa, 1987). The result of Nelson (1990) suggests that discrete-time GARCH

models can be regarded as diffusion approximations. This is the main idea of “Quasi Ap-

proximate Maximum Likelihood” (QAML) (Engle and Lee, 1996; Barone-Adesi et al., 2005;

Fornari and Mele, 2006; Stentoft, 2011), which recovers approximate continuous-time pa-

rameters from the estimated discrete-time parameters, and of misspecified GARCH filters,

whose asymptotic optimality has been studied by Nelson (1992), Nelson and Foster (1994)

and Nelson (1996).

We perform an extensive Monte-Carlo study to examine the implications of the recovered

continuous-time limit on approximate estimation and filtering of diffusion models. We find

three main results. First, models based on fat-tailed conditional densities provide better

filtered estimates of the volatility of the underlying diffusion. These models are indeed more

flexible in approximating the likelihood of the continuous-time model, which is generally non-

normal. Second, and more importantly, among the models based on fat-tailed conditional

densities, those driven by the score are significantly less biased in QAML estimation. This is

due to the particular form of their continuous-time limit, which has non-explosive volatility of

volatility. Finally, in estimating the volatility of the underlying diffusion, score-driven models

perform better than fat-tailed models with a GARCH update, in line with the results of

analogous experiments involving discrete-time stochastic volatility models (Koopman et al.,

2016).

The literature on the convergence of discrete-time Markov sequences towards diffusion

processes goes back to Stroock and Varadhan (1979), Kushner (1984) and Ethier and Kurtz

(1986). In 1990, Nelson established a set of conditions guaranteeing such convergence; see

Nelson (1990). Precisely, the convergence as the sampling interval gets arbitrarily small,

at appropriate rates, of a set of conditional moments to a well defined limit is required in
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Nelson’s framework. In his work, he shows that the GARCH(1,1) model of Bollerslev (1986)

and the AR(1) Exponential ARCH of Nelson (1991) converge to a continuous-time diffusion.

The continuous-time limit of the GARCH(1,1) has been reconsidered in Corradi (2000)

under different assumptions, and in Kallsen and Taqqu (1998) using different mathematical

techniques. Instead, the limit of the non-linear ARCH model of Ding et al. (1993) has been

determined in Fornari and Mele (1996), whereas that of the augmented GARCH has been

examined by Duan (1997). Other more recent works related to the previous ones are those of

Alexander and Lazar (2005) and Trifi (2006), where the diffusion limit of the weak GARCH,

of the CEV-ARCH of Fornari and Mele (1996), and of the CMSV model of Hobson and

Rogers (1998) and Jeantheau (2004) is determined. In addition, Brown et al. (2003) and

Wang (2002) discuss the speed of convergence to the continuous time limit of GARCH-type

models and its statistical implications, whereas Klüppelberg et al. (2004) develop a class of

continuous time GARCH models. The problem of temporal aggregation of GARCH models

is related to their continuous-time limit, and has been studied by Drost and Nijman (1993)

and Drost and Werker (1996) among others. Finally, Hafner et al. (2017) derive the weak

diffusion limits of a modified version of the dynamic conditional correlation (DCC) model

of Engle (2002). The work of Hafner et al. (2017) is, to the best of our knowledge, the only

one in a multivariate framework.

We proceed as follows. In Section 2 we present convergence results for score-driven scale

family models in a general setting. Section 3 specializes the results of the previous section

to models generated by a Student-t and a General Error distribution. Section 4 presents

the Monte-Carlo results. Section 5 turns to the generalization of the results in Section 2 to

location-scale family models (Subsection 5.1) and to multivariate models (Subsection 5.2).

Section 6 concludes. All the technical results and proofs are reported in an online appendix.

In the following sections, when we refer to Assumptions 1-4 and conditions (A1.1) −
(A1.3), we tacitly refer to the corresponding assumptions and conditions in Section A of the

online appendix, where we gather a set of conditions for the weak convergence of a system of

discrete-time stochastic difference equations to a system of stochastic differential equations

(SDEs) (see the works of Stroock and Varadhan, 1979; Kushner, 1984; Ethier and Kurtz,

1986; Nelson, 1990).

2 Dynamic scale family models

Let {yt}nt=1 denote a univariate time-series of financial log-returns and let us denote by

Gt = σ(y1, . . . , yt), the σ-algebra generated by observations up to and including time t. We
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assume that {yt}nt=1 are sampled from the following conditional density function:

yt|Gt−1
d∼ p (yt|Gt−1; ct,Θ) (2.1)

p (yt|Gt−1; ct,Θ) =
1
√
ct

Ψ

(
yt√
ct
,Θ

)
(2.2)

where ct ∈ R+ is a Gt−1−measurable scale parameter, Θ denotes a set of static parameters

and Ψ is a probability density function. The function p (yt|Gt−1; ct,Θ) belongs to the class

of scale family densities, implying that yt√
ct
|Gt−1

d∼ Ψ (·,Θ). In Eq. (2.2), ct = Λ (λt), with

Λ : R → R+ being a monotonic and differentiable function of a Gt−1−measurable time-

varying parameter λt ∈ R. As it is common in the econometric literature, the function

Λ (·) is refereed to as link function. The time-varying parameter λt is computed based on

observations available up to time t− 1. In particular, it obeys the following law of motion:

λt = ω + βλt−1 + αut−1 (2.3)

where ω, β, α ∈ R and ut−1 = u (yt−1, λt−1) is a function depending on yt−1 and λt−1.

The model in Eq. (2.2), equipped with the update rule in Eq. (2.3), is in the class of

observation-driven models (Cox, 1981), meaning that parameters are pre-determined given

past observations.

Let us assume that p (yt|Gt−1; Λ(λt),Θ) is differentiable with respect to λt. We set the

function ut−1 in the driving mechanism in Eq. (2.3) as in score-driven models (Creal et al.,

2013; Harvey, 2013), i.e. we assume that it is proportional to the score of the conditional

density:

ut = s (λt)∇t, ∇t =
∂ log p (yt|Gt−1; Λ(λt),Θ)

∂λt
, (2.4)

where s (λt) is a continuous and measurable function of λt and Θ collects the static param-

eters ω, β, α and other parameters appearing in the conditional density function. Different

choices of s (λt) lead to different dynamic scale models. In order to account for the curvature

of the log-density function, Creal et al. (2013) set s (λt) equal to a power of the inverse of

the conditional Fisher information χt = E [∇2
t |Gt−1], i.e. they set s (λt) = χ−ϕt , ϕ ∈ [0, 1].

Standard choices for ϕ are ϕ = 0, 1/2, 1. The main advantage of the above formulation

is that the time-varying parameter λt is updated by taking into account the full shape of

the conditional density function p (yt|Gt−1; Λ(λt),Θ) (see discussions in Creal et al., 2013;

Harvey, 2013). For instance, if the Student-t density is employed, the score undermines

volatility forecasts when extremely large returns are observed, since they are likely to be

due to outliers rather than to large changes in volatility. A similar mechanism is absent in

the t-GARCH model of Bollerslev (1987), whose update rule is the same as in the GARCH,
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although based on the Student-t conditional density.

Using the results in Section A of the Appendix, we now derive weak diffusion limits for the

general class of score-driven scale family models described by Eq. (2.1)-(2.4). Without loss

of generality, we set yt =
√

Λ(λt)εt, where εt is distributed according to a scale family density

with scale equal to one. We can thus write the cumulative log-return process xt =
∑t

i=1 yi

as:

xt = xt−1 +
√

Λ (λt) εt (2.5)

λt+1 = ω + βλt + αs (λt)∇t (2.6)

In order to exploit the results in Section A of the Appendix, we assume a timestamp of

length h and allow the static parameters in Eq. (2.3) to depend on h. Formally, for k ∈ N,

we write:

x
(h)
kh = x

(h)
(k−1)h +

√
Λ (λkh)ε

(h)
kh (2.7)

λ
(h)
(k+1)h = ωh + βhλ

(h)
kh + αhs

(
λ

(h)
kh

)
∇(h)
kh (2.8)

and:

P
[(
x

(h)
0 , λ

(h)
0

)
∈ Γ
]

= νh (Γ) for any Γ ∈ B
(
R2
)
, (2.9)

where
{
ε

(h)
kh

}
has scale

√
h and νh is a sequence of probability measures on (R2,B (R2))

satisfying Assumption 3. Together with the discrete-time processes
(
x

(h)
kh , λ

(h)
kh

)
, we consider

the continuous-time processes
(
x

(h)
t , λ

(h)
t

)
constructed as specified in Appendix, Section A,

i.e. x
(h)
t = x

(h)
kh and λ

(h)
t = λ

(h)
kh for kh ≤ t < (k + 1)h.

Let F (h)
kh = σ

(
x

(h)
0 , . . . , x

(h)
(k−1)h

)
denote the σ-algebra generated by observations of the

discrete-time process defined by Eq. (2.7)-(2.9). We aim to determine under which condi-

tions the continuous-time process
(
x

(h)
t , λ

(h)
t

)
converges in distribution to an Itô process as

h goes to zero. Let

∇(h)
kh =

∂log p
(
y

(h)
kh |F

(h)
kh ; Λ

(
λ

(h)
kh

)
,Θ
)

∂λ
(h)
kh

(2.10)

be the score of the conditional density of log-returns y
(h)
kh = x

(h)
kh − x

(h)
(k−1)h computed with

respect to the time-varying parameter λ
(h)
kh . We denote by ξ

(`)
kh = E

[(
∇(h)
kh

)`
|F (h)

kh

]
, ` ∈ N

the conditional moments of order ` of the score. Let z be a standardized random variable

with p.d.f. Ψ and denote by ζ(`) = E
[
z`
]
, ` ∈ N its moment of order `. The following

theorem, which is the main result of this section, shows that convergence in distribution is

attained provided that the parameters ωh, βh, αh are well-behaved as h goes to zero, and the
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moments ξ
(`)
kh , ζ(`) exist and are finite up to the fourth order.

Theorem 2.1. Under the assumption that:

lim
h→0

h−1ωh = ω (2.11)

lim
h→0

h−1 (1− βh) = θ (2.12)

lim
h→0

h−1α2
h = α2 (2.13)

where ω, θ, α ∈ R, and under the assumption that the moments ξ
(`)
kh , ζ(`) exist and are finite

for ` ≤ 4, the continuous-time process
(
x

(h)
t , λ

(h)
t

)
converges in distribution to the following

Itô process as h goes to zero:

dxt =
√

Λ (λt) ζ(2) dW
(1)
t (2.14)

dλt = (ω − θλt) dt+ αs (λt)
√
χ(λt) dW

(2)
t (2.15)

and

P [(x0, λ0) ∈ Γ] = ν0 (Γ) for any Γ ∈ B
(
R2
)

(2.16)

where χ(λt) = limh→0 ξ
(2)
kh , and W

(1)
t , W

(2)
t are independent standard Brownian motions,

independent of the initial values (x0, λ0).

The proof of the previous theorem consists of two main steps. In the first step, we

show that, for the general class of scale family densities considered here, the conditional

moments ξ
(`)
kh do not depend on h; see Theorem 2.2. This result greatly simplifies the

computation of the limits in (A1.1), (A1.2) and (A1.3). Indeed, if the conditional moments

ξ
(`)
kh are independent of h, they can be regarded as constants and the asymptotic behavior

of the expressions in (A1.1), (A1.2) and (A1.3) is only determined by that of the static

parameters ωh, βh, αh. In addition, if ξ
(`)
kh are independent of h, the limit of ξ

(2)
kh , which

appears in the limiting SDE, trivially exists and is finite under the assumptions of Theorem

2.1. The second step consists in verifying that, under the hypothesis of Theorem (2.1),

Assumptions 1-4 hold.

Theorem 2.2. For the class of conditional scale family densities

p
(
y

(h)
kh |F

(h)
(k−1)h; Λ

(
λ

(h)
kh

)
,Θ
)

=
1√

Λ
(
λ

(h)
kh

)
h

Ψ

 y
(h)
kh√

Λ
(
λ

(h)
kh

)
h

,Θ

 (2.17)
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the moments ξ
(`)
kh = E

[(
∇(h)
kh

)`
|F (h)

kh

]
are given by:

ξ
(`)
kh = (−1)`

1

2

Λ
′
(
λ

(h)
kh

)
Λ
(
λ

(h)
kh

)
` ∫ +∞

−∞

(
1 +

Ψ
′
(z,Θ)

Ψ (z,Θ)
z

)`
Ψ (z,Θ) dz (2.18)

where Λ
′
(
λ

(h)
kh

)
=

∂Λ
(
λ
(h)
kh

)
∂λ

(h)
kh

and Ψ
′
(z) = ∂Ψ(z,Θ)

∂z
.

Proof. See Appendix C.1.

Thanks to the result in Theorem 2.2, the asymptotic behavior of the expectations in

(A1.1), (A1.2) and (A1.3) is only determined by the parameters ωh, βh, αh. In what follows,

we report explicit expressions for the limits of these expectations, computed under the

hypothesis of Eq. (2.11)-(2.13). Detailed derivations of the latter are reported in Appendix

C.2.

The drift per unit of time (Condition A1.1) is given by:

h−1E
[(
x

(h)
kh − x

(h)
(k−1)h

)
|F (h)

kh

]
= 0 (2.19)

h−1E
[(
λ

(h)
(k+1)h − λ

(h)
kh

)
|F (h)

kh

]
= ω − θλ(h)

kh (2.20)

Note that, at this stage, the parameters ω and θ can vary over R. Constraints guaranteeing

that the scale remains positive with probability one depend on the link function and will be

discussed in specific cases. The second moments per unit of time (Condition A1.2) are:

h−1E
[(
x

(h)
kh − x

(h)
(k−1)h

)2

|F (h)
kh

]
= Λ

(
λ

(h)
kh

)
ζ(2) (2.21)

h−1E
[(
λ

(h)
(k+1)h − λ

(h)
kh

)2

|F (h)
kh

]
= α2s

(
λ

(h)
kh

)2

ξ
(2)
kh + o (1) (2.22)

h−1E
[(
x

(h)
kh − x

(h)
(k−1)h

)(
λ

(h)
(k+1)h − λ

(h)
kh

)
|F (h)

kh

]
= 0 (2.23)

As the function s
(
λ

(h)
kh

)
is typically related to the inverse of ξ

(2)
kh , the expression in Eq.

(2.22) is finite provided that the assumptions of Theorem 2.1 are satisfied. Finally, we

need to prove that Condition (A1.3) holds. As in Nelson (1990), we choose δ = 2 and set

ωh = hω, αh = h1/2α and βh = 1 − hθ. We obtain the following expressions for the fourth

moments:

h−1E
[(
x

(h)
kh − x

(h)
(k−1)h

)4

|F (h)
kh

]
= hΛ

(
λ

(h)
kh

)2

ζ(4) (2.24)

h−1E
[(
λ

(h)
kh − λ

(h)
(k−1)h

)4

|F (h)
kh

]
= hα4s

(
λ

(h)
kh

)4

ξ
(4)
kh +O (hγ) , γ ≥ 3/2. (2.25)
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As ζ(4), ξ
(4)
kh are finite by assumption, we conclude that both expressions converge to zero as

h goes to zero. Thus, Assumption 1 is satisfied and the two coefficients a(x, t), b(x, t) are

given by:

b (x, λ) ≡

[
0

ω − θλ

]
(2.26)

a (x, λ) =

[
Λ (λ) ζ(2) 0

0 α2s (λ)2 χ(λ)

]
(2.27)

Assumption 2 holds by setting σ (x, λ) equal to the element-by-element square root of

a (x, λ). Note that the form of the coefficients of the limiting SDE is fully determined

by the link function Λ(λ), the conditional second moment of the score χ(λ), and the scaling

quantity s(λ) used to normalize the score. Note that, if p
(
y

(h)
kh |F

(h)
(k−1)h; Λ

(
λ

(h)
kh

)
,Θ
)

is the

normal and Λ
(
λ

(h)
kh

)
= λ

(h)
kh , Eq. (2.26), (2.27) reduce to the well-known GARCH diffusion

limit of Nelson (1990). We report additional comments related to the result in Theorem 2.1

in the following two remarks.

Remark 1. In the present paper, we assume, as in Nelson (1990), that the rate of con-

vergence of αh is h1/2. Corradi (2000) recovered a weak diffusion limit for the GARCH by

assuming a rate of convergence h. In the first case, one obtains a stochastic volatility model

driven by two independent Brownian motions, whereas in the second case the continuous-

time limit is a deterministic variance model. The limit result of Corradi (2000) has the

advantage of preserving the number of the sources of randomness in the transition from the

discrete-time process to the continuous-time process. However, the conditional volatility of

volatility is zero. In this paper, we use the same rate of convergence of Nelson (1990) in all

our computations.

Remark 2. The Euler-Maruyama (EM, henceforth) discretization of the SDE in Eq. (2.14)-

(2.15) leads to a discrete-time stochastic volatility model characterized by two independent

sources of noise, a fact that has already been observed in the GARCH literature (see, e.g.,

the discussion in Section 3 of Corradi, 2000). In addition, since the EM scheme weakly

converges to the limiting SDE, it has by construction as limit model the one given in Eq.

(2.14)-(2.15). Therefore, the EM discretization and the dynamic scale family models in The-

orem 2.1 converge weakly to the a SDE of similar form, with the same order of convergence.

They can thus be used interchangeably to simulate the limiting SDE. The fact that the two

discrete-time models above converge to the same SDE may seem unnatural because of the

different number of independent noises in the two models; however, in Appendix B, we pro-

vide a simple, although representative for our results, example showing that two independent

Brownian motions may be obtained as weak limit from a single sequence of independent

random variables in a very natural way.
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To conclude the proof of Theorem 2.1, we need to discuss the issues of finiteness of the

process in finite intervals and uniqueness of the diffusion limit; see Assumption 4. The answer

to these issues depends on the growth and regularity of the two coefficients b(x, λ) and a(x, λ)

in Eq. (2.26), (2.27), as well as on the link function Λ(·). The next subsection specializes

the general formulation in Eq. (2.5), (2.6) to two classes of models. More precisely, in

the first class, the link function is the identity, i.e. Λ (λt) = λt, and we set λt = σ2
t . In

this class of models, the function s(σ2
t ) is set equal to the inverse of the Fisher information

matrix, and the product s (σ2
t )

2
χ (σ2

t ) appearing in the coefficient a(x, σ2
t ) turns out to be

proportional to σ4
t . In the second class of models, the link function is exponential, i.e. we set

Λ (λt) = exp (2λt). In this case, the product s (λt)
2 χ (λt) turns out to be constant. These

two classes include, but are not limited to, important examples of models used in the score

literature, namely the t-GAS or Beta-t-GARCH model of Creal et al. (2013) and Harvey

(2013), and the Beta-t-EGARCH model of Harvey (2013).

The following two theorems show that, in both classes, there is a unique adapted solution

to Eq. (2.14), (2.15) and provide an explicit formula for it1. In particular, it turns out that

the solution of the SDE is finite almost surely in compact sets.

Theorem 2.3 (Existence and uniqueness, Λ(λt) = λt). For the following system of SDE:

dxt = C1 (Θ)σtdW
(1)
t

dσ2
t =

(
ω − θ σ2

t

)
dt+ C2 (Θ)σ2

t dW
(2)
t ,

(
x0, σ

2
0

)
=
(
x0, σ

2
0

)
(2.28)

where W
(1)
t and W

(2)
t are independent Brownian motions independent of the initial values

(x0, σ
2
0), ω ≥ 0, θ ∈ R constant parameters, and C1 (Θ) and C1 (Θ) positive constant func-

tions (possibly) dependent on the vector of static parameters Θ, there is one and only one

continuous adapted solution (xt, σ
2
t ) which is given by the following explicit formula:

xt = x0 +

∫ t

0

e−
1
2(θ+ 1

2
C2(Θ)2)s+ 1

2
C2(Θ)W

(2)
s

√(
σ2

0 + ω

∫ s

0

e(θ+
1
2
C2(Θ)2)r−C2(Θ)W

(2)
r dr

)
dW (1)

s

σ2
t = e−(θ+ 1

2
C2(Θ)2)t+C2(Θ)W

(2)
t

(
σ2

0 + ω

∫ t

0

e(θ+
1
2
C2(Θ)2)s−C2(Θ)W

(2)
s ds

)
Proof. See Appendix C.3.

1In principle, there are other possible choices for the link function and for the scaling quantity used to
normalize the score. While the convergence result in Theorem 2.1 is general, the problem of showing the
existence and uniqueness of the solution of the SDE depends on the form of its coefficients. For choices
of Λ(λt) and s(λt) which lead to SDE’s of different forms, we refer the reader to standard textbooks in
stochastic analysis, e.g. Karatzas and Shreve (1991) and Protter (1992).
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Theorem 2.4 (Existence and uniqueness, Λ(λt) = e2λt). For the following system of SDE:

dxt = C1 (Θ) exp (λt) dW
(1)
t

dλt = (ω − θ λt) dt+ C2 (Θ) dW
(2)
t , (x0, λ0) = (x0, λ0) (2.29)

where W
(1)
t and W

(2)
t are independent Brownian motions independent of the initial values

(x0, σ
2
0), ω, θ ∈ R constant parameters, and C1 (Θ) and C2 (Θ) positive constant functions

(possibly) dependent on the vector of static parameters Θ, there is one and only one contin-

uous adapted solution (xt, λt) which is given by the explicit formula:

xt = x0 + C1 (Θ)

∫ t

0

exp

(
e−θs

(
Λ0 +

ω

θ

(
1− eθs

)
+ C2 (Θ)

∫ s

0

eθrdW (2)
r

))
dW (1)

s

λt = e−θt
(
λ0 +

ω

θ

(
1− eθt

)
+ C2 (Θ)

∫ t

0

eθsdW (2)
s

)
Proof. See Appendix C.3.

We point out that the framework of Nelson (1990) implicitly assumes that the update of

volatility is of the same form for any data frequency. Drost and Nijman (1993) prove that the

GARCH, in its strong form, is not invariant under temporal aggregation. They show that it

is necessary to introduce the larger class of weak GARCH models to achieve closure under

temporal aggregation. In proving their result, Drost and Nijman (1993) exploit the fact that

the squared returns in a GARCH model follow an ARMA process. The temporal aggregation

problem for GARCH is thus mapped into an equivalent problem for ARMA models, which

is well-established in the literature. The scaled score of a non-Gaussian conditional density

is generally different from the innovation process y2
t − σ2

t in the ARMA representation of

GARCH models. Typically, it is a non-linear function of y2
t and σ2

t ; see e.g. Eq. (3.3).

Contrary to the GARCH, the squared returns are not described by an ARMA process, and

it is not possible to use the argument of Drost and Nijman (1993) to construct a larger class

of models closed under temporal aggregation. However, score-driven volatility models can be

regarded as particular instances of the class of square-root stochastic autoregressive volatility

(SR-SARV) models of Meddahi and Renault (2004); see their Definition 2.1. Indeed, as

the conditional expectation of the score is zero by construction, the variance process is

a VAR(1) with respect to the filtration generated by past returns. The class of SR-SARV

models is an extension of the class of weak GARCH models, and includes both GARCH-type

(e.g. GARCH with leverage and skewness) and stochastic volatility models. In particular,

Meddahi and Renault (2004) show that the process resulting from the temporal aggregation

of a SR-SARV process is still a SR-SARV process; see their Proposition 2.2. This result

implies that volatility models driven by the score of the conditional density aggregate in

the class of SR-SARV process. To enclose the class of score-driven volatility models under

11



temporal aggregation, it is thus necessary to consider a more general class of models, wider

than the class of weak GARCH’s. Essentially, this is due to the non-linear structure of the

score, which differs from the simple GARCH innovation process.

3 Models based on Student-t and General Error dis-

tribution

In this section, we show some examples of weak diffusion limits of dynamic volatility models

driven by the score of the conditional density. As in Creal et al. (2013) and Harvey (2013), we

focus on models generated by a Student-t and a General Error distribution. We distinguish

the class of models for which the link function is the identity, i.e. Λ(λt) = λt, and the class

of models for which the link function is exponential, i.e. Λ(λt) = e2λt . As underlined above,

these two classes include important examples of volatility models used in the score literature.

Using the same nomenclature in Harvey (2013), such models are dubbed Beta-t-GARCH

and Gamma-GED-GARCH, or Beta-t-EGARCH and Gamma-GED-EGARCH, depending

on the type of link-function. To avoid confusion with models with a GARCH update, like

the t-GARCH of Bollerslev (1987) or the EGARCH model of Nelson (1991), we adopt here

a slightly different nomenclature. If Λ(λt) = λt, we refer to them as Beta-t and Gamma-

GED, whereas if Λ(λt) = e2λt , we refer to them as Beta-t-E and Gamma-GED-E. Harvey

(2013) discusses the statistical properties of these models and provides sufficient conditions

for achieving consistency and asymptotic normality of the maximum likelihood estimator in

the Beta-t-E and Gamma-GED-E.

Despite being characterized by different conditional densities and by different update

rules, these models converge to a limiting SDE of similar form. For instance, both Beta-t

and Gamma-GED converge to a continuous-time limit which has a form similar to that of

the well-known GARCH diffusion. However, compared to Nelson’s limit, models generated

by fat-tails densities give rise to an SDE with lower volatility of volatility. This is due to

the damping mechanism of the score, which undermines volatility forecasts in the presence

of large returns, and generates less erratic volatility paths. Similarly, models generated by

light-tails densities lead to an SDE with larger volatility of volatility. In this case the score

overreacts to large returns and, in turn, generates more erratic volatility paths.

It is interesting to note that the opposite behavior is observed in models generated by

non-normal densities but with a GARCH update. As it will be shown, the limiting SDE of

the t-GARCH model of Bollerslev (1987) is characterized by a volatility of volatility which

diverges as the number of degrees of freedom ν decreases. This is due to the absence of the

above-mentioned damping mechanism. Similarly, the volatility of volatility of the limiting

SDE of a GARCH with a GED density diverges when the distribution is fat-tailed, and

becomes finite - but lower than that of the Gamma-GED diffusion - when the distribution is

12



light-tailed. Similar results are recovered when examining models with an exponential link

function.

We point out that the different behavior of the diffusive coefficient generated by score-

driven models is likely to hold even for models constructed with a different choice for the link

function and/or for the scaling quantity. Essentially, these results come from the computa-

tion of the conditional second moment of the process, which in turn relies on the particular

structure of the score. As far as the score is different from the innovation process y2
t −Λ(λt)

that we have in the GARCH update - and this is generally true for non-normal models - the

limiting SDE in the two models has a different diffusion coefficient. The latter is thus less

affected by outliers when the distribution is fat-tailed and more affected when the distribu-

tion is light-tailed. Here, we limit ourselves to illustrate this result for a specific although

representative class of score-driven models.

3.1 Case 1: Λ(λt) = λt

We set λt = σ2
t . The general framework developed in Section 2 enables us to determine the

coefficients of the limiting SDE by computing the function s (σ2
t ), the conditional second

moment χ(σ2
t ) of the score, and the second moment ζ(2) of the standardized variable z.

Weak existence and uniqueness, as well as the finiteness of the solution of the limiting

SDE in compact sets, are guaranteed by Theorem 2.3. Since the moments of the score

are independent of the scale parameter h, we consider innovations of unit scale in the

measurement equation. This choice does not affect the form of the limiting SDE.

3.1.1 Beta-t

Let tν denote a standardized Student-t density and assume2 ν > 4. Consider the model:

yt = σtεt (3.1)

σ2
t+1 = ω + βσ2

t + ασ2
t ut (3.2)

where εt = ((ν − 2)/ν)1/2 ε̃t, ε̃t
d∼ tν , ω > 0, α ≥ 0, β ≥ 0 and ut is given by:

ut =

[
(ν + 1) y2

t

(ν − 2)σ2
t + y2

t

− 1

]
(3.3)

2Such assumption is necessary to guarantee the existence of the conditional moments in Assumption 1.
In real data the estimates of ν in score models based on Student-t density are typically slightly above 4; see
for instance Creal et al. (2011).
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The conditional density function is:

p
(
yt|Gt−1;σ2

t , ν
)

=
Γ(ν + 1)/2)

Γ(ν/2)
√
π (ν − 2)σ2

t

[
1 +

y2
t

(ν − 2)σ2
t

]− (ν+1)
2

(3.4)

Setting zt = yt/
√
σ2
t , we have Ψ (zt, ν) = Γ(ν+1)/2)

Γ(ν/2)
√
π(ν−2)

[
1 +

z2t
ν−2

]− (ν+1)
2

and therefore:

∇t =
1

2σ2
t

[
(ν + 1) y2

t

(ν − 2)σ2
t + y2

t

− 1

]
(3.5)

χ
(
σ2
t

)
=

1

2σ4
t

ν

ν + 3
(3.6)

ζ(2) = 1 (3.7)

The scaling quantity is s (σ2
t ) = 2σ4

t , and is proportional to the inverse of the Fisher infor-

mation. Note also that the two fourth moments ξ
(4)
kh and ζ(4) exist and are finite under the

assumption ν > 4. Using equations (2.26), (2.27), the limiting SDE of the Beta-t is:

dxt = σtdW
(1)
t (3.8)

dσ2
t =

(
ω − θσ2

t

)
dt+ α

√
2

(
ν

ν + 3

)
σ2
t dW

(2)
t (3.9)

If ν →∞, we obtain a result similar to that of Nelson (1990). The only difference is that the

drift component in the log-price is zero, as we did not include for simplicity the conditional

mean in the measurement equation. In Section 5.1, we consider the case of models with a

time-varying conditional mean. Furthermore, the presence of the factor
√

2 is due to the

slightly different choice of αh, which is set as αh = αh1/2, whereas in Nelson (1990) it is

set as αh = α (h/2)1/2. When ν is finite, the diffusion coefficient in Eq. (3.9), the so-called

volatility of volatility, turns out to be smaller than that of the well-known GARCH diffusion,

implying that the dynamics of volatility are less erratic. This is due to the fact that the

score of the Student-t density is less sensitive to large returns.

It is interesting to investigate whether a similar result is found when computing the

diffusion limit of the t-GARCH model of Bollerslev (1987). The latter is characterized by

a Student-t conditional density, but the update rule for volatility is the same as in the

GARCH. The t-GARCH reads:

yt = σtεt (3.10)

σ2
t+1 = ω + β σ2

t + ασ2
t ε

2
t (3.11)

where εt = ((ν − 2)/ν)1/2 ε̃t, ε̃t
d∼ tν , ω > 0, α ≥ 0, β ≥ 0. Furthermore, we assume ν > 4.
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We work in the same framework of Section 2, i.e. we partition the time on a grid of length

h, then construct the continuous-time process
(
x

(h)
t , σ

(h),2
t

)
as described in Section A of the

Appendix and allow the parameters ωh, βh, αh to depend on h. Using the results in Section

A, in Appendix D.1 we prove the following:

Theorem 3.1. Under the assumption that:

lim
h→0

h−1ωh = ω (3.12)

lim
h→0

h−1 (1− βh − αh) = θ (3.13)

lim
h→0

h−1α2
h = α2 (3.14)

where ω > 0, θ > 0, α ≥ 0, the continuous-time process
(
x

(h)
t , σ

(h),2
t

)
constructed from a

t-GARCH converges in distribution to the following Itô process as h goes to zero:

dxt = σtdW
(1)
t (3.15)

dσ2
t =

(
ω − θσ2

t

)
dt+ α

√
2

(
ν − 1

ν − 4

)
σ2
t dW

(2)
t , (3.16)

where W
(1)
t , W

(2)
t are independent standard Brownian motions, independent of the initial

values (x0, σ
2
0).

As in the Beta-t, if ν → ∞, we recover Nelson’s limit. However, if ν is finite, the

volatility of volatility of the t-GARCH diffusion is larger than that of the Beta-t. Figure

(3.1.1) plots the diffusion coefficient f1(ν) =
√

2
(

ν
ν+3

)
of the Beta-t and the diffusion

coefficient f2(ν) =
√

2
(
ν−1
ν−4

)
of the t-GARCH as a function of ν. As ν ↓ 4, the volatility

of volatility of the t-GARCH diffusion diverges. This happens because outliers are entirely

imputable to large changes in volatility. In contrast, as ν ↓ 4, the volatility of volatility of

the Beta-t diffusion is finite. Outliers in the Beta-t are indeed more likely to be generated

by the conditional density, rather than by large changes in the underlying volatility process.

3.1.2 Gamma-GED

Let GED(ν) denote a Generalized Error Distribution with shape parameter ν > 0. Consider

the model:

yt = σtεt (3.17)

σ2
t+1 = ω + β σ2

t + ασ2
t ut (3.18)
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Figure 1: We report the diffusion coefficient f1(ν) =
√

2
(

ν
ν+3

)
of the Beta-t and the diffusion

coefficient f2(ν) =
√

2
(
ν−1
ν−4

)
of the t-GARCH as a function of ν.

where εt
d∼ GED(ν), ω > 0, α ≥ 0, β ≥ 0 and ut is given by:

ut =
ν

2

∣∣∣∣∣ yt√
σ2
t

∣∣∣∣∣
ν

− 1 (3.19)

The conditional density function is:

p
(
yt|Gt−1;σ2

t , ν
)

=
1

21+ 1
ν

√
σ2
tΓ
(
1 + 1

ν

) exp

(
−1

2

∣∣∣∣∣ yt√
σ2
t

∣∣∣∣∣
ν)

(3.20)

Setting zt = yt/
√
σ2
t , we have Ψ (zt, ν) = 1

21+
1
ν Γ(1+ 1

ν )
exp

(
−1

2
|zt|ν

)
and therefore:

∇t =
1

2σ2
t

[
ν

2

∣∣∣∣∣ yt√
σ2
t

∣∣∣∣∣
ν

− 1

]
(3.21)

χ
(
σ2
t

)
=

ν

4σ4
t

(3.22)

ζ(2) =
41/νΓ( 3

ν
)

Γ( 1
ν
)

(3.23)

from which we have s (σ2
t ) = 2σ4

t . Even in this case, the scaling quantity s (σ2
t ) is related

to the inverse of the Fisher information. Note also that the two fourth moments ξ
(4)
kh and
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ζ(4) exist and are finite. By virtue of equations (2.26), (2.27), the limiting SDE of the

Gamma-GED is:

dxt =
√
ζ(2)σtdW

(1)
t (3.24)

dσ2
t =

(
ω − θσ2

t

)
dt+ α

√
νσ2

t dW
(2)
t (3.25)

If ν = 2, the GED(ν) reduces to the normal and we recover Nelson’s limit. If ν < 2, the

GED(ν) has heavier tails than the normal. As in the Beta-t, the dynamics of volatility

are less sensitive to large returns, and the volatility of volatility is smaller compared to the

GARCH diffusion. In contrast, if ν > 2, the GED(ν) has lighter tails than the normal.

In this case, the score overreacts to large returns and the volatility of volatility is larger

compared to the GARCH diffusion.

As done with the Beta-t, we compare the limiting SDE of the Gamma-GED with that of

a GARCH model with a GED conditional density. We refer to the latter as GED-GARCH.

The GED-GARCH reads:

yt = σtεt (3.26)

σ2
t+1 = ω + β σ2

t + ασ2
t ut (3.27)

where εt
d∼ GED (ν), ω > 0, β ≥ 0, α ≥ 0. In Appendix D.2, we prove the following:

Theorem 3.2. Let ωh, βh, αh be as in Theorem 3.1. Then the continuous-time process(
x

(h)
t , σ

(h),2
t

)
constructed from a GED-GARCH converges in distribution to the following

Itô process as h goes to zero:

dxt =
√
ζ(2)σtdW

(1)
t (3.28)

dσ2
t =

(
ω − θσ2

t

)
dt+ α

Γ
(

1
ν

)
+ 4

1
ν

(
4

1
ν Γ
(

5
ν

)
− 2 Γ

(
3
ν

))
Γ
(

1
ν

)
1/2

dW
(2)
t (3.29)

where W
(1)
t , W

(2)
t are independent standard Brownian motions, independent of the initial

values (x0, σ
2
0), and Γ(·) denotes the Gamma function.

As in the Gamma-GED, if ν = 2, we recover Nelson’s limit. Figure (3.1.2) compares the

diffusion coefficient g1(ν) =
√
ν of the Gamma-GED to the diffusion coefficient g2(ν) of the

GED-GARCH in Eq. (3.29). If ν < 2, the latter is larger than g1(ν) and diverges as ν ↓ 0.

This circumstance is similar to that in Section 3.1.1, as the GED(ν) has heavier tails than

the normal. In contrast, if ν > 2, the GED(ν) has lighter tails and g2(ν) is smaller than

g1(ν). In this case, the score overreacts to large returns and the volatility of volatility of

the Gamma-GED diffusion turns out to be larger than that of the GED-GARCH diffusion.
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Note also that g2(ν) converges to a finite value as ν goes to infinity, in particular we obtain

limν→+∞ g2 (ν) = 8
15

.

8
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Figure 2: We report the diffusion coefficient g1(ν) =
√
ν of the Gamma-GED and the

diffusion coefficient g2(ν) =

[
Γ( 1
ν

)+4
1
ν

(
4
1
ν Γ( 5

ν )−2Γ( 3
ν )

)
Γ( 1
ν

)

]1/2

of the GED-GARCH as a function

of ν.

3.2 Case 2: Λ(λt) = e2λt

In this class of models the link function is the exponential, namely Λ (λt) = exp (2λt). As

done in Section 3.1, we compute the scaling function s(λt), the conditional second moment

χ (λt) of the score, and the second moment ζ(2) of the standardized variable z. Theorem 2.4

ensures the weak existence, the uniqueness and the finiteness of the solution of the limiting

SDE on compact sets.

3.2.1 Beta-t-E

Consider the model:

yt = exp (λt) εt (3.30)

λt+1 = ω + β λt + αut (3.31)
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where εt = ((ν − 2) /ν)1/2 ε̃t, ε̃t
d∼ tν , ν > 4, ω, β, α ∈ R, and ut is given by:

ut =
(ν + 1) y2

t

(ν − 2) exp (2λt) + y2
t

− 1 (3.32)

The conditional density function p(yt|Gt−1;λt, ν) coincides with the one in Eq. (3.4), with

exp (2λt) in place of σ2
t . Thus:

∇t =
(ν + 1) y2

t

(ν − 2) exp (2λt) + y2
t

− 1 (3.33)

χ (λt) = 2
ν

ν + 3
(3.34)

ζ(2) = 1 (3.35)

In particular, s(λt) = 1. Note also that the two fourth moments ξ
(4)
kh and ζ(4) exist and are

finite under the assumption ν > 4. Hence, the Beta-t-E diffusion limit can be written as:

dxt = exp (λt) dW
(1)
t (3.36)

dλt = (ω − θλt) dt+ α

√
2

(
ν

ν + 3

)
dW

(2)
t (3.37)

The main difference with respect to the Beta-t limit is that the diffusive term in the

log-volatility process does not depend on λt. The diffusion coefficient f1(ν) =
√

2
(

ν
ν+3

)
is

the same as in the Beta-t. In the Gaussian limit, it reduces to
√

2, which is larger than

f1(ν). As found for the Beta-t, this is due to the particular form of the score, which takes

into account the shape of the Student-t density.

3.2.2 Gamma-GED-E

Consider the model:

yt = exp (λt) εt (3.38)

λt+1 = ω + βλt + αut (3.39)

where εt
d∼ GED (ν), ω, β, α ∈ R and ut is given by:

ut =
ν

2

∣∣∣∣ yt
exp (λt)

∣∣∣∣ν − 1 (3.40)
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The conditional density p (yt|Gt−1;λt, ν) is obtained from the expression in Eq. (3.20) by

replacing σ2
t with exp (2λt). We have:

∇t =
ν

2

∣∣∣∣ yt
exp (λt)

∣∣∣∣ν − 1 (3.41)

χ (λt) = ν (3.42)

ζ(2) =
41/νΓ( 3

ν
)

Γ( 1
ν
)

(3.43)

from which s(λt) = 1. Note that the two fourth moments ξ
(4)
kh and ζ(4) exist and are finite.

Therefore, the Gamma-GED-E diffusion limit is:

dxt =
√
ζ(2) exp (λt) dW

(1)
t (3.44)

dλt = (ω − θλt) dt+ α
√
νdW

(2)
t (3.45)

As in the case of the Student-t, the diffusive term in the log-volatility process does not

depend on λt. The coefficient f2(ν) =
√
ν is the same as in the Gamma-GED. The Gaussian

limit is obtained for ν = 2. For ν < 2, the distribution is fat-tailed and the volatility of

volatility is smaller than the Gaussian. Similarly, for ν > 2 the distribution is light-tailed

and the volatility of volatility is larger than the Gaussian.

In order to compare with a different update for the log-volatility, we consider the

EGARCH model of Nelson (1991). The EGARCH reads3:

yt = exp(λt/2)εt (3.46)

λt+1 = ω + βλt + α∗(|εt| − E[|εt|]) + αεt (3.47)

where εt ∼ GED (ν). The GED is generally employed in place of the Student-t, since the

latter does not guarantee the existence of the unconditional mean and variance of the λt

process. The term α(|εt| − E[|εt|) + αεt responds asymmetrically to positive and negative

shocks, thus capturing the leverage effect. In Appendix D.3 we prove the following:

Theorem 3.3. Under the assumption that:

lim
h→0

h−1ωh = ω (3.48)

lim
h→0

h−1 (1− βh) = θ (3.49)

and α, α∗ are constant, the continuous-time process
(
x

(h)
t , λ

(h)
t

)
constructed from an EGARCH

3Note that in the EGARCH the log-variance is modeled instead of the log-volatility.
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converges in distribution to the following Itô process as h goes to zero:

dxt =
√
ζ(2) exp(λt/2)dW

(1)
t (3.50)

dσ2
t =

(
ω − θσ2

t

)
dt+

[
α2
∗
41/νΓ( 3

ν
)

Γ( 1
ν
)

+ α2

(
41/νΓ( 3

ν
)

Γ( 1
ν
)
−

2
6
ν Γ(1

2
+ 1

ν
)2

4π

)]1/2

dW
(2)
t (3.51)

where W
(1)
t , W

(2)
t are independent standard Brownian motions, independent of the initial

values (x0, σ
2
0).

It is immediate to see that the diffusion coefficient in the log-variance process diverges

as ν goes to zero. Even for the exponential link function, we thus find that the volatility of

volatility of the diffusion limit of score-driven models has a different behavior compared to

that of other popular update rules.

4 Monte-Carlo analysis: score-driven models as diffu-

sion approximations

Theorem A.1, which establishes the conditions for the weak convergence of a discrete-time

Markov process to a diffusion, suggests that the discrete-time model can be regarded as

an approximation of the continuous-time model. This has lead to the use of GARCH-type

models for approximate estimation and filtering of diffusion processes. “Quasi Approximate

Maximum Likelihood” (QAML), advocated among others by Engle and Lee (1996), Barone-

Adesi et al. (2005), Fornari and Mele (2006), Stentoft (2011), consists in first estimating

the simple, approximating discrete-time model, and then recovering the continuous-time

parameters using a set of moment conditions as those in Eq. (2.11)-(2.13). Similarly,

Nelson (1992), Nelson and Foster (1994) and Nelson (1996) study the asymptotic optimality

of misspecified GARCH filters. Using continuous record asymptotics, they show that the

volatility generated by a class of stochastic differential equations is consistently estimated

by GARCH-type models.

In this Monte-Carlo analysis, we study the behavior of score-driven models when em-

ployed as diffusion approximations. To this end, we examine their performance in recovering:

(i) QAML parameter estimates of their limiting SDE, and (ii) approximate filtered estimates

of the volatility of the underlying diffusion. As a discrete-time approximation, we consider

the Beta-t model described in Section 3.1.1. We also consider two alternative discrete-time

specifications. The first is the GARCH, which differs from the Beta-t in the probability

density function and in the update of volatility. The second is the t-GARCH, which differs

from the Beta-t only in the update of volatility. This comparison allows us to characterize

the properties of the discrete-time model that are more relevant in the approximation to the

21



continuous-time model.

The general form of the diffusion limit of GARCH, t-GARCH and Beta-t is:

dxt = σtdW
(1)
t (4.1)

dσ2
t =

(
ω − θσ2

t

)
dt+ κσ2

t dW
(2)
t (4.2)

We simulate N = 1000 time-series of ns observations of the above SDE using the EM

scheme. The latter provides a first-order Gaussian approximation to the true transition

density. We thus sample the ns observations on intervals of length s ∈ N, i.e. we keep every

s-th observation. Without loss of generality, we assume that ns is a multiple of s and set

ns = ns, so that the same number n of observations is available for each sampling frequency.

This allows us to compare the results obtained for each s by avoiding the potential distortion

due to the use of different sample sizes. Furthermore, n is chosen to be large in order to avoid

potential finite-sample effects that may hide the error due to the diffusion approximation.

We set n = 20000 and s = {50, 100, 200, 400, 800, 1600}. In the Euler discretization, we set

dt = 1/n and thus the time between successive observations is given by hs = s/n. The

parameters of the SDE are chosen as ω = 0.01, θ = 0.2, κ = 2.5.

The QAML estimates of the SDE parameters are recovered from the discrete-time pa-

rameters using the moment conditions in Eq. (2.11)-(2.13). In particular, the diffusion

coefficient is computed as κ̂ = α̂
√

2 in the case of GARCH, and κ̂ = α̂
√

2 ν̂−1
ν̂−4

, κ̂ = α̂
√

2 ν̂
ν̂+3

in the case of t-GARCH and Beta-t, respectively. Here, the estimated parameter α̂ is re-

scaled as indicated in Eq. (2.13). Table (1) reports the average of the estimated QAML

parameters and the mean-square-error (MSE) of the filtered volatility estimates. For each

of the three discrete-time models, the MSE is computed as 1
nN

∑N
i=1

∑n
t=1(σ2

t,i− σ̂2
t,i)

2, where

σt,i is the volatility sampled from the continuous-time process in Eq. (4.1), (4.2) in the i-th

simulation, and σ̂t,i is the volatility filtered by the discrete-time model.

The likelihood of discrete-time observations sampled from a continuous-time diffusion is

generally non-normal; see among others Ait-Sahalia (2002), Ait-Sahalia and Yu (2006). The

non-normality increases with the aggregation, as can be seen in Table (1) from the estimated

t-GARCH and Beta-t degrees of freedom parameter. For high sampling frequencies (small s),

the volatility can be regarded as approximately constant in the short time interval hs = s/n,

and thus the diffusion looks locally as a Wiener process. In this case, the three models

provide close QAML estimates and similar filtered volatilities. As the sampling frequency

decreases (large s), the stochastic nature of the volatility emerges more clearly, and the

conditional density estimated by the t-GARCH and Beta-t becomes fat-tailed. They thus

lead to better volatility estimates and lower average MSE’s compared to the GARCH. It is

interesting to note that, while the degrees of freedom parameter of the two fat-tailed models

is similar for each s, the MSE of the Beta-t is substantially lower at large s. This is due to
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s = 50 s = 100 s = 200 s = 400 s = 800 s = 1600

ω

GARCH 0.0113 0.0119 0.0123 0.0133 0.0140 0.0131

(0.0031) (0.0027) (0.0029) (0.0066) (0.0055) (0.0035)

t-GARCH 0.0123 0.0128 0.0126 0.0143 0.0146 0.0124

(0.0013) (0.0013) (0.0030) (0.0029) (0.0054) (0.0083)

Beta-t 0.0119 0.0122 0.0129 0.0135 0.0142 0.0143

(0.0013) (0.0012) (0.0009) (0.0008) (0.0007) (0.0006)

θ

GARCH 0.5050 0.4797 0.4790 0.4803 0.4972 0.4828

(0.4022) (0.3248) (0.2868) (0.1959) (0.2410) (0.2029)

t-GARCH 0.5007 0.5322 0.6223 0.5949 0.6527 0.7012

(0.4098) (0.3409) (0.2874) (0.2755) (0.2907) (0.6639)

Beta-t 0.5340 0.5328 0.6731 0.6110 0.7017 0.7361

(0.4231) (0.3450) (0.2893) (0.2140) (0.1577) (0.1199)

κ

GARCH 2.2883 2.2766 2.2201 1.7819 1.7543 1.7428

(0.3902) (0.3878) (0.4219) (0.5681) (0.7637) (0.4645)

t-GARCH 2.7352 2.8288 2.7775 3.3486 4.0970 12.1784

(0.1211) (0.2325) (0.6075) (0.5099) (0.9492) (5.6790)

Beta-t 2.4873 2.4354 2.3537 2.2045 1.9854 1.8026

(0.0904) (0.0799) (0.0716) (0.0651) (0.0587) (0.0538)

ν

t-GARCH 11.4397 8.5891 6.1133 4.8426 4.2762 4.0006

(0.6019) (0.3456) (0.1891) (0.1273) (0.1046) (0.0087)

Beta-t 12.5682 9.5384 6.8371 5.4044 4.7474 4.0223

(0.6806) (0.4057) (0.2251) (0.1493) (0.1245) (0.0193)

MSE

GARCH 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

t-GARCH 0.9727 0.9707 0.9486 0.9069 0.9860 0.9912

Beta-t 0.9742 0.9716 0.9508 0.8821 0.8735 0.9374

Table 1: For each s = {50, 100, 200, 400, 800, 1600}, we show the average, over N = 1000
simulations of the DGP in Eq. (4.1), (4.2), of the QAML parameters ω, θ, κ and the MSE
of GARCH, t-GARCH and Beta-t. The latter is computed as MSE = 1

nN

∑N
i=1

∑n
t=1(σ2

t,i −
σ̂2
t,i)

2, where σt,i is the SDE volatility generated in the i-th simulation, and σ̂t,i is the volatility
estimated by the discrete-time model. Each MSE is normalized by the MSE of the GARCH.
We also show the degrees of freedom parameter estimated by the t-GARCH and Beta-t.
The standard deviations of the estimated parameters are reported in parenthesis.
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the robust score update in the Beta-t, which better captures the dynamics of volatility in the

presence of fat-tails. Koopman et al. (2016) obtain similar simulation results when analyzing

score-driven models as approximations to discrete-time stochastic volatility models.

The QAML estimates of the parameter θ confirm the result of Wang (2002) that QAML

is not necessarily consistent; see also Hafner et al. (2017) for further simulation evidences.

All the three models provide significantly upward biased estimates of θ for each sampling

frequency. The parameter ω has instead a small positive bias, which slightly increases with

s. The diffusion coefficient κ is correctly estimated at high frequencies. As s increases, the

estimate provided by the t-GARCH rapidly increases and significantly overestimates the

true diffusion coefficient. This is due to the explosive behavior, for small ν, of the diffusion

limit of the t-GARCH model; see Section 3.1. The estimates of κ of the GARCH and Beta-t

are downward biased for large s, however the bias is considerably smaller compared to the

t-GARCH. Note also that the standard deviations of the Beta-t estimates are significantly

smaller compared to both GARCH and t-GARCH estimates.

We thus find that, when the likelihood of the discrete-time observations is non-normal,

the use of the Beta-t for approximate estimation and filtering of the underlying diffusion is

preferable to that of models with a GARCH update. The non-normality of the likelihood

depends, among others, on the sampling frequency. At large sampling frequencies, the

diffusion is locally well approximated by a Wiener process. In this case, the t-GARCH

and Beta-t reduce to the GARCH, and thus the three models behave similarly. As the

sampling frequency decreases, the likelihood becomes highly non-normal, and we see the

benefits of adopting the robust score-driven model. In reality, the last circumstance is of

interest because data is rarely available at very large sampling frequencies, for instance due

to liquidity constraints. Our results indicate that the use of score-driven models as diffusion

approximations is valuable in this real-world scenario. We obtain similar results in the case

of models with an exponential link function, given the analogous explosive nature of the

diffusion coefficient of the EGARCH model of Nelson (1991); see Section 3.2.2.

5 Generalizations

The results of Section 2 can be generalized into several directions. In this section, we examine

volatility models with a time-varying conditional mean in log-returns, and multivariate

volatility models based on elliptical distributions. The former are relevant in markets with

a time-varying risk-premium, whereas the latter are of interest in financial risk management.
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5.1 Dynamic location-scale family models

Let us assume that, conditionally on the past, financial log-returns {yt}nt=1 are generated by

a location-scale family density:

yt|Gt−1
d∼ p (yt|Gt−1; ct,Θ) (5.1)

p (yt|Gt−1;µt, ct,Θ) =
1
√
ct

Ψ

(
yt − µt√

ct
,Θ

)
(5.2)

where µt ∈ R is a Gt−1−measurable location parameter. It is immediate to see that
yt−µt√

ct
|Gt−1

d∼ Ψ (·,Θ). Similarly to the scale parameter λt, the location µt is updated based

on observations available up to time t− 1. More precisely, µt and λt obey the following laws

of motion:

µt = d+ b µt−1 + a vt−1 (5.3)

λt = ω + β λt−1 + αut−1 (5.4)

where vt and ut are martingale difference sequences given by:

vt = sµ(µt, λt)∇t,µ, ∇t,µ =
∂ log p(yt|Gt−1;µt,Λ (λt) ,Θ)

∂µt
(5.5)

ut = sλ(µt, λt)∇t,λ, ∇t,λ =
∂ log p(yt|Gt−1;µt,Λ (λt) ,Θ)

∂λt
(5.6)

with sµ(µt, λt) and sλ(µt, λt) continuous and measurable functions of µt and λt. In particular,

we set sµ(µt, λt) = E[∇2
t,µ]−1. We declare since the beginning the choice of sµ(µt, λt) because,

differently from ∇t,λ, the moments of ∇t,µ depend on the length h of the discretization, as

it will be shown in the following. Thus, the form of the limiting SDE depends on the power

of the Fisher information that is used to normalize the score. The limiting SDE of models

with a different choice of sµ(µt, λt) can be obtained following a similar method.

Our goal is to derive the weak diffusion limit of the class of score-driven location-scale

family models described by Eq. (5.1)-(5.4). Without loss of generality, we set yt = µt+
√
ctεt,

where εt is conditionally distributed according to a scale family density with scale equal to

one. Writing xt =
∑t

i=1 yt, we have:

xt = xt−1 + µt +
√

Λ (λt)εt (5.7)

µt+1 = d+ b µt + asµ(µt, λt)∇t,µ (5.8)

λt+1 = ω + βλt + αsλ(µt, λt)∇t,λ (5.9)

At this point, we assume a timestamp of length h and allow the static parameters in the
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previous system to depend on h. Formally, for k ∈ N, we have:

x
(h)
kh = x

(h)
(k−1)h + µ

(h)
kh h+

√
Λ(λ

(h)
kh )ε

(h)
kh (5.10)

µ
(h)
(k+1)h = dh + bh µ

(h)
kh + ahsµ(µ

(h)
kh , λ

(h)
kh )∇(h)

kh,µ (5.11)

λ
(h)
(k+1)h = ωh + βh λ

(h)
kh + αhsλ(µ

(h)
kh , λ

(h)
kh )∇(h)

kh,λ (5.12)

and:

P
[(
x

(h)
0 , µ

(h)
0 , λ

(h)
0

)
∈ Γ
]

= νh (Γ) for any Γ ∈ B
(
R3
)

(5.13)

where
{
ε

(h)
kh

}
has scale

√
h and νh is a sequence of probability measures on (R3,B(R3))

satisfying Assumption 3. As done in Section 2, we construct the continuous-time processes(
x

(h)
t , µ

(h)
t , λ

(h)
t

)
in the following way: x

(h)
t = x

(h)
kh , µ

(h)
t = µ

(h)
kh and λ

(h)
t = λ

(h)
kh for kh ≤ t ≤

(k + 1)h.

Let us consider again the filtration F (h)
kh = σ

(
x

(h)
0 , . . . , x

(h)
(k−1)h

)
, the score ∇(h)

kh,λ defined

as in Eq. (2.10), and the score ∇(h)
kh,µ computed with respect to the time-varying mean µ

(h)
kh :

∇(h)
kh,µ =

∂ log p
(
y

(h)
kh |F

(h)
kh ;µ

(h)
kh ,Λ(λkh)

)
∂µ

(h)
kh

(5.14)

Let also define ∇z = ∂ log Ψ(z,Θ)
∂z

, χz = E [∇2
z] and ξ

(`)
kh,µ = E

[(
∇(h)
kh,µ

)`
|F (h)

kh

]
. Finally, let

ζ(`), χ(λt) being defined as in Section 2. We state now the main result of this section, which

is the analogue of Theorem 2.1:

Theorem 5.1. Let Ψ (·) be symmetric and such that ζ(2) ≥ χ−1
z . Under the following

assumptions on the parameters:

lim
h→0

h−1ωh = ω lim
h→0

h−1dh = d (5.15)

lim
h→0

h−1 (1− βh) = θ lim
h→0

h−1 (1− bh) = ϑ (5.16)

lim
h→0

h−1α2
h = α2 lim

h→0
h−2a2

h = a2 (5.17)

where ω, d, θ, ϑ, α, a ∈ R, and under the assumption that the moments ξ
(`)
kh,µ, ξ

(`)
kh,λ, ζ(`)

exist and are finite for ` ≤ 4, the continuous-time process qt = (x
(h)
t , µ

(h)
t , λ

(h)
t )′ converges in

distribution to the following Itô process as h goes to zero:

dqt = b(qt, t) dt+ σ(qt, t)dWt (5.18)

where Wt is a 3-dimensional vector of standard Brownian motions, independent from q0.
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The drift, b(qt, t), is given by:

b(qt, t) =

 µt

d− ϑµt
ω − θ λt

 , (5.19)

while σ(qt, t) is a mapping such that, for all qt ∈ R3 and t ≥ 0, a(qt, t) = σ(qt, t)σ(qt, t)
′,

where a(qt, t) is defined as:

a(qt, t) =

 Λ(λt)ζ
(2) aΛ(λt)χ

−1
z 0

aΛ(λt)χ
−1
z a2Λ (λt)χ

−1
z 0

0 0 α2s(λt)
2χ (λt)

 (5.20)

The assumption ζ(2) ≥ χ−1
z guarantees that the matrix a(qt, t) is positive semi-definite.

The assumption that Ψ is symmetric can be relaxed at the expense of additional nonzero

entries a23(qt, t), a32(qt, t), which would imply more involved conditions for positive semi-

definiteness. Note that, if ζ(2) = χ−1
z , the matrix a(qt, t) becomes singular and xt, µt are

driven by two perfectly correlated Brownian motions. This degeneracy is due to the nonzero

correlation between the innovations ε
(h)
kh and the score ∇(h)

kh,µ, see Appendix E.2. In contrast,

the correlation between the innovations ε
(h)
kh and the score∇(h)

kh,λ is zero, as shown in Appendix

C.1, implying that λt is always driven by an independent stochastic component.

The same methodology used for proving Theorem 2.1 can be applied here. More precisely,

the determination of the dependence of the conditional moments ξ
(`)
kh,µ and ξ

(`)
kh,λ on h enables

us to compute the limits in (A1.1), (A1.2) and (A1.3). In particular, it is not difficult to

see that, for ξ
(`)
kh,λ, the same result of Theorem 2.2 holds:

ξ
(`)
kh,λ = (−1)`

[
1

2

Λ
′
(λ

(h)
kh )

Λ(λ
(h)
kh )

]` ∫ ∞
−∞

(
1 +

Ψ
′
(z,Θ)

Ψ (z,Θ)
z

)`
Ψ (z,Θ) dz

i.e. ξ
(`)
kh,λ is independent of h. Concerning ξ

(`)
kh,µ, instead, it results that it scales as h`/2, as

the following theorem shows.

Theorem 5.2. For the class of conditional location-scale family densities

p
(
y

(h)
kh |F

(h)
(k−1)h;µ

(h)
kh ,Λ

(
λ

(h)
kh

)
,Θ
)

=
1√

Λ
(
λ

(h)
kh

)
h

Ψ

y(h)
kh − µ

(h)
kh h√

Λ(λ
(h)
kh )h

,Θ



27



the moments ξ
(`)
kh,µ = E

[(
∇(h)
kh,µ

)`
|F (h)

kh

]
are given by:

ξ
(`)
kh,µ = (−1)`

[
h

Λ(λ
(h)
kh )

]`/2 ∫ ∞
−∞

(
Ψ

′
(z,Θ)

Ψ(z,Θ)

)`
Ψ (z,Θ) dz

Proof. See Appendix E.1.

In particular, for location-scale family models, the asymptotic behavior of the expres-

sions in (A1.1), (A1.2) and (A1.3) depends also on ξ
(`)
kh,µ, in addition to the parameters

ωh, dh, βh, bh, αh and ah. In the following, we report explicit expressions for the limit of the

these expectations, computed under the assumptions of Theorem 5.1. We refer the reader

to Appendix E.2 for details on their derivations.

The drift per unit of time (Condition A1.1) is given by:

h−1E
[(
x

(h)
kh − x

(h)
(k−1)h

)
|F (h)

kh

]
= µ

(h)
kh (5.21)

h−1E
[(
µ

(h)
(k+1)h − µ

(h)
kh

)
|F (h)

kh

]
= d− ϑµ(h)

kh (5.22)

h−1E
[(
λ

(h)
(k+1) − λ

(h)
kh

)
|F (h)

kh

]
= ω − θ λ(h)

kh (5.23)

Again, constraints on the parameters d, ϑ, ω and θ depend upon the link function and will

be discussed in specific cases. The second moments per unit of time (Condition A1.2) are

given by:

h−1E
[(
x

(h)
kh − x

(h)
(k−1)h

)2

|F (h)
kh

]
= Λ

(
λ

(h)
kh

)
ζ(2) + o(1) (5.24)

h−1E
[(
µ

(h)
(k+1)h − µ

(h)
kh

)2

|F (h)
kh

]
= a2Λ

(
λ

(h)
kh

)
χ−1
z + o(1) (5.25)

h−1E
[(
λ

(h)
(k+1)h − λ

(h)
kh

)2

|F (h)
kh

]
= α2sλ

(
µ

(h)
kh , λ

(h)
kh

)2

ξ
(2)
kh + o(1) (5.26)

h−1E
[(
x

(h)
kh − x

(h)
(k−1)h

)(
µ

(h)
(k+1)h − µ

(h)
kh

)
|F (h)

kh

]
= aΛ(λ

(h)
kh )χ−1

z + o(1) (5.27)

h−1E
[(
λ

(h)
kh − λ

(h)
(k−1)

)(
µ

(h)
(k+1)h − µ

(h)
kh

)
|F (h)

kh

]
= o(1) (5.28)

h−1E
[(
x

(h)
kh − x

(h)
(k−1)h

)(
λ

(h)
(k+1) − λ

(h)
kh

)
|F (h)

kh

]
= o(1) (5.29)

The considerations of the previous section apply also here. Concerning Condition (A1.3),

we choose, as in Nelson (1991), δ = 2, and then set dh = hd, ωh = hω, βh = 1 − hθ,
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bh = 1− hϑ, αh = h1/2α and ah = ha. These choices lead to the following results:

h−1E
[(
x

(h)
kh − x

(h)
(k−1)h

)4

|F (h)
kh

]
= hΛ2

(
λ

(h)
kh

)
ζ(4) (5.30)

h−1E
[(
µ

(h)
kh − µ

(h)
(k−1)h

)4

|F (h)
kh

]
= O(hς), ς ≥ 4 (5.31)

h−1E
[(
λ

(h)
kh − λ

(h)
(k−1)h

)4

|F (h)
kh

]
= hα4sλ

(
µ

(h)
kh , λ

(h)
kh

)4

ξ
(4)
kh,λ +O (h%) (5.32)

with % ≥ 3/2. In particular, since ζ(4) and ξ
(4)
kh,λ are finite by assumption, all the expressions

above converge to zero as h goes to zero. As a consequence, Assumption 1 is satisfied and

the two coefficients b(qt, t), a(qt, t) are given by Eq. (5.19), (5.20).

In order to conclude the proof of the Theorem 5.1, we need to discuss the finiteness of the

process in finite intervals and uniqueness of the diffusion limit. This is related to the growth

and regularity of the coefficients b(xt, µt, λt, t) and a(xt, µt, λt, t), and on the link function

Λ(λt). Again, we distinguish between models for which the link function is the identity

(Λ(λt) = λt), and models for which the link function is the exponential (Λ(λt) = eλt).

In the first class of models, the equation describing the evolution of σ2
t is decoupled from

the other two equations, and it has a unique solution since the coefficients are continuous and

globally Lipschitz (see proof of Theorem 2.3). The Cholesky decomposition of a(xt, µt, σ
2
t )

gives us the matrix σ (xt, µt, σ
2
t ), which is such that σ(xt, µt, σ

2
t )σ(xt, µt, σ

2
t )

′
= a(xt, µt, σ

2
t ):

σ
(
xt, µt, σ

2
t

)
=


σt
√
ζ(2) aσt√

ζ(2)χz
0

0
σta
√
ζ(2)χz−1√
ζ(2)χz

0

0 0 αC(Θ)σ2
t


where a > 0 and C(Θ) is a positive constant function (possibly) dependent on the vector of

static parameter. Under the assumptions of Theorem 5.1 both b(xt, µt, σ
2
t ) and σ (xt, µt, σ

2
t )

are globally Lipschitz and, therefore, Assumption 4 is satisfied. In models with an exponen-

tial link function, the matrix σ(xt, µt, λt) of the Cholesky decomposition of a (xt, µt, λt) is

given by:

σ (xt, µt, λt) =


exp (λt)

√
ζ(2) a exp(λt)√

ζ(2)χz
0

0
exp(λt)a

√
χz ζ(2)−1√

ζ(2)χz
0

0 0 C(Θ)


where a > 0 and C(Θ) is a positive constant functions (possibly) dependent on a vector of

static parameters Θ. Under the assumptions of Theorem 5.1, b(xt, µt, λt) and σ(xt, µt, λt)

are continuous and globally Lipschitz and, therefore, Assumption 4 is satisfied.
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5.1.1 A Student-t location-scale family model

In this section, we specialize the general limit result of Theorem 5.1 to the case of a Student-t

density with time-varying location and scale. Specifically, we assume that the conditional

density in (5.1)-(5.2) is:

yt|Gt−1
d∼ p(yt|Gt−1;σ2

t ,Θ)

p(yt|Gt−1;µt, σ
2
t ,Θ) =

Γ((ν + 1)/2)

Γ(ν/2)
√

(ν − 2)πσ2
t

[
1 +

(yt − µt)2

(ν − 2)σ2
t

]− (ν+1)
2

.

Note that the link function is the identity and Ψ (z,Θ) = Γ((ν+1)/2)

Γ(ν/2)
√

(ν−2)π

[
1 + z2

(ν−2)

]− (ν+1)
2

. In

order to derive the drift vector b(xt, νt, σ
2
t ) and the matrix a(xt, νt, σ

2
t ) in Eq. (5.18), it is

sufficient to compute the following quantities (note that s (σ2
t ) and χ(σ2

t ) are the same as in

Section 3.1.1):

ζ(2) = 1 (5.33)

χz =
ν (1 + ν)

ν2 + ν − 6
(5.34)

s(σ2
t ) = 2σ4

t (5.35)

χ(σ2
t ) =

1

2σ4
t

ν

ν + 3
(5.36)

In particular, it results that ζ(2) ≥ χ−1
z for all ν > 2, whereas b(xt, µt, σ

2
t ) and a(xt, µt, σ

2
t )

are given by:

b(xt, µt, σ
2
t ) =

 µt

d− ϑµt
ω − θ σ2

t

 a(xt, µt, σ
2
t ) = σ2

t

 1 aχ−1
z 0

aχ−1
z a2χ−1

z 0

0 0 α24σ6
tχ(σ2

t )

 (5.37)

where ω > 0, and d, θ and ϑ ∈ R. If ν is finite, χ−1
z < 1, implying that the matrix

a(xt, µt, λt) is non-singular and that qt is driven by three independent Brownian motions.

In the Gaussian limit, χz = 1 and xt, µt are driven by two perfectly correlated Brownian

motions.

5.2 Dynamic multivariate elliptical models

To develop the results in the present section, we first need some matrix notations and

definitions. Let Mm,n (R) be the set of m × n matrices with entries in R. We denote the

(i, j) entry of an m × n matrix A by (A)ij or aij. In addition, we set Mn (R) = Mn,n (R)

and denote by S+
n (R) the set of n × n non-negative definite symmetric matrix. Now, let
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A ∈ Mm,n (R) and B ∈ Mm′ ,n′ be two matrices. The Kronecker product is denoted by

A ⊗ B, with A ⊗ B ∈ Mmm′ ,nn′ (R). When A = B we write A⊗. Moreover, the operator

vec (A) vectorizes the matrix A into a column vector, whereas vech (A) vectorizes the lower-

triangular part of a matrix A into a column vector. The operator ⊕ for two matrices A and

B is given by: A⊕B = (A⊗B)+(B ⊗ A). Finally, we denote by Dn the duplication matrix,

i.e. the unique matrix Dn such that Dnvech (A) = vec (A) for any matrix A ∈ S+
n (R), by Bn

the elimination matrix, i.e. the matrix Bn such that Bnvec (A) = vech (A), and by Cn the

commutation matrix, i.e. the matrix Cn such that Cnvec (A) = vec
(
A

′)
. For further details

on matrix operations, we refer to Abadir and Magnus (2005).

In the present section, we deal with the class of dynamic covariance models based on

elliptical conditional densities. More precisely, let {yt}Tt=1 be a multivariate time-series

where each yt ∈ RN is a vector of log-returns, and denote by Gt = σ (y1, . . . , yt) the σ-

algebra generated by the observables up to time t. In the following, we assume that {yt}Tt=1

are sampled from the following conditional density:

yt|Gt−1
d∼ p (yt|Gt−1; Σt,Θ) (5.38)

p (yt|Gt−1; Σt,Θ) =
g

|Σt|1/2
Ψ
(
y′tΣ

−1
t yt,Θ

)
(5.39)

where g ∈ R+ is a normalization factor, Ψ is a probability density function, Θ denotes a set

of static parameters and | · | is the determinant. Note that this class of conditional densities

include the multivariate Student-t distribution, and thus the t-GAS model of Creal et al.

(2011). In Eq. (5.38), Σt ∈ S+
N(R) is Gt−1-measurable and depends upon a vector of time-

varying parameters ft ∈ RK . More precisely, Σt = Σ (ft) with Σ : RK → S+
N (R) being a

differentiable function of the Gt−1-measurable vector ft. The time-varying vector ft obeys

the following law of motion:

ft+1 = c+Bft + Ast (5.40)

where c ∈ RK is a vector of constants, A,B ∈ MK (R) and st = s(yt, ft) ∈ RK is a measurable

function depending on yt and ft. We assume that st = S (ft)∇t, where S(ft−1) ∈ MK(R) is

a scaling matrix that may depend on ft in a continuous way, whereas, under the assumption

that p (yt|Gt−1; Σt,Θ) is differentiable with respect to ft, the score ∇t is given by:

∇t =
∂ log p (yt|Gt−1; Σ(ft),Θ)

∂ft
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We write the cumulative log-return process xt =
∑t

i=1 yi as:

xt = xt−1 + ηt (5.41)

ft+1 = c+Bft + Ast (5.42)

where ηt ∈ RN has an elliptical conditional density with zero mean and normalized such that

E[ηtη
′
t|Gt−1] = Σt. By assuming a timestamp of length h, and allowing the static parameters

to depend on h, we write, for k ∈ N:

x
(h)
kh = x

(h)
(k−1) + η

(h)
kh (5.43)

f
(h)
(k+1)h = ch +Bhf

(h)
kh + AhS(f

(h)
kh )∇(h)

kh (5.44)

and

P
[(
x

(h)
0 , f

(h)
0

)
∈ Γ
]

= νh (Γ) for any Γ ∈ B
(
RN+K

)
, (5.45)

where η
(h)
kh has scale hΣ

(h)
kh and the sequence {νh} satisfies Assumption 3. Let F (h)

kh =

σ
(
x

(h)
0 , . . . , x

(h)
(k−1)h

)
. The score ∇(h)

kh is computed as:

∇(h)
kh =

∂ log p
(
y

(h)
kh |F

(h)
(k−1)h; f

(h)
kh ,Θ

)
∂f

(h)′

kh

′ (5.46)

where ykh = xkh − x(k−1)h are log-returns. Note that, using the chain rule, it is possible to

write:

∇(h)
kh = Υ′kh∇̃

(h)
kh (5.47)

where Υkh = ∂vech(Σkh)
∂f ′kh

and ∇̃(h)
kh denotes the score computed with respect to the lower-

triangular elements of Σkh:

∇̃(h)
kh =

∂ log p
(
y

(h)
kh |F

(h)
(k−1)h; f

(h)
kh ,Θ

)
∂vech(Σkh)′

′ (5.48)

The matrix Υkh depends explicitly on the parameterization of Σt.

As done in Section 2, we consider the continuous-time process
(
x

(h)′
t , f

(h)′
t

)′
∈ RN+K

constructed in the following way: x
(h)
t = x

(h)
kh , f

(h)
t = f

(h)
kh for kh ≤ t ≤ (k + 1)h. We first

determine the converges rates of the parameters ch, Bh, Ah which ensure that Assumptions

(A1.1), (A1.2), (A1.3) are satisfied as h ↓ 0. As in previous cases, it is important to

determine the dependence on h of the moments of the score. Let us denote by ξ
(2)
kh =
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E[∇kh∇′kh|F
(h)
kh ] the conditional Fisher information matrix and by ξ

(4)
kh,i = E[∇4

kh,i|F
(h)
kh ], i =

1, . . . , K, the conditional fourth moments of the i-th component of the score. In Appendix F,

we show that, for the class of elliptical densities, ξ
(2)
kh and ξ

(4)
kh,i are independent of h. Thanks

to this, we have the following result for the diffusion limit of the process
(
x

(h)′
kh , f

(h)′
kh

)′
:

Theorem 5.3. Under the following assumptions on the parameters:

lim
h→0

h−1ch = c

lim
h→0

h−1 (IK −Bh) = Λ

lim
h→0

h−1A2
h = A2 (5.49)

where c ∈ RK, Λ, A ∈ MK(R), and under the assumption that ξ
(2)
kh and ξ

(4)
kh,i, i = 1, . . . , K

exist and are finite, the continuous-time process
(
x

(h)′
t , f

(h)′
t

)′
weakly converges as h→ 0 to

the diffusion process mt = (x′t, f
′
t)
′ which is the solution to the system of stochastic differential

equations:

dmt = b(mt)dt+ σ(mt)dWt

where Wt ∈ RN+K is a vector of mutually independent Brownian motions, independent from

m0. The drift, b(mt), is given by:

b(mt) =

[
0N

c− Λft

]
(5.50)

while σ (mt) is a continuous mapping such that, for all mt ∈ RN+K and t ≥ 0, a(mt) =

σ(mt)σ(mt)
′, where a(mt) is given by:

a(mt) =

[
Σ(ft) 0(N×K)

0(K×N) AS(ft) I (ft)S(ft)
′A′

]
(5.51)

with I(ft) = limh→0 ξ
(2)
kh .

Proof. See Appendix F.1.

Using the chain rule, we can re-write the conditional Fisher information matrix as:

ξ
(2)
kh = Υ′khξ̃

(2)
kh Υkh (5.52)

where ξ̃
(2)
kh = E[∇̃kh∇̃′kh|F

(h)
kh ]. As previously stated, the expression of the matrix Υkh de-

pends on the parameterization used for Σt. As in Engle (2002) and Creal et al. (2011), we

decompose the covariance matrix as Σt = DtRtDt, where Dt is a diagonal matrix of standard

deviations and Rt is a correlation matrix. The latter is written as Rt = ∆−1
t Qt∆

−1
t , where
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Qt ∈ S+
N (R) and ∆t = diag[Qt]

1/2. We specify the vector of time-varying parameters as

ft =

(
log (diag (D2

t ))

vech (Qt)

)
(5.53)

which contains K = N(N + 3)/2 elements. Under this parameterization, Creal et al. (2011)

obtain the following expression for the matrix Υt:

Υt = BN (IN ⊕DtRt)WDtSD + BNDt⊗∆−1
t⊗
[
DN − (∆t ⊕Qt) ∆−1

t⊗W∆tS∆

]
SQ (5.54)

where i) W∆t is constructed by having a N2 × N2 diagonal matrix with diagonal elements

0.5vec
(
∆−1
t

)
and then dropping the columns containing only 0s; ii) WDt is constructed by

having a N2 × N2 diagonal matrix with diagonal elements 0.5vec (Dt) and then dropping

the columns containing only 0s; iii) the matrices S∆, SD and SQ are selection matrices

containing only 1s and 0s such that diag (∆2
t ) = S∆vech (Qt), log(diag (D2

t )) = SDft, and

vech (Qt) = SQft.

We illustrate the continuous-time limit in Theorem 5.3 for a multivariate Student-t den-

sity. In this case, the discrete-time process reduces to the t-GAS model of Creal et al. (2011).

For simplicity, we set N = 2 and assume that the variances are constant over time, i.e. we

set Dt = I2×2. The conditional density is given by:

p(yt|Gt−1;Rt,Θ) =
Γ ((ν + 2)/2)

Γ(ν/2) [(ν − 2)π] |Rt|1/2
×
[
1 +

y
′
tR
−1
t yt

(ν − 2)

]−(ν+2)/2

(5.55)

where Rt = [1, ρt; ρt, 1]. We employ the DCC parameterization, with ft = (q11,t, q12,t, q22,t)
′

and ρt = q12,t/
√
q11,tq22,t. The matrix Υt becomes:

Υt =
1

2
√
q11,tq22,t

(−q12,t/q11,t, 2,−q12,t/q22,t)
′(1, 0, 1) (5.56)

By standard linear algebra computations, we obtain that the matrix I (ft) is given by:

I(ft) = Π (ρt, ν)


1
q211t

− 2
q11tq12t

1
q11tq22t

− 2
q11tq12t

4
q212t

− 2
q12tq22t

1
q11tq22t

− 2
q12tq22t

1
q222t

 , (5.57)

where

Π (ρt, ν) =
ρ2
t (2 + ν (1 + ρ2

t ))

4 (4 + ν) (1− ρ2
t )

2 (5.58)

In particular, I(ft) is of rank one, due to the redundancy of the DCC parameterization (see
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e.g. discussions in Creal et al., 2011). For this reason, we set S(ft) = I3×3 and thus the

3× 3 block in matrix a(mt) is simply AI(ft)A
′.

It is interesting to examine the Gaussian limit. We have:

lim
ν→∞
I(ft) = Π(ρt)


1
q211t

− 2
q11tq12t

1
q11tq22t

− 2
q11tq12t

4
q212t

− 2
q12tq22t

1
q11tq22t

− 2
q12tq22t

1
q222t

 (5.59)

where Π(ρt) =
ρ2t (1+ρ2t )

4(1−ρ2t )2
. This is different from the continuous-time limit of the DCC model

(Hafner et al., 2017). In discrete-time, it is known that the t-GAS does not reduce to the

DCC as ν goes to infinity. We thus recover in continuous-time a result analogous to the one

known in discrete-time.

6 Conclusions

The relation between score-driven stochastic difference equations and continuous-time stochas-

tic differential equations usually employed in the theoretical finance literature is unknown.

The present paper sheds light on this topic by providing the weak diffusion limit of a class

of score-driven volatility models based on scale family densities, thus generalizing the popu-

lar diffusion limit of Nelson (1990). We determine the continuous-time limit of well-known

score-driven models, namely Beta-t, Gamma-GED, Beta-t-E and Gamma-GED-E (see Har-

vey, 2013). Two interesting properties have emerged: a) the form of the coefficients charac-

terizing the diffusion limit depends only on the link function and on the conditional second

moment of the score; b) the properties of the diffusion limit are strictly related with those

of the corresponding discrete-time process; the volatility of volatility of the diffusion limit of

models with a GARCH update can diverge as the density becomes more and more fat-tailed,

whereas in score-driven models this quantity remains finite.

We explore in an extensive Monte-Carlo study the implications of such results on ap-

proximate estimation and filtering of diffusion models. It is found that, as a consequence

of the non-normal nature of the likelihood of the underlying diffusion, the use of fat-tailed

score-driven models improves significantly in parameter estimation and volatility filtering.

We finally provide a generalization of the previous results to time-varying conditional mean

and to conditional variance models.

7 Acknowledgements

We thank Andrew Harvey for useful suggestions. Giulia Livieri acknowledges the support by

Unicredit S.P.A. under the project “Dynamics and Information Research Institute-Quantum

35



Information (Teoria dell’Informazione), Quantum Technologies”.

36



References

Abadir, K. M., Magnus, J. R., 2005. Matrix algebra. Vol. 1. Cambridge University Press.

Ait-Sahalia, Y., 2002. Maximum likelihood estimation of discretely sampled diffusions: A

closed-form approximation approach. Econometrica 70 (1), 223–262.

Ait-Sahalia, Y., Yu, J., 2006. Saddlepoint approximations for continuous-time markov pro-

cesses. Journal of Econometrics 134 (2), 507 – 551.

Alexander, C., Lazar, E., 2005. On the continuous limit of garch. Working paper.

Barone-Adesi, G., Rasmussen, H., Ravanelli, C., 2005. An option pricing formula for the

garch diffusion model. Computational Statistics & Data Analysis 49 (2), 287 – 310.

Barunik, J., Krehlik, T., Vacha, L., 2016. Modeling and forecasting exchange rate volatility

in time-frequency domain. European Journal of Operational Research 251 (1), 329–340.

Blasques, F., Koopman, S. J., Lucas, A., 2015. Information-theoretic optimality of

observation-driven time series models for continuous responses. Biometrika 102 (2), 325–

343.

Blasques, F., Lucas, A., Silde, E., 2018. A stochastic recurrence equations approach for score

driven correlation models. Econometric Reviews 37 (2), 166–181.

Bollerslev, T., 1986. Generalized autoregressive conditional heteroskedasticity. Journal of

Econometrics 31 (3), 307–327.

Bollerslev, T., 1987. A conditionally heteroskedastic time series model for speculative prices

and rates of return. The Review of Economics and Statistics 69 (3), 542–547.

Brown, L. D., Wang, Y., Zhao, L. H., 2003. On the statistical equivalence at suitable

frequencies of garch and stochastic volatility models with the corresponding diffusion

model. Statistica Sinica 13 (4), 993–1013.

Corradi, V., 2000. Reconsidering the continuous time limit of the garch (1, 1) process.

Journal of Econometrics 96 (1), 145–153.

Cox, D., 1981. Statistical analysis of time series: Some recent developments [with discussion

and reply]. Scandinavian Journal of Statistics 8 (2), 93–115.

Creal, D., Koopman, S. J., Lucas, A., 2011. A dynamic multivariate heavy-tailed model

for time-varying volatilities and correlations. Journal of Business & Economic Statistics

29 (4), 552–563.

37



Creal, D., Koopman, S. J., Lucas, A., 2013. Generalized autoregressive score models with

applications. Journal of Applied Econometrics 28 (5), 777–795.

Ding, Z., Granger, C. W., Engle, R. F., 1993. A long memory property of stock market

returns and a new model. Journal of empirical finance 1 (1), 83–106.

Drost, F. C., Nijman, T. E., 1993. Temporal aggregation of garch processes. Econometrica

61 (4), 909–927.

Drost, F. C., Werker, B. J., 1996. Closing the garch gap: Continuous time garch modeling.

Journal of Econometrics 74 (1), 31 – 57.

Duan, J.-C., 1997. Augmented garch (p, q) process and its diffusion limit. Journal of Econo-

metrics 79 (1), 97–127.

Duffie, D., Glynn, P., 2004. Estimation of continuous-time markov processes sampled at

random time intervals. Econometrica 72 (6), 1773–1808.

Engle, R., 2002. Dynamic conditional correlation: A simple class of multivariate generalized

autoregressive conditional heteroskedasticity models. Journal of Business & Economic

Statistics 20 (3), 339–350.

Engle, R. F., 1982. Autoregressive conditional heteroscedasticity with estimates of the vari-

ance of united kingdom inflation. Econometrica 50 (4), 987–1007.

Engle, R. F., Lee, G. G., 1996. 11 - Estimating diffusion models of stochastic volatility. In:

Rossi, P. E. (Ed.), Modelling Stock Market Volatility. Academic Press, San Diego, pp.

333 – 355.

Ethier, S. N., Kurtz, T. G., 1986. Markov processes: characterization and convergence. John

Wiley & Sons.

Fornari, F., Mele, A., 1996. Modeling the changing asymmetry of conditional variances.

Economics Letters 50 (2), 197–203.

Fornari, F., Mele, A., 2006. Approximating volatility diffusions with cev-arch models. Jour-

nal of Economic Dynamics and Control 30 (6), 931 – 966.

Gallant, A. R., Tauchen, G., 1996. Which moments to match? Econometric Theory 12 (4),

657–681.

Gourieroux, C., Monfort, A., Renault, E., 1993. Indirect inference. Journal of Applied Econo-

metrics 8, S85–S118.

38



Hafner, C. M., Laurent, S., Violante, F., 2017. Weak diffusion limits of dynamic conditional

correlation models. Econometric Theory 33 (3), 691–716.

Hansen, L., Scheinkman, J., 1995. Back to the future: Generating moment implications for

continuous-time markov processes. Econometrica 63 (4), 767–804.

Harvey, A., Lange, R.-J., 2017. Volatility modeling with a generalized t distribution. Journal

of Time Series Analysis 38 (2), 175–190.

Harvey, A., Lange, R.-J., 2018. Modeling the interactions between volatility and returns

using egarch-m. Journal of Time Series Analysis 39 (6), 909–919.

Harvey, A. C., 2013. Dynamic models for volatility and heavy tails: with applications to

financial and economic time series. Vol. 52. Cambridge University Press.

Hobson, D. G., Rogers, L. C., 1998. Complete models with stochastic volatility. Mathemat-

ical Finance 8 (1), 27–48.

Jeantheau, T., 2004. A link between complete models with stochastic volatility and arch

models. Finance and Stochastics 8 (1), 111–131.

Kallsen, J., Taqqu, M. S., 1998. Option pricing in arch-type models. Mathematical Finance

8 (1), 13–26.

Karatzas, I., Shreve, S. E., 1991. Brownian motion and stochastic calculus, 2nd Edition.

Springer.

Kitagawa, G., 1987. Non-gaussian state-space modeling of nonstationary time series. Journal

of the American Statistical Association 83 (400), 1032–1041.
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