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Abstract

The comparison of the three-dimensional (3D), subsonic flows past an infinite wing equipped

with aNACA−4412 profile is presented considering an unswept and a 30o swept-back wing

at incidence values that induce flow separation. The Reynolds number based on the aerofoil

chord C and the free stream velocity in the chord plane Q∞ is fixed at a common value

Rec = CQ∞∕� = 50 × 103. The investigation is carried out using highly-resolved-LES

(Large Eddy Simulations) of the incompressible Navier-Stokes equations. The comparison

between swept and unswept wings is undertaken considering both laminar and turbulent free

stream conditions.

One of the two central objectives of the research has concerned the assessment of the

Simple Sweep Theorywhen flow separation takes place. The Simple Sweep Theory is a com-

monly used tool that is frequently deployed in designing swept wings by a simple extension

of the baseline flow around the corresponding straight wing. Another objective is the ac-

curate and detailed characterisation of both the laminar and the turbulent flow separation

behaviours on the swept and unswept wings at incidence. Especially in the turbulent bound-

ary layer scenario, separation is still an open research topic that lately is receiving particular

attention.

In the laminar inlet condition, only one incidence namely � = 5o has been considered

for both the wing configurations. The wings suction sides will be shown to experience lam-

inar boundary layer separation forming a typical laminar separation bubble (LSB). The sep-

arating shear layer bounding the separated region breakdowns to turbulence, without any

reattachment taking place downstream on the wings.

When comparing the flows between the unswept and the swept wing configurations,

it is found that they satisfy the Simple Sweep Theory prediction along the wing, until the

boundary layer starts to detach from the wings surface. When flow separation occurs, the

emerging large-scale flow structures participate in the breakdown to turbulence presenting

different features in the two wing configurations, thus leading to a violation of the Simple
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Sweep Theory violation. The laminar separation mechanism for both wing configurations

has been statistically characterised, allowing to shed some additional light to this process.

The laminar separation is found to be a 3D process right from its detachment location.

Within the turbulent free stream framework, achieved by the introduction of free stream

turbulence (FST) in the incoming flow, two wing incidences are considered, namely � = 5o

and � = 10o. For both the wing configurations, the FST triggers a very early transition

towards turbulent boundary layer thus inhibiting the formation of an LSB, which is replaced

by a fully 3D and time dependent boundary layer separation. The turbulent separation of the

boundary layer is found to be a stochastic process that builds up moving downstream along

the chord. The early formation of localised reversed flow spots in the upstream portion of

the wing merge downstream to form the so-called stall cells, regions of reversing flow with

a size comparable to the chord. The location of the mean turbulent separation can be defined

only when considering the time averaged flow and it does not manifest in the instantaneous

flow realisations.

As already seen for laminar regimes, the Simple Sweep Theory is observedwhen attached

mean boundary layer takes place. In regions that present a statistically mean separation, it

is violated. The regions of mean separation are characterised by large-scale fluctuating flow

structures, which present some analogies to those found in the laminar separation.

It is therefore conjectured that a similar mechanism leads to the formation of the sep-

arating flow structures in the laminar and in the turbulent separation processes. It is also

observed that in both boundary layer scenarios, the breakdown mechanism is similarly mod-

ified by the crosswind caused by the sweep. This observation suggests a common reason for

the Simple Sweep Theory violation that occurs only when a global mean separation is estab-

lished for both the boundary layer regimes. It also explains the fact that the theory holds for

those wing portions affected by localised reversed spots that lie before the mean separation

line. A formal correction of the Simple Sweep Theory when mechanisms of flow separation

take place is also proposed in this thesis.

As a finale note, it is observed that the structure of the outer flow and of wall turbu-

lence is always modified by the introduction of a constant crosswind, particularly inside the

recirculating areas.

Key words: swept wing, simple sweep theory, laminar separation, turbulent separation,

NACA-4412, highly-resolved LES.
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Notation
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| ⋅ | Absolute value operator
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{⋅} Fourier transform operator

{⃗⋅} Three-dimensional vector

{⋅}∗ Value made non dimensional by Q∞ and C

{⋅}+ Value made non dimensional by u� and �

{⋅}′ Fluctuation

{⋅}∞ Value of the free stream flow

{⋅}w Value at the wall

{⋅}x Value in the chordwise direction

{⋅}z Value in the spanwise direction

{⋅}y Value in the y-direction
̂{⋅} Value in the Fourier domain

∼ O(⋅) Order of magnitude

Physical and Fourier domains

x, y, z Cartesian reference system

x Chordwise direction

z Spanwise direction
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x − y Chord plane

x − z Wing plane

r Radial coordinate of the polar reference system

s, n, z Curvilinear coordinate system based on the aerofoil outline

Λz Wavelength in the spanwise direction

kz Wavenumber in the spanwise direction

t Time

T Time period of an harmonic wave

f Frequency

Computational geometry

i, j, k Orthogonal mesh-element based reference system

Ni, Nj , Nk Number of computational nodes along the three directions of the mesh basis

Ntot Total number of computational nodes

�t Subgrid viscosity

Wing and flow configuration

� Angle of attack or incidence, defining the wing loading condition

Λ Angle of sweep, defining the amount of crosswind on the wing

C Aerofoil chord in the chordwise direction

� Kinematic viscosity of the fluid

� Density of the fluid

P Pressure of the fluid

u, v,w Velocity components of the fluid in x, y and z

Q∞ Velocity of the free stream in the chord plane

U∞, V∞,W∞ Velocity components of the free stream in x, y and z

Rec Reynolds number based on C, Q∞ and �

utg Velocity component tangent to the foil wall, along direction s

� Shear stress

�sn Shear stress component in direction s acting on surface with normal n
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�zn Shear stress component in direction z acting on surface with normal n

Cl Coefficient of lift

Cd Coefficient of drag

Cp Coefficient of pressure

Cf Coefficient of friction

! vorticity

Boundary layer related quantities

�99 Boundary layer edge considering u∕Q∞ = 0.99

�∗ Displacement thickness

� Momentum thickness

H Shape factor

� Clauser parameter

u� Friction velocity

w� Spanwise friction velocity

Re� Reynolds number based on �∗, u� and �

Turbulence related quantities

k Turbulent kinetic energy, t.k.e.

 Production of t.k.e.

" Dissipation of t.k.e.

I Turbulence intensity

 Integral length scale

℘ Probability

� Standard deviation

Raa Spanwise two point autocorrelation of variable a

Ê t.k.e. spanwise energy spectrum

u′u′, v′v′, w′w′ Normal Reynolds stresses

u′v′, u′w′, v′w′ Cross-component Reynolds stresses
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Acronyms

BL Boundary layer

DNS Direct numerical simulation

LES Large eddy simulations

LSB Laminar separation bubble

TSB Transitional separation bubble

FST Free stream turbulence

LE Leading edge

TE Trailing edge

IBM Immersed boundary method

SUSA In-house developed solver name

2D Two-dimensional

3D Three-dimensional

PSD Power spectral density

HPC High performance computing

K-H Kelvin Helmholtz

TS Tollmien–Schlichting

Re Reynolds number

t.k.e. Turbulent kinetic energy

Glossary

Chordwise Direction along the wing chord

Spanwise Direction along the wing span

Streamwise Direction aligned with the mean velocity

Crosswind Wind aligned with the spanwise direction

Crossflow Flow perpendicular to the streamwise inviscid velocity direction

Swept wing Wing adopting a sweep angle different that 0 with respect to the approaching wind

Unswept wing Wing with a sweep angle Λ = 0, also referred as straight wing
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taken. Flow condition: � = 5o, laminar inlet. . . . . . . . . . . . . . . . . 68

4.9 PSD{k} obtained at (Top) (x∕C, y∕C, z∕C) = (0.25, 0.11, 0.2) and at (Bot-

tom) (x∕C, y∕C, z∕C) = (0.80, 0.10, 0.2). The two locations in the chord

plane are identified with a ∗ in figure 4.8. The solid line is used for the

straight wing, the dashed for the swept wing and the dotted line correspond

to the −5∕3 power law. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.10 (a) Example of the velocity profile inside an attached boundary layer. (b)

Example of the velocity profile in a boundary layer presenting a mean sep-

aration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.11 a: chord distribution of the non dimensional displacement thickness. b: non

dimensional momentum thickness distribution. c: shape factor distribution.

The chordwise boundary layer developing on the suction side of the straight

wing is indicated with the solid lines, while ◦ refer to the swept wing. The

chordwise boundary layer developing on the pressure side of the straight

wing is indicated with the dashed lines, while ⊲ refer to the swept wing.

The spanwise flow correspondent integrals are shown with × on the suction

side and ⊳ on the pressure side. . . . . . . . . . . . . . . . . . . . . . . . 73
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4.12 Spanwise energy content of the fluctuating velocity field. The straight wing

is illustrated in the left column, the swept one in the right column. The spec-

tra are extracted at the chord location of mean separation, x∕C = 0.26. Pan-

els (a) and (e) correspond to iso-contours of kz < Ê∗ >t C . The grey-scale

colour map is distributed non-linearly with the black regions corresponding

to kz < Ê∗ >t C > 0.001. The iso-lines are sampled with an increment of

kz < ΔÊ∗ >t C = 0.000225 starting from kz < Ê∗ >t C = 0.0001. (b)

and (f) Iso-contours of < R̂∗u′u′ >t. The grey-scale colour map is distributed

non-linearly with the black regions corresponding to < R̂∗u′u′ >t> 0.001.

The iso-lines are sampled with an increment of < R̂∗u′u′ >t= 0.000225 start-

ing from < R̂∗u′u′ >t= 0.001. (c) and (g) Iso-contours of < R̂∗v′v′ >t. Same

legend as for < R̂∗u′u′ >t. (d) and (h) Iso-contours of < R̂∗w′w′ >t. Same

legend as for < R̂∗u′u′ >t. . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.13 Flow condition: � = 5o, laminar inlet. (a) and (b) Iso-contours of u′∕Q∞
on a plane parallel to the aerofoil suction wall. The selected plane passes

through y∕C = 0.101 at the separation location x∕C = 0.26. (c) and (d)

Iso-contours of u′∕Q∞ on a normal-to-the-wall plane at the location of sep-

aration. (a) and (c) refer to the straight wing, while (b) and (d) to the swept

one. The colour map shows u′∕Q∞ > 0.1 in red, u′∕Q∞ < −0.1 in blue and

a fluctuation close to zero in white. . . . . . . . . . . . . . . . . . . . . . . 81

4.14 Contours of v′∕Q∞ at wing mid-span, on a plane parallel to the foil. Red

regions correspond to positive perturbations (i.e. v′∕Q∞>0.1). 4 solid iso-

lines between v′ = 0.025Q∞ and v′ = 0.1Q∞ have also been sampled. Blue

regions correspond to negative values (i.e. v′∕Q∞<-0.1) and the sampled

negative iso-lines are the dashed ones. Thw white colour is used for a fluc-

tuation close to zero. Flow condition: � = 5o, laminar inlet. (a) Straight

wing case. (b) Swept wing case. . . . . . . . . . . . . . . . . . . . . . . . 82
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4.15 Wall normal distribution of < utg >z,t ∕Q∞ and < w >z,t ∕Q∞ in (a and c).

The corresponding curvature distributions f = (C2∕Q∞))2 < utg >z,t ∕)n2

and g = (C2∕Q∞))2 < w >z,t ∕)n2 are given in (b and d). All the profiles

have been extracted from the suction side of the swept wing, in particular (a

and b) at x∕C = 0.30 and (c and d) at x∕C = 0.60. The chordwise quantities

are shown with the circled line while the spanwise ones with the crossed

lines. The long dashed line indicates the chordwise displacement thickness

at the specific location, while the dashed line the spanwise displacement

thickness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.16 Iso-surfaces of Q-criterion with a non dimensional threshold fixed at 50.

Flow condition: � = 5o, laminar inlet. Panels (a) and (c) concern the straight

wing, while (b) and (d) correspond to the swept case. (a and b) top views,

flow from the bottom to the top; (c and d) side views, flow from the bottom

to the top. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.17 Flow condition: � = 5o, laminar inlet. (Left column) Straight wing, (Right

Column) Swept wing. Instantaneous contours of !′xC∕Q∞ pictured on z-

aligned slices for subsequent chordwise locations on the wing suction side.

Location respectively at x∕C = [0.50, 0.60, 0.70, 0.80] in [(a-e), (b-f), (c-g),

(d-h)]. Colour map such as positive perturbations in red with solid iso-lines

at !′x = [5, 10, 20]Q∞∕C , blue and dashed lines for negative perturbations. 86

4.18 Iso-contours of kz < Ê∗ >t C extracted at x∕C = 0.55. The grey-scale

colour map is distributed non-linearly with the black regions corresponding

to kz < Ê∗ >t C > 0.001 as in figure 4.12a. The iso-lines are sampled for

kz < Ê∗ >t C = [0.02, 0.03, 0.07, 0.1, 0.2, 0.35, 0.5, 1]. Panel (a) Straight

wing case; black dots are used to highlight the maxima. Panel (b) Swept

wing case; white dots used to indicate the maxima. . . . . . . . . . . . . . 87

4.19 Distribution of < Cfx > z, t on the pressure (a) and suction (b) sides of the

wings. Solid lines are used to represent the straight wing case; dashed lines

refer to the swept wing case. . . . . . . . . . . . . . . . . . . . . . . . . . 88
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4.20 Wall normal distribution of (a) < v >z,t ∕Q∞, (b) < v′v′ >z,t ∕Q2∞, (c)

< u′v′ >z,t ∕Q2∞ and (d) < v′w′ >z,t ∕Q2∞. Solid line refers to the straight

wing case, the dashed one for the swept wing. In (d) the values for the

straight wing are not presented because trivially equal to zero. Profiles ex-

tracted at x∕C = [0.65, 0.8, 1.0] and drawnwith a thicker line moving down-

stream. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.21 Iso-contours of �wsn∕(�Q
2
∞) on the suction side wall. Flow condition: � = 5o,

laminar inlet. Top: straight wing; Bottom: swept wing. The red colour is

used for positive friction values (the y axis is pointing upwards), blue for

negative ones. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.22 Distribution of ℘(�wsn < 0) along the chord on the suction side wall. The

solid line is used for the straight wing and the dashed line for the swept wing. 94

4.23 Distribution of℘(ū ∙ < ū >z,t< 0) along the chord on different planes paral-

lel to the foil suction side at a distance n∕C = [0, 0.008, 0.018, 0.030, 0.050].

A thicker line is used for planes further away from the wall. The solid line

is used for the straight wing and the dashed line for the swept wing. . . . . 95

5.1 Contours of < u >z,t in the unswept wing configuration at 5o incidence with

FST, quantified by iso-lines at < u >z,t= [0.25, 0.50, 0.75, 0.90]Q∞. The

grey-sale colour map is adjusted for having the white colour correspond-

ing with values < u >z,t≥ 0.75Q∞. Few streamlines are identified by the

arrowed solid lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.2 Contours of < u >z,t in the unswept wing configuration at 10o incidence

with FST, quantified by iso-lines at < u >z,t= [0.25, 0.50, 0.75, 0.90]Q∞.

The grey-scale colour map is adjusted for having the white colour corre-

sponding with values < u >z,t≥ 0.75Q∞ and black colour corresponding

with < u >z,t= 0Q∞. Negative values of < u >z,t ∕Q∞ are illustrated with

light green contours. Few streamlines are identified by the arrowed solid lines. 99

5.3 (a) Wall distribution of < Cpx >z,t of the unswept wing for both aerofoil

sides and incidences. In dashed circled line the laminar incoming case at

5o incidence, in solid line the turbulent incoming case at 5o incidence and

in the solid circled line the turbulent incoming case at 10o. (b) Suction side

wall friction coefficient of the chordwise flow of the unswept case for chord

locations of major interest. Line styles same meaning as in panel (a). . . . 101
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5.4 PSD{k} obtained at (x∕C, y∕C, z∕C) = (0.25, 0.11, 0.20) from the unswept

flow fields. The lines have the same meaning as in figure (5.3). The dotted

lines correspond to the power law, duplicated and shifted for visualization

purposes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.5 Wall normal velocity profiles scaled with viscous quantities (i.e. � and u�)

extracted at the locations x∕C = [0.20, 0.65, 1.0]. A thicker solid line is used

for further downstream locations. The dashed line represents the logarithmic

law for zero pressure gradient, smooth wall turbulence. (a) 5o incidence

case; (b) 10o incidence case. . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.6 Contours of < u >z,t ∕Q∞ quantified by iso-lines sampled at < u >z,t=

[0.25, 0.50, 0.75, 0.90]Q∞. The solid line is used for the straight wing case,

the dashed line for the swept one. The grey-scale colour map is calibrated to

have thewhite colourmatching< u >z,t≥ 0.75Q∞. Examples of streamlines

are identified by the arrowed solid lines. (a) 5o incidence with FST. (b) 10o

incidence with FST; Negative values of < u >z,t ∕Q∞ are illustrated with

light green contours. (c) Wall-normal distribution of < utg >z,t ∕Q∞ in the

5o incidence case for the chordwise locations x∕C = [0.05, 0.2, 0.35, 0.5, 0.65, 0.8, 1.0],

increasing the thickness of the line while moving downstream. Solid line for

the straight wing, dashed otherwise. (d) Same as in (c) but for the 10o inci-

dence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.7 (a) Contours of < Cpx >z,t quantified by iso-lines sampled at < Cpx >z,t=

[−0.05, 0.075,±0.1,±0.2,±0.3,±0.4] for the 5o incidence case with FST.

The solid line is used for the straight wing, the dashed for the swept configu-

ration. The colour map shows zones of depression in blue and over-pressure

in red. (b) Same as in (a) but for the 10o incidence case with FST. Iso-lines

drawn for < Cpx >z,t= [−0.01,−0.05,±0.1,±0.2,±0.3,±0.4]. (c) Distribu-

tion of < Cpx >z,t at the foil surface for both the aerofoil sides. Solid lines

represent the straight case, dashed the swept one. Circled lines for the 10o
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5.8 (a) Contours of < !x >z,t C∕Q∞ at 5o angle of attack for the swept wing

case with FST: red corresponds to positive values (aligned with x), in blue

negative ones. Selected iso-lines at < !x >z,t= [±5 ± 10]Q∞∕C are repre-

sented with solid lines for positive values, dashed otherwise. (b) Same as in

(a) but for the 10o incidence case with FST. (c) Contours of< !yC∕Q∞ >z,t
with a colour-map showing in red a vorticity aligned with y, in blue other-

wise. Iso-lines at < !y >z,t= [±5]Q∞∕C , solid line for positive values,

dashed otherwise. (d) Same as in (c) but for the 10o incidence case with FST. 110

5.9 (a) Contours of < !z >z,t C∕Q∞ in the 5o incidence cases with FST: pos-

itive vorticity in red, in blue otherwise. Selected iso-lines at < !z >z,t=

[±5 ± 10 ± 15 ± 20]Q∞∕C are represented with solid lines for the straight

wing, dashed for the swept one. (b) Same as in (a) but for the 10o incidence

cases with FST. (c) Wall-normal distribution of < !z >z,t C∕Q∞ in the 5o

incidence case for the chordwise locations x∕C = 0.8 and x∕C = 1.0, us-

ing a thicker line for the latter case. Solid line for the straight wing, dashed

otherwise. (d) Same as in (c) but for the 10o incidence. . . . . . . . . . . . 111

5.10 (a) Contours of < k >z,t ∕Q2∞ at 5o incidence cases with FST. The intensity

increases from lighter to darker colours. Solid iso-lines represent < k >z,t=

[0.0001, 0.0005, 0.001]Q2∞ for the straight case, dashed for the swept one.

(b) Same as in (a) but for the 10o incidence case with FST. (c) Wall-normal

distribution of < k >z,t ∕Q2∞ in the 5o incidence case for the chordwise

locations x∕C = [0.8, 1.0], using a thicker line for the profile extracted at

the trailing edge. Solid line for the straight wing, dashed otherwise. (d)

Same as in (c) but for the 10o incidence and chordwise locations x∕C =

[0.65, 0.8, 1.0]. The profiles are plotted with an increasingly thicker line for

increasing values of x. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.11 Distribution along the chord of the chordwise boundary layer mean non-

dimensional thicknesses for the 5o angle of attack: (a) displacement thick-

ness, (b) momentum thickness and (c) shape factor. The solid line is used for

the suction side of the straight wing, while ◦ for the swept one. The dashed

line is used for the pressure side of the straight wing, ⊲ for the swept case.

The spanwise corresponding boundary layer thicknesses are shown with ×

on the suction side and ⊳ on the pressure side. . . . . . . . . . . . . . . . 116
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5.12 Distribution of non-dimensional integral quantities in the 10o incidence case

with FST. Lines and symbols as in figure 5.11. . . . . . . . . . . . . . . . 117

5.13 Distribution along the chord of �∕(�Q∞) for the (a) 5o incidence case with

FST, (b) 10o incidence case with FST. The solid line is used for the suction

side of the straight wing, while ◦ are for the swept one. The dashed line is

used for pressure side of the straight wing, ⊲ for the swept case. The dotted

lines correspond to � = 0�Q∞ and � = 2�Q∞. . . . . . . . . . . . . . . . 119

5.14 Re� distribution along the chord for (a) 5o incidence case with FST, (b)

10o incidence case with FST. The solid line without symbols is used for

the straight wing on the suction side, while ◦ are used for the swept one.

The dashed line with no symbols is used for the straight wing on the pres-

sure side, while ⊲ for the swept case. All the aforementioned quantities are

related to the chordwise flow. The corresponding quantities for the spanwise

flow Re� are shown with × on the suction side and ⊳ on the pressure side. 120

5.15 Cl and Cdx time history for the 5o incidence cases with FST condition. The

solid line is used for the straight wing, the dashed for the swept case. (a)

Time history of Cl. (b) Corresponding PSD(Cl). (c) Detail of the spectra

in the low frequency range (only peaks containing at least 1% of the total

energy). (d), (e) and (f) present the same analysis repeated for the Cdx . . . 121

5.16 Cl and Cdx time history for the 10o incidence case with FST condition. Leg-

end and panels organisation as in figure 5.15. . . . . . . . . . . . . . . . . 122

5.17 Iso-contours of u∕Q∞ for the 5o incidence case with FST condition. The

contours are represented using a non-linear colour map in which the red
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5.19 Spanwise energy content of the fluctuating velocity field in the 5o incidence

case with FST. The straight wing is illustrated in the left column, the swept

one in the right column. The spectra are extracted at x∕C = 0.26. The black

diamonds are used to highlight the dominant modes of the unswept wing,

while the white ones indicate the dominant modes of the swept case. Panels

(a) and (e) correspond to iso-contours of kz < Ê∗ >t C . The grey-scale

colour map is distributed non-linearly with the black regions corresponding

to kz < Ê∗ >t C > 3. The iso-lines are sampled with an increment of

kz < ΔÊ∗ >t C = 0.23 starting from kz < Ê∗ >t C = 0. (b) and

(f) Iso-contours of < R̂∗u′u′ >t. The grey-scale colour map is distributed

non-linearly with the black regions corresponding to < R̂∗u′u′ >t> 1. The

iso-lines are sampled with an increment of < R̂∗u′u′ >t= 0.07 starting from

< R̂∗u′u′ >t= 0. (c) and (g) Iso-contours of < R̂∗v′v′ >t. Same legend as for

< R̂∗u′u′ >t. (d) and (h) Iso-contours of < R̂∗w′w′ >t. Same legend as for

< R̂∗u′u′ >t. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.20 Spanwise energy content of the fluctuating velocity field in the 10o incidence

case with FST. The straight wing is illustrated in the left column, the swept

one in the right column. The spectra are extracted at x∕C = 0.26. The black

diamonds are used to highlight the dominant modes of the unswept wing,

while the white ones indicate the dominant modes of the swept case. Panels

(a) and (e) correspond to iso-contours of kz < Ê∗ >t C . The grey-scale

colour map is distributed non-linearly with the black regions corresponding

to kz < Ê∗ >t C > 3. The iso-lines are sampled with an increment of

kz < ΔÊ∗ >t C = 0.3 starting from kz < Ê∗ >t C = 0.3. (b) and

(f) Iso-contours of < R̂∗u′u′ >t. The grey-scale colour map is distributed

non-linearly with the black regions corresponding to < R̂∗u′u′ >t> 1. The

iso-lines are sampled with an increment of < R̂∗u′u′ >t= 0.1 starting from

< R̂∗u′u′ >t= 0.1. (c) and (g) Iso-contours of < R̂∗v′v′ >t. Same legend as

for < R̂∗u′u′ >t. (d) and (h) Iso-contours of < R̂∗w′w′ >t. Same legend as for

< R̂∗u′u′ >t. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
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5.21 Iso-contours of !′yC∕Q∞ in the 5o incidence case with FST. Left column:

straight wing; right column: swept wing. Panels (a) and (c): iso-contours

on the suction side wall, top view, for the first half of the chord. (b) and (d):

iso-contours on a plane parallel to the suction side wall and passing through

y∕C = 0.101 at x∕C = 0.26. Red contours are for positive vorticity (i.e.

!′yC∕Q∞ > 20), blue for negative values (i.e. !′yC∕Q∞ < −20) and white

for vorticity close to zero. Selected iso-lines at !′y = [±10 ± 20]Q∞∕C

are represented with solid lines for positive values, dashed otherwise. The

dotted lines indicate the locations of the mean separation line for � = 5o

incidence without FST. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.22 Iso-contours of !′yC∕Q∞ in the 10o incidence case with FST. Colour map

and panels sequencing as in figure 5.21. . . . . . . . . . . . . . . . . . . . 130

5.23 Spanwise energy content of the fluctuating velocity field in the 5o incidence

case with FST. The straight wing is illustrated in the left column, the swept

one in the right column. The spectra are extracted at x∕C = 1.0. The black

diamonds are used to highlight the dominant modes of the unswept wing,

while the white ones indicate the dominant modes of the swept case. Panels

(a) and (e) correspond to iso-contours of kz < Ê∗ >t C . The grey-scale

colour map is distributed non-linearly with the black regions corresponding

to kz < Ê∗ >t C > 3. The iso-lines are sampled with an increment of

kz < ΔÊ∗ >t C = 0.23 starting from kz < Ê∗ >t C = 0. (b) and

(f) Iso-contours of < R̂∗u′u′ >t. The grey-scale colour map is distributed

non-linearly with the black regions corresponding to < R̂∗u′u′ >t> 1. The

iso-lines are sampled with an increment of < R̂∗u′u′ >t= 0.07 starting from

< R̂∗u′u′ >t= 0. (c) and (g) Iso-contours of < R̂∗v′v′ >t. Same legend as for

< R̂∗u′u′ >t. (d) and (h) Iso-contours of < R̂∗w′w′ >t. Same legend as for

< R̂∗u′u′ >t. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
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5.24 Spanwise energy content of the fluctuating velocity field in the 10o incidence

case with FST. The straight wing is illustrated in the left column, the swept

one in the right column. The spectra are extracted at x∕C = 0.92. The black

diamonds are used to highlight the dominant modes of the unswept wing,

while the white ones indicate the dominant modes of the swept case. Panels

(a) and (e) correspond to iso-contours of kz < Ê∗ >t C . The grey-scale

colour map is distributed non-linearly with the black regions corresponding

to kz < Ê∗ >t C > 3. The iso-lines are sampled with an increment of

kz < ΔÊ∗ >t C = 0.3 starting from kz < Ê∗ >t C = 0.3. (b) and

(f) Iso-contours of < R̂∗u′u′ >t. The grey-scale colour map is distributed

non-linearly with the black regions corresponding to < R̂∗u′u′ >t> 1. The

iso-lines are sampled with an increment of < R̂∗u′u′ >t= 0.09 starting from

< R̂∗u′u′ >t= 0.09. (c) and (g) Iso-contours of < R̂∗v′v′ >t. Same legend as

for < R̂∗u′u′ >t. (d) and (h) Iso-contours of < R̂∗w′w′ >t. Same legend as for

< R̂∗u′u′ >t. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.25 Comparison of < R̂∗u′u′ >t between the unswept and swept wings in the 10o

incidence case with FST. Spectra extracted at location (a) x∕C = 0.92 and

(b) at x∕C = 0.98. The grey-scale colour map refers to the straight wing

case with darker colours for higher values. Some iso-lines of < R̂∗u′u′ >t
correspond to [0.18, 0.36, 0.54, 0.72, 1.0, 1.2]. The solid lines are used for

the unswept wing, while the dashed lines are used for the same iso-values

obtained in the swept wing case. . . . . . . . . . . . . . . . . . . . . . . . 134

5.26 Iso-contours of the instantaneous fluctuations of the vorticity field in the 5o

incidence case with FST. (a) and (b) Iso-contours of !′xC∕Q∞ extracted on

a spanwise plane normal to the suction side wall at x∕C = 1.0. Selected iso-

lines at !′x = [±10 ± 20]Q∞∕C are represented with solid lines for positive

values, dashed otherwise. Top: straight wing; Bottom: swept wing. (c)

and (d) Iso-contours of !′yC∕Q∞ on a plane parallel to the suction side wall

and just on top of it, shown from mid chord onwards. Selected iso-lines at

!′y = [±10 ± 20]Q∞∕C are represented with solid lines for positive values,

dashed otherwise. Left: straight wing; Right: swept wing. Red colour is

used for positive vorticity perturbations (i.e. !′{⋅}C∕Q∞ > 20), blue for

negative values (i.e. !′{⋅}C∕Q∞ < −20) and white for vorticity close to zero. 136
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5.27 Iso-contours of the instantaneous fluctuations of the vorticity field in the 10o

incidence case with FST. (a) and (b) Iso-contours of !′xC∕Q∞ extracted on
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Chapter 1

Introduction

If we knew what it was we were doing,

it would not be called research,

would it?

Albert Einstein

In recent years there has been a renewed interest and new technological motivations to-

wards the research of lifting surfaces adopting a sweep angle in a wide ranging variety of

flow conditions, including flow separation scenarios. In the case of commercial aircraft, an

increased aerodynamic optimisation of swept wings in subsonic, high loading conditions (i.e.

take off and landing phases) has become of interest in response to the recently introduced

severe normative on emissions and noise-generation in landing and take off configurations

(European Union Aviation Safety Agency et al. 2019). Although the majority of commercial

airborne vehicles is characterised by very high Reynolds number flows (Re ∼ O(106−108)),

the use of swept aerodynamic surfaces is not restricted to commercial aviation. More gen-

eral examples include: sophisticated turbo-machinery with swept blades aiming to increase

efficiency; micro-revolution-machinery with swept blades used in bio-engineering and re-

newable energies applications; drones mounting swept wings and blades flying in highly

gusty conditions requiring a high degree of manoeuvrability. Differently from traditional

aeronautics, almost all these recently introduced applications are characterised by low to

moderate Reynolds number regimes (∼ O(104−105)). The large variations in the Reynolds

number characterising different lifting surfaces implies that the corresponding boundary lay-

ers present different regimes: turbulent for the high Reynolds number cases, laminar and∕or

transitional in the other conditions. A phenomenon that is common to all the mentioned
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regimes is the flow detachment from the wall that may be experienced when a sufficient

adverse pressure gradient condition is reached along the wing chord.

The present contribution aims to provide a systematic comparison between the flows

developing around straight and swept infinite wings in both laminar and turbulent regimes

with the eventual presence of a separated region. For the wings with an infinite spanwise

extension, the mechanism of the boundary layer separation, in both laminar and turbulent

regimes, is a research subject that has not been completely understood yet. Despite the fact

that this topic represents a still active area of investigation, during the last half century a

large number of aerodynamicists have explored the separation phenomenon in both lami-

nar and turbulent regimes. In the laminar regime, Gaster (1967) and Jones et al. (2008)

and for the turbulent regime, Simpson (1989) can be mentioned as reference investigations.

Other researchers have also tackled the analysis of the crosswind effect (e.g Black (1952)

and Broadley (1998)). However, as mentioned above the flow mechanisms leading to the

separation formation, and determining its dynamic characteristics, remain open subjects.

The major part of the flight mission for a commercial aircraft is within the transonic

regime (Roberson & Johns 2008), which is characterised by a high Reynolds number at-

tached flow. The lifting surfaces which are required for all the other flight phases (manoeu-

vring, take off and landing) have been previously designed within a safe and pre-established

flow scenario where flow separation was avoided. The eventual appearance of flow separa-

tion in off-design condition would have eventually been mitigated with the use of passive

control technique (for some examples see Lin (2002)). Thus, fundamental research aim-

ing to fully unveil the separation mechanism has not been an industrial priority until recent

days. The flow analogy between man made wings or blades in loading conditions, with

feathered wings found in nature that actively control the vortex shedding process and even-

tually separation (e.g. Bechert et al. (2006), Carruthers et al. (2007) and Brücker &Weidner

(2014)) have encouraged further fundamental research in the flow detachment mechanism.

In particular, the dynamic character of the separation formation is of great interest for the

development of active flow control devices to be engineered on the wings of aircraft and

industrial machineries. A new generation of flow control devices should aim not only to

mitigate flow separation, but eventually to exploit it in a beneficial manner.

The introduction of a sweep angle on engineered wings requires the analysis of its impact

on the separation mechanism as well. When a swept wing is considered, often researchers

and designers rely on the Simple Sweep Theory valid for attached flow condition, in both

laminar and turbulent regimes (e.g. Sears (1948), Altman & Hayter (1951), Boltz et al.

2



(1960)). Although some authors have put forward preliminary results showing violations

of the Simple Sweep Theory when the separation mechanism takes place (Broadley 1998,

Uranga et al. 2011, De Tullio & Sandham 2017) many designers extend its use even with

separated flow conditions. The detailed characterisation of the separation mechanism on a

swept wing and the comparison to its straight wing counterpart is therefore a topic that goes

beyond scientific curiosity having a potential impact on the industrial, aerodynamic design

of wings.

The assessment and the eventual cause of the violation of the Simple Sweep Theory

when a flow detachment mechanism takes place is one of the primary research goal of the

present thesis. Alongside, the fundamental characterisation of the trailing edge separation

mechanisms for both the straight and swept infinite wings in laminar and turbulent regimes

is also a central topic of this doctoral work. The methodology that has been used to pur-

sue these research challenges is based on high fidelity numerical simulations of moderate

Reynolds number, incompressible, flows past infinite wings with a cambered profile at an

incidence with or without a sweep angle with either laminar or turbulent incoming flow. For

both these inflow conditions, the suction side of the foil is characterised by the presence

of a variable adverse pressure gradient that increases gradually moving towards the trailing

edge. This side presents a boundary layer that may eventually detach in the region close to

the trailing edge. The flow field around the wing, in all the considered configurations, will

be characterised in details exploiting the level of detail delivered by the adopted numerical

methodology. One of the original contributions of this thesis, concern a profound assess-

ment of the Simple Sweep Theory whose validity is evaluated not only for flow quantities

considered in previous investigations (i.e. mean flow and global aerodynamic coefficients)

but also for those characterising the fluctuating content of the flow (i.e. Reynolds stresses

and perturbation energy spectra). Furthermore, the mechanisms leading to flow separation

and the effects of the crosswind will also be addressed in details. In particular, the central

role played by flow modes on the evolution of the separation, in both laminar and turbu-

lent regimes, on both swept and unswept wings, will be illustrated by combining analysis

of perturbation energy spectra, instantaneous flow field visualisations and the probabilistic

scrutiny of the reversed flow.

Among the results of the present thesis, the validity of the Simple Sweep Theory will be

shown to hold in both laminar and turbulent regimes as long as an attached flow establishes

on the whole wing. On the other hand, it is found to be violated as soon as any form of

separation takes place. Alongside, the separation mechanism, in laminar or turbulent condi-
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tions, is found to be inherently three-dimensional and unsteady with topological differences

between the flows developing around straight and swept wings. A probabilistic approach is

therefore employed in order to characterise quantitatively the flow detachment mechanism,

especially in the turbulent cases. The probabilistic approach has been previously proposed

in a similar fashion by the pioneering observations of Simpson (1989). Some analogies in

the flow modes driving the evolution of the detachment mechanism are found to be shared

in the laminar and the turbulent separation processes.

Considering the numerical methodology used to tackle the mentioned physical pro-

cesses, an in-house developed Navier-Stokes solver running on large, parallel computing in-

frastructures has been modified and massively employed. The simulations have been mostly

executed on the supercomputer ARCHER owned and maintained by the Engineering and

Physical Sciences Research Council (EPSRC 2020). The flow predictions are extremely de-

manding due to their high level of detail: hundreds of millions of computational nodes have

been used to discretise the virtual flow field. The number of the simultaneous processors

used is in the order of the hundreds and the wall clock computation time required to achieve

statistically significant results is in the order of weeks. A single simulation has a nominal

cost in the order of thousands of pounds, depending on the time required to capture the evo-

lution of the flow fields. The recent attention to eco-friendly engineering designs justifies

the high cost required to carry out highly resolved computational aerodynamics research, as

the present one. Improving aerodynamic efficiency has become a key aspect of aeronautics

research challenged by the concurrent needs of reducing the amount of emitted green-gases

and the increasing demand for flights (Graver et al. 2018, European Union Aviation Safety

Agency et al. 2019). In 2017 the CO2 emissions from the transport sector accounted for the

24.48% of the worldwide total (International Energy Agency 2017), with the commercial

aviation responsible for approximately the 11% of the transport share (data of the shares

only available for the year 2018 in Graver et al. (2018)). In the power production sector, in

which turbo-machineries are largely used (in some cases with a flow regime similar to the

ones investigated in this thesis) the benefit obtained through detailed aerodynamic research

could be even greater. Indeed, since the electricity and heat production sector accounted for

almost the 40% of theCO2 emissions in 2017 (International Energy Agency 2017), it is clear

that even a modest increase in the efficiency of a turbo-machine experiencing flow separa-

tion could be enormously beneficial. Similar reasoning could be extended to the improved

design of the blades used in wind turbines.

The thesis synopsis is arranged as follows. Chapter 2 presents the literature review rel-
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evant to the topics tackled in the present work. The adopted, numerical methodology is

detailed in chapter 3, where preliminary tuning of the simulation settings (spanwise domain

numerical extension and numerical grid refinement study) are also presented. Chapter 4

presents the results of the investigation obtained in the laminar regime mainly illustrated

using a systematic comparison between the unswept and the swept wing configurations.

Chapter 5 focuses on the results obtained in the turbulent regime using a similar approach.

Finally, conclusions and suggestions on future research close the thesis.
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Chapter 2

Literature review

Learning never exhausts the mind.

Leonardo da Vinci

This chapter contains a generic literature review on the aerodynamics of swept wings which

is the core topic of the thesis. First, an historical outline on the adoption of the swept

wing configuration on commercial aircraft is briefly summarised in section 2.1. Section 2.2

presents a technical literature survey about the Simple Sweep Theory , a baseline framework

representing the working horse of swept wing design. Section 2.3 and 2.4 provide a review

of the state-of-the art knowledge on the separation of both laminar and turbulent boundary

layers exposed to an adverse pressure gradient with special emphasis on the comparison

between swept and unswept wing configurations.

2.1 Brief history of the swept wing configuration

The infinite swept wing configuration has been proposed in the early conceptual work of

Adolf Busemann first presented at the Volta Congress 1935. This pioneering concept aimed

at delaying the shock induced drag divergence of the transonic flight conditions (Vos &

Farokhi 2015), in which a sharp drag increase occurs when the speed of sound is approached.

At that time, the increasing thrust power made available by the evolution of aircraft en-

gines opened the opportunity to widen the flight envelope beyond the speed of sound. This

new scenario introduced a series of new aerodynamic challenges and in particular scientist

and engineers had to tackle the drag divergence appearing at sonic flight condition (Vos &

Farokhi 2015). The phenomenon consists in an abrupt increase of the drag experienced by
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Figure 2.1: Distribution of the wing drag coefficient as function of the Mach number. Taken from Talay
(1975).

a flying object when the speed of sound is approached. Nowadays, the behaviour of the to-

tal wing drag with the increase of the Mach number (ratio between the flight speed and the

speed of sound in the fluid surrounding the moving object) is well understood and can be

graphically depicted as in figure 2.1. The steep gradients in the transonic regime, visible in

the figure, are due to the formation of a shock wave on the wing (Talay 1975, Anderson Jr

1990), which intensity can be controlled designing the wing for the transonic flight. The

shock wave delimits an upstream region of supersonic flow on the wing. After the shock,

the flow is abruptly compressed and slowed down via a non reversible process (Anderson Jr

1990). The extra drag induced by the appearance of a shock wave goes under the name of

wave drag. Busemann proposed to rotate the wing with respect to the fuselage to reduce

the component of the flow velocity normal to the leading edge. The rationale behind this

idea was the hypothesis that the major aerodynamic features of the wing and the shock wave

formation were mainly connected to the wind flow component perpendicular to the wing

leading edge (Busemann 1935). Later, this idea was verified by the experimental measure-

ments of Ludwieg (Ludwieg 1940) (here proposed by the reproduced version of Schlichting

& Truckenbrot (1960) as reported by Vos & Farokhi (2015) in figure 2.2) and by many other

authors (e.g. Ackeret et al. (1951)).

The infinite swept wing configuration allows to approach the speed of sound delaying the

appearance of the shock wave, thus avoiding the extra wave drag and effectively making the

wing to behave like an infinite unswept wing at reduced flight speed (Vos & Farokhi 2015).

Rotating (not shearing) the wing with respect to the flow, not only increases the value of

the critical Mach number (i.e. the value of Mach at which a local shock wave appears on

the wing) but also weakens the intensity of eventual shock wave and the induced drag as
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Figure 2.2: Wing polar varying the Mach number for a straight (Left) and swept (Right) wing. Repro-
duction of the Ludwieg (1940) measurements by Schlichting & Truckenbrot (1960), taken from Vos &
Farokhi (2015).

compared to the corresponding unswept wing. These observations constitute the backbone

of the formulation of the Sweep Independence Principle (which is nowadays referred as

the Simple Sweep Theory ) currently extended for the design of subsonic swept wings: the

characteristics of the central part of the wing (far from root and tip) are determined solely by

the component of the flow normal to the leading edge (note that it was not possible to find

the original work of Busemann (1935) and here an elaborations of his theory found in Jones

(1989) has been used as a reference). For uniform inflow conditions, the drag decreases even

for swept wings that share the same aspect ratio (i.e. spanwise dimension over wing chord)

with their straight counterparts (Vos & Farokhi 2015). When the wing is swept back, the

chordwise component of the wind velocity decreases and as a consequence the lift decreases.

Therefore, to obtain the same global lift of the straight wing counterpart without changing

the flying speed, the swept wing needs a larger span. (Vos & Farokhi 2015, Anderson Jr

1999).

A detailed account on the historical stages that have led to the actual swept wing con-

figuration goes beyond the scope of this thesis. However, an interested reader can find more

information in Vos & Farokhi (2015) or Anderson Jr (1999).
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2.2 Simple Sweep Theory for subsonic wings

The Simple Sweep Theory for the flow past a wing can be formulated in two equivalent

manners: the swept wing characteristics are the same of those of an unswept wing when

scaled with a simple trigonometric function of the sweep Λ (e.g. chordwise distribution

of pressure, Cpx ,Λ=0 = Cpx ,Λ cos
2(Λ)) (Altman & Hayter 1951); or alternatively when the

chordwise flow condition is matched, a swept and an unswept infinite wings share the same

aerodynamic characteristics (Jones 1947).

For fully laminar regimes Cooke (1950), using as a starting point the pioneering work of

Prandtl (1946) and Sears (1948), employed a modification of the Falkner-Skan solution to

show that the Simple Sweep Theory was applicable to the case of yawed, infinite cylinders.

Nowadays, the Falkner-Skan-Cooke three-dimensional boundary layer equations are widely

used to describe the boundary layer resulting from the superposition of a constant crosswind

to the otherwise two-dimensional boundary layer developing on a surface with an infinite

spanwise extension. The profile of the additional spanwise velocity component is found

after that of the two-dimensional flow is determined. Wild (1949) also showed the integral

behaviour of a three dimensional boundary layer on a laminar swept back wing to be directly

related to the solution of the von Kármán-Polhausen integral equation on a straight wing.

All these analyses were carried out under the hypothesis of attached boundary layers.

In the fifties, various wind tunnel measurements of subsonic flows past infinite wings

at relatively high chord Reynolds numbers (i.e. Rec = Q∞C∕� = O(106); Q∞ being the

free-stream velocity in the chord plane, C the aerofoil chord and � the kinematic viscosity)

showed that several aerodynamic quantities are well predicted by the Simple Sweep Theory

when measured along the aerofoil section of a swept wing (e.g. pressure coefficients or

boundary layers thicknesses) (Altman & Hayter 1951, Boltz et al. 1960). In particular, these

experiments considered a high Reynolds number condition with an almost undisturbed free

stream rapidly transitioning to turbulence in the very early stage of the wing due to the high

Reynolds number or the incidence (Allen & Burrows 1956).

Altman & Hayter (1951) verified the applicability of the Simple Sweep Theory for the

chordwise pressure coefficient, for the velocity profiles inside the boundary layer and con-

sequently for the chordwise boundary layer integral quantities (displacement thickness, mo-

mentum thickness and shape factor). In their experiments, the boundary layer transitioned

to turbulence naturally and quickly in the very early stage of the wing, without experiencing

any large-scale separation along the wing for all the loading cases. In figure 2.3 their chord-
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Figure 2.3: Chordwise distributions of the pressure coefficient along the upper wing surface as a function
of the sweep at different loading conditions (Cly ). Taken from Altman & Hayter (1951).

wise pressure distributions on the wing upper side are proposed for increasing values of the

angle of attack, showing a quite perfect match between the swept and the unswept wing and

thus validating the Simple Sweep Theory predictions.

Boltz et al. (1960) proved the robustness of the theory by showing that although a set

of crossflow vortices formed on the subsonic swept wing, with a strong influence on the

transition mechanisms, the overall chordwise wing performances were left unchanged with

respect to their straight wing counterpart. In figure 2.4 their measurements of the chordwise

pressure distributions on the wing upper side are proposed for different angles of attack,

showing a reasonably good match between the swept and the unswept wing. Alongside the

verification of the applicability of the Simple Sweep Theory , this work also clearly showed

a different transition mechanism for the swept wing as compared to the same unswept one.

The different transition scenario between straight and swept wings have also been re-
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Figure 2.4: Chordwise distributions of the pressure coefficient along the upper wing surface as a function
of the sweep for different angles of attack �. Taken from Boltz et al. (1960).

ported by several other investigations (e.g. Black (1952), Anscombe & Illingworth (1952)),

also promoting more recent works focused on a deeper understanding of the swept wing

transition mechanism when no disturbances are considered (see for example Reed & Saric

(1989), Dagenhart (1992), Wassermann & Kloker (2003), Bonfigli & Kloker (2007), Duan

et al. (2014)). In summary, when the transition mechanism is dominated by the primary

modes (Morkovin 1993), the transition process leading to a turbulent boundary layer on a

swept wing may be radically different to its straight wing counterpart (Dagenhart 1992). In

particular, on a straight wing, the most common transition mechanism is related with the

amplification of the Tollmien-Schlichting (T-S) instability; for the swept case is the amplifi-

cation of the crossflow instability that plays a dominant role. Furthermore, the transition on

a swept wing is often driven by the interaction between the crossflow and the T-S instabil-

ities. The interested reader may find a detailed discussion regarding the possible transition

scenarios on a swept wing in the works of Dagenhart (1992), Reed & Saric (1989), R. &

Saric (1999) and White et al. (n.d.).

Although the transition mechanism of the swept wing may vary with respect to that of
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the straight wing, many of the mentioned researches still report an overall aerodynamic per-

formance of swept wings, in the chordwise direction, identical to those of the corresponding

unswept wings. The research and measurements accumulated during the years have helped

in making Simple Sweep Theory the work horse of the preliminary design of infinite swept

wings at aeronautically relevant Reynolds number (i.e. real commercial flight conditions).

Despite its increasing technological importance, the validity of the Simple Sweep Theory

in flow conditions that may lead to boundary layer separation has not received the same

attention andmore controversial results are reported in the literature for both the high and low

Reynolds number regimes (e.g. Selby (1982), Uranga et al. (2011)). The early experimental

work of Selby (1983) discussed the applicability of the Simple Sweep Theory in the case of a

turbulent separation in high Reynolds number regimes. In particular, he considered the flow

separation caused by a forward facing step with and without a sweep. The author has focused

on the determination of the maximum sweep for which the reattachment position remains

independent of the crosswind (of course, in this configuration the separation location is fixed

by the edge of the step). He found that up to Λ = 38o, within a range ofReℎ (Reℎ = U∞ℎ∕�

with ℎ the height of the step andU∞ the free stream velocity perpendicular to the step edge),

the reattachment position stays independent of Λ.

In the framework of low Reynolds number flows featuring a laminar separation, Jones

(1947) proposed to extend the Simple Sweep Theory introducing a correlation between the

size of the recirculation region in an unswept and a swept wing. Recent high fidelity nu-

merical investigations at low chord Reynolds number (i.e.102 − 104) seem to contradict the

proposed extensions of the Simple Sweep Theory (Uranga et al. 2011, De Tullio & Sand-

ham 2017). In particular, the implicit Large Eddy Simulation (LES) of Uranga et al. (2011)

has shown that while the pathway towards separation of the laminar boundary layer on the

suction side of a wing does not seem to be affected by the sweep, the whole reattachment

process, embedding a turbulence transition of the shear layer enveloping the separated re-

gion, is modified by the sweep. In their investigation the boundary layer on the suction side

of the wing separates, transitions to turbulence and reattaches to the wall before the trailing

edge. In figure 2.5a their chordwise pressure distribution for different sweep angles is pre-

sented and the variation caused by the crosswind on the transition location is highlighted.

In figure 2.5b, the distribution of the boundary layer integrals as a function of the sweep is

also proposed, showing their change caused by the sweep. De Tullio & Sandham (2017)

using direct numerical simulations (DNS) have provided additional evidence of the different

transition mechanisms that takes place in the detaching shear layer of the separated region
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(a)

(b)

Figure 2.5: Chordwise distributions of (a) pressure and (b) momentum and displacement thicknesses
along the upper side of the wing where laminar separation takes place for all the considered sweep angles.
Taken from Uranga et al. (2011)
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Figure 2.6: Flow visualisations of the upper side of wings with different sweep angles ((a) Λ = 0o, (b)
Λ = 20o, (c)Λ = 40o). All cases experience boundary layer laminar separation and transition to turbulence
on the upper side of the wing. Taken from De Tullio & Sandham (2017).

when a sweep is introduced. Through a number of visualisations of swept wings (here pro-

posed in figure 2.6) they have shown how the crosswind influences the separation-transition

process, leading to different flow structures. The orientation and the structure of the flow

with respect to the flow direction is changed when the sweep is introduced.

The current contribution aims to provide a systematic and extensive comparison between

flows around swept/unswept infinite wings considering both laminar and turbulent separation

scenarios. The following two sections will mainly report literature results available in the

specific topics.

2.3 Laminar boundary layer separation

When an undisturbed low Reynolds number flow approaches a cambered wing it may sep-

arate from the wall under the action of the adverse pressure gradient. Often, the sepa-

ration is followed by a transition to turbulence. This scenario is typical of the so called

laminar separation bubble (LSB) or transitional separation bubble (TSB) (Gaster 1967,

Horton 1968, O’Meara & Mueller 1987, Jones et al. 2008, Hain et al. 2009, Yarusevych

et al. 2009). Several researches have outlined the stages of this process: the magnitude of

Tollmien–Schlichting (TS) waves are amplified in the upstream portion of the laminar at-

tached flow under the action of the aerofoil curvature; due to the adverse pressure gradient

the flow may separate, and in this case the separation of the shear layer simultaneously with

the amplification of a Kelvin–Helmholtz (KH) instability are observed; the KH instability

leads to a development of three-dimensional (3D) structures in the shear layer and to its tur-

bulent transition (Watmuff 1999, Alam & Sandham 2000, Lang et al. 2004, Marxen et al.

2004, Jones et al. 2008, Hain et al. 2009, Marxen et al. 2012). In some cases the boundary
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layer reattaches to the wall in a time-averaged sense, either in a laminar or in a turbulent

state, in some others it does not and the separated region merges directly in the wake. The

flow region bounded by the separating shear layer is characterised by the presence of re-

versed flow and is often referred to as the dead air region (Alam & Sandham 2000). The

described flow field is highly unsteady and once time-averaged it takes the shape of a bubble

of recirculating fluid sitting above the aerofoil.

The LSB has been shown to be very sensitive to a number of parameters (such as the

Reynolds number, the external disturbances, the pressure gradient, . . . ) (O’Meara &Mueller

1987, Jones et al. 2008). To understand the basicmechanism that governs its phenomenology

often researcher had to consider simplified condition to avoid the interference of extended

factors. In particular, some authors have studied the flow on a flat plate subject to a con-

trolled adverse pressure gradient and level of external disturbances (Gaster 1967, Marxen &

Henningson 2011, Jagadeesh et al. 2013, Hosseinverdi & Fasel 2015, Balzer & Fasel 2016,

Hosseinverdi & Fasel 2019). Others focused on the flow past a backward facing step that sets

the condition of the separation on the edge of the step (Kaltenbach & Janke 2000, Schafer

et al. 2009). Concerning the numerical predictions of the LSB scenario, some authors have

showed that a high fidelity methodology (DNS or highly resolved LES) is required to capture

its physical behaviour (Cadieux et al. 2012). Using a set of resolved simulations, Marxen

et al. (2013) showed how the LSB structure and stability are strongly conditioned by the

level of the external perturbations contained in the free stream flow. Through companion

experimental investigations, they showed that the characteristics of the LSB may change

abruptly even for the slightest perturbation present in the free stream.

Although a complete description of the LSB is still lacking even for the case of a two-

dimensional mean flow, some authors have extended their research considering the effect of

a crosswind on the flow (Kaltenbach & Janke 2000, Hetsch & Rist 2009, Uranga et al. 2011,

De Tullio & Sandham 2017). These investigations are particularly relevant to the present

thesis that in chapter 4 covers the LSB scenario when a sweep angle is introduced in the

approaching uniform flow.

Kaltenbach& Janke (2000) considered the effect of the crosswind on the LSB, investigat-

ing the laminar flow past a step varying the sweep Λ of its edge. They found that the Simple

Sweep Theory holds up to Λ = 40o for several mean quantities characterising the LSB in the

direction normal to the step edge, among them the location of the reattachment line past the

step. These measurements and conclusions were obtained for a moderate Reynolds number

leading to a natural transition to turbulence only inside the separated shear layer behind the
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step. They also reported that an increase in turbulence intensity can modify the effect of the

sweep on the transition process, although with negligible effects on the normal-to-the-step

mean flow behaviour. Figure 2.7 proposes some snapshots taken from Kaltenbach & Janke

(2000) representing the instantaneous wall pressure perturbations obtained by varying the

sweep. The footprints of newly emerging flow structures are observed from the separation

location onwards, even tough the reattachment location remains fixed. The aforementioned

article also provides some details about the separation bubble topology and the effect of the

crosswind on it. The descriptions are in qualitatively agreement with those reported for the

finite separation observed on a comparable swept wing flow considered in the doctoral thesis

of Broadley (1998).

(a)

(b)

Figure 2.7: Snapshots of the separation and reattachment past a step swept-back flow by means of wall
instantaneous pressure fluctuations. (a) Case at Λ = 15o sweep and (b) at Λ = 30o sweep. The step edge
is at x∕H = 0.0 while the solid vertical lines mark the location of reattachment. Taken from Kaltenbach
& Janke (2000).

In a more recent research, Hetsch & Rist (2009) focused on the determination of the

proper scaling for the crossflow (the latter is defined as the flow perpendicular to the inviscid

streamline, and must not be confused with the crosswind which is along the spanwise direc-

tion) using a quasi-3D DNS simulations of a laminar separation bubble with and without

a mean crosswind. The bubble formation is generated by imposing an appropriate adverse

pressure gradient at the top edge of their computational box. Their principal findings, pre-

sented in Figure 2.8 and 2.9, show that is possible to collapse the crosswind and crossflow
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profiles for different sweep angles independently of the chordwise flow. These findings are

of great interest, but the use of an approximate DNS formulation suggests some care in their

extension to real world three-dimensional scenarios.

Figure 2.8: (Left) Mean profiles of the crosswind velocity component at the separation location for dif-
ferent sweep angles Λ. (Right) Same as in the left panel but premultiplied by tan(Λ). Taken from Hetsch
& Rist (2009).

Figure 2.9: (Left) Mean profiles of the crossflow (flow perpendicular to the local 3D inviscid streamline
on the wing) at the separation location for different sweep angles Λ. (Right) Same as in the left panel but
premultiplied by the respective maximum crossflow velocity. Taken from Hetsch & Rist (2009).

As alreadymentioned, the work of Uranga et al. (2011) and De Tullio & Sandham (2017)

represent the most up-to-date numerical investigations on the LSB scenario. These contri-

butions have already been reported in section 2.2.

2.4 Turbulent boundary layer separation

Next, the flow separation in the case of a turbulent boundary layer subject to an adverse

pressure gradient is reviewed. This phenomenon (Howe 1968, Simpson 1989), is widely

known in the aeronautics industry as it often occurs by the trailing edge region of a subsonic
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wing at high Reynolds number, even when a fully turbulent boundary layer establishes from

a very early stage. In general, a stronger adverse pressure gradient needs to be applied to

cause a turbulent boundary layer detachment as compared to the one required for a laminar

boundary layer separation. The reason behind this increase is related with the enhanced en-

ergy produced by the turbulent fluctuations (Orlandi & Jiménez 1994, Schlichting &Gersten

2000, Fukagata et al. 2002). Furthermore, the intensity of the adverse pressure gradient re-

quired to produce a separation on a given geometry increases with the Reynolds number. In

particular, the stall angle of an aerofoil exhibiting turbulent boundary layers increases when

the Reynolds number of the incoming flow is increased (Jacobs & Sherman 1937, Pinkerton

1938, Abbott et al. 1945). Although some passive control devices have been investigated to

delay the appearance of turbulent separation (Simpson 1996, Lin 2002, Ashill et al. 2005),

the intimate mechanisms that determine the separation and its phenomenology are not to-

tally clear yet. The literature covering fundamental investigations on the turbulent separation

mechanism is scarce (e.g. Simpson (1989), Dmitriev (1990)).

Kitsios et al. (2017) reported that the Reynolds stress production and dissipation pro-

files in presence of a strong adverse pressure gradient turbulent boundary layer exhibit a

second outer peak aside from the one observed for the zero pressure gradient case. This ex-

tra maximum becomes more pronounced and more spatially concentrated when increasing

the pressure gradient. Also, the authors noted that this outer peak matches the location of

the inflection point of the mean velocity profiles (in their case the adverse pressure gradient

was quite severe, causing a confined turbulent boundary layer detachment from the wall).

This shared position suggests the emergence of an outer shear flow instability.

Recently, other authors have put forward some evidences of an eventual participation

in the separation mechanism of the coherent structures populating the inner sublayer of the

turbulent boundary layer. Indeed, those flow structures sustaining wall turbulence (low/high

speed streaks and quasi-streamwise vortices, (Smith et al. 1991, Smith 1996, Jiménez &

Pinelli 1999)) have been found to be affected by the presence of an adverse pressure gradi-

ent on both a flat plates (Lee & Sung 2009, Monty et al. 2011, Kitsios et al. 2017) and on

unswept wings at an incidence (Vinuesa, Hosseini, Hanifi, Henningson & Schlatter 2017,

Vinuesa et al. 2018). Lee & Sung (2009) found that when a strong adverse pressure gradient

is applied, near-wall streaks are weakened and the spanwise spacing between them becomes

irregular and increases significantly up to 400 viscous wall units (approximately four times

larger than that of the zero pressure gradient flow). Simultaneously, some researchers have

pointed out the existence of confined backflow nuclei (localised blobs of instantaneous veloc-
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ity opposite to the direction of the free stream), narrowed within the low speed wall streaks in

high Reynolds number turbulent boundary layer of wall bounded flows even when no pres-

sure gradient is applied (Johansson 1988, Lenaers et al. 2012). Lenaers et al. (2012) have

employed DNS to systematically assess and quantify the controversial detention of backflow

events in zero pressure gradient turbulent boundary layer. They observed that backflow oc-

curs more often and farther away from the wall as the Reynolds number increases. Recently,

Brücker (2015), using an original technique based on the imaging of deflecting micropillar

in a zero pressure gradient turbulent boundary layer at a high Reynolds number, found that

backflow regions are located in areas of a high spanwise gradient of wall-shear stress, with

strong sweeps towards the wall. The effect of an adverse pressure gradient to the backflow

phenomena observed in the turbulent boundary layer has been investigated by Vinuesa, Örlü

& Schlatter (2017), who proposed a link between the increasing backflow nuclei detection

and the incipient separation occurring at the trailing edge of a wing at an incidence. The

flow that they have numerically simulated via DNS featured a tripped suction side boundary

layer at a chord Reynolds number of about half a million along a NACA-4412 at 5o inci-

dence. The regions of backflow were assumed to correlate with the local flow structures

and in particular with the instantaneous and local distribution of the streamwise velocity

streaks deformed under the effect of an adverse pressure gradient. A statistical analysis of

the distribution of these backflow regions also revealed that the probability of finding a sep-

arated spot increases along the suction side as the trailing edge of the wing is approached,

i.e. increasing the intensity of the adverse pressure gradient. A qualitative evidence of the

effect of an increasing probability to find a backflow event moving towards the trailing edge

is reproduced here in figure 2.10. Along the same line of research, recent results produced

by our group confirmed the existence of localised regions of separated flow appearing in a

turbulent boundary layer developing along the suction side of a wing (Suardi et al. 2019).

In this thesis this observations and corresponding discussions are extended to the case of a

swept wing.

Indeed, the effect of a constant crosswind to the formation mechanism of a turbulent

boundary layer separation caused by a chordwise adverse pressure gradient has not yet re-

ceived much attention, not even in the simplified case of an infinite wing flow condition.

The detailed analysis of the crosswind effect to the outer and wall layer flow structures can

certainly lead to new understanding that can inspire new localised flow control techniques

limiting or suppressing the separation of turbulent boundary layers. The study on the sep-

aration mechanism of a turbulent boundary layer on a swept wing is one of the original
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(a)

(b)

Figure 2.10: Snapshots of the instantaneous wall friction on the suction side of a NACA − 4412 at 5o
incidence. Positive friction (towards trailing edge) is represented in blue, negative friction in red. The two
graphs represent the same quantity in two regions in the neighbourhood of x∕C ≈ 0.4 (a) and x∕C ≈ 0.8
(b). Taken from Vinuesa, Örlü & Schlatter (2017).

contribution brought by the current investigation. Although the recent literature is quite rich

in reporting several investigations on the drag reduction effects that unsteady or spatially

not-uniform crosswind oscillations of the mean flow can produce by altering the structure

of the close-to-the-wall turbulence and inducing the appearance of a local unsteady Stoke’s

layer (see for example Jung et al. (1992), Choi (2002), Du et al. (2002), Viotti et al. (2009),

Quadrio et al. (2009), Auteri et al. (2010), Lardeau & Leschziner (2013)), not much infor-

mation is available on the effect of a mean steady crosswind. In the present thesis, this effect

and its combination with a variable pressure gradient distribution are considered. In par-

ticular, emphasis will be given on the stretching and tilting of the near wall structures and

their influence on the appearance and topology of local regions of reversed flow on a wing

suction side.
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Chapter 3

Methodology

Where the senses fail us,

reason must step in.

Galileo Galilei

The flow conditions are those of a three-dimensional, incompressible flow around an infinite

swept and unswept wing with the NACA − 4412 profile. This profile has been chosen for

several reasons: its non-symmetric geometry, its wide adoption in turbomachineries and the

available literature reporting its performances (Jacobs & Sherman 1937). The methodology

employs high-fidelity, numerical simulations of the incompressible Navier-Stokes equations.

In particular, an highly resolved LES (Large Eddy Simulations) approach is adopted.

The present chapter is constituted as follows. The problem identification is presented in

section 3.1, and the governing equations in section 3.2. Section 3.3 contains the numerical

formulation deployed to discretise the governing equations. Sections 3.5 and 3.6 present the

steps taken to guarantee the independence of the predicted flow from the particular numerical

settings considered, namely the grid refinement study and the computational domain size

study. Lastly, section 3.7 presents an insight of the chosen numerical free stream condition

to simulate the desired laminar and the turbulent flow scenarios.

In the following sections, a trade off between clarity and readability has been made with

the symbolic formula. In particular, the specification of the independent variables of each

mathematical function has been stated explicitly when this is introduced for the first time

only. Also, the present chapter contains numerous symbols (i.e. subscripts and superscripts)

and mathematical operators required to precisely describe both the analytical and the numer-

ical models adopted to carry out the investigation. Although an effort of consistency has been
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made, the notation of some symbols, subscripts or superscripts in sections 3.2 and 3.3 may

differ with respect to that used throughout the thesis.

3.1 Problem identification

In the adopted Cartesian coordinate system, centred at the NACA − 4412 leading edge

(LE), x (sometime indicated as x1 and referred as the chordwise direction) is aligned with

the aerofoil chord (C) and it points towards the trailing edge (TE). y (or x2) lies in the foil

plane and it is normal to x, pointing upwards. z (or x3 and referred as the spanwise direction)

is deployed along the bi-normal direction with respect to the x − y plane. The plane x − y

is referred as the aerofoil or chord plane, the plane x − z is referred as the wing plane. u,

v and w (or u1, u2 and u3) will denote the components of the velocity vector field along the

x, y and z direction, respectively. The reference system is sketched in figure 3.1. The axis

r is part of a polar reference system with origin at the aerofoil leading edge. Alongside, it

is also defined the curvilinear reference system based on the foil shape. To this end, s is the

curvilinear direction following the foil shape, while n is the direction normal to s and lying

in the chord plane.

Figure 3.1: Sketch of the reference systems used.

The free stream wind approaches the wing leading edge from the upstream far-away

24



location formally indicated with r → ∞. The free stream pressure is indicated with P∞.

Its density with �∞ and its kinematic viscosity with �∞, both constant in space and time as

implied by the incompressible fluid assumption. The free stream wind velocity is the vector

Q⃗∞ with the magnitude indicated as |Q⃗∞|. The components of the free stream velocity

along the directions x, y and z are indicated with U∞, V∞ and W∞. When the free stream

vector lies on the x − y plane, the included angle between the free stream and the x-axis is

the angle �, called the aerofoil incidence or angle of attack. The incidence sets the loading

condition on the wing. When the free stream vector lies on the x − z plane, the included

angle between the free stream and the x-axis is indicated withΛ and it is defined as the sweep

angle of the wing. The sweep angle sets the amount of crosswind on the wing imposing a

non zero value of W∞. The free stream velocity value in the chord plane (which would be

formally written as |Q⃗xy
∞ |, being Q⃗xy

∞ the projection of the free stream velocity vector Q⃗∞ on

the chord plane) is indicated as Q∞ for simplicity throughout the text. As a consequence,

U∞ = Q∞ cos(�) and V∞ = Q∞ sin(�). Note that when the swept wing is considered,

Q∞ = |Q⃗xy
∞ | = |Q⃗∞| cos(Λ), while in the unswept case Q∞ = |Q⃗xy

∞ | = |Q⃗∞|. A schematic

representation of the free stream definition and notation is shown in figure 3.2.

Although the results for different wing configurations varying the sweep will be pre-

sented, it is remarked that all of them share the same value of the chord-based Reynolds

number, fixed to the value of Rec = 5 × 104 (defined as Rec = Q∞C∕�). The choice has

been made to follow the prescription of the Simple Sweep Theory (described in section 2.2)

in order to assess its capabilities. As a consequence, the magnitude of total free stream |Q⃗∞|

changes between the different sweep configurations.

3.2 Governing equations

The equations of the model are the three-dimensional LES equations (Ferziger & Peric

2002). These are obtained by filtering out the velocity and pressure fluctuations taking place

below a cut-off length scale, chosen within the inertial range of turbulence. Using the in-

dex i = 1…3 to switch among the components of a three-dimensional vector, the spatial

filtering operation is formally defined as

ui = ũi + u′i with ũi = ∫

∞

−∞
ui(ri)G(xi − ri)dri (3.1)
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Figure 3.2: The reference free stream notation.

where ui(x, y, z, t) represents the velocity, ũi(x, y, z, t) and u′i(x, y, z, t) its resolved and sub-

grid scales (the reader is warned that this notation is adopted in the present section and in

section 3.3 only, since anywhere else u′i indicates the velocity fluctuation) and G is a repre-

sentative low band pass filter in the space domain. Using the tensor notation (i.e. i = 1…3

and j = 1…3) and adopting the Einstein notation for the summation on repeated indices,

the governing equations read

)ũi
)t
+ ũj

)ũi
)xj

= −1
�
)P̃
)xi

+ 1
Rec

)2ũi
)xjxj

+
)�ij
)xj

,
)ũj
)xj

= 0. (3.2)

with � the fluid density, P̃ (x, y, z, t) the resolved pressure field and )∕)⋅ is used to indicate the

partial derivative operator. The equations have been made non-dimensional by introducing

the reference length scale C (aerofoil chord) and reference velocity Q∞ (free stream in the

chord plane). Tomake the notation lighter, the superscript used to indicate a non dimensional
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quantity, {⋅}∗, has not been specified here. In the given set (3.2),Rec = Q∞C∕� is the chord

Reynolds number and �ij = ũiuj− ũiũj is the subgrid Reynolds stress tensor (Leonard 1975).

The unresolved stresses constitute the well-known central closure problem in LES. These

stresses represent the drainage of momentum done by the unresolved small scales over the

actually resolved ones. To close the given system of equation the subgrid stresses are related

with the deformation rate tensor of the resolved field using an eddy-viscosity assumption,

i.e.

�ij − �ij�kk∕3 = −2�tS̃ij (3.3)

where �t is the turbulent viscosity and S̃ij = ()ũi∕)xj+)ũj∕)xi)∕2 is the resolved strain-rate

tensor of magnitude |S̃|. A traditional grid-dependent closure for the eddy viscosity would

be �t = (CtΔ̃)2|S̃|, where Δ̃ = 2(Δx Δy Δz)1∕3 is the grid-dependent filter size (with Δx,

Δy and Δz a measure of the resolution of the numerical grid in the three directions, respec-

tively) and Ct would be determined using a certain model (e.g. Dynamic model, Germano

et al. (1991)). Instead, in this study the closure for the eddy viscosity is provided by the ILSA

method (Integral Length-Scale Approximation) where the eddy viscosity is formulated as in

Piomelli et al. (2015), i.e.

�t = (CILSALILSA)2|S̃| (3.4)

where CILSA is a coefficient introduced by the model andLILSA the model length scale. As

mentioned by Piomelli et al. (2015), LILSA should be a fraction of the local, instantaneous

integral scale of turbulence. In particular, the formulation ofLILSA contained in Rouhi et al.

(2016) is adopted here, i.e.

LILSA =
< k̃3∕2 >z
< " >z

(3.5)

where k̃(x, y, z, t) is the local, resolved turbulent kinetic energy (k̃ = 1∕2ũ′iũ
′
i, with ũ

′
i the

fluctuating part of the resolved velocity field) and "(x, y, z, t) the local, total dissipation rate

(" = 2(� + �t)S̃′ijS̃
′
ij , with S̃

′
ij the fluctuating part of the resolved strain-rate tensor, given

by the resolved "̃ = 2�S̃′ijS̃
′
ij and subgrid "′t = 2�tS̃′ijS̃

′
ij dissipation rates). Both k̃ and

" are calculated locally and instantaneously. However, since LILSA is an integral quantity

representing the average size of an ensemble of eddies, an averaging operation has been

used along the homogeneous, spanwise direction (indicated with < ⋅ >z) in equation 3.5, as

recommended in Rouhi et al. (2016). This results in LILSA that varies in the directions x

and y and in time.

The definition of the length scale based on turbulence quantities implies some advan-
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tages. The LES filter is independent from the resolution of the computational grid used, as

specified in Piomelli et al. (2015). Also, the filter allows to switch automatically, without

any presumption on the local flow state, from a LES to a fully resolved, DNS (Direct Nu-

merical Simulations) approach. This feature is particularly important when the fluid domain

encompasses turbulent, laminar and transitional regions which can be tackled without the

intervention of any numerical artefact with a single formulation. When no energy is accu-

mulated by the subgrid fluctuations, the set of equations (3.2) switch automatically to the

three dimensional, unsteady, incompressible Navier-Stokes equations:

)ui
)t
+
)uiuj
)xj

= −1
�
)P
)xi

+ 1
Rec

)2ui
)xjxj

,
)uj
)xj

= 0 (3.6)

where P (x, y, z, t) is the fully resolved pressure fields.

Furthermore, the adoption of a small coefficient of the ILSA method (CILSA = 0.002)

determines the filter to act only on the smallest scales of the turbulent activity (Piomelli

et al. 2015). Ultimately, the fidelity of the methodology can be practically considered that

of a standard DNS.

3.2.1 Initial and boundary conditions

The differential equations (3.2) are equipped with boundary and initial conditions (indicated

B.C. and I.C.) to deliver a well posed differential problem. The boundary conditions are

expressed formally as

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ui = 0 at the wall, no slip condition

)P∕)n = 0 at the wall, impermeability condition

Inflow/Outflow at r→∞, free stream condition

(3.7)

where n is used to indicate the normal-to-the-wing-surface direction. The initial condition

for the velocity field uoi (x, y, z) may be chosen in multiple ways. It can be as simple as the

no-motion condition everywhere in the domain or fixed to the solution of a potential, inviscid

flow condition. In the latter case the Laplace equation for the velocity potential around the

aerofoil has to be solved for the specified incidence � and sweep Λ with no− slip condition

at the wall and free stream velocity Q⃗∞ at the outer boundary r → ∞. Using �(x, y, z) for

the velocity potential of the inviscid flow (u = )�∕)x, v = )�∕)y and w = )�∕)z), the
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potential problem can be written as

)2�
)xjxj

= 0 with

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

)�∕)n = 0 at the wall

)�
)x
x̌ + )�

)y
y̌ + )�

)z
ž =

|Q⃗∞|cos(�)cos(Λ)x̌+

+|Q⃗∞|sin(�)cos(Λ)y̌+

+|Q⃗∞|sin(Λ)ž for r→∞

(3.8)

where {⋅̌} has been used to indicate the unit vectors of the reference system.

3.3 Numerical formulation

The equations 3.2 with their boundary and initial conditions are discretised on a three-

dimensional, structured, conformal mesh occupying the flow domain around the wing. Their

time evolution is solved by an in-house-developed software called SUSA. Hereafter, along-

side to the requiredmesh details, the numerical formulation implemented into SUSAis briefly

presented. The numerical code is mostly written in the language FORTRAN-77. Further

details on the code, its parallelisation and the extensive validation campaign can be found

in previous publications (e.g. Lopes et al. (2006), Omidyeganeh & Piomelli (2011), Rosti

et al. (2016), Rosti (2016), Monti et al. (2019), Monti (2019)).

Equations 3.2 are further elaborated before proceeding with the discretisation in time and

space. The convective term is written in the conservative form (i.e. ũj
)ũi
)xj

= )ũiũj
)xj

). Also,

thanks to the incompressible formulation that simplifies the expression of S̃ij , the subgrid

stresses (here modelled with the artificial viscosity hypothesis) and the viscous diffusion

can be collected together (i.e. 1
Rec

)2ũi
)xjxj

+ )�ij
)xj

=
(

1
Rec

+ 1
Ret

)

)2ũi
)xjxj

, where Ret = CQ∞∕�t).

After the mentioned elaborations, the formulation to be discretised reads

)ũi
)t
+
)ũiũj
)xj

+ 1
�
)P̃
)xi

+
(

− 1
Rec

− 1
Ret

)

)2ũi
)xjxj

= 0,
)ũj
)xj

= 0. (3.9)

3.3.1 Time discretisation

The time discretisation is obtained via a fractional step method as in (Kim & Moin 1985),

breaking the time-advancement in two steps. The first one is the prediction step, which

provides the not-divergence-free ũ∗i (x, y, z) based on the known velocity and pressure fields
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at the previous instant of time n, ũni (x, y, z, t = tn) and p̃n(x, y, z, tn). The second is the

projection step, where the pressure correction �̃ is found enforcing on ũ∗i the divergence

free constraint. �̃ is the correction required to be applied to ũ∗i in order to find the updated

divergence-free velocity field at the time instant n + 1, ũn+1i (x, y, z, t = tn+1). The updated

pressure P̃ n+1(x, y, z, tn+1), containing the correction, is ultimately found. This procedure

formally reads

a) Prediction step
ũ∗i − ũ

n
i

Δt
+
)ũni ũ

n
j

)xj
+ 1
�
)P̃ n

)xi
+
(

− 1
Rec

− 1
Ret

) )2ũni
)xjxj

= 0

b) Projection step )2�̃
)xjxj

= − 1
Δt
)ũ∗i
)xi

c) Final update ũn+1i = ũ∗i +
1
Δt

)�̃
)xi

; P̃ n+1 = P̃ n + �̃

(3.10)

whereΔt is the chosen time advancement interval. The projection step is a Poisson equation

and thus an elliptic differential problem.

The prediction step formulated in 3.10 is totally explicit. This would impose stricter

constrains to the span of the time advancement interval to avoid numerical divergence of

the scheme. To relax the span of the time interval, a semi-implicit formulation is consid-

ered using the implicit Crank-Nicolson scheme for the wall-normal diffusive terms (the one

containing the expected higher shear stresses nearby the foil wall) and the explicit Adams-

Bashforth scheme for all the other terms. The actual prediction step formulation becomes

a)
ũ∗i − ũ

n
i

Δt
+

+ 1
2

(

− 1
Rec

− 1
Ret

)

[

)2ũ∗i
)y2

+
)2ũni
)y2

]

+

+ 3
2

{

)ũni ũ
n
j

)xj
+ 1
�
)P̃ n

)xi
+
(

− 1
Rec

− 1
Ret

)

[

)2ũni
)x2

+
)2ũni
)z2

]}

+

− 1
2

{

)ũn−1i ũn−1j

)xj
+ 1
�
)P̃ n−1

)xi
+
(

− 1
Rec

− 1
Ret

)

[

)2ũn−1i

)x2
+
)2ũn−1i

)z2

]}

= 0

(3.11)

where ũn−1i (x, y, z, t = tn−1) and P̃ n−1(x, y, z, tn−1) have been used. However, in the follow-

ing section the space discretisation will be shown for the simpler fully explicit prediction step

contained in equations 3.10. This choice is made to avoid an otherwise lengthier description

of the discretisation, that would not introduce anything formally different.
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3.3.2 Space discretisation

The LES equations (3.10) are space discretised using a second-order accurate, cell-centred

finite volume method inside the computational domain generated and meshed as follows.

Each wing cross section mounts a two-dimensional (2D),NACA−4412 aerofoil. The com-

putational domain on a generic chord plane, accommodating the 2D aerofoil, is sketched in

figure 3.3a. On the chord plane, the domain is meshed using a body fitted C−grid gener-

ated with the axis i along aerofoil surface s and j always normal to i. The term C−grid

refers to the C letter shape of the structured mesh that wraps the foil. For the first j layer of

the mesh, the direction j and n coincide along the aerofoil. The computational size of the

C−grid around the aerofoil (constituting the computational box) are graphically shown in

figure 3.3b. The virtual wake plane, shown in the figure causes theC−shape of the mesh and

(a)

(b)

Figure 3.3: (a)Planar view of a wing section showing a sample of the mesh adopted. i and j constitute the
mesh basis. n is the normal of the wing surface. nexactly coincides with the mesh axis j for the cell layer
embracing the aerofoil. (b) Size of the computational box used for the flow predictions.

is defined as the extension of the chord behind the aerofoil. It is remarked that the virtual
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wake plane is a technical artifice used to create a C−type structured mesh surrounding the

aerofoil, but does not have any physical meaning and it will be treated as a continuum space.

The i axis continues from the wall surface to the virtual wake plane. For the space discreti-

sation that will be presented in the following lines, a mesh composed by quasi-orthogonal

elements is required. To achieve such a goal, a minimum requirement is implicitly set for

the number of points used for the spatial discretisation in order to approximate the curvi-

linear foil geometry with quasi-orthogonal elements. It is not an easy matter to quantify

the minimum requirement. This is because the eventually generated numerical error has a

variable impact on the accuracy of the global flow prediction depending on the particular

level of the flowmomentum and its gradients across each mesh element. In general, a severe

quasi-orthogonality has to be imposed for those mesh elements in locations where there is

a concurrent high flow momentum combined with sharp gradients. As a consequence, the

mesh has to be increasingly fine (using a smooth spacing distribution) approaching the foil

by any direction, especially where the wall presents great curvature (i.e. nose and trailing

edge). Also, the grid resolution has to increase at high gradients presence (i.e. boundary

layer and recirculation locations). An iterative process is usually required to originate a suit-

able mesh which does not affect the accuracy of the flow prediction, as it will be presented

in section 3.5. It is mentioned that there is a geometrical non zero angle between the aerofoil

wall on the upper side at the trailing edge and the virtual wake plane. The mesh elements

nearby this location presents a constrained level of non-orthogonality depending on the men-

tioned angle. The proximity to the wall and the downstream location with respect to the foil,

usually determine a low momentum flow (i.e. low gradients at the wall vicinity) that helps

to maintain negligible the originated numerical error.

The 3Dmesh extension is achieved by extruding the 2Dmesh in k, corresponding to the

z direction using a uniform spacing Δz. The resulting computational domain is constituted

by quasi-cuboid cells, which are referred with the discrete notation in the mesh basis (i, j, k).

Each cell has a specific volume V (i, j, k) and surface area S(i, j, k) with outward normal n⃗.

According to the finite volume method, each cell of the mesh corresponds to the control

volume where the equations 3.10 have to be satisfied. The discretisation method is conserva-

tive for the mass and flow momentum by construction, since the cells are all contiguous, not

overlapping and sharing an equal surface between each other in all the directions. The com-

putational solutions of the discretised equations (P n+1 and un+1i ) are defined at the centroid

of each cell, thus the name co-located cell centred approach. The number of computational

nodes isNi,Nj andNk in the three axes forming the mesh basis. The co-located approach
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has some advantages (e.g. a simplified coding formulation and minimized memory and

computational impact), but also drawbacks (it may lead to the occurrence of spurious os-

cillations in the pressure field). The specific approach of Rhie & Chow (1983) is used to

avoid fictitious pressure oscillations eventually generated by the co-located formulation. A

discussion of its implementation can be found in Rosti (2016).

To find the finite volume formulation, the equations 3.10 are integrated on each control

volume. Here, the procedure is shown for the generic cell (i, j, k) with centroid called P .

The integrated equations read

a) ∫V

ũ∗i − ũ
n
i

Δt
dV + ∫V

)ũni ũ
n
j

)xj
dV + ∫V

1
�
)P̃ n

)xi
dV +

(

− 1
Rec

− 1
Ret

)

∫V

)2ũni
)xjxj

dV = 0

b) ∫V
)2�̃
)xjxj

dV = − 1
Δt ∫V

)ũ∗i
)xi

dV

c) ũn+1i (i, j, k) = ũ∗i +
1
Δt

)�̃
)xi

; P̃ n+1(i, j, k) = P̃ n + �̃.

(3.12)

The gauss theorem ∫V
)Fi
)xi
dV = ∮S FinidS, with Fi generic differentiable vector field, is

used to obtain the formulation showing the fluxes across the cell boundaries as intended by

the finite volume method,

a) ∫V

ũ∗i − ũ
n
i

Δt
dV + ∮S

ũni ũ
n
jnjdS + ∮S

1
�
P̃ nnidS +

(

− 1
Rec

− 1
Ret

)

∮S

)ũni
)xj

njdS = 0

b) ∮S
)�̃
)xj

njdS = −
1
Δt ∮S

ũ∗i nidS

c) ũn+1i (i, j, k) = ũ∗i +
1
Δt

)�̃
)xi

; P̃ n+1(i, j, k) = P̃ n + �̃.

(3.13)

To solve the equations, a numerical approximation for the surface and volume integrals

have to be introduced. The volume integral is approximated considering the value of a

generic quantity q(x, y, z) as constant within the cell and equal to the value at the cell centre

P . This allows a second-order accuracy for the integral approximation, which reads

∫V
qdV ≈ qP (i, j, k)Vp(i, j, k). (3.14)

The same second-order accuracy is desired for the surface integrals, thus the integrand func-

tions are approximated with the value at the centre of each surface, referred with the surface

name. Thanks to the cuboid shape of each cell, the cell surface is the sum of the six contri-

butions in the three directions. In figure 3.4 a generic cell is sketched with its local axes. To
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Figure 3.4: Three dimensional sketch of the generic cell (i,j,k) with cell centre P . The local basis i, j, k
is shown. The centres of the cell faces are indicated with e, n, t, w, s, b, while the centres of the adjacent
cells composing the global structured mesh with E,N, T ,W , S, B.

guide the reader, the common nomenclature adopted in the following lines for the surfaces

and cell centres is shown in the three-dimensional space (the nomenclature is similar to that

in Ferziger & Peric (2002)). The surfaces are referred as e(i, j, k) and w(i, j, k) in the i di-

rection; n(i, j, k) and s(i, j, k) in the j direction; t(i, j, k) and b(i, j, k) in the k direction. The

cell centre of the adjacent cell across surface e is referred as E(i, j, k) (also, thanks to the

structured property of the mesh it can be referred as cell centre (i+1, j, k)). That one across

n asN(i, j, k) (or cell centre of the global mesh (i, j +1, k)) and across t as T (i, j, k) (or cell

centre (i, j, k+1)). The same applies for the remaining neighbouring cells. The approxima-

tion of the surface integral of the generic flux f (x, y, z) (which can be any of the convective

fluxes ũni ũ
n
jnj , the diffusive fluxes

)ũni
)xj
nj , the pressure fluxes in the prediction step P̃ nni or

the pressure-correction gradient fluxes in the projection step )�̃
)xj
nj) across the surface e, for

instance, is obtained as

∫Se
fdSe ≈ fe(i, j, k)Se(i, j, k). (3.15)

The value of the fluxes at the surface centre is obtained interpolating the values of the two

nearest computational nodes, in the direction of the surface normal, i.e.

fe = fE�e + fP (1 − �e) (3.16)

with �e(i, j, k) being the linear interpolative factor based on the positions of e, P andE. The
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interpolation reads

�e =
|r⃗e − r⃗P |
|r⃗E − r⃗P |

. (3.17)

The surface centred derivative is elaborated via the use of the directional derivative prop-

erty (()f (x, y, z)∕)xj)nj = )f∕)nj) and subsequently approximated with a central differ-

ence scheme centred at the surface centre. Thus the diffusive contribution in the prediction

step or the pressure one in the projection step become

(

)�̃
)xj

nj

)

e
=
(

)�̃
)ni

)

e
≈
�̃E − �̃P
|r⃗E − r⃗P |

()ũni
)xj

nj

)

e
=
()ũni
)nj

)

e
≈
ũinE − ũi

n
P

|r⃗E − r⃗P |
.

(3.18)

This approach does not introduce spurious oscillations as long as the points P , e and E lie

on the same line, and the latter corresponds to the outward normal of the surface centred

in e. This is valid for an orthogonal mesh, composed by orthogonal elements (Ferziger

& Peric 2002). Otherwise, the deferred correction (Böhmer et al. 1984) is used via the

formulation proposed byMuzaferija (1994). A discussion of its implementation can be found

in Ferziger & Peric (2002) or in Rosti (2016). Extra care has been taken to generate the

current mesh embracing the foil in order to avoid strongly non-orthogonal cells (more details

are given in section 3.5), but the correction has been implemented to reduce the numerical

error in specificmesh locations and to allow for a relaxation of the resolution, where possible.

Note that this correction slightly reduces the second-order accuracy of the present method

as assessed by Rosti (2016).

3.3.3 Numerical boundary conditions

The flow condition to be simulated is that of the infinite wing, i.e. indefinitely extended

wing in the spanwise direction. Due to the finite size of the computational box, a periodic

boundary condition is enforced at the virtual surfaces bounding the box in the spanwise

direction. This is a common practice for the numerical simulations of infinite wings, adopted

by many authors (e.g. Jones et al. (2008), Hain et al. (2009)).

The C−type mesh introduces an additional numerical boundary as already mentioned

in section 3.3.2 at the so called virtual wake plane. Such a mesh assembly is required to

generate a structured mesh surrounding the curvilinear foil. The flow field on the virtual

wake plane is not known and is part of the flow prediction. However, the virtual plane is

numerically constituted by two separate but coinciding planes using the structured character
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of the mesh. On these two planes, a numerical boundary condition of continuity of the flow

field is enforced across the virtual wake plane.

On the outer computational boundary, an inlet/outlet condition is set. To determine

which portion of the boundary in all the parallel chord planes (or k planes in the discretised

space) is either an inlet or an outlet, a local spanwise average of the fluid velocity is evaluated

in a tiny region close to the boundary at each time step. When the averaged flow direction

points outward, the corresponding portion of the boundary is assumed to be an outlet, and

is treated using a convective non-reflective boundary condition. Conversely, if the flow di-

rection is directed inward, the corresponding boundary surface is considered to be an inlet,

and a Dirichlet type condition based on an irrotational flow approximation is employed. In

particular, the value to be assigned to the velocity is determined by solving a companion

potential equation (similar to that formulated in equation 3.8) discretised via a Hess-Smith

panel method (Hess & Smith 1967). The boundary condition for the potential equation is

the free stream condition, i.e.

⎧

⎪

⎪

⎨

⎪

⎪

⎩

U∞ = |Q⃗∞|cos(�)cos(Λ)

V∞ = |Q⃗∞|sin(�)cos(Λ)

W∞ = |Q⃗∞|sin(Λ)

(3.19)

where � and Λ are the specific incidence and sweep for each of the wing configuration

simulated. Once the potential flow is solved, the resulting flow condition is enforced on the

inlet portion of the outer boundary as a Dirichlet condition. A sketch graphically showing

the outer boundary treatment is shown in figure 3.5. The adoption of this adaptive inlet/outlet

condition based on a potential flow solution allows to consider more compact x−y domains

without compromising the quality of the predicted solution Rosti (2016).

As can be noticed, the free stream condition is modified by the introduction of a constant

spanwise velocity (dependent on the value of the sweep) to model the swept wing configu-

ration.

At the foil wall is implemented the no-slip and impermeability boundary conditions as

formulated in section 3.2.1.
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Figure 3.5: Sketch graphically showing the outer boundary treatment and computational dimensions.

3.3.4 Solution of the discretised equations

Substituting all the approximation schemes in equations 3.13, the solving discretised equa-

tions for the unknowns ũ∗i and �̃ of the cell (i, j, k) become

Prediction step (3.20)

aIS ũ
∗
i (i, j − 1, k) + a

I
P ũ

∗
i (i, j, k) + a

I
N ũ

∗
i (i, j + 1, k) = b

I (i, j, k)

Projection step (3.21)

aIIB �̃(i, j, k − 1) + a
II
W �̃(i − 1, j, k) + a

II
S �̃(i, j − 1, k) + a

II
P �̃(i, j, k)+

+ aIIT �̃(i, j, k + 1) + a
II
N �̃(i, j + 1, k) + a

II
E �̃(i + 1, j, k) = b

II (i, j, k)

where the known coefficients aIP … , aIIP … have been named accordingly to the computa-

tional node they are referred to; bI and bII are the known right-hand-side of the equations.

The superscript ⋅I has been used for any coefficient of the prediction step, while ⋅II for those

of the projection step. Conversely with respect to the coefficients, the indices notation is kept

for the unknowns. This choice is made to make an easier connection with the matrix notation

that will follow when assembling the discretised equations from the cells.

When all the cells are considered at the same time, the problem can be described as the

search for the solutions of two separate linear systems (one for the prediction step and one for

the correction step) in the discrete unknowns ũ∗i (i, j, k) and �̃(i, j, k) with i = 1…Ni, j =
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1…Nj and k = 1…Nk. The problem can be written using the matrices formulation. To

this aim, each of the discrete unknowns and right-hand-side terms of the equations for all the

cells are organised in two vectors. The resulting size of each vector is [NiNjNk × 1], while

that of the matrices (A) containing the coefficients of the unknowns is [NiNjNk×NiNjNk].

The linear systems can be formally written as,

Prediction step [AI ]{ũ∗} = {bI} (3.22)

Projection step [AII ]{�̃} = {bII} (3.23)

where [⋅] has been used to indicate a matrix and {⋅} for a vector. The boundary condition

are simply enforced modifying specific rows of the matrices corresponding to the boundaries

locations (Ferziger & Peric 2002).

The two matrices (AI and AII ) are different and the corresponding linear systems re-

quire different computational power to be solved. AI is quasi-three-diagonal. The partially

implicit formulation used only along the j direction would imply a three-diagonal matrix

for each sector of the matrix representing the solution into the computational mesh along a

j = 1,… , Nj cell-column for all i and k locations. The j columns would be totally indepen-

dent to each other since no implicit formulation is used along i and k. This is valid for those

j-columns starting from the wing surface. In the wake this is not valid, due to the boundary

condition of continuity across the virtual wake plane. The j-column starting from the virtual

wake and extending below it is tied to the base cell of the j-column starting from the same

location on the virtual wake plane but extending above it, and vice versa. Since the two

spatially-adjacent j-columns (below and above the virtual wake plane) do not correspond to

adjacent sectors in the AI matrix, the consequence is the appearance of some sparse values

in the matrix. The number of sparse values is proportional to the number of i points used to

discretise the virtual wake plane. To avoid the factorisation of a sparse matrix, which would

be computationally more expensive (Quarteroni et al. 2014), the solution of the linear system

linked to the AI matrix is re-arranged in blocks: one block is constituted by those values

corresponding to the j-columns starting from the aerofoil surface in the computational mesh

(number of elements in i and k referred as NFOIL
i and NFOIL

k ); the second is that formed

by those columns having their base on the virtual wake plane (number of elements in i and k

referred asNWAKE
i andNWAKE

k ). The former block is composed byNFOIL
i NFOIL

k three-

diagonal matrices of size [Nj ×Nj] and it is factorised without further elaborations via the

Thomas factorisation (Quarteroni et al. 2014). The latter is re-arranged in order to have
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numerically contiguous columns across the virtual wake plane and allow for a faster factori-

sation. Thanks to the re-arrangement, the block initially constituted by NWAKE
i NWAKE

k

sparse matrices of size [Nj ×Nj] results composed by 1∕2NWAKE
i NWAKE

k three-diagonal

matrices of size [2Nj × 2Nj]. The block is ultimately solved via the Thomas factorisation

(Quarteroni et al. 2014).

AII is quasi-seven-diagonal due to the implicit formulation in all the three directions

(consequence of the elliptic character of the Poisson equation in the projection step) and

the virtual wake plane treatment. It represents the most expensive part of the computation.

To cut down on the computational cost, the Fourier expansion along the spanwise, periodic

direction is deployed.

3.3.5 Fourier expansion deployed

To ease the computational cost required to obtain the solution of the linear system represent-

ing the projection step, the discrete Fourier expansion in the spanwise, periodic direction is

adopted. The expansion, using J for the imaginary unit and {⋅̂} to refer to a quantity in the

frequency domain, reads as

�̃(i, j, k) = 1
Nk

Nk−1
∑

ik=0

̂̃�ik(i, j)e
2�Jikk
Nk (3.24)

Examples of the effect of the Fourier expansion introduction to the expression of the com-

putational unknowns are provided:

�̃(i, j, k + 1) = 1
Nk

Nk−1
∑

ik=0

̂̃�ik(i, j)e
2�Jik(k+1)

Nk = 1
Nk

Nk−1
∑

ik=0

̂̃�ik(i, j)e
2�Jikk
Nk e

2�Jik
Nk

�̃(i + 1, j, k) = 1
Nk

Nk−1
∑

ik=0

̂̃�ik(i + 1, j)e
2�Jikk
Nk

�̃(i, j + 1, k) = 1
Nk

Nk−1
∑

ik=0

̂̃�ik(i, j + 1)e
2�Jikk
Nk .

(3.25)

When the Fourier transform is introduced in equation 3.21, representing the projection

step of the cell (i, j, k), the spatially-dependent � unknowns along the k direction can be
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reduced to an independent summation of unknowns in the wavenumber space, i.e.

aIIT �̃(i, j, k + 1) + a
II
P �̃(i, j, k) + a

II
B �̃(i, j, k − 1) =

= aIIT
1
Nk

Nk−1
∑

ik=0

̂̃�ik(i, j)e
2�Jikk
Nk e

2�Jik
Nk + aIIP

1
Nk

Nk−1
∑

ik=0

̂̃�ik(i, j)e
2�Jikk
Nk +

+ aIIB
1
Nk

Nk−1
∑

ik=0

̂̃�ik(i, j)e
2�Jikk
Nk e−

2�Jik
Nk =

= 1
Nk

Nk−1
∑

ik=0

̂̃�ik(i, j)e
2�Jikk
Nk

(

aIIT e
2�Jik
Nk + aIIP + aIIB e

− 2�Jik
Nk

)

=

= 1
Nk

Nk−1
∑

ik=0

̂̃�ik(i, j)e
2�Jikk
Nk

(

aIIP + 2aIIT cos(
2�ik
Nk

)
)

. (3.26)

Note that aIIT = aIIB due to uniformmesh in the k direction, therefore
(

aIIP + 2aIIT cos(2�ik
Nk
)
)

is a real number.

When the same elaboration is applied for all the cells of the mesh, the global system of

the projection step can be assembled again using the matrix formulation. The quasi-seven-

diagonal linear system is transformed inNk independent quasi-five-diagonal linear systems

for all the wavenumbers ik = 0…Nk − 1 in the wavenumber space.

3.3.6 Parallel computing implementation

When hundreds of millions of computational nodes are used to discretise the computational

domain (as in the present case), the computational power and fast-access-memory required

for the solution of the projection step cannot be provided by a single computer. Therefore

the code is parallelised using the MPI message passing protocol (Forum 1994) and run on a

TIER-1 high performance computational machine (HPC) with distributed memory and ul-

traband communication. The technique of the domain decomposition is deployed in the i

direction and each block is assigned to a different computational core in the parallel infras-

tructure. A typical parallel configuration to carry out the three-dimensional, high-fidelity

flow prediction of the present investigation employs hundreds of computational cores. The

contiguous blocks exchange planes at the interfaces, which are needed to compute convec-

tive and viscous derivatives with a second order finite volume formulation. Communication

between neighbouring blocks is handled by means of MPI Sendrecv directives by exploiting

the topological connectivity, which is directly implemented with MPI.

The parallelisation implies additional complications when the implementation of both
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the prediction and projection steps is considered. In the prediction step, an efficient commu-

nication between the cores across the domain blocks on the virtual wake plane is required.

This as a consequence of the continuity boundary condition enforced between the two sides

of the plane. In SUSA, the linear systems corresponding to the j-columns in the aerofoil wake

are reduced before the MPI communication is established in order to lower the number of

information to be exchanged in the communication. In the projection, the elliptic character

of the Poisson equation poses a serious threat to the parallel computation performances. A

classic implementation would use each computational core to solve each of the independent

quasi-five-diagonal system associated with a specific wavenumber. This method implies

an MPI communication across all the decomposed blocks to assign a global problem for

each wavenumber (representing the discretisation in the i and j direction of whole compu-

tational domain) to each core. The communication would pose serious scalability issues

when the number of core of the distributed machine is in the order of the hundreds, even

when ultraband communication is available. The actual implementation does not adopt this

methodology. Instead, the parallel data structure of theNk independent, quasi-five-diagonal

systems from each i block is passed to the PETSc library (Balay et al. 2019). The library

directly deals with the solution of the global, spectral Poisson problem using high perfor-

mances methods (Krylov methods) implemented ad-hoc for the solution of spectral elliptic

problems with distributed memory computing architectures (Balay et al. 2019). In partic-

ular, the iterative Biconjugate Gradient Stabilized (BiCGStab) method is used during the

current investigation. The scalability of the Krylov solver with increasingly larger parallel

machines strongly depends on the preconditioner that is selected among the suite offered by

PETSc (Crone &Munday 2014). In particular, the Euclid preconditioner (Balay et al. 2019)

is found to be the most beneficial for the parallel computations carried out by the present

investigation.

3.4 Flow evolution and statistically steady state

When the flow predictions are computed, an initial transient evolution and a dynamic equi-

librium are observed for each prediction. The initial transient can be representative of a

fictitious dynamic (e.g. numerical transient from an inviscid initial condition to a viscous

flow condition or from a two-dimensional initial condition to a three-dimensional flow) or a

physical dynamic (e.g. transient from one incidence condition to another). In any case, for

each steady boundary and flow conditions (i.e. Reynolds number, angle of attack, sweep)
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Figure 3.6: Time evolution of the wing integral performances during a two-dimensional flow prediction.
(Top) Cl; (Bottom) Cd .

considered, each flow prediction is observed to evolve from the initial transient to a dynamic

equilibrium state. The equilibrium state allows to define a statistically steady state of the

flow condition, which implies a statistically steady flight condition of the wing. Figure 3.6

shows a typical two-dimensional flow prediction by looking at the time evolution of the wing

integral performances, namely the coefficient of lift Cl and that of total drag Cd . The initial

transient can be seen until t∗ = tQ∞∕C ≃ 10 (the superscript {⋅}∗ is used to indicate a quan-

tity made non dimensional using Q∞ and C). After, the dynamic system can be considered

to be statistically steady.

The transient evolution of the flow condition is not of interest during the present inves-

tigation, which provides a swept/unswept comparison within the statistically steady state

framework. All the statistical results that will be presented refer to the flow field once the

statistically steady state is reached. Whenever a time average is computed, it is intended for

a time window outside the initial transient.

A typical flow prediction requires roughly a day to march for a time interval Δt∗ =

ΔtQ∞∕C ≃ 1, using a parallel computing infrastructure composed by hundreds of cores.

The daily nominal cost of a typical flow prediction, as estimated by the ARCHER cal-

culator (HPC mostly used for the current investigation, ARCHER (2020)), is about £100.
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Therefore, shortening any transient solution can be enormously beneficial to the total com-

putational time required for the simulations. For this reason, a preliminary two-dimensional

flow condition of the unswept wing at 5o incidence is carried out using the potential flow

as initial condition. The resulting flow field is subsequently used as initial condition for the

corresponding three-dimensional simulation. Once the statistically steady state is achieved,

the flow field is used as initial condition for all the other cases simulated (swept wing and 10o

incidence case). Whilst the adopted strategy, an initial transient with a time scaleΔt∗ ∼ O(5)

is observed (but not considered) for all the simulated cases.

3.5 Grid refinement study

To assure the independence of the resolved scales from the computational grid used to dis-

cretise the domain, a grid refinement study for the flow case of an infinite straight wing with

a spanwise domain extension of 20%C has been carried out. This consideration becomes

particularly stringent when a laminar free-stream condition is specified as this condition

may lead to unsteady separation and a later turbulent transition of the shear layer along the

aerofoil, as mentioned in section 2.3. This phenomena set local, unsteady gradients that are

difficult to estimate a-priori. In these conditions, no universal or accepted empirical criteria

on the mesh requirements are available and an iterative grid refinement must be unavoidably

carried out.

A starting mesh has been selected following the guidelines in Rosti (2016) and then a

roughly 50% finer grid (in j and k directions) has been generated to allow for a compari-

son. As a target guideline, the aspect ratio of the mesh cells where the flow recirculation

was expected has been kept close to 1. In this location the shear stress seems not to have

a preferential direction, due to the chaotic flow pattern of the three-dimensional vortices

breakdown to turbulence (Yarusevych et al. 2009). Not having achieved satisfactory con-

vergence (difference between the time and spanwise average of the flow fields smaller than

10%, especially for the velocity profiles), another grid has been generated. The latter has

been refined mostly in the area where the separating and recirculating flow takes place. Due

to the structured character of the mesh, the refinement of a specific domain area in the j

direction implies the same refinement everywhere in the domain for that j layer of cells. A

smooth variation of spacing is assured between these differently refined area. For the j layer

coinciding with the aerofoil wall, the same spacing in the i direction is used for the adjacent

elements at the trailing edge (one per each side of the foil and one per each side of the virtual
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Figure 3.7: Distribution of the minimum included angle between 90o (red) and 82o (blue) of the quasi-
orthogonal mesh elements nearby the trailing edge. The virtual wake plane is indicated with a thick dashed
line.

Ni Nj Nk
Coarse 2773 191 87
Medium 2881 279 165
Fine 3361 379 301

Table 3.1: Number of computational nodes in the three directions for the meshes considered during the
grid refinement study.

wake plane). The stretching along the i and j directions is kept below 2% everywhere in the

close surrounding of the foil (proximity in the order of the chord size, formally ∼ O(C)), but

for a few elements above the trailing edge. In this location, due to the virtual wake plane an-

gle, the stretching for some elements increases to almost 12% in the i direction and 4% in the

j direction. In general, the spacing in the i direction on the upper side of the foil is smaller

than that on the bottom side, since the highest velocity gradients will be shown to appear

above the wing. The spacing in the i direction is smoothly distributed in order to avoid any

sharp discontinuity anywhere along the foil, on the virtual wake plane or at the interface

between the two. To achieve a structured mesh around the curvilinear foil geometry com-

posed by quasi-orthogonal elements, as required for the present numerical formulation, the

minimum included angle of each element has been kept everywhere greater than 85o (note

that all the included angles of an element in an orthogonal mesh are 90o). The elements on

top of the trailing edge, adjacent to it, are exceptional and constrained by the foil geometry.

The minimum included angle decreases as low as 82o for these elements. Figure 3.7 shows

the distribution of the minimum included angle of the elements nearby the trailing edge.

The number of computational nodes for the three meshes (referred as Coarse, Medium

and Fine) can be found in table 3.1. In particular, the number of points on the upper foil side

for the Coarsemesh is 616, theMediummesh is 653 and for the F inemesh is 1002. On the

bottom side, 444 points are used for the Coarse mesh, 466 points are used for theMedium
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mesh, while 528 for the F ine mesh.

The preliminary mesh design process was carried out by using as a metric the conver-

gence of mean velocity profiles < utg >z,t (x, y) (the notation < ⋅ >z,t is used to indicate

the time and spanwise average operation) and of the fluctuating kinetic energy production

<  >z,t (x, y) (with  = u′iu
′
j) < ui >z ∕)xj where u

′
i is the perturbation velocity field and

< ui >z the spanwise averaged one). For the time average, the evolution of the system in a

statistical steady state (defined in section 3.4) has been considered using a time window of

over 30Q∞∕C time units, sampling it with a frequency of f = 2000C∕Q∞. The comparison

in arbitrary locations along the chord and into the wake of mean wall-tangent velocity pro-

file resulting from the computation with different meshes is shown in figure 3.8. The almost

perfect match of the profiles with the Medium and Fine meshes can be appreciated, while a

clear mismatch is observed when theCoarse grid is adopted. Quantitatively, considering the

profiles extracted at the chord location x∕C = 0.30, the velocity difference at the wall nor-

mal location n∕C = 0.01 (n being the normal to the wall direction) is 12.5% between Coarse

andMedium (having defined the difference as |uMedium−uCoarse|∕|uCoarse|) and 6% between

Medium and Fine (having defined the difference as |uF ine − uMedium
|∕|uMedium

|). The com-

parison of the fluctuating kinetic energy production profiles obtained with different meshes

is presented in figure 3.9. A good agreement is found between the profiles obtained with

the Medium and the Fine meshes, while the profile obtained with the Coarse grid presents

several differences. Not only the peak value appears wrongly estimated, but also its vertical

location. Considering the profiles extracted at the location x∕C = 0.55, the difference of the

predicted wall normal location of the fluctuating kinetic energy production is 11% between

Coarse andMedium and 3% betweenMedium and Fine. Hence, the meshMedium has been

adopted to carry out the present investigation.
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Figure 3.8: Profiles of < utg >z,t ∕Q∞ extracted along the aerofoil (Top) and into the wake (Bottom) for
the three meshes compared. × for the Coarse mesh, ◦ for the Middle and solid line for the fine one. Flow
condition: ReC = 50 × 103, � = 5o,Λ = 0o, laminar inlet.
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Figure 3.9: Profiles of <  >z,t C∕Q3
∞ extracted along the aerofoil (Top) and into the wake (Bottom) for

the three meshes compared. Legend as in figure 3.8
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3.6 Extension of the computational domain study

Aiming to numerically simulate flow conditions of infinite wings, an analysis on the impact

of the spanwise size of the computational domain has been carried out. Previous numerical

studies on similar flow conditions (i.e. flow around infinite straight or swept back wings

simulated via LES or DNS) lack a clear rationale on the selected domain size. Some have

simulated the transitional and turbulent flows past an infinite wing using a spanwise domain

extension of 0.1C (Vinuesa et al. (2018), flow at Rec = 100 × 103, tripped), some have

used 0.2C (Uranga et al. (2011), flow at Rec = 60 × 103; Vinuesa et al. (2018), flow at

Rec = 200 × 103, tripped). Others have used a larger domain size of 0.4C (De Tullio &

Sandham (2017), flow at Rec = 50 × 103).

Therefore, it has been preferred to conduct a preliminary assessment rather than relying

on parameters suggested by other authors before undertaking the investigation that is the ob-

ject of the thesis. The spanwise domain size has been assessed by considering the variations

of the statistical features of the flowfield. In particular, the results obtainedwhen considering

two infinite straight wings with a spanwise extension of 0.2C and 0.4C have been consid-

ered within an incoming laminar flow frame. The time average has been collected through

50Q∞∕C time units, after the condition of statistically steady flow (as defined in section 3.4)

has been achieved. Figure 3.10 shows a comparison between the two cases in terms of the

mean velocity< utg >z,t (the notation< ⋅ >z,t is used to indicate the time and spanwise aver-

age operation). A satisfying match between the two cases is observed both along the aerofoil

and in the wake. Quantitatively, when considering the profiles extracted at the chord loca-

tion x∕C = 0.30, the velocity difference at the wall normal location n∕C = 0.01 (n being

the normal to the wall direction) is 5.5% between the two simulated cases with different

spanwise extension. Differently, when considering <  >z,t (x, y) (shown in figure 3.11)

and the turbulent dissipation < " >z,t (x, y) (where " = 1∕Rec)ui′∕)xj)ui′∕)xj , shown in

figure 3.12), the effect of the spanwise size of the domain becomes clear. In particular, in

the narrow case <  >z,t seems to be over-predicted along the foil surface, whilst almost

uninfluenced by the domain size in the wake region. Considering the profiles extracted at the

location x∕C = 0.55, the difference of the predicted peak of the fluctuating kinetic energy

production is overestimated by 40% at the smaller computational box. Turbulence dissipa-

tion in the narrower domain presents a complementary behaviour with a similar distribution

on the wing and a short prediction in the wake. When the profiles extracted at the location

x∕C = 1.25 are quantitatively compared, the difference at the vertical location y∕C = 0.08
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is found to be 22%, underestimated by the narrower computational box. A vertical shift in

the profiles of both <  >z,t and < " >z,t is also noticed in the rear part of the suction

side when comparing the differently extended boxes. This implies a wrong estimation of the

shear stress layer location by the narrower box.

In view of the non-negligible difference in the distribution of the production and dissi-

pation of the turbulent kinetic energy, all the flow field predictions that will be presented

were obtained considering the wider spanwise domain extension (i.e. 0.4C). This domain

configuration increases the level of confidence in the conclusions that arise when comparing

swept vs unswept wings. Due to the larger extension, the number of computational nodes

in the spanwise direction for the mesh (Medium as defined in section 3.5) used throughout

the investigation object of the thesis becomes Nk = 330. The ultimate size of the mesh

considered for the swept/unswept flow comparison is therefore Ni = 2881, Nj = 279 and

Nk = 330. The number of resulting computational nodes discretising the computational

flow domain isNtot ≈ 250 × 106.

The present investigation did not consider a larger computational box due to the even

more demanding computational cost that would be faced. Therefore, a spanwise extension

of 0.4C has to be considered a minimum requirement for the numerical investigation of the

flow scenarios considered here, but may not be a sufficient extension when a higher order of

accuracy is targeted.
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Figure 3.10: Profiles of < utg >z,t ∕Q∞ extracted along the aerofoil (Top) and into the wake (Bottom) for
the 0.2C and 0.4C spanwise extended domain. ◦ corresponds to the 0.2C case, while the solid line is the
0.4C case. Flow condition: ReC = 50 × 103, � = 5o,Λ = 0o, laminar inlet.
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Figure 3.11: Profiles of <  >z,t C∕Q3
∞ extracted along the aerofoil (Top) and into the wake (Bottom)

for the 0.2C and 0.4C spanwise extended domain. Flow condition and symbols as in figure 3.10.
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Figure 3.12: Profiles of < " >z,t C2∕Q2
∞ extracted along the aerofoil (Top) and into the wake (Bottom)

for the 0.2C and 0.4C spanwise extended domain. Flow condition and symbols as in figure 3.10.
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3.7 Inflow configurations

For the present comparison between swept and unswept wing configurations, two scenarios

of the free stream flow approaching the wing have been considered to simulate the laminar

and the turbulent boundary layer separation.

To investigate a laminar boundary layer separation on the wing at incidence, an undis-

turbed inlet has been considered similarly as into the literature (e.g. Jones et al. (2008),

Yarusevych et al. (2009)). Within this frame, the NACA − 4412 at an incidence of � = 5o

will be shown in section 4.1 to naturally host a laminar separation on the suction side, inde-

pendent of the sweep.

At the moderate Reynolds number considered here, the boundary layer has been tripped

using strong perturbations in the free stream. This allows to force an early transition and to

form a developing turbulent boundary layer on the verge of separation on the wing. This

approach allows to mimic higher Reynolds flow turbulent separation with a limited numeri-

cal cost. The tripping approach adopted here presents some similarities to that investigated

by Brandt et al. (2004) for the case of the transition to turbulence of a Blasius profile on a

flat plate. Specific flow perturbations (representative of a free stream turbulence, FST) have

been injected upstream of the wing to trigger a developing turbulent boundary layer from

a location nearby the wing leading edge (see section 5.1). The superimposed disturbances

may trigger the boundary layer transition through a by-pass mechanism (Morkovin 1993)

governed by the Klebanoff modes (Schlatter et al. 2008), as it will be further discussed in

section 5.1.3. The characteristics of the perturbations are discussed with further detail in

the following section. A detailed comparison between the flow fields with and without the

injected perturbation field will be presented among the results in section 5.1. Two static

incidences have been separately tested for both the wing configurations, namely � = 5o and

� = 10o. The selection of the two loading conditions have allowed for a wider characterisa-

tion of the turbulent separation mechanism, thanks to the consequently different amount of

flow detachment on the wing suction side.

3.7.1 Free stream turbulence generation and injection

As already mentioned, a turbulent boundary layer developing on the wing at the considered

low Reynolds number is achieved by superimposing to the incoming laminar flow a turbu-

lence field. The latter is obtained through an independent DNS of grid generated turbulence

performed prior to the computations of the wing fields. The strong incoming disturbances
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Figure 3.13: Illustrations of the virtual net (Left) and the flow structures generated when the unidirectional
flow goes past it (Right). The flow is aligned with the x direction. By the courtesy of Dr. Muhammad
Farrukh Shahab who developed the baseline method to generate the grid turbulence in SUSA and provided
the figure.

trigger the initially laminar boundary layer to turbulence in the proximity of the leading

edge by the by-pass mechanism (Morkovin 1993). The perturbations mimic the presence of

isotropic turbulence (Pope 2000) behind a uniform grid when a uniform unidirectional flow

condition crossing an orthogonal indefinitely-extended virtual net is considered. Figure 3.13

shows a representative illustration of the virtual grid and the flow structures generated when

the unidirectional flow goes past it (the flow structures are identified by the Q-criterion (Hunt

et al. 1988)). The virtual net is implemented via the immersed boundary method (Peskin

1972). The Immersed Boundary Method (IBM) is a numerical technique used to simulate

flow fields past bodies that do not necessarily conform with the computational grid. In the

SUSA code, a number of IB methods have been implemented and validated. The interested

reader can find the implementation details and the validations of the IBM methods in SUSA

in Omidyeganeh & Piomelli (2011), Rosti et al. (2016), Rosti (2016), Monti et al. (2019),

Monti (2019). By tuning the geometry of the virtual grid, it is possible to generate a grid

turbulence with a satisfying spectra and pre-specified integral scales. For the grid turbulence

computation, the flow condition is set with ReM = 2000 (based on the free stream velocity

approaching the grid and the grid spacingM = 0.045C) and ReB = 210 (based on the rod

size B = 0.005C; corresponding solidity equal to 0.21). The resolution of the uniform-grid

has been tuned to preserve the targeted turbulent spectra (grid resolution matching the gen-

erated Kolgomorov’s scale). Similarly, also the spacing of the nodes where the body forces

mimic the presence of the virtual grid has been tuned to resolve all the flow scales of the

grid turbulence.

The unsteady perturbed flow field is introduced upstream of the aerofoil at each time-
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step. The location of the plane where the grid turbulence is introduced in the flow field is

quite critical. One would like to inject a homogeneous and isotropic turbulent kinetic energy

spectrum while avoiding a too strong decay of the turbulence intensity before impacting on

the aerofoil. For long time integrations the injected turbulent signal is recycled through

stored solutions. To avoid the introduction of artificial time scales into the turbulent field,

the perturbation coherence is completely broken via the introduction of white noise on top

of each turbulent field injected. It is noted that the prediction-projection approach helps to

reduces the eventual generation of spurious oscillation where the fictitious perturbations are

introduced. An illustration of the introduced perturbation can be found in picture 3.14.

Figure 3.14: Illustrations of the introduced free stream turbulence (Left) and its effect on the flow past the
aerofoil (Right).

The power spectral density of the non-dimensional turbulent kinetic energy time signal

(i.e. PSD{k} = ℱ
{

k(t)∕Q2∞
}

ℱ
{

k(t)∕Q2∞
}

, where the turbulent kinetic energy is k(t) =

1∕2 [u′u′(t) + v′v′(t) + w′w′(t)], the symbol {⋅̄} indicates the complex conjugate operator

and the symbol ℱ {⋅} indicates the Fourier transform operator) of the perturbation field

extracted from the twin DNS of grid generated turbulence is shown in figure 3.15. In the

same figure, the PSD of the remaining disturbances downstream of the foil (i.e. x∕C ≈ 2) is

included. Considering the spectrum of the introduced disturbances, a reasonably extended

inertial scale band (frequencies band 1 < f ∗ = fQ∞∕C < 50) can be observed.

The turbulent intensity (defined in the three Cartesian directions summarised with the

i-index as Ii = �ui∕Q∞, where �ui is the standard deviation of the ith velocity component

time signal) of the extracted perturbation field is Iu = Iv = Iw = I ≈ 10%. Such high

intensity provided at the injection points has been chosen to overcome the substantial viscous

decay of the FST convected downstream, which is a consequence of the considered low

Reynolds number. In figure 3.15 the qualitative characterisation of the FST decay can be

observed by comparing the PSD of the injected perturbation with the surviving disturbances
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Figure 3.15: Power spectral density of the non-dimensional turbulent kinetic energy time signal PSD{k}
of the introduced perturbation (solid line) and its intensity at a distance 2C behind the foil (dashed line).
The dotted line corresponds to the −5∕3 power law. Flow condition: ReC = 50 × 103, � = 5o,Λ = 0o,
inlet with FST.

sampled downstream of the foil. Furthermore, an intense FST (i.e. I > 6.5) has been

prescribed when a dominant by-pass transition is sought, to avoid an early laminar boundary

layer separation (Zaki et al. 2010). The integral length scale of the perturbation field is

u = v = w =  ≈ 0.045C , leftover of the virtual grid spacing. When the perturbation is

introduced upstream of the aerofoil simulation, the inertial scale band is observed to further

enlarge before approaching the profile (as it will be shown in section 5.1) thanks to the

0.13C distance between the injection plane and the aerofoil leading edge. Conversely, the

turbulent intensity decays before approaching the boundary layer of the aerofoil. An intensity

of I ≈ 7% is recorded just outside the boundary layer edge by the aerofoil nose (in this

location the boundary layer thickness is in the order of 0.1%C).

A representative measure of the decay of the FST intensity is measured along the convec-

tive direction outside the suction side boundary layer and it is compared with literature data

of turbulence behind a grid. The FST intensity in the chordwise plane (i.e. IQ = �2Q∕Q
2) is

IQ = (7.6, 6.0, 3.4) at [(x∕C, y∕C)] = [(0.24, 0.18), (0.85, 0.19), (1.96, 0.18)], respectively.

The spectra extracted in the three locations are shown in figure 3.16, while the corresponding

turbulence intensities are plotted in figure 3.17. The rate of decay of the intensity follows

an algebraic trend with decay exponent nFST (Mohamed & Larue 1990). For the turbulent

decay behind a uniform grid without a pressure gradient, the decay exponent is nFST ≈ 1.3

(Mohamed & Larue 1990). In the present case nFST ≈ 0.5 is observed over the suction side

along the chord, while nFST ≈ 1.3 behind the foil.
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Figure 3.16: PSD{k} of the FST at (x∕C, y∕C) = (0.24, 0.18) with the solid line; (x∕C, y∕C) =
(0.85, 0.19) with the dashed line; (x∕C, y∕C) = (1.96, 0.18) with the dot-dashed line. The dotted line
corresponds to the −5∕3 power law. Flow condition: ReC = 50 × 103, � = 5o,Λ = 0o, inlet with FST.

The present FST condition has beenmodelled in analogy to that used by the experimental

research group at the University of Southampton in the frame of the project Quiet aerofoil

of the next generation (EPSRC grant No.ZP∕N020413∕1). The present investigation is

related to the project and the details of the free stream turbulence have been discussed during

informal presentation between the research groups and companies involved (universities:

University of Southampton, University of Nottingham, City, University of London, Brunel

University and Technion-Israel Institute of Technology; companies: Airbus Group Limited

and Vestas).
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Figure 3.17: Turbulent intensity IQ = �2Q∕Q
2 probed at [(x∕C, y∕C)] =

[(0.24, 0.18), (0.85, 0.19), (1.96, 0.18)]. The solid line connecting the intensities represents the
measured decay exponent (Mohamed & Larue 1990). As a matter of comparison, the dot-dashed line a
decay exponent of 0.5, while the dashed line of 1.3. Flow condition: ReC = 50 × 103, � = 5o,Λ = 0o,
inlet with FST.

58



Chapter 4

Laminar separation

The chapter contains the comparison between the swept and unswept laminar boundary layer

experiencing the flow separation mechanism, after the baseline unswept flow condition is

presented. The flow scenario is obtained in the frame of a laminar incoming free stream.

The statistical quantities have been accumulated within a time window Δt∗ = ΔtQ∞∕C

≃ 100 for both the wing configurations throughout the statistical steady state of the flow

as defined in section 3.4. Roughly, this period corresponds to 15 full domain flow-through

cycles. In accordance with the Simple Sweep Theory , the comparison between swept and

unswept wing is made considering statistical values accumulated along the x direction only.

4.1 Mean two-dimensional unswept field

For the unswept wing case and laminar incoming flow, the distribution of the mean (i.e. time

and spanwise averaged, indicated with < ⋅ >z,t) chordwise velocity component < u >z,t
(x, y) is shown in figure 4.1. The figure shows a recirculating region covering a large por-

tion of the foil suction side. Conversely, the whole pressure side is characterised by a fully

attached boundary layer. The average separation point on the suction wall, tagged with a

symbol in figure 4.1, is located at x∕C = 0.26. The iso-line of the mean chordwise velocity

that can be used to identify the shape of the laminar separation bubble is referred as the limit

(or dividing) streamline (Alam & Sandham 2000) and it is also plotted in the same figure.

The LSB is observed to close at the trailing edge (i.e. there is no mean reattachment point on

the suction side) presenting an extension comparable with that of the aerofoil. In particular,

its chordwise length is 0.852 C and its wall-normal height is 0.143 C . The bubble appears

to be stretched above the aerofoil reaching a streamwise location of 0.112 C downstream of

the trailing edge at a distance from the chord line (i.e. at y∕C = 0) of 0.075 C . On the suc-
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Figure 4.1: Contours of < u >z,t ∕Q∞. Solid iso-lines represent positive values: < u >z,t=
[0, 0.1, 0.2, 0.3]Q∞; dashed ones are used for negative iso-values < u >z,t= [−0.3,−0.2,−0.1]Q∞. The
limiting streamline is represented using the × symbols. The⬥ symbol tags the mean flow separation point
on the wall (i.e. location with zero mean wall shear stress). Flow condition: � = 5o,Λ = 0o, laminar inlet.

tion side, inside the bubble, a small secondary separation region is visible within the interval

x∕C = [0.55−0.65] at approximately y∕C = 0.8. As discussed later, this secondary recircu-

lation envelops a region characterised by positive mean velocity (i.e. velocity vector directed

downstream). Some other authors have reported the presence of this secondary bubble in-

dicating the interaction of the primary recirculating flow with the no-slip wall condition as

the physical mechanism responsible for its generation (Marxen & Henningson 2011).

Figure 4.2 displays the iso-contours of the mean spanwise vorticity < !z >z,t (x, y) =

) < u >z,t (x, y)∕)y − ) < v >z,t (x, y)∕)x for the same flow configuration. From the

figure, it is possible to observe a thin and intense separating shear layer developing along

the limit streamline. This shear layer originates at x∕C ≃ 0.26, in correspondence with

the point of separation, developing away from the wall, along the outer edge of the primary

recirculating zone. This intense shear layer is the origin of the instability that triggers a

Figure 4.2: Contours of < !z >z,t C∕Q∞. Blue shading indicates a negative vorticity, while the red is for
the positive vorticity. As in figure 4.1, the symbol⬥ is used to tag the separation point while the line with
× symbols is the limiting streamline. Flow condition: � = 5o,Λ = 0o, laminar inlet.
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turbulence transition further downstream, above the aerofoil, as observed by several authors

in similar circumstances (e.g. Jones et al. (2008), Yarusevych et al. (2009)).

4.2 Influence of the sweep on the flow field

4.2.1 2D flow and pressure fields

The mean field corresponding to the swept wing (sweep Λ = 30o) does not present any

substantial difference with the straight wing case. This almost perfect match appears clearly

from figure 4.3 where a direct comparison between some selected < u >z,t iso-lines are

displayed for bothwing configurations. In particular, themean location of the boundary layer

separation point is unaffected by the presence of the steady crosswind separation location

x∕C = 0.26. The robustness of the mean location of the laminar boundary separation point

to an imposed spanwise flow has already been reported by other authors (Hetsch & Rist

2009). It is also observed that the leading edge stagnation point (which for the swept case

should be referred as an attachment line due to the out-of-the plane mean flow component

(Vos & Farokhi 2015)) is not affected by the sweep either. The anyway small differences

between the two flow fields can only be detected inside the recirculating region.

Figure 4.4a provides a comparison between the twowing configurations in terms ofmean

chordwise pressure coefficient distribution, i.e. < Cpx >z,t (x, y) = 2(< P >z,t (x, y) −

P∞)∕�Q2∞. In both cases, the suction side presents two local maxima: one close to the wall

at x∕C = 0.10 (the suction peak) and another one on the dividing streamline. It is noticed

that the locations of the second maximum is shifted downstream of about 10% in the swept

wing case (unswept wing coordinates of second peak: (x∕C, y∕C) = (0.75, 0.14); swept

Figure 4.3: Comparison between iso-lines of < u >z,t ∕Q∞. Iso-lines have been extracted in the range
< u >z,t∈ [−0.3Q∞ and 0.3Q∞] with a uniform sampling of Δ < u >z,t= 0.1 Q∞. Solid lines refer to
the straight wing case, the dashed ones to the swept one. As in figure 4.1, the symbol ⬥ is used to tag the
separation point. Flow condition: � = 5o, laminar inlet.
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(a)

(b)

Figure 4.4: Flow condition: � = 5o, laminar inlet. (a) Contours of < Cpx >z,t. Blue shading in-
dicates negative values while red is for positive ones. The solid iso-lines corresponds to the values
< Cpx >z,t= (−0.4,−0.3,−0.25, 0.1, 0.2, 0.3, 0.4) for the straight wing, while the dashed line is used for
the correspondent swept wing iso-lines. As in figure 4.1, the line with × symbols is used to identify the
dividing streamline. (b) Wall distribution of < Cpx >z,t. Solid line: straight wing; dashed line: swept
wing.

case: (x∕C, y∕C) = (0.83, 0.14)). This downstream translation that can be also noticed from

the distribution of the suction side wall < Cpx >z,t (see figure 4.4b), is consistent with the

general modification of the LSB shape. Indeed, in the first half of the aerofoil, the< Cpx >z,t
distribution is unaffected by the sweep. From x∕C = 0.5 onwards, the separation plateaus

share a similar pressure coefficient value (i.e. < Cpx >z,t ∕2 = −0.25) but extending further

downstream reaching the location x∕C = 0.9 in the swept case. Uranga et al. (2011) have

also reported a variation in the pressure distribution along the suction wall of a straight and

a swept wing. In particular, they performed a LES of infinite wings mounting the cambered

SD − 7003 foil at similar incidence, in both swept and unswept conditions. Differently

from the current results, the pressure plateau is found to shrink when a sweep is introduced.
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This different behaviour can be attributed either to an insufficient resolution or to a lack

of statistical convergence. As explained in the methodology section, an extensive a-priori

assessment have been conducted on the required resolution and domain sizes that was not

performed in Uranga et al. (2011). Finally, it is remarked that the < Cpx >z,t distribution on

the pressure side of the foil is observed to be independent of the sweep.

4.2.2 Flight condition

Next, the lift and drag coefficients are compared between the two wing configurations. The

time averaged lift and chordwise drag coefficients and the associated root mean square val-

ues in the straight wing case areCl = 0.536±0.0263 andCdx = 0.067±0.0015, respectively.

The data are in agreement with those found by other authors: an Xfoil (Drela 1989) pre-

diction at ReC = 50 × 103, with Mach number equal to zero and Ncritic = 9 (representing

laminar inlet in Xfoil) finds Cl ≃ 0.7 and Cdx ≃ 0.055; the experimental campaign of

Jacobs & Sherman (1937) at ReC = 42.1 × 103 with laminar inlet reports Cl ≃ 0.8 and

Cdx ≃ 0.03 (the authors mention a low accuracy for the measurement at low Reynolds

number). In the swept wing case, considering the chordwise plane, the obtained values are

Cl = 0.540 ± 0.0292 and Cdx = 0.068 ± 0.0018. To characterise the unsteady behaviour of

the wings, the power spectral density (PSD) associated to the time series of the lift and the

chordwise drag coefficients has been considered, i.e. PSD{Cl} = ℱ
{

Cl(t)
}

ℱ
{

Cl(t)
}

and PSD{Cdx} = ℱ
{

Cdx(t)
}

ℱ
{

Cdx(t)
}

. Here, the overline indicates the complex con-

jugate operator and the symbolℱ {⋅} indicates the Fourier transform operator. The resulting

spectra are shown in figure 4.5. The distribution of the most energetic modes when consid-

ering the lift coefficient is very similar, although the frequencies seem to be shifted to the

right (higher frequency) and the energy content of the dominating modes to be increased

in the swept wing case. The spectrum associated with the drag coefficient shows a similar

behaviour presenting a frequency shift. Altogether, all the spectra show a complex dynamic

behaviour rich of different harmonics and sub-harmonics. An energy peak around f ∗ ≈ 0.06

(corresponding to T ∗ ≈ 16) is noticed for all the spectra. This is believed to be linked to

the finite size of the computational domain, since the time period has a similar scale of the

flow-through cycle (i.e. ≃ 6). However, the focus of the thesis concerns a systematic com-

parison between the straight wing and its swept counterpart with identical chordwise inflow

condition. It is opinion of the author that the same numerical effect appears in all cases and

that does not interfere with the comparative analysis.

As already observed from the spectra of the lift and drag coefficients also the correspond-
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Figure 4.5: Power spectra of (Top) Cl and (Bottom) Cdx . The solid line is used for the unswept wing, the
dashed line for the swept configuration.

ing time series of the two quantities, displayed in figure 4.6, is not easy to interpret. However,

a clear modulation of fast flow dynamics with non-dimensional period T ∗fast = TfastQ∞∕C ∼

O(0.1) (corresponding to non-dimensional frequency f ∗fast = ffastC∕Q∞ ∼ O(10)) appears

to be produced by a much larger non dimensional time period (T ∗slow = TslowQ∞∕C ∼

O(10), f ∗slow ∼ O(0.1)) for both the Cl and Cdx recorded in the swept and unswept cases.

Considering the lift coefficient in figure 4.6a, its time history can be assumed to be the re-

sult of a superposition of short scale dynamics with a large scale oscillation: between the

non dimensional time interval Δt∗ = [40 − 60] two waves with a non dimensional time

period of T ∗ ≈ 10 and an excursion on the Cl of ≈ 5% appear for the straight wing, while

T ∗ ≈ 20 and ΔCl ≈ 5% for the swept case; on top of both, one can also observe smaller

oscillations appearing within a non dimensional period of T ∗ ≈ 1. In the same time interval

(Δt∗ = [40−60]) the large time period variation of the drag coefficient Cdx recorded for the
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(a)

(b)

Figure 4.6: (a) Time history of the lift coefficient. The solid line is used for the straight wing, the dashed
for the swept configuration. (b) Time history of the drag coefficient. Lines style meaning is the same as
for the Cl.

swept wing in figure 4.6b appears to be halved as compared to the unswept case.

In an attempt to understand the role of the structures embedded in the flow on the dynam-

ical behaviour of the overall aerodynamic field, some instantaneous snapshots of the flow

around the unswept wing have been sampled out and presented in figure 4.7. The snapshots

qualitatively portray some of the most typical flow characteristics. In particular, several 3D

unsteady large scale flow structures (size being ∼ O(C)) have been observed (e.g. in the

range x∕C = [0.75−1.10], y∕C = [0−0.1] in figure 4.7a). Some of them develops moving

downstream through a roll-up of the separating shear layer. Other structures are embedded

in the wake arising as a result of the merging of the suction and pressure side boundary

layers after the trailing edge. Structures of smaller size (size ∼ O(�99), with �99 being the

distance from wall where the mean velocity attains the 99%Q∞ value) are also detected.

These are mainly generated from the interaction of the recirculating flow and the wing wall.

The aforementioned structures can be detected by considering a sequence of instantaneous

snapshots of the iso-contours of the chordwise velocity component extracted in one of the

cross plane (shown in figure 4.7). In particular by comparing 4.7a and 4.7b, the presence
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 4.7: Instantaneous contours of u(x, y, z, t)∕Q∞. The contours result from a non-linear colour map
using red scale for positive values and blue for negatives. The white colour is used for the velocity close
to zero and beyond u∕Q∞ = 0.75. The iso-line corresponding to the zero value is drawn with a black solid
line. The snapshots are taken with a not-constant time interval in the range Δt∗ = [0.008 − 0.004] from
the straight wing time evolution. Flow condition: � = 5o,Λ = 0o, laminar inlet.
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of a flow structure originating at x∕C = 0.75 is noticed by the edge of the separated shear

layer at y∕C ≈ 0.1 (circled in red in the figures). The time lag between the two images

is Δt∗b = (tb − ta)Q∞∕C = 0.054 (from now on the non dimensional time lag between

the snapshot at time tj and the initial time ta is defined as Δt∗j = (tj − ta)Q∞∕C). The

snapshots of the two following frames (figures 4.7c and 4.7d), captured at Δt∗c = 0.109 and

Δt∗d = 0.185, respectively show the continuation of the clock-wise roll-up of the shear layer

and its downstream displacement that reaches x∕C = 0.8 and x∕C = 0.9 in the two frames

(flow structure circled in red in the figures). In 4.7d the upper limit of the separation bubble

is y∕C ≃ 0.2, reducing in size as the trailing edge is approached. However, no specific

energy peak can be observed in the spectra for f ∗ ≃ 6 (frequency given by the time scale of

the vortex generation appearing between frame b and d). Finally, by comparing the last two

frames (i.e. 4.7e and 4.7f), captured at Δt∗e = 0.288 and at Δt∗f = 0.378, the generation of

a new eddy that starts to roll-up by the trailing edge is noticed at (x∕C, y∕C) = (1.0, 0.5).

The roll-up occurs in an anti-clock-wise fashion, and the eddy is ultimately shed into the

wake. The latter is characterised by vortex shedding that develops in a quite chaotic von

Kármán street. The snapshots also reveal the transition process of the shear layer bounding

the separation region that quickly increases its thickness downstream.

When considering a similar qualitative analysis based on successive snapshots, the swept

wing configuration shows a time evolution of the flow topology very similar to the one de-

scribed for the straight wing case.
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4.2.3 Perturbation field and transition

In figure 4.8, the iso-contours of the mean turbulent kinetic energy,

< k >z,t (x, y) = 1∕2 [< u′u′ >z,t (x, y)+ < v′v′ >z,t (x, y)+ < w′w′ >z,t (x, y)] (4.1)

are displayed for both wing configurations. < k >z,t is observed to take on larger values

in two specific regions of the flow domain, both extending through the limit streamline.

The leftmost region envelops the separating shear layer, with the maximum < k >z,t value

attained at (x∕C, y∕C) = (0.80, 0.14) and with an elongated shape that develops along a

direction parallel to the chord, spanning almost 35% of it. The other region grows from a

location downstream of the trailing edge and with the maxima of < k >z,t aligned along

a direction forming an angle with the chord similar to the foil incidence. The x-extension

of the second region is about 25% of the chord and its absolute maximum is located at

(x∕C, y∕C) = (1.15, 0.34). The two regions eventually merge downstream into the wake

with a weaker intensity. From figure 4.8 it is also possible to analyse the difference between

the distribution of < k >z,t in the swept and unswept case by considering the iso-lines.

They overlap in the two regions, but then deviate when entering the merging zone moving

downstream into the wake.

In both cases transition occurs in a bounded region. To quantify the transition and the

turbulent nature that the flow assumes when moving downstream along the wing, the power

spectrum of the non-dimensional turbulent kinetic energy time signal acquired at specific

Figure 4.8: Iso-contours of < k >z,t ∕Q2
∞ with a colour map using the green colour for the maximum

value and the white for the minimum. Iso-lines for < k >z,t ∕Q2
∞ between 0.002 and 0.005 using 4 levels

are shown. The solid lines is used for the straight case, the dashed otherwise. The × symbols identify
the limiting streamline, whereas the symbol ⬥ is used for the location of mean separation. The symbol ✽
marks where the spectra shown in figure 4.9 are taken. Flow condition: � = 5o, laminar inlet.

68



locations (x, y, z) is computed, i.e.

PSD{k} = PSD{k(x, y, z, t)∕Q2∞} = ℱ
{

k(x, y, z, t)∕Q2∞
}

ℱ
{

k(x, y, z, t)∕Q2∞
}

(4.2)

The time signal is acquired at mid span (i.e. z∕C = 0.2) for the two (x∕C, y∕C) locations

identified with a ∗ symbol in figure 4.8. The PSD{k} is displayed in figure 4.9 for both the

chosen locations in the flow field. In the upstream location, at (x∕C, y∕C) = (0.25, 0.11),

the flow still presents a clear laminar character, while further downstream at (x∕C, y∕C) =

(0.80, 0.10), the flow features a spectrum that includes a portion of inertial range (i.e. 1 <

f ∗ = fQ∞∕C < 50). It is also noticed that in both locations, the spectra obtained for the

swept and unswept case do not show any significant difference. It has to be mentioned that

the data for the swept wing are affected by noise at high frequency, for f ∗ > 102, due to

some duplicated values in the data series which have not been filtered out from the data set.

Figure 4.9: PSD{k} obtained at (Top) (x∕C, y∕C, z∕C) = (0.25, 0.11, 0.2) and at (Bottom)
(x∕C, y∕C, z∕C) = (0.80, 0.10, 0.2). The two locations in the chord plane are identified with a ∗ in fig-
ure 4.8. The solid line is used for the straight wing, the dashed for the swept wing and the dotted line
correspond to the −5∕3 power law.
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4.2.4 Boundary layer structure

Some classical definitions of the boundary layer and of related integral quantities require

a modification when dealing with an APG boundary layer that may eventually feature a

mean separation. The �99 BL thickness requires to specify a free stream velocity outside

of the boundary layer for each location on the foil. To make a case, the velocity profiles

extracted from the suction side of the straight wing at x∕C = 0.05 and x∕C = 0.2 can

be considered, provided in figure 4.10a. It can be observed that the mean tangent to the

wall velocity profile, < utg >z,t (x, n) (note that n indicates the direction normal to the foil

wall, while tg corresponds to the direction s. Thus, utg(x, n) is a velocity lying in the chord

plane, combination of the Cartesian components u(x, y) and v(x, y)), does not approaches

the < utg >z,t ∕Q∞ = 1 limit monotonically. Instead, it increases up to a value larger

than the free stream, at about n∕C = 0.01, and then decreases asymptotically to match the

free stream value. Thus, the standard definition of boundary layer thickness would deliver

a height much lower than the actual boundary layer depth. Since the boundary layer is a

measure of the region where viscosity plays a role, it has also been suggested to consider

the maximum velocity as a criterion to establish the height of the BL. However, when the

same convention is applied along the whole foil, unrealistic values of the various thicknesses

(a) (b)

Figure 4.10: (a) Example of the velocity profile inside an attached boundary layer. (b) Example of the
velocity profile in a boundary layer presenting a mean separation.
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would be obtained. This difficulty has been discussed by several authors and in particular by

Vinuesa and collaborators (Vinuesa et al. 2016) that have finally adopted the zero vorticity

criterion to establish the location of the BL edge and to compute the integral quantities. In

this work the same vorticity-vanishing criterion is used, considering the vorticity component

perpendicular to the mean flow plane (i.e. the spanwise vorticity component < !z >z,t
(x, n)), to tag the BL edge and thus to find the value of the external velocity. The vanishing

vorticity criterion has shown to be an effective tool to determine regions where both velocity

gradients and a viscosity dissipation play a role.

Furthermore, in the present thesis an extension to the criterion has also been considered

to deal with the eventual mean flow separation on the wing. Although in an instantaneous

flow realisation, the conventional decomposition of the flow into a boundary layer and an

external inviscid field cannot be applied when separation takes place, the concept can be

extended to themean separated flow field. In this case the external inviscid flowwouldmatch

a boundary layer developing on a virtual wing made of the union of the actual physical wing

and the separated region. In the latter, inner region, a complex condition develops where

both the viscous and inviscid effects have comparable importance. The extension of the

vanishing vorticity criterion applied above the separated flow, has been found useful to to

re-establish the BL-Euler flow decomposition along the portion of the foil affected by the

mean separation. Typical mean velocity profiles extracted within the region affected by

mean separation are displayed in figure 4.10b. In particular, following the aforementioned

general idea, the edge of the boundary layer has been obtained by considering the region

above the inflection point of the mean chordwise velocity (caused by the separation and

discussed with further detail later into section 4.3.2) to detect the zero-crossing of the out-

of-plane vorticity linked to the extended boundary layer edge. The line marking the edge

of the layer obtained with this methodology is similar in shape to the limit streamline. The

formal definitions of the BL thicknesses (the displacement thickness �∗ and the momentum

thickness � (Schlichting 1979)) obtained with the adopted methodology are:

�∗(x) = ∫

n̆

0
[1− < utg >z,t (x, n)∕ < Ŭtg >z,t (x, n̆)]dn (4.3)

�(x) = ∫

n̆

0
[1− < utg >z,t (x, n)∕ < Ŭtg >z,t (x, n̆)][< utg >z,t (x, n)∕ < Ŭtg >z,t (x, n̆)]dn

with < Ŭtg >z,t (x, n̆) = < utg >z,t (x, n)
|

|

|[n=n̆∶<!z>z,t(x,n̆)=0]

When comparing the two wing configurations, it is found that upstream of the separated
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region all the integral boundary layer quantities match, while further downstream the sweep

plays a non negligible role for some of them. Figure 4.11b shows that the distribution of �

of the swept configuration deviates from the straight wing case especially in the rightmost

portion of the separated region, beyond x∕C ≃ 0.6. The pressure side does not show any

effect due to the sweep with �∕C bounded with the range Δ� = [2 − 3]C × 10−3 within

the interval Δx∕C = [0.20 − 1.00]. In the mean separation location on the suction side

is recorded � = 0.0017C . On the suction side the distribution of � is interesting even in

the simpler straight wing case, as it increases monotonically until x∕C = 0.30 and then

it almost levels off completely until x∕C = 0.75, showing a change in curvature around

x∕C = 0.50. In the range from x∕C = 0.75 to x∕C = 0.85, �∕C suddenly increases,

deviating from the pressure side. From x∕C = 0.85 to x∕C ≈ 0.90, it settles to a constant

value of 4×10−3 and finally in the last portion of the foil it strongly increases again attaining

a value of 8 × 10−3 by the trailing edge. The distribution of the swept wing momentum

thickness deserves some additional comments, since it deviates from that of the unswept

case beyond x∕C ≃ 0.6. The distribution takes on the shape of an upside down bell, with its

minimum at x∕C ≈ 0.75, thus not presenting the kink that characterises �∕C of the straight

wing at x∕C = 0.75. The distributions of the two wing configurations match again beyond

the location x∕C = 0.9. In summary, it is observed that on the suction side the distribution

of the momentum thickness is not only affected by the separation, but also by the sweep

when the former occurs. This observation has a clear consequence on the applicability of

the Simple Sweep Theory that should be limited to the prediction of attached flows, at least

when laminar free-stream conditions are considered.

Figure 4.11a shows that although the displacement thickness of the chordwise boundary

layer is greatly affected by the separation, its values is almost unaffected by the sweep. In

particular, the suction side boundary layer thickness grows monotonically from 2×10−3C to

1.5 × 10−1C moving from 10% of the chord location until the trailing edge. On the pressure

side the boundary layer thickness increases in a much more moderate way ranging within

the Δ�∗ = [2 − 5] × 10−3C interval. It is noted a similarity of the suction side distributions

behaviour with respect of the separation and transition location as in Brendel & Mueller

(1988). The pressure and suction side thickness growth rates start to differentiate beyond

the location x∕C = 0.20. On the pressure side, after this location, the BL height levels off

reaching an asymptotic value of 1 × 10−1. Conversely, on the suction side the monotonic

increase of the BL size is linked to the appearance of the mean separation zone where a

complex viscid-inviscid interaction takes place. In the mean separation location, the dis-
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(a)

(b)

(c)

Figure 4.11: a: chord distribution of the non dimensional displacement thickness. b: non dimensional
momentum thickness distribution. c: shape factor distribution. The chordwise boundary layer developing
on the suction side of the straight wing is indicated with the solid lines, while ◦ refer to the swept wing.
The chordwise boundary layer developing on the pressure side of the straight wing is indicated with the
dashed lines, while ⊲ refer to the swept wing. The spanwise flow correspondent integrals are shown with
× on the suction side and ⊳ on the pressure side.
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placement thickness is found to be 0.006C .

In the case of the swept wing another, crosswind, boundary layer develops along the

chord. To characterise this cross boundary layer, the same integral quantities defined above

in equations 4.3 are used. Here too, the edge of the boundary layer is identified using the

vanishing vorticity criterion, this time applied to the mean x- vorticity component < !x >z,t
(x, y). The following definition are thus introduced for the boundary layer thicknesses of the

spanwise flow,

�∗z (x) = ∫

n̆

0
[1− < w >z,t (x, n)∕ < W̆ >z,t (x, n̆)]dn (4.4)

�z(x) = ∫

n̆

0
[1− < w >z,t (x, n)∕ < W̆ >z,t (x, n̆)][< w >z,t (x, n)∕ < W̆ >z,t (x, n̆)]dn

with < W̆ >z,t (x, n̆) = < w >z,t (x, n)||[n=n̆∶<!x>z,t(x,n̆)=0] .

The obtained distributions are shown in figures 4.11a and b. The distribution of both

�∗z and �z on the pressure side are found to match those of the chordwise flow indicating

that in the lower foil side a unique boundary layer develops. The suction side presents an

interesting behaviour which is worth to be described carefully. The distribution of �∗z is

found to follow that of �∗ until x∕C ≃ 0.4, while beyond a clear difference is recorded:

instead of increasing monotonically, it decreases and almost level out at �∗z = 1.5 × 10
−2C .

The fact that the chordwise distribution does not match the spanwise one indicates that the

second half of the upper portion of the foil is characterised by two distinct boundary layers.

The distribution of the cross momentum thickness on the suction side also presents a clear

difference with the chordwise one, from as early as the mean separation location. Indeed, �z
increases monotonically over the mid chord location where �z attains a maximum value an

order of magnitude higher than the one predicted for the chordwise boundary layer (i.e. 1 ×

10−2C at x∕C = 0.65). After, it almost levels out until the trailing edge, where a comparable

to the chordwise thickness value is recorded. Next, the distribution of the shape factors H

and Hz (given by the ratio between the displacement and the momentum thickness of the

chordwise and spanwise flows) is given, respectively. Figure 4.11c shows the distribution

along the chord of H for both wing sides and also for the crosswind boundary layer in

the swept wing case. On the pressure side all the distributions (H of the chordwise flow

on the straight and swept wing and Hz of the spanwise flow on the swept wing) coincide

along the whole chord with an almost constant value of about 2.5, thus close to the value

of a Blasius boundary layer (for which H = 2.59 Schlichting (1979)). The spanwise shape

74



factor on the suction side mildly oscillates around this same value, reaching a maximum

value of ≈ 4 at x∕C ≈ 0.35 and a minimum of ≈ 1 at x∕C ≈ 0.7. These distributions

suggest that the boundary layers on the pressure side and the crosswind one developing on

the suction side behave as attached, laminar boundary layers. As expected the chordwise

boundary layers developing the suction side for both the wings show a completely different

character. From the leading edge until about 70% of the chord, the distribution of H is

identical for the swept and the unswept wings showing a monotonic increase that becomes

steeper after x∕C ≃ 0.26. In the last third portion of the foil, the unswept wing value of

H levels off presenting a final drop as the trailing edge is approached. Differently, in the

swept wing case there is no plateau and the value of H continues to increase albeit a final

fall in the trailing edge region where it matches again the value attained in the straight wing

configuration. Thus, by comparing the swept and unswept, chordwise distribution of H , it

appears that the sweep only affects the separation taking place beyond 70% of the chord.
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4.3 Sweep effect to specific flow features

So far, the aerodynamic quantities that have been considered seem to reinforce the Simple

Sweep Theory in almost all the locations along the foil but in the surroundings of the sepa-

ration and consequent transition to turbulence. Indeed, in proximity of the separated region

and in particular across the shear layer that bounds the recirculating bubble, where transition

occurs, the swept and the unswept wings have been shown to present different behaviours.

In this section the focus will be put more on the mechanisms involved in the boundary

layer separation, trying to shed somemore light on the differences between the twowing con-

figurations. The spectral analysis carried out in the following sections is based on a database

obtained out of the flow simulations spanning Δt∗ ≃ 6 for both the wing configurations.

4.3.1 Separation of the laminar boundary layer

Although the basic mechanisms of separation in an APG boundary layer are well understood,

an exact description of its occurrence and the development of an accurate predictive model

for the inception of separation are still active research topics. For the case of the straight

wing with a laminar free-stream condition, at moderate Reynolds numbers, some models

have been developed in the past. These models deliver fairly good descriptions, especially

for the prediction of the location of the mean separation. Some authors, relying on the

Simple Sweep Theory , have extended these models to swept wing configurations showing

their applicability also when a crosswind is present (e.g. (Davis et al. 1987, Selby 1983)).

Here, the focus ismore in describing in details the physical phenomena behind separation

in the two wing configurations providing an informed ground for the critical assessment of

the models available in literature. As an example of the information that can be gained by

detailed simulations, the effect of the spanwise modulated perturbation on the separation

and how the sweep play a role in modifying these modulations and their energy content is

anticipated.

Figure 4.12a presents the time-averaged spanwise energy spectrum of the non dimen-

sional velocity fluctuations field premultiplied by the spanwise wavenumber kz (Pope 2000),

i.e.

kz < Ê
∗ >t (x, y, kz) =

1∕2kz
[

< R̂∗u′u′ >t (x, y, kz)+ < R̂
∗
v′v′ >t (x, y, kz)+ < R̂

∗
w′w′ >t (x, y, kz)

]

.
(4.5)

Note that < R̂∗u′u′ >t (x, y, kz) (and the same for the others components, R̂∗v′v′ and R̂
∗
w′w′) is
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the energy content of the kz wave number of the Fourier transform of the two-point autocor-

relation in the spanwise direction of the non dimensional fluctuations of the x-wise velocity

component. The two-point autocorrelation function of a non dimensional fluctuating veloc-

ity component in the spanwise direction is defined as:

< R∗u′u′ >t (x, y, r) =
⟨

∫ [u(x, y, z, t)− < u >z,t (x, y)][u(x, y, z + r, t)− < u >z,t (x, y)]∕Q2∞dr
⟩

t
.
(4.6)

Therefore, the iso-contours of < Ê∗ >t (x, y, kz) quantify the energy content of a specific

spanwise mode (having spanwise wavelength �z) at a specific x∕C and y∕C location. In fig-

ure 4.12a, the spectrum obtained for the straight wing, is shown as a function of the distance

from the wing suction side in correspondence of the x∕C location where the mean separation

takes place. The perturbation energy is observed to be mostly contained within a specific

layer surrounding the edge of the boundary layer at y∕C = 0.101. In this energy containing

strip, the spectrum presents a peak associated with a spanwise wavelength �z∕C correspond-

ing to the spanwise dimension on the computational box. This result is not surprising since

this region still behaves in a laminar fashion and therefore locally almost 2D. However, a

non negligible energy content is also found to be associated with spanwise modes having

a wavelength as short as 0.20C suggesting the development of a spanwise modulated per-

turbation. To determine which velocity component (i.e. the directionality) of this spanwise

modulation, the attention is turned to the energy content of the velocity components directly,

shown in figures 4.12b, c and d. From the figures, it appears that the energy is mainly as-

sociated with the x-wise velocity fluctuations with a weaker content corresponding to the

spanwise velocity fluctuations.

To evaluate the effect of the sweep on the spanwise modulated energy content detected,

in figure 4.12e the same quantity as in 4.12a is presented, sampled at the same location but

for the swept configuration. From the figure, it is clear that the sweep does not affect the

vertical location of the maxima of the energy content, however it seems to induce a decrease

in the energy content associated with the smaller wavelengths (i.e. �z∕C < 0.3).

To shed some further light on the structure of the spanwise perturbation field, two snap-

shots of the instantaneous x-velocity component u′(x, y, z, t) iso-values are considered on a

x-z plane, captured above the wing suction side at y∕C = 0.101 (shown in figures 4.13a and

c for the unswept case, while in panels 4.13b and d for the swept one). Via the view from the

top proposed in panel a, one can appreciate a clear spanwise modulation of the x-wise veloc-
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 4.12: Spanwise energy content of the fluctuating velocity field. The straight wing is illustrated in
the left column, the swept one in the right column. The spectra are extracted at the chord location of mean
separation, x∕C = 0.26. Panels (a) and (e) correspond to iso-contours of kz < Ê∗ >t C . The grey-scale
colour map is distributed non-linearly with the black regions corresponding to kz < Ê∗ >t C > 0.001.
The iso-lines are sampled with an increment of kz < ΔÊ∗ >t C = 0.000225 starting from kz < Ê∗ >t
C = 0.0001. (b) and (f) Iso-contours of < R̂∗u′u′ >t. The grey-scale colour map is distributed non-linearly
with the black regions corresponding to < R̂∗u′u′ >t> 0.001. The iso-lines are sampled with an increment
of < R̂∗u′u′ >t= 0.000225 starting from < R̂∗u′u′ >t= 0.001. (c) and (g) Iso-contours of < R̂∗v′v′ >t. Same
legend as for < R̂∗u′u′ >t. (d) and (h) Iso-contours of < R̂∗w′w′ >t. Same legend as for < R̂∗u′u′ >t.
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ity perturbation field taking place in the neighbourhood of the separation line of the mean

flow. The view allows for a qualitative observation of the spatial character of the perturba-

tion in the wall parallel plane. The modulation wavelength in both the x and z directions

corresponds to about half spanwise domain size. To better understand the three-dimensional

character of the flow perturbation, with the panel c the iso-values of the x-velocity fluctua-

tions are also shown on a y-z plane extracted at x∕C = 0.26. Again, a spanwise modulation

can be recognized within a strip centred at y∕C = 0.101, having the location of maximum

amplitude at z∕C = 0.20. The wall normal modulation is revealed to have a size comparable

with the boundary layer thickness. When the swept wing is considered, panels b and d, an

increased coherence of the spanwise modulation is revealed, which energy is now concen-

trated on a wavelength of almost the spanwise size of the computational box. Although the

perturbation field appears to be modified by the sweep, as already mentioned the mean sepa-

ration occurs in the same exact location for both wing configurations. Thus as a preliminary

conclusion, it can be stated that the sweep has very little impact on the flow field upstream

of the separation line and does not even set the location of the latter; however it seems to

have a clear effect on the three dimensional evolution of the fluctuating field that takes place

downstream the separation point. By looking at the leading edge region (i.e.x∕C ≃ [0−0.1])

of the straight wing perturbation field in figure 4.13a, a fluctuating energy accumulation can

be observed. The same pattern is not visible in the swept wing field shown in 4.13b. The

fluctuation is linked to the very low frequency cycle (i.e. T ∗ ≃ 10) of the unsteady flow as

already discussed when commenting the Cl and Cdx time series, in figure 4.6. By looking

at the fluctuating field in another cross plane, shown in Figure 4.13c, the perturbation can

be seen to affect the entire domain around the aerofoil. The absence of a positive fluctu-

ating velocity in the swept case (panel 4.13b or 4.13d) is due to the wing being in another

instantaneous state of the unsteady flow cycle with respect to the straight wing counterpart.

In particular, the straight wing snapshot has been extracted at t∗ ≃ 100, which can be seen

from the Cl time series being after an ascending trend of the oscillation cycle (look at figure

4.6); while the snapshot of the swept wing has been extracted at t∗ ≃ 95 that corresponds to

another state of the oscillating cycle (as seen in figure 4.6).

Finally, it is highlighted that the present simulation study on the swept wing did not show

any crossflow transition and the transition seems to take place along the canonical straight

wing route, i.e. through an instability of the shear layer emanating above the recirculation

bubble. The lack of crossflow instability has also a clear impact on the separation that, in the

present framework, is driven solely by the chordwise flow and the adverse pressure gradient
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as initially envisaged in the conceptual scenario proposed by Jones (1947).
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(a)

(b)

(c)

(d)

Figure 4.13: Flow condition: � = 5o, laminar inlet. (a) and (b) Iso-contours of u′∕Q∞ on a plane parallel
to the aerofoil suction wall. The selected plane passes through y∕C = 0.101 at the separation location
x∕C = 0.26. (c) and (d) Iso-contours of u′∕Q∞ on a normal-to-the-wall plane at the location of separation.
(a) and (c) refer to the straight wing, while (b) and (d) to the swept one. The colour map shows u′∕Q∞ > 0.1
in red, u′∕Q∞ < −0.1 in blue and a fluctuation close to zero in white.
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4.3.2 Instability of the detached shear layer

The separating shear layer hosts the growth of the inviscid Kelvin-Helmholtz (K-H) insta-

bility (Marxen et al. 2013) and this feature in its early stage is unaffected by the introduction

of the spanwise mean flow. The instantaneous snapshots of the y component of the fluctu-

ating velocity field v′(x, y, z, t) extracted on a plane parallel to the foil reveals the overall

behaviour of the shear layer. Two of those snapshots are shown in in figures 4.14a and 4.14b

for both the wing configurations.Above the suction wall, the footprints of the K-H instability

are observed as region of alternating positive and negative fluctuations of v′(x, y, z, t). The

region containing the development of the convective instability grows moving downstream.

The described instability originates about the location where the shear layer starts to de-

tach from the wall. This location approximately corresponds to the coordinates where the

chordwise mean velocity profiles are observed to develop an inflection point (the location is

specified in the following lines). The latter is a clear consequence of the mean recirculation

bubble forming on the suction side of the wing and its location does not seem to be affected

by the sweep.

An interesting observation concerns the mean spanwise velocity profile of the swept

(a)

(b)

Figure 4.14: Contours of v′∕Q∞ at wing mid-span, on a plane parallel to the foil. Red regions correspond
to positive perturbations (i.e. v′∕Q∞>0.1). 4 solid iso-lines between v′ = 0.025Q∞ and v′ = 0.1Q∞
have also been sampled. Blue regions correspond to negative values (i.e. v′∕Q∞<-0.1) and the sampled
negative iso-lines are the dashed ones. Thw white colour is used for a fluctuation close to zero. Flow
condition: � = 5o, laminar inlet. (a) Straight wing case. (b) Swept wing case.
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wing case showing an inflection point sharing the same location as that of the mean chord

plane flow. This common inflectional location is visible from figure 4.15, showing the mean

wall-tangent and spanwise velocity profiles of the swept wing configuration (< utg >z,t
(x, n) and < w >z,t (x, n)) and their corresponding curvature distributions ()2 < utg >z,t
(x, n)∕)n2 and )2 < w >z,t (x, n)∕)n2) extracted at two subsequent chordwise locations (at

x∕C = 0.3 and x∕C = 0.6, respectively). At the upstream station, i.e. at x∕C = 0.3 just

downstream of the mean separation point, the velocity profiles in 4.15a, reveal an almost

completely attached flow. The curvature distributions, given in figure 4.15b, shows a more

intense curvature variation for the wall-tangent profile (the non dimensional excursion in

this case is between ±5, while for the spanwise component is ±2). As already anticipated,

the inflection point is found in the same normal-to-the wall location for both the profiles, at

n∕C = 0.0076, roughly corresponding to the local displacement thickness. When consider-

ing the profiles of figures 4.15c and d, in the downstream chord location this correspondence

is almost exact for the wall-tangent mean velocity profile, while the spanwise velocity in-

flection point is slightly shifted upward. The presence of an inflection point also in the mean

spanwise profile has the potential to trigger another instability originating from its location.

The eventual, additional instability due to the inflection of the mean spanwise velocity dis-

tribution may provide an explanation for the modification of breakdown process of the K-H

vortices observed in the swept wing case.

In both wings configurations, the flow structures generated by the K-H instability take

the shape of spanwise coherent vortices moving away from the wall while growing and con-

vecting downstream (Yarusevych et al. 2009). As they detach from the wall, the effect of vis-

cosity becomes less important and the inviscid K-H instability triggers the aforementioned

spanwise vorticity rollers. The situation is equivalent to the one of a plane mixing layer

where initial 2D structure becomes fully 3D downstream as turbulent transition develops.

Although the described phenomena are qualitatively similar in the two wings configu-

rations, in the swept case the wavenumber associated with the rollers breakdown process

is different. The Q-criterion (Hunt et al. 1988) with a non dimensional threshold of 50 has

been used to identify the K-H rollers and their evolution in a region of significance for the

detection of their breakdown process (rangeΔx∕C = [0.5−0.75]). Instantaneous snapshots

of the Q iso-surfaces are shown using different cross planes in figures 4.16a and c for the

straight wing, while in figure 4.16b and d the equivalent surfaces are given for the swept

case. In all the figures, the flow structures are coloured according to the chordwise vortic-

ity fluctuations, !′x(x, y, z, t), using the red colour for positive values. Figures 4.16a and
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(a)

(b)

(c)

(d)

Figure 4.15: Wall normal distribution of < utg >z,t ∕Q∞ and < w >z,t ∕Q∞ in (a and c). The correspond-
ing curvature distributions f = (C2∕Q∞))2 < utg >z,t ∕)n2 and g = (C2∕Q∞))2 < w >z,t ∕)n2 are given
in (b and d). All the profiles have been extracted from the suction side of the swept wing, in particular
(a and b) at x∕C = 0.30 and (c and d) at x∕C = 0.60. The chordwise quantities are shown with the
circled line while the spanwise ones with the crossed lines. The long dashed line indicates the chordwise
displacement thickness at the specific location, while the dashed line the spanwise displacement thickness.
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(a)

(b)

(c)

(d)

Figure 4.16: Iso-surfaces of Q-criterion with a non dimensional threshold fixed at 50. Flow condition:
� = 5o, laminar inlet. Panels (a) and (c) concern the straight wing, while (b) and (d) correspond to the
swept case. (a and b) top views, flow from the bottom to the top; (c and d) side views, flow from the bottom
to the top.

4.16b offer the same iso-surfaces from a different perspective using a view from the top of

the suction side. From the figures, it is possible to notice that the spanwise rollers seem to

be modulated along z with a wavenumber that differs in the two wings configurations. In

particular, in the swept wing case the spanwise structures appear to be more rectilinear ex-

tending along the whole span. Differently, in the straight wing case the spanwise coherence

of the rollers at x∕C ≈ [0.55 − 0.60] is clearly interrupted. The strong spanwise coher-

ence of the rollers in the case of the swept wing can also be appreciated in figures 4.16b

and 4.16d that allow to identify the full spanwise coherency of a particular roller centred

at (x∕C, y∕C) = (0.6 − 0.65, 0.13 − 0.15). Indeed, in this location it is possible to to look

through a straight roller that clearly deploys along the whole wing span.

The different flow structure that the two wings exhibit in the breakdown region of the

separating shear layer can also be appreciated by considering the iso-contours of!′x(x, y, z, t)

on z-y cross planes extracted on the suction side. The aforementioned contours are reported

for both wings in figure 4.17 at different cross planes obtained by slicing the domain at four
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 4.17: Flow condition: � = 5o, laminar inlet. (Left column) Straight wing, (Right Column) Swept
wing. Instantaneous contours of !′xC∕Q∞ pictured on z-aligned slices for subsequent chordwise locations
on the wing suction side. Location respectively at x∕C = [0.50, 0.60, 0.70, 0.80] in [(a-e), (b-f), (c-g),
(d-h)]. Colour map such as positive perturbations in red with solid iso-lines at !′x = [5, 10, 20]Q∞∕C ,
blue and dashed lines for negative perturbations.

different streamwise locations (i.e. x∕C = [0.50, 0.60, 0.70, 0.80]). The difference in the

streamwise vorticity field between the two wings, becomes particularly clear when com-

paring its spanwise coherence in the region spanned by the detached shear layer especially

within the x- range Δx∕C = [0.50, 0.60] at y∕C = 0.125, visible in figures 4.17a and 4.17e,

and at y∕C = 0.1375, as it is shown in figures 4.17b and 4.17f.

For a more quantitative comparison of the shear layer structure and its instability in the

two wings configurations, in figure 4.18 the spectrum of the fluctuating energy (defined in

equation 4.5) extracted at x∕C = 0.55 and premultiplied by the spanwise wavenumber kz
is considered. Similarly to figure 4.12, the figure shows the energy content as a function

of the spanwise wavelength �z and the y∕C coordinate. When comparing the distributions

of the two wings within the interval Δy∕C = [0.125 − 0.150] (selected because containing

the spatial region occupied by the shear layer at this particular streamwise location), in the

unswept case the energy is noticed to spread for �z > 0.2C with a rather isolated peak

located at �z = 0.05C . Differently, in the swept case the energy is confined in the spanwise
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(a)

(b)

Figure 4.18: Iso-contours of kz < Ê∗ >t C extracted at x∕C = 0.55. The grey-scale colour map is dis-
tributed non-linearly with the black regions corresponding to kz < Ê∗ >t C > 0.001 as in figure 4.12a.
The iso-lines are sampled for kz < Ê∗ >t C = [0.02, 0.03, 0.07, 0.1, 0.2, 0.35, 0.5, 1]. Panel (a) Straight
wing case; black dots are used to highlight the maxima. Panel (b) Swept wing case; white dots used to
indicate the maxima.

wavelengths interval �z > 0.25C . This observation suggests that in the two wings, the K-H

rollers are broken by a spanwise modulation of different wavelengths. In particular, in the

case of the swept wing the spanwise modulation takes place at a larger wavelength �z.

4.3.3 Regions violating the Simple Sweep Theory

The three-dimensional breakdown of the shear layer that envelops the recirculating regions

has been shown to present different features in the swept and the unswept wing cases. It

is therefore expected that beyond the location at which the shear layer undergoes a lami-

nar/turbulent transition (i.e. at x∕C ≈ 0.6), also the average portrait of the two flow fields

will be different and the Simple Sweep Theory won’t hold locally any more. In figure 4.4b,

showing the wall pressure distribution, a difference between the chord-aligned < Cpx > z, t

of the two wings is seen to become non negligible downstream of the mentioned location

and definitely clear beyond x∕C ≃ 0.75. From this location on, it is also possible to notice a

difference in the value and distribution of the boundary layer shape factor reported in figure

4.11c. The chordwise distribution of the mean skin friction coefficient < Cfx > z, t is also

affected by the sweep as visible in figure 4.19. Concerning this last quantity, it is important

to highlight that when dealing with a mean crosswind, the skin friction coefficient can be
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(a)

(b)

Figure 4.19: Distribution of < Cfx > z, t on the pressure (a) and suction (b) sides of the wings. Solid
lines are used to represent the straight wing case; dashed lines refer to the swept wing case.
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defined in different ways depending on the chosen value of the scaling pressure (i.e. the

selection of the free stream velocity forming the dynamic pressure) and on the component

of the wall stress vector �⃗w that in the swept case is oblique to the chord. Here, in order to

provide a direct insight on the validity of the Simple Sweep Theory, only the mean chord-

wise friction coefficient is considered, < Cfx >z,t (x, y) = 2 < �wsn >z,t (x, y)∕�Q
2
∞ (note

that �wsn is the component in the chord plane, along the direction s (outlining the foil) of the

wall stress vector �⃗w acting on the wing surface with normal n). The distribution of this

quantity along the suction side of the foils is shown in figure 4.19b. Once more, it is noticed

that the < Cfx >z,t distributions of the two wings start deviating beyond the chord location

at x∕C = 0.75. Consistently with the values of the pressure and skin friction coefficients,

also the mean vertical velocity component < v >z,t (x, y) in the two cases does not match

any more when evaluated downstream of the mentioned chord location. The variation in the

distribution of < v >z,t when the sweep is introduced can be appreciated by looking at three

selected profiles shown in figure 4.20a. From these wall-normal profiles extracted at chord

locations x∕C = [0.65, 0.8, 1.0], it is possible to notice that the sweep induced difference of

the velocity profiles at x∕C = 0.8 becomes larger than 15% at the distance of 0.025 C from

the wall.

When considering higher order statistical quantities the variations in their distributions

become even more remarkable indicating that for the last quarter of the foil the Simple Sweep

Theory is considerably violated. In figure 4.20b the wall-normal profile of the mean vertical

component of the Reynolds stress tensor, < v′v′ >z,t (x, y), is presented for three chord

locations at x∕C = [0.65, 0.8, 1.0]. At x∕C = 0.8 the difference between the profile is

observed to be larger than 15%. A similar deviation is observed when considering the off-

diagonal Reynolds stresses < u′v′ >z,t (x, y) and < v′w′ >z,t (x, y), shown in figures

4.20c and 4.20d, respectively. For both quantities, the difference between the two chordwise

flows takes on larger values upstream of the location previously indicated for the diagonal

< v′v′ > component (see the profiles at x∕C = 0.65). Once more, the difference in the

distribution of the Reynolds stresses downstream of the separation point indicates that the

three dimensional breakdown of the shear layer and the consequent turbulence transition are

driven by different instability mechanisms in the two wings configurations.
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(a)
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∞
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∞

(d)

Figure 4.20: Wall normal distribution of (a) < v >z,t ∕Q∞, (b) < v′v′ >z,t ∕Q2
∞, (c) < u

′v′ >z,t ∕Q2
∞ and

(d) < v′w′ >z,t ∕Q2
∞. Solid line refers to the straight wing case, the dashed one for the swept wing. In

(d) the values for the straight wing are not presented because trivially equal to zero. Profiles extracted at
x∕C = [0.65, 0.8, 1.0] and drawn with a thicker line moving downstream.
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4.3.4 Flow structure inside the mean reversed flow region

Since the separating shear layer breakdown occurs following different routes in the wings

configurations, the flow close by the wall in the recirculating region is expected to be char-

acterised by different flow features. A qualitative support to this estimate can be drawn from

figure 4.17 showing an instantaneous snapshot of the !′x(x, y, z, t) distribution visualised on

spanwise slices at x∕C = [0.50, 0.60, 0.70, 0.80]. One can easily see that already in the first

chordwise location at x∕C = 0.5 (see figures 4.17a and e for the straight and the swept wing,

respectively) the flow pattern is quite dissimilar in the two wings configurations, especially

in the range Δy∕C = [0.09 − 0.11]. In the straight wing case, the footprints of the vor-

tex cores aligned in the streamwise directions with alternating signs can be easily detected.

These vortices appear to be quite coherent spanning a lateral size of about 0.05C and with

an height of 2%C which corresponds to half the displacement thickness of the boundary

layer at this x location. Differently, in the swept case the streamwise vortices appear to be

stretched in the spanwise direction (showing a width of 0.1C) and also tilted with respect

to the wall. Further downstream, at x∕C = 0.6, corresponding to figures 4.17b and f, the

above described flow patterns seem to develop on a shorter wavelength although keeping

the same structure. Marching even further downstream at x∕C = 0.7 (see figures 4.17c and

g), the different flow organisation of the two wings is still clear, at least within a narrow

layer of about 20%�∗ thickness neighbouring the wall. From the snapshots extracted at this

location, in the swept wing case the inclined and spanwise stretched vortices have a span-

wise size of ≈ 0.05C and an height of ≈ 0.20�∗. At the final cross section considered, at

x∕C = 0.8, shown in figures 4.17d and h, the iso !′x contours take on a much more complex

topology that corresponds to a turbulent state. In this condition it becomes impossible to de-

tect any significant difference between the two cases without resorting to a more quantitative

analysis.

A confirmation of the qualitative observations, that have been put forward above, come

from the premultiplied energy spectrum of the fluctuating field kz < Ê∗ >t which has been

defined in equation 4.5. In particular, figure 4.18 shows that close to the first considered

chordwise location (i.e. at x∕C = 0.55) the energy content in the vertical range of interest

here (i.e. in the interval y∕C = [0.09 − 0.120]) is topologically different in the two wings

scenarios. In the swept case an energy maximum appears at y∕C = 0.097 with the energy

content spread in the range Δ�z = [0.15 − 0.4]. Differently this energy peak is not detected

in the straight wing counterpart.
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In the swept case, at this same y location the mean spanwise velocity profile does not

appear to be inflected. This can be noticed from figure 4.15d showing the curvature of the

spanwise mean velocity profile at the chord location x∕C = 0.6, close to those mentioned

earlier.

The absence of a mean inflection point might suggest that the vortex stretching in the

z direction is not originated by an instability but it is rather due to the combined action of

the chordwise flow and the mean spanwise flow. These combined actions generate a fam-

ily of quasi-spanwise, spiralling vortices. This conjecture has already been put forward in

previous studies that highlighted the presence of these coherent vortices with a spiralling

topology within the core of a separated region when a swept wing flow is considered (e.g.

Davis et al. (1987), Broadley (1998), Kaltenbach & Janke (2000), Hetsch & Rist (2009)).

An heuristic explanation for the emergence of spiralling vortices is based on the recognition

that the momentum in the recirculation region in the cross plane x-y has no privileged direc-

tionality and that the crosswind can locally have a dominant effect deviating the roll-up of

the recirculating bubble in the spanwise direction. The mean flow deviation in the spanwise

direction is also visible from the mean spanwise velocity < w >z,t profiles sampled within

the early portion of the mean separated region. In figure 4.15c, the mean spanwise velocity

profile at x∕C = 0.6 clearly shows a changing behaviour above and below of n∕C = 0.059

that resembles the one of two superimposed boundary layers. The upper one is caused by

the outer spanwise flow that sees the underneath recirculating flow as a region of fluid of

different effective viscosity. Similarly to the case of flows over a porous media, one could

assign a separated, virtual origin to the outer flow and the mean crosswind may be predicted

as an effective superposition of two boundary layers of different nature.

4.3.5 Statistical analysis of the reversed flow

For both the considered wing configurations, an instantaneous visualisation of the chordwise

component of the wall friction is provided in figure 4.21. Using the same notation as in

section 4.3.3, the instantaneous component of the wall stress vector �⃗w along the foil line s

acting on the wing surface with normal n is referred as �wsn(x, y, z, t). The separation location

is easily detected for both wing configurations at x∕C ≃ 0.26. The friction distribution on

the portion of the wing interested by the reversed flow is noticed to be topologically different

in the two configurations, with the iso-friction lines distorted by the action of the crosswind

in the spanwise direction in the swept wing case. This is in agreement with the previous

findings presented in section 4.3.4.
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(a)

(b)

Figure 4.21: Iso-contours of �wsn∕(�Q
2
∞) on the suction side wall. Flow condition: � = 5o, laminar inlet.

Top: straight wing; Bottom: swept wing. The red colour is used for positive friction values (the y axis is
pointing upwards), blue for negative ones.

Following Vinuesa, Örlü & Schlatter (2017) and Brücker (2015) to quantify the reversed

flow one can compute the time averaged cumulative probability to observe a backflow event

along the span for all the chord stations along the wing, i.e.

℘(�wsn < 0)(x, n) =<
1
Lz ∫

Lz

0
�dz >t with

⎧

⎪

⎨

⎪

⎩

� = 1 if �wsn(x, n, z, t) < 0

� = 0 if �wsn(x, n, z, t) ≥ 0
. (4.7)

The computed distribution of℘(�wsn < 0) along the chord is shown in figure 4.22. It is inter-

esting to note that no locations have℘ = 1 (i.e. a guaranteed separation), but it has a certain

chordwise probabilistic distribution. This suggests that the laminar separation front is not

a two-dimensional process in the spanwise direction, but it is affected by a certain span-

wise modulation. The three-dimensional effect is however fairly small, since the chordwise

probabilistic distribution has a base of only 1%C around the location x∕C = 0.26.

Because of the introduction of a preferential flow direction, the sweep is found to reduce

even further the three-dimensionality of the separation front observed in the straight wing

case. The most likely location of separation is found with a probability of℘ = 65%, higher

than the ℘ = 56% recorded in the unswept case. Consequently, the chordwise probabilistic

distribution of the separation location is narrower in the swept case, being 0.7%C . Further

downstream, the crosswind induced by the sweep has an effect on the probabilistic distribu-
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Figure 4.22: Distribution of ℘(�wsn < 0) along the chord on the suction side wall. The solid line is used
for the straight wing and the dashed line for the swept wing.

tion of the skin friction when the flow is reversed on the average. Overall, it is noticed that

the probability distribution of having a separated flow is strongly affected by the sweep. In

this case, all the separated area is shifted downstream giving a further confirmation that the

Simple Sweep Theory does not apply (or at least not completely) when separation occurs on

the wing.

A further characterisation of the sweep effect on the flow topology inside the reversed

flow region can be obtained by considering the statistical analysis of the instantaneous flow

direction. In particular, the time averaged cumulative probability along the span of observing

a planar (parallel to the foil wall) instantaneous flow realisation aligned with the mean planar

flow direction for all the chord stations along the wing is considered. The probability is

defined as:

℘((ū ∙ < ū >z,t) < 0)(x, n) =<
1
Lz ∫

Lz

0
�dz >t with

⎧

⎪

⎨

⎪

⎩

� = 1 if cond < 0

� = 0 if cond ≥ 0
(4.8)

and cond = [u(x, n, z, t) < u >z,t (x, n) +w(x, n, z, t) < w >z,t (x, n)].

Figure 4.23 shows the resulting distribution of ℘((ū ∙ < ū >z,t) < 0) on different planes

parallel to the foil suction side at a distance of n∕C = [0, 0.008, 0.018, 0.030, 0.050]. The

flow inside the reversed flow region in the wall vicinity (i.e. n∕C = 0, x∕C > 0.4, the

thinnest line in figure 4.23) has a completely different probability distribution to be found

in the direction of the mean flow when the two wings are compared. In the unswept case

the flow has no a preferential direction, having an almost 50% probability to be found in

the direction of the local mean flow. Conversely, the flow on the swept wing is the most

of the time aligned with the mean local velocity. The mean velocity on the swept wing has

been shown by the attached character of the spanwise boundary layer (see for example the
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Figure 4.23: Distribution of ℘(ū ∙ < ū >z,t< 0) along the chord on different planes parallel to the foil
suction side at a distance n∕C = [0, 0.008, 0.018, 0.030, 0.050]. A thicker line is used for planes further
away from the wall. The solid line is used for the straight wing and the dashed line for the swept wing.

spanwise shape factor Hz distribution in figure 4.11c) to have always a positive spanwise

component. Similar observations can be made when the same analysis is extended to the

other planes at increasing distances from the wall. This is a confirmation of the spanwise

spiralling pattern of the reversed flow on a swept wing.
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Chapter 5

Turbulent separation

Next, the comparisons between a swept and an unswept wing is presented when a turbulent

incoming free stream is considered (FST) to trigger a developing turbulent boundary layer

on the wing. Two different incidences have been investigated, namely 5o and 10o. The

respective boundary layers that develop on the wing suction side present a different amount

of flow detachment. The chapter is structured as follows. Section 5.1 focuses on the overall

effect of the FST injection on a baseline laminar flow field for the unswept wing, for which

the fully laminar behaviour was presented in section 4.1. The additional effect of the foil

incidence variation is also considered in this section. Sections 5.2 and 5.3 present extensive

comparisons between the swept and the unswept flow configurations for both incidences. In

particular, in 5.2 the overall sweep effect on the flow field is considered, while in 5.3 some

more specific flow mechanisms are discussed.

As already done in the previous chapter for the laminar incoming free stream condition,

all the results that will be presented for both swept and unswept wings have been obtained by

statistically averaging within a non-dimensional time period Δt∗ = ΔtQ∞∕C ≃ 70 for the

5o incidence case, andΔt∗ ≃ 30 for the 10o case. Roughly, the considered time window cor-

responds to 11 full domain flow-through cycles in the low incidence case and 5 in the higher

one. The short time averaging window used for the higher angle of attack is justified by the

stabilising character of the FST on the unsteady flow behaviour, which will be discussed in

section 5.1.2. Once again, in accordance with the Simple Sweep Theory , the comparison

between swept and unswept wing is made considering statistical values accumulated along

the x direction only.
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5.1 Unswept wing with free stream turbulence

5.1.1 Mean two-dimensional flow fields

When considering the 5o incidence, the injection of a 10%-intense free stream turbulence

on the incoming laminar flow causes the full suppression of the suction side LSB, thanks to

an enhanced mixing motion at the wall (Schlichting & Gersten 2000). The overall change

between the flowwith and without FST injection can be observed by comparing the contours

of the mean chordwise velocity component < u >z,t (x, y) in the two conditions, as depicted

in figure 5.1 and 4.1. It is recalled that in figure 4.1 (no FST), the iso-lines were used to

identify low and negative values of the chordwise velocity component. By inspection of the

figure, one can quantify a 10%C normal-to-the-wall size of the flow region with a velocity <

u >z,t≤ 0.2 at the trailing edge, indicating a thick boundary layer. Looking at figure 5.1 (with

FST), it can be noticed that the LSB has been completely suppressed. Furthermore, from

the figure one can quantify a thickness of 7%C for the region with velocity < u >z,t≤ 0.9

at x∕C = 1.0, indicating a critically thinner boundary layer on the suction side as compared

to the one of the previous case. These preliminary observations already clearly show the

different structure of the flow field when the FST is injected, especially on the suction side.

The only common feature of the two flow fields is the mean location of the leading edge

stagnation point, which is recorded for both cases at (x∕C, y∕C) = (0.001,−0.003).

When the incidence is set to � = 10o within the same FST intensity, a mean boundary

layer separation appears to take place on the suction side. An overview of the flow field

is presented qualitatively in figure 5.2 using iso-contours of the mean chordwise velocity

component < u >z,t. A first difference with respect to the 5o case with FST (presented in

figure 5.1) is the estimated thickness of 10%C for the region with velocity < u >z,t< 0.9

at x∕C = 1.0. The boundary layer is found to be thicker than that in the lower incidence

condition. Furthermore, the appearance of mean reversed flow in the very rear part of the

wing suction side, beyond x∕C > 0.91, can be observed. The mean separated area in figure

5.2, i.e. the flow region with negative chordwise velocity, has been coloured with a light

green colour. The light green area on the top of the trailing edge indicates that the separated

area is only 1%C in height. A more quantitative footprint of the mean turbulent separation

is given by the comparison of the suction side < Cfx >z,t distribution between the FST

cases shown in figure 5.3b. In the highest loading condition, alongside a lower friction

at the wall from x∕C ≃ 0.45, a sign change at x∕C = 0.91, marking the mean separation

location, is also observed. Although the flow separation is fairly small, it suggests a different
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Figure 5.1: Contours of < u >z,t in the unswept wing configuration at 5o incidence with FST, quantified
by iso-lines at < u >z,t= [0.25, 0.50, 0.75, 0.90]Q∞. The grey-sale colour map is adjusted for having the
white colour corresponding with values < u >z,t≥ 0.75Q∞. Few streamlines are identified by the arrowed
solid lines.

Figure 5.2: Contours of < u >z,t in the unswept wing configuration at 10o incidence with FST, quantified
by iso-lines at < u >z,t= [0.25, 0.50, 0.75, 0.90]Q∞. The grey-scale colour map is adjusted for having
the white colour corresponding with values < u >z,t≥ 0.75Q∞ and black colour corresponding with
< u >z,t= 0Q∞. Negative values of< u >z,t ∕Q∞ are illustrated with light green contours. Few streamlines
are identified by the arrowed solid lines.

flow dynamic process taking place at the trailing edge portion of the wing. The size of the

separated region is tiny, if compared to that of the LSB discussed in chapter 4.

It is also noticed that at higher incidence, themean location of the leading edge stagnation

point moves at location (x∕C, y∕C) = (0.002,−0.009) on the bottom side, downstream of

the position recorded for the lower incidence case. It is remarked that the light green region

on the profile nose (x∕C = 0) does not correspond to a boundary layer separation. In this

location, the negative values of the chordwise velocity are caused by the fluid having to go

past the profile nose flowing from the stagnation point to reach the suction side.

Concerning the numerical resolution used in the three directions of the structured mesh,

the grid spacings have been kept below the standard values recommended for wall bounded

turbulent flows (Kim et al. 1987) due to the turbulent character of the boundary layer that will

be discussed in section 5.1.3. In particular, for both the incidences the following inequalities
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are satisfied: Δs+ = Δsu�∕� < 5, Δn+ = Δnu�∕� < 0.8 and Δz+ = Δzu�∕� < 5. Note that

Δs, Δn and Δz indicate the spacing of the grid in the three directions of the mesh basis: s

along the foil surface lying in the chord plane, n in the same plane and normal to s and z in

the spanwise direction. u� =
√

�wsn∕� is the friction velocity. This is based on �wsn which is

recalled to be the component in the chord plane, along the direction s (outlining the foil) of

the wall stress vector �⃗w acting on the wing surface with normal n.

5.1.2 Pressure field and flight condition

The pressure distribution along the aerofoil in the unswept wing case changes radically

when changing the incoming flow conditions (i.e. incidence and incoming turbulence level).

Figure 5.3a shows the distribution of the pressure coefficient for the three flow scenarios

that have been considered in the unswept wing configuration. Along the lower side of

the aerofoil the pressure increases monotonically for all three cases: the laminar incom-

ing flow case at 5o incidence, the case at same incidence with FST and the 10o incidence

with FST. On the suction side, the wide plateau linked to the LSB of the laminar incoming

case (< Cpx >z,t ∕2 = −0.25 for Δx∕C = [0.40 − 0.65]) is completely suppressed for both

the FST cases. The suction peak depression increases in strength and moves upstream when

going from laminar to FST and when increasing the angle of attack: < Cpx >z,t ∕2 = −0.4

at x∕C = 0.07 for the laminar incoming flow case, < Cpx >z,t ∕2 = −0.6 at x∕C = 0.03 for

the turbulent incoming flow case at 5o incidence and < Cpx >z,t ∕2 = −1.5 at x∕C = 0.01

for the 10o incidence with FST.

In general, the wing lift is increased and the total drag decreased when FST is injected

into the flow field. The lift coefficient is Cl = 0.54 for the laminar case, Cl = 0.85 for

that at 5o with FST and Cl = 1.27 for 10o with FST. The chordwise drag coefficients are

Cdx = 0.066, Cdx = 0.032 and Cdx = 0.049 respectively for the three cases. In the 5o

incidence FST case, the lift coefficient almost doubles thanks to the suppression of the LSB

on the suction side of the foil and then further increases at higher incidence, although keeping

below the stall limit value of the aerofoil. It is interesting to note that the drag coefficient

decreases introducing the FST, for both angles of attack. It will be shown later that the

FST triggers the boundary layer from a laminar to a developing turbulent condition from

the very early stage of the wing. Thus, it is concluded that the overall drag reduction is

directly linked to the LSB suppression: i.e. the reduction in pressure drag overrides the

increased skin friction drag related to the developing turbulent boundary layer. To support

this statement, the suction side, chordwise wall friction coefficient is presented in figure 5.3b
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(a)

(b)

Figure 5.3: (a) Wall distribution of < Cpx >z,t of the unswept wing for both aerofoil sides and incidences.
In dashed circled line the laminar incoming case at 5o incidence, in solid line the turbulent incoming case at
5o incidence and in the solid circled line the turbulent incoming case at 10o. (b) Suction side wall friction
coefficient of the chordwise flow of the unswept case for chord locations of major interest. Line styles
same meaning as in panel (a).

for all the three cases discussed here. In the laminar case, the distribution of the friction is

smaller than those of the turbulent cases, for any incidence, along the whole attached portion

of the boundary layer. Thus, the overall drag reduction can be only explained with the LSB

suppression and the consequent pressure drag reduction. This is just a confirmation of the

widely known concept stating that an early and sudden transition to turbulence of the flow

often brings an overall drag benefit for those cases where a fully attached laminar condition

cannot be achieved.

Not only the mean values of the aerodynamic coefficients are modified in the three con-

ditions, but also their fluctuating behaviours. A measure of this variation is given by the

standard deviation of the lift and drag time history. In the laminar inflow condition, it is
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found �LIFT = 5%, while for both loading conditions in the FST case �LIFT = 1%. Con-

cerning the drag, it is found �DRAG = 2.5% for the laminar case, �DRAG = 1% for the

turbulent case at the lower incidence and �DRAG = 1.5% for the higher angle of attack case.

Although the lift and the drag are integral quantities, that do not provide information on

the flow dynamics, their variations provide an initial insight on the FST effect. The reduced

variance of the lift and drag is simply linked to the suppression of the LSB, that otherwise in-

troduces highly variable and unpredictable dynamics being governed by several flow scales

(some comparable to the wing chord, others to the boundary layer thickness) (Gaster 1967,

Jones et al. 2008, Yarusevych et al. 2009, Marxen & Henningson 2011, Jagadeesh et al.

2013).

5.1.3 Boundary layer structure

The modalities by which the turbulent perturbations added at the free stream trigger the

boundary layer transition to turbulence depend on the specific receptivity mechanisms of the

boundary layer (Brandt et al. 2004, Balzer & Fasel 2016), thus ultimately on the properties of

the added perturbations. Here, receptivity is defined as a measure of the energy transfer from

the introduced perturbation to the energy content of the boundary layer. This transfer can

take place in several ways and is bounded by an eventual saturation level in the boundary

layer. Physically, this transfer occurs through the activation or modification of some flow

structures and their interaction mechanisms, that persist until the appearance of a stable

configuration. The saturated response of a laminar boundary layer is referred to as the by-

pass transition mechanism (Morkovin 1993). When this condition is attained, the specific

features of the boundary layer and that of the introduced perturbation are not crucial any

more as turbulence is almost suddenly triggered.

In the present investigation, the injected perturbation is sufficiently intense, spanning a

broad frequency spectrum to cause a by-pass transition mechanism as for the Blasius bound-

ary layer in Brandt et al. (2004). The resulting, sudden inception of turbulence renders the

foil boundary layer very different from the laminar one, even in its initial portion. In the

previous chapter, the wing boundary layer was keeping its laminar character for a large ex-

tension of the wing and its transition to turbulence was taking place on the rear part of the

wing. When FST is injected, regardless of the incidence, the boundary layer begins the

transition to turbulence process from the very early stage of the wing via a by-pass mech-

anism, on both the aerofoil sides. More details on the by-pass mechanism taking place at

the investigated incidences will be shown and discussed in 5.3.1. Here, it is anticipated that
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Figure 5.4: PSD{k} obtained at (x∕C, y∕C, z∕C) = (0.25, 0.11, 0.20) from the unswept flow fields. The
lines have the same meaning as in figure (5.3). The dotted lines correspond to the power law, duplicated
and shifted for visualization purposes.

they resemble the Klebanoff modes as in Brandt et al. (2004). The different states of the

boundary layer for the three considered configurations are clearly visible in figure 5.4. The

figure shows the power spectrum of the non-dimensional turbulent kinetic energy time sig-

nal, PSD(k), as defined in equation 4.2, acquired in the early wing location x∕C = 0.25 at a

normal-to-the wall distance of n∕C = 0.005 at mid span z∕C = 0.2. The fluctuating energy

content of the laminar inlet case is negligible on the whole spectrum (PSD(k) < 10−5 for

all f ∗ = fC∕Q∞), indicating a laminar condition. Both the turbulent free stream cases

share a negligible energy content beyond f ∗ > 100 (keeping the same nominal threshold to

consider negligible values as done for the laminar case) presenting a fairly extended inertial

range of the spectrumwhich indicates a developing turbulent boundary layer (1< f ∗ < 100).

The spectra in figure 5.4 show that the higher incidence case has a more developed spec-

trum that approaches the isotropic turbulence one, with a −5∕3 power law for an extended

range of frequencies. In the low incidence scenario the inertial range is not fully developed,

with the large energetic scales, inherited from the grid turbulence superimposed at the inlet,

leaving a footprint in the range between 2 < f ∗ < 20. This could be interpreted as a slower

receptivity dynamics of the energy injected by the FST in the lower incidence case.

To characterise the developing boundary layer along the suction side of the straight wings

at the two incidences, some velocity profiles scaled with viscous quantities (i.e. � and u�)

are shown in figure 5.5. The profiles are extracted at the locations x∕C = [0.20, 0.65, 1.0]

and show the distribution of u+ = u∕utau as a function of n+ = nu�∕�, where n is the

wall normal direction. A developing turbulent boundary layer can be observed for both

the incidences. In particular, at higher incidence an extended logarithmic region from an
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(a)

(b)

Figure 5.5: Wall normal velocity profiles scaled with viscous quantities (i.e. � and u� ) extracted at the
locations x∕C = [0.20, 0.65, 1.0]. A thicker solid line is used for further downstream locations. The dashed
line represents the logarithmic law for zero pressure gradient, smooth wall turbulence. (a) 5o incidence
case; (b) 10o incidence case.

earlier chord location with respect of the other incidence case is clearly visible. This is an

indication of both a rapidly developing turbulent boundary layer in the higher incidence case,

and also of the consistency with the spectra shown in figure 5.4 for the suction side location

x∕C = 0.25. It is also noticed that the logarithmic velocity profile (i.e. dashed line in the

figures) is not maintained along the whole chord. This behaviour was expected because of

the varying pressure gradient condition along the suction side (Mcdonald 1969), and also

for the low value of Reynolds number considered in the present investigation. The trend is in

agreement with that found by Vila et al. (2017) for a similarRe� condition. The logarithmic

law does not extend along all the aerofoil when low Reynolds numbers are considered. This

is also the case when a FST is applied to trigger an early boundary layer transition. As a

consequence, the boundary layer for both the incidences simulated is to be considered in a

developing turbulent state. However, the flow detachment mentioned in section 5.1.1, which

is going to be considered for the straight-swept comparison, will anyway have a turbulent

character.
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5.2 Influence of the sweep on the turbulent flow field

5.2.1 2D flow and pressure fields

When considering a turbulent free stream, the introduction of a sweep does not change the

mean chordwise velocity component distribution independently of the angle of attack. A

comparison between the mean chordwise velocity field < u >z,t (x, y) of the straight wing

case with the swept wing distribution is presented in figure 5.6. An almost perfect match

of the velocity iso-lines around the foil for different values of the sweep is observed at both

angles of attack. Only a fairly small mismatch is noted in the wake of the foil in the low

incidence case (roughly half a chord downstream of the trailing edge). This difference can

also be appreciated by looking at the deviation between the iso-line< u >z,t= 0.75Q∞ of the

two wing cases inside the aerofoil wake in figure 5.6a. However, this mismatch may be only

due to the lack of statistical convergence and cannot be attributed to any specific physical

phenomenon. The slow convergence rates of the flow statistics in the wake are produced by

the presence of slow and large structures that require longer observation periods to deliver

converged results. Figures 5.6c and 5.6d propose a further comparison between the wing

configurations by considering the wall-normal distributions of the mean velocity tangent

to the foil < utg >z,t (x, n) at several locations sampled along the suction side. All the

profiles extracted along the profile are perfectly matching between the swept and unswept

configurations.

Also the distribution of the pressure at the wall seems to be unaffected by the sweep in

both the considered loading conditions, as revealed by figure 5.7c showing the distribution

of the wall mean chordwise pressure coefficient < Cpx >z,t at different sweep and incidence

angles. This result is in agreement with what has been found in high Reynolds number flows

past swept wings by other authors (Altman & Hayter 1951, Boltz et al. 1960). It is remarked

that a consequence of this invariance is that the stagnation point (becoming the attachment

line in the swept case) and the suction peak locations are left unchanged by the introduction

of the sweep.

In the 5o incidence case, the mean pressure distribution attained for different sweep an-

gles matches perfectly also away from the wall. This perfect collapse clearly appears when

considering the pressure iso-lines around the foil for the swept and unswept pair which are

provided in figure 5.7a. The match is almost perfect except below the pressure side where

some deviation can be appreciated. This effect can probably be related with the slightly

different imposed FST upstream of the two wing configurations (discussed in section 5.2.3).
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(a)

(b)

(c) (d)

Figure 5.6: Contours of < u >z,t ∕Q∞ quantified by iso-lines sampled at < u >z,t=
[0.25, 0.50, 0.75, 0.90]Q∞. The solid line is used for the straight wing case, the dashed line for the swept
one. The grey-scale colour map is calibrated to have the white colour matching < u >z,t≥ 0.75Q∞.
Examples of streamlines are identified by the arrowed solid lines. (a) 5o incidence with FST. (b) 10o
incidence with FST; Negative values of < u >z,t ∕Q∞ are illustrated with light green contours. (c)
Wall-normal distribution of < utg >z,t ∕Q∞ in the 5o incidence case for the chordwise locations x∕C =
[0.05, 0.2, 0.35, 0.5, 0.65, 0.8, 1.0], increasing the thickness of the line while moving downstream. Solid
line for the straight wing, dashed otherwise. (d) Same as in (c) but for the 10o incidence.
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Also, in the 10o case (illustrated in figure 5.7b) some small deviations of the pressure

field can be observed on both wing sides by the trailing edge region. As for the 5o angle of

attack, the deviation on the pressure side is probably relatedwith the content of the FST in the

twowing configurations (discussed in section 5.2.3). However, the deviation observed on the

suction side (visible when comparing the iso-lines < Cpx >z,t= −0.01 in the surroundings

of x∕C = 0.9, in figure 5.7b) probably has a different origin and can be the consequence

of the different structure of the flow fields in the vicinity of the separation location which is

influenced by the sweep. This behaviour is analysed in more details later on in section 5.3.2.

5.2.2 Vorticity field

The structure of the mean vorticity field is obviously altered by the introduction of a mean

crosswind. In the case of the straight wing the mean flow is two-dimensional, laying into

the aerofoil plane, and therefore the only non-zero mean vorticity component is < !z >z,t
(x, y). In the swept case, the mean velocity field is three-dimensional and therefore the

mean vorticity field is also three-dimensional with both < !x >z,t (x, y) and < !y >z,t
(x, y) taking on non-zero values everywhere in the flow domain. These additional mean

vorticity components, characteristic of the swept case, are presented in figure 5.8 in a region

surrounding the aerofoil.

The chordwise vorticity field < !x >z,t, shown in figures 5.8a and 5.8b, does not change

very much in the two loading conditions. Note that the upper and lower side of the foil are

characterised by a vorticity field with a different sign. This is due to the rotation of the wall-

normal vector on the two sides (on the bottom side is negative with respect to the y axis,

while on the upper side is oriented as the y axis). The thickness of the vorticity layer around

the foil will be quantified later keeping into account the presence of a spanwise boundary

layer in section 5.2.4.

When introducing the crosswind, a local increase in the thickness of the < !x >z,t vor-

ticity layer is observed at about mid-chord on the suction side for both incidences, although

with different shapes in the two cases. For the 5o case the layer thickening is localized

within the range Δx∕C = [0.45 − 0.70], while for the higher incidence case in the range

Δx∕C = [0.35− 0.65]. In the former case the thickening is smooth with a maximum height

of 2%C (having used the iso-line < !x >z,t= 5 as an estimator). In the 10o case the shape is

more abrupt showing a maximum thickness of 3%C . This shape is related with the incipient

turbulent boundary layer detachment process, as it will be further discussed in section 5.3.3.
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(a)

(b)

(c)

Figure 5.7: (a) Contours of < Cpx >z,t quantified by iso-lines sampled at < Cpx >z,t=
[−0.05, 0.075,±0.1,±0.2,±0.3,±0.4] for the 5o incidence case with FST. The solid line is used for the
straight wing, the dashed for the swept configuration. The colour map shows zones of depression in blue
and over-pressure in red. (b) Same as in (a) but for the 10o incidence case with FST. Iso-lines drawn for
< Cpx >z,t= [−0.01,−0.05,±0.1,±0.2,±0.3,±0.4]. (c) Distribution of < Cpx >z,t at the foil surface for
both the aerofoil sides. Solid lines represent the straight case, dashed the swept one. Circled lines for the
10o incidence case, solid lines without symbols for those of the 5o case.
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The mean vorticity component < !y >z,t, shown in figures 5.8c and 5.8d, does not show

any significant difference between the two incidences. The corresponding wall layers are

much thinner than the ones characterising the < !x >z,t distribution (a smaller value for

the contours needs to be selected to actually visualise the layer thickness). Also, < !y >z,t
shows a change in sign moving downstream along the foil accordingly to the variations of

the wall normal unit vector. The change of sign takes place in correspondence with the point

of maximum thickness with respect to the chord line on both sides of the wing: x∕C = 0.35

on the upper side, x∕C = 0.13 on the lower side for theNACA − 4412 profile.

The spanwise component of the mean vorticity field allows for a direct comparison be-

tween the swept and unswept configurations. Its sign distribution is determined by the loca-

tion of the stagnation point (attachment line in the swept case), regardless of the incidence

or the sweep. The distribution of < !z >z,t is shown in figures 5.9a and 5.9b for the low and

high incidence conditions respectively. In the same figures, solid and dashed iso-lines allow

for a direct comparison between the swept and unswept cases.

By looking at these selected iso-lines, it is noticed that in the lower incidence case the

spanwise vorticity field follows everywhere the Simple Sweep Theory , while the theory does

not hold for the higher loading condition. Figure 5.9c shows a comparison for the 5o case of

the wall-normal distribution of < !z >z,t (x, n) in two subsequent locations on the suction

side, x∕C = 0.8 and x∕C = 1.0. From the latter distribution, a 7% difference is measured

in the peak region, at n∕C = 0.002. Being the largest difference observed at the lower

incidence, one may suggest that a negligible change is introduced by the spanwise flow on

the mean spanwise vorticity distribution. Differently, the higher loading condition presents

a substantial deviation of the spanwise vorticity field between the two wing configurations,

as clearly observed considering the iso-lines provided in figure 5.9b. A quantitative measure

of this deviation is given by the analysis proposed in figure 5.9d, comparing the wall-normal

< !z >z,t (x, n) profiles for two subsequent locations at x∕C = 0.8 and x∕C = 1.0, on

the suction side. In the former a difference of 15% is already observed in the peak region

(n∕C = 0.0017), while in the latter a difference of 50% is achieved at the location n∕C =

0.004. Clearly, in the higher incidence case the spanwise flow plays a non-negligible role

in the distribution of the vorticity field, although its effect is mainly confined to the rear

part of the wing suction side. In this region deeply affected by the crosswind, the Simple

Sweep Theory becomes unreliable. As already mentioned, the cause of the modification of

the mean vorticity field can be attributed to the formation of a turbulent separation region

which will be discussed in more details in section 5.3.2.
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(a)

(b)

(c)

(d)

Figure 5.8: (a) Contours of < !x >z,t C∕Q∞ at 5o angle of attack for the swept wing case with FST: red
corresponds to positive values (aligned with x), in blue negative ones. Selected iso-lines at < !x >z,t=
[±5 ± 10]Q∞∕C are represented with solid lines for positive values, dashed otherwise. (b) Same as in (a)
but for the 10o incidence case with FST. (c) Contours of < !yC∕Q∞ >z,t with a colour-map showing in
red a vorticity aligned with y, in blue otherwise. Iso-lines at < !y >z,t= [±5]Q∞∕C , solid line for positive
values, dashed otherwise. (d) Same as in (c) but for the 10o incidence case with FST.
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(a)

(b)

(c) (d)

Figure 5.9: (a) Contours of < !z >z,t C∕Q∞ in the 5o incidence cases with FST: positive vorticity in red,
in blue otherwise. Selected iso-lines at < !z >z,t= [±5 ± 10 ± 15 ± 20]Q∞∕C are represented with solid
lines for the straight wing, dashed for the swept one. (b) Same as in (a) but for the 10o incidence cases with
FST. (c) Wall-normal distribution of < !z >z,t C∕Q∞ in the 5o incidence case for the chordwise locations
x∕C = 0.8 and x∕C = 1.0, using a thicker line for the latter case. Solid line for the straight wing, dashed
otherwise. (d) Same as in (c) but for the 10o incidence.
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5.2.3 Perturbation field

In the present investigation, a very intense FST level has been deliberately adopted to cause

an early by-pass transition albeit the low Reynolds number considered for both the wing

configurations, as described in section 3.7. The choice has been made to avoid the otherwise

inherently different transition process between the straight and the swept wings (Morkovin

1993, Reed & Saric 1989, Saric et al. 2003) that would complicate a direct comparison of

the perturbation fields around the foils. The intensity and the integral length scale of the

FST have been kept invariant with respect to the direction of the mean incoming wind.

A first observation of the results suggests that the fluctuating components of the veloc-

ity field in the region surrounding the aerofoil are only mildly affected by the introduction

of the sweep, although this similarity is not observed in regions interested by an eventual

boundary layer separation. The influence of the FST on the perturbation field correspond-

ing to the swept and unswept configurations is illustrated in figures 5.10a and 5.10b for

both the low and high incidence cases. The plots show the mean perturbation field using

< k >z,t (x, y) (i.e. the mean turbulent kinetic energy) as an estimator. In the far-field, the

effect of the perturbation introduced upstream in the chordwise direction is revealed by the

different deviation of the iso-lines observed for the two wing configurations. This variation

is a consequence of the FST intensity that is preserved in the mean incoming direction but

not along the chordwise one. Regardless of the far-field treatment, the velocity and pressure

fluctuations close to the aerofoil surface do not show any relevant deviation when the swept

and unswept wings are compared. The region neighbouring the aerofoil appears to follow

the same dynamic response independently of the sweep and of the type of perturbation trig-

gering the transition. This behaviour is quantified in figure 5.10c showing a comparison

between the swept and unswept configurations for the normal-to-the-wall distributions of

< k >z,t (x, n) extracted at x∕C = [0.8, 1.0] in the low incidence case. The difference be-

tween the two wings appears to be quite small with a deviation between the two distributions

at the trailing edge below 5%, measured at the peak location (n∕C = 0.025). Similar con-

siderations can be made for the higher incidence case, shown in 5.10d, at the chord locations

x∕C = [0.65, 0.8, 1.0]. In this case the largest difference between the two chordwise flows

is recorded for the energy distribution extracted at x∕C = 0.65, where a difference of 6%

is achieved at the peak location (n∕C = 0.018). The maximum deviation between the two

perturbation fields is localised at the trailing edge for the low incidence case, whereas it is

found further upstream, at x∕C ≈ 0.65, for the higher incidence case.
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(a)

(b)

(c) (d)

Figure 5.10: (a) Contours of < k >z,t ∕Q2
∞ at 5o incidence cases with FST. The intensity increases from

lighter to darker colours. Solid iso-lines represent < k >z,t= [0.0001, 0.0005, 0.001]Q2
∞ for the straight

case, dashed for the swept one. (b) Same as in (a) but for the 10o incidence case with FST. (c) Wall-normal
distribution of < k >z,t ∕Q2

∞ in the 5o incidence case for the chordwise locations x∕C = [0.8, 1.0], using a
thicker line for the profile extracted at the trailing edge. Solid line for the straight wing, dashed otherwise.
(d) Same as in (c) but for the 10o incidence and chordwise locations x∕C = [0.65, 0.8, 1.0]. The profiles
are plotted with an increasingly thicker line for increasing values of x.
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5.2.4 Boundary layers characterisation

BL thicknesses in the low incidence case

The boundary layer thicknesses of the turbulent chordwise flow remain almost unchanged

when a sweep is introduced. This observation is in agreement with the past literature cov-

ering the turbulent attached flows at high Reynolds number regimes (Altman & Hayter

1951, Boltz et al. 1960). The boundary layer chordwise integrals have been defined pre-

viously in equations 4.3. The chordwise displacement thickness for both wing configura-

tions is shown in figure 5.11a for both the suction and the pressure sides. The distribu-

tions on the pressure side, which remains unaltered by the sweep, are bounded in the range

Δ�∗ = [2 × 10−3 − 4 × 10−3]C . Those on the suction side stay within the mentioned range

until x∕C ≈ 0.3. Further downstream they increase monotonically, almost linearly, until

the trailing edge, achieving a value �∗ = 2 × 10−2C . The �∗ distribution also presents an

inflection point at x∕C = 0.45. The chordwise momentum thicknesses, shown in figure

5.11b, follows the same trend described for the displacement thicknesses. On the pressure

side the values range is Δ� = [1 × 10−3 − 3 × 10−3]C . On the suction side the thickness

goes from � = 1 × 10−3C at the leading edge to � = 1.5 × 10−2C at the trailing edge, for

both sweep angles. The shape factor H distribution, shown in figure 5.11c, which is again

almost independent of the sweep, takes on a value of almost 2 for both foil sides, while on

the suction side they are both always slightly larger. However, in the trailing edge region,

the distributions of the two sides start differentiating with the suction side values increasing

to 2.8, and the pressure side decreasing to 1.6.

Next, the spanwise integral values �∗z , �z andHz that characterise the crosswind bound-

ary layer are considered in figures 5.11a, 5.11b and 5.11c, respectively. The distributions

of the three integrals on the pressure side follow almost perfectly their respective chordwise

flow counterparts. Differently, on the suction side beyond the location x∕C ≃ 0.35 the dis-

tributions of the three spanwise flow integrals show a distinct behaviour as compared to the

ones relative to the chordwise flow. This indicates that from the mentioned location the two

boundary layers (chordwise and spanwise) present a different character. The boundary layer

generated by the spanwise flow appears not influenced by the formation of the chordwise

flow separation moving towards the wing trailing edge, as can be deduced from the suction

side distribution of Hz in figure 5.11c: the z-shape factor distribution starts at the value

Hz = 2.1 at x∕C = 0.1 and decreases almost linearly to the value Hz = 1.4 at the trailing

edge, clearly indicating an attached boundary layer. It is also noticed that theHz distribution

114



on the suction side coincides with both the matching H and Hz on the pressure side from

the leading edge until x∕C ≃ 0.45. Beyond this point,Hz on the suction side is found to be

always smaller than bothH andHz on the pressure side, which share an almost equal value.

BL thicknesses for the higher incidence case

The independence to the crosswind of the chordwise boundary layer integrals is observed

alongmost of the span of the chord. However, a small variation is detected in correspondence

with the beginning of flow separation. The comparisons between �∗, � and H is presented

in figures 5.12a, 5.12b and 5.12c, respectively. It is noted that the H distribution shows a

small deviation in the very rear part of the suction side between the swept and the unswept

cases. This variation is caused by the presence of a separated region in this location (this

will be further discussed in section 5.3.2).

When comparing the distribution of the integral values of the chordwise and spanwise

flows, it is noticed that on the suction side the displacement thickness, shown in figure 5.12a,

appears to increase almost linearly from the leading edge to the trailing edge, from �∗ =

3 × 10−3C to �∗ = 6 × 10−2C . The �∗ variation along x appears to be even more linear

than its lower incidence counterpart (figure 5.11a) along the whole chord extension. The

suction side spanwise displacement thickness follows a similar trend, but it increases with

a milder slope, reaching the value �∗ = 2 × 10−2C at the trailing edge. The momentum

thicknesses generated by the two velocity components exhibit different features from mid-

chord on. In particular, in figure 5.12b the largest difference between the two layers appear to

be at about x∕C = 0.6. From this location, the difference between the two boundary layers

decreases moving downstream. The shape factors of the two boundary layer developing on

the suction side,H andHz shown in figure 5.12c, are appreciably different along the whole

chord, highlighting their different predispositions towards an eventual separation. Indeed,

the suction side distribution ofH can be observed to deviate rapidly from that of an attached

boundary layer moving towards the trailing edge. Conversely, the distribution on the same

aerofoil side ofHz matches the distribution found for the lower incidence case (Hz bounded

in the range [2.1 − 1.4]), indicating an attached flow. As for the lower incidence case, it is

noticed that theHz distribution on the suction side is always smaller than both the coinciding

distributions ofH andHz on the pressure side.
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(a)

(b)

(c)

Figure 5.11: Distribution along the chord of the chordwise boundary layer mean non-dimensional thick-
nesses for the 5o angle of attack: (a) displacement thickness, (b) momentum thickness and (c) shape factor.
The solid line is used for the suction side of the straight wing, while ◦ for the swept one. The dashed line is
used for the pressure side of the straight wing, ⊲ for the swept case. The spanwise corresponding boundary
layer thicknesses are shown with × on the suction side and ⊳ on the pressure side.
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(a)

(b)

(c)

Figure 5.12: Distribution of non-dimensional integral quantities in the 10o incidence case with FST. Lines
and symbols as in figure 5.11.
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BL within the chordwise pressure gradient

As expected, for both loading conditions, the distribution of the shape factor along the chord

is found to be specifically correlated to the strength of the chordwise pressure gradient re-

gardless of the sweep. The suction side distribution of H for the low incidence case, not

affected by the wing sweep, shows a linear behaviour in the initial 40% of the chord, while

curvilinear with positive curvature afterwards (see figure 5.11c). In the higher incidence

case, a similar monotonic increase along the whole chord is found, however, the growth

does not follow a linear behaviour as it can be observed in figure 5.12c. The change in the

functional behaviour of the shape factor is linked to the strength of the chordwise pressure

gradient applied on the wing surface. The Clauser parameter (Clauser 1954) has been used

to estimate the intensity of the pressure gradient. This is defined as � = (�∗∕u�)dPe∕ds

(note that dPe∕ds is the gradient of the pressure at the boundary layer edge in the direction

tangential to the wing surface and lying in the chord plane). The Clauser parameter distribu-

tion is provided in figure 5.13a and 5.13b for the low and high incidence cases respectively.

On the suction side it can be observed that � increases monotonically for both the incidences,

although with a higher growth rate for the higher incidence. For the lower incidence case, it

is found that � > 2�Q∞ (moderate adverse pressure gradient) for x∕C > 0.40, i.e. from the

location where the distribution ofH switches between the linear and non-linear behaviour.

For the low angle of attack case, � > 2�Q∞ from a location within the initial 10%C with a

H distribution that does not follow a linear growth. The described behaviours are found to

be unaffected by the sweep.

Skin friction Reynolds number distribution

The skin friction Reynolds number (i.e. Re� = u��∗∕�) of the chordwise flow can be consid-

ered to correspond to a marginally turbulent condition along the chord for all the simulated

cases. Its distribution appears to be independent of the crosswind for both incidences albeit

an extended flow separation establishes on the wing surface. In figure 5.14 the distribu-

tions of Re� for both wing configurations are presented, for each incidence along the top

and bottom side of the aerofoil. In the low incidence case, shown in figure 5.14a, both the

distributions on the pressure and suction sides stay within the range ΔRe� = [8−15]. It can

be observed that the sweep does not play any influence on the distribution of Re� . Similar

observations can be made for the higher loading condition, shown in figure 5.14b. In this

case, the distribution on the suction side allows to identify clearly the mean separation loca-
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(a)

(b)

Figure 5.13: Distribution along the chord of �∕(�Q∞) for the (a) 5o incidence case with FST, (b) 10o
incidence case with FST. The solid line is used for the suction side of the straight wing, while ◦ are for the
swept one. The dashed line is used for pressure side of the straight wing, ⊲ for the swept case. The dotted
lines correspond to � = 0�Q∞ and � = 2�Q∞.

tion at x∕C = 0.91. It is also noticed that the values on the suction side span a wider range

(i.e. ΔRe� = [10 − 50]) as compared to those of the lower loading condition.

The mean skin friction along the spanwise direction is not affected by an eventual sep-

aration, presenting a smooth behaviour along the whole chord. In particular, figure 5.14b

reveals a monotonic increase of Re�,z = w��∗z∕� (an estimator of the spanwise friction,

based on the spanwise friction velocityw� =
√

�wzn∕�. Here, �
w
zn indicates the component in

the spanwise plane, along the direction z (outlining the wing leading edge) of the wall stress

vector �⃗w acting on the wing surface with normal n) moving downstream from the lead-

ing edge for the higher incidence case. It is noticed that also in the higher incidence case

the distribution is only marginally affected by the separation of the chordwise flow, ranging

between Re�,z = 8 and Re�,z = 40.

5.2.5 Lift and drag coefficients unsteadiness

Although the sweep does not influence the mean values and the r.m.s. of the Cl and Cdx at

both angles of attack, the crosswind has an impact on their time evolution playing a role in

the modification of the large scale vortex shedding in the added FST regimes. While the

mean and r.m.s values of the drag and lift coefficients can be found in section 5.1.2, here

the focus is on their time history when the FST condition is considered. Figures 5.15a and

5.15d report the time variations of the Cl and Cdx for the 5o incidence case, while those
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(a)

(b)

Figure 5.14: Re� distribution along the chord for (a) 5o incidence case with FST, (b) 10o incidence case
with FST. The solid line without symbols is used for the straight wing on the suction side, while ◦ are
used for the swept one. The dashed line with no symbols is used for the straight wing on the pressure
side, while ⊲ for the swept case. All the aforementioned quantities are related to the chordwise flow. The
corresponding quantities for the spanwise flow Re� are shown with × on the suction side and ⊳ on the
pressure side.

of the higher incidence case are illustrated in 5.16a and 5.16d. Alongside the time history,

the frequency content of each time signal is also provided to better understand the eventual

dynamic modifications introduced by the sweep. In particular, the spectra of Cl and Cdx
time sequences (PSD(Cl) and PSD(Cdx)) are shown in figures 5.15b and 5.15e for the

low incidence case and in 5.16b and 5.16e for the higher loading condition. The sampling

has been done with a frequency f ∗ = 1.5 × 104 on a time window spanning Δt∗ = 70

in the low loading condition, and Δt∗ = 30 in the higher angle of attack case (the shorter

time window for the higher angle of attack has been justified in the introduction of chapter

5). A difference in the energy content in the low frequency range can be recognized when

varying the sweep for both loading conditions. At the lower angle of attack, the crosswind

appears to trigger new flow dynamics, more than shifting those of the unswept case. In

particular, new Cl modes at f ∗ = 0.11 and f ∗ = 0.29 (corresponding to a time period of

T ∗ = [9.09, 3.45]) are detected. Similarly, also the Cdx time series presents new peaks at

f ∗ = 0.11 and f ∗ = 0.19 (T ∗ = [9.09, 5.26]). In the higher incidence case, the Cl modes at

f ∗ = 0.2 and f ∗ = 0.35 (T ∗ = [5, 2.85]) are induced by the sweep. It is also observed that

the mode at f ∗ = [0.3] (T ∗ = [3.33]), present in the unswept case, is damped in both the

Cl and Cdx distributions by the crosswind. It is interesting to note that the sweep is found to

modify the low frequency flow dynamics, without producing any effect on the mean flow.
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Although the available time series spans a limited period of time, they still provide useful

hints to unravel the underlying flow dynamics.

A rich dynamical behaviour can be appreciated from the the spectra of all the cases

(figures 5.15b, 5.15e, 5.16b and 5.16e) in the frequency range Δf ∗ = [5 − 8]. However,

the energy content of the mentioned frequency range is much smaller than the dominant

ones that belong to the lower frequency range. In an attempt to understand the role of the

small scale structures embedded in the flow (linked to the fast dynamic observed into the

spectra) to the overall aerodynamic field, some instantaneous snapshots of the flow around

the unswept wing have been sampled out. Some recurrent small scale vortex roll-ups within

the boundary layer are observed to be entrained in the vortex shedding process, modifying

the wake topology at different angles of attack. This phenomenon is visible considering the

selected snapshots at 5o presented in figure 5.17. The snapshots show iso-contours of the

instantaneous chordwise velocity, u(x, y, z, t). The iso-lines have been chosen to facilitate

the understanding of the flow pattern. In snapshots 5.17a and 5.17b, a large flow structure

(highlighted by the red contour) with an height and width of approximately 6%C (using the

(a)

(b)

(c)

(d)

(e)

(f)

Figure 5.15: Cl and Cdx time history for the 5o incidence cases with FST condition. The solid line is used
for the straight wing, the dashed for the swept case. (a) Time history of Cl. (b) Corresponding PSD(Cl).
(c) Detail of the spectra in the low frequency range (only peaks containing at least 1% of the total energy).
(d), (e) and (f) present the same analysis repeated for the Cdx .
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iso-line u∕Q∞ = 0.6 as an estimator) can be seen on top of the trailing edge during the

roll-up process. The two snapshots are taken within a time interval Δt∗ = 0.01. Another

roll-up process on top of the trailing edge (highlighted by the blue-white contours) is shown

in snapshots 5.17c and 5.17d, captured within the same time interval as before. The size of

the structure is now smaller compared to the previous sequence, being around 2%C . The

major difference between the roll-up processes illustrated in the aforementioned snapshots

is the orientation of the axis about which the roll-up takes place. In particular, in the first

type of roll-up process the rotation is clockwise, while in the second type of process the

rotation is counter-clockwise. This explains the different colouration of the aforementioned

flow structures, mainly red in the first case while blue in the second one. Similar roll-up

processes, albeit bigger in size, are observed in the flow field of the higher loading condition.

Visualisations of the instantaneous flow dynamics corresponding to the straight wing at 10o

incidencewith a time sequencing ofΔt∗ = 0.02 are presented in figure 5.18. Some clockwise

roll-up processes can be seen on the suction side wall, at x∕C = 0.52 in snapshot 5.18a or

at x∕C = 0.78 and x∕C = 0.88 in snapshot 5.18d. Counter-clockwise rotations can be

observed at x∕C = 0.90 in panel 5.18b and between Δx∕C = [0.90 − 1.0] in panel 5.18c.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 5.16: Cl and Cdx time history for the 10o incidence case with FST condition. Legend and panels
organisation as in figure 5.15.
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The frequency range of all the described processes is contained in the range Δf ∗ = [5 − 8]

for all the wing configurations and incidences discussed in this work.

The instantaneous flow snapshots shown in 5.17 and 5.18 also provide a qualitative un-

derstanding of the flow manipulation carried out by the added FST. From the streamlines

geometry it is noted that initially the FST impinges directly on the aerofoil nose and on the

pressure side, without reaching the suction side. Therefore, the direct impact of the FST

on the evolution of the upper side flow is reduced. The different manipulation induced by

the FST on the two wing sides can be deduced by considering the residual flow perturba-

tions found outside the boundary layer on the pressure side, that appear more frequently in

the higher incidence case (i.e. flow perturbations localised within Δx∕C = [0.2 − 0.4] at

y∕C = −0.05 shown in panel 5.18b).
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(a)

(b)

(c)

(d)

Figure 5.17: Iso-contours of u∕Q∞ for the 5o incidence case with FST condition. The contours are rep-
resented using a non-linear colour map in which the red scale indicates positive values and blue negative
ones. The white colour is used for the velocity values close to zero and beyond u∕Q∞ = 0.75. The iso-lines
correspond to u = [0.2, 0.6, 0.8]Q∞.
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(a)

(b)

(c)

(d)

Figure 5.18: Iso-contours of u∕Q∞ for the 10o incidence case with FST condition. Legend as in figure
5.17.
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5.3 Sweep effect to specific flow features

So far, the Simple Sweep Theory has been found to hold quite well for several quantities in

both laminar and turbulent flow regimes. However, the Simple Sweep Theory may locally

break downwhen substantial boundary layer separation takes place. This different behaviour

of swept and unswept configurations is now characterised in more details by comparing the

spectra of the velocity fluctuations. This analysis allows to detect and quantify the differences

between the structures of the flow fields and to identify the initial formation of turbulent flow

separation and the influence of the crosswind on it. The spectral analysis carried out in the

following sections is based on a database obtained by recording flow snapshots over a time

interval of Δt∗ ≃ 3 for both swept and unswept configurations considering different wing

portions.

5.3.1 Front wing portion

The energy containing modes of the perturbation field in the initial portion of the foil of the

FST-injected-cases are found to be concentrated on specific wavelengths bands. The change

in the energy distribution mainly depends on the incidence with a negligible effect of the

sweep. In figure 5.19, the time-averaged spanwise energy spectrum of the non dimensional

velocity fluctuations field < Ê∗ >t (x, y, kz) premultiplied by the spanwise wavenumber kz,

kz < Ê∗ >t (x, y, kz) as defined in equation 4.5, is presented for both the wings config-

urations in the low incidence case with FST. The footprints of some small-scale spanwise-

coherent structures (0.01 < �z∕C < 0.1, with the energy peak recorded around �z∕C = 0.03

corresponding to �+z = �zu�∕� ≃ 85) are visible within the first 30% of the chord on the

suction side (recall that x∕C = 0.26 corresponds to the location of mean laminar separation

as seen in chapter 4). It is also noticed that the energy peak is at the same vertical location

as the one found for the laminar inlet case, i.e. y∕C = 0.101, which in the current turbulent

boundary layer corresponds to y+ = yu�∕� ≃ 20. The wavelength of the most energetic

modes is reduced as compared to the one observed for the laminar case at the separation

location, shown in figure 4.12 (in that case �z∕C > 0.2). The crosswind slightly reduces

the energy content of the most energetic modes, as it was also observed for the laminar in-

flow case. The partition of the energy between velocity components is not influenced by

the perturbation applied upstream. This conclusion can be drawn by comparing the second,

third and forth rows of the panels displayed in figure 5.19 with the corresponding panels

in figure 4.12. In all cases, the energy is mainly concentrated in the chordwise fluctuations
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 5.19: Spanwise energy content of the fluctuating velocity field in the 5o incidence case with FST.
The straight wing is illustrated in the left column, the swept one in the right column. The spectra are
extracted at x∕C = 0.26. The black diamonds are used to highlight the dominant modes of the unswept
wing, while the white ones indicate the dominant modes of the swept case. Panels (a) and (e) correspond
to iso-contours of kz < Ê∗ >t C . The grey-scale colour map is distributed non-linearly with the black
regions corresponding to kz < Ê∗ >t C > 3. The iso-lines are sampled with an increment of kz < ΔÊ∗ >t
C = 0.23 starting from kz < Ê∗ >t C = 0. (b) and (f) Iso-contours of < R̂∗u′u′ >t. The grey-scale colour
map is distributed non-linearly with the black regions corresponding to < R̂∗u′u′ >t> 1. The iso-lines are
sampled with an increment of < R̂∗u′u′ >t= 0.07 starting from < R̂∗u′u′ >t= 0. (c) and (g) Iso-contours of
< R̂∗v′v′ >t. Same legend as for < R̂∗u′u′ >t. (d) and (h) Iso-contours of < R̂∗w′w′ >t. Same legend as for
< R̂∗u′u′ >t.

quantified by < R̂∗u′u′ >t, the spectrum of < R∗u′u′ >t (the latter defined in equation 4.6).

At higher incidence, similar energy distributions are obtained as in the lower incidence case

(0.01 < �z∕C < 0.1, with the peak content slightly moved to �z∕C ≃ 0.025 corresponding

to �+z ≃ 110). However, a new energy peak appears at a wavelength of about �z∕C ≈ 0.2

(�+z ≃ 900). This peak is located well above the wall, at y∕C = 0.105 (y
+ ≃ 45).

The footprints of the active flowmodes of the perturbation field can be visualised for each

wing configuration using the instantaneous snapshots of the y−component of the vorticity

perturbation!′y(x, y, z, t) on planes parallel to the suctionwall. The snapshots corresponding

to the lower angle of attack are presented in figure 5.21, while the ones corresponding to the

higher loading condition are shown in 5.22. For each incidence the visualisations correspond
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Figure 5.20: Spanwise energy content of the fluctuating velocity field in the 10o incidence case with FST.
The straight wing is illustrated in the left column, the swept one in the right column. The spectra are
extracted at x∕C = 0.26. The black diamonds are used to highlight the dominant modes of the unswept
wing, while the white ones indicate the dominant modes of the swept case. Panels (a) and (e) correspond to
iso-contours of kz < Ê∗ >t C . The grey-scale colour map is distributed non-linearly with the black regions
corresponding to kz < Ê∗ >t C > 3. The iso-lines are sampledwith an increment of kz < ΔÊ∗ >t C = 0.3
starting from kz < Ê∗ >t C = 0.3. (b) and (f) Iso-contours of < R̂∗u′u′ >t. The grey-scale colour map is
distributed non-linearly with the black regions corresponding to < R̂∗u′u′ >t> 1. The iso-lines are sampled
with an increment of< R̂∗u′u′ >t= 0.1 starting from< R̂∗u′u′ >t= 0.1. (c) and (g) Iso-contours of< R̂

∗
v′v′ >t.

Same legend as for < R̂∗u′u′ >t. (d) and (h) Iso-contours of < R̂∗w′w′ >t. Same legend as for < R̂∗u′u′ >t.

to two cross-sectional planes above the suction side. One is extracted in the close-to-the-

wall region, the other passes through the vertical location where the maximum perturbation

intensity is recorded (y∕C = 0.101, where the maximum of the fluctuating energy is attained

for the location x∕C = 0.26). The contours on the plane closer to the wall clearly show a set

of streaky structures within the first portion of the wing. This streaky pattern can be observed

for both incidences and wing configurations. The energy peaks with wavelength 0.02 <

�z∕C < 0.05 detected in the premultiplied spectra kz < Ê∗ >t are clearly related with

this pattern and may represent the footprints of the Klebanoff mode governing the by-pass

transition (Klebanoff 1971). Indeed, it is noticed a qualitative analogy of the aforementioned

vorticity streaks pattern with that observed in the by-pass transition region by Brandt et al.
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Figure 5.21: Iso-contours of !′yC∕Q∞ in the 5o incidence case with FST. Left column: straight wing;
right column: swept wing. Panels (a) and (c): iso-contours on the suction side wall, top view, for the
first half of the chord. (b) and (d): iso-contours on a plane parallel to the suction side wall and passing
through y∕C = 0.101 at x∕C = 0.26. Red contours are for positive vorticity (i.e. !′yC∕Q∞ > 20), blue
for negative values (i.e. !′yC∕Q∞ < −20) and white for vorticity close to zero. Selected iso-lines at
!′y = [±10 ± 20]Q∞∕C are represented with solid lines for positive values, dashed otherwise. The dotted
lines indicate the locations of the mean separation line for � = 5o incidence without FST.

(2004). Furthermore, it is possible to identify some flow structures footprints linked to the

mode with �z∕C ≃ 0.2 appearing in the < R̂∗u′u′ >t spectra of the higher loading condition

(figures 5.20b and 5.20f). Indeed, a coherent perturbation with a spanwise wavelength of

about 20%C in Δz∕C = [0.10, 0.30] with a chordwise amplitude of roughly 10%C can be

observed in panel 5.22c. The mild fluctuating energy content observed for �z∕C ≃ 0.2 will

be found in sections 5.3.2 and 5.3.3 to be linked to the appearance of a large scale separation

of the boundary layer further downstream along the chord.

The flow visualisations also allow to reveal one of the effects of the crosswind into the

wall velocity streaks related to the transition mechanism that is not revealed by the span-

wise velocity spectra. In particular, for both incidences the flow visualisations in the planes

closer to the wall (figure 5.21a and 5.21c for the low incidence, and figure 5.22a and 5.22c

for the higher angle of attack) show how the crosswind bends in the spanwise direction the

transitional streaks. The angle that the streaks form with the x direction is not constant and

changes continuously as a function of the three Cartesian coordinates. Clearly, the intensity
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Figure 5.22: Iso-contours of !′yC∕Q∞ in the 10o incidence case with FST. Colour map and panels se-
quencing as in figure 5.21.

and directionality of the mean wind, which is responsible for the deflection of the streaks, de-

pend on all the three space coordinates throughout the boundary layer as well (Vos& Farokhi

2015). In general, it is noticed that the streaks deflection is smaller for the higher incidence

case, suggesting that the stronger chordwise pressure gradient gives an extra stretching of the

structures along this direction. Moving further away from the wall, the velocity is expected

to be aligned with that of the free stream, and therefore the dependency from the specific

incidence is weakened.

5.3.2 Development of turbulent separation

When considering the unswept case, a similar fluctuating energy distribution is observed for

both loading conditions in the regions close to the locations of the respective mean separa-

tions. This similarity can be observed in figure 5.23a and in figure 5.24a. From both figures

one can notice that the strongest fluctuations are mostly contained within the wavelength

band �z∕C = [0.01 − 0.1] (at y∕C ≃ 0.025 in the low incidence case, at y∕C ≃ 0.05 in the

other incidence case). In the lowest incidence case the fluctuations are more intense towards

the lower bound of the spanwise wavelengths range, while in the higher incidence case their
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energy is preferentially accumulated at the other end. Another, less intense, peak is ob-

served at �z∕C ≃ 0.2 for both loading conditions (at y∕C ≃ 0.05 in the low incidence case,

at y∕C ≃ 0.07 in the other incidence case). It is also remarked that the flow directionality

of these large-scale spanwise perturbations (shown in figures 5.23b, c and d for the 5o case

and in figures 5.24b, c and d for the higher angle of attack) corresponds roughly to the one

observed in the laminar inflow case (in figures 4.12b, c and d). This similar behaviour, could

be linked to the common baseline mechanisms that initiate and finally lead to the separation

described by Kitsios et al. (2017). The fluctuating energy distribution can be observed to

spread over different vertical ranges, due to the different sizes of the boundary layers in the

two loading conditions. In the low incidence case the width of the wall normal range inter-

ested by the perturbation is bounded in height as y∕C < 0.05, while it almost doubles its size

in the higher angle of attack case. When the incidence is increased, a not uniform shift from

the wall of the fluctuating energy contained in the wavelengths range Δ�z∕C = [0.01−0.1]

and that in wavelength �z∕C ≃ 0.2 is also observed. As already mentioned, the energy con-

tained in the small-scale moves upward from the location recorded in the lower incidence at

y∕C ≃ 0.025 to y∕C ≃ 0.05 in the higher incidence case. The large-scale content moves

from y∕C ≃ 0.05 to y∕C ≃ 0.07. It is remarked that the chord locations where the spectra

have been computed differ for the two incidences. This choice has been taken to keep into

account the different location of mean separation observed around x∕C = 1.0 for the low

incidence case, while at x∕C = 0.91 for the other incidence.

A qualitative analysis of the structure of the perturbation field can be obtained by con-

sidering some selected instantaneous, fluctuating vorticity field visualisations. In particu-

lar, figure 5.26a shows an instantaneous snapshot of the chordwise vorticity perturbation

!′x(x, y, z, t) field on a plane normal to the wall taken at the location of incipient separa-

tion for the unswept, low incidence case. Figure 5.26c shows a snapshot of !′y on a plane

parallel to the suction side wall and in the vicinity of the latter for the same incidence. Fig-

ures 5.27a and 5.27c show snapshots corresponding to the other loading condition of the

unswept wing. The !′x contours of alternating sign visible in the region close to the wall

(range Δy∕C = [0 − 0.025] for the low incidence case and Δy∕C = [0.025 − 0.040] for the

other incidence) and the spanwise sequencing of !′y (at chord location x∕C ≃ 1.0 for the

low incidence case and x∕C ≃ 0.91 for the other) can be clearly associated with the wall

turbulence velocity streaks (Kim et al. 1987), contributing to the energy content detected by

the spectra in the bandwidth range Δ�z∕C = [0.01 − 0.1]. This turbulent streaky pattern

is not to be confused with that observed in the front part of the wing, which is related to
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Figure 5.23: Spanwise energy content of the fluctuating velocity field in the 5o incidence case with FST.
The straight wing is illustrated in the left column, the swept one in the right column. The spectra are
extracted at x∕C = 1.0. The black diamonds are used to highlight the dominant modes of the unswept
wing, while the white ones indicate the dominant modes of the swept case. Panels (a) and (e) correspond
to iso-contours of kz < Ê∗ >t C . The grey-scale colour map is distributed non-linearly with the black
regions corresponding to kz < Ê∗ >t C > 3. The iso-lines are sampled with an increment of kz < ΔÊ∗ >t
C = 0.23 starting from kz < Ê∗ >t C = 0. (b) and (f) Iso-contours of < R̂∗u′u′ >t. The grey-scale colour
map is distributed non-linearly with the black regions corresponding to < R̂∗u′u′ >t> 1. The iso-lines are
sampled with an increment of < R̂∗u′u′ >t= 0.07 starting from < R̂∗u′u′ >t= 0. (c) and (g) Iso-contours of
< R̂∗v′v′ >t. Same legend as for < R̂∗u′u′ >t. (d) and (h) Iso-contours of < R̂∗w′w′ >t. Same legend as for
< R̂∗u′u′ >t.

the footprint of the Klebanoff mode governing the by-pass transition. The maps of !′y show

how the turbulent streaks enlarge moving downstream towards the trailing edge. This effect

is clearly related with the flow deceleration due to the increasing adverse pressure gradient

(Lee & Sung 2009). As expected, this effect is more evident in the higher incidence case

where the flow deceleration is stronger. The !′y maps also allow to recognise the footprints

of the perturbations characterised by a spanwise wavelength �z∕C ≃ 0.2. This is clearly

visible in the flow pattern around a spanwise line at x∕C = 0.9 for the low incidence case

(figure 5.26c), and at x∕C = 0.65 or x∕C = 0.90 for the higher incidence case (figure 5.27c).

The sweep is found to have an impact to the perturbation fields at both the considered

incidences. In particular, the crosswind appears to enhance the structures within the wall
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Figure 5.24: Spanwise energy content of the fluctuating velocity field in the 10o incidence case with FST.
The straight wing is illustrated in the left column, the swept one in the right column. The spectra are
extracted at x∕C = 0.92. The black diamonds are used to highlight the dominant modes of the unswept
wing, while the white ones indicate the dominant modes of the swept case. Panels (a) and (e) correspond to
iso-contours of kz < Ê∗ >t C . The grey-scale colour map is distributed non-linearly with the black regions
corresponding to kz < Ê∗ >t C > 3. The iso-lines are sampledwith an increment of kz < ΔÊ∗ >t C = 0.3
starting from kz < Ê∗ >t C = 0.3. (b) and (f) Iso-contours of < R̂∗u′u′ >t. The grey-scale colour map is
distributed non-linearly with the black regions corresponding to < R̂∗u′u′ >t> 1. The iso-lines are sampled
with an increment of < R̂∗u′u′ >t= 0.09 starting from < R̂∗u′u′ >t= 0.09. (c) and (g) Iso-contours of
< R̂∗v′v′ >t. Same legend as for < R̂∗u′u′ >t. (d) and (h) Iso-contours of < R̂∗w′w′ >t. Same legend as for
< R̂∗u′u′ >t.

buffer layer while slightly weakening those with large spanwise wavelength found further

away from the wall. Comparing the perturbation spectra between the unswept and swept

wings for the low incidence case (figure 5.23a and figure 5.23e), the energy linked to the

wall turbulence in the swept case is observed to concentrate around two specific spanwise

modes: �z∕C ≈ 0.05 and �z∕C ≈ 0.15. The mode with �z∕C ≃ 0.2 is found to be fairly

damped by the sweep. The vertical location of both peaks does not change with the sweep. A

similar behaviour is observed when considering the other loading condition and comparing

the energy spectrum of the unswept wing provided in figure 5.24a with the one of the swept

wing in figure 5.24e. It is noticed that in the higher incidence case the mean crosswind of the

swept configuration damps substantially the large scale energy content at the specific vertical
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Figure 5.25: Comparison of < R̂∗u′u′ >t between the unswept and swept wings in the 10o incidence case
with FST. Spectra extracted at location (a) x∕C = 0.92 and (b) at x∕C = 0.98. The grey-scale colour
map refers to the straight wing case with darker colours for higher values. Some iso-lines of < R̂∗u′u′ >t
correspond to [0.18, 0.36, 0.54, 0.72, 1.0, 1.2]. The solid lines are used for the unswept wing, while the
dashed lines are used for the same iso-values obtained in the swept wing case.

location y∕C = 0.075 as it can be observed in figure 5.24f from the energy content variation

of the spanwise wavelength �z∕C ≃ 0.2. The damping effect induced by the sweep on the

large scale structures in the surroundings of the mean separation is more evident when the

chordwise energy spectra of the straight and the swept wing are superimposed. In particular,

figures 5.25a and 5.25b show this direct comparison for the subsequent locations x∕C = 0.92

and x∕C = 0.98. It can be observed that the energy peak of the swept wing at y∕C = 0.075

is substantially reduced when location x∕C = 0.98 is approached. Beyond this location, the

energy content of the chordwise velocity fluctuations < R̂∗u′u′ >t decays abruptly.

Through the visualisations of the instantaneous vorticity field some hints on the effect

produced by the sweep on the flow structures embedded in the wall region can be obtained.

From figures 5.26a and 5.26b and from figures 5.27a and 5.27b, one can observe how the

top portion of the low speed streaks (vertical range within the 2 − 3%C from the wall)

appears to be stretched in the spanwise direction when comparing the visualisation of !′x for

the swept and unswept wing configurations in both the low (figures 5.26a and 5.26b) and

higher (figures 5.27a and 5.27b) incidence case. In the swept case the iso-contours spacing

is observed to reduce leaving a thin high speed cushion to separate the low speed streaks.

The energy content of the fluctuating field (shown in figure 5.23e or 5.24e) associated with
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�z∕C ≃ 0.05 corresponds to the narrow, high speed streaks, while the �z∕C ≃ 0.15 one is

related to the wide, low speed streaks. The width enlargement of the low speed streaks and

the corresponding shrinking of the high speed ones can be attributed to the crosswind that

deviates the streaks in the spanwise direction. The result of this imposed displacement are

streaks bent in the spanwise direction easily observed with the swept/unswept comparative

visualisation of!′y on planes parallel to the wall in figures 5.26c - 5.26d for the low incidence

case. In figures 5.27c - 5.27d the same comparison is proposed for the higher incidence case.

As an effect of this continuous deflection, the streaks become almost parallel to the trailing

edgemoving downstream towards a region affected bymean flow separation. This behaviour

is even more striking for the higher loading condition shown in figure 5.27d. From the

presented visualisations it can be concluded that the topology of the separated region past

a swept wing is similar to the ones observed in other separating swept flows, being all of

them characterised by spiralling streamlines oriented along the spanwise direction (Davis

et al. 1987, Broadley 1998, Vos & Farokhi 2015, Ashill et al. 2005, Black 1952). This

behaviour may be attributed to the superposition of the mean crosswind and the insurgence

of a spanwise instability as discussed later.

For the higher incidence case, the mean flow of both the straight and swept wings at the

location preceding the mean separation will be studied in a similar manner as it was done for

the laminar inflow case in section 4.3.2. To this end, the mean wall-tangent and spanwise

velocity profiles (< utg >z,t (x, n) and < w >z,t (x, n)) extracted at location x∕C = 0.90

are provided in figure 5.28a and 5.28b, alongside with their curvature distribution ()2 <

utg >z,t (x, n)∕)n2 and )2 < w >z,t (x, n)∕)n2) in figure 5.28c and 5.28d. The wall-tangent

velocity profile presents an inflection point at n∕C = 0.06. This vertical location appears

to be unaffected by the crosswind. As it was observed in the laminar separation scenario,

the spanwise flow presents an inflection point at the same vertical location of the chordwise

flow. The inflection point is observed to match the peak of the fluctuating energy content

at the wavelength �z∕C ≃ 0.2 observed in the spectra taken at location x∕C = 0.92 and

shown in figure 5.24. The presence of an inflection point for the chordwise flowmay suggest

the appearance of a Kelvin-Helmholtz instability contributing in modifying the large scale

separation forming in the turbulent boundary layer promoted by the strong adverse pressure

gradient. As already remarked for the laminar separation, the appearance of an inflection

point also in the mean spanwise flow of the swept wing field suggests a redistribution of the

fluctuating energy content reshaping the separation behaviour. This is in accordance with

the difference in the large scale fluctuating energy between the straight and the swept wing
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Figure 5.26: Iso-contours of the instantaneous fluctuations of the vorticity field in the 5o incidence case
with FST. (a) and (b) Iso-contours of !′xC∕Q∞ extracted on a spanwise plane normal to the suction side
wall at x∕C = 1.0. Selected iso-lines at !′x = [±10 ± 20]Q∞∕C are represented with solid lines for
positive values, dashed otherwise. Top: straight wing; Bottom: swept wing. (c) and (d) Iso-contours of
!′yC∕Q∞ on a plane parallel to the suction side wall and just on top of it, shown from mid chord onwards.
Selected iso-lines at !′y = [±10 ± 20]Q∞∕C are represented with solid lines for positive values, dashed
otherwise. Left: straight wing; Right: swept wing. Red colour is used for positive vorticity perturbations
(i.e. !′{⋅}C∕Q∞ > 20), blue for negative values (i.e. !′{⋅}C∕Q∞ < −20) and white for vorticity close to
zero.
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Figure 5.27: Iso-contours of the instantaneous fluctuations of the vorticity field in the 10o incidence case
with FST. (a) and (b) Iso-contours of !′xC∕Q∞ extracted on a spanwise plane normal to the suction side
wall at x∕C = 0.9. Selected iso-lines at !′x = [±10 ± 20]Q∞∕C are represented with solid lines for
positive values, dashed otherwise. Top: straight wing; Bottom: swept wing. (c) and (d) Iso-contours of
!′yC∕Q∞ on a plane parallel to the suction side wall and just on top of it, shown from mid chord onwards.
Selected iso-lines at !′y = [±10 ± 20]Q∞∕C are represented with solid lines for positive values, dashed
otherwise. Left: straight wing; Right: swept wing. Red colour is used for positive vorticity perturbations
(i.e. !′{⋅}C∕Q∞ > 20), blue for negative values (i.e. !′{⋅}C∕Q∞ < −20) and white for vorticity close to
zero.
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observed within the spectra of figure 5.25.

Concerning the characterisation of the flow field close to the separating region, figures

5.28e and 5.28f illustrate a comparison between the swept and unswept wing distribution

of the r.m.s of the chordwise and spanwise velocity fluctuations (< u′u′ >z,t (x, n) and

< w′w′ >z,t (x, n)) for the 10o incidence case with FST. Figure 5.29a shows the same

comparison for the Reynolds stress < u′v′ >z,t (x, n). All the profiles have been extracted

in proximity of the separation region at the same chord location x∕C = 0.9. The Reynolds

stresses linked to the chordwise flow do not show an appreciable difference in the location of

the mean flow inflection point (n∕C ≃ 0.6) when the crosswind is introduced. However, it

is noticed that the crosswind due to the sweep enhances the fluctuating content in the cross-

components Reynold stress< u′w′ >z,t (x, n) (shown in figure 5.29b) in the vertical location

n∕C ≃ 0.6. This local increase may be related with the flow structures introduced by the

interaction between the chordwise and spanwise flows inside the separating flow. Because of

the chaotic nature of the turbulent separation, it was not possible to recognise flow structures

embedded in the instantaneous flow field that could be directly linked with typical stages of

the breakdown process leading to separation. This difficulty made impossible to directly

diagnose the features that differentiate the turbulent separation on the swept and unswept

case. However, in the profiles of < w′w′ >z,t and < u′w′ >z,t of the swept wing, the

appearance of a peak close to the wall at n∕C ≃ 0.005 is remarked. This local increase of the

fluctuating activity can also be observed in the iso-contours of < R̂∗u′u′ >t extracted further

downstream, at x∕C = 0.98, and shown in figure 5.25b, where the iso-lines corresponding

to the swept wing flow allow to identify an energy peak with the wavelength �z∕C ≃ 0.4 at

vertical location y∕C ≃ 0.01.
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Figure 5.28: Mean chordwise and spanwise velocity field wall normal distributions extracted from the
suction side at chord location x∕C = 0.9 for both swept (dashed lines) and unswept (solid lines) con-
figurations in the 10o incidence case with FST. Panel (a) < utg >z,t ∕Q∞, (b) < w >z,t ∕Q∞, (c)
f = (C2∕Q∞))2 < utg >z,t ∕)n2, (d) g = (C2∕Q∞))2 < w >z,t ∕)n2, (e) < u′u′ >z,t ∕Q2

∞ and (f)
< w′w′ >z,t ∕Q2

∞.
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Figure 5.29: Cross-components Reynolds stress < u′v′ >z,t ∕Q2
∞ and < u′w′ >z,t ∕Q2

∞ in (a and b). All
the profiles have been extracted from the suction side of the 10o incidence case with FST at x∕C = 0.90.
The solid line is used for the straight wing while the dashed line for the swept wing.

5.3.3 Statistical analysis of the reversed flow

An indication of the approaching separation of the turbulent boundary layer in the straight

wing case can be found in the maps of the instantaneous chordwise wall friction �wsn(x, y, z, t)

on the suction side of the unswept wing. These are shown in figure 5.30a for the low inci-

dence case and in figure 5.31a for the higher one. In this figures, the localised blue spots in-

dicate the presence of separated nuclei. These nuclei preferentially line up following the low

speed streaks. This behaviour has also been observed recently by Vinuesa, Örlü & Schlatter

(2017). The width of the nuclei increases according to that of the low speed streaks where

they are hosted, thus growing moving downstream due to the increasing adverse pressure

gradient and reduced wall friction (Lee & Sung 2009). The initial appearance of the nuclei

that represent locally reversed flow, is found at a very early stage of the wing (x∕C = 0.25

for the 5o incidence case, x∕C = 0.05 for the 10o case). It is interesting to note that the

width of the nuclei increases up to 20%C when the location of the mean separation on each

wing is approached (x∕C = 1.0 for the 5o incidence case, x∕C = 0.91 for the other).

Thus, the separation of the turbulent boundary layer that develops on a straight wing

appears to be a process that builds up moving downstream along the chord by the increased

probability of finding longer and larger reversed flow spots. Under this perspective, the

reverse flow nuclei could be seen as the precursor of the formation of a stall cell and the mean

separation location just become a time-average quantity that has no instantaneous physical

140
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Figure 5.30: Iso-contours of �wsn∕(�Q
2
∞) on the suction side wall for the 5

o incidence case with FST. Top:
straight wing; Bottom: swept wing. The red colour is used for positive friction values (the y axis is pointing
upwards), blue for negative ones.

(a)

(b)

Figure 5.31: Iso-contours of �wsn∕(�Q
2
∞) on the suction side wall for the 10

o incidence case with FST. Panel
descriptions and legend as in figure 5.30.
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Figure 5.32: Distribution of ℘(�wsn < 0) along the chord on the suction side wall. The solid line is used
for the straight wing and the dashed line for the swept at 5o incidence, while the same lines with circles
are used for the corresponding wings for the 10o incidence case.

meaning. This probabilistic picture of turbulent separation can be understood by looking at

the colour distribution of the maps of figure 5.30 (the blue colour is used for the reversed

flow), showing a continuously increasing probability of finding a region of localised reversed

flow moving towards the trailing edge. This scenario becomes even more evident for the

higher incidence case whose skin friction maps are shown in figure 5.31. To quantify the

reversed flow, the time averaged cumulative probability to observe a backflow event along

the span for all the chord stations along the wing ℘(�wsn < 0)(x, n) (defined in equation

4.7) is shown in figure 5.32 (solid lines) for both incidences. As expected, the cumulative

probability presents a continuous increase moving towards the trailing edge also showing a

direct relation with the adverse pressure gradient distribution when quantified by the Clauser

parameter (shown with the solid line in figure 5.13). It is also noticed that the probability to

observe a backflow levels out at 0.5 when the location of the mean separation on each wing

is approached (x∕C = 1.0 for the 5o incidence case, x∕C = 0.91 for the 10o case). From

now on, it will be assumed that the location of the mean separation line can be estimated

considering the chord location where more than 50% of the spanwise direction is occupied

by reversed flow spots.

The fluctuating energy content contained in the spanwise wavelength �z∕C ≃ 0.20C ,

which has been discussed when considering the spectra in sections 5.3.2, appears to be re-

lated with the local spanwise size of the separated front (i.e. the stall cell size). Indeed,

the distribution of ℘(�wsn < 0) saturates (independently of the incidence) at 50% chance of

finding reversed flow and the flow structures containing reversed flow (blue spots indicating

the stall cells) having spanwise extension of about 20%C can be seen inside the area affected

by mean separation in the flow visualisations proposed in figures 5.30a and 5.31a for both

loading conditions.

The nature of the turbulent separation that has been described above, also offers an expla-
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nation of the thickening layer of< !x >z,t on the wing suction side at x∕C = 0.60 presented

in figures 5.8a and 5.8b. It is believed that the distribution portraits the footprint of an early

incipient separation, which appears to lack a clear uniform separation (i.e. with a spanwise

extension of 20%C) even for the high loading case. Also, the absence of a smooth shape for

the < !x >z,t layer in the 10o incidence case may be linked to the formation of the incipi-

ent separation. The process involves locally larger scales structures (although smaller than

20%C) which require a longer sampling time than the considered one (i.e. Δt∗ ≃ 30Q∞∕C

for the < !x >z,t) to produce statistically meaningful results.

In summary, the turbulent separation mechanism on the swept wings appears to follow a

similar evolution as for the unswept case, whilst the flow topology of the inner boundary layer

is greatly affected by the presence of the crosswind. Indeed, the distributions of℘(�wsn < 0)

for both the swept wing loading conditions show similar behaviours as the one found for

their unswept wing counterparts, as can be seen in figure 5.32.

It has been also observed that a strong difference in the flow field topology in the wall

region takes place when the swept wing configuration is considered. In particular, by com-

paring the friction lines between the swept/unswept wing configurations, provided in figures

5.30a and 5.30b for the low incidence case (see figures 5.31a and 5.31b for the higher load-

ing condition), one can easily observe the effect of the crosswind. In the low incidence case

the lines that correspond to the low speed streaks are bent with an almost constant angle

(imposed by the mean local flow) along the whole chord, except in the trailing edge region.

Furthermore, the footprints of the low speed streaks at the wall appear narrower (consider-

ing the cross-section perpendicular to their elongation) than those observed in the unswept

wing. This observation is confirmed when considering the width of the backflow nuclei that

are channelled within the low speed streaks. Indeed, their size in the direction normal to

the local velocity vector is observed to be qualitatively smaller when the crosswind is intro-

duced. This observation is consistent with the experiments of Flack (1997), where narrower

streaks were observed in a turbulent channel flow when a crosswind component is added to

the mean flow. For the higher incidence case similar observations can be made, although the

bending angle is not constant along the chord: close to the leading edge the flow is almost

perpendicular to it, while it progressively turns to become almost parallel to the trailing edge

when the location of mean separation, x∕C = 0.91, is approached. A similar scenario has

also been described in the discussion of turbulent separation given in Broadley (1998). As a

final observation, it is noticed that beyond the mean separation location, the blobs contain-

ing reversed flow in a swept wing present a topology slightly more extended in the spanwise
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direction than those on the unswept wing (the reader would compare the visualisations be-

tween the two wing configurations in figure 5.30 for the low incidence case and figure 5.31

for the other incidence). This observation is consistent with the modified large scale energy

content observed in the spectra (figure 5.23 for the low incidence case and figure 5.24 and

5.25 for the other case) when the wing configuration with the crosswind is considered.
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Chapter 6

Conclusions

Eureka!

Archimedes of Syracuse

High fidelity simulations of incompressible flows past infinite straight and swept wings fea-

turing aNACA−4412 profile have been carried out. In both wing configurations, the chord

Reynolds number has been kept constant at a value of 5 × 104. All the considered simula-

tions involved cases with enough incidence to lead to a partial detachment of the suction side

boundary layer. The aim of the present thesis has been to undertake a systematic comparison

of the flow developing around swept and unswept wings to understand the effect of a mean

crosswind on the flow fields. This exercise has been carried out considering both laminar

and turbulent incoming flows. In particular, the assessment and the range of validity of the

Simple Sweep Theory when flow detachment takes place was one of the primary research

goals. Alongside this more applied task, a more basic objective concerning the characteri-

sation of the separation mechanism from a fundamental perspective, highlighting analogies

and differences between all the flow scenarios considered, has also been a central research

topic. The flow scenarios that have been considered included a laminar inflow condition

and a 10% intense turbulent free stream condition. In the laminar inflow case, a 5o angle of

attack has been considered. In the turbulent inflow case, two distinct incidences have been

considered, namely 5o and 10o. All the considered cases have been simulated using a straight

and a 30o swept-back wing to allow a meaningful ground for cross-comparison.

All the configurations mentioned above share the appearance of a separated portion of

the suction side boundary layer induced by the gradually increasing adverse pressure gradi-

ent that develops when moving towards the trailing edge. An original method is proposed
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and used to extend the computation of the mean boundary layer integrals along the foil por-

tion interested by the presence of flow detachment. This approach can be considered as an

extension of the vorticity-vanishing criterion originally introduced by Vinuesa et al. (2016)

for wings characterised by an attached boundary layer. This methodology has also been

adopted to compute the integral properties of the boundary layers that develop on the swept

wing configuration, i.e. in presence of a mean crosswind. In what follows, the conclusions

have been organised accordingly to the various scenarios that have been considered.

6.1 Incoming uniform, laminar flow

6.1.1 Unswept wing flow

When a laminar inflow is considered, the unswept wing features a laminar separation bub-

ble (LSB) on its suction side, while a laminar, attached boundary layer is observed on the

pressure side. This is a well known scenario reported several times by other authors, e.g

Gaster (1967), Jones et al. (2008), Yarusevych et al. (2009). The region interested by flow

separation is bounded from above by a thin shear layer that, in the particular case consid-

ered here, detaches from the wall at the (spanwise and time) averaged location x∕C = 0.26.

This location is found to be marginally unsteady and weakly three-dimensional, therefore a

probabilistic approach is not strictly necessary for its characterisation. A dividing streamline

(Marxen & Henningson 2011), which envelopes the LSB, is also observed when the mean

flow is considered.

The aforementioned detached shear layer undergoes a laminar to turbulence transition on

the wing suction side. The transition originates from the inviscid instability of the chordwise

flow component when entering the area interested by the reversing flow as demonstrated by

Watmuff (1999) and observed by several other authors (e.g. Alam & Sandham (2000), Lang

et al. (2004), Marxen et al. (2004), Jones et al. (2008), Hain et al. (2009), Marxen et al.

(2012)).

On the suction side, the fluctuating flow field exhibits an intense energy content albeit

mainly taking place around the dividing streamline. The shear layer is also observed to be

modulated in the spanwise direction with a dominant mode appearing in correspondence of

the mean separation location characterised by a wavelength �z∕C ≃ 0.2. This flow mode is

observed to be related with the detaching shear layer breakdown to turbulence.
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6.1.2 Swept wing flow

The chordwise flow of the swept wing is found to follow the predictions obtained using the

Simple Sweep Theory as long as the boundary layer remains attached to the wall. Conversely,

the portion of the wing interested by detachment exhibits a chordwise flow that depends on

the wing sweep. Clearly, in this condition the Simple Sweep Theory predictions are not

valid and would require an eventual correction not proposed yet in the scientific literature.

Although the deviation from the Simple Sweep Theory predictions are small for the low

order statistics of the flow (i.e. mean flow fields of velocity and pressure and consequently

the boundary layer integrals), they become non negligible for the higher order statistical

quantities (i.e. flow fluctuating field and consequently the energy content of the developing

turbulence, as well as the character of the reversed flow). It is also found that the sweep does

not influence the mean wing performances, but the induced mean cross flow plays a role on

the flow dynamic participating into the aerofoil wake. This effect has also an impact on the

temporal behaviour of the wing performances, that are indeed influenced by the presence of

the crosswind differently fromwhat would be predicted by the Simple Sweep Theory . In this

context, the result obtained in this thesis confirm the conclusions of former pioneering works

of Uranga et al. (2011) and De Tullio & Sandham (2017). In particular, the crosswind is seen

not to play any role in the determination of the separation location, however it modifies the

process leading to transition by altering the unsteady behaviour of the detaching shear layer.

The dominant spanwise mode leading to the turbulent breakdown of the shear layer in the

case of a straight wing is characterised by awavelength �z∕C ≃ 0.2. This mode ismarginally

weakened in favour of larger spanwise modes in the swept wing scenario. The violation of

the Simple Sweep Theory is observed especially downstream of the breakdown location.

The modified energy content of the fluctuating field in the shear layer of the swept wing may

be linked to the appearance of an inflection point in the crosswind mean velocity profile

inside the reversed flow area. It is however noticed that the footprints of the fluctuating flow

structures do not coincide with those observed in the literature of the conventional crossflow

instabilities occurring on a swept wing for high Reynolds number, see for example Reed &

Saric (1989).

The spanwise flow of the swept wing exhibits a distinct boundary layer with respect to

that of the chordwise flow inside the separated flow area, as it remains attached everywhere

along the chord. However, the spanwise flow feels the ongoing separation of the streamwise

flow exhibiting the typical shape of a boundary layer over a porous wall (e.g. Monti et al.
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(2019)), which suggests the LSB being a region with a varying effective viscosity for the

spanwise flow.

Inside the separated flow region, the flow topologies of the straight and swept wings

are different, especially close to the wall, with spanwise spiralling streamlines in accor-

dance with the features already observed by other authors (e.g. Davis et al. (1987), Broadley

(1998), Hetsch & Rist (2009). This set of vortices seems to originate from the combined

action of the mean chordwise and spanwise flows, rather than being the results of an ongo-

ing crossflow inflectional instability. A reasonable explanation for the spiralling character is

the loss of chordwise momentum, giving a directionality preference to the reversing flow. In

particular, in the swept configuration, the detached flow region is characterised by spanwise-

coherent vortices.

6.2 Turbulent free stream

6.2.1 Unswept wing flow

For both the considered loading conditions, the increase of the turbulence level in the free

stream deeply modifies the LSB scenario described above. A largely attached flow is the re-

sult of an enhanced turbulent mixing of momentum in the close to the wall region (Schlicht-

ing & Gersten 2000). The boundary layer on both the wing sides is triggered by the FST to

a turbulent state via a by-pass mechanism from the very initial portion of the wing leading

edge as observed by Brandt et al. (2004) for the case of the transition of a Blasius boundary

layer on a flat plate. The turbulent boundary layer developing downstream features enough

friction to remain attached to the wall for the most part of the aerofoil. In particular, in the

lower incidence case, the average location of the separation front is found at the very end

of the suction side, at x∕C = 1.0. In the higher incidence case, the average location of the

separation front is observed more upstream at location x∕C = 0.91.

As expected, the wing lift of the FST injected cases is increased considerably, when

compared to the laminar inflow case. The overall drag decreases is an obvious direct con-

sequence of the LSB suppression that implies pressure drag reduction. The latter surpasses

the friction drag increase of the turbulent boundary layer which is higher than its laminar

counterpart. It is also noticed that the presence of turbulent boundary layer mitigates the

unsteadiness of the integral aerodynamic coefficients.

For both the considered loading conditions, the fluctuating flow field near the wall, along

the whole suction side, is characterised by an energy content in the spanwise modes having
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wavelength in the range 0.01 < �z∕C < 0.1. This distribution of fluctuating energy in the

spanwise direction can be linked to the development of the wall turbulence flow structures,

in particular velocity streaks, along the foil. In the front part of the wing, the streaks are

the product of the by-pass transition caused by the FST and may be linked to the Klebanoff

mode, in agreement with what has been observed by other authors (Brandt et al. 2004). In the

rear part of the wing, the streaks represent the turbulent low speed streaks and they present

a varying spacing in accordance to the varying adverse pressure gradient condition. In par-

ticular, they widen moving towards the stronger adverse pressure gradient at trailing edge,

confirming the conclusions made by Lee & Sung (2009), and consistently with a reduced

value of the skin friction Reynolds number.

Apart from the broadband distribution of energy modes in the spanwise direction, a sec-

ond peak of the fluctuating energy is observed on the suction side of the wing corresponding

to a wavelength of �z∕C ≃ 0.2. In the higher incidence case, this presence is recorded from

a position which is upstream of the one corresponding to the lower angle of attack. The

energy content of this large spanwise mode increases until reaching high values when the

mean separation location is approached, for both the loading conditions. A similar appear-

ance and growth of a spanwise mode that anticipates the separation has also been noticed

in the laminar case. Inside the separated flow area, the wall normal location of the energy

peak is observed to coincide with the location where an inflection point in the chordwise

velocity profile appears, confirming the observations of Kitsios et al. (2017) made for a flat

plate with strong adverse pressure gradient, on the verge of separation.

The turbulent detachment mechanism of the boundary layer appears to be a process that

builds up continuously along the chord, starting from initially localised backflow nuclei,

confirming the recent observation of Vinuesa, Örlü & Schlatter (2017). The size of the

regions of locally reversed flow increases downstream. In particular, the probability of find-

ing bigger reversed flow spots, channelled within the low speed streaks, increases as the

adverse pressure gradient increases. To quantify this apparently stochastic behaviour of the

appearance of separated nuclei, a probabilistic approach is clearly required and the location

of the mean separation does not have any instantaneous physical meaning. This scenario is

in accordance with what has been suggested by the pioneering work of Simpson (1989). In

the present research, it has been noticed that the probability of observing a backflow spot

along the chord correlates well with the intensity of the fluctuating activity of the flow mode

�z∕C ≃ 0.2. Also, this flowmode appears responsible for the maximum, averaged spanwise

extension of the backflow spots. This is found to be ≃ 0.2C when the average location of
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the separation line is approached. This effect reflects in the fact that in the present 0.4C

extended wing, the probability to find a reversed flow region along the spanwise direction

levels out at 50%, once the mean separation location is approached.

6.2.2 Swept wing flow

For both the considered incidences, the mean chordwise flow field developing on the swept

wing is well predicted by the Simple Sweep Theory , as long as the boundary layer is sta-

tistically attached to the wall. However, in the region neighbouring the average location of

the separation of the chordwise flow, the swept and unswept wing flow fields start to devi-

ate with a modality that differs from the one that would be predicted by the Simple Sweep

Theory . In general, the wing performances, Cl and Cdx , with their r.m.s are well predicted

by the Simple Sweep Theory , even though some differences in the vortex shedding process

and in the flow separation evolution are observed.

For both loading conditions, the probabilistic route to the chordwise turbulent separation

is not strongly affected by the sweep, but its evolution is. The flowmodewhich influences the

fluctuating flow during the detachment process of the unswept configurations, characterised

by a spanwise wavelength of �z∕C ≃ 0.2, is observed to be slightly weakened by the sweep

that promotes fluctuating flow modes of larger spanwise extension. A similar effect of the

mean crosswind was noticed for the laminar separation mechanism, too.

Despite the fact that for both the straight and the swept wings the evolution towards sep-

aration follows a similar pattern, the crosswind is observed to have an effect on the structure

of the wall turbulence, along the whole chord in both the incidence cases. In particular, the

velocity streaks appear to be bent and deformed in the mean crosswind direction which is

not constant neither along the chord, nor inside the boundary layer. The spanwise defor-

mation enhances the width of the low-speed streaks while narrowing the high speed ones.

At the chord location where the mean separation occurs, the velocity streaks have been al-

most completely turned from an initial chordwise direction to a parallel-to-the trailing edge

configuration. In this condition, their instantaneous spatial spacing appears to coincide with

the size of the reversed flow spots, which in the present flow set up is 0.20C wide, on the

average.

As observed for the laminar inflow case, also for the turbulent inflow case the swept

wing shows boundary layers that evolve in the same manner for the chordwise and spanwise

flows on the pressure side, while boundary layers with different features take place on the

suction side. The chordwise flow on the suction side is exposed to an increasing probability
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of separation, while on the pressure side the flow is always perfectly attached also when

separation takes place on the opposite side of the foil. Again, as observed for the laminar

case within the separated region, the spanwise velocity profile develops an inflection point

coinciding with that of the chordwise flow. Also in the turbulent separation the spanwise

flow develops a typical boundary layer of a flow over a porous media. No footprint of a

conventional crossflow instability (as collected in Reed & Saric (1989)) is observed in the

present turbulent boundary layer, probably because of the low value of the adopted Reynolds

number. It is also possible that the technical difficulty in detecting the presence of travelling

waves has not fully revealed the eventual presence of crossflow instabilities (Reed & Saric

1989) that may have also played a role.

6.3 Recommendations and future works suggestions

For both laminar and turbulent boundary layers, the Simple Sweep Theory can be safely

used to predict the behaviour of a swept wing flow until the mean separation location is

reached. Downstream of this location, the local behaviour of the flowfield departs from those

predictions. The baseline Simple Sweep Theory prescribes that a flow quantity of the two-

dimensional chordwise flow of the swept case (e.g. < Cpx >z,t) can be predicted using the

chordwise flow field of the correspondent straight wing (< Cpx >z,t
|

|

|Λ=0
) when multiplied

by the cosine function of the sweep angle Λ, i.e. < Cpx >z,t= < Cpx >z,t
|

|

|Λ=0
cos(Λ). The

simple sweep model is therefore linear with respect to the flow field quantities and non-

linear with respect to the sweep. According to what mentioned above, to extend the theory

when a separation takes place, a correction is required. This correction may be dependent

to all the parameters that appear to govern the flow case, i.e. profile type and incidence (or

consequently, the pressure distribution, P (x)), the Reynolds number Rec , the sweep, the

incoming turbulence intensity I , etc.. The corrected simple sweep model could be formally

written

< Cpx >z,t= < Cpx >z,t
|

|

|Λ=0
cos(Λ) + f (P (x), Rec ,Λ, I), (6.1)

with the function f to be determined and taking on a non zero value only when a mean

separation, either laminar or turbulent, takes place. However, the functional shape of the

correction is presumably difficult to prescribe as linked to the non-linear character of the

flow separation structure breakdown, which complexity has been discussed in this thesis.

For both laminar and turbulent boundary layers and for the considered wing configu-

rations, the separation mechanism on an indefinitely extended wing is inherently unsteady
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and three-dimensional, therefore requiring a time-dependent, three-dimensional probabilis-

tic approach for its full investigation. In the case of the laminar boundary layer, the separation

location is only marginally unsteady and weakly three-dimensional. Differently, the turbu-

lent scenario is far more complex. A mean separation line at the wall can be defined using

the spanwise and time averaged flow field for both the flow regimes (e.g. using the mean

distribution of the skin friction coefficient). It is remarked that the mean separation line does

not have any physical meaning in the instantaneous flow realisation when the turbulent sep-

aration is considered. Downstream of the mean separation location, a probabilistic approach

is strictly necessary also for the laminar case in order to characterise the reversed flow. A

simplemodel that prescribes a two-dimensional separation front at a specificwall location in-

duced by the adverse pressure gradient can be profoundly misleading for the comprehension

of the turbulent separation mechanism. In turn, the consequence of a poor comprehension

of the turbulent boundary layer detachment mechanism would condition the development of

turbulent separation control techniques towards the implementation of non effective strate-

gies.

In particular, in the swept wing configuration, the crosswind has been observed tomodify

the structure of wall turbulence, even when fully attached turbulent boundary layers are

considered. A priori, one could speculate that the crosswind influences the wall turbulence

cycle (Jiménez & Pinelli 1999) also reshaping the outer logarithmic structures and their

connection with close to the wall turbulence (Agostini & Leschziner 2014). To the best of

the author’s knowledge, the matter has been only marginally investigated with a limited use

of highly-detailed flow methodologies. In this framework, a pioneering investigation was

carried out by Flack (1997), who observed a slightly modified spacing between low speed

streaks due to the crosswind, confirmed by the present investigation. It is clear that further

investigations into the matter are required to unveil the modification of wall turbulence under

the effect of a mean spanwise velocity component.

Another area that requires further research is the turbulent boundary layer separation pro-

cess. The latter generates flow structures with an increasing size when moving downstream,

until becoming comparable with that of the chord. The formation of this large structure is

very unsteady and intermittent and a space-time average reveals very little of the ongoing

physical process. A possible scenario that needs further investigation could be based on

the conjecture that once the large-scale separating flow structures reach their maximum size

(which appears governed by a specific fluctuating flow mode, differing between the straight

and the swept wing), they go through a scale breakdown process sharing some analogies
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with that one encountered during the breakdown of the laminar boundary layer separation

to turbulence. This conceptual scenario is suggested after the similar effect introduced by

the sweep to the fluctuating flow field during the breakdown process of the separating flow,

independently of the boundary layer flow regime. Of course, further studies maybe formu-

lated for simpler flow model problems are required to verify the proposed speculation on

the analogy between the breakdown processes of the large-scale structures generated by the

laminar and by the turbulent boundary layer separation mechanisms. This could be done us-

ing a detailed numerical simulations within a more controlled environment, e.g. an unswept

flat plate with an imposed adverse pressure gradient, as done by many authors investigating

the laminar separation phenomenon (e.g. Alam & Sandham (2000), Balzer & Fasel (2016)).

In more controlled conditions, the breakdown process of the laminar and of the turbulent

boundary layer separating flow structures could be characterised in an extremely detailed

fashion. In the controlled scenario, sophisticate fundamental research could be carried out

on the breakdown process, suppressing or enhancing flowmodes in a numerical experiments

as done for example by Jiménez & Pinelli (1999) to unveil the self generating mechanism of

wall turbulence. These researches, carried out in simpler configurations, could also help in

putting forward ideas for developing the corrections f (P (x), Rec ,Λ, I), to extend the valid-

ity of the Simple Sweep Theory when a mean separation takes place.

Finally, it is important to mention that for both inflow scenarios considered in this the-

sis, the adopted methodology employing a spanwise wing extension of 0.4C with periodic

boundary condition might have played an effect. This by forcing the dominant fluctuating

mode to develop at an unphysical wavelength �z∕C ≃ 0.2 for the straight wings that is ul-

timately observed to drive the breakdown of the the separation-generated flow structures.

Furthermore, also the spanwise size of the computational box may have limited the exten-

sion of the dominant fluctuating mode, since the effect of the sweep to the large-spanwise

fluctuating flow mode has been observed to be a moderate shift towards larger spanwise

modes. However, independently of the effects of the computational domain, it is believed

that this thesis has shed some light on the genuine physical breakdown process leading to

separation, also highlighting some analogies between the laminar and the turbulent regimes

and the differences between the straight and the swept wing configurations. Further com-

putationally more expensive simulations considering the effect of the box size (i.e. larger

spanwise extension or odd span/chord ratio) would provide a more solid evidence on the

real-world validity of the present conclusions.
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Appendix A

6.4 Peer-reviewed publications accepted

In the followings, the accepted publications based on the research carried out for the present

thesis are attached.
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The effect of the sweep angle to the turbulent
flow past an infinite wing

C.A. Suardi, A. Pinelli, and M. Omidyeganeh

1 Introduction

Nowadays the majority of civil aircrafts employs swept-back wings. This configu-
ration, proposed in the early 30’s of last century, has been technologically motivated
by the otherwise enhanced drag experienced in transonic cruise condition. Since its
introduction, several studies have focused on the assessment of the aerodynamic be-
haviour of this wing configuration for a flow conditions resembling realistic, high
Reynolds (Re) number cases of aeronautical interest [1, 2]. In these investigations,
the boundary layer interesting the infinite wing undergoes an early transition in-
hibiting the appearence of any major separated regions for a moderate incidence
and can thus considered a developing turbulent boundary layer (TBL) subject to a
varying adverse pressure gradient (APG). In the present work, we also consider an
infinite wing model at a modest angle of attack. However, because of the prohibiting
computational cost of detailed simulations at a high Re number, we prefer to mimic
this realistic conditions by superimposing free stream turbulence to the approach-
ing clean stream. Indeed, this choice induces an early by-pass transition that prevent
the eventual separation of the TBL, thus leading to a physical situation similar to the
reference ones cited above. The high Re number regime, leading to an almost totally
turbulent, attached boundary layer, is a quite interesting case for at least two reasons.
The first one was put forward long ago and concerns the possibility of predicting the
aerodynamic performances of a swept wing (lift and drag) in terms of the associated
straight one, using a simple trigonometric function of the introduced sweep angle.
This property, that has been verified experimentally and numerically by several au-
thors, mainly holds for attached flows and is commonly termed as Simple Sweep
Theory. Although this theory has been the working horse of swept wing design for
decades, its exact applicability limits and its extention to other aerodynamic prop-
erties is still object of recent investigations. The second aspect that makes the TBL
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2 C.A. Suardi, A. Pinelli, and M. Omidyeganeh

on a swept wing an appealing research topic is related with the comprehension of
the structure of the turbulent, wall bounded flow simultaneously exposed to an APG
and to an imposed cross flow. An understanding on how these concomitant effects
manipulate the structure of the TBL is the central topic of the present contribution.
The region of primary interest is the one close to the trailing edge of the wing,
where the pressure gradient is a strong adverse one and where the impact of the
cross flow generated by the sweep angle is more evident. In particular, is accounted
the effect of the sweep adoption on the appearence of reversed flow nuclei, similar to
those reported into the literature for the high Reynolds TBL subject to zero pressure
gradient (ZPG) [3] and for the moderate Re under an APG [7]. In general, our sim-
ulations on a straight wing, confirm the appearance of localised and unsteady local
separated cores even for the case of an apparently fully attached boundary layer, due
to the intense pressure gradient in the latter stage of the wing suction side for the
aerofoil and incidence considered. When the 30o sweep-back angle is considered,
we observe a mitigation of these reversed flow nuclei, alongside with a not trivial
bending of the principal flow structures partecipating in the wall turbulence cycle.
Due to the idea put forward by several authors suggesting an eventual link between
the mentioned flow structures and the appearence of trailing edge flow separation on
a wing, it is believed of great importance to understand how the sweep angle would
affect this link. This in order to provide essential guidelines for the development of
flow separation devices for the widely adopted swept wings.

2 Problem Formulation

The flow past an infinite swept wing is dealt with the 3D incompressible, Large
Eddy Simulation equations (LES). The region close to the wing surface is fully re-
solved while the subgrid scale closure is achieved via the ILSA model proposed by
Piomelli et al. [4]. The LES equations are space discretised via a co-located finite
volume formulation on a structured mesh. The solver overall accuracy is second or-
der in both space and time and the MPI library is used in the framework of a domain
decomposition approach to exploit parallel, memory distributed computer architec-
tures. The solver that incorporate all the aforementioned features (called SUSA) has
been extensively validated in the past [5].The computational domain around each
2D aerofoil (NACA 4412) x− y cross section is sketched in figure 1 alongside with
tha wall resolution in inner units (being the friction velocity, uτ , and the kinematic
viscosity, ν). On the x− y plane, the domain is meshed using a body fitted C-grid
which 3D extension is achieved extruding the 2D mesh in z using a uniform spacing.
A zero velocity boundary condition is enforced at the solid walls, while on the outer
boundary (i.e., the surface obtained when extruding the outer 2D boundary in z), we
set an inlet/outlet condition that depends on the local, instantaneous direction of the
computed flow (Dirichlet condition obtained from an irrotational solution if flow is
incoming, non-reflective condition if outgoing) for the x and y velocity components.
The swept/unswept wing configuration is simulated by setting a constant value for
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∆
∆

∆

Fig. 1 Domain geometry for the com-
putational study. z extension is 0.4 c (c
being the chord size). The domain is
assumed to be periodic in z.

Fig. 2 Wall resolution in plus units for
all the cases considered in this investi-
gation, compared with the standard for
a turbulent channel flow.

the z velocity component (parallel to the leading edge) on the outer boundary equal
to U∞tan(β ), with the sweep angle β , equal to 30o/0o (U∞ being the free-stream
velocity component perpendiculat to the aerofoil LE). For both swept and unswept
cases the chord Reynolds number is Rec =U∞ c/ν = 50×103, and two loading con-
ditions have been considered setting the angle of attack to α = 5o/10o. The boundary
layer transition is triggered by superimposing to the incoming flow a turbulence field
(10% intensity with integral length scale 0.045C) obtained through a twin, indepen-
dent DNS of grid generated turbulence (Reynolds number based on grid spacing
ReM = 2000). In figure 3a is presented the turbulent kinetic energy spectrum of the
perturbation introduced, as well as that of the resultant boundary layer in the buffer
layer, (y+ ≈ 25), at a specific different suction side wing locations, x/C ≈ 0.75 for
the case of un-swept wing at 5o incidence. Inside the in-box it can be found an il-
lustrative sketch of a portion of the grid turbulence introduced into the domain. The
effect of the perturbation introduced is that of triggering the boundary layer transi-
tion to turbulence via a by-pass mechanism from the early stage of the wing. The
energized boundary layer does not present a major separation from the wall for the
considered incidences, condition otherwise faced in the absent of boundary layer
perturbation [6]. Instead, it remains attached, by statistical mean, until the trailing
edge. The coefficient of friction, shown in figure 3b for the case of un-swept wing
and 5o incidence, clearly support this statement.

3 Results

A comparative study for the effect of a 30o sweep-back adoption on the flow field
is made for the two different loading condition considered. Figure 4a presents the
mean wall coefficient of pressure, whereas figure 4b presents some chord-wise ve-
locity profile for two consequent chord-wise locations, x/C = 0.4,0.95. The veloc-
ity profiles have been scaled with the inner units to make a comparison with the
law of the wall in the case of a turbulent channel flow. A good match for both the
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Fig. 3a Turbulent kinetic energy spectrum
for the introduced perturbetion (Top) and
into the buffer layer for late location on the
wing suction side (Bottom). An illustration
of the introduced grid turbulence and its ef-
fect on the boundary layer is presented into
the the squared box.

Fig. 3b Suction side wall friction coeffi-
cient along the chord.

incidences is found regardless the sweep angle adopted, supporting what has been
already postulated as the simple sweep theory for the low order statistics of the
turbulent attached flow past an infinite wing [1, 2].

Fig. 4a Distribution of the wall coefficient
of pressure for all the cases investigated.

Fig. 4b Profiles of the chord-wise velocity
in plus units for the 5o (Top) and 10o (Bot-
tom) incidences, at the chord-wise location
x/C = 0.4 (Left) and x/C = 0.95 (Right),
respectively.

Even though some flow statistics has been found mildly affected by the adoption
of the sweep angle, the flow dynamics of the turulent boundary layer results deeply
modified. It is reported a varying distortion of the wall turbulence streaks moving
toward the trailing edge, especially on the suction side. In figure 5 can be found the
contours of the instantaneous wall-normal vorticity fluctuation on a surface above
the wing suction side within the buffer layer for both the loading conditions, high-
lighting the streaks. The effect of the intensifying adverse pressure gradient seems
to have a increasingly stronger impact as the streaks are thicker and present a more
meandering pattern. Furthermore, a freshly new turbulent content is detected via the
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Fig. 5 Instantaneous iso-contours of the wall-normal component of the vorticity perturbation for
the (Left) 5o and (Right) 10o case. The black line identifies the trailing edge. Suction side view.
The flow is from bottom to top.

Reynolds stresses due to the introduced crosswind, for both the incidences, figure 6.

Fig. 6 Time and spanwise averaged profiles of quantities introduced purely by the crosswind for
the (Left) 5o and (Right) 10o incidence case. Per each incidence are shown the profiles of the
crosswind (Bottom), and two Reynold stresses (Centre and Top), extracted on the suction side at
two consequent chord-wise locations, x/C ≈ 0.4 (Left) and at x/C ≈ 0.95 (Right).

The sweep angle is found to mitigate the reversed flow nuclei appearing inside
the wing suction side boundary layer, and thus the portion of the wing interested
by reversed flow. Figure 7a presents a map of the instantaneous skin friction on the
suction side varying the sweep adopted, alongside with a quantitative account on the
same side of the total probability to detect a reversed flow, with respect to the mean
flow direction, moving along the chord, for the 5o (Top) and 10o (Bottom) incidence
case. What can be qualitatively be observed by the friction map is clearly supported
by the mitigated reversed flow region detected on the swept wing, regardless the
incidence.
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Fig. 7a (Left) Instantaneous iso-contours of the wall friction, flow from bottom to top, and (Right)
total probability to detect a reversed flow along the chord for the suction side wall. The (Top) set
refer to the 5o incidence case, the (Bottom) one for the 10o case.
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