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Abstract

In this paper, a polymorphic encryption algorithm (PEA), based on basic quantum computations, is 

proposed for  the encryption of binary bits.  PEA is a symmetric key encryption algorithm that 

applies different combinations of quantum gates to encrypt binary bits. PEA is also polymorphic 

since the states of the shared secret key control the different combinations of the ciphertext. It is 

shown  that  PEA achieves  perfect  secrecy and  is  resilient  to  eavesdropping  and  Trojan horse 

attacks. A security analysis of PEA is also described.

Keywords. Encryption algorithm, polymorphism, quantum computations, CNOT 

and SWAP quantum gates.

1. Introduction

Conventional  cryptography consists  of  two types of  cryptosystems;  symmetric 

key cryptosystems and asymmetric key, or public key cryptosystems. Symmetric 

key cryptosystems, as the name implies, use identical keys for encryption and 

decryption and both the sender and the receiver share the same key(s). For this 

reason,  such  cryptosystems  rely  on  the  secrecy  of  the  key.  Otherwise,  any 

malicious  actors  can  deduce  the  plaintext  from  the  ciphertext.  The  major 

disadvantage  of  such  cryptosystems  is  the  need  of  frequent  and  reliable  key 

distribution.  On  the  contrary,  cryptosystems  based  on  asymmetric  key 

cryptography use different keys for ciphering and for deciphering. In ciphering, 

the key is announced publicly, but in deciphering, the key remains secret. The 

security  of  public  key  cryptosystems  stems  from  the fact  that  the  key  pair 
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generation is based on computational complexity of certain difficult mathematical 

problems. However, the main drawback of this cryptosystem is the computational 

cost of generating the key pair [19, 20].

In the early 1970s, a new type of Cryptography was proposed by Stephen 

Wiesner [10]. He proposed the idea of Quantum Cryptography as he introduced 

the  concept  of  quantum  conjugate  coding  at  the  same year.  Quantum 

Cryptography  is  based  on  quantum computation.  In  contrast  to  Conventional 

Cryptography  that  uses  digital  bits  for  encoding  information,  Quantum 

Cryptography uses quantum particles (i.e. photons) and their quantized properties 

(i.e. photon’s polarization) to do that. Each photon carries one bit  of quantum 

information, called qubit. A qubit defines not only the two binary eigenstates "0" 

and  "1"  but  also  the  superposition  of  the  two.  Furthermore,  the  security  of 

Quantum Cryptography is based on fundamental quantum mechanical principles. 

It uses the quantum mechanics in order to overcome the key distribution problem 

which is the most serious problem in the both types of conventional cryptography 

[6,  8,  9  10,  18].  Quantum Cryptography  is  considered  as  the  basis  for  next 

generation  cryptographic  systems  that  may  be able  to  replace  the  public  key 

cryptosystems [3, 4, 7, 11, 16].

Conventional  cryptosystems are  susceptible  to advanced  technology,  as 

new more powerful computers (e.g. quantum computers) may be able to override 

the burden of computationally complex problems in the future. Thus, no matter 

how strong a cryptographic algorithm is, soon or later it will be broken. On the 

contrary, Quantum Cryptography is independent of technological advance in the 

future as its security is provable information theoretically [4, 5].

During the last two decades, the Quantum Cryptography has focused on three 

fields concerned to key sharing between transmitter and receiver. These fields are 

the following:  quantum key distribution [8],  quantum secret  sharing  [10]  and 

quantum  bit  commitment  [1].  Furthermore,  a  new  breakthrough  appeared 

regarding the evolution of quantum encryption algorithms. The concept of this 

new field was first introduced by Boykin and Roychowdhury [12] in 2000. Thus, 

Quantum Cryptography does not only provide a secure key exchange between two 

parties, but also provides a special type of quantum encryption at transmitter and 

recipient. 
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Moreover,  Quantum  Cryptography  solves  the  two  major practical 

problems of one-time pad encryption scheme as it provides secure key distribution 

and is also able to generate sets of random numbers at the two communicating 

parties,. One – time pad is the only provably unconditionally secure cryptosystem, 

which  can  not  be  compromised  even  in  the  face  of  unlimited  time  and 

computational power [17, 19, 20]. Therefore,  the existing encryption algorithms 

for  quantum  information take  the  form  of  one-time  pad  encryption  method. 

Several  quantum encryption algorithms for  classical binary bits from different 

aspects were proposed in [2, 13, 14]. A realizable quantum encryption algorithm 

for qubits was also presented in [15].  Motivated by these and the challenge of 

quantum computing field, we propose a polymorphic encryption algorithm (PEA), 

which uses different combinations of quantum CNOT and SWAP gates in order to 

encrypt messages without changing the key. The Controlled NOT gate (CNOT) is 

the quantum analogue of the XOR gate.  It  has two input qubits, the first is the 

controlled qubit and the second is the target qubit. If the controlled qubit is zero 

then the target qubit is intact. If the controlled qubit is one then the target qubit is 

flipped. Generally, the notation CNOTx,y, means that the index x is the controlled 

qubit and the index y is the target qubit. The quantum SWAP gate has two input 

qubits and swaps them.  The notation SWAPx,y, means that this gate swaps the 

qubit x with the qubit y. The security of the encryption algorithm is analyzed from 

several aspects and it is shown that the PEA can prevent quantum and classical 

attack.

Following this introduction, the paper is organized as follows.  Section 2 

describes the polymorphic  encryption  algorithm along with its  encryption  and 

decryption processes. Section 3, presents a security analysis of PEA and shows 

how  resilient  is  to  quantum  and  classical  attacks.  Finally,  we  conclude  our 

algorithm in section 4 and propose future work.

2. Polymorphic Encryption Algorithm 

The polymorphic encryption algorithm (PEA) is a symmetric key algorithm based 

on quantum computation for encryption of classical messages. PEA requires four 

groups  of  keys  to  be  exchanged  between  sender  and  recipient  before  the 

encryption  takes  place.  The  first  group  key  is  responsible  for  the  choice  of 
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quantum ancilla bits. The second group key is responsible for the choice of the 

first level of encryption. The third group key is responsible for the second level of 

encryption  and  finally,  the  fourth  group  key  is  responsible  for  leading  the 

encrypted  data  to  non-orthogonality.  Hence,  the  pre-sharing  of  these  keys  is 

essential as they are used during encryption of PEA. The polymorphism of this 

algorithm is based on the pre-shared keys, as they are the factors that designate 

the internal paths that the algorithm should follow in order to give the encrypted 

output. 

Figure 1. PEA Encryption Algorithm

Generally, the classical message, which is encrypted by PEA, consists of  m bits 

and for each bit of the message one quantum state, C1, is created based on the 

current  bit  and  the  key.  So,  m quantum states  are  going  to  be  created.   As 

illustrated in figure 1, the input of PEA is C1, which according to the second group 

of key element k2 can follow one of the two paths.  If k2 is equal to 0, the quantum 

state will go through CNOT2,1 gate. Whereas  k2 is equal to 1, the quantum state 

will  go through SWAP1,2 gate. Next, the output of CNOT2,1 gate,  C2(CNOT2,1), 
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will pass either by the path which has no gate or by the SWAP1,3, according to the 

third group key element k3. Likewise, the output of SWAP1,2 gate, C2(SWAP1,2), 

will pass either by  CNOT1,2 gate or by CNOT3,2, according to the third group key 

element k3.

2.1. Encryption

The encryption process consists of the following phases: preparation; first and 

second level of encryption; and non-orthogonality phases.

Phase 1: Preparation

In Phase 1, the key k1 is used for the definition of the valid quantum states. Let we 

define the quantum ancilla state represented as |
2
1

1
1kk 〉. The 

1
1k

 and the 
2
1k

 are two 

key elements of the ith key pair in k1. When the classical key element pairs are 00, 

01, 10 and 11 we have the corresponding quantum ancilla states |00〉, |01〉, |10〉, |

11〉, respectively. For each bit, m (0 or 1), of the classical message, we have the 

corresponding quantum state |m〉. Now, the combination of the quantum ancilla 

state with the corresponding quantum state |m〉 of  each bit,  will  give all  valid 

quantum states. This combination is achieved by using the tensor product which 

generates the tensor product state | 2
1

1
1kmk 〉. To simplify our calculations, we have 

assumed an 8-bit classical message as a block size for our algorithm. Thus, we are 

going to have the following eight valid quantum states:

|000〉, |001〉, |010〉, |011〉, |100〉, |101〉, |110〉, |111〉.

These valid states can be represented by Equation 1:

}1,0{,,,| 2
1

1
1

2
1

1
11 ∈>= kkmwherekkmC . (0)

Phase 2: First Level of Encryption

In Phase 2, the second key, k2, is responsible for the first level of encryption. The 

input to the first level of encryption is one of the eight valid values defined by 

Equation 1. According to the values of k2, there is a different path that the input 

can follow. When  k2 is equal to 0, the input will pass by the CNOT2,1 gate and 

when k2 is equal to 1, the input will pass by the SWAP1,2 gate. The index 2,1 of 
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CNOT gate defines the second qubit as control and the first qubit as target. Thus, 

the CNOT2,1 gate  inverts  the first  qubit  when the second qubit is  equal  to  1. 

Likewise, the index 1,2 of SWAP gate defines that the first qubit will be swapped 

with the second qubit. We have selected the CNOT2,1 and SWAP1,2 gates to  create 

diffusion to the data bit found in the first qubit of the quantum states, | 2
1

1
1kmk 〉, of 

Phase 1.  

The output C2 that results from CNOT2,1 and SWAP1,2  quantum gates (see 

Figure 1), denoted as C2(CNOT2,1) and C2(SWAP1,2) respectively, is represented 

by Equation 2:

1
1

2
1

1
1

2
1

1
12,12 }1,0{,,,|)(CNOT kmtandkkmwherekktC mm ⊕=∈>= ,

}1,0{,,,,|) (SWAPC 2
1

1
1

2
1

1
11,22 ∈>= kkmwherekmk .

(0)

Based  on  the  second  group  of  key  element  k2, all  possible  combinations  of 

C2(CNOT2,1) and C2(SWAP1,2) states are shown in Table 1:

Table 1. All possible C2 output.

C1 k2 C2(CNOT2,1) k2 C2(SWAP1,2)

|0m00〉 0 |0m00〉 1 |00m0〉
|0m01〉 0 |0m01〉 1 |00m1〉
|0m10〉 0 |1m10〉 1 |10m0〉
|0m11〉 0 |1m11〉 1 |10m1〉
|1m00〉 0 |1m00〉 1 |01m0〉
|1m01〉 0 |1m01〉 1 |01m1〉
|1m10〉 0 |0m10〉 1 |11m0〉
|1m11〉 0 |0m11〉 1 |11m1〉

Phase 3: Second Level of Encryption

In Phase 3, the third key,  k3,  is responsible for the second level of encryption. In 

the second level of encryption, its inputs are the outputs of Phase 2. The outputs, 

C2(CNOT2,1) and C2(SWAP1,2), are the inputs to the second level of encryption and 

according to the values of k3, there is a different path that each input can follow. 

C2(CNOT2,1) will pass either from the path which has no gate, for k3 equal 

to 0, or from the SWAP1,3 gate, for k3 equal to 1. When C2(CNOT2,1) follow the 

path which has no gate, the output will be the same as the input. The index 1,3 of 

SWAP gate defines that the first qubit will be swapped with the third qubit. The 

same as in Phase 1, we have selected the SWAP1,3 gate to create diffusion to the 
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inverted data bit which is found in the first qubit in the quantum states, >2
1

1
1| kktm

, of Phase 2. 

The output C3 that results from the path without quantum gate and the path 

with  SWAP1,3 quantum  gate  (see  Figure  1),  denoted  as  C3(NO  GATE) and 

C3(SWAP1,3) respectively, is represented by Equation  3:

 

  1
1

2
1

1
1

2
1

1
13 }1,0{,,,|GATE) (NOC kmtandkkmwherekkt mm ⊕=∈>= ,

1
1

2
1

1
1

1
1

2
11,33 }1,0{,,,,,|) (SWAPC kmtandkkmwheretkk mm ⊕=∈>=

(0)

Based on the third group of key,  k3, all possible combinations of  C3(NO GATE) 

and C3(SWAP1,3) states are shown in Table 2:

Table 2. All possible C3 output with C2(CNOT2,1) input.

C2(CNOT2,1) k3 C3 (NO GATE) k3 C3(SWAP1,3)

|0m00〉 0 |0m00〉 1 |000m〉
|0m01〉 0 |0m01〉 1 |100m〉
|1m10〉 0 |1m10〉 1 |011m〉
|1m11〉 0 |1m11〉 1 |111m〉
|1m00〉 0 |1m00〉 1 |001m〉
|1m01〉 0 |1m01〉 1 |101m〉
|0m10〉 0 |0m10〉 1 |010m〉
|0m11〉 0 |0m11〉 1 |110m〉

C2(SWAP1,2) will pass either from the CNOT1,2 gate, when k3 is equal to 0 or by 

CNOT3,2 when k3 is equal to 1. The index 1,2 of CNOT gate defines the first qubit 

as  control  and the second qubit  as target.  Thus, the CNOT1,2 gate  inverts  the 

second qubit when the first qubit is equal to 1. Likewise, the index 3,2 of CNOT 

gate defines the third qubit as control and the second qubit as target. Thus, the 

CNOT3,2 gate inverts the second qubit when the third qubit is equal to 1. We have 

selected the CNOT1,2 and CNOT3,2 gates to create diffusion to the data bit which is 

found in the second qubit in the quantum states, |2
1

1
1mkk 〉, of Phase 2.  

The output C3 that results from CNOT1,2 and CNOT3,2 quantum gates (see 

Figure 1), denoted as C3(CNOT1,2) and C3(CNOT3,2) respectively, is represented 

by Equation 4:

mktandkkmwherektkC mm ⊕=∈>= 1
1

2
1

1
1

2
1

1
11,23 }1,0{,,,,|)(CNOT (0)
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mktandkkmwherektkC mm ⊕=∈>= 2
1

2
1

1
1

2
1

1
13,23 }1,0{,,,,|)(CNOT

Based  on  the  third  group  of  key  element  k3, all  possible  combinations  of 

C3(CNOT1,2) and C3(CNOT3,2) states are shown in Table 3:

Table 3. All possible C3 output with C2(SWAP1,2) input.

C3(CNOT3,2)k3C3(CNOT1,2)k3C2(SWAP1,2)

|00m0〉1|00m0〉0|00m0〉
|01m1〉1|00m1〉0|00m1〉
|10m0〉1|11m0〉0|10m0〉
|11m1〉1|11m1〉0|10m1〉
|01m0〉1|01m0〉0|01m0〉
|00m1〉1|01m1〉0|01m1〉
|11m0〉1|10m0〉0|11m0〉
|10m1〉1|10m1〉0|11m1〉

Phase 4: Non-Orthogonality

In Phase 4, the fourth group key k4 is responsible for leading the encrypted data to 

non-orthogonality.  The  encrypted  data  derived  from  the  second  level  of 

encryption are states which are orthogonal. However, orthogonality is a property 

which  should  be  avoided  so  that  the  encrypted  data  are  securely  transferred 

through  the  communication  channel.  Orthogonality  permits  states  to  be 

distinguished and thus, phase 4 makes the outputs states non-orthogonal. Non-

orthogonality is a preferable property for PEA. 

Non-orthogonality is achieved by using the fourth key,  k4. According to 

the key,  k4,  we change the second qubit  in the following approach: If  the key 

element is 00 or 11, then we do not change the second qubit of state C3. Thus, the 

second qubit remains in the state |0〉 or |1〉. However, when the key element is 01 

or 10, then we perform the following computations to the second qubit: when the 

key element has value equal  to  01,  we apply Hadamard  (H)  gate [10]  to  the 

second qubit and the resulting output state is |+〉 if the input state is |0〉, or |-〉 if the 

input state is |1〉. If the key element is 10, we apply ZH gate [10] to the second 

qubit and the resulting output state is |-〉 if the input state is |0〉, or |+〉 if the input 

state is |1〉. We select the second qubit to be passed by H or ZH gates because in 

the second qubit there is the quantum representation of a data bit after Phase 3, 

and particularly into two outputs out of four.
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The Non-Orthogonality  process  is  shown in  Figure  2. For  each output 

C3(NO GATE), C3(SWAP1,3), C3(CNOT1,2), and C3(CNOT3,2), non-orthogonality 

is also illustrated in Figure 1.

Figure 2. Non-Orthogonality Process

To  prove  that  the  utilization  of  Hadamard  gates  and ZH  gates  offers  non-

orthogonality, we need to follow the next steps:

Firstly, it is known that Hadamard gate is given by Equation 5 [10]:










−
=

11

11

2

1^

H (0)

It is also known that the matrix representations of the |0〉 and the |1〉 are given by 

Equation 6 [10]: 









=>

0

1
0|  and 








=>

1

0
1| (0)

From equations 5 and 6 we can calculate the following:

>+≡>+>=







=

















−
=> |)1|0|(

2

1

1

1

2

1

0

1

11

11

2

1
0|

^

H

>−≡>−>=








−
=

















−
=> |)1|0|(

2

1

1

1

2

1

1

0

11

11

2

1
1|

^

H

(0)

Furthermore, the ZH gate is given by Equations [10]:
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








−
=

11

11

2

1^

HZ (0)

and









=>

0

1
0|  and 








=>

1

0
1|  . (0)

From equations 8 and 9 we can calculate the following:

>−≡>−>=








−
=

















−
=> |)1|0|(

2

1

1

1

2

1

0

1

11

11

2

1
0|

^

HZ

>+≡>+>=







=

















−
=> |)1|0|(

2

1

1

1

2

1

1

0

11

11

2

1
1|

^

HZ .

(0)

For input C3(NO GATE), the output C4 results from not changing the second qubit 

of the input C3(NO GATE) or applying H / ZH quantum gates to the second qubit 

of the input C3(NO GATE). These results denoted as C4(NO CHANGE),  C4(H 

gate) and C4(ZH gate) are represented by Equation 11: 

1100}1,0{,,,,,|CHANGE) (NO 4
2
1

1
1

2
1

1
14 orkwhenkkmwherekkmC =∈>=

01}1,0{,,,,,|gate) (H 4
2
1

1
1

2
14 =∈>±= kwhenkkmwherekmC

10}1,0{,,,,,|gate) (ZH 4
2
1

1
1

2
14 =∈>= kwhenkkmwherekmC ∓ .

(0)

Based on the fourth group of key element k4, all possible combinations of C4(NO 

CHANGE), C4(H gate) and C4(ZH gate) states are shown in Table 4:

Table 4. All possible C4 output with C3(NO GATE) input.

C3 (NO GATE) k4 C4(NO CHANGE) k4 C4(H gate) k4 C4(ZH gate)

|0m00〉 00 or 11 |0m00〉 01 |0m+0〉 10 |0m-0〉
|0m01〉 00 or 11 |0m01〉 01 |0m+1〉 10 |0m-1〉
|1m10〉 00 or 11 |1m10〉 01 |1m-0〉 10 |1m+0〉
|1m11〉 00 or 11 |1m11〉 01 |1m-1〉 10 |1m+1〉
|1m00〉 00 or 11 |1m00〉 01 |1m+0〉 10 |1m-0〉
|1m01〉 00 or 11 |1m01〉 01 |1m+1〉 10 |1m-1〉
|0m10〉 00 or 11 |0m10〉 01 |0m-0〉 10 |0m+0〉
|0m11〉 00 or 11 |0m11〉 01 |0m-1〉 10 |0m+1〉

For input C3(SWAP1,3), the output C4 results from not changing the second qubit 

of the input C3(SWAP1,3), or applying H or ZH quantum gates to the second qubit 

of the input C3(SWAP1,3). These results denoted as C4(NO CHANGE),  C4(H gate) 

and C4(ZH gate) respectively are represented by Equation 12: 
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1100}1,0{,,,,,|CHANGE) (NO 4
2
1

1
1

1
1

2
14 orkwhenkkmwheremkkC =∈>=

01}1,0{,,,,|gate) (H 4
2
1

1
1

2
14 =∈>±= kwhenkkmwheremkC

10}1,0{,,,,,|gate) (ZH 4
2
1

1
1

2
14 =∈>= kwhenkkmwheremkC ∓

(0)

Based on the fourth group of key element k4, all possible combinations of C4(NO 

CHANGE), C4(H gate) and C4(ZH gate) states are shown in Table 5:

Table 5. All possible C4 output with C3(SWAP1,3) input.

C3(SWAP1,3) k4 C4(NO CHANGE) k4 C4(H gate) k4 C4(ZH gate)

|000m〉 00 or 11 |000m〉 01 |0+0m〉 10 |0-0m〉
|100m〉 00 or 11 |100m〉 01 |1+0m〉 10 |1-0m〉
|011m〉 00 or 11 |011m〉 01 |0-1m〉 10 |0+1m〉
|111m〉 00 or 11 |111m〉 01 |1-1m〉 10 |1+1m〉
|001m〉 00 or 11 |001m〉 01 |0+1m〉 10 |0-1m〉
|101m〉 00 or 11 |101m〉 01 |1+1m〉 10 |1-1m〉
|010m〉 00 or 11 |010m〉 01 |0-0m〉 10 |0+0m〉
|110m〉 00 or 11 |110m〉 01 |1-0m〉 10 |1+0m〉

    

For input C3(CNOT1,2), the output C4 results from not changing the second qubit 

of the input C3(CNOT1,2), or applying H / ZH quantum gates to the second qubit 

of the input C3(CNOT1,2). These results denoted as C4(NO CHANGE), C4(H gate) 

and C4(ZH gate) are represented by Equation 13: 

1100}1,0{,,,,,|CHANGE) (NO 4
2
1

1
1

2
1

1
14 orkwhenkkmwherekmkC =∈>=

01}1,0{,,,,,|gate) (H 4
2
1

1
1

2
1

1
14 =∈>±= kwhenkkmwherekkC

10}1,0{,,,,,|gate) (ZH 4
2
1

1
1

2
1

1
14 =∈>= kwhenkkmwherekkC ∓

(0)

Based on the fourth group of key element k4, all possible combinations of C4(NO 

CHANGE), C4(H gate) and C4(ZH gate) states are shown in Table 6:

Table 6. All possible C4 output with C3(CNOT1,2) input.

C3(CNOT1,2) k4 C4(NO CHANGE) k4 C4(H gate) k4 C4(ZH gate)

|00m0〉 00 or 11 |00m0〉 01 |0+m0〉 10 |0-m0〉
|00m1〉 00 or 11 |00m1〉 01 |0+m1〉 10 |0-m1〉
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|11m0〉 00 or 11 |11m0〉 01 |1-m0〉 10 |1+m0〉
|11m1〉 00 or 11 |11m1〉 01 |1-m1〉 10 |1+m1〉
|01m0〉 00 or 11 |01m0〉 01 |0-m0〉 10 |0+m0〉
|01m1〉 00 or 11 |01m1〉 01 |0-m1〉 10 |0+m1〉
|10m0〉 00 or 11 |10m0〉 01 |1+m0〉 10 |1-m0〉
|10m1〉 00 or 11 |10m1〉 01 |1+m1〉 10 |1-m1〉

For input C3(CNOT3,2), the output C4 results from not changing the second qubit 

of the input C3(CNOT3,2), or applying H / ZH quantum gates to the second qubit 

of  the input C3(CNOT3,2),.  These results denoted as C4(NO CHANGE),   C4(H 

gate) and C4(ZH gate) are represented by Equation 14: 

1100}1,0{,,,,,|CHANGE) (NO 4
2
1

1
1

2
1

1
14 orkwhenkkmwherekmkC =∈>=

01}1,0{,,,,,|gate) (H 4
2

1
1
1

2
1

1
14 =∈>±= kwhenkkmwherekkC

10}1,0{,,,,,|gate) (ZH 4
2
1

1
1

2
1

1
14 =∈>= kwhenkkmwherekkC ∓

(0)

Based on the fourth group of key element k4, all possible combinations of C4(NO 

CHANGE), C4(H gate) and C4(ZH gate) states are shown in Table 7:

Table 7. All possible C4 output with C3(CNOT3,2) input.

C3(CNOT3,2) k4 C4(NO CHANGE) k4 C4(H gate) k4 C4(ZH gate)

|00m0〉 00 or 11 |00m0〉 01 |0+m0〉 10 |0-m0〉
|01m1〉 00 or 11 |01m1〉 01 |0-m1〉 10 |0+m1〉
|10m0〉 00 or 11 |10m0〉 01 |1+m0〉 10 |1-m0〉
|11m1〉 00 or 11 |11m1〉 01 |1-m1〉 10 |1+m1〉
|01m0〉 00 or 11 |01m0〉 01 |0-m0〉 10 |0+m0〉
|00m1〉 00 or 11 |00m1〉 01 |0+m1〉 10 |0-m1〉
|11m0〉 00 or 11 |11m0〉 01 |1-m0〉 10 |1+m0〉
|10m1〉 00 or 11 |10m1〉 01 |1+m1〉 10 |1-m1〉

2.2. Decryption

All gates (CNOT gates, SWAP gates, H gates, ZH gates) used in the encryption 

and non-orthogonality processes are unitary operators. Hence, the decryption is 

the inverse process of the encryption using the pre-shared four group keys. The 

decryption process takes place at the recipient side. Thus, the decryption process 

consists of the following inverse phases:
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Phase 1: Inverse process of Phase 4 of Encryption process

In Phase 1, the fourth group key k4 is responsible for the first level of decryption. 

The recipient receives the non-orthogonal states (ciphertext) from the sender and 

applies the same process with the one applied in the Phase 4 during encryption. 

When the key element is 00 or 11 we do not change the second qubit of state C4 

and thus, the second qubit  remains in state |0〉 or |1〉. However,  when the key 

element is 01 or 10, then we perform the following computations to the second 

qubit of the ciphertext: If the key element has value equal to 01, we apply H gate 

to the second qubit and the output state is |0〉 when the input state is |+〉, or |1〉 

when the input state is |-〉.  If  the key element is 10, we apply ZH gate to the 

second qubit and the resulting output state is |0〉 when the input state is |-〉, or |1〉 

when the input state is |+〉. Therefore, the output of this phase is the state C3 of the 

encryption process.

Phase 2: Inverse process of Phase 3 of Encryption process

In Phase 2, the third and second group keys k3, k2  are responsible for the second 

level of decryption.  The inputs of phase 2 are the outputs of the first level of 

decryption. Here the recipient applies the same process with the process applied in 

phase 3 during the encryption process. For example, when k2 is equal to 0, state C3 

passes either by the path which has no gate for k3 equal to 0, or by SWAP1,3, for k3 

equal to 1. When k2 is equal to 1 state C3 passes either by the CNOT1,2 gate for k3 

equal to 0, or by CNOT3,2 for k3 equal to 1. Hence, the output of this phase is the 

state C2 of the encryption process.

Phase 3: Inverse process of Phase 2 of Encryption process

In Phase 3, the second group of key element k2 is responsible for the third level of 

decryption.  The  inputs  of  phase  3  are  the  outputs  of  the  second  level  of 

decryption. Same as before the receiver applies the same process with the one 

applied in phase 2 during encryption. For example, when k2 is equal to 0, state C2 

passes by the CNOT2,1 gate,  but when  k2 is equal to 1, state C2 passes by the 

SWAP1,2 gate. Hence the output of this phase is the state C1 of the encryption 

process and the first qubit of each quantum state corresponds to the initial data bit.
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Phase 4: Acquisition of plaintext

In  Phase 4,  we obtain all  the first  qubits of  each state that  correspond to the 

original bits and acquire the bit sequence of the original plaintext.  

3. Security Analysis of PEA

To evaluate PEA we have conducted a security analysis to examine its resilience 

to  Trojan  horse  and  eavesdropping  attacks  and to  study its  homogeneity  and 

perfect secrecy. 

3.1. Homogeneity and Perfect Secrecy

It  is essential an encryption algorithm to produce homogeneous ciphertexts and 

ideally have perfect  secrecy,  i.e. the ciphertext gives no information about the 

plaintext [20]. To prove that our algorithm is homogeneous and achieves perfect 

secrecy, it is enough to show that the density matrix of n ciphertexts states related 

to the n bits classical message is the identity matrix.

To prove it, let |ψwz〉 be the linear combination of all possible states with equal 

probability in the ciphertext set Cw (w=1, 2, 3), which corresponds to the zth bit of 

message. The density matrices are calculated by Equation 15:

|ψ1z〉 〈 ψ1z| = I       |ψ2z〉 〈 ψ2z| = I       |ψ3z〉 〈 ψ3z| = I (0)

The density matrix of n ciphertext states |ψ3〉 for a message which consists of n 

bits is given by Equation 16:

|ψ3〉 〈 ψ3| = |ψ31〉 〈 ψ31| ⊗ |ψ32〉 〈 ψ32|⊗ |ψ33〉 〈 ψ33|. . . ⊗ |ψ3n〉 〈 ψ3n| (0)

To calculate Equation 16, firstly it is required to calculate the outer product of 

each element |ψ3i 〉 : |ψ31〉 〈 ψ31|, |ψ32〉 〈 ψ32|, |ψ33〉 〈 ψ33|, |ψ34〉 〈 ψ34|, |ψ35〉 〈 ψ35|, |ψ36

〉 〈 ψ36|, |ψ37〉 〈 ψ37|, |ψ38〉 〈 ψ38|

Then, it  is  required to calculate the tensor products of  the above outer 

products. We know that the elements |ψ3i 〉  represented as the following: |000〉, |
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001〉, |010〉, |011〉, |100〉, |101〉, |110〉, |111〉, can be also represented as vectors. By 

using vectors we can make simple calculations and prove that the ciphertext is 

homogenous. For example, the vector representation of the first states |000〉 is 

given by Equation 17:

|000〉 = |0〉 ⊗ |0〉 ⊗ |0〉 = 

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0
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1

(0)

Likewise, we can construct the rest of the states |001〉, |010〉, |011〉, |100〉, |101〉, |

110〉, and |111〉 as vectors.  

According to Figure 1, when the output is given by C3 (NO GATE) we 

have the following possible states:

Table 8. C3 (NO GATE) Output.

|0m00〉 |0m01〉 |1m10〉 |1m11〉 |1m00〉 |1m01〉 |0m10〉 |0m11〉

From Table 8, we have:

|ψ31〉=|0m00〉,    |ψ32〉=|0m01〉,   |ψ33〉=|1m10〉,    |ψ34〉=|1m11〉,

|ψ35〉=|1m00〉, |ψ36〉=|1m01〉, |ψ37〉=|0m10〉, |ψ38〉=|0m11〉.

Next, the outer products can be calculated by Equation 18:

|ψ31〉 〈 ψ31| = |0m00〉 〈 0m00| = eeT= E

where

e = [1 0 0 0 0 0 0 0]T,

E = Diag{1, 0, 0, 0, 0, 0, 0, 0}

(18)

Likewise, we can calculate all the outer products |ψ32〉〈ψ32|, |ψ33〉〈ψ33|, |ψ34〉〈ψ34|, |

ψ35〉〈ψ35|, |ψ36〉〈ψ36|, |ψ37〉〈ψ37|, and |ψ38〉〈ψ38|.

According to Figure 1, when the output is given by C3(SWAP 1,3) we 

have the following possible states: 

Table 9. C3 (SWAP 1,3) Output.

  |000m 〉 |100m〉 |011m〉 |111m〉 |001m〉 |101m〉 |010m〉 |110m〉
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From Table 9, we have:

|ψ31〉 =|000m〉 , |ψ32〉 =|100m〉 , |ψ33〉 =|011m〉 , |ψ34〉 =|111m〉 ,

|ψ35〉 =|001m〉 , |ψ36〉 =|101m〉 , |ψ37〉 =|010m〉 , |ψ38〉 =|110m〉 .

The outer product of |ψ31〉 〈 ψ31| is given by Equation 19:

|ψ31〉 〈 ψ31| = |000m〉 〈 000m| = eeT= E

where

e = [1 0 0 0 0 0 0 0]T,

E = Diag{1, 0, 0, 0, 0, 0, 0, 0}

(19)

Likewise, we can calculate |ψ32〉 〈 ψ32|, |ψ33〉 〈 ψ33|, |ψ34〉 〈 ψ34|, |ψ35〉 〈 ψ35|, |ψ36〉 〈

ψ36|, |ψ37〉 〈 ψ37|, and |ψ38〉 〈 ψ38|. 

According to Figure 1, when the output is given by C3(CNOT1,2) we have 

the following possible states:

                                              Table 10. C3(CNOT1,2) Output.

|00m0〉 |00m1〉 |11m0〉 |11m1〉 |01m0〉 |01m1〉 |10m0〉 |10m1〉

From Table 10, we have:

|ψ31〉 =|00m0〉 , |ψ32〉 =|00m1〉 , |ψ33〉 =|11m0〉 , |ψ34〉 =|11m1〉 ,

|ψ35〉 =|01m0〉 , |ψ36〉 =|01m1〉 , |ψ37〉 =|10m0〉 , |ψ38〉 =|10m1〉 .

The outer product of |ψ31〉 〈 ψ31| is given by Equation 20:

|ψ31〉 〈 ψ31| = |00m0〉 〈 00m0| = eeT= E

where

e = [1 0 0 0 0 0 0 0]T,

E = Diag{1, 0, 0, 0, 0, 0, 0, 0}

(0)

Likewise, we can calculate |ψ32〉 〈 ψ32|, |ψ33〉 〈 ψ33|, |ψ34〉 〈 ψ34|, |ψ35〉 〈 ψ35|, |ψ36〉 〈

ψ36|, |ψ37〉 〈 ψ37|, and |ψ38〉 〈 ψ38|.

According to Figure 1, when the output is given by C3(CNOT3,2) we have 

the following possible states:

                                                     Table 11. C3(CNOT3,2) Output.

|00m0〉 |01m1〉 |10m0〉 |11m1〉 |01m0〉 |00m1〉 |11m0〉 |10m1〉
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From Table 11, we have:

|ψ31〉 =|00m0〉 , |ψ32〉 =|01m1〉 , |ψ33〉 =|10m0〉 , |ψ34〉 =|11m1〉 ,

|ψ35〉 =|01m0〉 , |ψ36〉 =|00m1〉 , |ψ37〉 =|11m0〉 , |ψ38〉 =|10m1〉 .

The outer product of |ψ31〉 〈 ψ31| is given by Equation 21:

|ψ31〉 〈 ψ31| = |00m0〉 〈 00m0| = eeT = E

where

e = [1 0 0 0 0 0 0 0]T,

E = Diag{1, 0, 0, 0, 0, 0, 0, 0}

(0)

Likewise, we can calculate |ψ32〉 〈 ψ32|, |ψ33〉 〈 ψ33|, |ψ34〉 〈 ψ34|, |ψ35〉 〈 ψ35|, |ψ36〉 〈

ψ36|, |ψ37〉 〈 ψ37|, and |ψ38〉 〈 ψ38|.

We notice that the first output (|00m0〉 ) given by C3(CNOT1,2) (see Table 

10) is the same with the first output (|00m0〉 ) given by C3(CNOT3,2) (see Table 

11). Consequently, the linear combination |ψ31〉 corresponds to the state |00m0〉 is 

the same for the both cases. Thus, equation (20) and equation (21) are identical.

According to the assumption that  k1,  k2,  k3,  k4, are uniformly distributed 

and based on the above matrices of the outer products, we can calculate the tensor 

products and obtain the following density matrix:   

|ψ3〉 〈 ψ3| = |ψ31〉 〈 ψ31| ⊗ |ψ32〉 〈 ψ32|⊗ |ψ33〉 〈 ψ33|. . . ⊗ |ψ3n〉 〈 ψ3n| = I (0)

Equation 22 demonstrates  that  the ciphertext  is  homogeneous  and has perfect 

secrecy, since the density matrix is equal to the identity matrix.

3.2. Trojan horse attacks tolerance

The Trojan horse attacks are the most serious threats to computer networking 

security. However, the proposed algorithm is tolerant against Trojan horse attacks. 

If a Trojan horse, denoted as T, has invaded in the sender or the recipient in order 

to identify the quantum states |0〉 and |1〉, then the Trojan horse is going to take the 

following ciphertext state:
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In Equation 23, we have used three symbols. The symbol ||  is the information 

obtained by the Trojan horse when the quantum state is |0〉. The symbol ⊥  is the 

information obtained by the Trojan horse when the quantum state is |1〉. Whereas, 

the symbol ? is the information obtained by the Trojan horse when the quantum 

state is |+〉 or |-〉. It means that when the state is |+〉 or |-〉 due to non-orthogonality 

that is applied in the fourth phase of encryption process, the Trojan horse can not 

decide which the valid state is. Moreover, according to the design of encryption 

algorithm, the quantum representation of a data bit can be in the first qubit or in 

the second qubit or in the third qubit. Thus, the Trojan horse is able to take any 

information related to the plaintext as well as which qubit is related to the ancilla 

qubit.

3.3. Eavesdropping attacks tolerance

According to the design of PEA, the ciphertext states are non-orthogonal leading 

the ciphertext states to be undistinguishable by an eavesdropping attacker. The 

non-orthogonality is applied in the fourth phase of encryption process and we can 

prove it by calculating the 〈ψ4i |  ψ4i〉. If  the value of inner product  〈ψ4i |  ψ4i〉 is 

larger than 0, it means that the ciphertext states are non-orthogonal [10].

We know that |ψ4i〉 (Equation 23) must be represented as a vector in order 

to calculate the value of 〈ψ4i | ψ4i〉. The states |000〉, |001〉, |010〉, |011〉, |100〉, |101〉, 

|110〉, and |111〉 have already been formed as vectors and it is necessary to also 
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represent the states |0+0〉 , |0-0〉 , |0+1〉 , |0-1〉 , |1+0〉 , |1+1〉 , |1-0〉 , and |1-1〉  as 

vectors. For example, the vector representation of |0+0〉 is given by Equation 24:
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Likewise, we can calculate |0-0〉 , |0+1〉 , |0-1〉 , |1+0〉 , |1+1〉 , |1-0〉 , and |1-1〉 . 

Hence, according to Equations 17, 25 and their further calculations we have:
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3
| 4iψ (0)

Next, we can calculate the inner product 〈ψ4i | ψ4i〉 as shown in Equation 26:  
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and: 
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By proving that the value of inner product ><  ψ | ψ 4i4i  is larger than 0, it means 

that the ciphertext states are non-orthogonal.

4. Conclusion

To our knowledge there are still not many good and feasible quantum encryption 

algorithms proposed. With the rapid progress of quantum information theory and 

technology, quantum information comes into real life quietly. When the quantum 

computers come true some day, it will be necessary and not always possible to 

transfer the existing encryption algorithms into quantum information. Based on 

the basic principle of quantum computation, a quantum cryptographic algorithm 

to encrypt the classical binary bits was proposed. The security of the encryption 

algorithm was analyzed in detail. It was shown that the proposed algorithm can 

prevent quantum as well as classical attacks.

PEA has several properties. First of all, no quantum state is pre-shared or 

stored making PEA possible and efficient in real applications. Second, it achieves 

perfect  secrecy with the condition that the key is uniformly distributed. Third, 

both encryption and decryption are based on simple quantum computation, and 

particularly on a combination of the quantum CNOT and SWAP gates. Fourth, its 

implementation  is  feasible  with  the  existing  technology.  At  last,  the  same 

algorithm can be extended to encrypt quantum information. 
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