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Abstract
In the Lagrangian meshless (particle) methods, such as the smoothed particle hydrodynamics (SPH), moving particle
semi-implicit (MPS) method and meshless local Petrov-Galerkin method based on Rankine source solution
(MLPG_R), the Laplacian discretisation is often required in order to solve the governing equations and/or estimate
physical quantities (such as the viscous stresses). In some meshless applications, the Laplacians are also needed as
stabilisation operators to enhance the pressure calculation. The particles in the Lagrangian methods move following the
material velocity, yielding a disordered (random) particle distribution even though they may be distributed uniformly
in the initial state. Different schemes have been developed for a direct estimation of second derivatives using finite
difference, kernel integrations and weighted/moving least square method. Some of the schemes suffer from a poor
convergent rate. Some have a better convergent rate but require inversions of high order matrices, yielding high
computational costs. This paper presents a quadric semi-analytical finite-difference interpolation (QSFDI) scheme,
which can achieve the same degree of the convergent rate as the best schemes available to date but requires the
inversion of significant lower-order matrices, i.e. 3 × 3 for 3D cases, compared with 6 × 6 or 10 × 10 in the schemes
with the best convergent rate. Systematic patch tests have been carried out for either estimating the Laplacian of given
functions or solving Poisson’s equations. The convergence, accuracy and robustness of the present schemes are
compared with the existing schemes. It will show that the present scheme requires considerably less computational
time to achieve the same accuracy as the best schemes available in literatures, particularly for estimating the Laplacian
of given functions.

Keywords Laplaciandiscretisation .Lagrangianmeshlessmethods .QSFDI .Random/disorderedparticledistribution .Poisson’s
equation . Patch tests

1 Introduction

In the Lagrangian meshless/particle methods, for example, the
smoothed particle hydrodynamics (SPH, e.g. Monaghan
1994; Shao and Lo 2003; Shao et al. 2006; Khayyer et al.
2008; Lind et al. 2012), moving particle semi-implicit method
(MPS, e.g. Koshizuka and Oka 1996; Gotoh and Khayyer
2016; Khayyer and Gotoh 2010), the meshless local Petrov-
Galerkin method (MLPG, e.g., Ma 2005a, b; Zhou and Ma
2010), interpolating element-free Galerkin method
(Abbaszadeh and Dehghan 2019; Dehghan and Abbaszadeh
2018, 2019), the computational domain is represented by par-
ticles and the governing equations with associated boundary
conditions are discretised to form a linear algebraic equation
system, which leads to the approximation of physical quanti-
ties at particle locations. These methods become more
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popular, attributing to their superiority over the conventional
mesh-based methods, such as the finite element method and
finite volume method, in dealing with various engineering
problems with large deformations, such as the breaking wave
impact on offshore structures, for which the mesh-based
methods may suffer from significant mesh distortions and/or
numerical diffusions.

One key technique for the Lagrangian meshless methods is
to numerically formulate and discretise the Laplacian opera-
tor, which is required mainly for three purposes. The first one
is to discretise the governing equations, involving second-
order partial differential terms or Laplacian operators, e.g.
the partial differential equation for the heat conduction and
thermal diffusion (Chen et al. 1999; Schwaiger 2008), the
pressure Poisson’s equation employed by the projection-
based/fractional step methods for solving the Navier-Stokes
(NS) equations to deal with fluid-structure interaction prob-
lems (Shao and Lo 2003; Ma et al. 2016) and the Helmholtz
equation widely used in wave and diffusion problems. The
second one is to numerically estimate specific physical quan-
tities, which are expressed by the Laplacian of others, e.g., the
viscous stress in the NS equation (Zheng et al. 2018). The
third one is to discretise the Laplacian utilised as stabilisation
operators to enhance the pressure calculation in various appli-
cations (Khayyer and Gotoh 2010; Khayyer and Gotoh 2012;
Ikari et al. 2015). In meshless methods, the Laplacian of a
function at a specific location is numerically formulated in
terms of discretised function values at surrounding particles
within the support domain using finite difference, kernel inte-
gration, moving least squares (MLS) or weighted least squares
(WLS) algorithms. Therefore, the accuracy, convergence and
computational efficiency of the schemes are significantly in-
fluenced by the particle distribution. In Eulerian meshless
methods for steady problems (e.g., Lind and Stansby 2016),
the particles are fixed and may be placed uniformly and reg-
ularly. For such problems, high-order finite difference
schemes based on a uniform particle distribution can be di-
rectly applied to formulate the Laplacian operator. However,
in the Lagrangian meshless methods for unsteady problems,
the particles move at the material velocity and, consequently,
their distribution may be highly disordered even though they
may be placed regularly and uniformly in the initial state.
Such disorderliness/randomness of the particle distribution
considerably downgrades the schemes based on a uniform
particle distribution.

For a random/disordered particle distribution, efforts have
been devoted to the reviews of various schemes, e.g. on deal-
ing with the viscous term in SPH (Zheng et al. 2018) and on
solving pressure Poisson’s equation (PPE) involved in
projection-based meshless methods (Ma et al. 2016). It has
been observed that some schemes (classified as type 1 by
Ma et al. 2016), e.g. Cummins and Rudman (1999); Lo and
Shao (2002); Lee et al. (2008); Xu et al. (2009); Hu and

Adams (2007); Gotoh et al. (2014); and Khayyer and Gotoh
(2010, 2012), converge at a rate less than first order for esti-
mating the Laplacian of a given function, although they do not
need inversions of any matrices and thus have relatively low
computational costs. Their performances may be improved by
reducing the randomness of the particle distribution, e.g.,
using the particle shifting scheme proposed by Lind et al.
(2012), or by introducing error correction and compensating
terms, e.g. Oger et al. (2007) and Ikari et al. (2015), which
requires the inversion of matrices. Alternatively, high-order
Laplacian discretisation schemes have also been developed
for a random/distorted particle distribution. These include
the CSPM proposed by Chen et al. (1999), a scheme proposed
by Fatehi and Manzari (2011), which was developed from the
Brookshaw’s scheme (Brookshaw 1985) by introducing an
error compensation, the LSMPS developed by Tamai and
Koshizuka (2014) using the MLS algorithm, and LP-MPS
proposed by Tamai et al. (2017) using the WLS algorithm.
These schemes are classified as type 3 schemes by Ma et al.
(2016). Patch tests by Schwaiger (2008), Zheng et al. (2014)
and Tamai et al. (2017) have shown that the CSPM, LP-MPS
and quadric LSMPS have a higher convergent rate, compared
with the type 1 schemes. However, formulating these schemes
requires a significant computational cost on inversingmatrices
at all particle locations and at every time step of the transient
simulations. For each particle in 3D problems, the CSPM and
LP-MPS need to inverse twomatrices with sizes of 6 × 6 and 3
× 3, respectively; the quadric LSMPS needs to inverse a ma-
trix with a size of 10 × 10. To overcome this problem,
Schwaiger (2008) proposed a CSPH scheme, which is based
on the CSPM but reduces the sizes of inversed matrices to two
3 × 3 for 3D problems, through ignoring the cross-derivative
terms of the 2nd derivatives (thus downgrading the accuracy).

In this paper, a quadric semi-analytical finite-difference
interpolation scheme (referred to as QSFDI) for numerically
formulating the Laplacian operator is developed based on the
principle of the linear SFDI (Ma 2008). Its consistency, accu-
racy and convergence property are similar to the quadric
LSMPS and LP-MPS, for randomly distributed particles,
whereas the sizes of the matrices to be inversed are consider-
ably reduced to 3 × 3 for 3D problems, compared with 6 × 6 in
the quadric LSMPS and LP-MPS. The performance of the
present scheme will be assessed by systematic patch tests con-
sidering both directly estimating the Laplacian of specific
functions and solving Poisson’s equation.

2 Mathematical Formulation

Ma (2008) and Ma et al. (2016) developed the linear SFDI,
which was based on Taylor’s expansion with a leading trun-
cation term of 2nd derivatives, for numerical interpolations
and gradient estimations. The patch test by Ma (2008)
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suggested that the linear SFDI is superior over the linear MLS
when the particles are randomly distributed. The principle of
the SFDI is extended here to derive the interpolation, gradient
estimation and Laplacian discretisation schemes with a quad-
ric accuracy.

For each particle j at xj, which locates inside the support
domain of Point xI, a function p can be expressed as Taylor’s
expansion,

pj−pI ¼ rTjI∇
� �

p xð Þj
x¼xI

þ 1

2
r 2sð Þ
jI

� �T
∇ 2sð Þp xð Þj

x¼xI

þ r 2cð Þ
jI

� �T
∇ 2cð Þp xð Þj

x¼xI
þ 1

6
rTjI∇
� �3

p xð Þj
x¼xI

þ :::

ð1Þ

where x = [x y z]T, rjI ¼ x j−xI ¼ xjI yjI zjI
� �T

and ∇ is
the spatial differential operator. In Eq. (1), the 2nd derivative

term 1
2 rTjI∇
� �

2p xð Þ in the conventional Taylor’s expansion

(e.g. Chen et al. 1999; Tamai et al. 2017) is split into two, i.e.

1
2 r 2sð Þ

jI

� �T
∇ 2sð Þp xð Þ and r 2cð Þ

jI

� �T
∇ 2cð Þp xð Þ where

r 2sð Þ
jI ¼ x2jI y2jI z2jI

h iT
, r 2cð Þ

jI ¼ xjI½ yjI xjI zjI yjI zjI �T,
∇ 2sð Þ ¼ ∂2

∂x2
∂2

∂y2
∂2

∂z2

� �T
, a n d ∇ 2cð Þ ¼ ∂2

∂x∂y
∂2

∂x∂z
∂2

∂y∂z

� �T
.

Following Ma (2008), the weighted summation of Eq. (1)
for all particles in the support domain of Point xI are used to
derive the schemes for approximating the gradient ∇p(x), 2nd
derivatives and Laplacian ∇2p(x), as well as the interpolation
function for approximating p(x) at xI. The details of the deri-
vation are presented in Appendix 1. Only the final formulas
are summarised below:

∇p xð Þjx¼xI

D E
¼ M−1

1q;I∑
N
j¼1

wjI

d2jI
qjI p j−pI
� �

−M−1
1q;I∑

N
j¼1

wjI

d2jI
qjI r 2cð Þ

jI

� �T
M−1

2c;I

∑N
k¼1

wkI

d4kI
r 2cð Þ
kI pk−pIð Þ−M−1

1q;I∑
N
j¼1

wjI

d2jI
qjIΠ

T
jIM

−1
2s;I∑

N
k¼1ΓkI pk−pIð Þ

ð2Þ

∇2p xð Þ��x¼xI

D E
¼ IT 2M−1

2s;I∑
N
j¼1ΓjI p j−pI

� �
−2M−1

2s;I∑
N
j¼1

wjI

d4jI
ΠjIGT

jI ∇p xð Þjx¼xI

D E( )

ð3Þ
where 〈〉 indicates an approximated value; I ¼ 1 1 1½ �T;
wjI is the weighting function for particle j related to xI; djI is
the distance between particle j and xI; definitions of matrices
M2c, I, M2s, I, M1q, I , qjI, ΓjI, ΠjI and GjI can be found in
Appendix 1. In practices, Eq. (3) can be applied to discretising
the Poisson’s equation at all particle positions and/or to direct-
ly estimating ∇2p(x) at point xI coinciding with a particle
location. However, if xI does not coincide with any particles,
the value pI needs to be numerically interpolated in order to

estimate ∇2p xð Þ��x¼xI
. For this purpose, the interpolation func-

tion in the QSFDI is also derived and formulated in Appendix
1. Replacing pI in Eq. (3) by its approximated value 〈pI〉 using
Eq. (33), it leads to

∇2p xð Þ��x¼xI

D E
¼ IT 2M−1

2s;I∑
N
j¼1ΓjI p j− pIh i

� �
−2M−1

2s;I∑
N
j¼1

wjI

d4jI
ΠjIGT

jI ∇p xð Þjx¼xI

D E( )

ð4Þ
for approximating the Laplacian at a position that does not
coincide with particles. The leading truncation errors for
Eqs. (2) and (3) are

E∇p xð Þjx¼xI
¼ −

1

6
M−1

1q;I∑
N
j¼1

wjI

d2jI
qjI FT

jI−Π
T
jIM

−1
2s;I∑

N
k¼1

wkI

d4kI
ΠkI FT

kI

 !
∇ 3ð Þp xð Þ

�����
x¼xI

ð5Þ
and

E∇2p xð Þjx¼xI

¼ IT −
1

3
M−1

2s;I∑
N
j¼1

wjI

d4jI
ΠjI FT

jI∇
3ð Þp xð Þ

�����
x¼xI

−2M−1
2s;I∑

N
j¼1

wjI

d4jI
ΠjIGT

jIE∇p xð Þjx¼xI

8<
:

9=
;

ð6Þ

respectively, where ∇ 3ð Þ ¼ ∂3
∂x3

∂3
∂x2∂y

∂3
∂x2∂z

∂3
∂x∂y2

∂3
∂x∂y∂z

∂3
∂x∂z2

∂3
∂y3

∂3
∂y2∂z

∂3
∂y∂z2

∂3
∂z3

h iT

and the definition of matrix F jI can be found in
Appendix 1. For a random/disordered particle distribu-
tion, the leading truncation errors corresponding to the
gradient estimation (Eq. (5)), the Laplacian discretisation
(Eq. (6)) and the numerical interpolation to approximate

〈pI〉 (Eq. (34)) are all proportional to ∇ 3ð Þp xð Þ��x¼xI
: This

implies that the QSFDI leads to the exact solution for
quadric polynomials for the numerical interpolation, gra-
dient estimation and Laplacian discretisation. The con-
sistency of the QSFDI is the same as the LP-MPS de-
veloped by Tamai et al. (2017) and the quadric LSMPS
(Quinlan et al. 2006). However, the error analysis on
the CSPM (Chen et al. 1999) and Schwaiger’s scheme
(Schwaiger 2008) given in Appendix 2 suggests that
their leading truncation errors is proportional to

∇ 2ð Þp xð Þ��x¼xI
for the cases with a random/disordered

particle distribution. The consistency of these schemes
is one-order lower than the QSFDI. It is worth noting
that ∇(2)p(x) in the leading truncation error of the
CSPM, i.e. Eq. (42), origins from the leading truncation
error of the gradient approximation scheme proposed in
the CSPM, i.e. Eq. (40). This approximation can be
replaced by a higher-order gradient estimation scheme,
e.g. Eq. (48), to improve the accuracy and the consis-
tency of the Laplacian discretisation, as demonstrated in
Appendix 2. The formulation based on Eq. (48) is re-
ferred to as the ICSPM in the rest of the paper and
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summarised below,

∇2p xð Þ��x¼xI

D E
¼ 2ITCSPMM

−1
2;ICSPM

∑N
j¼1

∇ 2ð ÞWjImj

ρ j
p j−pI
� �

−∑N
j¼1

∇ 2ð ÞWjImj

ρ j
rTjIM

−1
1;CSPM∑

N
k¼1

∇WjImk

ρk
pk−pIð Þ

( )

ð7Þ

where mj/ρj is the volume (area) represented by particle j; and
ICSPM ¼ 1 0 0 1 0 1½ �T; the definitions of matri-
cesM2, ICSPM,M2, CSPM andM1, CSPM are given in Appendix
2. The leading truncation error of Eq. (7) is

1

3
ITCSPMM

−1
2;CSPM ∑N

j¼1

∇ 2ð ÞWjImj

ρ j
rTjIM

−1
1;CSPM∑

N
k¼1

∇WkImk

ρk
r 3ð Þ
kI

� �T
∇ 3ð Þp xð Þ x¼xI−∑

N
j¼1

∇ 2ð ÞWjImj

ρ j
r 3ð Þ
kI

� �T
∇ 3ð Þp xð Þ

�����
�����
x¼xI

8<
:

9=
;

which is proportional to∇ 3ð Þp xð Þ��x¼xI
; the same as the quadric

LSMPS, LP-MPS and the present QSFDI. It shall be noted
that the leading truncation errors of the schemes discussed
above are not only dominated by the terms of high-order de-
rivatives (e.g. ∇(3)p(x) for the QSFDI and ICSPM), which may
reflect the accuracy level and the consistency, but also
subjected to the corresponding orders of magnitudes, which
indicates the convergence rates and are influenced by the
mean particle spacing, s0, the weighting/kernel function, the
radius of the support domain and the randomness of the par-
ticle distributions. One may follow Quinlan et al. (2006) and
Fatehi and Manzari (2011) to carry out a further theoretical
analysis on the orders of magnitude of the truncation error;
however, patch tests will be used in this paper to demonstrate
the convergence properties of the QSFDI and the ICSMP.

Compared with the leading truncation error, it is equally
important to look at the number and sizes of the matrices to be
inversed in order to formulate the Laplacian operator. For the
QSFDI, to approximate the gradient, the 2nd derivatives and
the Laplacian of p(x), three matrices, i.e.M2c, I,M2s, I andM1q,

I, need to be inversed. For 3D problems, they all have sizes of
3 × 3, whereas for 2D problems, the sizes ofM2s, I andM1q, I

are 2 × 2 and M2c, I is a scalar. The sizes of matrices to be
inversed for formulating the Laplacian in the QSFDI are
slightly higher than the Schwaiger’s scheme (e.g. CSPH2Γ)
for 3D problems but considerably lower than the LP-MPS, the
quadric LSMPS and the CSPM, for which the number and the
sizes of matrices to be inversed are summarised in Table 1. As
mentioned above, an improved scheme for CSPM, i.e.,
ICSPM is also introduced. The number and sizes of the ma-
trices to be inversed in the ICSPM are the same as the original
CSPM, although the accuracy of the former is one order
higher than the latter for a random particle distribution.

It is well known that the CPU time spent on the inversion of
amatrix with size ofM ×MwithM being 2 to 10 is proportional
to M3. The CPU time spent on matrix inversions for 2D prob-
lems may be indicated by ~ 2 × 23 for CSPH2Γ and QSFDI, ~

23 + 33 for CSPM, LP-MPS and ICSPM, ~ 63 for quadric
LSMPS. The CPU time by the QSFDI on matrix inversions is
approximately 45.7% of those by the LP-MPS or ICSPM, and
7.4% of that by the quadric LSMPS for 2D problems. The
corresponding figures for 3D problems are 40% and 8.1%,
respectively. Nevertheless, different schemes require different
CPU time on formulating the matrices; the overall robustness of
these schemes will be investigated in the following patch tests.

3 Patch Test

To quantify the accuracy, convergence and robustness of the
QSFDI and ICSPM, patch tests are performed using various
cases. As indicated above, some of the main purposes for the
Laplacian discretisation are (1) to find physical quantities,
which may be expressed as the Laplacian of others, and (2)
to discretise the Poisson’s equations. For the former, the
Laplacians of various specified functions f(x, y), which are
frequently used in literatures are directly estimated. For the
latter, the Poisson’s equation are considered:

∇2 f x; yð Þ ¼ R:H :Sð Þ ð8Þ

Table 1 Summary of the approaches for Laplacian discretisation

Schemes Matrix inversion

2D problems 3D problems

CSPM (Eq. (42)) One 3 × 3 and one 2 × 2 One 6 × 6 and one 3 × 3

CSPH2Γ (Eq. (48)) Two 2 × 2 Two 3 × 3

Quadric LSMPS One 6 × 6 One 10 × 10

LP-MPS One 3 × 3 and one 2 × 2 One 6 × 6 and one 3 × 3

ICSPM (Eq. (7)) One 3 × 3 and one 2 × 2 One 6 × 6 and one 3 × 3

QSFDI (Eq. (3)) Two 2 × 2 Three 3 × 3
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where the function denoted by (R. H. S) is pre-specified as the
real values of the Laplacian of f(x, y). The present QSFDI,
ICSPM and other existing schemes listed in Table 1 are
employed for comparisons in the patch tests. When the
ICSPM, CSPM and CSPH2Γ are performed, mj/ρj in their

formulations is evaluated by using 1= ∑
N

j¼1
WjI (Hu and

Adams 2007). It is well known that the kernel/weighting func-
tions play an important role in the convergence and accuracy
of the numerical schemes in the meshless method (Quinlan
et al. 2006), as demonstrated by the error analysis, e.g. Eqs. (5)
and (6), which contains the weighting functions. The main
aim of this paper is to introduce the QSFDI and ICSPM, and
a quintic spline kernel function (Schwaiger 2008),

W r; hð Þ ¼ 7

478πh2

3−
r
h

� �5
−6 2−

r
h

� �5
þ 15 1−

r
h

� �5
; 0≤

r
h
≤1

3−
r
h

� �5
−6 2−

r
h

� �5
; 1 <

r
h
≤2

3−
r
h

� �5
; 2 <

r
h
≤3

0;
r
h
> 3

8>>>>>>>><
>>>>>>>>:

ð9Þ
where r = djI is used as the kernel function of ICSPM, CSPM
and CSPH2Γ, and the weighting function of other schemes.
By using Eq. (9), the radius of the support domain is 3h. The
effect of the kernel/weighting functions will not be investigat-
ed and discussed in the future.

3.1 Estimating Laplacian of Specified Functions

Following Schwaiger (2008), the first group of the test func-
tions used is

p x; yð Þ ¼ xmym ð10Þ

The computational domain is a unit square with 2 ≤ x ≤3
and 2 ≤ y ≤ 3. The particles are initially generated using a
uniform spacing, i.e. Δx = Δy = s0. To reflect the randomness
of the particle distribution, a random shift with Δx′ =Kδs0 and
Δy′ =Kδs0 is applied to all particles, where K is a scale factor
and δ is a random number between − 1 and 1. In the patch
tests, K is in the range of 0.1 to 0.8. The Laplacian of the
function p at any particle i, 〈∇2pi〉, are estimated by different
schemes summarised in Table 1. The relative error is estimat-
ed in the same way as in Schwaiger (2008) for the sake of
comparison, given by

Er ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

i¼1

mi

ρi

∇2pi− ∇2pi

 �

∇2pi

 !2
vuut ð11Þ

where ∇2pi is the analytical value of the Laplacian of the

function p at Particle i; N is the total number of particles at
which the Laplacian are estimated. It shall be pointed out that
all existing schemes suffer from a downgraded accuracy when
being applied to the particles near the boundaries due to the
fact that the support domain is not full (Chen et al. 1999;
Schwaiger 2008) or the neighbouring particles are mainly dis-
tributed in a quadrant or a half of the support domain of the
particles. For simplicity, as well as being consistent with
Schwaiger (2008), only the inner particles within a region of
2.25 < x < 2.75 and 2.25 < y < 2.75 are considered for the error
evaluation using Eq. (11). Different s0 (between 0.1 and
0.00025) and ratio h/s0 (ranging from 0.75 to 1.2) are consid-
ered in the patch test. For specific s0, h/s0 and K, at least 10
repeated tests are carried out in order to eliminate the possible
abnormality in the random series, the relative error and CPU
times are taken as the mean values of the repeated tests.

Figure 1 compares the relative errors for estimating the
Laplacian of p(x, y) = x6y6 using different schemes with a
randomness specified by K = 0.4. As can be seen, the LP-
MPS, quadric LSMPS and the present QSFDI result in a
linear rate of reduction of the relative error as s0 de-
creases, while the CSPM and CSPH2Γ do not seem to
be convergent as s0 decreases for a constant ratio of h/
s0, conforming to the patch tests in Schwaiger (2008).
Compared with CSPM, the relative error of the ICSPM
not only is lower but also reduces linearly as s0 decreases.
It is also observed from Figure 1 that the present QSFDI
leads to almost identical results as the LP-MPS, which are
more accurate than other schemes, for all values of h/s0
and s0 applied in the patch test. As analysed in Section 2,
the QSFDI demands less computational efforts on matrix
inversions than the LP-MPS; the overall CPU time spent
by the former is expected to be shorter than the latter.
This is confirmed by Figure 2, which shows that the av-
erage CPU time spent by the QSFDI is approximately
20% less than that by the LP-MPS for achieving results
with the same accuracy. In addition, Figure 3 displays the
relative errors of the Laplacian discretisation against CPU
times by different schemes in the cases with K = 0.4 and
different values of h/s0. For convenience, the CPU times
are scaled by the reference duration, TRef, which is the
CPU time spent by the CSPH2Γ with s0 = 0.1 and h =
0.75s0. Both Figures 2 and 3 confirm that the QSFDI
requires considerably shorter CPU time than all other
schemes for achieving a specific accuracy of estimating
the Laplacian of function p(x, y) = x6y6.

It shall be pointed out that Schwaiger (2008) and
Zheng et al. (2014) have adopted h/s0 ¼ 0:268=

ffiffiffiffi
s0

p
in

the CSPM and CSPH2Γ, based on the error analysis by
Quinlan et al. (2006). A linear convergence was observed
in their patch tests. By adopting such a strategy, the rela-
tive sizes of the support (kernel integration) domain
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increase as s0 decreases (e.g. h/s0 are approximately 0.85
and 2.68 for s0 = 0.1 and 0.01, respectively). However, as
the increase of h/s0, more neighbouring particles are in-
cluded in the kernel integration, yielding a considerably
increase of CPU time spent on the Laplacian discretisation
for each particle. In fact, not only the CSPM and
CSPH2Γ, the accuracies and the robustness of all schemes
may be significantly influenced by the ratio h/s0. To fur-
ther illustrate the effects of the ratio h/s0 on the robustness

of the schemes, an alternative of Figure 3 is presented in
Figure 4. For clarity, the corresponding results by the
CSPH2Γ, ICSPM and QSFDI are shown in Figure 4a;
those by the CSPM, quadric LSMPS and the LP-MPS
are shown in Figure 4b. It is observed that the robustness
of the QSFDI, LP-MPS and quadric LSMPS is much less
sensitive than that of CSPM, CSPH2Γ, and ICSPM to the
variation of h/s0, though the robustness of all the schemes
is improved with the increase of h/s0. It implies that one
may optimise the kernel/weighting function and the con-
figuration of the h/s0 to accelerate the convergent rates for
these schemes. Nevertheless, it is not the focus of this
paper and, therefore, only constant ratio h/s0 is considered
in the rest of the paper.

Similar behaviours to Figures 1 and 2 have been
observed in the cases with other values of K. Some
results are shown in Figures 5 and 6 for demonstration.
To save the space, not all the results with different
ratios of h/s0 are presented. In Figure 5, h/s0 = 1.2 is
used by the CSPM, CSPH2Γ and ICSPM; h/s0 = 0.75 is
adopted by others. In such a way, the CSPM, CSPH2Γ,
ICSPM and the LSMPS are expected to have the best
robustness and the accuracy compared to other values of
h/s0, whereas the results of the QSFDI and the LP-MPS
adopting h/s0 = 0.75 are worse than the corresponding
results with a greater h/s0, as demonstrated by Figure 4.
Again, it is clearly seen that the QSFDI and the LP-
MPS lead to the highest accuracy and convergence
properties compared to others. The comparison of the
CPU time spent by the LP-MPS and the QSFDI in
Figure 6 again confirms the superiority of the former
in terms of saving CPU time for the cases with a dif-
ferent randomness.

Considering the fact that most of analytical formulations
used in the engineering problems may be represented by
hyperbolic/exponential and/or trigonometric functions (e.g.
the velocity potential associated with a linear propagation
wave and the temperature in 2D heat conduction problems),
the exponential function applied by Tamai et al. (2017)

(a) h=0.75s0

(b) h=0.9s0

(c) h=1.2s0

Figure 1 Relative error of Laplacian discretisation vs mean particle
spacing s0 for estimating Laplacian of p(x, y) = x6y6 (K = 0.4; error
estimation domain 2.25 < x < 2.75, 2.25 < y < 2.75). a h = 0.75s0.
b h = 0.9s0. c h = 1.2s0

Figure 2 Ratio of the CPU time spent by the LP-MPS and that by the
QSFDI on estimating Laplacian of p(x, y) = x6y6 (K = 0.4)
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ð12Þ

and a sine function employed by Zheng et al. (2014)

p x; yð Þ ¼ sin 6xþ 8yð Þ ð13Þ
are also considered. In these tests, the computational domain
is taken as a unit square with 0 ≤ x ≤ 1; 0 ≤ y ≤ 1. The particle
generation is the same as that used in the first test case, i.e. a

random distribution with different values of K. The relative
error in the tests is defined by

Er ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑Nt

i¼1 ∇2pi− ∇2pi

 �� 
2q

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑Nt

i¼1 ∇2pi
� 
2q

ð14Þ

where N is the number of particles for error estimations to be
consistent with the references. Similar to the cases shown in
Figures 1, 2, and 3, the relative error at inner particles away
from boundaries, i.e. 0.25 ≤ x ≤ 0.75; 0.25 ≤ y ≤ 0.75, is

(a) h=0.75s0

(b) h=0.9s0

(c) h=1.2s0

Figure 3 Relative error of Laplacian discretisation vs CPU time for
estimating Laplacian of p(x, y)= x6y6 (K = 0.4; TRef is the CPU time
spent by CSPH2Γ with s0 = 0.1 and h = 0.75s0; error estimation
domain 2.25 < x < 2.75, 2.25 < y < 2.75). a h = 0.75s0. b h = 0.9s0.
c h = 1.2s0

(a) CSPH2Γ, ICSPM, QSFDI

(b) CSPM, Quadric LSMPS, LP-MPS

Figure 4 Relative error of Laplacian discretisation vs CPU time for
estimating Laplacian of p(x, y)= x6y6 in the cases with different ratios
h/s0 (K = 0.4; TRef is the CPU time spent by CSPH2Γ with s0 = 0.1 and
h = 0.75 s0; error estimation domain 2.25 < x < 2.75, 2.25 < y < 2.75).
a CSPH2Γ, ICSPM, QSFDI. b CSPM, Quadric LSMPS, LP-MPS
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assessed. In addition, to reflect the overall performances of
different schemes at both the inner particles and boundary
particles, the relative error estimated by considering all

particles are also assessed.
Figure 7 displays the relative errors for estimating

Laplacians of Eqs. (12) and (13) in the cases with K
= 0.4. For clarity, the corresponding results by ICSPM
are not shown. From Figure 7a, c, in which only inner
particles are taken into account when estimating the
relative error, it is observed that all schemes converge
at a rate between linear and quadric for relatively coarse
particle resolutions, i.e. s0 > 0.01; thereafter, the relative
errors of the CSPM and CSPH2Γ seem not to be re-
duced, whereas the QSFDI, the LP-MPS and quadric
LS-MPS converge at a rate slightly higher than a linear
rate. As expected, for a specific particle resolution, the
relative errors of all the schemes considering all parti-
cles (Figure 7b, d) including these on boundaries are
relatively higher than the corresponding results consid-
ering the inner particles only. The CSPM and CSPH2Γ
converge at a rate much lower than a linear rate (the
mean slopes of the curves for CSPM and CSPH2Γ are
about 1/0.5). The QSFDI, the LP-MPS and quadric LS-
MPS converge at a rate with the mean slopes of ap-
proximately 1/1.5.

The same conclusions are achieved in the cases with other
randomness, e.g. Figure 8, which displays the relative errors
considering all particles for estimating Laplacian of Eqs. (12)
and (13), respectively, obtained by using K = 0.8.
Examination of the corresponding robustness is also carried
out for these cases. The CPU time for different accuracy cor-
responding to the results of Figure 8 is illustrated in Figure 9.
Once again, the superiority of the QSFDI over other schemes
in terms of the accuracy and computational costs is clearly
observed as in Figures 3 and 6.

3.2 Finding solutions of Poisson’s equation

Another purpose of the Laplacian discretisation is to discretise
the governing equation, e.g. the Poisson’s equation, to find its
numerical solution. Relevant patch tests presented in this

Figure 6 Ratio of the CPU time spent by the LP-MPS and that by the
QSFDI on estimating Laplacian of p(x, y)= x6y6 (h = 0.75s0) for the cases
with different randomness of particle distribution

(a) K = 0.6

(b) K = 0.8

Figure 5 Relative error for estimating Laplacian of p(x, y) = x6y6 for
K = 0.6 and K = 0.8 (h = 1.2s0 for CSPM, CSPH2Γ and ICSPM,
h = 0.75s0 for other schemes; the slopes of the dotted line is 1; error
estimation domain 2.25 < x < 2.75, 2.25 < y < 2.75)
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section will use a computational domain of a unit square
(0 ≤ x ≤ 1, 0 ≤ y ≤ 1), the same as that for Figures 7, 8, and 9.
In this test, the Poisson’s equation defined by Eq. (8), of which
(R. H. S) are specified by the Laplacians of a given function.
The Dirichlet condition on all boundaries of the domain is
applied, i.e. p at all boundary particles are specified to be
consistent with (R. H. S). Under this condition, the analytical
solution of the Poisson’s equation (Eq. (8)) in the computa-
tional domain is the function p(x, y). For example, if Eq. (13)
is applied as the function p(x,y), (R.H. S) = − 100 sin(6x + 8y)
and the values on the boundary at x = 1.0 is sin(6 + 8y). The
Poisson’s equation is discretised at all internal particles by
using different schemes to form linear algebraic equations,
which is solved by the GMRESS solver, resulting in the solu-
tions of p(x, y) at all internal particles. For the results shown
below, the control residual adopted by the GMRESS solver is
10−4, which is sufficiently small (comparison with the corre-
sponding results obtained using a control residual of 10−8

shows that the difference is smaller than 0.1%). The relative

error of the numerical solution against the analytical solution
is evaluated by

εr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑Nt

i¼1 pi−pi;a
�� ��2q

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑Nt

i¼1 pi;a
�� ��2q

ð15Þ

where pi and pi, a are the numerical approximation and the
analytical value, respectively, at particle i; Nt is the total num-
ber of internal particles.

Figure 10 compares the relative errors of numerical solu-
tions to the Poisson’s equations, whose (R. H. S) are given by
the Laplacian of Eqs. (12) and (13), respectively, with the
moderate randomness of particle distribution (K = 0.4). It is
observed that the convergent rates of the LP-MPS, quadric
LS-MPS, ICSPM and the QSFDI are quadric for all particle
spacing. In contrast, as s0 decreases, the relative errors of the
CSPM and CSPH2Γ reduces at a quadric rate for relatively
coarse resolutions (when the error is large); however, it re-
duces to a linear or lower rate for finer particle resolutions

(a) Internal particle Eq. (12)

(b) All particle Eq. (12)

(c) Internal particle Eq. (13)

(d) All particle Eq. (13)

Figure 7 Relative error for
estimating Laplacians of Eq. (12)
and (13) (K = 0.4; h = 1.2s0 for
CSPM andCSPH2Γ, h = 0.9s0 for
other schemes; internal particles
located at 2.25 < x < 2.75, 2.25 < y
< 2.75 are used for the error
estimation in (a) and (c))
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(when the error becomes acceptably small). The comparison
of the relative errors for a specific particle spacing indicates
that the QSFDI and the LP-MPS result in the most accurate
solutions. The corresponding comparisons of the CPU time
are illustrated in Figure 11. Unlike the direct Laplacian
discretisation presented in Section 3.1, the CPU time spent
on achieving the solutions to the Poisson’s equation is also
influenced by the effectiveness of the linear algebraic solver

and its pre-conditioner, i.e. the initial value. By using the
solver briefed above, the total CPU time spent by the
QSFDI is slightly shorter than the LP-MPS but significantly
shorter than all other schemes.

(a) All particle Eq. (12)

(b) All particle Eq. (13)

(c) Ratio of CPU time by the LP-MPS against that by the QSFDI

Figure 9 CPU times for estimating Laplacians of Eq. (12) and (13) (K =
0.8; h = 1.2s0 for CSPMand CSPH2Γ, h = 0.9s0 for other schemes; TRef is
the CPU time spent by CSPH2Γ with s0 = 0.1)

(a) All particle Eq. (12)

(b) All particle Eq. (13)

Figure 8 Relative error for estimating Laplacians of Eqs. (12) and (13) at
all particles (K = 0.8; h = 1.2s0 for CSPM and CSPH2Γ, h = 0.9s0 for
other schemes
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Different values of K and h are also used in this investiga-
tion. Some results are illustrated in Figures 12 and 13 for K =
0.6 and 0.8 respectively, where h = 1.2s0 are used for all
schemes. For clarity, the corresponding results with the quadric
LP-MPS and the ICSPM are not shown. As can be seen, with
severer randomness of particle distribution, the relative errors of
the CSPM and CSPH2Γ reduce at a rate less than the linear rate

as s0 decreases, quite different from what has been seen in
Figure 10. In contrast, the accuracy and convergent properties
of the QSFDI and LP-MPS seem to be insignificantly affected
by increasing the randomness (Figures 12a, c and 13a, c).
Figures 12b and d and 13b and d reveal that the CPU time by
the present QSFDI is generally shorter than all other schemes
for achieving satisfactory results, e.g. relative error smaller than

(a) Eq. (12)

(b) Eq. (13)

Figure 11 CPU times for solving Poisson’s equation based on Eqs. (12)
and (13) (K = 0.4, h = 1.2s0 for CSPM, CSPH2Γ and ICSPM, h = 0.9s0
for other schemes)

(a) Eq. (12)

(b) Eq. (13)

Figure 10 Relative error of solution to Poisson’s equation based on
Eq. (12) and Eq. (13) (K = 0.4, h = 1.2s0 for CSPM, CSPH2Γ and
ICSPM, h = 0.9s0 for other schemes)
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1%. Following the comparison of the robustness of the QSFDI
and the LP-MPS in the previous section on estimating
Laplacians, the average ratios of the CPU time spent by the
LP-MPS and that by the QSFDI are displayed in Figure 14,
where h = 1.2s0, for finding the solutions to the Poisson’s equa-
tion based on Eq. (13). It clearly shows that the CPU time spent
by the QSFDI is approximately 5%–10% shorter than the LP-
MPS, although averagely 20% less CPU time on discretising
the Poisson’s equation than that by theQSFDI is recorded in the
patch tests in Section 3.1.

4 Conclusions

This paper develops a new scheme called QSFDI, which
adopts the same principle of SFDI, to discretise the
Laplacian operator for Lagrangian meshless (particle)

methods, in which the particles move during the numerical
simulation and exhibit a disordered/random distribution. The
accuracy and consistency of the QSFDI are similar to the
LSMPS and LP-MPS but higher than the CSPM and CSPH
for randomly distributed particles. However, the matrices re-
quired to be inversed by the QSFDI have smaller sizes than
the LSMPS and LP-MPS. For example, for 3D problems, the
size of the matrices to be inversed in the QSFDI is 3 × 3, while
it is 6 × 6 in LP-MPS.

Systematic patch tests considering both directly estimating
the Laplacian of specific functions and solving Poisson’s
equations are carried out. In these tests, different functions
including polynomials, hyperbolic and trigonometric func-
tions, which may represent typical spatial variations of phys-
ical quantities in engineering such as the water waves and the
thermodynamics, are considered. The particles used in the
patch tests are randomly distributed. It is observed that the

(a) ϵr vs  s  0  s  0 , K=0.6

(b) ϵr vs CPU time, K=0.6

(c) ϵr vs , K=0.8

(d) ϵr vs CPU time, K=0.6

Figure 12 Relative error of
solution to Poisson’s equation
based on Eq. (12) and the
corresponding CPU time in the
cases with different particle
randomness (h = 1.2s0; TRef is the
CPU time spent by CSPH2Γ with
s0 = 0.1 and K = 0.6)
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QSFDI has the same convergent rate as the LP-MPS and
quadric LSMPS, which is higher than that of the CSPM and
CSPH in all the cases studied. It is also observed that the

QSFDI requires considerably less computational time than
all other schemes (such as the LP-MPS) to achieve the same
accuracy.

It is worth noting that the QSFDI method presented in the
paper does not only give a new formula for the Laplacian
discretisation but also provides the new schemes for the nu-
merical interpolation and gradient estimations. This means
that one may extend the QSFDI to deal with the first and 2nd

derivatives in differential equations, e.g. the NS equation and
advection-diffusion equations, with a linear consistency and
quadric accuracy.

It shall be also noted that the implementation of the QSFDI
in a Lagrangian meshless method to solve engineering prob-
lems, such as wave-structure interaction in maritime engineer-
ing, is under study and results will be discussed in other
publications.

(a) ϵr vs , K=0.6

(b) ϵr vs CPU time, K=0.6

(c) ϵr vs , K=0.8

(d) ϵr vs CPU time, K=0.8

 s  0  s  0 

Figure 13 Relative error of
solution to Poisson’s equation
based on Eq. (13) and the
corresponding CPU time in the
cases with increased particle
randomness (h = 1.2s0; TRef is the
CPU time spent by CSPH2Γ with
s0= 0.1 and K = 0.6)

Figure 14 Average ratio of the CPU time spent by the LP-MPS against
that by the QSFDI in the cases with different randomness for finding
solutions to Poisson’s equation (h = 1.2s0)
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Appendix 1: Derivation of QSFDI

For each particle j at xj, which locates inside the support do-
mainΩI of point xI, a function p can be expressed as Taylor’s

expansion, i.e. Eq. (1). Multiplying Eq. (1) by wjI r
2cð Þ
jI =d4jI ,

where wjI is the weighting function for particle j related
to xI, djI is the distance between particle j and xI, ignoring
the truncation error and taking the sum of resultant equations
for all particles in ΩI, it yields

∇ 2cð Þp xð Þ��x¼xI
≈M−1

2c;I∑
N
j¼1

wjI

d4jI
r 2cð Þ
jI p j−pI
� �

−M−1
2c;I∑

N
j¼1

wjI

d4jI
r 2cð Þ
jI rTjI∇p xð Þjx¼xI

−
1

2
M−1

2c;I∑
N
j¼1

wjI

d4jI
r 2cð Þ
jI r 2sð Þ

jI

� �T
∇ 2sð Þp xð Þj

x¼xI
−
1

6
M−1

2c;I∑
N
j¼1

wjI

d4jI
r 2cð Þ
jI rTjI∇
� �3

p xð Þj
x¼xI

ð16Þ

in which M2c;I ¼ ∑N
j¼1

wjI

d4jI
r 2cð Þ
jI r 2cð Þ

jI

� �T
. For convenience,

rTjI∇
� �

3p xð Þjx¼xI is re-written as r 3ð Þ
jI

� �T
∇ 3ð Þp xð Þ

����
x¼xI

,

where r 3ð Þ
jI ¼ [x3jI 3x2jI yjI 3x2jI zjI 3xjI y2jI 6xjIyjIzjI 3xjI z2jI y3jI

3y2jI zjI 3yjI z
2
jI z3jI ]

T, ∇(3)=[ ∂
3

∂x3
∂3

∂x2∂y
∂3

∂x2∂z
∂3

∂x∂y2
∂3

∂x∂y∂z
∂3
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∂3
∂y3

∂3
∂y2∂z

∂3
∂y∂z2

∂3
∂z3 ]T are two 10 × 1 matrices. Substituting Eq.

(16) into Eq. (1), it leads to

pj−pI≈ r 2cð Þ
jI
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where
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jI
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:

Multiplying Eq. (17) by wjI ΠjI=d4jI and taking the sum of

resultant equations for all particles in ΩI, it leads to

∇ 2sð Þp xð Þ��x¼xI
≈2M−1
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where
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Substituting Eq. (18) to Eq. (17) leads to
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Multiplying Eq. (19) by wjI qjI=d
2
jI , where

qjI ¼ GT
jI−Π

T
jIM

−1
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N
k¼1
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d4kI
ΠkIGT

kI

 !T

;

and taking the sum of resultant equations for all particles inΩI,
it leads to the formula for approximating the gradient, i.e.

∇p xð Þjx¼xI

D E
, and its leading truncation error, E∇p xð Þjx¼xI

,
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where 〈〉 indicates an approximated value and

M1q;I ¼ ∑N
j¼1

wjI

d2jI
qjIq

T
jI :

Substituting Eq. (20) to Eq. (18), it leads to the formula to

approximate the ∇ 2sð Þp xð Þ��x¼xI
, i.e.,

∇ 2sð Þp xð Þ��x¼xI

D E
¼ 2M−1

2s;I∑
N
j¼1ΓjI p j−pI

� �
−2M−1

2s;I∑
N
j¼1

wjI

d4jI
ΠjIGT

jI ∇p xð Þjx¼xI

D E

ð22Þ
with its leading truncation error

E∇ 2sð Þp xð Þjx¼xI

¼ −
1

3
M−1

2s;I∑
N
j¼1

wjI

d4jI
ΠjI FT

jI∇
3ð Þp xð Þ

�����
x¼xI

−2M−1
2s;I∑

N
j¼1

wjI

d4jI
ΠjIGT

jIE∇p xð Þjx¼xI

ð23Þ

The Laplacian can therefore be approximated by using

∇2p xð Þ��x¼xI

D E
¼ IT ∇ 2sð Þp xð Þ��x¼xI

D E
ð24Þ
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where I ¼ 1 1 1½ �T. The corresponding leading trunca-
tion error is

E∇2p xð Þjx¼xI

¼ ITE∇ 2sð Þp xð Þjx¼xI

ð25Þ

In practices, Eq. (24) can be applied to discretise the
Poisson’s equation at all particle positions and/or to directly
approximate ∇2p(x) at a point xI coinciding with a particle
location, where pI is known. However, to estimate ∇2p(x) at
a point that does not coincide with any particles, pI needs to be
numerically interpolated using pj. To do so, estimation of

∇ 2cð Þp xð Þ��x¼xI
in Eq. (1) is required and achieved by substitut-

ing Eqs. (20)–(23) to Eq. (15),

∇ 2cð Þp xð Þ��x¼xI

D E
¼ M−1

2c;I∑
N
j¼1

wjI

d4jI
r 2cð Þ
jI p j−pI
� �

−M−1
2c;I∑

N
j¼1

wjI

d4jI
r 2cð Þ
jI rTjI

∇p xð Þjx¼xI

D E
−

1

2
M−1

2c;I∑
N
j¼1

wjI

d4jI
r 2cð Þ
jI r 2sð Þ

jI

� �T
∇ 2sð Þp xð Þ��x¼xI

D E

ð26Þ
with a leading truncation error of

E∇ 2cð Þp xð Þjx¼xI

¼ −M−1
2c;I∑

N
j¼1

wjI

d4jI
r 2cð Þ
jI rTjIE∇p xð Þjx¼xI

−
1

2
M−1

2c;I∑
N
j¼1

wjI

d4jI
r 2cð Þ
jI

r 2sð Þ
jI

� �T
E∇ 2sð Þp xð Þjx¼xI

−
1

6
M−1

2c;I∑
N
j¼1

wjI

d4jI
r 2cð Þ
jI r 3ð Þ

jI

� �T
∇ 3ð Þp xð Þj

x¼xI

ð27Þ

For convenience of deriving the interpolation function,
Eqs. (20), (22) and (26) are, respectively, rewritten in a sum-
mation form, i.e.

∇p xð Þjx¼xI

D E
¼ ∑N

j¼1Φ
g
jI p j−pI
� �

ð28Þ

∇ 2sð Þp xð Þ��x¼xI

D E
¼ ∑N

j¼1Φ
s
jI p j−pI
� �

ð29Þ

∇ 2cð Þp xð Þ��x¼xI

D E
¼ ∑N

j¼1Φ
c
jI p j−pI
� �

ð30Þ

where

Φg
jI ¼ M−1

1q;I
wjI

d2jI
qjI−∑

N
k¼1

wkI

d2kI
qkI r 2cð Þ

kI

� �TwjI

d4jI
r 2cð Þ
jI −∑N

k¼1

wkI

d2kI
qkIΠ

T
kIM

−1
2s;IΓjI

 !

Φs
jI ¼ 2M−1

2s;I ΓjI−∑N
k¼1

wkI

d4kI
ΠkIG

T
kIΦ

g
kI

 !
and

Φc
jI ¼ M−1

2c;I
wjI

d4jI
r 2cð Þ
jI − ∑

N

k¼1

wkI

d4kI
r 2cð Þ
kI rTkIΦ

g
jI−

1

2
∑
N

k¼1

wkI

d4kI
r 2cð Þ
kI r 2sð Þ

kI

� �T
Φs

jI

 !
:

Consequently, Eq. (24) can be re-written as

∇2p xð Þ��x¼xI

D E
¼ IT ∑

N

j¼1
Φs

jI p j−pI
� �

ð31Þ

Multiplying Eq. (1) by wjI/djI, taking the sum of resultant
equations at all particles in ΩI, it leads to

∑N
j¼1

wjI p j−pI
� �
djI

≈ ∑
N

j¼1

wjI

djI

rTjI∇p xð Þ þ 1

2
r 2sð Þ
jI

� �T
∇ 2sð Þp xð Þ þ r 2cð Þ

jI

� �T
∇ 2cð Þp xð Þ þ 1

6
r 3ð Þ
jI

� �T
∇ 3ð Þp xð Þ

� �
x¼xI

ð32Þ

Substituting Eqs. (28)–(30) into Eq. (32), the expression for
interpolating pI and its truncation error Ep can be formulated
as

pIh i ¼ 1

M 0
∑
N

j¼1
ΦjI p j ð33Þ

Ep ¼ −
1

6M 0
∑
N

j¼1

wjI

djI
r 3ð Þ
jI

� �T
∇ 3ð Þp xð Þ

�����
x¼xI

−
1

M0
∑
N

j¼1

wjI

djI
rTjIE∇p xð Þjx¼xI

þ 1

2
r 2sð Þ
jI

� �T
E∇ 2sð Þp xð Þjx¼xI

þ r 2cð Þ
jI

� �T
E∇ 2cð Þp xð Þjx¼xI

� �

ð34Þ

where

M0 ¼ ∑
N

j¼1

wjI

djI
1−rTjI ∑

N

k¼1
Φg

kI−
1

2
r 2sð Þ
jI

� �T
∑
N

k¼1
Φs

kI− r 2cð Þ
jI

� �T
∑
N

k¼1
Φc

kI

� �
;

ΦjI ¼ wjI

djI
1−rTjI ∑

N

k¼1
Φg

kI−
1

2
r 2sð Þ
jI

� �T
∑
N

k¼1
Φs

kI− r 2cð Þ
jI

� �T
∑
N

k¼1
Φc

kI

� �
:

By replacing pI in Eq. (10) or Eq. (31), the Laplacian at a
point that does not coincide with any particles can be obtained,
i.e.

∇2p xð Þ��x¼xI

D E
¼ IT ∑

N

j¼1
Φs

jI p j− pIh i
� �

ð35Þ

As shown above, the leading truncation errors for nu-
merical interpolation, gradient estimation and Laplacian
discretisation in the QSFDI are proportional to the third

derivatives ∇ 3ð Þp xð Þ��x¼xI
, suggesting that the QSFDI pro-

vides exact solutions for quadric polynomials.
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Appendix 2: Error Analysis of CSPM
and improvement

The CSPM is proposed by Chen et al. (1999), which is derived
based on the kernel integration of the conventional Taylor’s
expansion

pj−pI ¼ rTjI∇p xð Þ
���
x¼xI

þ 1

2
r 2ð Þ
jI

� �T
∇ 2ð Þp xð Þ

����
x¼xI

þ 1

6
r 3ð Þ
jI

� �T
∇ 3ð Þp xð Þ

����
x¼xI

þ… ð36Þ

in which rTjI∇
� �

2p xð Þ and rTjI∇
� �

3p xð Þjx¼xI are rewritten as

r 2ð Þ
jI

� �T
∇ 2ð Þp xð Þ

����
x¼xI

and r 3ð Þ
jI

� �T
∇ 3ð Þp xð Þ

����
x¼xI

, respectively,

and

r 2ð Þ
jI ¼ x2jI 2xjI yjI 2xjI zjI y

2
jI 2yjI zjI z2jI

h iT
;

∇ 2ð Þ ¼ ∂2

∂x2
∂2

∂x∂y
∂2

∂x∂z
∂2

∂y2
∂2

∂y∂z
∂2

∂z2

� �T
:

Multiplying Eq. (36) by ∇(2)WjI, where WjI is the kernel
function, and integrating over the support domain ΩI, yields,

∑
N

j¼1

∇ 2ð ÞWjImj

ρ j
p j−pI
� �

¼ ∑
N

j¼1

∇ 2ð ÞWjImj

ρ j
rTjI∇p xð Þ

�����
x¼xI

þ 1

2
∑
N

j¼1

∇ 2ð ÞWjImj

ρ j
r 2ð Þ
jI

� �T
∇ 2ð Þp xð Þ x¼xI þ

1

6
∑
N

j¼1

∇ 2ð ÞWjImj

ρ j
r 3ð Þ
jI

� �T
∇ 3ð Þp xð Þ

�����
�����
x¼xI

þ…

ð37Þ
where the kernel integration has been written in a summation
from Chen et al. (1999) and mj/ρj is the volume (area) repre-
sented by particle j. By ignoring the last two terms in the right-

hand side of Eq. (37), the 2nd derivative term ∇ 2ð Þp xð Þ��x¼xI

can be approximated by using

∇ 2ð Þp xð Þ��x¼xI

D E
¼ 2M−1

2;CSPM ∑
N

j¼1

∇ 2ð ÞWjImj

ρ j
p j−pI
� �

− ∑
N

j¼1

∇ 2ð ÞWjImj

ρ j
rTjI∇p xð Þ

�����
x¼xI

0
@

1
A

ð38Þ

whereM2;CSPM ¼ ∑
N

j¼1
∇ 2ð ÞWjI

m j

ρ j r 2ð Þ
jIð ÞT , is a matrix with size of

6 × 6 for 3D problems or 3 × 3 for 2D problems. In numerical
practices, ∇p xð Þjx¼xI is often unavailable and therefore

needs to be numerically estimated. To do so, one may
multiply Eq. (36) by ∇WjI and integrate the resultant equa-
tion over ΩI

∑N
j¼1

∇W jImj

ρ j
p j−pI
� �

¼ ∑N
j¼1

∇W jImj

ρ j
rTjI∇p xð Þj

x¼xI

þ 1

2
∑N

j¼1

∇W jImj

ρ j
r 2ð Þ
jI

� �T
∇ 2ð Þp xð Þjx¼xI

þ 1

6
∑
N

j¼1

∇W jImj

ρ j
r 3ð Þ
jI

� �T
∇ 3ð Þp xð Þj

x¼xI

þ…

ð39Þ

Chen et al. (1999) ignored the last three terms in the right-
hand side of Eq. (39), yielding the scheme for gradient
estimation

∇p xð Þjx¼xI

D E
¼ M−1

1;CSPM∑
N
j¼1

∇WjImj

ρ j
p j−pI
� �

ð40Þ

in which M1;CSPM ¼ ∑
N

j¼1
∇WjI

m j

ρ jr
T
jI
, is a 3 × 3 matrix for 3D

problems or 2 × 2 matrix for 2D problems. The truncation
error of Eq. (40) can be expressed by

−
1

2
M−1

1;CSPM ∑N
j¼1

∇WjImj

ρ j
r 2ð Þ
jI

� �T
∇ 2ð Þp xð Þ x¼xI þ

1

3
∑N

j¼1

∇WjImj

ρ j
r 3ð Þ
jI

� �T
∇ 3ð Þp xð Þ

�����
�����
x¼xI

8<
:

9=
;

Replacing ∇p(x) in Eq. (38) by ∇p xð Þjx¼xI

D E
specified by

Eq. (40), the following equation in the CSPM to discretise the
Laplacian can be achieved

∇2p xð Þ��x¼xI

D E
¼ 2ITCSPMM

−1
2;CSPM

∑N
j¼1

∇ 2ð ÞWjImj

ρ j
p j−pI
� �

−∑N
j¼1

∇ 2ð ÞWjImj

ρ j
rTjIM

−1
1;CSPM∑

N
k¼1

∇WkImk

ρk
pk−pIð Þ

 !

ð41Þ

where ICSPM ¼ 1 0 0 1 0 1½ �T. The truncation er-
ror of Eq. (41) is

ECSPM ¼ ITCSPMM
−1
2;CSPM∑

N
j¼1

∇ 2ð ÞWjImj

ρ j
rTjI

M−1
1;CSPM∑

N
k¼1

∇WkImk

ρk
r 2ð Þ
kI

� �T
∇ 2ð Þp xð Þjx¼xI þ

1

3
M−1

1;CSPM∑
N
k¼1

∇WkImk

ρk
r 3ð Þ
kI

� �T
∇ 3ð Þp xð Þx¼xI

� �

−
1

3
ITCSPMM

−1
2;CSPM∑

N
j¼1

∇ 2ð ÞWjImj

ρ j
r 3ð Þ
jI

� �T
∇ 3ð Þp xð Þj

x¼xI

þ…

ð42Þ

In the cases with a regular particle distribution and a uni-

form spacing, ∑
N

j¼1
∇ 2ð ÞWjI

m j

ρ jr
T
jI¼0 and ∑

N

j¼1
∇ 2ð ÞWjI

m j

ρ j r 3ð Þ
jIð ÞT¼0

,

consequently, the leading truncation error of Eq. (41) is in

the order of O ITCSPMM
−1
2;CSPM rTjI∇

� ��
4p xð Þjx¼xI Þ, if the ker-

nel is symmetrical about xI and the integration domain is full.
This is consistent with the conclusion by Chen et al. (1999).
Nevertheless, if the particles are randomly distributed, the
leading truncation error of Eq. (41) becomes
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ECSPM ¼ ITCSPMM
−1
2;CSPM∑

N
j¼1

∇ 2ð ÞWjImj

ρ j
rTjIM

−1
1;CSPM∑

N
k¼1

∇WkImk

ρk
r 2ð Þ
kI

� �T
∇ 2ð Þp xð Þ

�����
x¼xI

ð43Þ

The schemes developed by Schwaiger (2008) are also
based on the kernel integration of Eq. (36). Its distinguishing

feature is that r 2ð Þ
jI

� �T
∇ 2ð Þp xð Þ in Eq. (36) is replaced by

r 2sð Þ
jI

� �T
∇ 2sð Þp xð Þ, assuming that the kernel integration of

r 2cð Þ
jI

� �T
∇ 2cð Þp xð Þ is zero, i.e.

pj−pI ¼ rTjI∇
� �

p xð Þ
���
x¼xI

þ 1

2
r 2sð Þ
jI

� �T
∇ 2sð Þp xð Þ

����
x¼xI

þ 1

6
r 3ð Þ
jI

� �T
∇ 3ð Þp xð Þ

����
x¼xI

þ…

ð44Þ

Multiplying Eq. (44) by

∇ˇWjI ¼ 1
d2jI

xjI
∂WjI

∂x
yjI

∂WjI

∂y
zjI

∂WjI

∂z

� �T
and integrating

over the domain Ω, it leads to

∇2p xð Þ��x¼xI

D E
¼ 2ITM−1

2;CSPH ∑
N

j¼1

∇ˇWjImj

ρ j
p j−pI
� �

− ∑
N

j¼1

∇ˇWjImj

ρ j
rTjI ∇p xð Þjx¼xI

D E
Þ

 

ð45Þ

whereM2;CSPH ¼ ∑
N

j¼1
∇ˇWjI

m j

ρ j r 2sð Þ
jIð ÞT is a matrix with size of 3

× 3 for 3D problems or 2 × 2 for 2D problems. ∇p xð Þjx¼xI

D E
in Eq. (45) is also estimated using Eq. (40). Therefore, the
truncation error of Eq. (45) is

ECSPH ¼ ITM−1
2;CSPH ∑

N

j¼1

∇ˇWjImj

ρ j
rTjI

1

2
M−1

1;CSPM ∑
N

k¼1

∇WkImk

ρk
r 2ð Þ
kI

� �T
∇ 2ð Þp xð Þ x¼xI þ

1

3
M−1

1 ∑
N

k¼1

∇WkImk

ρk
r 3ð Þ
kI

� �T
∇ 3ð Þp xð Þ

����
����
x¼xI

 !

−ITM−1
2;CSPH ∑

N

j¼1

∇ˇWjImj

ρ j
r 2cð Þ
jI

� �T
∇ 2cð Þp xð Þ x¼xI−

1

3
ITM−1

2;CSPH ∑
N

j¼1

∇ˇWjImj

ρ j
r 3ð Þ
jI

� �T
∇ 3ð Þp xð Þj

x¼xI

þ…

�����

ð46Þ

The leading truncation error of Schwaiger’s scheme is
sourced from (1) the leading truncation error of the gradi-
ent estimation using Eq. (40) and (2) ignoring the cross-

derivative terms, r 2cð Þ
jI

� �T
∇ 2cð Þp xð Þ, in Eq. (44). However,

only the leading truncation sourced from (1) is shown in
the CSPM (Eq. (41)). Such terms can be eliminated if a
higher-order gradient estimation scheme is introduced. For
example, truncating the last two terms on the right-hand
side of Eq. (37), it leads to

∇p xð Þx¼xI

D E
¼ M−1

1;CSPM ∑
N

j¼1

∇WjImj

ρ j
p j−pI
� �

−
1

2
M−1

1;CSPM ∑
N

j¼1

∇WjImj

ρ j
r 2ð Þ
jI

� �T
∇ 2ð Þp xð Þ

�����
x¼xI

ð47Þ
with a leading truncation error of

−
1

6
M−1

1;CSPM ∑
N

j¼1

∇WjImj

ρ j
r 3ð Þ
jI

� �T
∇ 3ð Þp xð Þ

�����
x¼xI

Substituting Eq. (47) into Eq. (38), and multiplying the
resultant equation by ITCSPM, it leads to the formula to
discretise the Laplacian,

∇2p xð Þ��x¼xI

D E
¼ 2ITCSPMM

−1
2;ICSPM

∑
N

j¼1

∇ 2ð ÞWjImj

ρ j
p j−pI
� �

− ∑
N

j¼1

∇ 2ð ÞWjImj

ρ j
rTjIM

−1
1;CSPM ∑

N

k¼1

∇WjImk

ρk
pk−pIð Þ

( )

ð48Þ
in which

M2;ICSPM ¼ M2;CSPM− ∑
N

j¼1

∇ 2ð ÞWjImj

ρ j
rTjIM

−1
1;CSPM ∑

N

k¼1

∇WkImk

ρk
r 2ð Þ
kI

� �T !
:

The leading truncation error of Eq. (48) for randomly dis-
tributed particles is

EICSPM ¼ 1

3
ITCSPMM

−1
2;CSPM ∑

N

j¼1

∇ 2ð ÞWjImj

ρ j
rTjIM

−1
1;CSPM ∑

N

k¼1

∇WkImk

ρk
r 3ð Þ
kI

� �T
∇ 3ð Þp xð Þ x¼xI− ∑

N

j¼1

∇ 2ð ÞWjImj

ρ j
r 3ð Þ
kI

� �T
∇ 3ð Þp xð Þ

�����
�����
x¼xI

8<
:

9=
; ð49Þ
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