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Abstr act

In this paper, a polymorphic encryption algoritfAEQ), based on basic quantum computations, is
proposed for the encryption of binary bits. PEAaisymmetric key encryption algorithm that
applies different combinations of quantum gatesrtorypt binary bits. PEA is also polymorphic
since the states of the shared secret key comeotlifferent combinations of the ciphertext. It is
shown that PEA achieves perfect secrecy and idier@sito eavesdropping and Trojan horse

attacks. A security analysis of PEA is also desxtib

Keywords. Encryption algorithm, polymor phism, quantum computations, CNOT
and SWAP quantum gates.

1. Introduction

Conventional cryptography consists of two typescofptosystems; symmetric
key cryptosystems and asymmetric key, or public &gptosystems. Symmetric
key cryptosystems, as the name implies, use iddnkieys for encryption and
decryption and both the sender and the receivaedha same key(s). For this
reason, such cryptosystems rely on the secrecyhefkey. Otherwise, any
malicious actors can deduce the plaintext from thghertext. The major
disadvantage of such cryptosystems is the needeguént and reliable key
distribution. On the contrary, cryptosystems based asymmetric key
cryptography use different keys for ciphering and deciphering. In ciphering,
the key is announced publicly, but in decipheritigg key remains secret. The
security of public key cryptosystems stems from fhet that the key pair



generation is based on computational complexityeofain difficult mathematical
problems. However, the main drawback of this crgpstem is the computational
cost of generating the key pair [19, 20].

In the early 1970s, a new type of Cryptography magposed by Stephen
Wiesner [10]. He proposed the idea of Quantum @gatphy as he introduced
the concept of quantum conjugate coding at the samar. Quantum
Cryptography is based on quantum computation. Intrest to Conventional
Cryptography that uses digital bits for encodingfoimation, Quantum
Cryptography uses quantum particles (i.e. photans)their quantized properties
(i.e. photon’s polarization) to do that. Each pmotarries one bit of quantum
information, called qubit. A qubit defines not orthe two binary eigenstates "0"
and "1" but also the superposition of the two. Remnore, the security of
Quantum Cryptography is based on fundamental goamtechanical principles.
It uses the quantum mechanics in order to overdhadey distribution problem
which is the most serious problem in the both typlesonventional cryptography
[6, 8, 9 10, 18]. Quantum Cryptography is considees the basis for next
generation cryptographic systems that may be ableeplace the public key
cryptosystems [3, 4, 7, 11, 16].

Conventional cryptosystems are susceptible to awhdhriechnology, as
new more powerful computers (e.g. quantum computaees be able to override
the burden of computationally complex problemsha future. Thus, no matter
how strong a cryptographic algorithm is, soon d¢erat will be broken. On the
contrary, Quantum Cryptography is independent ofitelogical advance in the
future as its security is provable information tletwally [4, 5].

During the last two decades, the Quantum Cryptdyrdpas focused on three
fields concerned to key sharing between transmiter receiver. These fields are
the following: quantum key distribution [8], quantusecret sharing [10] and
quantum bit commitment [1]. Furthermore, a new kil@@ugh appeared
regarding the evolution of quantum encryption athons. The concept of this
new field was first introduced by Boykin and Royalthury [12] in 2000. Thus,
Quantum Cryptography does not only provide a sekeyeexchange between two
parties, but also provides a special type of quargacryption at transmitter and
recipient.



Moreover, Quantum Cryptography solves the two mapactical
problems of one-time pad encryption scheme asitiges secure key distribution
and is also able to generate sets of random nunabdiee two communicating
parties,. One — time pad is the only provably ugonally secure cryptosystem,
which can not be compromised even in the face dimited time and
computational power [17, 19, 20]. Therefore, thestaxg encryption algorithms
for quantum information take the form of one-timadpencryption method.
Several quantum encryption algorithms for classhbaary bits from different
aspects were proposed in [2, 13, 14]. A realizgpigntum encryption algorithm
for qubits was also presented in [15]. Motivatedtbgse and the challenge of
guantum computing field, we propose a polymorphicrgotion algorithm (PEA),
which uses different combinations of quantum CN@d &8 WAP gates in order to
encrypt messages without changing the key. TherGltead NOT gate (CNOT) is
the quantum analogue of the XOR gate. It has tvaotimubits, the first is the
controlled qubit and the second is the target quibthe controlled qubit is zero
then the target qubit is intact. If the controlipabit is one then the target qubit is
flipped. Generally, the notation CNQ,J means that the index x is the controlled
qubit and the index vy is the target qubit. The quanSWAP gate has two input
qubits and swaps them. The notation SWAPneans that this gate swaps the
qubit x with the qubit y. The security of the enutign algorithm is analyzed from
several aspects and it is shown that the PEA cawept quantum and classical
attack.

Following this introduction, the paper is organizasl follows. Section 2
describes the polymorphic encryption algorithm glamith its encryption and
decryption processes. Section 3, presents a seamdlysis of PEA and shows
how resilient is to quantum and classical attadkisally, we conclude our

algorithm in section 4 and propose future work.

2. Polymorphic Encryption Algorithm

The polymorphic encryption algorithm (PEA) is a syetric key algorithm based
on quantum computation for encryption of classioassages. PEA requires four
groups of keys to be exchanged between sender ecigient before the

encryption takes place. The first group key is oesible for the choice of
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guantum ancilla bits. The second group key is nesite for the choice of the
first level of encryption. The third group key ssponsible for the second level of
encryption and finally, the fourth group key is pessible for leading the
encrypted data to non-orthogonality. Hence, thespaging of these keys is
essential as they are used during encryption of.PE¥® polymorphism of this
algorithm is based on the pre-shared keys, asdheyhe factors that designate
the internal paths that the algorithm should follomorder to give the encrypted

output.
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Figure 1. PEA Encryption Algorithm

Generally, the classical message, which is enatypte PEA, consists ai bits

and for each bit of the message one quantum <STates created based on the
current bit and the key. San quantum states are going to be created. As
illustrated in figure 1, the input of PEA is @hich according to the second group
of key elemenk, can follow one of the two paths. Kf is equal to 0, the quantum
state will go through CNG:L gate. Whereak, is equal to 1, the quantum state
will go through SWAR, gate. Next, the output of CNQ@Tgate, G(CNOT,,),
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will pass either by the path which has no gateyothe SWAR ;, according to the
third group key elemerks. Likewise, the output of SWAR gate, G(SWAP; ),
will pass either by CNO[; gate or by CNOJ,, according to the third group key
elementk,.

2.1. Encryption

The encryption process consists of the followingg#s: preparation; first and

second level of encryption; and non-orthogonaltgages.

Phase 1: Preparation
In Phase 1, the ke is used for the definition of the valid quanturatss. Let we

k2

K 1 are two

define the quantum ancilla state representedﬁlgéﬂ. The 1land the
key elements of thi, key pair ink;. When the classical key element pairs are 00,
01, 10 and 11 we have the corresponding quantumizastates [0f |01, |10, |

11), respectively. For each bit (O or 1), of the classical message, we have the
corresponding quantum state).| Now, the combination of the quantum ancilla
state with the corresponding quantum state df each bit, will give all valid

guantum states. This combination is achieved byguthe tensor product which

generates the tensor product stamkk’ ). To simplify our calculations, we have
assumed an 8-bit classical message as a blockosiear algorithm. Thus, we are
going to have the following eight valid quantumtesa

|000, |00, |010, |01D, |200, [10D, |110, |11D.

These valid states can be represented by Equation 1

C, =|mk{ k7>, where m k;,k?e{01} . (0)

Phase 2: First Level of Encryption

In Phase 2, the second kdy,is responsible for the first level of encryptiorhel
input to the first level of encryption is one oftleight valid values defined by
Equation 1. According to the values lof there is a different path that the input
can follow. Whenk; is equal to 0, the input will pass by the CN@@ate and
whenk; is equal to 1, the input will pass by the SWABate. The index 2,1 of



CNOT gate defines the second qubit as control heditst qubit as target. Thus,
the CNOT: gate inverts the first qubit when the second qigiequal to 1.

Likewise, the index 1,2 of SWAP gate defines thatfirst qubit will be swapped
with the second qubit. We have selected the CN@mhd SWAR, gates to create

diffusion to the data bit found in the first qubitthe quantum statesyk;k? ), of
Phase 1.

The output G that results from CNQL and SWAR,quantum gates (see
Figure 1), denoted as,(CNOT;, and G(SWAP,,) respectively, is represented
by Equation 2:

C,(CNOT,,) =|t, ki k’ >, where m k;,k €{01} andt, =m®k;,

)
C,(SWAP,,) =|k; m k’>, where m ki, ke{01}.

Based on the second group of key elemkentall possible combinations of
C(CNOT;,) and G(SWAP, ,) states are shown in Table 1:

Table 1. All possible €output.

C. | k | CACNOT.) | k. | CASWAP)
|0,00) | O 0.00) 1 |00,0)
|0,01) | O 0,01) 1 |00,.1)
|0,20) | O |1,10) 1 |20.0)
0,12) | O 1,11) 1 |10.1)
|1,00) | O |1,00) 1 |01,,0)
|1,01) | O 1,01) 1 |01,.1)
|1,10) | O 0,10 1 11,0
1,11 | O |0,11) 1 |11,1)

Phase 3: Second L evel of Encryption

In Phase 3, the third kel is responsible for the second level of encryption.

the second level of encryption, its inputs aredbtputs of Phase 2. The outputs,

C(CNOT;,1) and G(SWAP, ), are the inputs to the second level of encrypéind

according to the values &, there is a different path that each input caloval
C,(CNOT,,) will pass either from the path which has no géiek; equal

to 0, or from the SWAR,; gate, fork; equal to 1. When ICNOT,,) follow the

path which has no gate, the output will be the samthe input. The index 1,3 of

SWAP gate defines that the first qubit will be swag with the third qubit. The

same as in Phase 1, we have selected the SWWyse to create diffusion to the
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inverted data bit which is found in the first quisitthe quantum statef, k; k{ >

, of Phase 2.

The output @that results from the path without quantum gatt the path
with SWAP,; quantum gate (see Figure 1), denoted adN@ GATE) and
C3i(SWAP, 5) respectively, is represented by Equation 3:

C,(NOGATE) = |t, ki k7>, where mk;,k’e{01} andt, =m@®Kk;,

)
C,(SWAP, ) =|k? kit >, where mk;,kZe{01} andt, = m®k;

Based on the third group of kel, all possible combinations of;NO GATE)
and G(SWAP, ;) states are shown in Table 2:

Table 2. All possible €output with G(CNOT,,) input.

CoCNOT.1) | ks | Cs(NOGATE) | ks Cs(SWAP.)
|0..00) 0 |0,,00) 1 |00Q,)
0.01) 0 0.01) 1 1100,
1,10 0 1,10 1 |011.)
|1,12) 0 |1,11) 1 1111
|1,00) 0 1,00 1 |001.)
1,01) 0 1,01) 1 |101.)
|0.,10) 0 |0,,10) 1 |01Q,)
|0.11) 0 |0.11) 1 |110n)

C(SWAP.) will pass either from the CNQJY gate, wherk; is equal to 0 or by
CNOT;, whenk; is equal to 1. The index 1,2 of CNOT gate defitesfirst qubit

as control and the second qubit as target. Thes,GNOT,, gate inverts the
second qubit when the first qubit is equal to kelwise, the index 3,2 of CNOT
gate defines the third qubit as control and theséaubit as target. Thus, the
CNOT;, gate inverts the second qubit when the third gsbégual to 1. We have
selected the CNQE and CNOT.gates to create diffusion to the data bit which is

found in the second qubit in the quantum statgspk’), of Phase 2.

The output @ that results from CNOJE and CNOT, quantum gates (see
Figure 1), denoted as;(CNOT, ;) and G(CNOT;,) respectively, is represented
by Equation 4:

C,(CNOT,,) =|k; t,,, kZ >, where mk;,k’ {01} andt, =k; ®m )

m?



C,(CNOT,,) =|k; t,,,k’ >, where mk;,k e{01} andt, =k’ ®m

Based on the third group of key elemdnt all possible combinations of
C3(CNOT, ) and G(CNOT; ) states are shown in Table 3:

Table 3. All possible €output with G(SWAP:, ;) input.

C{SWAP) | ks | Ci(CNOT.) | ke Cs(CNOT:)
00,0) 0 100,0) 1 100,0)
00,1) 0 00,1) 1 01,1)
10.0) 0 |11,0) 1 10,0)
10,1) 0 11,1) 1 11,1)
01,0) 0 01,0) 1 01,0)
01,1 0 01,1) 1 100,1)
|11,0) 0 10,0) 1 |11,0)
11,1) 0 110,1) 1 10,1)

Phase 4. Non-Orthogonality

In Phase 4, the fourth group kkyis responsible for leading the encrypted data to
non-orthogonality. The encrypted data derived frahe second level of
encryption are states which are orthogonal. Howewehogonality is a property
which should be avoided so that the encrypted dagasecurely transferred
through the communication channel. Orthogonalityrnpts states to be
distinguished and thus, phase 4 makes the outpatisssnon-orthogonal. Non-
orthogonality is a preferable property for PEA.

Non-orthogonality is achieved by using the fourtykks,. According to
the key, k, we change the second qubit in the following appnodt the key
element is 00 or 11, then we do not change thenskegobit of state € Thus, the
second qubit remains in the statgd0 |1). However, when the key element is 01
or 10, then we perform the following computatioagtie second qubit: when the
key element has value equal to 01, we apply Hadan(d) gate [10] to the
second qubit and the resulting output state)i# ffhe input state is JQor |3 if the
input state is [1 If the key element is 10, we apply ZH gate [1®]the second
qubit and the resulting output state jsifthe input state is jJQor |4 if the input
state is |1 We select the second qubit to be passed by HHogates because in
the second qubit there is the quantum representafi@ data bit after Phase 3,

and particularly into two outputs out of four.



The Non-Orthogonality process is shown in FigureF@r each output
C3(NO GATE), G(SWAP.3), C(CNOT,;,), and G(CNOT;y), non-orthogonality

is also illustrated in Figure 1.

00oril No change in the
“ second qubit

> H — =
G5 o>
1=
01
H |
01 or 10
— ZH —= |-
10
0=
1>
= ZH e

Figure 2. Non-Orthogonality Process

To prove that the utilization of Hadamard gates aitdl gates offers non-
orthogonality, we need to follow the next steps:
Firstly, it is known that Hadamard gate is givenHguation 5 [10]:

Ho L {1 1} 0
J2|1 -1
It is also known that the matrix representationthef|Q and the |Lare given by
Equation 6 [10]:
I0>=H and|1>=m (0)
0 1

From equations 5 and 6 we can calculate the folgwi

" 111 11 11 1 B
H |O>:EL _J{O}:EL}:E(|O>+|1>)=|+>

H |1>=%E _ﬂm _ %{_ﬂ _ % (10>—[15) =|—>

Furthermore, the ZH gate is given by Equations:[10]

(©)



o1 1
_E{—l J ©

1 0
|O>:{O} and|1>=L} : ©

From equations 8 and 9 we can calculate the folgwi

ZI:| |O>:i{ ! 1}{1}:i{ 1:|:i(|0>—|1>)5|—>

and

J2-1 1]o] 2[-1] 2 -
0
' 1[1 1]o] 1[1] 1 _
ZH |1>:EL1 JL}:E{J:E(|O>+|1>)=|+>'

For input G(NO GATE), the output €results from not changing the second qubit
of the input G(NO GATE) or applying H / ZH quantum gates to tkeead qubit

of the input GINO GATE). These results denoted agN®O CHANGE), G(H
gate) and ¢ZH gate) are represented by Equation 11.:

C,(NOCHANGE)=|m,k k>, where mk/,k? {01} when k, =00 or 11
C,(Hgate)=|m,+,k? >, where mk;,k’e{01} when k, =01 (0)
C,(ZH gate)=|m, +k/ >, where mk;,k?e{01} when k, =10.

Based on the fourth group of key elemkptll possible combinations of,MNO
CHANGE), C(H gate) and ZH gate) states are shown in Table 4:

Table 4. All possible Coutput with G(NO GATE) input.

Cs; (NO GATE) ks C4NO CHANGE) | ks | Cy(Hgate) | ki | C4(ZH gate)
0-00) 00 or 11 0-00) 01 |0,+0) 10 |0-0)
|0,01) 00or11 |0,.01) 01 |0,+1) 10 [0,-1)
|1,10) 00 or 11 |1,10) 01| |,-00 |10 |1,+0)
|1,11) 00or1l |1,11) 01 [1,-1) 10 [1,+1)
|1,00) 00or11 1,,00) 01 |1,+0) 10 [1,-0)
|1-:01) 00or 11 |1-:01) 01| |1.+1) |10 |1w1)
10,10) 00 or 11 10,10) 01 |0-0) 10 |0,+0)
|0,11) 00or1l |0,11) 01 |0,-1) 10 |0,+1)

For input G(SWAP, 3), the output Gresults from not changing the second qubit
of the input G(SWAP, 3), or applying H or ZH quantum gates to the secwpuioit

of the input G(SWAP, 5). These results denoted agNlO CHANGE), G(H gate)
and G(ZH gate) respectively are represented by Equdtin

10



C,(NOCHANGE)=| k{,k;,m>, where mk;,ke{01} when k, =00 or 11

C,(Hgate)=|k?+,m>, where mk;,k’e{01} when k, =01

()

C,(ZH gate)=|k/,F m>, where m,k},k? {01} when k, =10

Based on the fourth group of key elemkptll possible combinations of,MNO
CHANGE), C(H gate) and ZH gate) states are shown in Table 5:

Table 5. All possible €output with G(SWAP, 3) input.

C«(SWAP, ) ke C«NO CHANGE) | ki | CiHgate) [ ki [ CiZH gate)
1000,) 00 or 11 1000, 01| Jo+0) | 10 |0-01)
|10Qy) 0O or11 |10Q) 01 [1+Qn) 10 |1-Q,)
|011,) 00 or 11 |011.) 01 |0-10) 10 |0+1,,)
[111,) 00 or 11 |111.) 01 |1-1,) 10 |1+1,)
|001,,) 0O or11 |001,,) 01 |0+1,) 10 |0-1,,)
1101, 00 or 11 101, 01| |1+1,) |10 |1-1)
|010Q,) 00 or 11 |01Q.) 01 |0-Q,) 10 |0+Q,)
1110,) 00 or 11 210y 01| -0y [10] j1+0)

For input G(CNOT, ), the output Cresults from not changing the second qubit
of the input G(CNOT, ), or applying H / ZH quantum gates to the secoulblitq

of the input G(CNOT, ;). These results denoted agNlO CHANGE), G(H gate)
and G(ZH gate) are represented by Equation 13:

C,(NOCHANGE)=|k;,mk?>, where mk/,k {01} when k, =00 or 11
C,(Hgate)=|k;,+,k?>, where mk;, k7 {01} when k, =01 (0)

C,(ZH gate)=|k;, 7 k?>, where m k!, k? {01} when k, =10

Based on the fourth group of key elemkntll possible combinations of,MO
CHANGE), G(H gate) and ¢ZH gate) states are shown in Table 6:

Table 6. All possible Coutput with G(CNOT, ) input.

Cs(CNOT.)) Ka C4NO CHANGE) | ks | CiHgate) | ki | CiZH gate)
00,0) 00 or 11 |00,0) 01| |0+0) 10 10-0)
00,1) 00 or 11 |00,1) 01 |0+m1) 10 |0m1)
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111,0) 00 or 11 |11,0) 01| 1w0) | 10| |i+0)
11,1) 00 or 11 |11,1) 01 |1+1) 10 |1+w1)
01,0) 00 or 11 101,0) 01 |0-+-0) 10 |0+:0)
01,1) 00 or 11 |01,1) 01| Jowl) | 10| |o+D)
10,0 00 or 11 110,0) 01 |1+,0) 10 |1-x0)
110,1) 00 or 11 110,1) 01 |1+n1) 10 |1-n1)

For input G(CNOT;), the output @ results from not changing the second qubit
of the input G(CNOT;), or applying H / ZH quantum gates to the secoulitq

of the input G(CNOT;),. These results denoted agNM®O CHANGE), G(H
gate) and ¢¢ZH gate) are represented by Equation 14:

C,(NOCHANGE)=|k;,mk?>, where mk;,k/ {01} when k, =00 or 11
C,(Hgate)=|k},+,k? >, where mk/,k’e{01} when k, =01 (0)
C,(ZH gate)=|k;, 7 k>, where m k! ,k? {01} when k, =10

Based on the fourth group of key elemkptll possible combinations of, MO
CHANGE), G(H gate) and &ZH gate) states are shown in Table 7:

Table 7. All possible €output with G(CNOTs; ) input.

Cs(CNOTsp) ks C4(NO CHANGE) | ks Cy(H gate) | ki C4(ZH gate)
100,0) 00oril 100:0) 01| jow0) |[10] 0.0
|01,.1) 00orll |01.1) 01 |0-n1) 10 |0+,1)
|L0,0) | 00oril |10:0) 0l w0 |10] 11,0
11.1) 00or11 111.1) 01 |1-1) 10 |1+n1)
|01,0) 00orll 01,0 01 |0-0) 10 |0+,0)
00,1) | 00oril 100,1) 01| jowd) |10] joud)
11,0) 00or11 11,0 01 |1-:0) 10 |1+,0)
|10.1) 00oril 10,1 01| ji4,1) |10 |1-m1)

2.2. Decryption

All gates (CNOT gates, SWAP gates, H gates, ZHs)aised in the encryption
and non-orthogonality processes are unitary opexatdence, the decryption is
the inverse process of the encryption using thespeged four group keys. The
decryption process takes place at the recipiert ditlus, the decryption process

consists of the following inverse phases:
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Phase 1: I nverse process of Phase 4 of Encryption process

In Phase 1, the fourth group kkyis responsible for the first level of decryption.
The recipient receives the non-orthogonal statgdhéctext) from the sender and
applies the same process with the one appliederPtimse 4 during encryption.
When the key element is 00 or 11 we do not chahgesécond qubit of state, C
and thus, the second qubit remains in stateot0|). However, when the key
element is 01 or 10, then we perform the followoamputations to the second
qubit of the ciphertext: If the key element hasueaéqual to 01, we apply H gate
to the second qubit and the output state jsM@en the input state is)|+or |1
when the input state is)|-If the key element is 10, we apply ZH gate to the
second qubit and the resulting output state)isvien the input state is),|-or |1
when the input state is)|+Therefore, the output of this phase is the <Iatef the

encryption process.

Phase 2: I nverse process of Phase 3 of Encryption process

In Phase 2, the third and second group Keyk. are responsible for the second
level of decryption. The inputs of phase 2 are dhguts of the first level of
decryption. Here the recipient applies the samega® with the process applied in
phase 3 during the encryption process. For examplenk,is equal to 0, state;C
passes either by the path which has no gatksfequal to 0, or by SWAR, for ks
equal to 1. Whelk;is equal to 1 statespasses either by the CNQIgate forks
equal to 0, or by CNGOs for ks equal to 1. Hence, the output of this phase is the

state G of the encryption process.

Phase 3: I nver se process of Phase 2 of Encryption process

In Phase 3, the second group of key elerkgistresponsible for the third level of
decryption. The inputs of phase 3 are the outpdtshe second level of

decryption. Same as before the receiver appliesdmee process with the one
applied in phase 2 during encryption. For exampleenk; is equal to 0, state,C

passes by the CNQT gate, but wherk, is equal to 1, state.(passes by the
SWAP,, gate. Hence the output of this phase is the Katef the encryption

process and the first qubit of each quantum statesponds to the initial data bit.
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Phase 4: Acquisition of plaintext
In Phase 4, we obtain all the first qubits of eathite that correspond to the

original bits and acquire the bit sequence of ttigiral plaintext.

3. Security Analysis of PEA

To evaluate PEA we have conducted a security asdlysexamine its resilience
to Trojan horse and eavesdropping attacks andudy sits homogeneity and

perfect secrecy.

3.1. Homogeneity and Perfect Secrecy

It is essential an encryption algorithm to prodiloenogeneous ciphertexts and
ideally have perfect secrecy, i.e. the ciphertaxeg no information about the
plaintext [20]. To prove that our algorithm is hogenmeous and achieves perfect
secrecy, it is enough to show that the densityimnafrn ciphertexts states related
to then bits classical message is the identity matrix.

To prove it, lety.,) be the linear combination of all possible statéth wqual
probability in the ciphertext s&, (w=1, 2, 3), which corresponds to thebit of
message. The density matrices are calculated bgtiogul5:

|\Iflz> <\Iflz| =1 ‘{V22> <\|122| =1 *V32> <\|f3z| =1 (O)

The density matrix ofi ciphertext states/}) for a message which consistsnof

bits is given by Equation 16:

|\|13> <\|l3| = H131> <\V31| ® |\|l32> <\|l32|® |\V33> <\V33|- ..® |\V3n> <\V3n| (O)

To calculate Equation 16, firstly it is required dalculate the outer product of

each e|emem¥|3i> : |\|l31> <\V31|, Hl32> <\V32|, Hl33> <\V33|, Hl34> <\V34|, Hl35> <\V35|, W36

) (Wadl, Wa7) (warl, Was) (wadl

Then, it is required to calculate the tensor preglaf the above outer

products. We know that the elemenjs)| represented as the following: |00
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001), |010, |01D, |100, |102, |110, |11D, can be also represented as vectors. By
using vectors we can make simple calculations aosepthat the ciphertext is

homogenous. For example, the vector representatidhe first states |000is
given by Equation 17:

1

_ N 1 1] |0

|000) = |0) ®|0) ® |0) = 0 ® 0 ® ol7 o (0)
0

®
|
o B
| I
I
©O oo oo ok

0
Likewise, we can construct the rest of the st&@$ |010, |01, [100, |10D, |

110, and |11} as vectors.
According to Figure 1, when the output is givendyNO GATE) we

have the following possible states:

Table 8. G(NO GATE) Output.
[10,00) [10:01) [11410) [ [211) [[2,00) | [2,01) | [0,10) | [0u11) |

From Table 8, we have:
Ws=|0n00), l32)=|0:01), M32)=|1nl0), |yas)=[1s1D),
\35)=|1m00), |W36)=|10D), |W37)=|0n10), |yse)=|0n1D).

Next, the outer products can be calculated by Egudi3:
lwa1) (a1 = ]G:00) (0,00| = eé= E
where
e=[10000000]
E = Diag{1, 0, 0, 0, 0, 0, 0, O}

(18)

Likewise, we can calculate all the outer produgtsysz|, Wass)(wad, Waa)(wad, |
WasXWas|, Was)XWael, War)(warl, and ag)(yas|-

According to Figure 1, when the output is given @YSWAP 1,3) we
have the following possible states:

Table 9. G (SWAP 1,3) Output.
| 1000.> | [100,) | [01%,) | 11%,) | 100%,) | [10%) |1010,) |[110,) |

15



From Table 9, we have:
lws? =|000h) , fa2) =|10Qn) , fwss) =|01%), jwas) =|11%),
hyas) =[00%n) , hwse) =[104n) , wsz) =[01Qh) , hyas) =[11Q) .
The outer product ofyk:) { | is given by Equation 19:
lwa1) {wai] =]00Q,) (000, = eé=E
where

e=[1000000 0
E = Diag{1, 0, 0, 0, 0, 0, 0, 0}

(19)

Likewise, we can calculate) s, W3z (waal, Wza) (wadl, Wss) (wasl, fse) €
V3d, Nl37> <\|l37|, and\ll3s> <\|l3s|-
According to Figure 1, when the output is given@yCNOT; ;) we have

the following possible states:
Table 10. G(CNOT; ;) Output.

| 100,0) | 100.1) | 111,0) | [11.1) |102,0) |[0%.1) | [20:0) |[10.0) |

From Table 10, we have:
|\V31> :|00n0> ) |\V32> :|00n1> ) |\V33> :|1]m0> ) |\V34> :|1]m1> )
|\|f35> :|O]mO> ) |\V36> :|O]m1> ) |\V37> :|10n0> ) |\V38> :|10n1> .

The outer product ofyk:) { yi| is given by Equation 20:
lva1) (yar =0G0) (00.0] = eé=E
where
e=[10000000]
E = Diag{1, 0,0, 0, 0, 0, 0, 0}

()

Likewise, we can calculatgb) (s, Was) {wadl, Waa) {adl, Was) (yas], ss) €
Vg, N/37> <W37|, and\|/38> <\l/38|-
According to Figure 1, when the output is given@yCNOT;,) we have

the following possible states:
Table 11. GCCNOT; ;) Output.

| 100.0) | 101.1) |120,0) | [11.1) |102,0) |[0a.1) | [11,0) |[10.0) |

16



From Table 11, we have:

|\V31> :|00n0> ) |\V32> :|O]m1> ) |\V33> :|10n0> ) |\V34> :|1]m1> )
|\|f35> :|O]mO> ) |\V36> :|00n1> ) |\V37> :|1]mO> ) |\V38> :|10n1> .

The outer product ofsh;) a1 is given by Equation 21:

a1 sl =]06,0) (00,0 = eé=E
where
e=[1000000 0]
E = Diag{1, 0, 0, 0, 0, 0, 0, 0}

(©)

Likewise, we can calculatgh) {ysd|, Was) {Wadl, Waa) {adl, Was) (was], ss) €

Vg, N/37> <W37|, and\|/38> <\l/38|-
We notice that the first output (Jg) given by G(CNOT,,) (see Table

10) is the same with the first output (J00) given by G(CNOT:,) (see Table

11). Consequently, the linear combinatigs,) corresponds to the state J00is

the same for the both cases. Thus, equation (2Dgqunation (21) are identical.
According to the assumption thkt, k;, ks, ks, are uniformly distributed

and based on the above matrices of the outer pigdue can calculate the tensor

products and obtain the following density matrix:

|\|I3> <\|13| = H131> ( \V31| ® |\|l32> <\V32|® |\V33> <\V33|- .® |\V3n> <\|13n| =1 ©

Equation 22 demonstrates that the ciphertext isdgameous and has perfect

secrecy, since the density matrix is equal to deatity matrix.

3.2. Trojan horse attacks tolerance

The Trojan horse attacks are the most serious tthteacomputer networking
security. However, the proposed algorithm is taleemgainst Trojan horse attacks.
If a Trojan horse, denoted as T, has invaded irséimeler or the recipient in order
to identify the quantum states fhd |2, then the Trojan horse is going to take the

following ciphertext state:
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Iy, (T)) :4_18(|0r|'|‘0|b” >+ 00" >+ 11700 > + 111" > +|1.0'0" >
+|Lont > +]0l1°0" > + 0! 11" > + 000!l > + (100! >
+ |01 >+ |1 1L > + )00 > + 170 >+ |00l >
+ 1270l >+ 000! > + |01 > + 170101 > + |12 >
+ (010" > + 100! 1" > + 120" > + |10 1" > + |0 +70! > 0)
+]00 +715 > + 1 =700 > + |1 -1 >+ |1+ 700 >+ |1+ >
+]00 =700 >+ |0 71" >+]0"+700 >+ 1" +70! >+ |0" "1k >
+]1° =1 >+ |01+ >+ |1 +7 1 >+ 01700 >+ (1 -70ll >
+]01+2 O'> + 0" -7 1" >+ 15 +2 0 > + 1" -7 1" >+]0"-7 O >

+]014+7 15 >4+ 1 =2 00 > + 17 +7 15 >)

In Equation 23, we have used three symbols. Thebsyih is the information
obtained by the Trojan horse when the quantum g&d@. The symboll is the
information obtained by the Trojan horse when tharqum state is }J1Whereas,
the symbol? is the information obtained by the Trojan horseewlthe quantum
state is |y or |9. It means that when the state i5 ¢f |- due to non-orthogonality
that is applied in the fourth phase of encryptioocpss, the Trojan horse can not
decide which the valid state is. Moreover, accaydim the design of encryption
algorithm, the quantum representation of a datadnit be in the first qubit or in
the second qubit or in the third qubit. Thus, thejdn horse is able to take any
information related to the plaintext as well as avhqubit is related to the ancilla

qubit.

3.3. Eavesdropping attacks tolerance

According to the design of PEA, the ciphertextestadire non-orthogonal leading
the ciphertext states to be undistinguishable byearesdropping attacker. The
non-orthogonality is applied in the fourth phaseeptryption process and we can
prove it by calculating théy. | v4). If the value of inner produciys | ya) is
larger than O, it means that the ciphertext statesion-orthogonal [10].

We know thaty.) (Equation 23) must be represented as a vectordier o
to calculate the value ¥ | y4). The states |000|002, |010, |01D, |100, |10D,

[110, and |11}] have already been formed as vectors and it isssacg to also

18



represent the states |0+00-0), [0+D, [0-D, [1+0), [1+D), [1-0), and |1-2 as

vectors. For example, the vector representatidf- is given by Equation 24:

10+0) = [0) ® [+) ® [0) = m ®

o © s|||—\ s|||—\

(©)

ooooosdp—\ Os|||4

Likewise, we can calculate |0-0[0+1), [0-1), |1+0), |[1+1), |1-0), and |1-2.

Hence, according to Equations 17, 25 and theih&urtalculations we have:

vy >=—

et i i e i i

R T

o oo o s||p §||H §||H S||"

Sl Sl fle e 0 @ 0 o

5 & S|k Sl o000

()

Next, we can calculate the inner prod{uet | vy as shown in Equation 26:

1
<Yy vy >= 256

and:

42 1442 11 1442 1442 1 1]

_1+ \/5_
1+ «/E

1+\/§
1+\/E

1
1

1
1

-2le+v2) (0
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1
<4 lvy >Z§(2+‘/§)>0 (0)

By proving that the value of inner producty ,; | v, > is larger than 0, it means

that the ciphertext states are non-orthogonal.

4. Conclusion

To our knowledge there are still not many good fasible quantum encryption
algorithms proposed. With the rapid progress ofntwa information theory and
technology, quantum information comes into rea ghietly. When the quantum
computers come true some day, it will be necesaadynot always possible to
transfer the existing encryption algorithms intcagum information. Based on
the basic principle of quantum computation, a quisntryptographic algorithm
to encrypt the classical binary bits was propoJdgk security of the encryption
algorithm was analyzed in detail. It was shown tiat proposed algorithm can
prevent quantum as well as classical attacks.

PEA has several properties. First of all, no quanstiate is pre-shared or
stored making PEA possible and efficient in regllaations. Second, it achieves
perfect secrecy with the condition that the keymformly distributed. Third,
both encryption and decryption are based on sigpbntum computation, and
particularly on a combination of the quantum CNGiO &WAP gates. Fourth, its
implementation is feasible with the existing tedogy. At last, the same

algorithm can be extended to encrypt quantum inébion.
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