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Abstract

We propose a class of score-driven realized covariance models where volatilities and correlations

are separately estimated. We can thus combine univariate realized volatility models with a recently

introduced class of score-driven realized covariance models based on Wishart and matrix-F distributions.

Compared to the latter, the proposed models remain computationally simple at high dimensions and allow

for higher flexibility in parameter estimation. Through a Monte-Carlo study, we show that the two-step

maximum likelihood procedure provides accurate parameter estimates in small samples. Empirically, we

find that the proposed models outperform those based on joint estimation, with forecasting gains that

become more significant as the cross-section dimension increases.
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1 Introduction

Covariance modeling and forecasting is a prominent topic in many financial applications. Since the seminal

work of Andersen and Bollerslev (1998), the use of realized measures computed from high-frequency data

has emerged as a preferential tool to forecast volatilities and correlations. Several univariate specifications

for realized volatility have appeared in the econometric literature; see, among others, Engle and Gallo 2006,

Corsi 2009, Shephard and Sheppard 2010, Hansen et al. 2012. More recently, a parallel interest arose towards

multivariate models. Notably examples are given by Chiriac and Voev 2011, Bauer and Vorkink 2011, Bonato

et al. 2012, Bauwens et al. 2012, Callot et al. 2017, Gorgi et al. 2018, Opschoor et al. 2017. The dynamic

modeling of realized covariance poses a number of challenges that are absent in an univariate framework.

The curse of dimensionality, i.e. the fact that the number of parameters rapidly increases with the cross-

section dimension, might significantly affect the statistical efficiency of the estimation. Another complication

is the need to guarantee positive-definite estimates, which is relevant in financial applications. Furthermore,

estimation errors on realized measures play a crucial role in a multivariate framework, as they can lead to

unstable solutions in portfolio optimization (Jagannathan and Ma 2003).

In this paper, we introduce a methodology aimed at addressing the above mentioned difficulties. Inspired

by the DCC model of Engle (2002), we apply a two-step estimation procedure to a class of score-driven

realized covariance models based on Wishart and matrix-F distributions. In the new models, the dynamics of

correlations are driven by the score of the conditional density. Volatilities are instead estimated in a previous

step through a sequence of univariate models. Such approach inherits the main advantages of the DCC. In

particular, it allows to model separately volatilities and correlations, which possess different dynamics, and

leaves more flexibility in the estimation of the model. Each univariate specification is estimated independently

from the others, and it is therefore characterized by different parameters. In a similar fashion to the DCC,

in the second step of the estimation, a set of restrictions on the parameter space can be imposed in such

a way that the number of parameters scales well with the cross-section dimension. The new models are

thus less affected by the typical curse of dimensionality problem of multivariate realized covariance models.

Conditions guaranteeing positive-definite covariance estimates are easily derived.

Bauwens et al. (2012)1 introduce a related DCC approach to realized covariance modeling based on the

Wishart density. The proposed approach differs in the method used to update the time-varying parameters.

In our framework, the update rule is determined by the score of the conditional density (Creal et al. 2013,

Harvey 2013). In the case of the Wishart density, if the score is scaled through the inverse of the Fisher

information matrix, our method leads to the same update rule of Bauwens et al. (2012). If a matrix-F density

is instead used, we obtain a different update rule, which is robust to outliers. In our empirical application,

we show that the model based on matrix-F density provides a better fit to the data and is superior in terms

of out-of-sample forecast performance. It is worth noticing that the score of the conditional likelihood is

by construction a martingale difference. For this reason, the score-driven update automatically provides a

correction to the DCC model analogous to that introduced by Aielli (2013). In particular, it turns out that

the specific correction of Aielli (2013) is recovered in the case of the Wishart density, whereas if the matrix-F

1See also their extensions in Bauwens et al. (2016) and Bauwens et al. (2017).
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density is used, the correction assumes a different form.

Score-driven models are a large class of observation-driven models (Cox 1981) where the time-varying

parameters are driven by the score of the conditional density. They have been successfully applied in the

recent econometric literature. Notably examples are given by Creal et al. (2011), Creal et al. (2014) and Oh

and Patton (2018). Gorgi et al. (2018) and Opschoor et al. (2017) introduce a score-driven specification for

realized covariances based on Wishart and matrix-F distributions, respectively. In both cases, variances and

correlations are estimated in a single step. In contrast, we estimate such models using the above mentioned

two-step procedure. We show that this leads to significant forecast gains in common empirical applications

as a result of the higher level of flexibility in parameter estimation. The choice of the score-driven approach

as a starting point of our work is motivated by three main reasons. First, score-driven models provide a

general methodology to update the time-varying parameters based on the full shape of the conditional density

function. We thus obtain an update mechanism for volatilities and correlations which is consistent with the

choice of the observation density. Second, such approach acknowledges the existence of measurement errors

on realized covariance estimates. The latter are indeed modeled as noisy observations of the true latent

covariances. The relevance of measurement errors on forecasting with realized measures has been underlined

by Bollerslev et al. (2016), Bollerslev et al. (2018), Bekierman and Manner (2018) and Buccheri and Corsi

(2019). In the empirical application, we compare our methodology to alternative methods that ignore

estimation errors and show the resulting advantages in forecasting. Finally, in a score-driven framework, the

likelihood can be written in closed form and can be optimized numerically. Estimation is thus feasible even

when dealing with high dimensional matrices. General state-space models with latent covariances can only

be estimated by simulation-based techniques, which become infeasible at high dimensions.

Our Monte-Carlo study has three main objectives. First, we investigate the finite sample properties of

the maximum likelihood estimator that is employed in the second step of our procedure. We find that, as the

number of observations increases, the estimator becomes unbiased and its distribution concentrates around

the true parameters. Second, we simulate the covariances through a misspecified DGP and, according to

the empirical evidence that realized covariances have fat-tails, we generate observations from a matrix-F

distribution. We thus misspecify the measurement density of the score-driven Wishart model. We find that

both models can capture the misspecified dynamics of the covariances. However, the relative performance

of the matrix-F model is superior, as it is robust to the outliers generated by the fat-tailed measurement

density. As a final experiment, we compare the two-step estimated covariances with those resulting from

joint estimation. To mimic a realistic setting, variances are generated based on realized measures computed

from real data. We clearly find that, both in-sample and out-of-sample, the two-step procedure provides

significantly lower loss measures.

We illustrate the advantages of the proposed method in an empirical study involving two different

datasets. The first dataset includes 1-second transactions of 100 NYSE stocks. The second includes 1-

minute transaction data of 2767 stocks belonging to the Russell 3000 index. Score-driven realized covariance

models are typically estimated by restricting the volatility persistences to be the same across assets. We

first motivate the newly introduced class of models by performing several empirical tests which show that
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such assumption is too restrictive on real data. We then examine the in-sample and out-of-sample forecast

performance of the two-step models and compare them to models based on joint estimation and to other

benchmarks. We select groups of 5, 10, 25, 50, 100 assets. The proposed two-step procedure provides signifi-

cant in-sample and out-of-sample forecast gains compared to models based on joint estimation. In particular,

the Model Confidence Set of Hansen et al. (2011) is effective in selecting the two-step Wishart and matrix-F

models and excluding the remaining alternatives. Notably, forecast gains over joint estimation based models

become more significant as the cross-section dimension increases, given the higher level of heterogeneity in

the persistences of realized variances. Such results confirm that the additional flexibility provided by the

two-step procedure translates into better forecasts. We also find that, in the vast majority of the scenarios

examined in the analysis, the model based on the matrix-F density performs better than that based on the

Wishart density. We thus confirm the result of Opschoor et al. (2017) that the matrix-F density is more

suited to model time-series of realized covariances. Two additional empirical experiments are performed in

order to assess the advantages of the two-step approach. In the first experiment, we show the behavior of

the methodology as estimation errors on realized covariance measures become more severe. We find that

the model forecasts are significantly less affected by the noise compared to alternative methods which ignore

estimation errors. As a second test, we assess the economic gains of switching from joint estimation based

models to the proposed two-step models. By adopting a utility based framework similar to that of Fleming

et al. (2001), Fleming et al. (2003) and Bollerslev et al. (2018), we show that a risk-averse investor is willing

to pay a positive annual amount to employ the forecasts of the two-step models in constructing her port-

folio. Essentially, these economic gains are imputable to the lower ex-post risk featured by the portfolios

constructed with the proposed methodology.

The rest of this paper is organized as follows: Section (2) introduces the two-step estimation procedure

and reports the main results; Section (3) shows the results obtained through the Monte-Carlo analysis;

Section (4) describes the empirical application and reports the main results; Section (5) concludes.

2 Framework

2.1 Score-driven models for realized covariance

Let {Xt}Tt=1 denote a sequence of k×k positive-definite realized covariance matrices and let Ft = σ (Xs : s 6 t)

be the σ-field generated by past observations of Xt. We assume that the conditional distribution function

of Xt is given by:

Xt|Ft−1 ∼ Gk (Vt) (2.1)

where Gk is a matrix-variate distribution and Vt ∈ R
k×k is a latent covariance matrix. Let us define

q = k(k+1)
2 and let ft = vech (Vt) ∈ R

q collect the diagonal and upper diagonal elements of Vt. In the

score-driven framework of Creal et al. (2013) and Harvey (2013), ft is modeled as:

ft+1 = ω +Ast +Bft, (2.2)
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where:

st = (It|t−1)−1∇t, ∇t =
∂ log pGk(Xt, ft)

∂ft
, It|t−1 = Et−1[∇t∇′t] (2.3)

Here, pGk(Xt, ft) denotes the conditional density function associated with Gk, ∇t is the score computed with

respect to ft and It|t−1 is the Fisher information matrix. The score-driven framework provides two main

advantages. First, the parameters in ft evolve based on the full shape of the conditional density function.

Different choices of pGk(Xt, ft) thus determine different update rules. Second, the likelihood can be written

in closed form and estimation can be performed by standard numerical optimization.

Two different specifications for the conditional density Gk have been proposed in the literature. Gorgi

et al. (2018) set:

Xt|Ft−1 ∼Wk (Vt/ν, ν) (2.4)

where Wk (Vt/ν, ν) is the k-variate Wishart distribution with ν ≥ k degrees of freedom. The corresponding

density function is given by:

pWk
(Xt;Vt/ν, ν) =

|Xt|
ν−k−1

2

2νk/2ν−(νk)/2|Vt|ν/2Γk
(
ν
2

) exp
[
−ν

2
tr
(
V −1t Xt

)]
, (2.5)

where Γk(·) denotes the k-variate Gamma function. In this parameterization, the conditional mean is given

by Et−1[Xt] = Vt. A similar density is employed by Golosnoy et al. (2012), Gourieroux et al. (2009) and

Bonato et al. (2012), who introduce autoregressive processes for realized covariances based on the Wishart

distribution.

The dynamics of realized covariances are often characterized by fat-tails and jumps. The Wishart dis-

tribution is not able to reproduce such features and, as a consequence, covariance estimates might be too

sensitive to large movements. To obtain robust estimates, Opschoor et al. (2017) propose to model Xt

through the matrix-F distribution:

Xt|Ft−1 ∼ Fk (Vt, ν1, ν2) , (2.6)

where ν1, ν2 ≥ k are degrees of freedom. The density function of the matrix-F distribution is given by:

pFk(Xt;Vt, ν1, ν2) = K(ν1, ν2)

∣∣∣ ν1
ν2−k−1V

−1
t

∣∣∣ν1/2 |Xt|
ν1−k−1

2∣∣∣1k + ν1
ν2−k−1V

−1
t Xt

∣∣∣ ν1+ν2
2

(2.7)

where 1k denotes the k × k identity matrix and:

K(ν1, ν2) =
Γk
(
ν1+ν2

2

)
Γk
(
ν1
2

)
Γk
(
ν2
2

) (2.8)

The k × k positive-definite matrix Vt turns out to be the conditional mean of the matrix-F distribution.

The Wishart distribution can be obtained as a limit from the matrix-F when ν2 goes to infinity. If ν2

is finite, the matrix-F distribution exhibits fat-tail behavior and it is thus more suited to describe the

dynamics of realized measures. Indeed, the score computed from the matrix-F density exhibits a nonlinear
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structure which underweights the impact of outliers on the dynamics of the covariances (see also discussions

in Opschoor et al. 2017).

The main shortcoming of such modeling approach is that the dimension of ft grows quadratically with

k. Estimation is thus feasible only by imposing strong restrictions on the structure of the matrices A, B.

For instance, Gorgi et al. (2018) and Opschoor et al. (2017) impose a scalar structure, namely they set

A = α1q and B = β1q, with α, β ∈ R. Another drawback is that long-memory effects are not directly taken

into account. To this end, Opschoor et al. (2017) impose a HAR specification in the dynamic in Eq. (2.2).

However, the additional parameters are estimated under the same scalar restrictions. Our objective is to

relax such restrictions while maintaining the model computationally simple to estimate.

2.2 DCC-type score-driven models for realized covariance

Inspired by Engle (2002), we write the covariance matrix Vt as:

Vt = DtRtDt (2.9)

where Dt is a diagonal matrix of standard deviations and Rt is a correlation matrix. We propose to estimate

Dt and Rt in two steps. In the first step, the individual standard deviations are separately estimated by

a sequence of k realized volatility models. We allow for complete flexibility in the choice of the univariate

specification. In our applications, we choose the univariate density by setting k = 1 in Eq. (2.5) and (2.7).

In the case of the Wishart density, we obtain, for i = 1, . . . , k:

x
(i)
t |Ft−1 ∼W1

(
v
(i)
t

ν(i)
, ν(i)

)
∼ v

(i)
t

ν(i)
χ2
ν(i) (2.10)

where x
(i)
t and v

(i)
t denote the i-th diagonal element of Xt and Vt, respectively, and χ2

ν(i) is a chi-squared

distribution with ν(i) degrees of freedom. In the case of the matrix-F density, we obtain, for i = 1, . . . , k:

x
(i)
t |Ft−1 ∼ F1

(
v
(i)
t , ν

(i)
1 , ν

(i)
2

)
∼ ν

(i)
2 − 2

ν
(i)
2

v
(i)
t F

ν
(i)
1 ,ν

(i)
2

(2.11)

where F
ν
(i)
1 ,ν

(i)
2

denotes the scalar F density with degrees of freedom ν
(i)
1 and ν

(i)
2 . To guarantee positive

variance estimates, we set:

v
(i)
t = eλ

(i)
t (2.12)

and model the log-variance λ
(i)
t through the score of the conditional likelihood. Specifically, the dynamic of

λ
(i)
t is given by:

λ
(i)
t+1 = ωi + αis

(i)
t + β

(d)
i λ

(i)
t + β

(w)
i λ

(i)
t−1|t−5 + β

(m)
i λ

(i)
t−6|t−22 (2.13)

where λ
(i)
t−m|t−n = 1

n−m+1

∑t−m
j=t−n λ

(i)
j and s

(i)
t denotes the scaled score of the i-th univariate density. The

expression of s
(i)
t depends on the choice of the probability density function and is computed in Appendix

A. The HAR-like structure allows to parsimoniously capture the strong persistence observed on realized
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variance. After estimating the k univariate models, we compute the diagonal elements of the matrix Dt as:

D
(i)
t = exp

[
λ
(i)
t

2

]
(2.14)

Thus, in the first step, k univariate score-driven models are independently estimated and their forecasts

are used to build the matrix Dt of standard deviations. This operation is extremely simple from a computa-

tional viewpoint, and at the same time allows to have different parameters ωi, β
(d)
i , β

(w)
i , β

(m)
i , ν(i), ν

(i)
1 , ν

(i)
2

for different assets.

To model the correlations, as in Engle (2002), we introduce the matrix Qt such that:

Rt = ∆−1t Qt∆
−1
t (2.15)

where ∆t = diag (Qt)
1/2

. We then model dynamically ft = vech(Qt) based on the score of the conditional

density:

ft+1 = ω +Ast +Bft (2.16)

where the scaled score st is computed by assuming Dt known and given by Eq. (2.14). In the next two

subsections, we compute the expression of st for both the Wishart and the matrix-F densities.

2.2.1 Wishart

The log-density function associated with the density in Eq. (2.5) is:

log pWk
(Xt;Vt, ν) =

1

2
dX (k, ν) +

ν − k − 1

2
log |Xt| −

ν

2
log |Vt| −

ν

2
tr
(
V −1t Xt

)
(2.17)

where dX (k, ν) = νk log (ν/2)− 2 log Γk (ν/2). In Appendix B, C we prove the following two results:

Proposition 2.1. For the density in Eq. (2.17), the score ∇Wt =
∂ log pWk (Xt;ft,ν)

∂ft
is given by:

∇Wt =
ν

2
D′kΨ′t

(
D−1t ∆tQ

−1
t ⊗D−1t ∆tQ

−1
t

)
[vec (Xt)− vec (Vt)] (2.18)

where Dk denotes the duplication matrix, Ψt = 1k2 −
(
∆−1t Qt ⊗ 1k + 1k ⊗∆−1t Qt

)
WQ and WQ is a sparse

k2 × k2 diagonal matrix defined in Appendix B.

Proposition 2.2. For the density in Eq. (2.17), the Fisher information matrix IWt|t−1 = Et−1[∇Wt ∇W ′t ] is

given by:

IWt|t−1 =
ν

2
Dk′Ψ′t

(
H−1t Q−1t Ht ⊗H−1t Q−1t Ht

)
DkDk+ΨtDk (2.19)

where D+
t denotes the elimination matrix and Ht = Dt∆

−1
t .

Taking the inverse of IWt|t−1, as required by Eq. (2.2), poses two problems. First, IWt|t−1 is singular, as

ft includes k(k + 1)/2 time-varying parameters whereas the number of time-varying parameters in Rt is

k(k − 1)/2. Second, for k � 1, matrix pseudo-inversion is computationally cumbersome and can lead to
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numerical instabilities. We solve both problems by setting IWt = ν
2Dk

′Ψ′t
(
H−1t Q−1t Ht ⊗H−1t Q−1t Ht

)
Dk.

This is equivalent to approximate the second Ψt factor appearing in Eq. (2.19) as Ψt ≈ 1k2 (note that

D+
k Dk = 1k), thus neglecting the term

(
∆−1t Qt ⊗ 1k + 1k ⊗∆−1t Qt

)
WQ. The latter has indeed a tiny

influence on Ψt, as WQ is a very sparse k2 × k2 matrix with only k nonzero elements on the main diagonal.

By assuming2 such expression for IWt|t−1, not only the latter becomes non-singular, but one can also compute

in closed form the product (IWt|t−1)−1∇Wt appearing in Eq. (2.2). In particular, in Appendix D we prove the

following:

Proposition 2.3. For the density in Eq. (2.17), the scaled score vector sWt = (IWt|t−1)−1∇Wt is given by:

sWt = vech(H−1t XtH
−1
t )− vech (Qt) (2.20)

This means that, in order to update the time-varying parameter ft, one only needs to compute the scaled

score st, which is a q-dimensional vector having the simple expression given by Eq. (2.20). Correlations are

obtained by updating the time-varying parameter ft using Eq. (2.16) and then constructing the matrix Rt

through Eq. (2.15). Note that imposing a scalar structure on parameters A, B, namely A = α1q, B = β1q is

now less restrictive, as variances are estimated independently and have different persistences. The correlation

matrix Rt is positive-definite if and only if Qt is positive-definite. If a scalar structure is imposed, one has:

vech (Qt+1) =ω + βvech (Qt) + αvech(H−1t XtH
−1
t )− αvech (Qt) (2.21)

=ω + (β − α) vech (Qt) + αvech(H−1t XtH
−1
t ), (2.22)

which is positive-definite for all t’s if ω is positive-definite and if α > 0, β − α > 0. Note that the update

rule in Eq. (2.22) coincides with the Re-cDCC specification of Bauwens et al. (2012) which adopt the Aielli

(2013) correction in the context of a DCC model with realized covariance.

2.2.2 Matrix-F

The log-density function in Eq. (2.7) is given by:

log pFk (Xt;Vt, ν1, ν2) = d(ν1, ν2) +
ν1 − k − 1

2
log |Xt| −

ν1
2

log |Vt| −
ν1 + ν2

2
log |W̃t| (2.23)

where:

W̃t = 1k +
ν1

ν2 − k − 1
V −1t Xt (2.24)

d(ν1, ν2) =
ν1
2

log

(
ν1

ν2 − k − 1

)
+ log Γk

(
ν1 + ν2

2

)
− log Γk

(ν1
2

)
− log Γk

(ν2
2

)
(2.25)

2Such approximation is harmless from a dynamic modeling perspective. Indeed, the scaling matrix in score-driven models
is typically related to the inverse of the Fisher information matrix but is not necessarily equal to the latter. For instance,
different powers of the inverse can be chosen. In this case, our approximating expression turns out to be very close to the
full Information matrix and very similar results are obtained by explicitly computing the pseudo-inverse. However, the latter
operation is computationally unstable and becomes infeasible at large dimensions.
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For more details on the Matrix-F distribution see Gupta and Nagar (1999). In Appendix E, we prove the

following:

Proposition 2.4. For the density in Eq. (2.23), the score ∇Ft =
∂ log pFk (Xt;ft,ν1,ν2)

∂ft
is given by

∇Ft =
ν1
2
D′kΨ′t

(
H−1t Q−1t ⊗H−1t Q−1t

) [ ν1 + ν2
ν2 − k − 1

vec
(
XtW̃

−1
t

)
− vec (Vt)

]
(2.26)

As in Opschoor et al. (2017), to take into account the curvature of the log-density, we scale the score

through the inverse of the Fisher information matrix of the Wishart density. This has two main advantages.

First, it avoids the numerical computation of the Fisher information matrix of the matrix-F distribution,

which is not available in closed form. Second, as in the Wishart density, we can compute in closed form the

product (IWt|t−1)−1∇Ft . Indeed, in Appendix F we prove the following:

Proposition 2.5. The scaled score vector sFt = (IWt|t−1)−1∇Ft is given by:

sFt =
ν1 + ν2

ν2 − k − 1
vech

(
H−1t XtW̃

−1
t H−1t

)
− vech (Qt) (2.27)

As in the Wishart density, the dynamic modeling of ft solely requires the computation of the scaled score

st, which is a q-dimensional vector given by Eq. (2.27). By imposing a scalar structure on parameters A, B,

we have:

vech (Qt+1) =ω + βvech (Qt) + αst (2.28)

=ω + βvech (Qt) + α
ν1 + ν2

ν2 − k − 1
vech

(
H−1t XtW̃

−1
t H−1t

)
− αvech (Qt) (2.29)

=ω + (β − α) vech (Qt) + α
ν1 + ν2

ν2 − k − 1
vech

(
H−1t XtW̃

−1
t H−1t

)
, (2.30)

which is positive-definite for all t’s if ω is positive-definite and if α > 0, β − α > 0. As in the previous case,

the score-driven update mechanism includes by construction a correction based on the matrix Ht. Note that,

with this choice for the scaling matrix, the scaled score of the matrix-F density converges to the scaled score

of the Wishart density as ν2 →∞:

Proposition 2.6. When ν2 →∞, we get sFt = sWt

The proof is in Appendix G.

In principle, a HAR structure similar to that in Eq. (2.13) might be imposed even in the update rule

for the correlations. As it will be extensively discussed in the empirical application in Section (4), a similar

structure does not lead to any out-of-sample forecast gain. We thus maintain the current specification with

a HAR structure in the variances and a simple AR(1) score-driven update for the correlations.

We conclude this section by noticing that both Gorgi et al. (2018) and Opschoor et al. (2017) consider

a larger filtration also including daily returns. Under the assumption of conditional independence between

realized covariances and daily returns, this translates into an additional term in the score of the two models.

Our DCC-type approach is readily generalizable to include the effect of daily returns. However, as the latter
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have less explanatory power, and given that the aim of the present work is to highlight the advantages of

the two-step approach, we neglect them for simplicity.

2.3 Estimation

The two-step procedure can be summarized as follows:

1. Maximum likelihood estimation of the k univariate models described in Section (2.2) (or alternative

univariate specifications), from which the matrices Dt are built

2. Maximum likelihood estimation of the Wishart log-density in Eq. (2.17) or the matrix-F log-density

in Eq. (2.23) assuming Dt known and ft evolving according to Eq. (2.16)

In a similar fashion to the DCC model, the static parameters A, B governing the dynamics of correlations

are estimated under the scalar restrictions A = α1q, B = β1q. In contrast, ω is a q-dimensional vector with

different elements. We estimate it through (co)variance targeting, i.e. we set:

ω = (1q −B) vech(R) (2.31)

where R is the correlation matrix computed from the sample mean of realized covariances, namely Q =

1
T

∑T
t=1Xt.

3 Monte-Carlo analysis

3.1 Finite sample properties

In this section, we study the finite sample properties of the two-step estimator via Monte-Carlo simulations.

We consider both the two-step Wishart and the two-step matrix-F models. For easy of notation, we indicate

the two models by “2-step-W” and “2-step-F”. We set Dt = 1k for every t, i.e. we assume constant variances.

Similar results are recovered when employing dynamic variances. We choose different values of k and T to

test the properties of the estimator on a variety of different scenarios. Specifically, we set k = {2, 5, 10} and

T = {250, 500, 1000}. For each scenario, the model is simulated and estimated 1000 times. The two-step

procedure is applied as described in Section (2.3). The initial parameter f1 is set equal the correlation matrix

computed from the sample mean of the simulated covariances.

We consider a specification for the Wishart model given by:

α = 0.3, β = 0.97, ω = (1− β)vech [C(ρ)] , ν = k + 10.

where C(ρ) denotes the equi-correlation matrix with correlation parameter equal to ρ. We consider two

different values for the correlation, namely ρ = 0.5 and ρ = 0.9. Figures (1), (2) show kernel density

estimates of the probability density function of parameters in each scenario. The distribution concentrates

around the true values as the time-series length T and/or the cross-section dimension k increase. This is due
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to the scalar specification adopted for the correlations. The distribution of α and ν is symmetric, whereas

the distribution of β is slightly skewed at T = 250 and exhibits a bias. However, note that for T = 500 and

T = 1000 all parameters are estimated accurately.
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Figure 1: Kernel density estimates of maximum-likelihood estimates based on N = 1000 simulations of the two-step
Wishart model with equi-correlation parameter ρ = 0.5.

We perform the same analysis for the two-step model based on matrix-F distribution. Parameters are

set as follows:

α = 0.3, β = 0.97, ω = (1− β)vech [C(ρ)] , ν1 = 22, ν2 = 35.

where ρ = {0.5, 0.9}. Figures (3), (4) show the results. We find again that parameters are accurately

estimated in small samples and tend to concentrate around the true values as the time-series length T

and/or the cross-section dimension k increase.

3.2 Analysis based on a misspecified DGP

We test the performance of the two-step procedure under a misspecified data generating process for volatilities

and correlations. For simplicity, we consider a bivariate model, in a similar fashion to Engle (2002) and Creal

et al. (2011). In Section (4), we show that the matrix-F distribution provides a better fit to empirical data.
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Figure 2: Kernel density estimates of maximum-likelihood estimates based on N = 1000 simulations of the two-step
Wishart model with equi-correlation parameter ρ = 0.9.
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Figure 3: Kernel density estimates of maximum-likelihood estimates based on N = 1000 simulations of the two-step
matrix-F model with equi-correlation parameter ρ = 0.5.
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Figure 4: Kernel density estimates of maximum-likelihood estimates based on N = 1000 simulations of the two-step
matrix-F model with equi-correlation parameter ρ = 0.9.
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We therefore employ it as a conditional density to generate observations:

Xt|Ft−1 ∼ F2(Vt, ν1, ν2) (3.1)

where we set ν1 = 20 and ν2 = 8. The latent covariance matrix Vt is written as:

Vt =

 c21 c1c2ρt

c1c2ρt c22


The misspecified volatilities c1 and c2 are modeled as:

ci,t = exp[0.97 log(ci,t−1) + ε
(i)
t ]

where ε
(i)
t ∼ N (0, 0.1), i = 1, 2. The correlation ρt evolves over time based on different dynamic patterns.

They are given by:

Sine: ρ
(1)
t = 0.5 + 0.4 sin (2πt/500) (3.2)

Fast sine: ρ
(2)
t = 0.5 + 0.4 sin (2πt/125) (3.3)

Step: ρ
(3)
t = 0.9− 0.4H

(
t− T

4

)
+ 0.4H

(
t− T

2

)
− 0.4H

(
t− 3T

4

)
(3.4)

Ramp: ρ
(4)
t =

3∑
i=0

(
4× 0.9

T
t− 0.9i

)[
H

(
t− iT

4

)
−H

(
t− (i+ 1)T

4

)]
(3.5)

where T = 2000 and H is the Heaviside step function. For each dynamic pattern, we generate N = 1000

time-series of realized covariances through the observation density in Eq. (3.1). We estimate both the 2-

step-W and 2-step-F on the subsample comprising the first 1000 observations. In-sample loss measures are

computed in this subsample. We then use the recovered parameter estimates to filter the covariances in

the subsample comprising the last 1000 observations. Figures (8)-(11), reported in Appendix H, show the

simulated patterns and the average filtered correlations of 2-step-W and 2-step-F. Both models are able to

capture the pattern of correlations accurately. Note that the confidence bands of 2-step-W filtered estimates

are slightly larger than those of the 2-step-F model. The motivation is that the 2-step-W is not robust to

the outliers generated by the matrix-F density.

Pattern
In-sample Out-of-sample

2-step-W 2-step-F 2-step-W 2-step-F

Sine 1.000 0.736 1.000 0.718

Fast sine 1.000 0.846 1.000 0.807

Step 1.000 0.933 1.000 0.891

Ramp 1.000 0.937 1.000 0.937

Table 1: Relative in-sample and out-of-sample RMSE of two-step-W and two-step-F for the all the correlation
patterns.
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Table (1) reports relative in-sample and out-of-sample average Frobenius norms, defined as:

Frob
(
V̂t, Vt

)
=

√
Tr[(Vt − V̂t)(Vt − V̂t)′] (3.6)

Hereafter, we refer to the Frobenius norm as RMSE, as it coincides with the square root of the sum of the

MSE’s of the entries of V̂t. The 2-step-F provides much lower in-sample and out-of-sample RMSE in patterns

“sine” and “fast sine”. In patterns “step” and “ramp”, the 2-step-F performs better, though with a lower

relative difference. This is due to the discontinuity in the correlation pattern, which is treated as an outlier

by the 2-step-F model. As a consequence, it adapts more slowly to the abrupt change of correlation.

3.3 Comparison with joint estimation

We compare now the performance of the two-step procedure to that of standard joint estimation. In order

to generate variance paths that have the same dynamic behavior of real data, we construct the matrices

Dt based on a dataset of 100 realized variance time-series computed from stocks traded on the NYSE. The

dataset is described in more detail in Section (4.1). In each simulation, the matrices Dt are generated by

randomly selecting k realized variance series from the dataset and replacing each diagonal element3 D
(i)
t

with the true realized volatility (X
(i)
t )1/2:

Dt =


(X

(1)
t )1/2 0

. . .

0 (X
(k)
t )1/2


To simulate the correlation matrix Rt, we use the equicorrelation model of Engle and Kelly (2012). It

has the form:

Rt = ρtIk + [1− ρt] Jk,k (3.7)

where Jk,k ∈ Rk×k is a matrix of ones. The correlation parameter ρt evolves based on the following process:

ρt = 1− 1

k − 1
[1− tanh (θt)] (3.8)

θt+1 = φθt + εt, εt ∼ N
(
0, σ2

)
(3.9)

where we set σ2 = 0.25. We then compute the covariance matrix as Vt = DtRtDt and generate realized

covariances through both the Wishart and the matrix-F density:

XW
t ∼Wk (Vt/ν, ν) (3.10)

XF
t ∼ Fk (Vt, ν1, ν2) (3.11)

with ν = k + 10, ν1 = 140 and ν2 = 120. These values are similar to those estimated on real data.

3As Dt is the matrix of latent standard deviations, we apply an EWMA smoothing scheme to clean the real time-series from
measurement error effects.
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We set k = 10 and perform N = 500 simulations of realized covariance series {XW
t }, {XF

t } of T = 2000

observations. As in the previous simulation study, in-sample loss measures are computed in the subsample

comprising the first 1000 observations. Out-of-sample loss-measures are instead computed in the remaining

subsample of 1000 observations based on the parameters estimated in the first subsample. As loss measures,

we consider the RMSE and the Quasi-likelihood (Qlike). The latter is defined as:

Qlike
(
V̂t, Vt

)
= − log |V̂ −1t Vt|+ Tr

(
V̂ −1t Vt

)
− k (3.12)

Table (2) compares in-sample and out-of-sample loss measures of two-step and joint estimation for both

Wishart and matrix-F models. The joint estimation approach coincides with the models of Gorgi et al.

(2018) and Opschoor et al. (2017). Both in-sample and out-of-sample, the two-step estimator performs

Loss Model Wishart matrix-F

In-sample Out-of-sample In-sample Out-of-sample

RMSE

two-step
1.000 1.000 1.000 1.000

(420) (395) (475) (500)

joint
1.118 1.092 1.154 1.189

(15) (20) (0) (0)

Qlike two-step
1.000 1.000 1.000 1.000

(460) (430) (400) (400)

joint
1.096 1.086 1.213 1.141

(15) (20) (0) (0)

Table 2: Relative in-sample and out-of-sample RMSE and Qlike of two-step models compared with joint estimation
models. We report in parenthesis the number of times the corresponding loss measure is judged as significantly
smaller by the Diebold-Mariano test.

significantly better than the joint estimator, according to both loss measures. To test the significance of our

results, we perform the Diebold-Mariano test (Diebold and Mariano 2002) at 5% significance level for each

simulation. We report in the table the number of times each loss measure is judged as significantly smaller

by the Diebold-Mariano test. It clearly emerges that, as a result of the higher flexibility provided by the

two-step models, the latter provide significantly smaller loss measures in most of the N = 500 simulations.

4 Empirical evidence

4.1 Dataset

The empirical analysis is performed on two different datasets. The first dataset consists of transactions

of 100 assets traded on the NYSE. The time resolution is 1-second. Data are available from 03-01-2006

to 31-12-2014, corresponding to 2265 business days. The second dataset consists of transactions of 2767

assets belonging to the Russell 3000 index. The time resolution is 1-minute and data are available from
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03-01-2006 to 27-09-2013, corresponding to 1948 business days. As a realized covariance estimator, we use

the multivariate Realized Kernel of Barndorff-Nielsen et al. (2011). Before computing it, we perform the

standard cleaning procedures described by Barndorff-Nielsen et al. (2009).

4.2 Preliminary analysis

The main advantage of the proposed models is the higher flexibility in the estimation of the static parameters.

Gorgi et al. (2018) and Opschoor et al. (2017) use the scalar restrictions A = α1q and B = β1q, i.e. they

assume the same persistence for the volatilities and correlations of all the assets. In contrast, we find empirical

evidences supporting the hypothesis of a high level of heterogeneity among the persistences of volatilities.

Such hypothesis is tested by means of two different experiments.

The first experiment is performed using the dataset of 2767 assets of the Russell 3000 index. The results,

presented in Figures (5), (6), (7), provide a first evidence that the persistences of volatilities can vary a lot

among assets. The blue lines represent the (sorted) 2767 maximum likelihood estimates of the coefficients

β(d), β(w) and β(m) appearing in Eq. (2.13). The red lines represent 2767 (sorted) realizations of β(d),

β(w) and β(m) given the null hypothesis that the different assets have the same HAR coefficients. They are

built using the following method: we simulate 2767× 1000 random variables distributed as N
(
β̄(j), σ̄2(j)

)
,

j = d,w,m, where β̄(j) represents the sample mean of the estimated β(j) coefficient across the 2767 assets,

and σ̄2(j) represents the sample mean of the estimation error variances of the β(j) coefficient (computed

as the inverse of the hessian at the maximum). We compute the blue line by averaging the sorted 2767

realizations over the 1000 replications. The 95% confidence bands are computed as empirical quantiles of

the simulated distribution. They show that the real estimated coefficients are incompatible with the null

assumption that volatility persistences are equal.
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Figure 5: We report in blue the sorted maximum likelihood estimates of the β(d) coefficient corresponding to the
2767 assets in the Russel 3000 dataset. The red line and the 95% confidence bands are computed under the null
hypothesis that the 2767 assets have the same β(d) coefficient.
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Figure 6: We report in blue the sorted maximum likelihood estimates of the β(w) coefficient corresponding to the
2767 assets in the Russel 3000 dataset. The red line and the 95% confidence bands are computed under the null
hypothesis that the 2767 assets have the same β(w) coefficient.
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Figure 7: We report in blue the sorted maximum likelihood estimates of the β(m) coefficient corresponding to the
2767 assets in the Russel 3000 dataset. The red line and the 95% confidence bands are computed under the null
hypothesis that the 2767 assets have the same β(m) coefficient.
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In the second experiment, we formally test on real data the scalar restriction assumed by Gorgi et al.

(2018). We consider 100 portfolios each composed by k randomly selected assets from the NYSE dataset.

We estimate the Wishart model of Gorgi et al. (2018) by imposing two different restrictions on the matrix B.

In the first case, we assume a scalar restriction, whereas in the second case we assume a diagonal restriction

(i.e. the diagonal elements are not required to be equal among each other). In both cases, the matrix A is

assumed to have a scalar structure. Under the diagonal restriction, the number of parameters scales as k2.

We thus set k = 5 in order to avoid the curse of dimensionality.

We compare the fitting ability of the two different restrictions using the likelihood ratio test. In particular,

we test the null hypothesis

H0 : B = βI (4.1)

against the alternative hypothesis

H1 : B =


β1 0 0
...

. . .
...

0 0 β15

 , where β1, . . . , β15 are not all equal. (4.2)

To compute the p-values, we use a χ2 distribution for the test statistics, since the model with a scalar

restriction is nested into the model with a diagonal restriction. The test rejects the null hypothesis with

p-values smaller than 0.01 for all the 100 portfolios. We obtain the same results when testing the model

based on matrix-F density.

The results of these two tests suggest that the scalar assumption of Gorgi et al. (2018) and Opschoor

et al. (2017) might be too restrictive and warrant for a more flexible specification. In the next sections, we

show the advantages of the proposed two-step estimation procedure over standard joint estimation.

4.3 Analysis settings and benchmark models

We perform the analysis at different cross-section dimensions and with different portfolios. In the NYSE

dataset, which contains 1-second data, we set k = 5, 10, 25, 50, 100. The assets belonging to each group are

randomly selected, except for the group of k = 100 stocks, which includes all the assets in the dataset. In

the Russell 3000 dataset, the time resolution is 1-minute and the number of time-stamps per day is much

smaller compared to the NYSE dataset. To avoid ill-conditioned realized covariance estimates, we limit the

maximum cross-section to 50 assets, i.e. we set k = 5, 10, 25, 50. Even in this case, the assets in each portfolio

are randomly selected.

In the in-sample analysis, we estimate the models in the entire NYSE (Russel 3000) dataset of 2265

(1948) business days. In the out-of-sample analysis, the models are estimated in the subsample comprising

the first 1000 business days. The estimated parameters are then used to forecast the covariances of the last

1265 (948) observations, from 22-12-2009 to 31-12-2014 (27-09-2013). As a loss measure, we follow Patton

(2011) and use the RMSE and the Qlike. We assess whether loss differences are significant through the

Model Confidence Set (MCS) of Hansen et al. (2011).
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The 2-step-W and 2-step-F are compared with the following benchmark models:

1. RWG: the Realized Wishart GARCH model of Gorgi et al. (2018) based on the Wishart density in

Eq. (2.5)

2. RWG-HAR: the RWG model equipped with a HAR-like structure in the dynamic equation for the

covariances:

ft+1 = ω +B1ft +B2ft−1|t−5 +B3ft−6|t−22 +Ast

where ft = vech(Vt).

3. GAS-F: the model of Opschoor et al. (2017) based on the matrix-F density in Eq. (2.7)

4. GAS-F-HAR: the GAS-F model equipped with a HAR-like structure on static parameters similar to

that of the RWG-HAR

5. HAR-DRD: the model of Oh and Patton (2018), combining univariate HAR models with a panel HAR

specification for the correlations. Similarly to our approach, the estimation is made in two steps. In the

first step, the volatilities are estimated using k distinct HAR models. In the second step, a multivariate

HAR-like specification is fitted on the time-series of realized correlations. Covariance forecasts are

then computed by combining volatility and correlation forecasts through the DRD decomposition in

Eq. (2.9).

6. DCC: the standard Dynamic Conditional Correlation model Engle (2002) for daily returns estimated

through the two-step procedure.

We include the RWG-HAR and the GAS-F-HAR in the set of benchmark models in order to exclude that

forecast gains provided by our two-step procedure are merely due to long memory effects captured by the

univariate models, which have a similar HAR-like structure, see Eq. (2.13). In principle, we might impose

the same structure in our correlation model. We verified that such assumption does not provide significant

forecast gains. We thus maintain a parsimonious specification with a HAR-like structure in the univariate

models and a standard AR(1) score-driven specification for the correlations.

All the realized covariance models are estimated by assuming a scalar specification for the matrix param-

eters appearing in the score-driven update equation. These include the two matrices A, B in the RWG and

GAS-F models, which are constrained as A = α1q, B = β1q, and the matrices B1, B2, B3 in the RWG-HAR

and GAS-F-HAR, which are constrained as B1 = β11q, B2 = β21q, B3 = β31q.

4.4 In-Sample results

Table (3) reports the maximum likelihood estimates, obtained in the NYSE dataset, of the parameters of

the models described in the previous section. They are estimated in the entire dataset of 2265 business days

and for each cross-section dimension k = 5, 10, 25, 50, 100. Note that the parameter ν in the RWG model

and the parameters ν1, ν2 in the GAS-F model are significantly different from the corresponding estimates

in the 2-step-W and 2-step-F models. In particular, ν is lower in the RWG model, ν1 is generally lower in
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the GAS-F model and ν2 is lower in the 2-step-F model for k = 5, 10, 25 and larger for k = 50, 100. Such

differences indicate that the fat-tail behavior of covariances is significantly different from that of correlations,

and it is a further motivation for the introduction of the proposed two-step approach.

Table (4) shows average in-sample loss measures computed in both datasets. We note that score-driven

models based on the two-step procedure (2-step-W and 2-step-F) fit the data better than those based on joint

estimation (RWG, RWG-HAR, GAS-F, GAS-F-HAR). The relative performance between the two classes of

models tends to increase with the cross-section dimension, as can be seen from the RMSE and Qlike gains at

k = 50, 100, which are both large and highly significant. This result is due to the fact that large portfolios are

more likely to include assets with different volatility persistences, which are better captured by the two-step

models. We also see that the 2-step-F often provides lower loss measures compared to the 2-step-W, as a

result of being robust to the outliers that are typically observed on real time-series. In the vast majority

of the cases, the 2-step-F has significantly lower loss measures, whereas in few cases the performances of

the two models are statistically indistinguishable. The RWG-HAR and GAS-F-HAR tend to perform better

than the RWG and GAS-F because of the long-memory captured by the HAR specification. We finally note

that the HAR-DRD often provides a lower RMSE. This is natural when looking at in-sample results, as the

HAR-DRD is estimated based on the same RMSE criterion.

We report in Table (5) the AIC and BIC statistics computed in the NYSE dataset. As can be seen, the

2-step-F has the lowest AIC and BIC for all the cross-section dimensions. We also note that the 2-step-W

has lower AIC and BIC compared to both the RWG and the RWG-HAR. In order to further examine the

in-sample performance of the proposed methodology, we carry out the likelihood based model selection test

of Rivers and Vuong (2002), which is applicably to non-nested, possibly misspecified nonlinear dynamic

models. In particular, we test 2-step and joint estimation based models (2-step-W vs RWG-HAR and 2-step-

F vs GAS-F-HAR) on the one hand, and matrix-F and Wishart based models (2-step-F vs 2-step-W and

GAS-F-HAR vs RWG-HAR) on the other hand. The first test compares the likelihood of 2-step models to

that of joint estimation based models, whereas the second test compares the likelihood of matrix-F models

to that of Wishart models. Table (6) shows the test statistics of Rivers and Vuong (2002), computed as the

difference between the log-likelihoods of the two models indicated in the first line, divided by the square root

of its asymptotic variance. The latter is computed through the Newey-West estimator. Under the null that

the likelihoods of the two models are equal, the test statistics are asymptotically distributed as a standard

normal. We see that the null is strongly rejected in all the cases, implying that 2-step models outperform

joint estimation based models and matrix-F models outperform Wishart models.
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Model α β(β1) β2 β3 ν(ν1) ν2 α β(β1) β2 β3 ν(ν1) ν2 α β(β1) β2 β3 ν(ν1) ν2 α β(β1) β2 β3 ν(ν1) ν2 α β(β1) β2 β3 ν(ν1) ν2

k = 5 k = 10 k = 25 k = 50 k = 100

2-step-W 0.293 0.980 33.2 0.221 0.999 57.7 0.119 0.990 98.8 0.064 0.992 133.3 0.031 0.993 147.4

(0.012) (0.000) (0.242) (0.004) (0.000) (0.218) (0.001) (0.000) (0.149) (0.000) (0.000) (0.096) (0.000) (0.000) (0.044)

2-step-W(1) 0.542 0.805 0.130 0.047 50.5 0.528 0.799 0.141 0.040 51.9 0.480 0.781 0.161 0.035 47.1 0.466 0.769 0.170 0.039 46.0 0.449 0.765 0.168 0.045 42.8

(0.020) (0.029) (0.033) (0.015) (1.376) (0.020) (0.029) (0.033) (0.014) (1.393) (0.017) (0.029) (0.033) (0.015) (1.152) (0.020) (0.032) (0.036) (0.016) (1.177) (0.004) (0.037) (0.033) (0.019) (0.459)

2-step-F 0.900 0.986 151.1 55.3 0.832 0.999 245.5 97.7 0.282 0.999 190.4 152.9 0.056 0.999 162.7 180.5 0.059 0.993 193.1 507.4

(0.060) (0.003) (9.018) (0.754) (0.023) (0.001) (6.964) (0.707) (0.004) (0.000) (2.890) (0.565) (0.001) (0.000) (0.381) (0.692) (0.000) (0.000) (0.091) (0.635)

2-step-F(1) 2.247 0.820 0.117 0.049 201.6 78.6 2.040 0.814 0.127 0.043 195.7 82.8 2.422 0.807 0.134 0.041 229.1 68.1 2.429 0.789 0.152 0.042 234.8 68.2 2.312 0.790 0.149 0.045 219.1 66.0

(0.087) (0.024) (0.031) (0.016) (7.841) (1.750) (0.084) (0.028) (0.032) (0.016) (2.774) (1.609) (0.087) (0.030) (0.035) (0.016) (2.576) (1.413) (0.085) (0.030) (0.035) (0.016) (3.295) (1.573) (0.078) (0.031) (0.036) (0.017) (2.635) (1.132)

RWG 0.568 0.992 33.1 0.481 0.992 56.8 0.346 0.996 95.2 0.242 0.995 127.5 0.147 0.994 142.6

(0.007) (0.000) (0.253) (0.003) (0.000) (0.222) (0.001) (0.000) (0.139) (0.000) (0.000) (0.088) (0.000) (0.000) (0.042)

GAS-F 0.905 0.995 75.4 72.3 0.978 0.995 144.9 117.4 0.824 0.999 161.2 182.0 0.479 0.999 186.3 157.0 0.256 0.992 140.7 202.5

(0.015) (0.012) (1.438) (1.326) (0.008) (0.008) (1.532) (1.033) (0.000) (0.000) (0.000) (0.000) (0.001) (0.000) (0.351) (0.653) (0.000) (0.000) (0.000) (0.001)

RWG-HAR 0.615 0.832 0.111 0.050 33.8 0.546 0.813 0.131 0.049 58.0 0.432 0.785 0.148 0.063 97.2 0.320 0.777 0.138 0.080 129.4 0.217 0.763 0.135 0.096 143.7

(0.007) (0.007) (0.007) (0.004) (0.272) (0.004) (0.005) (0.005) (0.002) (0.210) (0.001) (0.002) (0.002) (0.001) (0.140) (0.001) (0.001) (0.002) (0.001) (0.093) (0.000) (0.001) (0.001) (0.000) (0.042)

GAS-F-HAR 0.987 0.870 0.080 0.046 72.7 77.4 0.999 0.860 0.088 0.047 139.6 125.1 0.9169 0.8646 0.0807 0.0534 284.9 182.1 0.3812 0.9500 0.0000 0.0485 205.9 237.7 0.3095 0.9062 0.0860 0.0000 107.9 222.0

(0.016) (0.007) (0.008) (0.004) (1.484) (1.357) (0.009) (0.004) (0.005) (0.002) (1.523) (1.100) (0.003) (0.002) (0.002) (0.001) (1.027) (0.921) (0.001) (0.001) (0.002) (0.001) (0.350) (0.699) (0.000) (0.001) (0.001) (0.000) (0.094) (0.538)

DCC 0.016 0.962 0.011 0.970 0.005 0.977 0.002 0.978 0.001 0.959

(0.002) (0.005) (0.001) (0.004) (0.000) (0.007) (0.000) (0.001) (0.000) (0.006)

HAR-DRD 0.399 0.437 0.107 0.563 0.328 0.070 0.357 0.406 0.154 0.339 0.398 0.176 0.300 0.392 0.206

(0.063) (0.087) (0.075) (0.028) (0.039) (0.036) (0.010) (0.014) (0.012) (0.005) (0.007) (0.006) (0.002) (0.003) (0.003)

HAR-DRD(1) 0.609 0.268 0.086 0.563 0.328 0.070 0.531 0.328 0.097 0.512 0.343 0.103 0.508 0.337 0.113

(0.019) (0.025) (0.019) (0.020) (0.025) (0.020) (0.020) (0.026) (0.021) (0.020) (0.027) (0.022) (0.020) (0.027) (0.022)

Table 3: Maximum likelihood estimates of the parameters of 2-step-W, 2-step-F and of benchmark
models obtained in the NYSE dataset. Standard errors are reported in parenthesis. For the k univariate
models, denoted by 2-step-W(1) and 2-step-F(1), we report the average of the maximum likelihood esti-
mates and of the standard errors. Similarly, we report the averages of the parameters of the univariate
models in the HAR-DRD.
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Model MSE Qlike

NYSE k = 5 k = 10 k = 25 k = 50 k = 100 k = 5 k = 10 k = 25 k = 50 k = 100

2-step-W 0.9859∗ 1.0143 1.0255 1.0308 1.0478 0.9995∗ 0.9964 0.9869∗ 0.9962∗ 1.0051
2-step-F 1.0000 1.0000∗ 1.0000 1.0000 1.0000∗ 1.0000∗ 1.0000 1.0000 1.0000∗ 1.0000∗

RWG 1.0320 1.0285 1.0521 1.0494 1.0818 1.0476 1.0470 1.0458 1.0575 1.0548
RWG-HAR 1.0184 1.0240 1.0457 1.0407 1.0913 1.0203 1.0126 1.0137 1.0320 1.0356

GAS-F 1.0352 1.0254 1.0396 1.1230 1.3608 1.0522 1.0417 1.0393 1.1114 1.1925
GAS-F-HAR 1.0151 1.0169 1.0162 1.0620 1.3223 1.0287 1.0135 1.0189 1.0530 1.1504

DCC 1.8458 1.7460 1.5017 1.4146 1.3819 1.5974 1.6370 1.7858 1.6352 1.4153
HAR-DRD 0.9858∗ 0.9975∗ 0.9946∗ 0.9812∗ 0.9957∗ 1.0024∗ 0.9898∗ 0.9922 1.0250 1.0562

Russell k = 5 k = 10 k = 25 k = 50 k = 100 k = 5 k = 10 k = 25 k = 50 k = 100

2-step-W 1.0133 1.0208 1.0256 1.0469 - 1.0029∗ 1.0145 1.0081 1.0055 -
2-step-F 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ - 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ -

RWG 1.0683 1.0573 1.0735 1.0941 - 1.0322 1.0490 1.0524 1.0583 -
RWG-HAR 1.0525 1.0528 1.0587 1.0878 - 1.0100 1.0190 1.0276 1.0347 -

GAS-F 1.0408 1.0201 1.0210 1.0730 - 1.0329 1.0346 1.0340 1.0744 -
GAS-F-HAR 1.0281 1.0116 1.0131 1.0633 - 1.0073∗ 1.0144 1.0278 1.0597 -

DCC 1.4863 1.5754 1.5065 1.8216 - 1.5392 1.6012 1.5702 1.4774 -
HAR-DRD 1.0035∗ 1.0140 0.9988∗ 0.9907∗ - 0.9976∗ 1.0107 1.0196 1.0365 -

Table 4: Relative in-sample average loss measures. All measures are reported with respect to the 2-step-F model. A
value lower than one indicates that the corresponding model outperforms the 2-step-F model. Bold numbers denote
the models having lowest loss measures. Asterisks denote the models that are part of the 90% model confidence set
(MCS).

4.5 Out-of-Sample results

We now check whether the in-sample gains found in the previous analysis translate into out-of-sample forecast

gains. In Table (7), we report the average out-of-sample loss measures of all the models considered above.

Forecasts are computed in the NYSE (Russel 3000) subsample including the last 1265 (948) business days

and are based on parameter estimates obtained in the subsample comprising the first 1000 business days.

We immediately notice that, with only few exceptions, the 2-step-F model is the best performing model and

it is included in the model confidence set. Similarly to the in-sample analysis, the relative performance of the

2-step-W and 2-step-F over joint estimation based models increases as the cross-section dimension increases.

This confirms the intuition that the flexibility provided by the two-step procedure leads to better covariance

forecasts. The results in the table also confirm that the matrix-F density is more suited than the Wishart

density to capture the fat-tails of covariances and correlations.

The performance of the HAR-DRD is comparable to that of the 2-step-F model when we look at the

RMSE loss. When we instead consider the Qlike loss, the relative performance of the HAR-DRD rapidly

deteriorates when k increases. The comparison of our methodology with the HAR-DRD is examined further

in the next section, where we study the behavior of both models in relation to measurement errors on

covariance estimates.

One may argue that additional forecast gains might be recovered by imposing a HAR structure on the

score-driven dynamic equation for the correlations in the 2-step-W and 2-step-F models. As outlined in

Section (4.3), this is not the case, as we verified by performing similar experiments. Most of the benefits

provided by modeling long-memory come from the univariate HAR models, whereas a similar HAR structure

on correlations does not lead to significant out-of-sample improvements. This is confirmed by the fact that
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Model AIC

k = 5 k = 10 k = 25 k = 50 k = 100

(×105) (×106) (×107) (×107) (×108)
2-step-W −6.8400 −2.4546 −1.4677 −5.7651 −2.3129
2-step-F −7.1643 −2.6124 −1.5617 −6.0493 −2.4197

RWG −5.8542 −2.2686 −1.4190 −5.6213 −2.2535
GAS-F −6.1604 −2.4064 −1.5091 −5.9459 −2.3749

RWG-HAR −5.7970 −2.2475 −1.4059 −5.5688 −2.2318
GAS-F-HAR −6.0981 −2.3833 −0.0028 −5.8736 −2.3432

Model BIC

k = 5 k = 10 k = 25 k = 50 k = 100

(×105) (×106) (×107) (×107) (×108)
2-step-W −6.8381 −2.4542 −1.4676 −5.7649 −2.3129
2-step-F −7.1621 −2.6119 −1.5616 −6.0491 −2.4196

RWG −5.8541 −2.2686 −1.4190 −5.6213 −2.2535
GAS-F −6.1602 −2.4064 −1.5091 −5.9459 −2.3749

RWG-HAR −5.7967 −2.2475 −1.4059 −5.5688 −2.2318
GAS-F-HAR −6.0978 −2.3832 −0.0028 −5.8736 −2.3432

Table 5: AIC and BIC statistics of all the considered models computed in the NYSE dataset.

2-step vs joint Matrix-F vs Wishart

Cross-section
2-step-W 2-step-F 2-step-F GAS-F-HAR

vs vs vs vs
RWG-HAR GAS-F-HAR 2-step-W RWG-HAR

k = 5 69.79 85.25 23.14 31.64
k = 10 67.18 94.15 28.24 30.73
k = 25 49.34 98.24 28.27 33.29
k = 50 37.49 57.35 39.69 43.84
k = 100 16.31 16.56 42.51 47.88

Table 6: Test statistics of the Rivers and Vuong (2002) test. In each column, we report the results of the test for the
two models indicated in the first line. The test statistics are computed as the difference between the log-likelihoods
of the two models divided by its asymptotic standard deviation. The latter is estimated through the Newey-West
estimator.
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the RWG-HAR and GAS-F-HAR, which have a HAR structure in both volatilities and correlations, have a

performance which in some cases is sub-optimal with respect to the RWG and the GAS-F. In this sense, our

proposed two-step approach provides a further advantage, as it easily allows for different modeling strategies

for volatilities and correlations.

Model MSE Qlike

NYSE k = 5 k = 10 k = 25 k = 50 k = 100 k = 5 k = 10 k = 25 k = 50 k = 100

2-step-W 0.9882∗ 1.0087∗ 1.0413 1.0814 1.0927 0.9987∗ 1.0044∗ 1.0107 1.0141 1.0121
2-step-F 1.0000 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗

RWG 1.0248 1.0278 1.0479 1.0523 1.0531 1.0261 1.0293 1.0659 1.0740 1.0588
RWG-HAR 1.0422 1.0471 1.0530 1.0602 1.0683 1.0507 1.0279 1.0555 1.0767 1.0708

GAS-F 1.0209 1.0122 1.0312 1.0778 1.0444 1.0248 1.0130 1.0731 1.0644 1.1180
GAS-F-HAR 1.0294 1.1061 1.0232 1.1489 1.1649 1.0360 1.0768 1.0467 1.1099 1.1275

DCC 2.0354 1.8998 1.6256 1.4739 1.3265 5.2720 3.5086 1.9520 1.4058 1.3014
HAR-DRD 0.9840∗ 1.0007∗ 1.0051∗ 1.0091 1.0105 1.0091∗ 1.0196 1.0271 1.0433 1.0591

Russell k = 5 k = 10 k = 25 k = 50 k = 100 k = 5 k = 10 k = 25 k = 50 k = 100

2-step-W 1.0341 1.0315 1.0483 1.0284 - 1.0246 1.0266 1.0141 1.0107 -
2-step-F 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ - 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ -

RWG 1.0538 1.0542 1.0711 1.0435 - 1.0434 1.0586 1.0612 1.0554 -
RWG-HAR 1.0605 1.0513 1.0686 1.0561 - 1.1015 1.0751 1.0697 1.0699 -

GAS-F 1.0199 1.0172 1.0148 1.0496 - 1.0206 1.0169 1.0311 1.1345 -
GAS-F-HAR 1.0276 1.0190 1.0284 1.0231 - 1.0961 1.0554 1.0605 1.0877 -

DCC 1.1081 1.2586 1.2739 1.2929 - 1.2654 1.5282 1.4649 1.4237 -
HAR-DRD 1.0084 1.0099∗ 1.0083 1.0027∗ - 1.0020∗ 1.0183 1.0263 1.0277 -

Table 7: Relative out-of-sample average loss measures. All measures are reported with respect to the 2-step-F model.
A value lower than one indicates that the corresponding model outperforms the 2-step-F model. Bold numbers denote
the models having lowest loss measures. Asterisks denote the models that are part of the 90% model confidence set
(MCS).

4.6 Robustness to noise

As underlined in the introduction, one of the advantages of the proposed approach is that it allows to take

into account the unavoidable estimation error that affects realized covariance estimates. The latter are

indeed modeled as noisy observations of a latent matrix process representing the true integrated covariance

of the intraday log-prices. In this sense, our methodology is in sharp contrast with the HAR-DRD, where

realized covariances are modeled as if they were the true covariances. We refer the reader to Bollerslev et al.

(2016), Bollerslev et al. (2018) and Buccheri and Corsi (2019) for a more detailed discussion on the impact

of estimation errors on forecasting with realized measures.

In this section, we assess the effect of different levels of noise on covariance forecasts by comparing our

methodology, which accounts for noise, to the HAR-DRD, which does not possess such ability. To increase

the level of noise, we sample the log-prices at the frequency of 5-minutes. The number of sampled log-prices

at this frequency is considerably smaller than that at 1-second (NYSE dataset) and 1-minute (Russell 3000

dataset). As a consequence, the multivariate realized kernel estimator of Barndorff-Nielsen et al. (2011) used

in our analysis will be subject to larger estimation errors.

Table (8) shows the out-of-sample average loss measures of the HAR-DRD with respect to the 2-step-F
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model at different sampling frequencies. Specifically, on the first line of each box, we show the result of Table

(7) corresponding to the original frequencies ∆ = 1-second (NYSE dataset) and ∆ = 1-minute (Russell 3000

dataset). On the second line, we report the results obtained by sampling the log-prices at ∆ = 5-minutes.

With 5-minutes data, the maximum number of time-stamps per day is 78, and thus for k = 100 the realized

covariance estimator is ill-conditioned. We thus report the results for k = 5, 10, 25, 50. We immediately

note that the forecast gains of the 2-step-F are larger and more significant for ∆ = 5-minutes. Of course,

such effect is more pronounced in the NYSE dataset, since the new sampling at 5-minutes implies huge data

reduction compared to the original 1-second sampling frequency. We also see that the statistical significance

of the forecast gains improves considerably at 5-minutes, as shown by the model confidence set test, which

always excludes the HAR-DRD from the 90% MCS.

The above results are a consequence of the score-driven filtering mechanism, which smooths out the noise

and guarantees more robust estimates compared to the HAR-DRD. The fact that we can successfully test

for such effect in the absence of observations of the true latent covariance is due to the use of loss measures

which are robust to estimation errors (see Patton and Sheppard (2009) and Patton 2011). Finally, note that

the use of lower frequencies is common in financial applications, as it may be dictated by liquidity or data

source restrictions.

Model MSE Qlike

NYSE k = 5 k = 10 k = 25 k = 50 k = 5 k = 10 k = 25 k = 50

∆ = 1-second
2-step-F 1.0000 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗

HAR-DRD 0.9840∗ 1.0007∗ 1.0051∗ 1.0091 1.0091∗ 1.0196 1.0271 1.0433
∆ = 5-minutes

2-step-F 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗

HAR-DRD 1.0833 1.0807 1.0915 1.0963 1.2760 1.2196 1.1189 1.0875

Russell k = 5 k = 10 k = 25 k = 50 k = 5 k = 10 k = 25 k = 50

∆ = 1-minute
2-step-F 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗

HAR-DRD 1.0084 1.0099 1.0083 1.0027∗ 1.0020∗ 1.0183 1.0263 1.0277
∆ = 5-minutes

2-step-F 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗ 1.0000∗

HAR-DRD 1.0247 1.0205 1.0131 1.0103 1.0192 1.0208 1.0256 1.0251

Table 8: Relative Out-of-sample average loss measures of HAR-DRD with respect to the 2-step-F model at different
sampling frequencies. Bold numbers denote the models having lowest loss measures. Asterisks denote the models
that are part of the 90% model confidence set (MCS).

4.7 Portfolio analysis

In this section, we use a framework similar to that of Fleming et al. (2001), Fleming et al. (2003) and

Bollerslev et al. (2018) to provide a quantitative assessment of the economic gains of switching from joint

estimation based models (RWG, RWG-HAR, GAS-F, GAS-F-HAR) to the proposed two-step estimation

based models (2-step-W, 2-step-F). Let us consider an investor who allocates her funds into k risky assets

by pursuing a volatility timing strategy in the period of time from day 1 to day T . On day t− 1, 1 < t ≤ T ,
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the investor solves the Global Minimum Variance (GMV) problem:

minω′tΣt|t−1ωt,

subject to ω′t1 = 1
(4.3)

where ωt is a k × 1 vector of portfolio weights and Σt|t−1 is the covariance matrix of asset returns at time

t computed based on information available up to time t− 1. We assume that the investor faces transaction

costs proportional to the portfolio turnover. The latter is defined as in DeMiguel et al. (2014), namely:

TOt−1 =

k∑
i=1

∣∣∣∣∣ω(i)
t − ω

(i)
t−1

1 + r
(i)
t−1

1 + ω′t−1rt−1

∣∣∣∣∣ (4.4)

where ω
(i)
t , r

(i)
t denote the i-th component of the vector of weights ωt and the returns vector rt, respectively.

The portfolio return in excess of transaction costs is computed as:

rp,t = ω′trt − cTOt (4.5)

where c is constant. We finally assume that the investor has a quadratic utility function:

U(rp,t, γ) = (1 + rp,t)−
γ

2(1 + γ)
(1 + rp,t)

2 (4.6)

where γ > 0 is the coefficient of risk aversion.

The economic gain of switching from a covariance model “s” to another covariance model “l” is defined

as the quantity ∆γ such that:
T∑
t=1

U(r
(s)
p,t , γ) =

T∑
t=1

U(r
(l)
p,t −∆γ , γ) (4.7)

where r
(s)
p,t and r

(l)
p,t are the returns of the portfolios constructed with the covariance forecasts of model s and

l, respectively. In other words, ∆γ represents the return an investor with risk aversion γ would be willing to

sacrifice in order to use the forecasts of model l in place of those of model s in solving the GMV problem4.

Table (9) reports the values of ∆γ computed for γ = 1 and γ = 10. For sake of clarity, we report in the

table the results obtained with the group of k = 25 assets belonging to the NYSE dataset. However, similar

results are obtained when considering other portfolio dimensions. The setting of the analysis is the same as

in the out-of-sample test of Section (4.5): the models are estimated in the sub-sample comprising the first

1000 business days, and the out-of-sample portfolios are computed for the remaining 1265 business days.

The values of ∆γ reported under the columns entitled RWG and RWG-HAR represent the economic gains

in annual basis points of switching from the latter two models to the 2-step-W. Similarly, those reported

under the columns entitled GAS-F and GAS-F-HAR represent the economic gains of switching from the

4In principle, the investor might solve a general mean-variance problem instead of the GMV problem considered here. As
discussed by Jagannathan and Ma (2003) and DeMiguel et al. (2009), mean-variance problems rely on forecasts of expected
returns, which are notoriously subject to large estimation errors and tend to distort the optimal portfolio solution. As we are
interested in examining covariance forecasts, we focus on the GMV problem, in a similar fashion to Bollerslev et al. (2018).
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2-step-W 2-step-F RWG RWG-HAR GAS-F GAS-F-HAR

Turnover 0.239 0.263 0.205 0.241 0.246 0.323
Average return (%) 9.847 10.427 9.371 9.273 9.644 8.473

Ex-post volatility (%) 7.887 7.875∗ 7.887 7.912 7.893 8.202

c = 0%
Sharpe ratio 1.138 1.209 1.084 1.069 1.116 0.941

∆1 59.3 47.6 57.4 78.6∗ 198.7∗

∆10 70.9 46.9 58.0 81.3∗ 228.1∗

c = 1%
Sharpe ratio 1.069 1.132 1.024 0.999 1.045 0.851

∆1 53.3 39.0 57.9 74.2∗ 213.8∗

∆10 65.0 38.4 58.4 76.8∗ 243.2∗

c = 2%
Sharpe ratio 0.999 1.055 0.964 0.929 0.973 0.760

∆1 47.2 30.5 58.3 69.8∗ 228.9∗

∆10 59.2 29.9 58.9 72.3∗ 258.3∗

Table 9: For each covariance model, we report the portfolio transaction costs computed as in Eq. (4.4), the average
portfolio return, the ex-post portfolio volatility and the Sharpe ratio. All quantities are annualized. We also report,
for c = 0%, 1%, 2%, the economic gains ∆γ in annual basis points of switching from joint estimation based models
with Wishart (matrix-F ) density to the 2-step-W (2-step-F), for γ = 1, 10. Similarly, we report the economic gains of
switching from the 2-step-W to the 2-step-F. The asterisks in portfolio volatilities indicate the models that belong to
the 90% MCS of lowest ex-post volatilities. Significance levels on economic gains are instead computed based on the
Reality Check of White (2000). The asterisks indicate the economic gains that are significantly different from zero
at the 5% confidence level. Bold quantities denote the best performing model according to the measure specified in
the first column.

latter two models to the 2-step-F. We also show in the first column the economic gains of switching from

2-step-W to 2-step-F. Significance levels on ∆γ are assessed through the Reality Check of White (2000), using

the stationary bootstrap of Politis and Romano (1994). In addition, we report in the table the turnover,

computed as in Eq. (4.4), the ex-post portfolio volatility, the average portfolio return and the Sharpe ratio.

The constant c multiplying the turnover is set as c = 0%, 1%, 2%, as in Fleming et al. (2003) and Bollerslev

et al. (2018).

We first note that all the economic gains are positive, meaning that the investor would be willing to pay a

positive annual amount in order to switch to the proposed two-step estimation based models. In particular,

the economic gains of switching from GAS-F and GAS-F-HAR to 2-step-F are highly significant. These

gains are mainly imputable to the variance reduction featured by the 2-step-F model. On the one side, the

flexibility provided by the proposed approach leads to better out-of-sample forecasts, which translate into

a lower ex-post portfolio volatility (see Engle and Colacito 2006 and Patton and Sheppard 2009). On the

other side, the two-step procedure naturally leads to a loss of statistical efficiency, which in turn determines

more erratic portfolio weights and a larger turnover. Our results clearly indicate that the first effect, namely

the superior forecasting ability, significantly dominates the loss of statistical efficiency in the context of a

risk-averse investor maximizing a quadratic utility function. In the case of models based on the Wishart

density, the ex-post volatility of the 2-step-W portfolio is statistically indistinguishable from that of the

RWG portfolio. Accordingly, we find that the corresponding economic gains are not statistically significant.

However, they are still positive due to the larger average return featured by the 2-step-W portfolio. We finally

note that the economic gains of switching from the 2-step-W to the 2-step-F are also positive, confirming

the result that the matrix-F density provides a better description of realized covariance time-series.
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5 Conclusions

We have introduced a two-step estimation procedure for score-driven realized covariance models based on

Wishart and matrix-F densities. By employing the score, which is a martingale difference by construction,

the proposed models automatically include a correction in the spirit of Aielli (2013). In the case of the

Wishart density, our class of models reduces to the model proposed by Bauwens et al. (2012). In the case

of the matrix-F density, we obtain a new realized covariance model that can be estimated in two-steps and

that accounts for the fat-tails of realized covariance time-series. More specifically, the main advantage of

the method is that it has a higher degree of flexibility in the estimation of volatilities. In the first step, the

latter are indeed separately estimated by univariate realized volatility models with different parameters. The

model is therefore easy to estimate in large dimensions and, compared to joint estimation, is less affected by

the curse of dimensionality.

Through a Monte-Carlo study, we have examined the finite sample properties of the two-step estimator

and shown that it recovers accurate estimates of the parameters. We have also examined the ability of the

model to capture misspecified correlation dynamics. The comparison between the two-step procedure and

standard joint estimation has been studied extensively through both Monte-Carlo simulations and empirical

data. We have found that the additional flexibility of the two-step procedure translates into in-sample

and out-of-sample forecast gains. The latter are found to be more significant in portfolios characterized by

different levels of heterogeneity in the persistence of the volatilities. In particular, we have found statistically

significant evidences of superior forecast ability in portfolios of high-dimensions, where volatilities are more

likely to exhibit different persistences.

We have also examined the performance of the methodology under very noisy estimates of the underlying

matrix-variate process. It is obtained that the score-driven filtering mechanism leads to increasingly better

forecasts compared to methods not accounting for estimation errors. As a final experiment, we have assessed

the economic gains of switching from standard joint estimation to the proposed two-step approach. It is

found that a risk averse investor would be willing to pay a positive amount to adopt the forecasts of the

two-step models in constructing her portfolio.
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A Computation of the scaled score in the univariate models

A.1 χ2 density

We compute the scaled score appearing in the dynamic of the log-variance λ
(i)
t in Eq. (2.13) in the case of

the χ2 density. To simplify the notation, we suppress the subscript i. The conditional log-likelihood is:

log pW1
(xt; vt, ν) =

1

2
c (ν) +

(ν
2
− 1
)

log (xt)−
ν

2
log (vt)−

ν

2

(
xt
vt

)
(A.1)

where c (ν) = ν log (ν/2)− 2 log Γ (ν/2). We now prove the following result (recall that vt = eλt):

Proposition A.1. For the density in Eq. (A.1), the score ∇W1
t =

∂ log pW1
(xt;λt,ν)

∂λt
is given by:

∇W1
t =

ν

2eλt

[
xt − eλt

]
(A.2)

Proof.

∇W1
t =

∂ log pW1
(xt;λt, ν)

∂λt
=
∂ log pW1

(xt;λt, ν)

∂vt
× ∂vt
∂λt

=
ν

2v2t
[xt − vt]× vt

=
ν

2eλt

[
xt − eλt

]

Then, we compute the information quantity:

Proposition A.2. For the density in Eq. (A.1), the Fisher information IW1

t|t−1 = Et|t−1[∇2
t ] is given by:

IW1

t|t−1 =
ν

2
(A.3)

Proof.

IW1

t|t−1 = Et−1

[
(∇W1

t )2
]

= Et−1

[
ν2

4e2λt
(xt − eλt)2

]
=

ν2

4e2λt
V ar [xt] =∗

ν2

4e2λt
2e2λt

ν
=
ν

2

where (∗) follows from V ar [x] = V ar [(vt/ν)kν ] = 2 (vt)
2

ν if kν is distributed as a χ2
ν .

Finally, it is immediate to compute the scaled score:

Proposition A.3. For the density in Eq. (A.1), the scaled score sW1
t = (IW1

t|t−1)−1∇W1
t is given by:

sW1
t =

1

eλt

[
xt − eλt

]
(A.4)
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A.2 F density

In the case of the univariate F density, the conditional log-likelihood is:

log pF (xt; vt, ν1, ν2) = d(ν1, ν2)− ν1
2

log(vt) +
(ν1

2
− 1
)

log(xt)−
ν1 + ν2

2
log (w̃t) (A.5)

where:

w̃t = 1 +
ν1xt

(ν2 − 2)vt
(A.6)

d(ν1, ν2) =
ν1
2

log

(
ν1

ν2 − 2

)
+ log Γ

(
ν1 + ν2

2

)
− log Γ

(ν1
2

)
− log Γ

(ν2
2

)
(A.7)

We compute now the score of the conditional log-likelihood.

Proposition A.4. For the density in Eq. (A.5), the score ∇Ft = ∂ log pF (xt;vt,ν1,ν2)
∂λt

is given by:

∇Ft =
ν1

2eλt

[
ν1 + ν2
ν2 − 2

xt
w̃t
− eλt

]
(A.8)

Proof.

∇Ft =
∂ log pF (xt; vt, ν1, ν2)

∂λt
=
∂ log pF (xt; vt, ν1, ν2)

∂vt
× ∂vt
∂λt

= − ν1
2vt

+
ν1 + ν2

2

[
w̃t

ν1xt
(ν2 − 2)(vt)2

]
× vt

=
ν1

2e2λt

[
ν1 + ν2
ν2 − 2

xt
w̃t
− eλt

]
× eλt

=
ν1

2eλt

[
ν1 + ν2
ν2 − 2

xt
w̃t
− eλt

]

As in the correlation model (cf. Section 2.2.2), we scale the score by the inverse of the Fisher information of

the χ2 density. Thus, we get:

Proposition A.5. For the density in Eq. (A.5), the scaled score sFt = (IW1

t|t−1)−1∇Ft is given by:

sFt =
1

eλt

[
ν1 + ν2
ν2 − 2

xt
w̃t
− eλt

]
(A.9)

B Proposition 2.1

Proof. We need to compute ∂l(Xt)
∂f ′t

= ∂l(Xt)
∂vech(Qt)

′ , where l is given by Eq. (2.17)

l (Xt) =
1

2
dX(k, ν) +

ν − k − 1

2
log |Xt| −

ν

2
log |Vt| −

ν

2
tr
(
V −1t Xt

)
.
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Thanks to the chain rule, we can split our equation as:

∂l (Xt)

∂vech (Qt)
′ =

∂l (Xt)

∂vec (Vt)
′
∂vec (Vt)

∂vec (Rt)
′
∂vec (Rt)

∂vec (Qt)
′
∂vec (Qt)

∂vech (Qt)
′ .

Then, starting with the first term and considering d log |X| = tr
(
X−1

)
dX and d

(
X−1

)
= −X−1 (dX)X−1,

see Magnus and Neudecker (1999),

∂l (Xt)

∂vec (Vt)
′ = −ν

2

[
vec
(
V −1t

)′ − vec (Xt)
′ (
V −1t ⊗ V −1t

)]
=
ν

2
[vec (Xt)− vec (Vt)]

′ (
V −1t ⊗ V −1t

)
.

The second term is, thanks to the fact that vec (AXB) = (B′ ⊗A) vec (X)

∂vec (Vt)

∂vec (Rt)
′ =

∂vec (DtRtDt)

∂vec (Rt)
′ = (Dt ⊗Dt) .

By definition of duplication matrix, see Abadir and Magnus (2005), we have that

∂vec (Qt)

∂vech (Qt)
′ = Dk.

The third term is a little bit more complicated, indeed defining ∆t =
(
diag(Qt)

1/2
)
,

dvec (Rt) =dvec
(
∆−1t Qt∆

−1
t

)
=∆−1t ⊗∆−1t dvec (Qt) + vec

(
d
(
∆−1t

)
Qt∆

−1
t

)
+ vec

(
∆−1t Qtd

(
∆−1t

))
=∆−1t ⊗∆−1t dvec (Qt) +

[(
∆−1t Qt ⊗ I

)
+
(
I ⊗∆−1t Qt

)]
dvec

(
∆−1t

)
=∆−1t ⊗∆−1t dvec (Qt)−

[(
∆−1t Qt ⊗ I

)
+
(
I ⊗∆−1t Qt

)]
∆−1t ⊗∆−1t dvec (∆t)

=∆−1t ⊗∆−1t dvec (Qt)−
[(

∆−1t Qt ⊗ I
)

+
(
I ⊗∆−1t Qt

)]
∆−1t ⊗∆−1t WQdvec (Qt) ,

where qt = vec (∆t) and WQ is a diagonal matrix with its ith diagonal elements equal to 1/2

√
q
(i)
t if q

(i)
t 6= 0

and zero otherwise.

Given these four results combined with the fact that (Dt ⊗Dt) and
(
V −1t ⊗ V −1t

)
are symmetric , we get

∂l (Xt)

∂vec (Vt)
′ =

ν

2
[vec (Xt)− vec (Vt)]

′ (
V −1t ⊗ V −1t

)
(Dt ⊗Dt)

(
∆−1t ⊗∆−1t

)
×
[
I −

(
Qt∆

−1
t ⊗ I

)
+
(
I ⊗Qt∆−1t

)]
WQDk

=
ν

2
[vec (Xt)− vec (Vt)]

′ (
D−1t ∆tQ

−1
t ⊗D−1t ∆tQ

−1
t

)
ΨtDk,

where Ψt =
[
I −

[(
∆−1t Qt ⊗ I

)
+
(
I ⊗∆−1t Qt

)]
WQ

]
.
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C Proposition 2.2

Proof. Starting with the definition of Fisher information matrix:

E
[
∇Wt ∇W

′

t |Ft−1
]

=E
[ν2

4
D′kΨ′t

(
D−1t ∆tQ

−1
t ⊗D−1t ∆tQ

−1
t

)
[vec (Xt)− vec (Vt)]

× [vec(Xt)− vec(Vt)]
′ (
D−1t ∆tQ

−1
t ⊗D−1t ∆tQ

−1
t

)
ΨtDk|Ft−1

]
=
ν2

4
D′kΨ′t

(
D−1t ∆tQ

−1
t ⊗D−1t ∆tQ

−1
t

)
×

× V ar (vec(Xt)− vec(Vt)|Ft−1)
(
D−1t ∆tQ

−1
t ⊗D−1t ∆tQ

−1
t

)
ΨtDk

=∗
ν2

4
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−1
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) 1
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t Dt∆

−1
t ⊗D−1t ∆tQ

−1
t Dt∆

−1
t

)
DkD+

k ΨtDk

where ∗ is thank to the vech formulation of the Wishart variance in Abadir and Magnus (2005) and ∗∗ is

given by 2DkD+
k = (Ik +Kk) (recall that Vt =

(
Dt∆

−1
t Qt∆

−1
t Dt

)
)

A =
(
D−1t ∆tQ

−1
t ⊗D−1t ∆tQ

−1
t

)
(Vt ⊗ Vt)

(
D−1t ∆tQ

−1
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=
(
D−1t ∆tQ

−1
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) (
Dt∆
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−1
t ⊗D−1t ∆tQ

−1
t Dt∆

−1
t
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H−1t Q−1t Ht ⊗H−1t Q−1t Ht

)

D Proposition 2.3

Proof. Multiplying the inverse of 2.19 with the 2.18 we get

sWt =
(
Dk′Ψ′t

(
H−1t Q−1t Ht ⊗H−1t Q−1t Ht

)
DkDk+ΨtDk

)−1D′kΨ′t

×
(
H−1t Q−1t ⊗H−1t Q−1t

)
[vec (Xt)− vec (Vt)]

=
(
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(
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)
DkDk+ΨtDk
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(
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) (
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)
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=
(
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(
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)
DkDk+ΨtDk
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×
(
H−1t Q−1t Ht ⊗H−1t Q−1t Ht
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=
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×
(
H−1t Q−1t Ht ⊗H−1t Q−1t Ht

)
DkDk+

(
H−1t ⊗H−1t

)
[vec (Xt)− vec (Vt)]
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Now let us simplify IWt = ν
2D
′
kΨ′t

(
H−1t Q−1t Ht ⊗H−1t Q−1t Ht

)
Dk. This simplification is not restrictive

because the matrix Ψt is very sparse, moreover using the approximation Ψt = I allows us to define the

inverse of It which is not full-rank with the original representation.

We get

st =Dk+
(
H−1t ⊗H−1t

)
[vec (Xt)− vec (Vt)]

=Dk+
(
H−1t ⊗H−1t

)
vec(Xt)−Dk+

(
H−1t ⊗H−1t

)
(Ht ⊗Ht) vec(Qt)

=Dk+
(
H−1t ⊗H−1t

)
vec(Xt)− vech (Qt)

E Proposition 2.4

Proof. As in the Wishart case, we can split

∂l (Xt)

∂vech (Qt)
′ =

∂l (Xt)

∂vec (Vt)
′
∂vec (Vt)

∂vec (Rt)
′
∂vec (Rt)

∂vec (Qt)
′
∂vec (Qt)

∂vech (Qt)
′ .

The only terms which is different from the previous model is the first one. The log-likelihood function is and

get, using again d log |X| = tr
(
X−1

)
dX and d

(
X−1

)
= −X−1 (dX)X−1

dlXt =− ν1
2
tr
(
V −1t dVt

)
− ν1 + ν2

2
tr
(
W̃−1t dW̃t

)
=∗ − ν1

2

(
vecV −1t

)′
dvecVt +

ν1 + ν2
2

tr

(
W̃−1t

ν1
ν2 − k − 1

V −1t dVtV
−1
t Xt

)
=− ν1

2

(
vecV −1t

)′
dvecVt +

ν1 + ν2
2

tr

(
ν1

ν2 − k − 1
V −1t XtW̃

−1
t V −1t dVt

)
=− ν1

2

(
vecV −1t

)′
dvecVt +

ν1 + ν2
2

vec

(
ν1

ν2 − k − 1
V −1t XtW̃

−1
t V −1t

)′
dvecVt

hence we obtain

∂l (Xt)

∂vec (Vt)
′ =− ν1

2

(
vecV −1t

)′
+
ν1 + ν2

2
vec

(
ν1

ν2 − k − 1
V −1t XtW̃

−1
t V −1t

)′
=
ν1
2

[(
V −1t ⊗ V −1t

)( ν1 + ν2
ν2 − k − 1

vec
(
XtW̃

−1
t

)
− vec (Vt)

)]′
.
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Combining all the formulas together we get

∂l (Xt)

∂vech (Qt)
′ =

ν1
2

(
ν1 + ν2

ν2 − k − 1
vec
(
XtW̃

−1
t

)
− vec (Vt)

)′ (
V −1t ⊗ V −1t

)
(Dt ⊗Dt)

×
(
∆−1t ⊗∆−1t

)
ΨtDk

=
ν1
2

(
ν1 + ν2

ν2 − k − 1
vec
(
XtW̃

−1
t

)
− vec (Vt)

)′
×
(
D−1t ∆tQ

−1
t ∆tD

−1
t ⊗D−1t ∆tQ

−1
t ∆tD

−1
t

) (
Dt∆

−1
t ⊗Dt∆

−1
t

)
Ψ′tD′k

=
ν1
2

(
ν1 + ν2

ν2 − k − 1
vec
(
XtW̃

−1
t

)
− vec (Vt)

)′ (
H−1t Q−1t ⊗H−1t Q−1t

)

F Proposition 2.5

Proof. Consider the multiplication IWt ∇Ft , considering the same approximation of IWt we used in D,

sFt =
(
Dk′

(
H−1t Q−1t Ht ⊗H−1t Q−1t Ht

)
Dk
)−1D′k

×
(
H−1t Q−1t ⊗H−1t Q−1t

) [ ν1 + ν2
ν2 − k − 1

vec
(
XtW̃

−1
t

)
− vec (Vt)

]
=
(
Dk′

(
H−1t Q−1t Ht ⊗H−1t Q−1t Ht

)
Dk
)−1D′k (H−1t Q−1t Ht ⊗H−1t Q−1t Ht

)
×DkDk+

(
H−1t ⊗H−1t

) [ ν1 + ν2
ν2 − k − 1

vec
(
XtW̃

−1
t

)
− vec (Vt)

]
=

ν1 + ν2
ν2 − k − 1

vech
(
H−1t XtW̃

−1
t H−1t

)
− vech (Qt)

G Proposition 2.6

Proof. The proof is straightforward:

lim
ν2→∞

sFt = lim
ν2→∞

ν1 + ν2
ν2 − k − 1

vech
(
H−1t XtW̃

−1
t H−1t

)
− vech (Qt)

=vech
(
H−1t XtW̃

−1
t H−1t

)
− vech (Vt) = sWt

since W̃t = Ik + ν1
ν2−k−1V

−1
t Xt

H Figures of Section (3.2)

In this section, we report the figures of the experiment based on the misspecified DGP’s presented in Section

(3.2)
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Figure 8: In-sample and out-of-sample filtered estimates of ρ
(1)
t from both the 2-step-W and 2-step-F models.

Estimates are averaged over the 1000 simulations. Confidence bands are constructed by computing the 10% and 90%
empirical quantiles.

Figure 9: In-sample and out-of-sample filtered estimates of ρ
(2)
t from both the 2-step-W and 2-step-F models.

Estimates are averaged over the 1000 simulations. Confidence bands are constructed by computing the 10% and 90%
empirical quantiles.
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Figure 10: In-sample and out-of-sample filtered estimates of ρ
(3)
t from both the 2-step-W and 2-step-F models.

Estimates are averaged over the 1000 simulations. Confidence bands are constructed by computing the 10% and 90%
empirical quantiles.

Figure 11: In-sample and out-of-sample filtered estimates of ρ
(4)
t from both the 2-step-W and 2-step-F models.

Estimates are averaged over the 1000 simulations. Confidence bands are constructed by computing the 10% and 90%
empirical quantiles.
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