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Abstract

Akey question in the development of understanding of animal communication has
been what maintains the honesty of signals, stopping dishonesty (cheating) from
spreading. The dominant theory used to address this question is a refinement of
Zahavi’s Handicap Principle. The vital thing about handicap signals is that their
honesty requires that those signals are costly to the sender over and above the
minimum costs associated with transmission; these costs are generally called strategic
costs. An alternative “pooled equilibria” has been proposed. If signalling is
constrained to two levels, then it can be demonstrated that even if there is no cost
associated with giving a signal, there can be a signalling evolutionarily stable strategy
(ESS) where signallers are arranged into pools according to their state: those below a
threshold give one signal, those above this threshold always give the other. Further,
this can be generalized to any finite nuﬁlber of discrete signals. Here we explore the
consequence of generalizing to a continuously varying signal form. We show that
unless there is some physical impediment to the diversity of signals possible, then
pooled-equilibrium signalling strategies are not stable. Such a strategy would be

invaded by a more complex signal, where some individuals within a “pool” benefit
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from signalling their difference from other individuals within the pool. We suggest
that such impediments to variation in signal form will be uncommon in nature, and

thus so will pooled equilibria.

Introduction
A key question in the development of understanding of animal communication has
been the evolutionary stability of signalling [1,2]. Signals must be honest (that 1s,
conveying useful information to the receiver) most of the time, or else receivers
would be selected to ignore the signal, and the signalling system would break down.
Thus the key questiop is what maintains the honesty of signals, stopping dishonesty
(cheating) from spreading. The dominant theory used to address this question is a
refinement of Zahavi’s Handicap Principle [3]. In its more generalised form the key
assumption of this theory is that the effective cost of a signal is lower for individuals
giving stronger signals; either.because higher quali_ty individuals (that are more able
to bear the higher costs of stronger signals) give such stronger signals or because
individuals in greater need (who would benefit most from a specific action by the
receiver) signal strongest [1]. The vital thing about handicap signals is that their
honesty requires that those signals are costly to the sender over and above the
minimum costs associated with transmission; these costs are generally called strategic
costs [4].

However, there are a number of alternative situations that can also allow
evolutionary stability of signalling without reliance on strategic costs. One of these is
that the form of the signal is causally linked to the quality of interest to receivers, such

that dishonest signals are physically not possible. Such an “unfakable” signal is
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generally called an index [1]. Consider an example where a female tiger moves
through the territories of several males, she is the receiver and what she is interested
in is the size of the territory-holding male (preferring larger males). Imagine that
males signal their size by stretching up a tree frunk with their forelegs to leave scratch
marks as high up as they can. This may be an example of an index. Smaller males are
simply unable to make marks as high as larger males can. Males have no incentive to
scratch less high than as physically possible for them and so scratch marks are a
reliable signal of male size.

Another situation that ensures honest signalling is complete congruence of
interests, where signaller and receiver always place the possiblle outcomes of an
interaction between them in the same rank order. A simple example of this could be a
situation involving anti-predatory alarm calling when signaller and receiver are
related. There are two situations, either a predator is present or not; and two possible
outcomes of one individual detecting a predator, emission of an alarm call or not. Ifa
predator is present then both receiver and signaller benefit if an alarm call is given:
presuming that the receiver can act on the alarm call to reduce its risk of predation and
that the signal is not overly costly to the signaller. If a predator is not present, then
both signaller and receiver benefit from no call being given, if the receiver’s response
to a call adversely affects non-predation aspects of fitness (say by expending energy
or reducing opportunity to feed). In such an example there is no incentive to be
dishonest, because both parties’ interests always align.

It may also be possible to have honest signalling in a situation where the
individuals have different preferred outcomes of an interaction but share an
overwhelming interest in common. An example of this might be an aggressive

competitive interaction over a low-value resource (such as a small food item); each
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individual would rather that their opponent retreated yielding the resource to them, but
both are anxious to avoid an escalated contest that could be very damaging to the
loser.

Finally, honesty may be maintained if instances of cheating can be detected as
such and punished: either directly (by inciting an aggressive response from the
receiver) or indirectly through a loss of reputation (which affects the receiver’s
treatment of the cheating signaller in subsequent interactions in a way that
disadvantages the signallier).

In addition to these uncontroversial mechanisms, Bergstrom & Lachmann {5]
proposed an alternative model of cost-free signalling: “pooled equilibria™. Imagiﬁe
this in the context of interactions between a parent and a single offspring. Across
interactions the offspring varies continuously in the benefit it would gain from being
fed during an interaction, and th¢ parent varies continuously in the cost to them of
feeding the offspring in a given interaction. The parent has a binary choice to make in
each interaction: whether to feed or not. It is clear that it is not possible for both the
donor to benefit by giving and the receiver to benefit by not receiving in the same
interaction. Thus, ignoring this unbiological situation, there are three further

possibilities for a given outcome (from an inclusive fitness perspective):

(1 both parties benefit if the parent feeds the offspring;
(i)  both parties benefit if the parent does not feed its offspring;
(1ii  the offspring would benefit from the parent feeding it, but the parent would

not.
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If signalling of need by the offspring is constrained to only two levels (e.g. either a
signal of fixed intensity is given or it is not), then Bergstrom & Lachmann [5], in an
elaboration of the Sir Philip Sidney game 6], demonstrate that even if there is no cost
associated with giving a signal, there can be a signalling evolutionarily stable strategy
(ESS) where offspring are arranged into pools according to their state: those below a
threshold value of need do not signal, those above this threshold always signal. At this
ESS, signalling increases the Wiflingness of parents to feed. Since it is an ESS, the
particular threshold value is such that no individual benefits from adopting an
alternative threshold value. These authors further demonstrate that the theory can
generalize to a greater number of pools each correspondingrto a fixed signalling level.

This pooled-equilibrium mode] relies on relatedness between signaller and
receiver for stability of the signal. Brilot & Johnstone [7] show that cost-free
signalling is stable in the two-pool system only if the ratio of maximum to minimum
need of the signaller exceeds a critical value that increases as the relaﬁedness of
signaller and receiver decreases.

As well as relatedness between signaller and receiver, an important
assumption of the model of Bergstrom & Lachmann [5] (as opposed to the extension
considered in this paper) is that signalling can take only a finite number of values, as
can the number of responses. In the simple case here, all offspring in a signalling pool
will signal with exactly the same intensity, despite the fact that individuals in the same
pool vary continuously in need. This seems biologically restrictive, since one might
naturally expect those individuals in the signalling pool with greatest need to signal
more vigorously than the others (perhaps only a little and perhaps only sometimes), or
those parents whose costs just tip them into the position of being willing to feed might

sometimes be slightly more reluctant to do so than individuals for whom the costs are
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lower. Maynard Smith & Harper [1] argue verbally that the no-cost signalling ESS
will not be robust to such a violation of model assumptions. Here we will investigate
this more fully with a formal model. Before relaxing the restriction of the fixed
number of signalling levels — we quickly review the key features of the original

model.

The Original Model

Suppose that we have a population which contains both signallers and receivers. It
might be the case that members of the population are always in one of the roles (e.g.
males signalling to females) or that every individual can be in either role at some
point in their lives (e.g. chicks signalling to parents). We note that for the type of

solutions that we describe below to occur, there needs to be a degree of relatedness

“between signaller and receiver, so that the second of these scenarios is the more

natural to consider. A strategy in this context involves both how to behave as a

signaller and how to behave as a receiver,
The two-pool case can be represented as follows.

The states of individual signallers of interest to the receiver is their health {x), which
is continuousiy distributed within the range [0,1]. Signallers with low health are in
most need of donation of resources from the signal receiver (hereafter called the
donor). At the ESS, the signalier signafs “high-need” if it is in health range 0 Sx <a
and “low-need” if it is in health range a <x < 1.

The health of donors are also continuously distributed across [0,1]. A donor can

respond in an interaction with a signaller by either donating resources or not.
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Donation costs the donor (and this cost is easiest to bear for those in best health), and
benefits the signaller (and is most valuable to low-health signallers). The fitness
benefit from an interaction to a donor is 1 if it keeps the reward, but a lower level y if
it donates it; the fitness beﬁeﬁt of an interaction for the signaller is x if there 1s no
donation and 1 if it receives a donation.

Given this, at the ESS, the donor will donate to the signaller if its own health y is
greater than y; when it receives the high-need signal, and if is own health y is greater
than y, when it receives the low-need signal. Clearly y, should be greater than y; in
any stable signalling system.

Thé donor and signaller have relatedness coefficient k (k < 1) such that the inclusive
fitnesses (payoffs) are as follows.

For the donor, the payoffis 1 + kx if there is no donation and y + & if there is. For the

signaller the payoff is x + k if there is no donation and 1 + ky if there is.

Thus, if complete information on the health state of both parties were available, then

the donor would prefer to donate provided that
y>14+k{x-1).
This is the area above line D in Figure la.

The signaller would prefer donation provided that

y>1+

k
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This is the area above line S in Figure la.

Thus there is an area below line S where both parties agree that no donation is best, an
area above line D where both parties agree that donation is best, and the wedge-
shaped area between the two lines where the signaller would prefer that donation

occur but the donor would prefer that it did not.

We assume that the health of both receivers and donors are uniformly spread over
[0,1]. However, we believe that our key results would be qualitatively unchanged for.
any alternative distribution which allowed all healtﬁ values to occur af least
sometimes. We seck expressions for the ESS strategy of the signaller (the value of a)

and that of the donor (the values of yp and y;).

For a given value of the signalling threshold (a), receiving the high-need signal means
that the signaller is equally likely to have a value anywhere in the range [0,a] and so

on average the donor fitness from choosing not to donate is

o pi

Alternatively, if the donor chooses to donate, its fitness is y+k. Thus the donor
should donate on encountering a high-need signaller if its fitness is greater by taking

that option: i.e. if

y+k>i+£§—;:§y>}wk(1wg~j.
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This allows us to define y; infroduced above:

¥, ml—k(l—%). 1)

It is clear that any other choice yields a strictly smaller payoff against the high need
signal. When receiving the low-need signal, the donor fitness when it does not donate

is

j:l”‘xdxmug)(zm).

l-a

Thus, in this case, it should donate when
k k
y+k> 1+(5](i+a):> y >1-[E)(}ma).
This allows us to define the second threshold value y,:

y, =1 —(’—“)(1 —a) )

2
It is clear again that any other choice vields a strictly smaller payoff against the low
need signal.
Thus, for a given signaller sﬁategy {(choice of @) we can find the best donor strategy

(choice of yp and y;). Note that from (1) and (2) it follows that yy - y,=&/2.
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The strategy pair is unstable against a change in the value of @ unless a signaller of

health @ does equally well by signalling high- or low-need.

If it signals high need it gains:

b i

JGer iy + 1+ iy 3)

0 ]

If it signals low need then it gains

o

I(x + & )dy + 1_{(1 +ky)dy . (4)

0 Yo

Equating (3) and (4), and substituting x = @, and y, and y; as defined in (1) and (2)

gives (after some simple calculations) a unique value of a:

43k
[ = .
4-2k*

For an individual of health slightly higher (lower) than a, the payoff in (4) is higher
(lower) than the payoffin (3), so that any other choice of strategy yields a strictly
smaller payoff. Thus any change in strategy by either player yields a strictlyé smaller
payoff, and so the strategies of the signaller (@) and the donor (yp and y) are ina

strict Nash equilibrium pair, and so form an ESS pair.

This equilibrium is illustrated in Figure la. Notice that the range of signaller health

states corresponding to high-need only includes cases where the signaller would

10
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prefer that donation occurs; whereas low-need signalling involves all three situations,

including situations where both parties would benefit from donation.

Donation occurs in the two rectangular boxes whose upper side is the horizontal line
where y = 1. Thus instances of donation span all three possible outcomes, including
situations where neither party benefits from donation. Instances of no-donation also

cover cases of all three possible combinations of outcomes.
Consequences of allowing another signal
Suppose we allow a new type of signaller into the population described above that can

use another signal that is indicative of ultra-high need for very low health individuals,

so the signaller strategy for this new type of signaller is a pair of values a and b such

that those with health ranges (0,5) use this new signal of ultra-high need, those with

health in the range (b,a) use the same signal of high-need as used by the old signallers
across the widér range (0, @), and those with health (a ,1) give the same low-need
signal that old signallers gave in this range. We assume the value of a is the same for
the new signaller type as for the old type described in the last section. Suppose that a
new type of donor also appears in the population, either because a single mutation
alters the behaviour in both roles of individuals who sometimes play as signaller and
sometimes as donor; or because genetic drift first introduces new behaviour on the
part of individuals who act only as donors, and then a mutation introduces new
behaviour on the part of individuals who act only as signallers. We consider two

possibilities for this new donor behaviour

11
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One can potentially imagine two types of donor responses, that is two different types

of new donor responses to this new signaller type.

1)

2)

The donor recognizes the new ultra-need signal and responds by increasing the
range of ifs bwn health status over which it will donate in response to this
ultra-high need signal; however it treats the other two signals exactly as
donors treated those signals when given by the oid type signallers. In this
situation, the new strategy offers a selective advantage to the signaller and
should spread. Thus in our analysis we shall concentrate on mutants of the

second type.

The donor can differentiate between old and new type signallers, and behave
towards their signals accordingly. We note that it is by no means clear that
mutants will be able to make such a distinction, but that if they cannot,
mutants will be of the first type, and so invasion will clearly be possi'bié. If
distinction can be made by donors, they realise that an old type signal that
signals high-need will indicate health somewhere between 0 and a, whereas a
similarly signalling new type individual will have health betwéen b and a, and
thus will on average be healthier. Thus, although the donor will be more
prepared to donate to ultra-high signalling by the new type signaller (shown as
the region (1)1in figure 1b) it will also become less willing to donate to new

signallers that use the high-need signal (shown as the region (2) of Figure 1b).

12
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As mentioned above, we will focus on situation (2), as the most biologically
interesting. We will consider a population comprising of both new and old type
signallers, and new and ‘old type donors. Firstly, suppose that a new type signaller
and a new type donor meet. There is no reason why the response to the low-need
signal will change because of the introduction of the ultra-high need signal. Thus yy is
unchanged from old type signallers. The response of new type donors to these new
type signallers will then be given by the critical vatues (yo, y;*, y2): as shown in

Figure 1.

By analogy with equation (1), the donor will donate if it obtains the ultra-high-need

signal and its own heath is greater than y,, where

N P
y, =1 k(l 2). (5)

If it receives the intermediate (high-need) signal, it donates if

19 a b
+k> 1+ kx >1—kll———==1.
y+k j( Mx =y c( ; ZJ

a-— b

Thus the signal will be responded to when y > y;*, where

b
yl*ml—k[l—-—gmz—j. (6)

13
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Thus donation happens for the new signaller where it did not happen for old signallers

when

D<x<b . (7a)

and

1-k[1~éj<y<1wfc(1wg—]. (7b)
2 2

The region associated with (7a) and (7b) is marked as region 1 of Figure 1b.

However, donations now no longer happen for new signallers when they did happen

for old signallers, when

b<x<a , (8a)
and
1—k[1—§]<y<1wk(1—§—§). (8b)

This is marked as region 2 of Figure 1b.

The areas of both regions 1 and 2 are 0.5kb(a-b). The gain to the signaller in region

(1) from the new signal is given by

14
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;f_:([:%}(l ++ ky X~ ke )ydx

If we assume that b is very small (so the ultra-high-need signal is only given by
individuals of a very low health state), then this expression is well approximated by

the simpler form

-k 2

2 2
b j(l —k+kylly = (%](1 —k* 4+ %‘i} . | (9)

-k
Similarly the signaller gain in region (2) from the new signal is given by

1»&.(13_*'—’71

2
j(l + ky - x — k dydx .

fa
e
Z

(i[
by

Assume again that b is very small, then this expression is well approximately by the

simpler form

a 2
_B 1—~k2[1—9—)—x xzm(@] T ) (10)
2 2 2 2 2 |

Combining (9) & (10) the overall gain from regions (1) and (2) for the new type

signaller is given by

i5
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bka® 1~£ci
4 2 )

Thus, since k < 1, overall the signallers gain from using the new type signal.

The donor gain in region (1) is given by

iwi{lng
5

w-] _[(i+kx—y-~k)dydx.

0 1~k(;mfi}
2

Using the same assumption as for the signaller, this is well approximated by

1-.'c+-'r£{—z-

B 2.2
b Ji-k-yhy =2 (11)
-k

Thus donors gain from their responses to the new signal in region (1).

In region (2) the donor gain is given by

" The same limiting case, allows us to simplify this fo

16
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f[zoc_i‘fzijdxzo . (12)

There is no gain or loss to donors in this region which sits close to the borderline
determining whether it is optimal for the donor to donate or not, and spans cases

above and below that borderline (line D in figure 1b).

Thus, overall both donors and signallers benefit from the new signalling strategy

when they meet.

Any interaction between a new type signaller and an old type donor which cannot
distinguish the new ultra-high need signal from the high-need signal will be exactly

the same as one involving an old type signaller and an old type donor.

Similarly when a new type donor meets an old type signaller, the donor recognizes
that it is an old type signaller and responds to signals optimally (i.e. identically to an
old type donor) and so the rewards will again be exactly the same as one involving an

old type signaller and an old type donor.

Thus, in a well-mixed population of old and new type signallers and old and new type

donors both of the new types will out-compete the old types until both of the new

types dominate the population. This means that the original pooled equilibrium is not

stable against invasion by at least this type of very-needy signaller.

17
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In addition, by analogous reasoning to that presented above, it is likely that the
population of new t}lzpe signallers and donors will similarly not be stable and will be
vulnerable to subsequent invasion by another even more complex signaller. A pooled
equilibrium system lWith an infinite number of strategies, whilst mathematically
possible, is not biologically realistic; eventually, we might expect the pooled
equilibrium to break down and be replaced by a cost-based continuous signalling
system. Consequently the only situation where we expect pooled equilibria to be
stable is where there is some physical constraint on signal production or signal
reception that leads to only a finite number of discrete signal types being possible,
each signal being given by signallers or received by donors in exactly the same way
despite the fact that they are generated and received by individuals from across a

range of different inherent qualities.

Discussion

In this paper we héve considered a population where individuals can be in one of two
main roles, signaller and receiver. The signaller sends a signal to the receiver, and the
receiver must decide how to act based upon the signal received. We considered an
important model of tﬂis type of system due to Bergstrom and Lachmann [5], and have

demonstrated that under reasonable agsumptions such a system will not be stable.

It should be noted that it was not necessary for our analysis to consider some of the
important features of signalling systems, because we only needed to show that certain
types of signalling strategies are not stable. In particular, a question we have not
addressed is how can a population resist invasion by strategies which differ only in

how a receiver responds to a signal not received in the equilibrium (perhaps genetic

18
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drift could lead to suboptimal receiver responses, which may then allow different
signalling strategies to invade)? A reasonable assumption would be to use the
trembling hand idea of [8], which effectively assumes that occasional "mistakes"
occur (either individuals giving the wrong signal by mistake, or mutant individuals . |
with poor strategies) which means that every strategy is met occasionally. Thus any
stable strategy must respond optimally even against strategies that are ulaot seen in the
equilibrium, and such neutral invasion is often avoided. To demonstrate stability we
would have to consider carefully how mutant strategies arise in such a population, and

different assumptions in this regard could lead to different results.

Our result shows that unless there is some physical impediment to the diversity of
signals possible, then pooled-equilibrium signalling strategies do not seem stable.
Such a strategy would be invaded by a more complex signal, where some individuals
within a “pool” benefit from signalling their difference from other individuals within
the pool. It is difficult to think of biological situations where such restrictions will
apply to either the mechanisms of signal transmission or reception that would
constrain signals to a small number of discrete levels. Hence, we suggest that the |
assumption of pooied equilibrium theory that such restriction occurs considerably

decreases the biological relevance of this theory.

Our work can be seen as extending the work of Brilot & Johnstone [7], ;\zvho
demonstrated that the stability of a pooled-equilibrium against mutants with different
threshold levels (different values of a in our model) will be dependent on the
distributions of need across the populations of signallers and donors. Specifically

they show a requirement for this type of stability is that the ratio of maximum to

19
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minimum need of the signaller exceeds a critical value that increases as the
relatedness of signaller and receiver decreases. From this they conclude that their
results “suggest that the necessary conditions for cost-free communication of need
are, in fact, quite restricltive”. Our work amplifies this conclusion, emphasizing
pooled-equilibrium theory’s critical dependence on the restriction of the available
signal levels to a finite number, in addition to the restriction that Brilot & Johnstone

[7] demonstrate.

A rather different scenario involving discrete signals to communicate a continuous
hidden need state when competing for a resource in a zero-cost signalling game was
investigated in [9]. In this gamé both players signalled (or declined to signal and
immediately conceded) and the one with the lower signal conceded the resource, with
identical signals leading to a fight. When an additional signal was. made available,
optimal play involved the lowest signal being used for a range of need values which
led to no signal in the original game. Thus individuals did not change the size of the
pooi used by signals other than that for no signal. In that case, a different type of
model, with a different biological interpretation than nestling begging, does not resuit

in a decay of discrete signal use.

A related model of the type of signaling system we have described was considered in
[10]. In this paper a signaller observes a piece of information which affects the
potential reward to both itself and a receiver. The signaller then sends a signal to the
receiver conveying some information about its observation, after which the receiver
makes a choice which determines the result of the game. An interesting feature of this

game is that it was proved that there is an upper bound on the number of distinct
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signals that can feature in an optimal signalling strategy (unless the interests of both
signaller and receiver completely coincide), even when the number of available is
unlimited, as opposed to our case‘. The main differences between this model and ours
is that while there is effectively an infinite number of signalling types in each case, in
[10] there is only one receiver type (which has an infinite number of potential
choices), whereas we have an infinite number of receiver types (with two potential
choices). In particular in our model no matter how many signals there are, there will
likely be circumstances when the associated choices lead to both individuals making
the wrong choice (see Figure 1), as opposed to the one if they knew both of the health
values, and there is thus always scope for a new signal to improve the communication,

whereas this does not occur in [10].

In many situations, signallers that vary continuously in quality and are capable of
continuous variation in the level of signalling of that quality, in fact restrict ﬂl@il‘ use
of this flexibility, using only a limited number of different signal strength levels [11].
However, this observation does not provide support for the assumption of pooled-
equilibrium theory of the restriction of signals to a finite number of levels. Firstly, the
theory of such “all or nothing” signalling involves such limitations to the signal
strengths used as emergent predictions of the theory; the signallers remain physically
capable of using other levels of signal intensity, they simply play a strategy that does
not use this ability [12]. This is quite different from the assumption of pooled-
equilibrium theory that such flexibility is impossible. Secondly, current understanding
of the evolution of all or nothing signalling is based on the theory of costly signalling
[11], rather than the no-cost signalling that i3 the focus‘ of pooled equilibrium theory.

The type of pooled equilbiria described in this paper also occur for costly signals, and
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they are often (but not always) stable against invasion [13]. This is because at the
boundary, the signal chosen is just costly enough so that signalling or not would Be
equally profitable. Given the sigﬁal level, any change in the boundary would give a
worse payoff. Whether a change in signal level is stable depends upon how
individuals respond to nen-received signals, and this will in turn depend upon how

such mutants occur,

The original motivation for the development of pooled-equilibrium theory was that it
has proven challenging to demonstrate empirically in many signalling systems the
strategic costs required to maintain signalling honesty through handicap theory [5].
This remains an important issue in our understanding of animal communication {5},
and we feel that it is important that other potential honesty-ensuring mechanisms are
given consideration alongside the highly-influential handicap theory (see [14] for a
thorough discussion of these). In particular, we feel that the potential for verification
and thus identification and punishment of lying, may warrant closer consideration. For
example, like much theory in animal-communication, pooled-equilibrium theory was
developed with begging signals of avian chicks in mind. An important issue here is
that many theories, including pooled equilibrium theory, have assumed that each
interaction between signaller and receiver occurs independently, with the interactants
having no memory of any the previous interactions with their current signalling
partner. This may be quite a poor representation of the relationship between chick and
feeding parent. In small passerine birds it may not be uncommon for a parent to visit
the nest with food over a hundred times in a single day [15]. Birds have been shown
to demonstrate considerable feats of memory [16]. It seems not impossible that a

parent bird could recall a chick’s recent history {over a number of nest visits) of call
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intensity along with the recent history of its own reagtions to such calls, and compare
these with visible changes in the chick (say in terms of appetite or size). This
comparison might allow the parent to make inferences about the honesty of the
chick’s recent signalling. That is, the parent might not be able to detect that any one
particular signal was dishonest, but could measure the long-term average honesty of
Signais received from a particular chick. If such signalling was (on average)
sufficiently dishonest, this adult should certainly be capable of responding to this, by
reducing the influence of that chick’s future signalling in making its feeding
decisions. As such, honesty might be maintained By the costs that are imposed on .

cheating signallers by the loss of trust given to them by receivers.

In Coﬁclusion, we suggest that pooled-equilibrium theory does not offer a likely
alternative to handicap theory for situations where the strategic costs of signal
production required for handicap theory appear to be absent. However, there may be
uncontroversial but under-considered alternative explanations for minimal cost
signalling; and we recommend that signal verification and the discovery of cheating

may be an important mechanism.

Figure Caption

Figure 1: Graphical summary of the different regions of interaction between potential
donor and signaller as a function of their health status (x and y respectively). (a) The
previously-studied system where only two signal types are possible; (b} The situation

introduced in this paper, where an additional signal is available to those signallers in
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most need of donation. If complete information on the heath state of both parties
where available, then the donor would prefer to donate in

the area above line D. The signaller would prefer donation in the area above line S.
Thus there is an érea below line S where both parties agree that no donation is best, an
area abové line D where both parties agree that donation is best, and the wedge-
sﬁaped area between the two lines where the signaller would prefer than donation
occur but the donor would prefer that it did not. In the two-signal situation the
signaller signals “high-need” if it is in health range 0 < x < a and “low-need” if it is in
health range ¢ <x £ 1. _The donor will donate to the signaller if its own heath y is
greater than y, When it receives the high-need signal, and if its own health y is greater
than v, when it receives the low-need signal. In the three signal-system we add a

signal of very high need for x < & and y; changes to y; *.
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