

City, University of London Institutional Repository

Citation: Reyes-Aldasoro, C. C. (1994). Algorithm to Compute Reduced Costs on a Graph.

(Unpublished Masters thesis, Imperial College of Science Technology and Medicine)

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/25086/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

An Algorithm for Calculating the
Reduced Costs on a Graph

by

Constantino Carlos Reyes Aldasoro

This report is submitted in partial fulfilment of the requirements
for the Degree of Master of Science (M.Sc.) and the

Diploma of Imperial College (D.I.C.)

Department of Electrical and Electronic Engineering
Imperial College of Science Technology and Medicine

University of London

September 1994

Imperial College of Science Technology and Medicine

Constantino Carlos Reyes Aldasoro
M.Sc. Thesis

ii

The problem of calculating the Reduced Costs of all arcs on a graph is considered. For each

arc on the graph, the problem is to determine the arc with maximum cost on the fundamental

path on the corresponding spanning tree. A new algorithm for this problem is proposed. It is

based on the construction of a Binary Tree by sequential deletion of arcs in a descending

order of costs. The tree is composed of leaf nodes representing the actual vertices in the

graph and intermediate nodes representing the branches of the Minimum Spanning Tree.

Using the Binary Tree, the Reduced Costs of any chord is determined by the Nearest

Common Ancestor of the leaf nodes corresponding to the chord vertices. Computational

results are presented for graphs of various densities. The algorithm's performance is

compared to the path labelling algorithm of Carpaneto [1].

ABSTRACT

Imperial College of Science Technology and Medicine

Constantino Carlos Reyes Aldasoro
M.Sc. Thesis

iii

ABSTRACT ..ii

CHAPTER 1: INTRODUCTION..1

CHAPTER 2 ALGORITHM FOR THE REDUCED COST PROBLEM

ON A GRAPH ...3

2.1 Minimum Spanning Tree ...3

2.2 Binary Tree Construction ..4

2.3 Nearest Common Ancestor and the Reduced Cost7

2.4 Computer Implementation ...8

2.5 Figures ..12

CHAPTER 3 AN EXAMPLE..15

3.1 Description of the example ..15

3.2 Tables and Figures...18

CHAPTER 4 COMPUTATIONAL PERFORMANCE..25

4.1 Computational Complexity and Storage Requirements...........................25

4.1.1 Path Tree ...25

4.1.2 Star Tree ..27

4.1.3 Water Wheel Tree ..28

4.2 Storage: ..30

4.3 Experimental Performance...31

4.4 Tables and Figures...33

CHAPTER 5 CONCLUSIONS ...44

REFERENCES: ...45

APPENDIX: ..47

Forward Star Configuration...47

Table of Contents

Imperial College of Science Technology and Medicine

Constantino Carlos Reyes Aldasoro
M.Sc. Thesis

1

Definitions

Let G=(V,A) be a connected undirected graph composed of a finite set of vertices

V={1,2,3,...,n}, and a set of arcs A={1,2,3,...,m}. For every arc in A there is a pair of

vertices (i,j), i≠j, (i,j) is an ordered pair of V and it has a related cost c(i,j)>0. For undirected

graphs, clearly c(i,j)=c(j,i), but (i,j), (j,i) are stored as two separate arcs. The maximum cost

of any arc in G is defined as CMAX. Any subset of G in which all the vertices are connected

and there are no loops (i.e. having n vertices and n-1 arcs) is called a Spanning Tree. A

subset of G, T(V,A'), A' ⊆ A such that ()∑ ∈ '},{
,

Aji
jic is minimum, is called the Minimum

Spanning Tree of the graph. The Minimum Spanning Tree is stored using one pointer per

vertex. For each vertex v, father(v) points to the predecessor of v in the spanning tree T. The

root of the tree has no father.

The Minimum Spanning Tree will be composed of n vertices and n-1 branches and

will have its root at vertex 1 by default. The diameter of a Minimum Spanning Tree is

defined as the longest path inside the tree. After obtaining the Minimum Spanning Tree, the

arcs in the graph G will be classified in two groups: branches for the arcs that belong to T

and chords otherwise (i.e. in T). The degree of a vertex represents the number of branches

incident to the vertex. The fundamental path (Ppq) of a chord (p,q) is the set of branches that

connect p and q. A branch (k,l) will be defined as the critical branch if c(p,q)-c(k,l)

CHAPTER 1: INTRODUCTION

Imperial College of Science Technology and Medicine

Constantino Carlos Reyes Aldasoro
M.Sc. Thesis

2

≤c(p,q)-c(k',l') for every branch (k',l') ∈ Ppq. A critical branch is the maximum cost branch

on the fundamental path.

A Binary Tree is a tree in which each node has degree≤3, one being its father and

two being its sons. A node having no sons is called a leaf node. The Binary Tree structure

will be the constructed from T by progressively removing the set A' and adding a new set

{n+1, n+2, ..., 2n-1} of n-1 intermediate nodes and 2n-2 new branches, regarded as T'. The

resulting Binary Tree is therefore the union (T ∪ T'). The depth of a node will be the

number of ancestors it has in (T ∪ T'). To express the distance of a node from the root, the

terms shallow as close to the root, deep away from the root will be used. The Nearest

Common Ancestor of two nodes will be the deepest node that will be an ancestor of both

nodes. The maximum depth of a leaf node will be the level of the deepest leaf node. The first

level is reserved for an intermediate node (node n+1) and will be taken as level 0. The

average level of the leaf nodes will be the average of the levels of all the leaf nodes.

The Reduced Cost of a chord will be c (p,q) = c(p,q)-c(k,l) where c(p,q) is the cost

of the chord and c(k,l) is the cost of the critical branch on the fundamental path Ppq.

Some terms from graph theory used along the text are standard (e.g. [2], [9], [5])

The convention for the trees follows [5].

The report will be divided into 5 chapters. The second chapter will provide a description of

the algorithm proposed to solve the problem, including the different subroutines employed.

The third chapter will present a complete example on a general graph to illustrate the

algorithm. The fourth chapter includes an analysis of the performance of the algorithm

concerning computational complexity and memory locations for storage as comparison with

Carpaneto's Algorithm [1]. A final chapter will include conclusions, and further work.

Imperial College of Science Technology and Medicine

Constantino Carlos Reyes Aldasoro
M.Sc. Thesis

3

The previous approach [1] [9] to the problem of calculating the Reduced Costs, has been

through path labelling procedures. These procedures obtain the fundamental path of a chord

and obtain the critical branch by successively comparing the cost of each of the branches.

In this work, a new algorithm to obtain the Reduced Costs of a graph is proposed. The main

idea will be to obtain the Reduced Costs of the graph through the Nearest Common

Ancestor of the delimiting nodes of a chord in a Binary Tree constructed for this purpose.

The implementation of the algorithm can be divided, and will be presented, in three major

sections. The first part is to obtain the Minimum Spanning Tree of the graph and define

some useful variables. The second will consider the construction of a Binary Tree by the

deletion of the branches of the MST. The costs of the branches will be embedded in the

levels of the Binary Tree. In the third and last section, the Nearest Common Ancestor of

every pair of leaf nodes (delimiting a chord) will be located, and from this, the Reduced

Cost will be calculated. The first section will be briefly described, and the subroutine used is

noted in the references. The other two sections will be described with its particular

subroutines. Finally, the computer implementation is described.

CHAPTER 2 ALGORITHM FOR THE REDUCED COST

PROBLEM ON A GRAPH

Imperial College of Science Technology and Medicine

Constantino Carlos Reyes Aldasoro
M.Sc. Thesis

4

2.1 Minimum Spanning Tree

Several implementations have been proposed to find the MST of a graph ([2], [10], [4]).

These algorithms are based on the algorithms proposed by Kruskal [6] and later Dijkstra [3]

and Prim [8].

The basic Prim Algorithm, the one chosen for the application, is defined as follows1:

Step 0. [Initialise] Label all the vertices as "unchosen"; set T←a graph with n vertices and no

arcs; choose and arbitrary vertex and label it "chosen".

Step 1. [Iterate] While there is an unchosen vertex, do step 2 and stop.

Step 2. [Pick smallest cost arc] Let (u,v) be a smallest cost arc between any chosen vertex u

and any unchosen vertex v; label v as "chosen" and set T← T + (u,v)

This algorithm is regarded as "greedy" for it always look for the best option in that moment

without considering the effect of it in the future. The over all complexity of the algorithm is

O n()2 . The implementation of [4] modifies the basic Prim algorithm and reduces the

computational complexity to the order of O n m()+ . The modification of the algorithm in [4]

takes the advantage of a sparse (e.g. fewer arcs present than the possible ones) graph using a

Forward Star configuration (Appendix A) instead of a matrix, this way the O n m()+

complexity can be obtained. The number of arcs will vary from: M nmin = − 1, to keep a

connected graph, up to: M n n
max

()= − 1
2 , all the possible connections between vertices.

So, in the worst case, n m
n n

+ =
+()1

2
, but can be as low as n m n+ = −2 1. The latter, of

course, would be a trivial case since the graph would be the MST by itself.

1 Names have been changed to keep Terminology coherent.

Imperial College of Science Technology and Medicine

Constantino Carlos Reyes Aldasoro
M.Sc. Thesis

5

2.2 Binary Tree Construction

Once the Minimum Spanning Tree is obtained, the next step is to transform it into a Binary

Tree. The construction of the Binary Tree will be done by a sequential removal of the

branches from the MST. For every branch removed a new intermediate node and two new

branches will be added and the resulting tree will be rearranged. After n-1 removals, one for

every branch in the MST, the Binary Tree will have been constructed. The process of

removing branches (Figure 2.1) will imply for each branch to be removed:

a) deleting the branch linking vertices v (father) and w (son), this leaves two unconnected

subtrees.

b) Rearranging each subtree to leave v and w as respective roots.

c) Creating a new intermediate node (n+i) that belongs to T'.

d) Linking subtrees by making v and w children of the new intermediate node.

The most involved step, and the only one that will have a dynamic number of operations, is

rerooting the subtrees. The rearrangement of the these will concern only one of subtrees; the

one adjacent to the father of the branch; v. Only the vertices that lie on the path from v to

the shallowest vertex in T (not in T') will be rearranged.

In the first case, this vertex will be to the root itself but after the first step, the path

will be from the father of the branch up to the last vertex, i.e. not an intermediate node. The

reorganisation of the vertices will be a modification of the parental status. Namely, the

father and son of every branch on a path will swap positions for all cases except for v, who

will become son of the new node. Figure 2.2 shows this rerooting when branch c-d is

removed. The thicker line emphasises the path up from v to the shallowest vertex.

Imperial College of Science Technology and Medicine

Constantino Carlos Reyes Aldasoro
M.Sc. Thesis

6

The levels of the tree are obtained from the root level (0 by default). Each time an

intermediate node is added, its level will be obtained adding one to the level of the father.

The levels of the leaf nodes will be determined once the Binary Tree is completed, and their

position along the tree will not vary any more.

The process of branch removal can be done up to the moment when the degree of all nodes

is either 1 or 2 i.e. every vertex is a leaf node, or a father of a single leaf node. The branch

that remains will be of a smaller value than the critical branch on the fundamental path,

determined by the Nearest Common Ancestor, and is allowed to remain since a single path is

obtained. Nevertheless, because the computational complexity of using a stopping criterion

to detect that the state of degree ≤ 2 is reached, it is better to continue the removal of

branches until all the original vertices become leaf nodes. These extra steps will not imply

too much work since for all cases the father, will be son of a new node and then the

rerooting is not necessary and the removal process is short. The stopping criterion will imply

a O(n) search through the array of nodes for every iteration.

The idea behind removing the branches of the Minimum Spanning Tree is the following. For

a given MST like the one shown in Figure 2.3, the removal of branch (k,l), where (k,l) has

the highest arc cost, will divide the tree into two subtrees. For any chord connecting vertices

p and q, where p and q belong to the two subtrees separated by the cutset (k,l), the critical

branch in the fundamental path will always be (k,l). This can lead to the calculation of the

Reduced Cost of any chord. For a second branch (k',l') to be removed, the Reduced Cost of

any chord which connect the two subtrees created by the new cut will be resolved by using

branch (k',l') the subtree will be again divided. The process is repeated for every pair of

vertices (p',q').

Imperial College of Science Technology and Medicine

Constantino Carlos Reyes Aldasoro
M.Sc. Thesis

7

2.3 Nearest Common Ancestor and the Reduced Cost

In the third section, the Nearest Common Ancestor of every pair of leaf nodes (that delimit a

chord) will be found, and through a simple calculation, the critical branch in the fundamental

path and the Reduced Cost of the corresponding chord will be determined.

First, the Nearest Common Ancestor is obtained following this steps:

Step 1: The levels of the leaf node pair are compared to determine which one is deeper.

Step 2 If the levels are different, climb the path of the deepest until the levels are equal.

Step 3 When they have the same level, check if they are the same. If it is, that node is the

NCA, stop.

Step 4 If not, climb up once both, and continue until NCA is reached.

The process of climbing the deepest node will be defined as an individual climb. It will be a

single node decreasing the level by one in his path to the root. In other words, the node will

take the position of its father each time. This individual climb is done only by the deepest

node until it reaches the level of the shallowest node. In contrast, when both leaf nodes

reside in the same level, a pair climb will be performed. This can be done from the beginning

of the process, or after a number of individual climbs of the deepest node. The pair climb is

done as the individual climb; each node decreases the level by one in the path to the root

until the NCA is reached.

In the best case, the father of one of the leaf nodes will be the NCA, the worst case will be

that the root of the tree is the NCA and one of the leaf node is one of the deepest level. It

Imperial College of Science Technology and Medicine

Constantino Carlos Reyes Aldasoro
M.Sc. Thesis

8

should be noted, that it is not possible that one of the vertices is the NCA of a pair since all

the vertices will be leaf nodes in the Binary Tree.

The critical branch of the fundamental path of a chord is determined by a simple

subtraction:

() ()critical branch on the fundamental path Ppq = -N C A p q n,

that will lead to the definition of Reduced Cost, and the end of the algorithm.

2.4 Computer Implementation

The data of the graph can be an input to the program in both Matrix and Forward Star

configurations. If the data is in a Matrix form, it will be converted to a star as it is being read

and will be stored in the star variables. This will be done in order to manipulate the data in

the more convenient way for the Minimum Spanning Tree construction.

The subroutine MSTREE uses the implementation of [4] to obtain the Minimum Spanning

Tree. The subroutine will receive as input the values of the graph in a Forward Star

configuration: (APT(·)), (ALIST(·)) and (ACOST(·)), the number of vertices (n) and arcs

(m), and a dummy variable (NP1 = n+1) to indicate the termination of the data. The output

produced will be a father list for each node (F(·)), and the cost for that father-son branch

(BRANCHCOST(·)) and the total cost of the tree (TCOST). Other internal variables are

also used, for further detail the reader should refer to [4]. In order to solve the Reduced

Costs problem, it was necessary to store the costs of the arcs selected as branches in a

different array.

Imperial College of Science Technology and Medicine

Constantino Carlos Reyes Aldasoro
M.Sc. Thesis

9

The order in which the branches should be removed is given by their order of costs in

the MST (from higher to lower). The SORTING subroutine will create the index in

decreasing order of the (BRANCHCOST(·)) array. It is important not to modify the order of

the original array for it will be used again afterwards. The SORTING is a Quicksort and has

order O n n(log)2 computational time. The index will be stored in (POINTER(·)) which will

be used later to generate two new arrays. One will correspond to the father, and one to the

son delimiting the branch; (BF(·)) and (BS(·)). The arrays will determine the proper order in

which the branches should be removed. At the same time that these arrays are generated, the

array (ACOST(·)) will be modified. The cost of the positions corresponding to the branches

will be changed to infinity: (CMAX+1). In the general graph, if the value of a pair (i,j) is

greater than CMAX, that will mean that there is no connection between i and j. The idea is

to disable these arcs from the array. By doing so, in the analysis of the Nearest Common

Ancestor of a pair of leaf nodes, chords will be differentiated from branches.

The REMOVE subroutine will delete the branches from the MST and will add

intermediate nodes and new branches in order to create the Binary Tree. It will use as input

the father array (F(·)), and the ordered branch array (BF(·)) and (BS(·)), and will rearrange

(F(·)) adding the intermediate nodes and give (LEVEL(·)) as output.

The subroutine NEAREST will obtain the Nearest Common Ancestor, the critical

branch in the fundamental path and the Reduced Cost for every pair of vertices delimiting a

chord. The input variables will be (F(·)), (n), (m), and (LEVEL(·)) as the Binary Tree in

which the ancestors are to be looked for, (CMAX), (APT(·)), (ALIST(·)), and (ACOST(·))

to differentiate the chords from the branches, and (BRANCHCOST(·)) and (POINTER(·))

to determine the Reduced Cost. The output will be a single value, the Reduced Cost for each

chord.

Imperial College of Science Technology and Medicine

Constantino Carlos Reyes Aldasoro
M.Sc. Thesis

10

The two algorithms, to construct the Binary Tree (procedure REMOVE), and the

Nearest Common Ancestor location (procedure NEAREST), are presented below in the

form of the subroutine developed.

Imperial College of Science Technology and Medicine

Constantino Carlos Reyes Aldasoro
M.Sc. Thesis

11

Procedure REMOVE

F(1) = 0, F(n+1) = 0, LEVEL(n+1) = 0 Initialising variables and
setting first level

DO I = 1, n-1
IF BF(I) = F(BS(I)) THEN

v = BF(I), w = BS(I) Find father and son of the
ELSE chord and assign them to

v = BS(I), w = BF(I) v and w respectively
ENDIF
fv = F(v), F(v) = n+I, F(w) = n+I Make v and w sons of new

node and prepare the
880 CONTINUE rearrangement by swapping

pv = v, cond = 0 parental status
IF fv < n THEN

v = fv, fv = F(fv), F(v) = pv
IF fv = 0 THEN cond = 1 The root is reached

ELSE
F(n+I) = fv, cond = 1 An intermediate node

is reached
IF LEVEL(n+I) < 0 THEN

LEVEL(n+I) = LEVEL(F(n+I))+1 The level is set
ENDIF

IF cond≠1 GOTO 880 The tree has been
rearranged

CONTINUE At the end of the cycle, the
Binary Tree has been
constructed

Imperial College of Science Technology and Medicine

Constantino Carlos Reyes Aldasoro
M.Sc. Thesis

12

Procedure NEAREST

DO I = 1, n
DO J = APT(I), APT(I+1)-1

IF ACOST(J) ≤CMAX THEN Discriminate branches from chords

IF LEVEL(I) ≤LEVEL(ALIST(J)) THEN
X = I Assign shallowest leaf node
Y = ALIST(J) to X and the deepest to Y

ELSE
X = ALIST(J)
Y = I

ENDIF

LX = LEVEL(X)
LY = LEVEL(Y)

IF LX ≠ LY THEN If the levels are not equal
502 CONTINUE climb the deepest until they

Y = F(Y) remain in the same level
LY = LY-1 individual climb
IF LX ≠ LY GOTO 502

ENDIF

IF X = Y GOTO 512 When the levels are equal find out if
510 CONTINUE the nodes are just one, if not, climb

X = F(X) up both until NCA is found
Y = F(Y) pair climb
IF X ≠ Y GOTO 510

512 NCA = X The NCA is used to obtain
CRITICAL = BRANCHCOST(POINTER(NCA-n)) the critical branch and the
REDUCED = ACOST(J)-CRITICAL Reduced Cost
ENDIF

CONTINUE The process is repeated
CONTINUE for all the chords

Imperial College of Science Technology and Medicine

Constantino Carlos Reyes Aldasoro
M.Sc. Thesis

13

2.5 Figures

Figure 2.1

v

w

v w

a b

n

v w

 + 1

v w

n + 1

c d

Imperial College of Science Technology and Medicine

Constantino Carlos Reyes Aldasoro
M.Sc. Thesis

14

x

Figure 2.2

a

b

c

d

e

f

g

h

i j

a

b

c d

e

f

g

h

i j

n + 1

a b

Imperial College of Science Technology and Medicine

Constantino Carlos Reyes Aldasoro
M.Sc. Thesis

15

k
l

p q

p'

q'

k'

l'

T

T T
T

k l

k'

l'

Figure 2.3

Imperial College of Science Technology and Medicine

Constantino Carlos Reyes Aldasoro
M.Sc. Thesis

16

3.1 Description of the example

The algorithm previously described was implemented in FORTRAN 77 running on a UNIX

system. It was tested with different graphs, both general and complete, in different densities

and sizes. The algorithm was successful in solving the Reduced Costs problem with graphs

of size 240 vertices with 28,658 arcs.

To illustrate the algorithm, a solved example is presented. The graph shown below in

Figure 3.1 represents a general graph with 16 vertices (bold numbers), 72 directed arcs,

with a maximum arc cost of 62. The fifteen arcs in italics constitute the MST.

The Minimum Spanning Tree obtained from this graph is represented in Figure 3.2. The

solid lines are the branches of the MST, and the dotted lines are the chords . The branches

are sorted from highest to lowest value and labelled to be removed in that particular order to

form the Binary Tree. (Figure 3.3)

The MST previously obtained is considered to be rooted at vertex 1, so it can be

redrawn as in the Figure 3.4.a. The connections between vertices are the same, only that

here a status of father or son is given to the vertices for a corresponding chord.

Here, a double line is depicted over a specific chord; from 7 to 6, this represents the

first branch to be removed, i.e. the one with highest value. The path from the father of this

CHAPTER 3 AN EXAMPLE

Imperial College of Science Technology and Medicine

Constantino Carlos Reyes Aldasoro
M.Sc. Thesis

17

branch to the root is emphasised with a thicker line as in 3.4.b. This is done to show the

reversal in order of the path from the father to the root. The first intermediate node to be

added will become the root of the Binary Tree, the intermediate nodes are shown inside an

ellipse and the new branches are dot and dashed lines. All these additions will be static and

will not be modified along the process.

Figure 3.4.c represents the Tree after branches 7 to 6 and 8 to 11 have been removed, and

intermediate nodes 17 and 18 have been added. Similar graphs will be obtained for each of

the fifteen steps, one for every branch in the MST.

Figure 3.5.a represents the tree after nine steps. In this moment the critical branch in

fundamental path through the MST can be obtained without further removal of branches.

As explained earlier, the process will continue for all the n-1 steps, represented, with their

corresponding levels in Figure 3.5.b. The characteristics of the levels are the following:

maximum depth()example = 7

average level()example = 5

Once the Binary Tree, with the respective levels for the leaf nodes, is obtained, the Nearest

Common Ancestor is obtained for each chord. The NCA is related to the critical branch in

the fundamental path of a chord in the following way. Suppose the chord analysed is from

13 to 14. The NCA is 18 as shown in Figure 3.6.

The path from p to q (13-14) goes 13-10-7-8-11-15-14, like in Figure 3.7. The branches

have their values and the number inside the box corresponds to the order in which the

branches are to be removed. The critical branch is obtained through its order in the branch

set from the following subtraction:

Imperial College of Science Technology and Medicine

Constantino Carlos Reyes Aldasoro
M.Sc. Thesis

18

() 21618,branch critical =−=lk

The value corresponding to the branch labelled as 2 is 23 and in Figure 3.7 is underlined as

well as the cost of the chord; 41. The Reduced Cost of the chord is immediate from the

definition, or alternatively:

 () () () () qpPlklkcqpcqpc ,, ,max,, ∈−=

() 18234114,13 =−=c

The process is repeated for every chord of the graph shown in Figure 3.8

The analysis of all the chords is listed below in the table 3.1, with the NCA for every pair of

leaf nodes that correspond to a chord, the critical branch to be removed, and the Reduced

Cost for the chord.

Imperial College of Science Technology and Medicine

Constantino Carlos Reyes Aldasoro
M.Sc. Thesis

19

3.2 Tables and Figures

chord NCA (p,q) critical branch Reduced Cost

p q k l c(p,q) c(k,l) c (p,q)

 1 3 20 3 2 47 21 26

 1 6 17 6 7 50 25 25

 1 7 20 3 2 34 21 13

 2 8 20 3 2 29 21 8

 3 4 20 3 2 38 21 17

 3 6 17 6 7 29 25 4

 4 9 19 9 8 34 22 12

 5 7 17 6 7 36 25 11

 5 10 17 6 7 62 25 37

 5 13 17 6 7 46 25 21

 7 11 18 11 8 39 23 16

 8 12 18 11 8 29 23 6

 9 11 18 11 8 35 23 12

 9 12 18 11 8 41 23 18

10 11 18 11 8 34 23 11

11 13 18 11 8 46 23 23

11 16 21 16 15 44 20 24

12 15 23 15 11 35 15 20

12 16 21 16 15 39 20 19

13 14 18 11 8 41 23 18

14 16 21 16 15 36 20 16

Table 3.1

Imperial College of Science Technology and Medicine

Constantino Carlos Reyes Aldasoro
M.Sc. Thesis

20

1

2

3

4

8

7

6

5

10 13

9

11

12

15

14

16
5

6

7

8

9

9

10

12

15

16

20
21

22

23

25

34

29

35

44

50

39

36

41

62

46

34

34

29 35

39

46

36

41

29

47

38

Original Graph

Figure 3.1

1

2

3

4

8

7

6

5

10 13

9

11

12

15

14

16

Minimum Spanning

Tree; BRANCHES

Arcs not chosen

CHORDS

Output of MSTREE

Figure 3.2

Imperial College of Science Technology and Medicine

Constantino Carlos Reyes Aldasoro
M.Sc. Thesis

21

1

2

3

4

8

7

6

5

10 13

9

11

12

15

14

16

1

2

3

4

5

6

78

9

10

14

12

13

15

11

Output of SORTING

Figure 3.3

Figure 3.4

1

2

3 4

8

7

6

5

10

13

9 11

12 15

14 16

ROOT

1

2

3

4

8

76

5 10

139 11

12 15

14 16

17

1

2

3

4

8

7

6

5

10

13

9

11

12 15

14 16

17

18

 a b c

Imperial College of Science Technology and Medicine

Constantino Carlos Reyes Aldasoro
M.Sc. Thesis

22

Figure 3.5

1

2

3

4

87

6

5

10

13

9

11

12

15

14

16

17

18

19

20

21

22

23

24

25

1 2

3

4

8 7

65

10

13

9

11 121514

16

17

18

19

20

21

25

23

24

22

30

3127

26

2928

LEVEL

1

2

3

4

5

6

0

7

a b

Imperial College of Science Technology and Medicine

Constantino Carlos Reyes Aldasoro
M.Sc. Thesis

23

1 2

3

4

8 7

65

10

13

9

11 121514

16

17

18

19

20

21

25

23

24

22

30

3127

26

2928

Figure 3.6

Imperial College of Science Technology and Medicine

Constantino Carlos Reyes Aldasoro
M.Sc. Thesis

24

8

7

10 13

11

15

14

2

6

7

8

13

11

12
23 15

9

4116

7

Chord to be analysed

Fundamental Path

Figure 3.7

Imperial College of Science Technology and Medicine

Constantino Carlos Reyes Aldasoro
M.Sc. Thesis

25

1

2

3

4

8

7

6

5

10

13

9

11

12

15

14

16

Figure 3.8

Imperial College of Science Technology and Medicine

Constantino Carlos Reyes Aldasoro
M.Sc. Thesis

26

4.1 Computational Complexity and Storage Requirements

To analyse the performance of the algorithm, three important cases were studied. The three

cases represent special types of the Minimum Spanning Tree obtained from a complete

graph. Figure 4.1 shows a complete graph of 8 vertices, K8. By varying the cost ordering

on the arcs, the three following types of MST can be obtained.

4.1.1 Path Tree

In Figure 4.1, the arc order depending on the cost is shown in squares. The MST obtained

from the complete graph in Figure 4.1 will be called a Path Tree since it forms a path from

the lowest to the highest labelled vertex. This is due to the order in which the arcs will be

chosen to form the MST. The diameter of this tree is given by:

diameter Path Tree n() = − 1

This is the maximum diameter possible. The second important characteristic of this tree is

that the order of the branches to be removed alternates from one side to another starting on

the higher side as depicted in Figure 4.2. This special MST configuration provides a worst-

 CHAPTER 4 COMPUTATIONAL PERFORMANCE

Imperial College of Science Technology and Medicine

Constantino Carlos Reyes Aldasoro
M.Sc. Thesis

27

case scenario for the Binary Tree construction moreover a worst-case for the Nearest

Common Ancestor location.

Binary Tree Construction:

This particular arrangement will imply that the vertices which will modify their parental

status while removing the branches will always be the maximum possible. The series shown

in Figures 4.3.a to 4.3.h represent the process of removing the branches. It should be

noticed that the branch to be removed is, in all cases, the deepest. When the branch to be

removed is the deepest, the number of vertices that should change their parental status will

be n for the first remove, n-1 for the next one, and so on until the last remove where two

vertices become the children of the last intermediate node.

The total number of changes will be of order O n n()2 − , being the worst case for a Binary

Tree construction. The final state in the Figure 4.3 represents the Binary Tree. The

characteristics of the levels are:

maximum depth Path Tree n () = − 1

average leve Path Tree
n

n

n
 l () =

−
+

−1 1

2

Nearest Common Ancestor location:

The process to obtain the NCA results in a case where the leaf nodes will never be on the

same level, except for one pair. So, at least one individual climb will be done in every case.

Besides all the individual climbs, a pair climb will be done as well.

The worst case of the NCA will be between a chord joining the deepest and

shallowest leaf nodes. In the example of the 8 vertices complete graph, K8, the two chords

Imperial College of Science Technology and Medicine

Constantino Carlos Reyes Aldasoro
M.Sc. Thesis

28

are (4, 8) and (5, 8). They will have to traverse through the complete structure of

intermediate nodes from the deepest level up to level one. As shown above, the maximum

depth is n-1 and therefore the number of levels (including level zero) is maximum and will

be:

levels n=

The minimum bound on the number of levels is for a balanced Binary Tree, section 4.1.3.

Then, for the worst case chord, n climbs need to be performed. Continuing for all the

chords incident to a particular vertex will diminish up to one pair climb, which is the best

case. Therefore, the total number of climbs necessary for each chord incident to a vertex is
()n n2

2
− . If this is repeated for the n vertices the total number of operations will be of

order O n()3 . This is the case for a complete graph that is obviously the worst case. This

number of chords for a complete graph is:

()()
2

21 −−
=

nn
chords .

4.1.2 Star Tree

The Star configuration can be obtained from the complete graph shown in Figure 4.4. The

only difference with Figure 4.1 is the ordering of arc values that will generate a MST shown

in Figure 4.5.a. This Star Tree will have special characteristics for the generation of the

Binary Tree and the NCA determination. In particular, the structure has the best case

performance for the Binary Tree Construction and shares with the Path Tree the worst case

performance for the NCA location.

Imperial College of Science Technology and Medicine

Constantino Carlos Reyes Aldasoro
M.Sc. Thesis

29

Binary Tree construction:

For the Binary Tree construction, the ordering of the arc costs in this star is not relevant.

Any order will give the same number of operations for the construction.

The remove process is performed on any branch connecting a vertex to the central

vertex. At any stage in the construction, the central vertex is always the father of all

remaining vertices (i.e. the ones not affected by previous removals). As shown in the

example, the branch vertices simply take the new intermediate node as their new father.

There are no parental swaps since there is no path of original vertices between the father and

the nearest intermediate node. For each branch, the removal process involves a fixed number

of operations, and a O n() complexity as a whole. This can be achieved in linear time. The

sequence from b to h in Figure 4.5 shows how the path to be rearranged is not composed of

several vertices, unlike the Path Tree. This is the case although the branch to be removed is

also in the deepest level.

After completing the Binary Tree construction, the resulting structure is the same as

that for the Path Tree. The only difference is the vertices' levels.

4.1.3 Water Wheel Tree

Finally, a third special case of the MST, now called the water wheel is presented. The arc

cost ordering of a the anti-symmetric MST on K8 is shown in Figure 4.6.

This tree has the characteristic that during the removal process the parental status

change will be minimum. The number of branches to be removed for each level of the tree

goes increasing in geometrical way; 1, 2, 4, 8,... as shown in the sequence of Figure 4.7.a to

Imperial College of Science Technology and Medicine

Constantino Carlos Reyes Aldasoro
M.Sc. Thesis

30

4.7.d. The Binary Tree obtained (Figure 4.7.d), will be a balanced structure. A Binary Tree

with a balanced structure is the one that has the minimum depth. If the number of vertices is

a factor of 2x where x is an integer, the tree will have a symmetric structure and is called a

Complete Binary Tree. In this case, the number of levels will be determined by the number

of vertices according to the following formula:

Let

N n= 2 (number of nodes in the Binary Tree plus one)

and then

levels N= log2

This will be the minimum bound for the number of levels in the Binary Tree. The

maximum number as expressed for the Star and Path Trees will be n. For a Complete

Binary Tree case, the maximum depth will equal the average level, since all the leaf nodes

are at the same depth.

maximum depth Balanced Tree average level Balanced Tree levels () ()= =

This gives a best case performance for the Binary Tree construction and for the Nearest

Ancestor location, therefore leading to a best overall performance case.

The remove process for the construction of the Binary Tree will be like in the Star

case, order O n() since the branch to be removed will always have as father a node that will

be son of either the root or an intermediate node.

The Nearest Common Ancestor location will be quite different since all the leaf

nodes will be on the same level. This means that no individual climbs will have to be done.

The number of climbs for all the arcs in the graph will be then:

Imperial College of Science Technology and Medicine

Constantino Carlos Reyes Aldasoro
M.Sc. Thesis

31

climbs i i

i

levels

= +

=
∑ ()

,

min

2 2

1

Even for the best case, the computational complexity of the algorithm is still of order O n()2 .

4.2 Storage:

The dynamic memory requirements for the program are the following:

7 arrays of size n APT, BRANCHCOST, LABEL, CHAIN

POINTER, BS and BF

2 arrays of size m ACOST, ALIST

2 arrays of size 2n F, LEVEL

1 array of size CMAX ADRS

The variables (APT(·)), (ACOST(·)) and (ALIST(·)) will store the information of the graph

in a forward star configuration. This can result in a more efficient storage if the graph is

sparse. For a complete graph though, the matrix configuration is better because it requires

only one location to store the information of links between vertices and their cost, while the

star will need one for each. Nevertheless, the usage of the Forward Star in the MST

construction results in a faster algorithm, capable of analysing graphs fairly big [4].

Appendix A shows a comparison of memory spaces using Matrix or Forward Star

configurations in relation with the sparsity of the graph.

(ADRS(·)), (CHAIN(·)) and (LABEL(·)) are used only in the Minimum Spanning

Tree generation, they are local variables and will not be used further on. (F(·)) is of size 2n

since it will be the predecessor list for the vertices of the graph and the intermediate nodes

Imperial College of Science Technology and Medicine

Constantino Carlos Reyes Aldasoro
M.Sc. Thesis

32

added for the Binary Tree. (F(·)) and (BRANCHCOST(·)) are generated in the MST

subroutine and will be used along the program.

The SORTING subroutine will generate an index array to determine the order in

which the branch should be removed, but will not modify the array itself since it will be used

again for calculating the Reduced Costs. The array sorted will be (BRANCHCOST(·)) and

the index will be (POINTER(·)). This index will be used to form the arrays BF(·) and BS(·)

which will keep the vertices defining the branches to be removed. Finally, (LEVEL(·)) will

store the position in the Binary Tree for vertices and intermediate nodes.

The subroutine used for the MST by itself will need 4*n + 2*m + (CMAX) memory

locations, the other arrays (3*n+2*2n) do not represent a considerable increase for the

memory.

4.3 Experimental Performance

The algorithm was implemented in FORTRAN Language in a UNIX system. To evaluate the

performance, a previous approach to the problem [1] was also implemented and run with the

same experimental data. Interesting results were obtained by observing iterations and the

CPU time for the program subroutines. After various graphs of different sizes and densities

were analysed, the following results were obtained: for complete graphs and general, nearly

complete graphs, the algorithm shown in [1] requires a much smaller number of iterations to

solve the Reduced Costs problem, but as the general graphs become more sparse, the

number of iterations is considerably reduced. For general graphs with a densities less than

23% of the total possible arcs2, the algorithm proposed was faster.

2This result is the average obtained of the general random graphs tested.

Imperial College of Science Technology and Medicine

Constantino Carlos Reyes Aldasoro
M.Sc. Thesis

33

Tables 4.1 to 4.3 show the results obtained for some of the graphs tested. Figures 4.8 to

4.10 plot the average made of the CPU times for each group of graphs, and 4.11 an overall

average of the process.

To determine the density of the graph, a series of complete graphs with random

values for the arcs were generated. The value CMAX was used as a threshold, this value was

very close to the actual density of the graphs.

The CPU times for the existing algorithm tend to be constant, with some variations,

for the series of graphs analysed. On the other hand, the algorithm proposed in this project,

is decreasing monotonically as the density grows smaller. This becomes particularly

important when the 23% of density is reached; below this value the CPU times (on average)

of the proposed algorithm become smaller that the existing algorithm. For densities around

5% the reduction in CPU time can be three to four times smaller.

As the size of the graph is increased, the advantage of this reduction becomes more

important. The densities of general graphs used for real applications (road maps, train

railings) are not close to the complete graphs that are only interesting for theoretical

analysis. The graphs tested were not very similar to the theoretical cases of section 4.1. This

can be seen in Table 4.4 that shows the average level and maximum depth obtained for the

graphs previously mentioned and the general graphs.

The memory locations required for the storage of the array, not concerning the graph

definition are about the same. The important difference relies in the graph characteristics

storage. The algorithm in [1] uses a matrix while the algorithm proposed uses the Forward

Star. The matrix does not take advantage of the sparsity of the graph, contrary to the

Forward Star that reduced the amount of memory as the graph grows more sparse

(Appendix A).

Imperial College of Science Technology and Medicine

Constantino Carlos Reyes Aldasoro
M.Sc. Thesis

34

4.4 Tables and Figures

n CMAX number

of arcs

Density

(%)

CPU time

(seconds 10-2)

Average

(seconds 10-2)

(directed) Proposed

Algorithm

Carpaneto

Algorithm

Proposed Carpaneto

100 100 9900 100.00 9 10 11 11 2 4 3 3 10.25 3

50 4948 49.98 5 5 6 5 3 3 3 3 5.25 3

40 3914 39.54 4 4 5 4 2 3 2 2 4.25 2.25

35 3412 34.46 4 4 4 4 2 2 3 3 4 2.5

30 2968 29.98 4 3 5 4 3 2 4 2 4 2.75

27 2670 26.97 1 3 2 2 2 3 3 2 2 2.5

25 2476 25.01 2 2 3 2 3 3 2 4 2.25 3

23 2270 22.93 2 2 2 2 2 4 3 3 2 3

20 1968 19.88 2 1 2 2 3 3 3 2 1.75 2.75

15 1454 14.69 1 2 1 1 4 3 4 3 1.25 3.5

10 940 9.49 1 1 1 1 4 1 3 3 1 2.75

Table 4.1 Graphs with 100 nodes

Imperial College of Science Technology and Medicine

Constantino Carlos Reyes Aldasoro
M.Sc. Thesis

35

n CMAX number

of arcs

Density

(%)

CPU time

(seconds 10-2)

Average

(seconds 10-2)

(directed) Proposed

Algorithm

Carpaneto

Algorithm

Proposed Carpaneto

150 100 22350 100.00 24 24 24 24 5 2 5 5 24 4.25

50 11116 49.74 12 13 14 13 7 8 5 6 13 6.5

40 8912 39.87 10 11 10 11 6 8 5 7 10.5 6.5

35 7836 35.06 8 10 8 9 5 3 7 5 8.75 5

30 6764 30.26 6 7 8 7 6 7 6 3 7 5.5

27 6118 27.37 6 6 6 8 4 7 6 6 6.5 5.75

25 5680 25.41 6 6 6 6 8 6 7 8 6 7.25

23 5224 23.37 5 6 6 6 5 5 6 7 5.75 5.75

20 4580 20.49 4 4 6 5 5 8 4 5 4.75 5.5

15 3378 15.11 5 3 3 3 6 5 4 5 3.5 5

10 2242 10.03 4 2 2 2 6 7 4 6 2.5 5.75

5 1094 4.89 2 1 1 1 5 3 6 4 1.25 4.5

Table 4.2 Graphs with 150 vertices

Imperial College of Science Technology and Medicine

Constantino Carlos Reyes Aldasoro
M.Sc. Thesis

36

n CMAX number

of arcs

Density

(%)

CPU time

(seconds 10-2)

Average

(seconds 10-2)

(directed) Proposed

Algorithm

Carpaneto

Algorithm

Proposed Carpaneto

220 100 48180 100.00 56 56 55 56 16 15 16 16 55.75 15.75

80 38596 80.11 45 45 46 45 13 15 12 14 45.25 13.5

50 24060 49.94 28 27 27 29 11 10 11 11 27.75 10.75

40 19304 40.07 23 22 24 24 12 14 14 13 23.25 13.25

35 16910 35.10 17 23 22 23 13 10 12 12 21.25 11.75

30 14532 30.16 17 16 17 19 15 17 16 14 17.25 15.5

27 13122 27.24 17 15 15 16 14 12 14 11 15.75 12.75

25 12182 25.28 14 15 16 15 14 8 9 10 15 10.25

23 11246 23.34 12 13 11 11 13 10 12 12 11.75 11.75

20 9730 20.20 11 9 9 8 11 11 12 12 9.25 11.5

15 7210 14.96 8 9 8 8 9 9 11 10 8.25 9.75

10 4786 9.93 5 5 4 6 15 10 13 14 5 13

5 2344 4.87 2 2 3 2 9 10 14 8 2.25 10.25

Table 4.3 Graphs with 220 vertices

n average level maximum depth

random Path Tree Balanced Tree random Path Tree Balanced Tree

100 30.39 50.49 6.71 46.17 99 7

150 39.85 75.493 7.853 57.2 149 8

220 52.14 110.495 8 79.5 219 8

Imperial College of Science Technology and Medicine

Constantino Carlos Reyes Aldasoro
M.Sc. Thesis

37

Table 4.4 Comparison of average level and maximum depth

1

2

3

4

5

6

7
5

4

3

2

1

6

7

8

Figure 4.1

1 2 7 83 654

1376 542

Figure 4.2

Imperial College of Science Technology and Medicine

Constantino Carlos Reyes Aldasoro
M.Sc. Thesis

38

Figure 4.3

1

2

3

4

5

6

7

8 1

2

7 8

9

3

6

5

4

9

1 2

7

8

9

3

6

5

4

10

9

1

2

7

8

9

3

6

5

4

11

10

9

1

2

7

8

9

3

6

5

4

12

11

10

9

a b c d e

1

2

7

8

9

3

65

4

13

12

11

10

9

1

2

7

8

9

3

6

5

4

14

13

12

11

10

9

1

2

7

8

9

3

6

54

15

14

13

12

11

10

9

 f g h

Imperial College of Science Technology and Medicine

Constantino Carlos Reyes Aldasoro
M.Sc. Thesis

39

1

2

3

4

5

6

7

5

4

3

2

1

6

7

8

Figure 4.4

Figure 4.5

1

2

7

83

65

4

7

6

5

4

3

2
1

1

2 7 83 654

1 2

7

83

654

99

a b c

Imperial College of Science Technology and Medicine

Constantino Carlos Reyes Aldasoro
M.Sc. Thesis

40

Figure 4.5 (continued)

2

9

10

9

1

7 8

3

654

2

3

9

11

10

9

1

7

8

6

5

4

2

3

5

4

9

12

11

10

9

1

7

86

d e f

2

3

5

4

9

13

12

11

10

9

1

7 8

6

2

3

6

5

4

9

14

13

12

11

10

9

1
7

8
1

2

7

8

3

6

5

4

9

15

14

13

12

11

10

9

g h i

Imperial College of Science Technology and Medicine

Constantino Carlos Reyes Aldasoro
M.Sc. Thesis

41

1

2

3

4

5

6

7

5

4

3

2

1

6

7

8

Figure 4.6

Figure 4.7

1

2

7

8

3

6

5

4

7

6
5

4

3

2

1

1

2
7

8

9

3

6

5

4

9

a b

Imperial College of Science Technology and Medicine

Constantino Carlos Reyes Aldasoro
M.Sc. Thesis

42

Figure 4.7 (continued)

1

2

7

8

9

3

6

5

4

1110

9

1 2 7 8

9

3 654

15141312

1110

9

c d

Imperial College of Science Technology and Medicine

Constantino Carlos Reyes Aldasoro
M.Sc. Thesis

43

G ra p h s w ith 1 0 0 ve rtice s

D e nsity (%)

0

0.02

0.04

0.06

0.08

0.1

0.12

proposed

existing

Figure 4.8

G ra p h s w ith 1 5 0 ve rtice s

D e nsity (%)

0

0.05

0.1

0.15

0.2

0.25

proposed

existing

Figure 4.9

Imperial College of Science Technology and Medicine

Constantino Carlos Reyes Aldasoro
M.Sc. Thesis

44

G raphs w ith 2 2 0 ve rtice s

D e nsity (%)

0

0.1

0.2

0.3

0.4

0.5

0.6

proposed

existing

Figure 4.10

A ve ra g e R e s u lts

D e nsity (%)

0

0.05

0.1

0.15

0.2

0.25

0.3

proposed

existing

Figure 4.11

Imperial College of Science Technology and Medicine

Constantino Carlos Reyes Aldasoro
M.Sc. Thesis

45

A new algorithm for solving the Reduced Costs problem was proposed and successfully

implemented. The algorithm was based in the construction of a Binary Tree from the

Minimum Spanning Tree of a graph. This Binary Tree provided enough information, through

the Nearest Common Ancestor location, to calculate the Reduced Cost of all chords of the

original graph.

Extensive number of experiments was carried out, with different structures for the

Minimum Spanning Tree, as well as graphs with random connections and costs. After the

results were compared with an existing algorithm, it was noticed that for general sparse

graphs, the number of iterations required to solve the Reduced Costs problem was smaller

for the proposed algorithm. For complete and very dense graphs, the previously existing

required a smaller number of iterations. Graphs having around 23% or less of the possible

arcs incident to each vertex were solved faster with the proposed algorithm. This covers a

large range of graphs with practical applications in Operational Research problems.

Further work over this algorithm should be done to reduce the computational

complexity, specially for the worst case analysed. This should be reduced to compete with

the previously existing algorithm when the Reduced Costs of dense graphs are being

required. Maier [7] proposed a rather complicated structure to store the information of a

tree that can lead into a faster algorithm. It can be studied if the structure can be used for the

Reduced Costs solution based on the NCA of the Binary Tree.

CHAPTER 5 CONCLUSIONS

Imperial College of Science Technology and Medicine

Constantino Carlos Reyes Aldasoro
M.Sc. Thesis

46

[1] Carpaneto, G. Fichetti, and Toth, "New Lower Bounds for the Symmetric Travelling

Salesman Problem", Mathematical Programming, V5 1989

[2] Cheriton, D., Tarjan, R.E., "Finding Minimum Spanning Trees", SIAM Journal of

Computing, V5 (1976).

[3] Dijkstra, E.W. "A note on two problems in connection with graphs", Numerical Math. 1,

5 (Oct. 1959).

[4] Haymond, R.E., Jarvis, J.P., Shier, D.F., "Algorithm 613 Minimum Spanning Trees for

Moderate Integer Weights", ACM Transactions on Mathematical Software, V 10 N 1

March 1984.

[5] Knuth, Donald E., The Art of Computer Programming, Volume 1, Fundamentals,

Addison-Wesley Publishing Company.

[6] Kruskal, J. B. Jr. "On the shortest spanning subtree of a graph and the travelling

Salesman problem", Proc. American Mathematical Society, 7, 1956.

[7] Maier D., "An Efficient Method for Storing Information in Trees", SIAM Journal of

Computing, V 8 N 4, November 1979.

REFERENCES:

Imperial College of Science Technology and Medicine

Constantino Carlos Reyes Aldasoro
M.Sc. Thesis

47

[8] Prim, R.C., "Shortest Connection Networks and some Generalisations", Bell Syst. Tech.

J. 36 (1957).

[9] Volgenant, Ton, Jonker, Roy, "The Symmetric Travelling Salesman Problem and Edge

Exchanges in Minimal 1-trees", European Journal of Operations Research 12 (1983)

[10] Whitney, K.A., "Algorithm 422 Minimal Spanning Tree [H]", Communications of the

ACM, V15 N4 April 1972.

Imperial College of Science Technology and Medicine

Constantino Carlos Reyes Aldasoro
M.Sc. Thesis

48

Forward Star Configuration

The Forward Star configuration used in the program consists of three different arrays used

to store the characteristics of the graph. The first one, (APT), will act as a pointer to the

other two arrays: (ALIST) and (ACOST), where the relation of directed arcs and their cost

will be stored respectively. (ALIST) will have in the first locations the values of the vertices

adjacent to vertex 1, in ascending order. Their costs will be stored in the same position in

(ACOST). The list of the vertices adjacent to vertex 2 will follow those for vertex 1. If an

arc (1,2) exists, it will be stored twice: as (1,2) and (2,1). (APT) will store the position

where the list of that particular vertex begins

The first disadvantage of the star over the matrix is that it records a same arc two times,

while less than half of the positions of a matrix can be used:
()

Nji

Nijim

≤<
≤≤

,1 ,

The second disadvantage of the star is that the matrix need only one location for the link and

the cost of and arc, for if the value of the location is higher than the maximum value of the

arcs, it means that there is no connection for the vertices.

APPENDIX:

Imperial College of Science Technology and Medicine

Constantino Carlos Reyes Aldasoro
M.Sc. Thesis

49

Figure A.1.1 shows the Forward Star for the example in chapter 3. The MST subroutine will

use an extra dummy position, but it is not important for the information stored.

The disadvantage of the matrix over the star is that it will use a fixed amount of

memory locations determined by the number of vertices, this regardless of the number of

arcs adjacent to each of them. For a general graph with a relatively low number of arcs

(compared to the possible ones) the matrix will be wasting many memory locations. The

Forward Star has a dynamic structure that will be reduced if the graph is sparse. A graph

comparing the number of memory locations used with both configurations is shown in

Figure A.1.2

1

2

3

4

5

6

7

8

9

1

2

3

1

5

9

n

15

 = 72

 -3

 -1

 -2

 -4

 -8

 -7

 -6

 -5

 -3

m

APT(i)i ALIST (i) ACOST (i)

(1,2) c(1,2)=9

c(1,3)=47

c(1,6)=50

c(1,7)=34

c(2,1)=9

c(2,3)=21

c(2,4)=10

c(2,8)=29

c(3,1)=47

(1,3)

(1,6)

(1,7)

(2,1)

(2.4)

(2,8)

(2,3)

(3,1)

(16,15)

(16,11)

(16,12)

(16,14)

c(16,11)=44

c(16,12)=39

c(16,14)=36

c(16,15)=20

(15,16) c(15,16)=20

-7

m = 16

m

m

m

m

m

m

m

m

m

Imperial College of Science Technology and Medicine

Constantino Carlos Reyes Aldasoro
M.Sc. Thesis

50

Figure A.1.1

Matrix vs Forward Star depending on sparsity

number of nodes

0

5000

10000

15000

20000

25000

30000

matrix

star (complete

graph)

star (50% of

possible arcs)

star (25% of

possible arcs)

Figure A.1.2

