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 11 

Abstract 12 

The heating and explosive boiling leading to fragmentation of immiscible heavy fuel oil-water droplets, termed as 13 

W/HFO emulsions, is predicted numerically by solving the incompressible Navier-Stokes and energy equations 14 

alongside with a set of three VoF transport equations separating the interface of co-existing HFO, water liquid and 15 

water vapour fluid phases. Model predictions suggest that explosive boiling of the water inside the surrounding 16 

HFO, ought to their different boiling points, accelerates droplet breakup; this process is termed as either puffing or 17 

micro-explosion. In contrast to past studies which predefine the presence of vapor bubbles inside the water droplet, 18 

this is predicted here with a phenomenological model based on local temperature and superheat degree. Following 19 

their formation, the growth rate of the bubbles is computed with OCASIMAT phase-change algorithm. Moreover, 20 

the fuel droplet is simultaneously subjected to convective air flow which further contributes to its deformation. As 21 

a result, the performed simulations quantify the relative time scales of the aerodynamic-induced and the emulsion-22 

induced breakup mechanisms. The conditions examined refer to a highly viscous emulsified heavy fuel oil droplet 23 

in a gas phase having fixed temperature and pressure equal to 1000 K and 30 bar, respectively. Initially, a benchmark 24 

case demonstrates the detailed mechanisms taking place, concluding that droplet fragmentation occurs only at a 25 

part of the fuel-air interface, resembling characteristics similar to puffing. Next, a parametric study with Weber 26 

number (𝑂ℎ = 0.9,𝑊𝑒 < 200) shows that puffing process can speed up to 10 times the breakup of the droplet 27 

relative to aerodynamic breakup. 28 
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 45 

Nomenclature 46 

Roman symbols  Subscripts  
𝑎 Thermal diffusivity [m2s-1] ∞ far-field quantity 
𝐴 Interfacial surface area [m2] 0 initial value 
b Scriven bubble growth factor b bubble 
𝑐𝑝 isobaric  heat capacity [J kg-1 K-1] br breakup 

𝑑 Distance [m] c critical 
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𝐷 Diameter [m] CFD values provided by CFD  
𝐸 Energy [J] dr water sub-droplet 
𝑓 Physical variable g gas 

ℎ𝑙𝑣 heat of vaporization [J kg-1] i interface 
𝑘 thermal conductivity [W m-1 K-1] l liquid 
𝑚 mass [kg] m mass-averaged 
𝑂ℎ Ohnesorge number oil Oil phase/droplet 
𝑝 pressure [Pa] q phase number 
𝑃𝑒 Peclet number s surface 
𝑅 radius [m] sat saturated 
𝑅𝑒 Reynolds number sh Shear 
𝑆𝑡 Stefan number v Vapor 
𝑡 time w water 
𝑇 temperature [K]   
𝑢 Velocity [ms-1]  Dotted symbols  
V Volume [m3] �̇� first time derivative 
𝑊𝑒 Weber number �̈� second time derivative 
    
Greek symbols    

α Volume fraction   

𝛥𝑇𝑠 Superheat degree [K]   

𝜇 Dynamic viscosity [Pa s]   

𝜌 density [kg m-3]   

𝜎 Surface tension [N m-1]    

 47 

1. Introduction  48 

Across the world, and despite the increasing fraction of electric vehicles (EVs) (they are expected to reach 60% in 49 

passenger car and light duty vehicles and up to 15% for heavy duty over the next two decades [1, 2] the forecasted 50 

increase of liquid fossil fuel usage will be 25% globally and more than 50% for heavy-duty vehicles over the same 51 

time period; this is due to the constantly increasing global energy needs, urbanisation and population growth [3]. 52 

Diesel engines are massively used as a source of power, especially for transportation, due to their relatively high 53 

power output and fuel economy [4]; however, electrification in this transport/power sector is expected to be a 54 

long-term process. Combustion products from Diesel engines, especially, NOx and particulate matter (PM), are 55 

known to be harmful to both the environment and directly to human health when inhaled. According to [5], 56 

anthropogenic emissions contribute more than 90% to the climate change while Diesel engines are responsible for 57 

~2/3 of the total liquid fossil fuel utilization globally. Besides the environmental impact, lung cancer, asthma and 58 

cardiovascular diseases are linked to such emissions. The aforementioned concerns have triggered many research 59 

efforts investigating mechanisms for reducing the in-cylinder formed pollutants in heavy duty and marine Diesel 60 
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engines [6, 7]; among them, water emulsions into heavy fuels is known to offer significant simultaneous reduction 61 

in NOx and PM emissions [8].  62 

Water can be introduced to the engine by three common methods: (i) emulsified fuel-water in Diesel emulsion 63 

(WiDE); (ii) in-cylinder water injection [9]; and (iii) water injection into the intake air (fumigation) [10]. In both 64 

fumigation and direct water injection, water is in direct contact with the fuel injection system and the piston 65 

cylinder which may cause oil contamination and corrosion issues. Thus, the most promising approach to utilise 66 

water for reduction of emissions is considered to be the WiDE method [11, 12]. The fact that no engine modification 67 

is required, points out water-emulsified fuels as a cost-effective solution. On the other hand, both fumigation and 68 

direct water injection demand engine modification, which has high additional cost [13].  69 

Emulsion is generated by means of mechanical agitation in the presence of surface active agents, called surfactants 70 

or emulsifiers. The latter are needed in order to avoid the coalescence of the water sub-droplets. When an 71 

emulsified droplet is injected inside a combustion chamber, heat is transferred from the hot ambient air to the 72 

emulsified droplet. The host (parent) droplet has higher boiling point than the corresponding one of the water sub-73 

droplet;  the water sub-droplet becomes superheated and eventually boils (Figure 1). The water droplet is contained 74 

in a uniform substance (oil droplet) free of nucleation sites and for that reason it is capable of exceeding its boiling 75 

point and experiences a metastable regime. At some point though, as the droplet heats up and the local 76 

temperature exceeds the boiling point of water, homogeneous nucleation occurs (in contrast to heterogeneous 77 

boiling which occurs when a fluid is in contact with solid surfaces) and water starts to boil [14]. Vapor generation 78 

leads to expansion and deformation of the surrounding oil droplet and eventually leads to its fragmentation. Micro-79 

explosion is defined as the process during which complete breakup of the oil droplet occurs, while if just a portion 80 

of the oil droplet is ruptured, the process is termed as puffing. The aforementioned breakup regimes have been 81 

widely discussed in the literature, see selectively [12, 15, 16].  82 
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 83 

Figure 1. Emulsion droplet indicative configuration 84 

 85 

Despite the potential benefit of using emulsified fuels, the detailed physical mechanisms that occur during micro-86 

explosion and puffing are not clear. In the experimental work of [17], homogeneous explosive boiling of a vapor 87 

bubble inside a superheated water droplet has been studied and the size of the vapor bubble during its growth was 88 

measured. In a similar experiment by [18], it was observed that during explosive boiling, liquid particles were torn 89 

from the liquid-gas interface, alongside with bubble oscillations. So far, the majority of experiments on emulsion 90 

droplets has focused on the combustion characteristics after the puffing/micro-explosion induced secondary 91 

atomisation [19-21]; thus, the overall dynamics of a single droplet cannot be revealed. In single droplet 92 

experiments, a relative large droplet (O (1 mm)) compared to those realized in engines has been investigated. In 93 

the work of [22] it was found that the water volume fraction and the quantity of surfactant may influence the 94 

tendency towards micro-explosion. The latter can also be affected by the size distribution of the dispersed water 95 

sub-droplets [23]. Recently, single droplet experiments having sizes similar to those realised in diesel engines (O 96 

(10 μm)), were performed by [24, 25]. In the experiment of [25], the effect of water content on the characteristics 97 

of micro-explosion was investigated, using a high speed video camera. However, the physical processes taking place 98 

inside the emulsion and during the growth rate of the boiling water have not been revealed.  99 

The factors that influence the growth rates of boiling bubbles in pool liquids have been extensively studied over the 100 

last 50 years. In general, density fluctuations and disturbances are always present in liquids and are responsible for 101 

the formation of bubble nuclei. Nano or sub-μm vapor bubble nuclei collapse and disappear due to Laplace pressure 102 
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in an accelerated manner; however, some of them may pass a critical radius (𝑅0 = 2𝜎 𝛥𝑃0⁄ ) and continue to grow. 103 

The aforementioned expression must be couched in terms of the probability that a bubble with 𝑅0 will occur at the 104 

time where a critical pressure difference 𝛥𝑃0 is applied. According to [26], liquids are able to withstand pressure 105 

differences of 3 ∙ 104 to 3 ∙ 105 bar, which correspond to a critical bubble radius comparable to the intermolecular 106 

distance (10−10m). Since the vapor bubble has passed its critical radius, it continues growing in three different 107 

phases. The first growth phase is surface tension dominated where the pressure difference is balanced by the 108 

surface tension, while the bubble has the same temperature as the surrounding liquid. That regime diminishes 109 

quickly as the bubble size increases. Next, the bubble growth is limited by the inertia of the surrounding liquid and 110 

the bubble radius is a linear function of time. The bubble continues expanding, while its surface temperature 111 

decreases due to evaporation. The internal bubble pressure decreases until the driving force due to pressure 112 

difference is negligible. The final phase of growth is “diffusion” controlled, where bubble surface temperature will 113 

reach the bulk saturation temperature, and the growth is limited by heat diffusion. At this regime, the growth rate 114 

of bubble decreases substantially; the bubble radius 𝑅 increases with √𝑡 instead of 𝑡. Theoretical models have been 115 

developed in the past that accurately predict vapor bubble growth in either inertial [27] or diffusive [28-31] regime. 116 

In the work of [32], a solution is obtained that combines the works of [27] and [29] and manages to predict 117 

successfully the bubble growth rate in both inertial and diffusion dominated regimes. According to this study, the 118 

critical radius (eq. 1) that defines the transition from the inertial to the diffusion-controlled regime is determined 119 

by the fluid properties and the liquid superheat: 120 

𝑅𝑐 = 2𝜎𝑇𝑠𝑎𝑡 ℎ𝑙𝑣𝜌𝑣𝛥𝑇𝑠⁄   (1) 

The latter size is significant for the development of the current CFD model, since the initial bubble size in the 121 

simulations is assumed to be diffusion-controlled in order to be capable to resolve it.  122 

The development of micro-explosion models could shed light on the relevant processes. One of the first  emulsion 123 

mathematical models is that of [33], which predicts the vapor bubble growth ought to homogeneous nucleation 124 

within a liquid water droplet. However, puffing/micro-explosion phenomenon was not taken into account. A similar 125 

approach was followed by [34], who employed Rayleigh’s model to predict vapor bubble growth in the centre of a 126 

liquid water droplet; however, the assumptions made in that model (e.g. the droplet is stationary) may not be 127 
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suitable for engine fuel spray conditions.  Simplified mathematical models which can be useful for engineering 128 

applications have also been suggested [35, 36], but they cannot provide details of the physical processes during 129 

deformation and breakup of emulsion droplets. Finally, advanced CFD models proposed recently by [15, 16] gave 130 

insight on the underlying physics of micro-explosion and puffing. In the work of [15], simulations of a static emulsion 131 

droplet have been performed where the latter is considered to be preheated in the boiling temperature of its 132 

embedded water sub-droplet. Besides the predefined temperature, the location and size of the vapor bubble were 133 

also predefined. Convective heating of emulsion droplets has been studied in [16]; the model predictions indicated 134 

that the boiling of the embedded water sub-droplet highly depends on the liquid Peclet number and the internal 135 

circulation inside the parent droplet.  136 

Droplet secondary breakup due to aerodynamic forces is typically characterized by the Weber (𝑊𝑒) and Ohnesorge 137 

(𝑂ℎ) numbers (i.e it is controlled by inertia, surface tension and viscous forces), as also by the Reynolds number 138 

and the liquid to gas density (ε) and viscosity (Ν) ratios [37], which play a secondary role. Breakup results in droplet 139 

fragmentation into several smaller droplets and requires a finite time of the order of the shear breakup timescale 140 

(𝑡𝑠ℎ = 𝐷√𝜀 𝑢⁄ ) [38] to be completed. For the case of emulsified droplets, a crucial question arises: is there enough 141 

time for the droplet to heat-up, nucleation sites to appear and explosive boiling to occur, when the former is 142 

subjected to aerodynamic forcing? To the best of our knowledge, the aforementioned physical processes have only 143 

been addressed independently, with the aid of simplified mathematical models [33, 36, 39, 40]. 144 

The aim of the present study is to clarify this question; from a physical standpoint, the current work addresses the 145 

combined effect of thermal (due to micro-explosion) and aerodynamic secondary droplet breakup processes, with 146 

the aid of a CFD model capable of simulating the overall phenomenon, starting from convective heating of the 147 

emulsion droplet up to puffing/micro-explosion. The model considers vapor generation and edge regression of 148 

W/HFO interface and captures the puffing/micro-explosion-induced droplet fragmentation. Moreover, and unlike 149 

previous studies, the vapor nucleation sites are not predefined, but they are predicted as part of the solution, based 150 

on the local liquid temperature. The examined properties are similar to that of a highly viscous HFO, which is 151 

typically used in large marine Diesel engines. HFO is treated here as single component, thus species distribution 152 

inside the parent droplet is not considered. As aforementioned, homogeneous nucleation occurs when a tiny vapor 153 
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nucleus is generated inside a uniform liquid. Emulsion experiments have shown that the probability of vapor 154 

nucleation is related to the temperature of the liquid, while the vapor nuclei are generated close to the water 155 

interface [41, 42]. Since it is difficult to resolve the vapor nucleation phenomenon, a mechanistic algorithm that 156 

accounts for the initial formation of a small vapor bubble and takes into account the aforementioned experimental 157 

findings, has been developed and implemented into the CFD code.  158 

In the following section the mathematical description of the emulsion droplet breakup model is provided, alongside 159 

with the vapor bubble formation algorithm and the OCASIMAT phase-change model for vapor bubble growth [43]. 160 

Examined cases and results are following, while the most important conclusions are summarized in the end. 161 

 162 

2. Numerical model and methodology  163 

2.1 Volume of Fluid method 164 

The numerical technique that is used in this study for tracking the interface between multiple fluids/phases is the 165 

Volume of Fluid method [44]. The VoF method solves a single set of momentum equations and identifies each fluid 166 

by a volume fraction denoted by 𝑎. Specifically, in the emulsion model three phases initially exist (Air, Oil, Water) 167 

and at some point during the simulation an additional phase is solved due to sudden appearance of vapor. The 168 

volume fraction 𝑎 is defined as the percentage of volume covered by each phase in the computational cell with 169 

respect to the total volume of the cell. In each cell the sum of the volume fractions of all phases must be equal to 170 

unity. Mathematically, when volume fraction of phase 𝑞 inside a cell is unity, the cell is completely covered by the 171 

material of phase 𝑞, while when the volume fraction is equal to zero, the cell is empty of phase 𝑞. Finally, when the 172 

volume fraction of 𝑞𝑡ℎ fluid is between 0 and 1, the cell contains the interface between the 𝑞𝑡ℎ fluid and one or 173 

more other fluids. Upon the volume fraction value of phase 𝑞, variables and properties represent volume-averaged 174 

values of phase 𝑞. For instance, the physical variable 𝑓 within a computational cell will be computed as follows: 175 

𝑓 = ∑ 𝑎𝑞
𝑁
𝑞=1 𝑓𝑞, where 𝑁 = number of phases  (2) 

The advection equation for the volume fraction is defined as:  176 
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𝜕𝑎𝑞

𝜕𝑡
+ ∇ ∙ (𝑢𝑞⃗⃗⃗⃗ 𝑎𝑞) =

�̇�𝑝𝑞

𝜌
∇𝑎𝑞  (3) 

where the term in the RHS stands for any additional volumetric mass source term. 177 

A single momentum equation is solved throughout the entire numerical domain, and the computed velocity field is 178 

shared among all the phases. The momentum equation is dependent on the properties of density 𝜌 and dynamic 179 

viscosity 𝜇, which are computed according to Eq. 2, and it is written in the form: 180 

𝜕(𝜌�⃗� )

𝜕𝑡
+ ∇ ∙ (𝜌�⃗� ⊗ �⃗� − �⃗� ) = 𝜌𝑔 − 𝑓 𝜎  (4) 

where �⃗�  is the stress tensor and 𝑣  is the velocity. Surface tension term denoted as 𝑓 𝜎 is taken from [45] and for the 181 

case that only two phases are present inside a computational cell, the relation reads:  182 

𝑓 𝜎 = 𝜎𝑝𝑞

𝜌𝜅𝑝∇𝑎𝑝

1
2
(𝜌𝑝 + 𝜌𝑞)

  (5) 

where 𝑘 is the curvature of the free surface, approximated as the divergence of unit surface normal “n”, and reads: 183 

𝜅𝑝 = 𝛻 ∙ �̂�  (6) 

 184 

�̂� =
𝛻𝑎𝑝

|𝛻𝑎𝑞|
  (7) 

The energy equation, which is also shared among the contributing phases, is presented in Eq.8, where energy 𝐸 is 185 

a mass-averaged variable between each additional phase: 186 

𝜕(𝜌𝐸)

𝜕𝑡
+ ∇ ∙ (�⃗� (𝜌𝐸 + 𝑝)) = ∇ ∙ (𝑘𝑒𝑓𝑓𝛻𝑇) + 𝑆ℎ    (8) 

 187 

𝛦 =
∑ 𝛼𝑞𝜌𝑞𝐸𝑞

𝑛
𝑞=1

∑ 𝛼𝑞𝜌𝑞
𝑛
𝑞=1

  (9) 
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In the equations above, density 𝜌 and effective thermal conductivity, denoted by 𝑘𝑒𝑓𝑓, are shared among the 188 

phases. Finally, 𝑆ℎ contains contributions from any volumetric heat sources existed in the model. The solution 189 

methods selected alongside with the numerical details are provided in the following sections.  190 

 191 

2.2 Vapor bubble formation and growth 192 

As nucleation theories aiming to resolve formation of vapor nuclei inside the bulk of the water are out of scope of 193 

the present work, a conceptual approach for vapor bubble formation is developed and implemented in the CFD 194 

model. The criteria under which a vapor bubble is generated are the following. First, the formation site, which is a 195 

computational cell (Figure 2; left panel), should be located at a specific distance (𝑑𝑖) from the oil-water interface 196 

[18]. This distance has a finite length preventing contact of the bubble with the oil-water interface (Figure 2; Right 197 

panel). In case that vapor, water and oil phases coincide in a computational cell, numerical issues arise. A relevant 198 

parametric study with bubble’s surface depth is presented in Appendix A, proving that the obtained results are not 199 

sensitive to this numerical selection. Next, the superheat degree (𝛥𝑇𝑠) of vapor generation is also an input 200 

parameter of the model. The algorithm checks if the selected superheat degree has been reached in the 201 

aforementioned computational cell. Different superheat values from 5 to 25 K have been examined but the results 202 

seem not to be sensitive (Appendix A). Once the aforementioned criteria are fulfilled in a computational cell, a 203 

bubble is formed at the center of the computational cell. As discussed in the literature, the vapor bubble should 204 

reach a critical size (𝑅0 = 2𝜎 𝛥𝑃0⁄ ) in order to start growing and not collapsing immediately due to surface tension. 205 

The first growth phase is inertia-controlled, which ends quickly (typically ∽0.1 μs) and diffusion-controlled growth 206 

follows. The transition to the diffusive regime is characterized by a critical bubble radius [32], which depends on 207 

fluid properties and liquid superheat. In the examined cases of the current study that radius was computed to be 208 

of the order of 0.11 μm (eq. 1). As it’s computationally expensive to resolve such a length scale, the vapor bubble 209 

is initiated with a finite radius  size (𝑅𝑏,0 = 0.25 μm). It should be noted that the influence of the initial bubble 210 

radius on the obtained results has been checked by performing numerical experiments, pointing out that the 211 

breakup process is identical and only the early development of the bubble differs; similar behavior has been 212 

observed also in the work of [15]. Since the initial bubble starts growing due to heat diffusion, as it is larger than 213 
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𝑅𝑐, a bulk saturation temperature value is imposed at its interface (506 K), while its internal pressure is defined by 214 

the surface tension term (2𝜎 𝑅𝑏,0⁄ ). The latter is calculated to be 2 bar. A schematic configuration of vapor bubble 215 

formation is illustrated in Figure 2. 216 

Summarizing, the criteria for bubble creation in a computational cell are the following: i) 𝑇𝑐𝑒𝑙𝑙 ≥ 𝑇𝑠𝑎𝑡 + 𝛥𝑇𝑠, ii) 𝑑𝑖  217 

to be the smallest possible, without vapor water and oil coexisting in a computational cell (in the current resolution 218 

𝑅𝑏,0 = 0.25 μm as already mentioned).  219 

 220 

 221 

Figure 2. Configuration of vapor bubble formation 222 

 223 

Right after its formation, the vapor bubble starts growing due to interfacial heat and mass transfer. A method 224 

termed as OCASIMAT [43] is implemented in the CFD model and calculates the growth rate of the vapor bubble. So 225 

far, different computational methods have been proposed for the computation of heat and mass transfer rate 226 

during boiling. In many studies [46-48], that rate is computed by assuming a temperature difference between the 227 

liquid-vapor interface and a saturation temperature; the calculation depends on an empirically derived 228 

accommodation coefficient though. A different approach is to compute the temperature gradients at the center or 229 

faces of the interface cells [49, 50]. The precise location of the interface is ignored, making these methods 230 

computationally inexpensive but not very accurate.  231 
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The employed method in the current study computes the temperature gradient at the liquid-vapor interface with 232 

the temperature of only one computational cell in the liquid side, implying that the temperature of the vapor phase 233 

is uniform and equal to the saturation temperature 𝑇𝑠𝑎𝑡. The interface temperature is also fixed at the saturation 234 

point 𝑇𝑠𝑎𝑡, since the growth is controlled by heat diffusion, while the mass transfer rate (𝑘𝑔/𝑠) is related to the 235 

local temperature gradient. Another significant feature of the algorithm is that it introduces a source term in the 236 

energy equation, in order to impose an accurate temperature value at the interface cells. This approach assumes 237 

that the temperature profile across the interface region is linear, which can be considered as a reasonable 238 

assumption as long as the grid is dense. More details about the OCASIMAT algorithm are provided in [43].  239 

 240 

3. Results and discussion 241 

To the best of our knowledge, suitable data from single emulsion droplet experiments in engine thermodynamic 242 

conditions are not available for a direct comparison with the results of the current CFD model. To compare against 243 

the experimental results of [51], the simulation of several water sub-droplets is required. This is prohibited since it 244 

requires a 3D computational domain with several micro-droplets randomly distributed inside the host droplet that 245 

would dramatically increase the computation cost. However, since homogeneous boiling occurs in puffing/micro-246 

explosions, simulation of a simplified configuration has been performed in order to examine if the developed 247 

numerical model is capable of reproducing such a phenomenon. The results are compared against an analytical 248 

solution.  249 

 250 

3.1 Spherical bubble growth inside an infinite water pool (Homogeneous boiling) 251 

 Computational setup and model validation 252 

Vapor bubble growth inside a superheated liquid pool is investigated using the aforementioned CFD model, while 253 

the OCASIMAT algorithm has been implemented for the estimation of mass transfer rate. The latter directly 254 

depends on the nondimensional Stefan number (𝑆𝑡 = 𝑐𝑝𝑙𝛥𝑇𝑠/ℎ𝑙𝑣). The flow equations are solved in an 255 
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axisymmetric domain, where in the left vertical axis, symmetry boundary condition is imposed. All the rest 256 

boundaries are open, where velocity 1st gradient is set to zero (Figure 3). 257 

 258 

Figure 3. Computational mesh refined locally alongside with boundary conditions (Left panel). Schematic illustration of 259 

thermal boundary layer (Right panel). 260 

 261 

The domain extents up to a distance of 2𝑅0 in both vertical and horizontal directions; the same configuration has 262 

been employed in past studies [43, 47, 49, 52]. In order to save computational cost, an adaptive local refinement 263 

method has been employed [53]. From the Mikic relationship [32], it was computed that the transition to the 264 

diffusion controlled growth, in the current case, occurs when the bubble radius is equal to 6 μm. Here, the 265 

simulation starts from an initial bubble radius 𝑅0 equal to 100 μm, where heat diffusion is already dominant and 266 

an initial thermal boundary layer (TBL) has been developed in the liquid phase. Moreover, a mesh independence 267 

study has been performed in order to retrieve the adequate mesh resolution needed for the TBL to be resolved. 268 

The results are compared against an analytical solution, which is described in the following paragraph. For the CFD 269 

model to be in agreement with analytical solution, it was found out that the base grid resolution should be 10 cpR 270 

with 4 levels of refinement, corresponding to 160 cpR at the beginning of the simulation.  271 

The analytical solution for the case of bubble growth inside an infinite liquid is derived by [30]. The solution assumes 272 

that the bubble radius is given by the following relationship:  273 
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𝑅𝑏 = 2𝑏√𝑎𝑤𝑡 

𝑏 = √
3

𝜋
{

∆𝑇𝑠

(
𝜌𝑔

𝜌𝑤
) [

ℎ𝑙𝑣

𝑐𝑝,𝑤
+ (

𝑐𝑝,𝑤 − 𝑐𝑝,𝑔

𝑐𝑝,𝑤
) ∆𝑇𝑠]

} 

 (10) 

Here, 𝑏 is a dimensionless bubble growth constant where its value depends on the superheat degree (∆𝑇𝑠) and the 274 

thermophysical properties of the material examined. The vapor bubble, with fluid properties corresponding to that 275 

of water at atmospheric conditions, is growing inside a temperature field with superheat degree of 5 K (𝑆𝑡 =276 

𝑐𝑝,𝑤𝛥𝑇𝑠/ℎ𝑙𝑣 = 0.01). Results in the left panel of Figure 4 clearly indicate that the accuracy of the simulation 277 

improves with smaller mesh size. Specifically, for mesh size equal to 1 μm (blue solid line), where the initial thickness 278 

of the thermal boundary layer (TBL) is computed equal to 12 μm, it is observed that the model results are in perfect 279 

agreement with that of the theoretical solution. Next, a number of parametric cases was performed, in order to 280 

examine the model performance for different values of 𝑆𝑡 and density ratios. In order to estimate the deviation of 281 

the CFD model from theory, a bubble growth constant (𝑏𝐶𝐹𝐷) was derived for each parametric case and compared 282 

against the corresponding constant 𝑏 of the analytical solution. The nondimensional error is expressed as 283 

𝑏 − 𝑏𝐶𝐹𝐷 𝑏𝐶𝐹𝐷⁄  and it seems significant for high Stefan numbers. The error decreases up to a point where mesh 284 

resolution becomes higher. In general, the emulsion droplets are examined for conditions where density ratio is 285 

low, due to high pressure (black rectangular shape); in this range of density ratio and for 𝑆𝑡 up to 0.03, the 286 

computed error is not significant.  287 

 288 
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Figure 4. Prediction of the bubble growth rate for different grid resolutions (Left panel). Map indicating the error between 289 

the predictions of CFD and analytical solution (Right panel) 290 

 291 

3.2 Emulsion breakup subjected to aerodynamic forces 292 

 Computational setup and examined cases 293 

The initial conditions in the numerical domain reflect typical conditions of a HFO droplet inside the combustion 294 

chamber of marine Diesel engines [54]. Equations are solved in an axisymmetric domain where the left vertical axis 295 

is a velocity inlet boundary that imposes the velocity of the stream flow, while the rest boundaries are open (i.e. 296 

velocity gradient is set to zero). The domain extents up to a distance of 5𝐷𝑑 in the vertical direction and 10𝐷𝑑 in 297 

the horizontal one (Figure 5). Initially, 2 VoF equations are solved with an implicit VOF solver, while an additional 298 

VoF equation is solved after vapor is formed. For the spatial discretization of VoF equation, the Compressive scheme 299 

is used [55], while momentum equation is spatially discretized with a second order scheme, where quantities at 300 

cell faces are computed using a multidimensional linear reconstruction approach [56]. The energy equation is 301 

spatially discretised with a first order upwind scheme. The local grid refinement technique [53] enhances the 302 

accuracy of the computations at the interface region, while achieving low computational cost compared to a 303 

simulation with a uniform grid of the same density. Base grid resolution is such that, with 6 levels of refinement, 304 

the initial vapor bubble resolution is ∽2 cpR, while the resolution corresponding to the outer droplet is 200 cpR. 305 

 306 



16 

 

Figure 5. Computational axisymmetric domain, with zoom at levels of local refinement around the HFO-air and HFO-water 307 

interfaces. 308 

 309 

In all examined cases, the W/HFO emulsion droplet contains two water sub-droplets which are located in the front 310 

and the back of the oil droplet, in order to capture the interface rupturing; this may occur in both sides depending 311 

on the local temperature. The emulsion droplet is placed at ambient pressure 𝑝 = 30 bar and temperature 𝑇𝑔 =312 

1000 K. The droplet’s injection temperature is 360 K while the boiling temperatures of HFO and water are 660 K 313 

and 506 K, respectively. The physical properties of HFO are representative of those used in marine engines. Liquid 314 

density, dynamic viscosity and surface tension can be found in the work of [57], while thermal conductivity and 315 

heat capacity are computed by empirical relationships provided by [58]; these were assumed constant without any 316 

temperature dependence. The initial HFO droplet diameter is 𝐷𝐻𝐹𝑂 = 50 μm, which is typical droplet size in sprays 317 

[59], while the diameter of the embedded water droplets was selected equal to 𝐷𝑤 = 10 μm. That size has been 318 

also investigated in past studies [15, 60, 61]. At this point, it should be mentioned that it’s rather complicated to 319 

relate the sub-droplet size with the corresponding water content of the emulsion, since emulsions may contain 320 

different amount of water sub-droplets but the same water content; in both cases it is expected a different 321 

puffing/micro-explosion outcome. The superheat degree, which is an input parameter to the model, has been 322 

selected equal to 𝛥𝑇𝑠 = 10. The latter value corresponds to a 𝑆𝑡 equal to 0.02. For the aforementioned 𝑆𝑡 and the 323 

computed water-water vapor density ratio (𝜌𝑤 𝜌𝑣 = 60⁄ ), the OCASIMAT algorithm predicts with high accuracy the 324 

bubble growth rate; according to Figure 4, the error is less than 0.2. The examined Weber numbers in the cases 325 

range from 40 to 190, which correspond to droplet velocities in the range of 10-100 m/s. The latter is a typical 326 

velocity range in HFO fueled engines [59]. The Ohnesorge number is calculated equal to 0.9, implying that viscous 327 

phenomena are important. The thermophysical properties and nondimensional numbers are summarized in the 328 

following tables. 329 

 330 

 331 

 332 
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 344 

 345 

Table 1. Thermophysical properties (computed by [58]). The pressure was assumed constant at 30bar. 346 

 347 

 348 

 349 

 350 

 351 

 352 

 353 

 Units 
Water HFO Air 

Liquid Vapor   

𝑻 K 360 506 360 1000 

𝝆 kg m-3 968 15 907 10.3 

𝒄𝒑 J kg-1 K-1 4195 3612 2020 1143 

𝜿 W m-1 K-1 0.675 0.047 0.127 0.068 

𝝁 kg m-1 s-1 3.2 10-4 1.69 10-5 0.032 4.3 10-5 

𝒉𝒍𝒗 J kg-1 1.794 106   

𝑾𝒆𝒈 𝜌𝑔𝑢𝑟𝑒𝑙
2 𝐷𝐻𝐹𝑂 𝜎⁄  70 

𝑷𝒆𝑯𝑭𝑶 𝐷𝐻𝐹𝑂𝑢𝑜𝑖𝑙/𝑎𝑜𝑖𝑙  200 

𝑹𝒆𝒈 𝜌𝑔𝐷𝐻𝐹𝑂𝑢𝑟𝑒𝑙/𝜇𝑔 720 

𝑶𝒉𝑯𝑭𝑶 𝜇𝐻𝐹𝑂 √𝜌𝐻𝐹𝑂𝜎𝐷𝐻𝐹𝑂⁄  0.9 

𝑺𝒕𝒘 𝑐𝑝𝑙,𝑤𝛥𝑇𝑠/ℎ𝑙𝑣  2.3 10-2 
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Table 2. Nondimensional numbers  354 

 355 

 W/HFO emulsion droplet breakup  356 

Here, W/HFO emulsion droplet breakup  is examined for a reference case where the initial velocity of the air stream 357 

is 𝑢𝑔 = 60 m/s, corresponding to 𝑊𝑒𝑏𝑒𝑟 𝑛𝑢𝑚𝑏𝑒𝑟 𝑊𝑒=70. The temporal evolution of the emulsion droplet is 358 

illustrated in Figure 6. The upper part shows the temperature field alongside with the streamlines, while in the 359 

lower part the contributing phases are illustrated. The time (𝑡∗) is non-dimensionalised with the shear timescale 360 

𝑡𝑠ℎ. One can see that at the initial stage, steep temperature gradients are formed near the droplet interface. At 361 

𝑡∗ = 0.06, a temperature distribution is formed in the surrounding gas phase; the emulsion droplet is subjected to 362 

convective heating and the inner temperature profile tends to follow the streamlines; the inner droplet 363 

temperature has not increased much though. At the next time instance (𝑡∗ = 0.64), the same features in the gas 364 

phase are observed but the temperature of the front water sub-droplet has locally reached the superheat degree 365 

for the onset of bubble formation. As the criteria for the vapor generation have been fulfilled, the appearance of a 366 

vapor bubble is observed. The vapor bubble starts growing due to the temperature difference at its interface. The 367 

growth rate of the bubble formed in the upstream droplet is shown in Figure 7 in terms of the dimensionless 368 

equivalent bubble radius (this was obtained from the bubble volume). In the horizontal axis, the time instance of 369 

bubble formation has shifted to zero. As seen, the bubble radius grows in time according to √𝑡, while the growth 370 

constant 𝑏 found to be higher compared to the theoretical prediction. That deviation from theory is expected, since 371 

a number of assumptions is violated, i.e. bubble grows inside a droplet instead of an infinite pool, spherical 372 

asymmetry, shape deformation and bubble motion. Fragmentation of the HFO-air boundary occurs at 𝑡∗ = 1.01 373 

and water vapor is escaping in the ambient air; in the present work, this time instant is considered as the breakup 374 

initiation time. This feature is observed clearly at 𝑡∗ = 1.12 (vapor phase indicated by red colour). The 375 

corresponding vapor bubble growth and breakup process occurs also, with a temporal delay, in the downstream 376 

region of the parent droplet. These results indicate that the breakup regime in this case is puffing, since partial 377 

breakup of the W/HFO droplet occurs. Finally, it has to be noted that the droplet deformation due to aerodynamic 378 
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forces plays a minor role here, since the combination of 𝑊𝑒 and 𝑂ℎ examined corresponds to a relative slow 379 

deformation process. 380 

 381 

Figure 6. Temporal evolution of emulsion droplet breakup. Upper part: Temperature profile. Lower part: HFO, Water liquid 382 

and Water vapor phases indicated by ciel, green and red respectively.  383 

 384 

Figure 7. Nondimensional vapor bubble radius predicted by Scriven solution (red solid line) and CFD simulation (black scatter 385 

symbols) for the front bubble with 𝑊𝑒 = 70 and a corresponding breakup initiation time (vertical blue line) 386 
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 387 

 Parametric study with Weber number  388 

Having identified the physical phenomena occurring during the coupled thermal and aerodynamic loading of the 389 

droplet, the effect of 𝑊𝑒 on the breakup initiation time of the W/HFO emulsion droplet is examined in detail. For 390 

the examined range of 𝑊𝑒, simulations are also performed for neat HFO droplets in order to predict their breakup 391 

initiation time due to aerodynamic forces and compare it against those when puffing/micro-explosion is accounted 392 

for. For the default Weber number case (𝑊𝑒 = 70), the temporal evolution of the neat HFO droplet (lower panel) 393 

is illustrated in Figure 8, alongside with those of the benchmark W/HFO emulsion cases (upper panel). The neat 394 

HFO droplet breaks under aerodynamic forces at 𝑡∗ = 10.5, which is an order of magnitude longer compared to 395 

the breakup initiation time of W/HFO emulsion. This clearly reveals the droplet fragmentation acceleration when 396 

using emulsified droplets in viscous fuels. 397 

 398 

Figure 8. Temporal evolution of W/HFO emulsion droplet (Upper panel) and neat HFO droplet (Lower panel) for 𝑊𝑒 number 399 

equal to 70. 400 

 401 
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 In the left panel of Figure 9, the dependence of the breakup initiation time on the 𝑊𝑒 is illustrated. For the case of 402 

aerodynamic droplet breakup (blue scatter symbols), the breakup initiation time decreases strongly with increasing 403 

𝑊𝑒, which is in accordance with several past studies [54, 62-69]. Regarding the breakup of emulsified droplets 404 

(black scatter symbols), the right-hand side panel of Figure 9 shows a weakly decreasing dependence on 𝑊𝑒. In 405 

each 𝑊𝑒 correspond two black scatters, which stand for breakup initiation time of the upstream and downstream 406 

side of the droplet emulsion. It is observed that the difference between the two time instances decreases as 𝑊𝑒 407 

increases. Overall, it is important to mention that the emulsion breakup occurs 4-10 times faster than the 408 

aerodynamic breakup. The latter trend indicates that puffing/micro-explosion process can speed up the breakup of 409 

the droplet relative to the mechanism of the aerodynamic breakup for the range of conditions (𝑂ℎ ≈ 1,𝑊𝑒 <410 

200) examined here. 411 

 412 

Figure 9. Breakup time of W/HFO emulsion droplet for a range of 𝑊𝑒 (black scatter symbols). Aerodynamic breakup of neat 413 

HFO droplet for the corresponding range of 𝑊𝑒 (blue solid line). 414 

 415 

 Droplet deformation 416 

In the previously presented Figure 6, it was observed that the W/HFO emulsion droplet was slightly deformed after 417 

its breakup initiation time compared to its initial spherical shape. It is expected that if a larger amount of water sub-418 
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droplets is present in the parent droplet, simultaneous (and/or successive) boiling will occur in each sub-droplet 419 

and the induced deformation will be accelerated. This process is indicated in Figure 10, where the dimensionless 420 

surface area of the W/HFO emulsion droplet and the neat HFO droplet are illustrated; the surface area of the latter 421 

has significantly increased up to the breakup initiation time. It is clear that the surface area of the W/HFO emulsion 422 

increases during the successive explosion events caused by the downstream and upstream water sub-droplet.     423 

 424 

Figure 10. Temporal evolution of the dimensionless surface area of the W/HFO emulsion (scatter symbols) and the neat HFO 425 

droplet (blue line)       426 

 427 

4. Conclusions 428 

The heating and interface dynamics leading to fragmentation of immiscible heavy fuel oil-water droplets, termed 429 

as W/HFO emulsions, was examined numerically by solving the incompressible Navier-Stokes and energy 430 

conservation equations alongside with three sets of VoF transport equations utilised for resolving the interfaces 431 

between the co-existing HFO, water liquid and water vapour. A key feature of the puffing/micro-explosion 432 

phenomenon is the explosive boiling of embedded water droplets. To resolved this, an algorithm predicting the 433 

nucleation water vapour at a certain superheat degree, typical for water-HFO interfaces, was utilised. This algorithm 434 

scans the temperature field of liquid water and forms a vapor bubble with pre-defined properties. The subsequent 435 

vaporization rate of the growing bubbles inside the water sub-droplet, was computed with the OCASIMAT 436 
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algorithm. The latter was validated for the idealised configuration of a vapor bubble growing inside an infinite 437 

superheated liquid pool, against a theoretical solution. Next, numerical simulations of W/HFO emulsion droplet 438 

breakup were performed. A benchmark case was presented for a W/HFO emulsion droplet with an initial velocity 439 

𝑢𝑔 = 60 m/s, at ambient pressure 𝑝 = 30 bar and temperature 𝑇𝑔 = 1000 K. Two water sub-droplets were 440 

initialised inside the parent HFO liquid droplet, downstream and upstream relative to the surrounding air flow 441 

motion. It was observed that the atomization of the emulsion droplet is puffing-induced. Next, the model was used 442 

to perform numerical simulations of W/HFO emulsion droplet breakup for a range of 𝑊𝑒 that are representative 443 

for Diesel engines. The diameter of HFO droplet and 𝑂ℎ (50 μm and 0.9, respectively) were kept unchanged for all 444 

parametric cases investigated. Predictions from those simulations have been compared with those corresponding 445 

to cases of aerodynamic breakup of neat HFO droplets having identical properties and initial conditions as those of 446 

the corresponding emulsions. It was revealed that for the viscous fuel examined (𝑂ℎ>1) puffing/micro-explosion 447 

speeds up the droplet breakup by almost an order of magnitude relative to the aerodynamic breakup. This was 448 

more evident for relatively low 𝑊𝑒, while increasing the 𝑊𝑒 resulted in faster droplet breakup.  449 
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 454 

Appendix A. Effect of bubble surface depth and superheat degree on W/HFO emulsion breakup 455 

In subsection 2.2 a mechanistic model that is responsible for bubble formation inside the embedded water sub-456 

droplet was presented. The criteria under which a vapor bubble is generated in a computational cell, are that the 457 

latter should reach a superheat degree (𝛥𝑇𝑠) and have a specific distance (𝑑𝑖) from the water-HFO interface. Both 458 

are input parameters of the model. A parametric study with 𝑑𝑖  and 𝛥𝑇𝑠 is performed, for the reference case of 459 

𝑊𝑒 = 70, in order to investigate their sensitivity on emulsion breakup time. The results are compared against the 460 

parametric study of breakup time with 𝑊𝑒 (Figure 9). Horizontal axis of Figure 11 indicates the aforementioned 461 
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parameters 𝜆 =< 𝑑𝑖, 𝛥𝑇𝑠,𝑊𝑒 >, which are normalised with the examined values of the reference case. Results 462 

show that breakup initiation time slightly increases with 𝑑𝑖  (blue scatter symbols); this is expected since it takes 463 

some time for heat transfer to accur deeper inside the water sub-droplet and result to subsequently formation of 464 

the water vapour bubble. Regarding the effect of superheat degree, it seems that breakup initiation time slightly 465 

changes (red scatter symbols) without having a clear trend with 𝛥𝑇𝑠. Finally, it is observed that both parameters 466 

are much less sensitive to breakup initiation time compared to the effect of 𝑊𝑒 (black scatter symbols); when the 467 

latter increases five times, the breakup initiation time becomes approximately an order of magnitude lower. 468 

 469 

 470 

Figure 11. Breakup initiation time of W/HFO emulsion with superheat degree (red scatter symbols), bubble surface depth 471 

(blue scatter symbols) and 𝑊𝑒 (black scatter symbols)  472 

 473 

References 474 

1. Reitz, R., et al., IJER editorial: the future of the internal combustion engine. 2020, SAGE Publications Sage 475 
UK: London, England. 476 

2. The Outlook for Energy: A View to 2040. Exxon Mobil Corporation, 2019. 477 

3. Kolev, N.I., Forced convection boiling, in Multiphase Flow Dynamics 3: Thermal Interactions, N.I. Kolev, 478 
Editor. 2012, Springer Berlin Heidelberg. p. 213-243. 479 



25 

 

4. Kumar, M.S., J. Bellettre, and M. Tazerout, The use of biofuel emulsions as fuel for diesel engines: a review. 480 
2009, SAGE Publications Sage UK: London, England. 481 

5. Qin, D., et al., IPCC, 2007: Summary for Policymakers. 2007. 482 

6. Jegannathan, K.R., et al., Production of biodiesel using immobilized lipase—a critical review. Critical Reviews 483 
in Biotechnology, 2008. 28(4): p. 253-264. 484 

7. Tan, T., et al., Biodiesel production with immobilized lipase: a review. Biotechnology advances, 2010. 28(5): 485 
p. 628-634. 486 

8. Tarlet, D., et al., Formulation and combustion of emulsified fuel: The changes in emission of carbonaceous 487 
residue. International journal of energy research, 2010. 34(8): p. 688-694. 488 

9. Bedford, F., et al., Effects of direct water injection on DI diesel engine combustion. 2000, SAE Technical 489 
Paper. 490 

10. Tauzia, X., A. Maiboom, and S.R. Shah, Experimental study of inlet manifold water injection on combustion 491 
and emissions of an automotive direct injection diesel engine. Energy, 2010. 35(9): p. 3628-3639. 492 

11. Basha, J.S. and R. Anand, An experimental study in a CI engine using nanoadditive blended water–diesel 493 
emulsion fuel. International journal of green energy, 2011. 8(3): p. 332-348. 494 

12. Kadota, T. and H. Yamasaki, Recent advances in the combustion of water fuel emulsion. Progress in energy 495 
and combustion science, 2002. 28(5): p. 385-404. 496 

13. Kumar, M.S., J. Bellettre, and M. Tazerout, Investigations on a CI engine using animal fat and its emulsions 497 
with water and methanol as fuel. 2005, SAE Technical Paper. 498 

14. Avedisian, C. and R. Andres, Bubble nucleation in superheated liquid—liquid emulsions. Journal of colloid 499 
and interface science, 1978. 64(3): p. 438-453. 500 

15. Shinjo, J., et al., Physics of puffing and microexplosion of emulsion fuel droplets. Physics of Fluids (1994-501 
present), 2014. 26(10): p. 103302. 502 

16. Shinjo, J., et al., Modeling temperature distribution inside an emulsion fuel droplet under convective heating: 503 
a key to predicting microexplosion and puffing. Atomization and Sprays, 2016. 26(6). 504 

17. Shepherd, J.E. and B. Sturtevant, Rapid evaporation at the superheat limit. Journal of Fluid Mechanics, 2006. 505 
121: p. 379-402. 506 

18. Frost, D., Dynamics of explosive boiling of a droplet. The Physics of fluids, 1988. 31(9): p. 2554-2561. 507 

19. Ochoterena, R., et al., Optical studies of spray development and combustion of water-in-diesel emulsion and 508 
microemulsion fuels. Fuel, 2010. 89(1): p. 122-132. 509 

20. Park, S., et al., The characteristic of spray using diesel water emulsified fuel in a diesel engine. Applied 510 
energy, 2016. 176: p. 209-220. 511 

21. Zhu, M., et al., An experimental investigation into the ignition and combustion characteristics of single 512 
droplets of biochar water slurry fuels in air. Applied energy, 2017. 185: p. 2160-2167. 513 

22. Califano, V., R. Calabria, and P. Massoli, Experimental evaluation of the effect of emulsion stability on micro-514 
explosion phenomena for water-in-oil emulsions. Fuel, 2014. 117: p. 87-94. 515 

23. Mura, E., et al., Study of the micro-explosion temperature of water in oil emulsion droplets during the 516 
Leidenfrost effect. Experimental Thermal and Fluid Science, 2012. 43: p. 63-70. 517 

24. Fuchihata, M., T. Ida, and Y. Mizutani, Observation of microexplosions in spray flames of light oil water 518 
emulsions. II. Influence of temporal and spatial resolution in high speed videography. Nippon Kikai Gakkai 519 



26 

 

Ronbunshu B Hen(Transactions of the Japan Society of Mechanical Engineers Part B)(Japan), 2003. 15(6): 520 
p. 1503-1508. 521 

25. Watanabe, H. and K. Okazaki, Visualization of secondary atomization in emulsified-fuel spray flow by 522 
shadow imaging. Proceedings of the Combustion Institute, 2013. 34(1): p. 1651-1658. 523 

26. Brennen, C.E., Cavitation and bubble dynamics. 2014: Cambridge University Press. 524 

27. Rayleigh, L., VIII. On the pressure developed in a liquid during the collapse of a spherical cavity. The London, 525 
Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1917. 34(200): p. 94-98. 526 

28. Forster, H. and N. Zuber, Dynamics of vapor bubbles and boiling heat transfer. AIChE Journal, 1955. 1(4): p. 527 
531-535. 528 

29. Plesset, M. and S.A. Zwick, The growth of vapor bubbles in superheated liquids. Journal of Applied Physics, 529 
1954. 25(4): p. 493-500. 530 

30. Scriven, L., On the dynamics of phase growth. Chemical engineering science, 1959. 10(1-2): p. 1-13. 531 

31. Van Stralen, S., The growth rate of vapour bubbles in superheated pure liquids and binary mixtures: Part I: 532 
Theory. International Journal of Heat and Mass Transfer, 1968. 11(10): p. 1467-1489. 533 

32. Mikic, B., W. Rohsenow, and P. Griffith, On bubble growth rates. International Journal of Heat and Mass 534 
Transfer, 1970. 13(4): p. 657-666. 535 

33. Shusser, M. and D. Weihs, Explosive boiling of a liquid droplet. International journal of multiphase flow, 536 
1999. 25(8): p. 1561-1573. 537 

34. Zeng, Y. and F.L. Chia-fon, Modeling droplet breakup processes under micro-explosion conditions. 538 
Proceedings of the Combustion Institute, 2007. 31(2): p. 2185-2193. 539 

35. Girin, O.G., Dynamics of the emulsified fuel drop microexplosion. Atomization and Sprays, 2017. 27(5). 540 

36. Sazhin, S., et al., A simple model for puffing/micro-explosions in water-fuel emulsion droplets. International 541 
Journal of Heat and Mass Transfer, 2019. 131: p. 815-821. 542 

37. Guildenbecher, D., C. López-Rivera, and P. Sojka, Secondary atomization. Experiments in Fluids, 2009. 46(3): 543 
p. 371. 544 

38. Nicholls, J. and A. Ranger, Aerodynamic shattering of liquid drops. Aiaa Journal, 1969. 7(2): p. 285-290. 545 

39. Nissar, Z., et al., A model for puffing/microexplosions in water/fuel emulsion droplets. International Journal 546 
of Heat and Mass Transfer, 2020. 149: p. 119208. 547 

40. Zhang, Y., et al., A new puffing model for a droplet of butanol-hexadecane blends. Applied Thermal 548 
Engineering, 2018. 133: p. 633-644. 549 

41. Avedisian, C. and I. Glassman, Superheating and boiling of water in hydrocarbons at high pressures. 550 
International Journal of Heat and Mass Transfer, 1981. 24(4): p. 695-706. 551 

42. Avedisian, C.T., The homogeneous nucleation limits of liquids. Journal of physical and chemical reference 552 
data, 1985. 14(3): p. 695-729. 553 

43. Perez-Raya, I. and S.G. Kandlikar, Discretization and implementation of a sharp interface model for 554 
interfacial heat and mass transfer during bubble growth. International Journal of Heat and Mass Transfer, 555 
2018. 116: p. 30-49. 556 

44. Hirt, C.W. and B.D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of 557 
Computational Physics, 1981. 39(1): p. 201-225. 558 

45. Brackbill, J., D.B. Kothe, and C. Zemach, A continuum method for modeling surface tension. Journal of 559 
computational physics, 1992. 100(2): p. 335-354. 560 



27 

 

46. Kunkelmann, C. and P. Stephan, CFD simulation of boiling flows using the volume-of-fluid method within 561 
OpenFOAM. Numerical Heat Transfer, Part A: Applications, 2009. 56(8): p. 631-646. 562 

47. Magnini, M., B. Pulvirenti, and J.R. Thome, Numerical investigation of hydrodynamics and heat transfer of 563 
elongated bubbles during flow boiling in a microchannel. International Journal of Heat and Mass Transfer, 564 
2013. 59: p. 451-471. 565 

48. Maki, K.L. and S. Kumar, Fast evaporation of spreading droplets of colloidal suspensions. Langmuir, 2011. 566 
27(18): p. 11347-11363. 567 

49. Sato, Y. and B. Ničeno, A sharp-interface phase change model for a mass-conservative interface tracking 568 
method. Journal of Computational Physics, 2013. 249: p. 127-161. 569 

50. Sun, D., J. Xu, and Q. Chen, Modeling of the evaporation and condensation phase-change problems with 570 
FLUENT. Numerical Heat Transfer, Part B: Fundamentals, 2014. 66(4): p. 326-342. 571 

51. Moussa, O., et al., INSIGHT OF AWATER-IN-OIL EMULSION DROP UNDER LEIDENFROST HEATING USING 572 
LASER-INDUCED FLUORESCENCE OPTICAL DIAGNOSTICS. Atomization and Sprays, 2019. 29(1). 573 

52. Tanguy, S., et al., Benchmarks and numerical methods for the simulation of boiling flows. Journal of 574 
Computational Physics, 2014. 264: p. 1-22. 575 

53. Malgarinos, I., N. Nikolopoulos, and M. Gavaises, Coupling a local adaptive grid refinement technique with 576 
an interface sharpening scheme for the simulation of two-phase flow and free-surface flows using VOF 577 
methodology. Journal of Computational Physics, 2015. 300: p. 732-753. 578 

54. Stefanitsis, D., et al., Numerical investigation of the aerodynamic breakup of Diesel and heavy fuel oil 579 
droplets. International Journal of Heat and Fluid Flow, 2017. 68: p. 203-215. 580 

55. Ubbink, O. and R. Issa, A method for capturing sharp fluid interfaces on arbitrary meshes. Journal of 581 
Computational Physics, 1999. 153(1): p. 26-50. 582 

56. Barth, T. and D. Jespersen. The design and application of upwind schemes on unstructured meshes. in 27th 583 
Aerospace sciences meeting. 1989. 584 

57. Kyriakides, N., C. Chryssakis, and L. Kaiktsis, Influence of heavy fuel properties on spray atomization for 585 
marine diesel engine applications. 2009, SAE Technical Paper. 586 

58. Riazi, M., Characterization and properties of petroleum fractions. Vol. 50. 2005: ASTM international. 587 

59. Wadhwa, A.R., V. Magi, and J. Abraham, Transient deformation and drag of decelerating drops in 588 
axisymmetric flows. Physics of Fluids, 2007. 19(11): p. 113301. 589 

60. Khan, M.Y., et al., A case study on the influence of selected parameters on microexplosion behavior of water 590 
in biodiesel emulsion droplets. Journal of Energy Resources Technology, 2017. 139(2): p. 022203. 591 

61. Kimoto, K., Y. Owashi, and Y. Omae, The vaporizing behavior of the fuel droplet of water-in-oil emulsion on 592 
the hot surface. Bulletin of JSME, 1986. 29(258): p. 4247-4255. 593 

62. Pilch, M. and C. Erdman, Use of breakup time data and velocity history data to predict the maximum size of 594 
stable fragments for acceleration-induced breakup of a liquid drop. International journal of multiphase flow, 595 
1987. 13(6): p. 741-757. 596 

63. Stefanitsis, D., et al., Numerical investigation of the aerodynamic breakup of droplets in tandem. 597 
International Journal of Multiphase Flow, 2019. 113: p. 289-303. 598 

64. Stefanitsis, D., et al., Numerical investigation of the aerodynamic breakup of a parallel moving droplet 599 
cluster. International Journal of Multiphase Flow, 2019. 121: p. 103123. 600 



28 

 

65. Strotos, G., et al., Non-dimensionalisation parameters for predicting the cooling effectiveness of droplets 601 
impinging on moderate temperature solid surfaces. International Journal of Thermal Sciences, 2011. 50(5): 602 
p. 698-711. 603 

66. Strotos, G., et al., Numerical investigation of aerodynamic droplet breakup in a high temperature gas 604 
environment. Fuel, 2016. 181: p. 450-462. 605 

67. Strotos, G., et al., Aerodynamic breakup of an n-decane droplet in a high temperature gas environment. 606 
Fuel, 2016. 185: p. 370-380. 607 

68. Strotos, G., et al., Predicting droplet deformation and breakup for moderate Weber numbers. International 608 
Journal of Multiphase Flow, 2016. 85: p. 96-109. 609 

69. Strotos, G., et al., Predicting the evaporation rate of stationary droplets with the VOF methodology for a 610 
wide range of ambient temperature conditions. International Journal of Thermal Sciences, 2016. 109: p. 611 
253-262. 612 

 613 

 614 

 615 

 616 

 617 

 618 

 619 

 620 

 621 

 622 

 623 

 624 

 625 

 626 


