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Abstract—Smart grids perform the crucial role of delivering
electricity to millions of people and driving today’s industries.
However, the integration of physical operational technology (OT)
with IT systems introduces many security challenges. Denial-of-
Service (DoS) is a well-known IT attack with a large potential
for damage within the smart grid. Whilst DoS is relatively
well-understood in IT networks, the unique characteristics and
requirements of smart grids bring up new challenges. In this
paper, we examine this relationship and propose the OT impact
chain to capture possible sequences of events resulting from an
IT-side DoS attack. We then apply epidemic principles to explore
the same dynamics using the proposed S-A-C model.

Index Terms—Smart grids, cyber-security, DoS, DDoS

I. INTRODUCTION

A smart grid is the modern manifestation of the traditional
power grid. The ‘smart’ label denotes the addition of com-
munication devices for real-time monitoring and response. A
communication network (the IT or Information Technology) is
overlaid on top of the existing physical power network (the OT
or Operational Technology). The smart grid therefore consists
of two distinct but inter-connected, interdependent networks
[1]. The IT remotely connects control systems to devices in the
field that collect data. Based on this data, control systems issue
control commands to alter topology, change settings, adjust
loads, and recover from faults.

However, remote connectivity can also be a vector for
malicious activity. Communication channels are integrated
throughout the grid, exposing areas that were previously
difficult to compromise. A possible compromise scenario is
Denial-of-Service (DoS) [2], where attackers aim to prevent
systems performing their normal operations. DoS or DDoS
(Distributed DoS) can block communication flows in the
smart grid, disrupting monitoring and management. This can
ultimately lead to instability and outages.

Conventional TCP/IP networks are complex systems of
systems. This presents a myriad of security issues. The smart
grid’s cyber network is similar, but it is also intertwined with
an underlying physical network responsible for the generation
and provision of energy. The criticality of this service increases
the risk of and fallout from attacks. The two networks (Fig.
1) are both interdependent (i.e. they depend on each other
for functionality) and interoperable (i.e. many grid processes

Fig. 1. Smart grid IT and OT interoperability.

run on both simultaneously). Hence, the IT-OT relationship is
vitally important when designing security solutions.

However, the security implications of this relationship are
not well-understood. DoS remains a relatively easy yet effec-
tive attack. Whilst this attack is well-studied in conventional
networks, there is less research for DoS in the smart grid.
The IT-OT relationship, service criticality, and strict perfor-
mance requirements of the smart grid set it apart and must
be addressed to pre-emptively mitigate the DoS threat. In
this work, we address this by considering how DoS attacks
originating in different areas of the IT may affect the OT. We
examine the IT-OT relationship and propose the OT impact
chain to qualitatively capture the sequence of escalating impact
events that may be caused within the OT. We also propose the
epidemiological S-A-C model to support the impact chain with
quantitative analysis. To our knowledge, epidemic modelling
has not been used in this context before.

The core contributions of this paper are:
• The new OT impact chain framework to capture DoS at-

tack characteristics for qualitative assessment of possible
effect chains, based on grid system relationships.

• The novel use of epidemic modelling with the S-A-C
model to qualitatively predict DoS impact scale, based
on the IT-OT dependency.

In recognition of the proliferation of smart grids and the
threat posed by DoS attacks, the European Union has ini-
tiated the Energy Shield project [3] for the development of
appropriate defences. The work presented in this paper was
conducted as part of this project, with the goal of applying



Fig. 2. Smart grid cascading attack process.

existing modelling techniques to DDoS in novel ways in order
to improve smart grid defences.

Section II outlines interoperability, inter-dependency, and
cascading failures, followed by a formal description of the
OT impact chain framework. Section III provides a definition
of the S-A-C epidemic model and the findings of some early
numerical simulations to test parameters. In Section IV, we
discuss the implications of the two contributions and their use,
and related work is presented in Section V. We then conclude
in Section VI.

II. SMART GRID DOS & OT IMPACT CHAIN

A. Interoperability & Cascading Failures

The integration of the IT and OT results in interoperability
requirements. Interoperability is where two or more systems
“exchange information and use the information that has been
exchanged” [1]. For this to work, systems must operate to a
common standard, defined by the data structures, protocols,
and communication channels used. This relates to domain
interdependency because the management of OT devices de-
pends on accurate and timely data flows through the IT.
Therefore, an IT failure can have a cascading affect on the
rest of the grid.

A cascading failure propagates from a point throughout an
interconnected system, such that it impacts more and more
of that system. Two types of cascading failure in smart grids
are 1). where an overloaded line fails and trips, and its load
is redistributed amongst neighbouring lines which may then
also become overloaded, and 2). where an IT issue disrupts
the flow of sensor data and control signals, causing OT
mismanagement. If parts of the OT then fail, this exasperates
issues in the IT (e.g. communication devices may go offline).
Hence, failures ‘cascade’ both within and across the networks.
Fig. 2 illustrates this concept. We focus on attacks against
the IT (i.e. communication flows), which have subsequent
impact on the OT, since we consider this to be the more likely
compromise scenario.

B. OT Impact Chain Definition

The OT impact chain is designed to capture the relationship
of IT-side DoS attacks and the proliferating OT-side impact

they can have. It provides a means for the qualitative as-
sessment of DoS attacks, such that the initial, secondary, and
continuing impact of the attack, depending on where it lands
in the IT network, can be considered. The main fields to be
defined in the framework are:

• Attackers: Devices that transmit DoS attack packets.
• Attack Point: IT systems targeted in the DoS attack.
• DoS Attack: DoS attack itself, including:

– DoS Type: Flood attack, protocol compromise, etc.
– Attack Rate: Inter-arrival time for attack packets.
– Compromise Probability: Likelihood of target ser-

vice loss.
• Initial IT Impact: Initial impact (devices affected, how

many) on IT systems local to DoS targets.
• Initial OT Impact: Initial impact of compromised IT

systems on directly connected OT systems.
• Consequent Impact: Rounds of impact in the OT, caused

by compromise of OT systems in previous impact rounds.
• Intra-IT Interoperability: Assessment of intra-IT con-

nectivity and dependency relationships.
• Intra-OT Interoperability: Assessment of intra-OT con-

nectivity and dependency relationships.
• Inter-IT-OT Interoperability: Assessment of IT-OT

connectivity and dependency relationships.
Fig. 3 shows the basic framework structure. The attack

source may be internal but is more likely to be external. It
is also likely to be a botnet [4]. The DoS attack lands in the
IT, compromising a specific target (e.g. a channel or a device).
Attack potency will depend on packet rate and the number of
attackers. If successful, the attack has initial local IT impact
i.e. IT nodes dependent on the target will be affected. Local
impact will depend on the degree of intra-IT interoperability,
which is defined by a qualitative assessment of IT systems and
the dependencies between them.

Inter IT-OT interoperability is similarly defined. Depending
on the IT attack site, there will be a direct impact on OT
devices that are connected to the IT target. This is the initial
OT impact. Intra-OT interoperability then determines how
dependent OT systems are on each other. Given that OT
systems stabilise the grid, a compromise can escalate, as
captured by the rounds of consequent impact (2nd, 3rd, and
so on). Hence, the compromise spreads throughout the grid
as wider grid functions are affected by the loss of singular
functions or processes. Nodes in each impact step are affected
by the compromised nodes of the previous step. The speed of
this will vary with each scenario.

DoS attacks may block sensor data from reaching the
control centre, preventing timely and accurate control signals
being generated. If the correct adjustments are not made to
grid devices, failures may result. DoS may also use crafted
packets to manipulate OT system operations to cause device
failures [5]. Fig. 4 shows some possible scenarios against
the channels or devices of different grid sub-systems. For
example, AMI attacks can cause channel saturation or server
failure. Exploitation of network protocols can cause network



Fig. 3. Definition of OT impact chain.

instability. This could lead to load forecasting errors as data
sharing is blocked, which may cause load instability, triggering
line failures or load shedding. The hierarchical nature of both
the IT and OT is reflected in the impact chain, which has a
tree-like structure. This demonstrates the relationships between
attack targets and impact areas, and between small-scale and
large-scale compromises as incidents develop over time.

III. SMART GRID DOS & COMPROMISE EPIDEMIC MODEL

A. S-A-C Epidemic Model Definition

To quantitatively support the OT impact chain, we devel-
oped the S-A-C (Susceptible, Attack, Compromised) epidemic
model, depicted in Fig. 5. This is a work-in-progress, and in
its current state, is a deterministic model to capture a high-
level view of the events discussed in Section II. Specifically, it
explores the influence that compromised IT systems have on
both the IT and the OT. Based on epidemiological concepts,
a population of devices is split into sub-populations, each
representing a possible state. A series of differential equations
then define the rates of change of sub-population sizes as
devices (AKA nodes) move between states.

The parameters are summarised in Table 1. The model
consists of two separate network populations, c (cyber) and p
(physical), which are each split into susceptible (S) and com-
promised (C) states. A separate population of attacking nodes
(A) exists, representing an external DDoS-enabled botnet. In
c, the number of compromised nodes depends on the number
of A nodes, the attack rate β, and contact between A and Sc

nodes, as well as contact between Sc nodes and existing Cc

nodes. In p, the size of the Cp population depends on the
contact between Sp nodes and compromised Cc nodes in the
IT, as well as the contact between Sp and existing Cp nodes.
In both networks, compromised nodes recover at the rate α,
defaulting back to the S state.

The attack rate β abstractly represents the force of the
DDoS campaign and subsumes attack packet delivery rate
and the probability of compromise success. It is defined as
the product of DoS packet size mDoS, DoS packet arrival rate
aDoS, and the probability of disruption for arriving packets
pDoS. The recovery rate α is set manually to denote the level of
defender response. Meanwhile, we define ωc as a figure which

Parameter Definition
c Cyber (IT) population
p Physical (OT) population
S Susceptible; nodes vulnerable to compromise.
A Attackers; nodes engaged in the DoS attack.
C Compromised; nodes affected by the DoS attack.
Sc Susceptible nodes in the IT population.
Cc Compromised nodes in the IT population.
Sp Susceptible nodes in the OT population.
Cp Compromised nodes in the OT population.
β DDoS attack rate.
α Recovery rate for compromised nodes.
ωc Interoperability coefficient within the IT network.
ωp Interoperability coefficient within the OT network.
ωcp Interoperability coefficient between IT and OT networks.
mDoS Mean size of DoS attack packets.
aDoS Mean arrival rate of DoS attack packets.
pDoS Delivery and success probability of DoS attack packets.

TABLE I
S-A-C MODEL PARAMETER DEFINITIONS.

denotes the average degree of node interoperability or inter-
dependency within the c population. Similarly, ωp represents
the same for the p population, and ωcp represents average
interoperability between c and p nodes.

Unlike standard epidemic models, the A population remains
constant, allowing us to control the number of DDoS partici-
pants in each run. To keep the process simple, we also assume
homogenous mixing within and between the two networks.
The transitions are defined mathematically as follows:

Scdt = −(βScA)− (ScCcωc) + (αCc) (1)
Ccdt = (βScA) + (ScCcωc)− (αCc) (2)

Spdt = −(SpCcωcp)− (SpCpωp) + (αCp) (3)
Cpdt = (SpCcωcp) + (SpCpωp)− (αCp) (4)

Adt = 0 (5)

B. OT Impact Model Findings

To explore how population dynamics are influenced by
the S-A-C parameters, we manually performed preliminary
numerical simulations by testing a range of values for each
parameter and comparing to a baseline. In this baseline, we
define a starting population of 1000 nodes each for c and



Fig. 4. Smart grid DoS attack targets and possible impact events.

Fig. 5. S-A-C model states and transitions.

p, emulating a grid sub-system which has both IT and OT
components. We also set a minimum botnet population A
of 50 nodes, which is then increased over subsequent tests.
Baseline interoperability values for ωc, ωp, and ωcp were all
set to 0.5 (where 0 would denote none, and 1 would denote
full dependency). The basic dynamics of the model are as
follows. As Sc declines, this deficit is absorbed directly into
Cc so that on a graph, the two curves mirror each other, as
shown in Fig. 6. The same applies to the relationship between
Sp and Cp. Compared at higher attack rates, the decline in
Sp has a less steep slope and lower minimum value because
attacks drive compromises up in c directly. However, if β is
minimised, peak Cp is higher, as fewer new compromises take
place within c but existing Cc nodes are enough to continue
causing compromises within p.

As per intuition, minimising α causes a larger number of
compromises overall. As α is increased, the downward slope
of both S populations becomes less steep, and the gap between
the peak final Sc and Sp populations narrows significantly. This
is because there are fewer Cc nodes to drive compromises
within p. Similar effects in the respective networks can be seen
when ωc and ωp are manipulated, and when the A population
is increased.

When mDoS is very low (e.g. 1MB), there are more Cp nodes
than Cc. This is because the attack rate β is driven down, so

fewer compromises occur in c. As mDoS increases, the peak
value of Cc pushes up passed that of Cp. The greatest increase
in IT compromises happens when the value of pDoS approaches
1. When pDoS=1, every single packet lands a successful hit
on the target, maximising the efficiency of the attack. Hence,
mitigating the arrival and affect of incoming packets can be
an effective defence. Fig. 7 and 8 demonstrate the effects
of increasing ωp and ωcp. Here, p’s relationship to c has an
effect similar in magnitude and severity to that of the internal
characteristics of p. The notable difference is that increases in
ωcp result in more gradual increases, which can be explained
by the delay between the initial compromise of c nodes and
the impact being felt amongst p nodes.

When exploring ω values, we introduced an experimental
definition of interoperability to further detail c-p connectivity.
If we observe not the whole grid, but a particular sub-system,
ωcp is calculated as the product of mean sub-system node
degree, mean contact rate within that population, and the
criticality coefficient λc for the IT part of the sub-system for
attached OT devices. Hence, the weighting applied to IT-OT
dependency is a function of how critical IT and OT compo-
nents are to each other. Early testing showed that increases in
mean degree and λc have more chance of causing full scale
OT compromise, and are far more influential on the OT than
other parameters. Overall, this preliminary work shows that
the model is a feasible approach. Further development and
simulations, including a definition of λc, are planned.

IV. DISCUSSION

The OT impact chain enables the characterisation of the
relationship between the IT and the OT in several ways.
Firstly, it encourages users to consider which part of the
IT a cyber-attack is targeting. This directly influences the
types of problems that will result in the OT. Secondly, it
encourages defenders to consider what effect the loss or
disruption of a particular sub-system may have on the wider



Fig. 6. Changes in Sc and Cc for β={0.1, 0.25, 0.5, 0.75}.

grid via a qualitative assessment of the IT, OT, and IT-to-OT
interdependencies. By mapping the relationships between sub-
systems, we can better predict impact propagation scenarios,
and by considering the worst case scenarios (i.e. blackouts),
the appropriate preventative measures can be taken. Given the
current threat landscape, we believe it is plausible to assume
that attackers who decide to target the smart grid will do so
with the intention of causing as much damage as possible.

The current OT impact chain was the result of our studies
into smart grid DoS attacks. Given its focus on the relation-
ships between grid sub-systems, we believe that it can be
applied to other types of attack too. The main limitation of the
current impact chain is that it does not consider the effect of
OT-side failures (caused by the initial DoS) on the IT network.
This could be achieved by expanding the fields already defined
in the Section II.B. For example, interoperability will need to
be assessed in terms of whether IT or OT devices drive a given
process, so that there are separate definitions for IT-to-OT
and OT-to-IT relationships. This is an area to be developed in
future versions of the framework. In addition to this, we would
like to develop a detailed characterisation of interoperability
relationships between common smart grid sub-systems, which
can be added to the framework as a baseline reference for
users.

Epidemic modelling is typically used to trace the spread
of infectious malware in IT networks by tracking the number
of network nodes occupying different states over time. This
quantifies the ongoing impact of a propagating issue. Thanks
to this characteristic, the S-A-C model provides a quantitative
assessment of the propagation of compromise, based on the
relationships between nodes. This is a novel application of epi-
demiology (to our knowledge) and the results of preliminary
testing presented in Section II.B demonstrate that this strategy
has potential to uncover relationships between the modelled
parameters. The planned future work is to develop this model
further to add more complexity in line with the aforementioned
characterisation of interoperability.

The main shortcoming of the S-A-C model is the assump-
tion of homogenous mixing within and between populations.
Whilst this provides a sufficient baseline understanding of the
relationships between key model parameters, it may be con-

Fig. 7. Changes in Cp for ωp={0.1, 0.25, 0.5, 0.75, 0.99}.

Fig. 8. Changes in Cp for ωcp={0.1, 0.25, 0.5, 0.75, 0.99}.

sidered unrealistic as communication and dependency between
systems will depend heavily on the services they provide.
Options to improve this include a sub-division of the overall
c and p populations by grid sub-systems as defined in [6], or
the use of dual directed graphs with cross-graph connectivity
as defined in [7]. Such expansions would make S-A-C more
applicable to both individual sub-systems and to the grid as
a whole. Added complexity should be moderate, however,
to ensure that the model remains easy to use. Finally, we
would like to expand simulations to include more scenarios,
and to use network (e.g. ns-3 [8]) and power system (e.g.
GridLab-D [9]) simulation environments to generate realis-
tic data to further test and refine both the impact chain and
the S-A-C model.

V. RELATED WORK

In existing literature, interdependency is often approached
using graphs, as introduced by Kundur et al. [7] who created an
“impact analysis framework” using directed graphs to model
the IT and OT as a pair of directed graphs, mathematically
defining the impact relationships between them. They showed
that systems and behaviours can be accurately represented, but
did not explicitly consider security or attack scenarios. Inspired
by [7], Yang et al. [10] created a graph-based simulation model
of delays and malicious signals. Similar to us, they considered
attack impact (reporting topological errors and generator over-
load), but for FDI (False Data Injection) rather than DDoS.



Similarly, Huang et al. [11] proposed a graph-based IT-OT
interdependence model for the cost of maintaining the grid.
Like us, they focused on cascading failures, mathematically
defined as removals and fragmentations. They identified a
threshold for the maximum number of faulty nodes permitted,
but their failure simulations are generic and not based on
particular attack scenarios.

Graph techniques are applied in recent works too. Wang
et al. [12] used graphs to explore cascading failures caused
by virus propagation, where the virus blocks communications.
Classic epidemic models were used to represent the viral
spread, and failure chains analysed. They demonstrated the
role played by topology. The virus’s malicious activities were
not explicitly explored though. Gao et al. [13] proposed a
stochastic model of cascading failures for vulnerability un-
certainty. They integrated heterogeneity by considering node
categories, and explored failures originating in the IT and OT.
Their results suggested that high loads and load uncertainty
made cascading failures worse. As with the other works, their
failure trigger states are generic and they do not consider
particular cyber-attacks.

Epidemiological principles are widely applied in differ-
ent networks (e.g. WSNs [14], VANETs [15], and cloud
[16]). Such techniques are now being applied in smart grid-
related areas too. To study malware propagation, Shen et
al. [17] developed the V-C-Q-P-S (Vulnerable, Compromised,
Quarantined, Patched, Scrapped) model for sensor networks
with heterogenous mobile nodes, extending the classic S-I-
R. Simulation results showed that V-C-Q-P-S produces more
accurate results, but interdependence was not considered. In
contrast, Jiang et al. [18] focused specifically on propagation
in interdependent networks, again based on the S-I-R model.
Like us, their model considers a failure state partly triggered
by failures of dependent nodes. The results suggest that
interdependent networks are more vulnerable to epidemics.
The particularities of smart grids are not considered.

Graph-based methodologies enable detailed analysis, but
remain generic and can be highly complex. Meanwhile, use
of epidemic modelling is still limited to generic networks
or classic examples of malware propagation. Our aim is to
take a focused approach to smart grid DDoS scenarios, and
to provide a simple epidemiological approach to assess and
predict the scale of impact. Unlike [12], [13], and [18], we
couple our model with the impact chain to measure scale
but also to characterise events. This is a novel approach,
complementing both conventional DoS research and smart grid
security research.

VI. CONCLUSIONS

Smart grids are a response to increased demand and the need
for better efficiency. Modern IT systems connect grid systems
to remote control centers, which has the unfortunate side-
effect of exposing the grid to DDoS attacks. Interdependency
and interoperability between the IT and OT can amplify the
effect of such attacks. We have proposed the OT impact chain
framework to help to characterise the short- to long-term

impact of attacks landing within the IT. This is designed to
enable a qualitative assessment of possible impact scenarios,
based on the inter-connectivity of the grid. We then proposed
the S-A-C epidemic model to add quantitative support to that
assessment, capturing the scale of node compromise. This
contributes to ongoing research into smart grid defence.
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