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ABSTRACT 

Existing approaches to modeling software systems all too often neglect the issue of component mismatch 

identification and resolution. The traditional view of software development over-emphasizes synthesis at the expense of 

analysis - the latter frequently being seen as a problem one only needs to deal with during the integration stage towards 

the end of a development project. This paper discusses three software modeling and analysis techniques, all tool 

supported, and emphasizes the vital role analysis can play in identifying and resolving risks early on. This work also 

combines model based development with component based development  (e.g., COTS and legacy systems) and shows 

how their mismatch detection capabilities complement each other in providing a more comprehensive coverage of 

development risks.  

KEYWORDS 

Component-based Architectures, Component Integration, Rapid Component Compatibility Validation, Tools, 

Process support for Component-Based Modeling. 

1  INTRODUCTION 

Nowadays, in order to be competitive, a developer’s usage of Commercial-off-the-Shelf (COTS) packages has 

become standard, at times being an explicit requirement from the customer. The idea of simply plugging together various 

COTS packages and/or other existing/in-house developed parts (as described in the mega-programming principles [1]) is 

however often trivialized, as are the side effects that may occur by plugging or composing these packages together [2]. 



Likewise, the development of architectural and design modeling languages (e.g., Unified Modeling Language [3]) has 

proceeded with little emphasis towards new challenges imposed by component-based development.  

This work introduces a three-tiered development methodology that combines independently created component-

based and model-based development approaches [4]. Our combined approaches complement one another in their ability 

to detect a larger (more comprehensive) number of mismatches that may happen between various component choices. 

Our combined approaches also complement one another in the speed which they provide mismatch feedback. More 

comprehensive mismatch analysis has the benefit of an increased likelihood that incompatibilities between components 

are identified before the actual software system is built, potentially preventing great loss of cost and effort. Rapid 

mismatch detection has the additional benefit of a fast exclusion of non-viable component configurations (architectures) 

for a desired system, again reducing cost and effort required in analyzing a potentially large set of components.  

Our approach performs (1) a high-level component analysis followed by (2) a more comprehensive component-

enabled architectural analysis, excluding unfeasible architectural options along the way. Both analysis approaches detect 

mismatches and thus help human decision makers in eliminating unfeasible architectural options. Our analysis 

approaches act as filters where unfeasible options are removed before the next analysis step. The first filter is fast and 

can provide feedback within hours, but is not very comprehensive. The second filter is more comprehensive and thus 

slower, but more reliable. In order to ensure continuity between them we also created a synthesis technique to share 

modeling information between them (e.g., use of analysis results of the first filter as an input to the second filter). 

The fact that our analysis filters trade off precision with speed has another beneficial side effect. During software 

development we are (at times) confronted with both the lack of information and its abundance. Whenever we deal with 

new issues, variables, changes, and so on (e.g., new requirements) we usually lack information and our ability to analyze 

its impact seems limited. Conversely, once some aspect has been investigated, we are often confronted with a plethora of 

information spread across multiple models (e.g. documents, design models, implementation). Our dual filtering process 

can handle both situations. We find the first filter being most effective early on in the software life cycle – as early as 

requirements negotiation – where choices of components, their features, and configurations are still very vague. Our 

second filter requires more detailed information that becomes available later on. Architectural analysis techniques [5] 

used in our second filter frequently also support refinement, making it possible to use the second filter recursively for 

even more detailed mismatch analyses if desired. 



The third tier of our development approach is a synthesis technique supporting the consistent refinement of viable 

architectural options (determined via the first two steps) into end-user-applications. After all, regardless how pretty an 

architectural model looks and how effective it is in addressing stakeholder requirements, it adds little value to the final 

product unless the information specified through it can somehow be transitioned into the final product. Consistent 

refinement is thus necessary to ensure that architectural options, which passed our analysis filters, are subsequently 

implemented correctly.  

The contributions of this paper are an incremental, rapid, and comprehensive approach to component-based 

software modeling with a strong emphasis on component mismatch detection and consistent refinement. In following, 

this paper will introduce and discuss our three-tier development approach. To complement the discussion, a non-trivial 

example is used to illustrate our approach. The three sections discussing the individual pieces of our approach are 

structured by giving an initial high level and generic overview, followed by a demonstration in context of the example, 

and concluded with a follow-up discussion on how other scenarios may require a different treatment than the one given 

in the example. Due to the limited space, references are provided whenever the details cannot be discussed in this paper. 

2  APPROACH 

Simply speaking, we see a typical software 

development process as consisting of requirements 

modeling, evaluation of architectural options, architectural 

modeling, designing, and finally coding. Figure 1 depicts 

the portion of the process following requirements 

engineering, which is the specific focus of this paper. 

Evaluating Architectural Options deals with the 

exploration of different possible realizations of the requirements. At this level, functional details are not yet (fully) 

known. Instead, the focus is on coarse-grain modeling, often also involving outside components like commercial-off-the-

shelf components (COTS) or legacy systems. Analyzing architectural options tends to evaluate the suitability of 

components to work together and solve the proposed problem.  

Since it would be too expensive to model each architectural option in detail, only a few suitable options should be 

selected for further modeling and evaluation. Architectural modeling [6] [5] focuses on modeling the interior workings 

and interactions of all to-be-developed parts of a proposed system. Architectural modeling partitions the system into 
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Figure 1. Our Modeling Framework 



coherent subsystems, describes the presumed interactions between the subsystems, and involved external components 

and entities (e.g., COTS, humans, etc.). Analyzing architectures focuses on the evaluation of roles and responsibilities of 

architectural components as well as their interaction protocols. 

Design modeling refines architectural modeling by using lower-level constructs conceptually closer to the 

implementation. Thus, the design supplements the architecture by modeling how roles, responsibilities, and interaction 

protocols are actually realized. The design typically also extends the architecture by further subdividing architectural 

components into smaller pieces and providing additional details for them. Analyzing designs primarily focuses on 

evaluating the consistency between the design and its architecture so that the design faithfully realizes the architecture 

and is internally consistent. 

Our three-tier development approach has a strong emphasis on mismatch detection. Mismatches are introduced 

during software development and evolution at various levels while combining (1) models (diagrams) into system 

representations and (2) components into systems. In [4] we have shown that component integration and model 

integration are two complementary activities. We use components (e.g., libraries, COTS, legacy) as building blocks to 

create more complex components or systems. Component-based development decreases subsystem dependency and 

increases (component) reuse. Likewise, we use models (diagrams) as building blocks for creating more complex 

representations of systems. Model-based development decreases modeling complexity and increases separation of 

concerns. 

The primary benefits of using our approach to component-based development is the combination of early risk 

assessment of mismatches (e.g., incompatibilities) between (OTS) components, the exhaustive modeling of components 

(and their interconnections) for detailed mismatch analysis, and the well-defined refinement process for implementing 

component wrappers (e.g., “glue code”) and additional functionalities not captured by OTS components. Our approach is 

supported by several techniques that, together, cover the three stages of the life-cycle discussed above. Our techniques 

also augment one another in their ability to detect larger sets (and more detailed types) of component mismatches.  

In the following sections we will discuss the three stages of our component-based development approach. Each 

section will describe what information is available at that stage, what are the goals, and what approaches have to be 

followed to reach those goals. We will illustrate how mismatches can be identified during each stage in the context of an 

example discussed below. We will also discuss the tool support that is available for each stage. 



3  THE EXAMPLE SYSTEM 

Our proposed example is a Hospital System that extends a legacy application and incorporates some COTS 

capabilities. The COTS component Medication DB is a comprehensive database about existing medications and their 

side effects. It is used in the Hospital System to automatically identify whether a newly introduced medication for a 

patient conflicts with previous or current medications.  

The current legacy system covers parts of the 

proposed capabilities (see shaded area in Figure 2). 

However, the legacy system needs to be extended to 

support automated medication analysis. In particular, 

elements of the legacy system dealing with patients and 

treatments require a more precise definition of their 

activities. The legacy system describes treatment information in plain English. For an automated analysis of treatments 

and side effects, as well as automated report generation of treatment options and results, the information capture part of 

the legacy system needs to be enhanced to do so more systematically. 

4  EVALUATING ARCHITECTURAL OPTIONS 

Early on, in any software engineering effort, several architectural options may be considered. These are based on the set 

of given requirements and must be evaluated, supporting a reduction in the number of options, and then further refined 

[7]. These architectural options are high-level descriptions of components and their expected interactions. Among others, 

they must be evaluated in order to determine the architectural mismatches that they may entail. The goals described in 

this section are to model components with their architectural features and to minimize mismatches between them. 

4.1 Finding Conceptual Features to describe Components 

The existence of architectural mismatches among various parts of a system may seriously hinder a component-

based software engineering effort [2]. Architectural mismatches are caused by inconsistencies between two or more 

constraints of different architectural parts being composed. Architectural mismatches may vary considerably in terms of 

the kind of impact they have – some may be easily avoided by the simple use of a wrapper, whereas others may be 

extremely expensive to handle. Hence the importance of early risk assessment while considering reuse possibilities. 

In order to perform early risk assessment during component composition, we use the Architect’s Automated 

Assistant approach and tool (AAA). AAA is a mismatch detection approach that supports rapid evaluations of 
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Figure 2. Proposed Hospital System Overview 



components with respect to the potential incompatibilities among them. AAA takes as input a high level description of 

the (sub)systems to be composed and the kinds of interactions expected among the components in the subsystem. Based 

on those descriptions it is possible to infer mismatches among the components. Subsystem descriptions can be given in 

terms of architectural styles or specific architectural features. Some of the component features supported by AAA are: 1 

• Backtracking – does the component support backtracking while trying to solve a problem? 

• Concurrency – is the component multi-threaded or not? 

• Control unit – is there a special sub-component within the component responsible for arbitrating which 

components are to execute at any given point in time? If so, is this a central control unit or are there distributed 

ones? 

• Distribution – is the component mapped to more than one hardware node or not? 

• Encapsulation – does the component include some private data and/or control elements? 

• Layering – does the component use some layering with respect to control or data connectors? 

• Preemption – is preemption required in the subsystem? I.e., are there tasks that must be interrupted and 

suspended in order to start or continue running another task? 

• Reconfiguration – does the component support on-line reconfiguration or does it require off-line intervention? 

• Reentrance – A reentrant code can have multiple simultaneous, interleaved, or nested invocations which will 

not interfere with each other. Does the component contain reentrant parts? 

• Response times – does the component have some predictable, bounded, or unbounded response time 

requirements? Is it cyclic (i.e., does it contain a cycle that will run indefinitely)? 

• Supported data transfers – how is data transferred within the component? Is it via shared variables, explicit data 

connectors (such as pipes), and/or shared repositories? 

The various component features are gathered by interviewing the people that were or will be involved in their 

development and maintenance. Reengineering existing parts may also be of help, as long as not too much effort is 

invested. The same approach is also used for COTS packages, since vendors may be willing to give out at least general 

                                                           

1 Other features supported by AAA and not included here are component priorities, dynamism, and triggering 

capabilities. For a detailed description of the complete feature set as well as their relevance for architectural mismatches 

refer to [11]. 



information on these characteristics – they do describe the system and often help describe API’s, without giving away 

secrets that could reduce the vendor’s competitive advantage. Features whose values are unknown are simply reported as 

such. 

An architectural style defines a family of systems based on a common structural organization [5]. It constrains both 

the design elements and the formal relationships among the design elements [6]. The set of constraints imposed on a 

style determine the set of features that are fixed for the style, as well as those that may vary from system to system within 

the given style. Consequently, the use of architectural styles simplifies the description task by already inheriting the 

values for the features relevant at the style level. Those features not fixed for the style are initially set to unknown and 

may potentially be refined as system-specific knowledge becomes available. AAA contains a set of predefined 

architectural style descriptions, but allows descriptions of other styles based on their feature set, covering both fixed and 

unconstrained values. The set of software connectors (interactions) supported by AAA are calls, spawns (or forks), data 

connectors (e.g., pipes), shared data variables, triggers, and shared resources (e.g., a hardware node). 

AAA handles partial descriptions of software components due to the fact that it can be used very early in the 

software development process, when information is scarce and not yet fully defined. AAA deals with incomplete 

information by making pessimistic assumptions while checking for architectural mismatches. Since component 

mismatch analysis is done based on assumptions, the results obtained are not precise. However, these results are highly 

valuable for risk assessment and provide some insight for later refinement of the previously unconstrained features. 

4.2 Detecting Component Mismatches with AAA 

In the context of the Hospital System, AAA was given the information depicted in Figure 3. This is a very high-

level architectural model describing the proposed interactions of the existing legacy system (Patient System), COTS 

product (Medication DB), and the subsystems under development (Hospital Core, User Interface). The component 

Hospital Core is yet to be developed, thus, we do know its set of desirable component features, yet do not want to over-

constrain our options at this point by already committing to an architectural style. Features for the Hospital Core have 

been set in AAA according to the description shown in Figure 3. Note that some features, such as control unit and 

preemption, have been set as “unknown.” The other components are defined similarly. Note that for brevity we only 

listed the features of the most significant component, excluding those of others like User Interface. 

Using the information from Figure 3, AAA can generate a list of potential mismatches . This is done by checking 

the component descriptions against a set of predefined mismatch rules. Mismatch rules are specified in terms of 



preconditions and potentially resulting problems that may result from them. A mismatch example would be “This 

component is sharing data with some component(s) that may later backtrack”, with the associated precondition that at 

least one of the subsystems sharing a given data set has backtracking, and the specific problem of concern being the fact 

that, while backtracking, we may have undesired side-effects on the overall system state. 

As a result of the AAA analysis, we get an indication of potential risks we might encounter at a later state when 

combining those components. AAA, however, comes up short in actually specifying the details of how the components 

interaction is enabled and, specifically, how Hospital Core component is actually realized. Here is an excerpt of 

mismatches detected by AAA while processing the Hospital System information (we will discuss them in more detail in 

the next section): 

• A remote connector is extended into or out of a non-distributed subsystem. The originally non-distributed 

subsystem(s) cannot handle delays and/or errors occurring due to some distributed communication event 

(Violating subsystems: Hospital Core and Patient System, Hospital Core and Medication DB) 

• Sharing data with some component(s) that may later backtrack. Backtracking may cause undesired side effects 

on the overall composed system state (Violating subsystems: Hospital Core and Patient System) 

• Only part of the resulting system automatically reconfigures upon failure. (Violating subsystems: 

Reconfiguration on-line: Hospital Core, Reconfiguration off-line: User Interface, Patient System) 

• Call to a component that performs on-the-fly garbage collection. Undesirable side effects on the overall 

predictable response times (Violating subsystems: Hospital Core and Patient System) 

The AAA approach is tool supported. The results obtained while analyzing the information relevant to the Hospital 

System can be seen in Figure 4. One of the great advantages of using the AAA tool is the minimal effort required for 

obtaining results, as well as experimenting on varying the features and/ or connectors used. 

Subsystem Hospital Core Patient System Medication DB 

Pre-defined Style undefined Database-centric Database-centric 
Background Info. In-house Legacy COTS 
Backtracking no yes yes 
Concurrency yes yes yes 
Control unit unknown central central 
Distribution single node single node single node 
Encapsulation yes yes unknown 
Data/Control Layer  yes/yes yes/unknown unknown 
Preemption unknown unknown unknown 
Reconfiguration on-line off-line off-line 
Reentrance no yes yes 
Response time unbounded bounded bounded 
Shared Variable 
Data Connector 

unknown 
yes 

no 
unknown 

no 
unknown 

Hospital
Repository
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Figure 3. Hospital System Architecture and Component Features 



4.3 Minimizing Component Mismatches through Architectural Trade-Off Analysis 

The results obtained by analyzing architectural descriptions with AAA must be dealt with by domain and 

application experts in order to determine the mismatches that are a real threat and decide how to deal with them. Some of 

the approaches that may be used for mismatch risk minimization include but are not limited to: using a different (set of) 

component(s) with differing characteristics to support same required functionality, changing the means of components 

interaction (connectors), varying the features of the components to be built, and introducing wrappers or instrumented 

connectors [8]. All but the last of these approaches are of an exploratory character, hence easily supported by AAA 

requiring only a very limited set of actions. The main result of this risk minimization activity is a high level architectural 

description reflecting the component configuration that has the most chances of success. 

5  ARCHITECTURE MODELING TO INTEGRATE COMPONENTS 

The preceding section presented an approach (AAA) whereby a preliminary, coarse-grain model of a system based on its 

major components is used to (1) identify one or more viable architectural options for the system and (2) highlight any 

unresolved risks associated with each option.  These issues are dealt with early in a system’s lifecycle, thus potentially 

minimizing the costs of selecting suboptimal options or failing to mitigate the major risks.  However, the AAA approach 

by itself does not provide the mechanisms needed to perform in-depth comparisons of identified options or to resolve the 

risks.  Instead, AAA must be accompanied by additional approaches that will, for each architectural option, 

(1) Find an architectural style that supports the system’s current components, their conceptual features, and their 

interactions (recall the discussion in Section 4). Certain styles may be better suited than others to handle particular 

types of components, features, and interactions.  Some styles may even resolve certain risks carried over from the 

 

Figure 4. AAA Screen Snapshots 



evaluation of architectural options.  Additionally, an architect must ensure that styles do not clash with system 

requirements exacerbate other known risks. Finally, it may be difficult to assess the impact of a style and the 

architectural model on a given issue, in which case, any decision must be deferred pending additional modeling and 

analysis (e.g., as proposed in Section 6); 

(2) Assess the ability of the chosen style to help minimize the mismatches between those components, features, and 

interactions;  

(3) Carefully model the critical aspects of the system in the chosen style, e.g., by using an architecture description 

language (ADL) [9]; and 

(4) Analyze the architectural model for model mismatches. Note that these mismatches will typically differ from those 

identified by AAA since the architectural model will be more detailed and complete. 

5.1 Finding Architectural Style to fit Components 

Architectural options, as found through AAA in Section 4, come up short in specifying how components have to be 

built (or wrapped in the case of OTS) and how they must interact. In order to refine a given architectural option into an 

eventual implementation, one has to define the components, connectors, and their interconnections (guided by the rules 

of a given style) in a more rigorous manner. All software systems adhere to some architectural style. Common styles 

include layered, client-server, pipe and filter, event-based, and main-subroutine [5] [10]. An architectural style defines 

the relationships of components and connectors that are shared across systems. Choosing an (in)appropriate architectural 

style(s) has considerable impact on the feasibility of a project.  Our method provides help in this regard.  For clarity, the 

method is illustrated in the context of the Hospital System example.  

Table 1 couples the notion of component features (Section 4) and styles, showing their relationship (A more 

complete version of the table is given in [11]).  The table can be used as a selection mechanism to infer candidate styles 

out of known components, connectors, and their configurations. For example, although the Hospital Core component in 

the Hospital System currently has no style explicitly associated with it, its conceptual features exclude many potential 

styles. From Figure 3, we know that Hospital Core must support concurrency. We learn from Table 1 that all of the 

considered styles, except for main-subroutine, support concurrency. The main-subroutine style should therefore not be 

used as an architectural style in this case. This exclusion method can be applied in context of all other features. 

Further analysis establishes that, of the four major components in our case study, two follow the database-centric 

style (Hospital Repository and Medication DB), one follows the event-based style (User Interface), and the last one is 



unspecified (Hospital Core). In choosing an architectural style for the overall system, we must also choose an 

architectural style that fits all components and their proposed forms of interactions.2 In this case, all components are 

currently defined as non-distributed, i.e., each individual component resides in a single address space. By itself, this 

property does not place any constraints on the configuration of the entire system, meaning that all styles remain in the 

candidate pool. Because of the need for concurrent components, the overall system must also be concurrent (excluding 

the main-subroutine style again). Since some components require reentrance and others do not, we must use a style that 

supports both (excluding pipe-and-filter and real-time). Finally, since some components require a central control unit, all 

styles not supporting such a unit may be excluded as well (e.g., distributed processes).  

With the remaining three styles—event-based, database-centric, and C2—we encounter a conflict. On the one hand, 

system response time needs to be unbounded due to the Hospital Core component. On the other hand, backtracking 

capabilities are needed to support the Patient System component. The former favors the event-based or C2 styles, 

whereas the latter favors the database-centric style. To resolve this conflict, we either need to investigate additional 

styles or use additional information: 

                                                           

2 Note that it is indeed possible to select multiple architectural styles for different parts of a given application.  Our 

approach allows this, in the same manner as discussed above, assuming the styles are inherently compatible.  

Architectural style incompatibilities [34] are beyond the scope of this work. 

Table 1. Mapping Component Features to Architectural Styles 

Features 
Distributed 
Processes 

Event-
Based 

Main-
Subroutine 

Pipe and 
Filter 

Database 
Centric 

Real-Time C2SADEL 

Backtracking No No No No Yes No No 

Concurrency Multi-
threaded 

Multi-
threaded 

Single-
threaded 

Multi-
threaded 

Multi-
threaded 

Multi-
threaded 

Multi-
threaded 

Control unit None  None None Central Central  

Distribution Multiple 
nodes 

 
Single 
nodes 

    

Encapsulation        
Data/Control 

layer        

Preemption   No No  Yes  
Reconfiguration        

Reentrance   No No Yes No  
Response time Unbounded Unbounded Unbounded Unbounded Bounded Unbounded Unbounded 

Shared variable   Yes  No   
Data connector Yes   Yes   Yes 



1) To choose between event-based and C2, we may choose the one with the greatest feature coverage: In this case, the 

example favors the C2 style since it supports explicit data connectors as required by the Hospital Core component 

(C2 is an event-based styles with exactly that extension). 

2) To choose between C2 and database-centric, we may choose the one with the highest potential for resolving known 

architectural mismatches (or risks) as they were identified in Section 4. To address the remote connector mismatch, 

C2-style connectors limit the effects of individual components on overall system structure and evolution. C2 

components exhibit very low coupling: a component is only aware of a single connector above and/or a single 

connector below it. That means that components can be added, removed, replaced, or reconnected in a C2-style 

architecture, even at runtime, without their neighboring components ever needing to know about those changes [12]. 

One the other hand, the database-centric style is not well suited to this case. Conversely, the database-centric style is 

well suited to address the sharing data and component backtracking mismatch, for which C2 is not as well suited. 

The automatic reconfiguration mismatch is addressable by C2: the message-based interaction of C2 components via 

connectors presents an ideal foundation for system adaptability, both off-line and at system runtime [12]. It is 

important to note that the fourth mismatch discovered by the AAA tool—response time due to on-the-fly garbage 

collection—is neither well supported by C2 nor by the database-centric style. 

As will likely often be the case, none of the three styles is the perfect fit to this problem.  In such a case, the 

selection of a style is based on an evaluation of which style can be most easily amended to address its deficiencies. If the 

selected architectural options simply cannot be implemented by any of the candidate styles, another option should be 

chosen. If no architectural option can be satisfied, then this may indicate a need for a change in the requirements. 

Specifically, in the case of the hospital application, C2 can be amended to deal with the backtracking issue. The 

topological rules and message-based communication of C2 support easy update of components. In particular, if the 

Patient System component from Figure 3 backtracks, it can send a message to that effect to the Hospital Repository; in 

turn, the Repository will issue a notification message, which will be relayed by the appropriate connector(s) to the 

Hospital Core component. Note that Hospital Repository is a COTS component and, as such, is unlikely to adhere to 

C2’s interaction rules. However, C2 provides a set of simple mechanisms and resulting tools for incorporating 

heterogeneous, OTS components [13]. In particular, a light-weight wrapper can be constructed for Hospital Repository, 

as will be discussed below. 



The next section will, therefore, model in more detail the chosen architectural option from Section 4 using the C2 

style and its accompanying suite of modeling, analysis, and implementation technologies. The goal of the further 

analysis is to investigate in more detail whether the above shortcoming can be mended and whether there are other, 

currently unknown risks.  We will also briefly discuss the potential role of other architectural technologies as candidates 

for effecting additional architectural styles (e.g., layered, event-based, database-centric). 

5.2 Modeling the Hospital System in C2SADEL  

In this section we discuss the approach to leveraging an architectural style (C2) and using an ADL (C2SADEL) to 

further refine (or define) the component and connector features that were not elucidated as part of the process of 

evaluating architectural options (Section 4). An explicit architectural model allows for mismatches to be detected at the 

level of component interfaces, behaviors, and interaction protocols.  Explicit models are also amenable to analysis tools 

that support rapid evaluations of architectural descriptions and highlight key problem areas in a given system’s model. 

The C2-style breakdown of the Hospital System architecture is shown in Figure 5. The shaded portion in the center 

of the architecture represents a refinement of the Hospital Core component from Figure 3. C2 allows Hospital Core to be 

modeled as a single component or, hierarchically, to contain an internal architecture of its own. 

Recall from Section 4 that the reengineered hospital 

system will include components that supplement the 

architecture functionality already provided by one or more 

of the legacy components. Thus, for example, the Patients 

component in Hospital Core will supplement the legacy 

Patient System component. The Patient Handling 

component will issue patient handling messages. In turn, 

those messages will be routed by the appropriate 

connector(s) to one of the two patient processing 

components (e.g., based on their interfaces). Occasionally, 

Patient Handling will issue patient treatment related 

messages to the Treatment component, which will, in turn, 

consult the COTS Medication DB component to determine, 

e.g., any conflicts in prescribed medications. Similarly, the 
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Figure 5. Hospital System Architecture modeled in C2 



Facilities and Staff components will handle their respective responsibilities, while the Reports component will invoke 

any of the components above it needs to produce a report the user demands via the User Interface component. The 

Hospital Core and Patient System components may store some information internally, or they may occasionally request 

information from a central, COTS Hospital Repository. 

The diagram shown in Figure 5 gives us good understanding of the “big picture,” i.e., the hospital system’s overall 

architectural breakdown. However, in order to ensure that the architecture exhibits the desired properties and that the 

different components can interact in envisioned ways, a more detailed and formal specification of the architecture is 

needed. For that purpose, we employ C2SADEL, a 

language for describing and evolving C2-style architectures 

[14]. 

A C2SADEL architecture is specified in three parts: 

component types, connector types, and topology. The 

topology, in turn, defines component and connector 

instances for a given system and their interconnections. A 

partial description of the architecture shown in Figure 5 is 

given in Figure 6. The Treatment component type is 

specified externally, i.e., in a different file (Treatment.c2). 

The Medication DB component type is specified as a virtual 

type: it can be used in the definition and analysis of the 

topology, but it does not have a specification and does not 

affect analysis of component conformance. The concept of 

virtual types is useful in the case of components for which 

implementations are known to already exist, but which are 

not specified in C2SADEL (e.g., COTS).3 

                                                           

3 
Medication DB is modeled as a virtual component in this case only to demonstrate this feature of C2SADEL. A typical approach to modeling 

COTS components has been to extract from their available documentation (e.g., API) the desired services and model them in C2SADEL, thus enabling 

more meaningful component conformance analysis. 

HospitalSystem is { 
  component_types { 
    component TreatmentComp is extern  {TreatmentComp.c2;} 
    component MedicationDBComp is virtual {} 
    ... 
  } 
  connector_types { 
    connector FiltConn is {filter msg_filter;} 
    connector RegConn is {filter no_filter;} 
  } 
  architectural_topology { 
    component_instances { 
      Treat : TreatmentComp; 
      MedDB : MedicationDBComp; 
      ... 
    } 
    connector_instances { 
      TreatConn : FiltConn; 
      PatConn : FiltConn; 
      ... 
    } 
    connections { 
      connector TreatConn { 
        top MedDB, PatConn; 
        bottom Treat; 
      } 
      connector PatConn { 
        top PatSys, RepConn; 
        bottom TreatConn, InternConn, Fac, Pat, Staff; 
      } 
      ... 
} } } 

Figure 6. Partial specification of the Hospital System 
architecture in C2SADEL 

component Treatment is { 
  state { 
    cur_pats : \set PatID; 
    pat_meds : \set Med; //implement as PatID -> \set Med; 
  } 
  invariant { cur_pats \eqgreater 0; } 
  interface { 
    prov ip1: prescribeMed(p : PatID; m : Med); 
    req  ir1: medConf(new_m: Med; old_m: \set Med): Bool; 
  } 
  operations { 
    prov op1: { 
      let  pid : PatID; m : Med; 
      pre  (m \not_in pat_meds); 
      post (pid \in ~cur_pats) \and (m \in ~pat_meds); 
    } 
    req or1: { 
      let  m : Med; ms : \set Med; 
      post \result = (m \in ms); 
    } 
  } 
  map { 
    ip1 -> op1 (p -> pid, m -> m); 
    ir1 -> or1 (new_m -> m, old_m -> ms); 
} } 

Figure 7. Partial specification of the Treatment component 
in C2SADEL 



Individual components, such as Treatment shown in Figure 7, are specified to contain a set of component state 

variables, a component invariant, and a set of services.  Each service comprises an interface and an operation; operations 

are modeled via pre- and post-conditions in first-order logic. A service can be provided by the modeled component or 

required of some other component in an architecture. Finally, interfaces and operations are separated, so that it is 

possible for an operation to export multiple interfaces. 

5.3 Minimizing Component Mismatches through Architectural Analysis 

The specification of component invariants and services in C2SADEL allows components that are composed in an 

architecture to be analyzed for conformance. For example, the required medConf service of the Treatment component 

must be matched by a provided service of one of the components to which Treatment is attached in the hospital system 

architecture. More specifically, due to C2’s style rules, this service must be matched by one of the components above 

Treatment in the architecture, namely Medication DB, Patient System, or Hospital Repository. A required service P 

matches a provided service Q if the following conditions hold [15]: 

• P and Q have identical interface and interface parameter names; 

• either both P and Q have a return value or neither does; 

• the types of P’s interface parameters are subtypes of the types of Q’s interface parameters; 

• the type of P’s return value is a supertype of the type of Q’s return value; 

• P’s precondition implies Q’s precondition; and 

• Q’s postcondition implies P’s postcondition. 

At a minimum, these rules ensure that, if, e.g., procedure calls are used to enable the interactions of the 

implementations of the components containing P and Q, those interactions will be allowed by the underlying 

programming language. Additionally, the analysis of pre- and postconditions allows us to establish the behavioral 

conformance of the two components. Since manual conformance checking would be a time consuming and error prone 

task, we use the SAAGE environment to perform automatic model checking of an architecture. Furthermore, SAAGE 

supports automated generation of the architecture’s prototype implementation [14]. The prototype allows observation 

and rapid evaluation of critical dynamic system properties. 

Once the software architect is satisfied that the modeled architecture exhibits the desired properties, (s)he can use 

SAAGE to generate a Unified Modeling Language (UML) model of the architecture [16] [17] and, subsequently, refine 

that model into a lower-level design and, eventually, into code (see Section 7). 



Figure 8 shows a screenshot of SAAGE and the results of its analysis of the hospital system specified in 

C2SADEL. The figure also shows the resulting UML model automatically generated in Rational Rose. Note that 

SAAGE reported three mismatches in the “Architectural Type Mismatch” pane. The first mismatch states that the 

Treatment component’s required service medConf cannot be matched because no components are attached above it. In 

this case, this simply means that all components attached above Treatment in the hospital system architecture, such as 

Medication DB, are virtual and SAAGE was unable to use them to establish component conformance. 

The second mismatch is more interesting: it indicates that SAAGE was able to successfully match the interface of 

Patient Handling component’s required service prescribeMed to Treatment’s corresponding provided service. However, 

the required behavior does not match the provided behavior. The pre- and postconditions of the two operations are 

specified in the table below. 

Patient Handling 
req service 

Treatment 
prov service 

pre (p \in pats) pre (m \not_in pat_meds) 
post (m \in ~meds) post (p \in ~cur_pats) 

     \and (m \in ~pat_meds) 
 

To satisfy behavioral conformance rules, the following two relationships must hold: 

• req precondition implies prov precondition, i.e., 

(p \in pats) => (m \not_in pat_meds) 

 

Figure 8. Screenshot of SAAGE. The automatically generated UML model in Rational Rose is shown in the right 



• prov postcondition implies req postcondition, i.e., 

(p \in ~cur_pats) \and (m \in ~pat_meds) => (m \in ~meds) 

The first relationship clearly cannot be established: the left hand side (LHS) of the implication deals with patients 

and the right hand side (RHS) with medications. The second relationship is of the form A and B => A, which is always 

true. To enable the match of the postconditions, SAAGE had to unify the RHS variable meds, which is of the generic 

type STATE_VARIABLE [15] [14], with the LHS variable pat_meds, which is defined as part of the Treatment 

component’s state (recall Figure 7).  

Since the necessary relationship between the preconditions could not be established, SAAGE also attempts to 

match Patient Handling component’s required service prescribeMed to the provided services of the other components 

attached above it in the hospital system architecture. None of the other components provide a corresponding service, 

resulting in the third architectural type mismatch shown in Figure 8. Finally, note that the architect’s decision to generate 

the UML model in spite of the mismatches indicates the architect’s belief that those mismatches are either not critical or 

would be remedied during the system’s design phase. 

5.4 Applicability to Other Styles and ADLs 

The above discussion demonstrated the coupling of AAA and C2, two techniques independently developed by the 

authors.  However, our overall approach to exploiting architectures to aid component mismatch detection is in no way 

predicated upon the use of C2.  Quite the contrary, the same general process can be used when other styles and ADLs are 

coupled to aid in software modeling and analysis [9].  For example, the event-based style may be effectively used in 

conjunction with the Rapide ADL [18]; similarly, the layered style may be used with the GenVoca ADL [19]; and the 

distributed style may be coupled with Darwin [20]. Finally, certain ADLs, such as Aesop [21] and Wright [22], allow an 

architectural style to be formally modeled using the same environment and language that is, in turn, used to model 

application architectures within that style. In each such situation, the details of the models and analyses depend upon the 

characteristics of the style and features and tool support of the chosen ADL. 

6  DESIGN MODELING AND REFINEMENT INTO CODE 

The process of choosing an architectural option, selecting its architectural style, and modeling the resulting 

architecture in detail yields an architectural model. At this stage, we have available a fairly well validated architectural 

model of components, connectors, and their combined configurations of which we know that they exhibit properties that 

satisfy the given requirements. What remains to do is to refine that architectural model into a software system. That 



refinement involves: (1) the implementation of components that are not off-the-shelf; (2) the implementation of glue 

code (e.g., wrappers) around components that are pre-existing (e.g., COTS or legacy); and (3) the implementation of 

connectors that enable components to interact (unless they are COTS themselves like in CORBA [23]). 

The traditional way if implementing software models of any kind is the manual process of reading and interpreting 

available documentation followed by programming it. With the availability of architectural models, the task of 

refinement is simplified in that major components are specified; those components provide the major partitions of a 

system and programming those partitions is less complex in that they can be implemented separately. The downside of a 

manual development approach is in its manual nature where there are no guarantees that the model descriptions are 

implemented correctly. Refinement from architectures into code must however ensure consistency. In [24], we have 

investigated the issue of consistency among model descriptions and have found that its major cause is information 

discontinuities among models where information specified in one model cannot easily be transitioned into the other in an 

automated manner (e.g., from architecture to code). In [25], we further found that this discontinuity among models can 

be dealt with by employing automated synthesis and analysis.  

Synthesis enables one to generate a new model (e.g., code) from an existing model (e.g., architecture), while 

analysis provides mechanisms for ensuring the preservation of certain properties across (independently created) models. 

Software engineers extensively employ both kinds of techniques. For example, program compilation involves both the 

analysis of the syntactic and semantic correctness of one model (source code) and the synthesis of another model from it 

(executable image). Synthesis and analysis techniques span a spectrum from manual to fully automated. Manual 

techniques tend to be error prone, while fully automated techniques are often unfeasible [26]. Furthermore, in some cases 

one technique (e.g., analysis) is easier to perform than another (synthesis). For this reason, one typically has to resort to 

using some combination of synthesis and analysis techniques of varying degrees of automation when ensuring inter-

model consistency. In the following, we will discuss synthesis and analysis in context of architectural models. 

6.1 Synthesizing a Design from an Architecture 

The synthesis process for refining architectures may vary depending on the different architectural styles available 

(e.g., event-based, main-subroutine, C2, etc.). Our example mandates the refinement of a C2 style, however, if we had 

chosen another type of style, we would require a different refinement technique. For our purposes, the starting point of 

refinement is an architecture composed of coarse-grained components and connectors, and their configurations. The 



architecture adheres to some architectural style (e.g., client-server, pipe-and-filter, layered) and its representation may be 

formalized using an architecture description language.  

Refining the architecture into code would be the most straightforward approach, however, it can often not be done 

directly. We therefore use design languages such as the Unified Modeling Language (UML) [3] as intermediate models 

for refinement. Using a generic-purpose notation like UML for refinement has four major advantages: (1) refining into 

design models instead of code is less of an gap to bridge and thus easier; (2) design languages are generally easier 

understandable which makes subsequent non-automatable refinement simpler; (3) design specifications provide 

additional, more program-language-specific constructs that might increase the degree of (automated) code generation; 

and finally (4) design modeling can make use of design patterns, such as wrapper technologies, which in turn increases 

the degree of reuse.  

Based on our example in C2SADEL, the SAAGE environment is capable of generating a partial implementation of 

its architecture [14]. At the same time, many lower-level issues (e.g., any additional processing and data objects, specific 

data structures, and algorithms) that are needed to complete that implementation are not provided at the architectural 

level. For that reason, the “outer skeleton” of the application generated from the architectural model is complemented 

with the details typically provided through general-purpose design activities. [16] discusses in detail what is involved in 

refining architectural descriptions into UML where different refinement scenarios are presented. It is also shown how 

transformation from C2SADEL to the intermediate UML model is enabled by a set of specific refinement rules. Those 

refinement rules make sure that the refined architecture still reflects the structure, details, and properties of the 

architectural model, thus guaranteeing consistency between the architecture and design. The Rational Rose screen snap 

shot in Figure 8 (right half) depicts the refined hospital example using UML. UML objects are used to represent 

architectural instances and UML classes are used to define their interfaces.  

We have conducted an in-depth study of the feasibility of mapping ADLs to UML [17]; this study involved three 

representative ADLs (C2SADEL, Rapide [18], and Wright [22]). Furthermore, related works of other researchers have 

done similar things for other types of ADLs and architectural styles (e.g., [27] for a specific type of layered style, [28] 

for real-time styles, [29] for object-oriented and main subroutine styles, or [30] for styles that can be modeled via proof-

carrying architectures). Those works demonstrate that other types of architectural styles can be refined into code, either 

directly or via intermediate design models. Those technologies usually provide processes, rules, and tools to support 



refinement based on architectural styles. All those refinement techniques reduce manual labor but have one major 

deficiency – they only guarantee consistency initially.  

6.2 Analyzing Consistency between Architectures and Refinements 

Model analysis extends synthesis by also ensuring that the architecture and all its refinements remain consistent 

after their creation. The basic problem is that after the synthesis of design and code, all models (architecture, design, and 

code) may be altered concurrently. For instance, since 100% automated code generation out of architectural descriptions 

is rare, additional manual programming is required to complete the code – a task that may introduce inconsistencies. 

Furthermore, it is possible that the architectural or design information change even after coding has commenced. Those 

architecture and design changes must be validated against one another and against the source code to ensure their 

continuing consistency.  

We therefore have developed a view integration 

approach to ensure continued consistency of models 

throughout the refinement process – even if models are 

changed due to evolutionary considerations. Our view 

integration framework approach [31] [24] exploits the 

redundancy between models: for instance, if model A 

contains information about model B, this information can be 

seen as a constraint on B (e.g., as this is the case between 

the architecture in Figure 5 and the design in Figure 9). Our 

view integration framework is used to enforce such 

constraints and, thereby, the consistency across views. In 

addition to constraints and consistency rules, our view integration framework also defines what information can be 

exchanged and how information can be exchanged. This is critical for a scalable and automated mismatch identification 

and resolution process.  

Figure 9 shows an excerpt of the design refinement of our hospital system using a UML class diagram model. At 

this point, we can assume that the automatically generated design was manually refined potentially negating consistency. 

The basic question now is whether the depicted UML class diagram is still consistent with the original C2 architecture. 

We distinguish between structural consistency and behavioral consistency. Structural consistency ensures that the 
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Figure 9. Design Refinement using UML Classes 



interfaces provided through C2 component and connectors are equivalent to those provided through UML classes. 

Basically, C2 components and connectors may be seen as the interfaces for compact, self-sustaining sections of the 

implementation. Since C2 elements are often coarse-grain, it is reasonable to assume that a collection of classes is 

needed to implement a single C2 element. 

Figure 10 shows a piece of the UML design 

model depicting the relationships between Patient 

Processing, Treatment, and Facilities. The dashed 

lines around classes indicate mappings between C2 

elements and design elements. For instance, the 

classes Facilities Collection, Available Facilities and 

Treatment Collection are part of the C2 connector 

Internal Conn linking Patient Handling with 

Treatment and Facilities (recall Figure 5). Note that 

this figure is simplified in that not all classes are 

shown. Analyzing Figure 10, it can be seen that the dependency relationship between Patient Processing and Treatment 

is in violation with the C2 architectural structure: no corresponding link between Patient Handling and Treatment can be 

found in the C2 architecture shown in Figure 5.  

Even if we were to correct the above problem, ensuring structural consistency between design and architecture does 

not guarantee proper behavior of the design. For instance, a C2 behavioral constraint states that no two components of 

the same level are allowed to interact; instead, C2 interactions go strictly up and down. In Figure 10 we can also see a 

potential violation of that constraint. The class Treatment depends (uses) on the class Available Facilities, which, in turn, 

depends on the class Facility Collection. This, in itself, is not a mismatch since both classes are part of Internal Conn 

connector and a corresponding link exists in C2. However, Available Facilities can only access the classes Facility 

Collection and Facilities, the latter being another 

component at the same level as Treatment. Given 

the current design knowledge, it is possible for 

Treatment to interact with Facilities, which is a 

behavioral violation of C2. 
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Figure 10. Mismatches between C2 and UML 
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Figure 11. Automated Class Abstraction 



The above example is trivial enough for a human to identify the design mismatches with relatively little effort. The 

UML/Analyzer tool [24] supports the consistency checking of much more complex cases. Two factors add to the 

complexity here: 1) the existence of ‘helper classes’ in the design and 2) the number of classes and possible interactions. 

UML/Analyzer uses an abstraction technique to eliminate helper classes [32]. For instance, to identify the behavioral 

mismatch in Figure 10, we need to eliminate the helper classes Available Facilities and Facility Collection that ‘obstruct’ 

our view of the direct relationship between Treatment and Facilities. In this particular example, UML/Analyzer sees a 

dependency to from Treatment to Available Facilities followed by a generalization (inheritance) from Available 

Facilities to Facility Collection; this is, in turn, followed by an aggregation from Facilities to Facility Collection (Figure 

11 top row). The tools’s abstraction method then uses its abstraction rules (some depicted in Figure 12 upper right) to 

eliminate helper classes. The UML/Analyzer tool finds a dependency relationship between Treatment and Facilities after 

two subsequent transformations (Figure 11). This tool and underlying model can be applied to arbitrary complex class 

patterns. Figure 12 depicts screenshots of the UML/Analyzer tool. Currently only class diagrams and C2 diagrams are 

fully supported. This work is being extended on other types of UML diagrams as well as other architectural description 

languages. 

 

Figure 12. Screen Snapshots of UML/Analyzer and Rational Rose 



Like in the previous section, the approach to consistency analysis varies depending on the architectural styles 

chosen. In [4] we discuss consistency checking issues that apply to layered styles and pipe-and-filter styles. Real-time 

styles and their refinement are discussed in [33].  

7  DISCUSSION 

Our proposed approach “interfaces” with requirements engineering on one side and implementation on the other. 

Requirements modeling needs feedback to evaluate the feasibility of suggested options. If it takes weeks or months to 

give that feedback, system requirements modeling may never stabilize or artificial cut-off dates must be set with negative 

side effects onto flexibility (e.g., waterfall model). If, on the other hand, the feedback can be obtained in days, 

requirements modeling intertwined with architectural modeling becomes feasible. Our approach provides feedback about 

unfeasible options in mere hours; in turn, we can select promising options and refine them into architectures for more 

thorough risk analysis in days or weeks.  

We believe that it is very beneficial to combine model-based and component-based development since model 

descriptions provide the context for how to combine components, whereas components address more specific system 

needs. Furthermore, components are helpful in partitioning architecture and design models: since components represent 

independent subsystems, any resulting models tend to become more independent themselves. Our proposed three-tiered 

development approach combines modeling constructs and processes that were previously separated. 

The power of compositional modeling techniques provided through AAA and SAAGE lies in the fact that major 

development concerns can be modeled, analyzed and simulated early on, resulting in a very cost effective way of dealing 

with development risks. However, as discussed earlier, those models add little value to the final software product if the 

product-related information stored in them cannot be transitioned into the final product. For instance, we chose the C2 

architectural style because the AAA analysis suggested that there are potential risks that C2 could remedy (e.g., remote 

connector). To ensure that the final product still resolves those risks, we need to also verify that the final product 

inherited all relevant characteristics from its C2 architecture. In other words, we need to ensure consistent refinement. 

Since the example we chose in this paper is not representative for all software products, we also discussed how 

other types of situations could be addressed via our approach. In order to summarize the big picture of our proposed 

development approach, consider Table 2. The table shows the three major elements of our development approach 

(columns) and their properties. The table briefly summarizes the constructs we have available at those respective stages, 

the questions one would like to answer, the information initially available, the goals that need to be achieved, the 



approaches one has available, and the tools that support it. The table has been extrapolated from the discussion provided 

in the previous sections. It represents a quick reference for assessing the issues, progress, and results in a component-

based development effort. 

 

Table 2. Impact of our Component-Based Development Approach  
 Modeling Architectural Options Modeling Architecture Modeling Design and Coding 

Modeling 
Constructs 

• Components 
• Interactions 
• Conceptual features 

• Architectural configuration 
• Architectural styles 
• Roles and responsibilities 

• Classes 
• Methods 
• Variables 

Questions 

• What are the components 
required to do? 

• Can we exclude potentially 
unfeasible architectural options? 

• What are the component 
characteristics? 

• How can architectural options be 
modeled and analyzed without 
implementing it?  

• Does the architectural solution 
satisfy requirements? 

• How can architectural model be 
implement?  

• How are configurations, styles, 
roles, and responsibilities 
transformed into programming 
constructs? 

Timeframe • Can frequently be done in hours 
for complex systems 

• Can frequently be done in days or 
weeks for complex systems 

• Frequently takes many months or 
even years in complex systems 

Given 
• requirements 
• domain Knowledge 
• COTS and legacy components 

• one or more viable architectural 
options based on components  

• known risks from previous stage 
that were not resolved 

• one or more viable architectural 
models that satisfy requirements 

• known risks from previous stages 
that were not resolved 

Goals 

• find components that could 
satisfy requirements (with or 
without overlapping 
functionalities) 

• minimize mismatches between 
those components 

• find an architectural style that 
supports components, their 
conceptual features, and their 
interactions 

• minimize the mismatches than 
could occur between those 
components, features, and 
interaction with the respective 
chosen style (note: some styles 
may be more suitable than others 
in handling known mismatches) 

• consistently refine architectural 
model into code 

• use of design language as 
intermediate model if necessary 
(e.g., to enable design pattern 
reuse) 

Approaches 

• vary components to minimize 
potential risks (e.g., replace 
event-based component with 
blackboard-style component) 

• vary component interactions 
(connectors) to minimize 
potential risks  

• toggle variable component 
characteristics (e.g., of to-be-built 
subsystems) 

• evaluate different architectural 
styles to investigate their 
potential impact 

• refine (define) undeclared 
component and connector 
features to tailor integration 
between styles, components, and 
connectors. 

• refine known style, component, 
and connectors information into 
code 

• refine known style, component, 
and connectors information into 
design information 

Tools 

tradeoff analysis tool that supports 
rapid evaluations of components 

with respect to potentially 
incompatibilities among them 

• selection mechanism that infers 
styles out of known component 
and connector characteristics 

• tradeoff analysis tool that 
supports rapid evaluations of 
architectural descriptions 
between styles, components, and 
connectors  

• defined refinement mechanism 
for all types of styles and ADLs 



8  CONCLUSION 

This paper discussed three modeling and analysis approaches dealing with the “upstream” activities in the software 

engineering life cycle: architectural options, architectures, and designs. We used an example to illustrate their respective 

advantages in identifying and resolving mismatches. We also showed how (mismatch) feedback from one could impact 

others and drive development decisions.  

Our technique on evaluating architectural options may yield useful feedback (e.g., risk assessments) within hours 

and is highly useful for eliminating infeasible options early on (e.g., even during requirements negotiations), however, at 

the expense of precision. Our technique on architectural modeling is complementary since it is capable of performing 

more detailed and precise component mismatch analyses, however, at the expense of the effort required. Both are needed 

to rapidly develop component-based software, and thus, both have to be connected.  To that extend, we defined 

mechanisms for information sharing among our technique. Additionally, we found techniques on how to systematically 

refine architectures (with their incorporated component definitions) into more detailed architectures, designs and code.  

We believe that mismatch detection should happen as early on as possible. One software engineering truism is that 

the longer a mismatch remains undetected the more harm it might cause. We also believe that automated analysis 

techniques are invaluable in getting easy and fast initial feedback on potential problems and challenges regardless of the 

current development stage. We have shown that our techniques are useful as early on as the initial system analysis stage, 

where the lack of information drives development. We have also shown that our techniques can be used as late as coding 

and maintenance, when information abundance constitutes key complexities. 

We are continuously working on our tool support in three primary directions: 1) more extended coverage of other 

development models such as architectural description languages and design models; 2) more complete data, control, and 

process integration between our tools; and 3) more comprehensive coverage of the software-lifecycle (e.g., product 

families, requirements engineering, reuse).  
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