

City, University of London Institutional Repository

Citation: Egyed, A., Medvidovic, N. & Gacek, C. (2000). Component-based perspective on

software mismatch detection and resolution. IEE Proceedings: Software, 147(6), pp. 225-
236. doi: 10.1049/ip-sen:20000915

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/252/

Link to published version: https://doi.org/10.1049/ip-sen:20000915

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

A Component-Based Perspective on

Software Mismatch Detection and Resolution

Alexander Egyed

Computer Science Department

University of Southern California

Los Angeles, CA 90089-0781, USA

aegyed@sunset.usc.edu

Nenad Medvidovic

Computer Science Department

University of Southern California

Los Angeles, CA 90089-0781, USA

neno@usc.edu

Cristina Gacek

Fraunhofer IESE

Sauerwiesen 6

67661 Kaiserslautern, Germany

cristina.gacek@iese.fhg.de

ABSTRACT

Existing approaches to modeling software systems all too often neglect the issue of component mismatch

identification and resolution. The traditional view of software development over-emphasizes synthesis at the expense of

analysis - the latter frequently being seen as a problem one only needs to deal with during the integration stage towards

the end of a development project. This paper discusses three software modeling and analysis techniques, all tool

supported, and emphasizes the vital role analysis can play in identifying and resolving risks early on. This work also

combines model based development with component based development (e.g., COTS and legacy systems) and shows

how their mismatch detection capabilities complement each other in providing a more comprehensive coverage of

development risks.

KEYWORDS

Component-based Architectures, Component Integration, Rapid Component Compatibility Validation, Tools,

Process support for Component-Based Modeling.

1 INTRODUCTION

Nowadays, in order to be competitive, a developer’s usage of Commercial-off-the-Shelf (COTS) packages has

become standard, at times being an explicit requirement from the customer. The idea of simply plugging together various

COTS packages and/or other existing/in-house developed parts (as described in the mega-programming principles [1]) is

however often trivialized, as are the side effects that may occur by plugging or composing these packages together [2].

Likewise, the development of architectural and design modeling languages (e.g., Unified Modeling Language [3]) has

proceeded with little emphasis towards new challenges imposed by component-based development.

This work introduces a three-tiered development methodology that combines independently created component-

based and model-based development approaches [4]. Our combined approaches complement one another in their ability

to detect a larger (more comprehensive) number of mismatches that may happen between various component choices.

Our combined approaches also complement one another in the speed which they provide mismatch feedback. More

comprehensive mismatch analysis has the benefit of an increased likelihood that incompatibilities between components

are identified before the actual software system is built, potentially preventing great loss of cost and effort. Rapid

mismatch detection has the additional benefit of a fast exclusion of non-viable component configurations (architectures)

for a desired system, again reducing cost and effort required in analyzing a potentially large set of components.

Our approach performs (1) a high-level component analysis followed by (2) a more comprehensive component-

enabled architectural analysis, excluding unfeasible architectural options along the way. Both analysis approaches detect

mismatches and thus help human decision makers in eliminating unfeasible architectural options. Our analysis

approaches act as filters where unfeasible options are removed before the next analysis step. The first filter is fast and

can provide feedback within hours, but is not very comprehensive. The second filter is more comprehensive and thus

slower, but more reliable. In order to ensure continuity between them we also created a synthesis technique to share

modeling information between them (e.g., use of analysis results of the first filter as an input to the second filter).

The fact that our analysis filters trade off precision with speed has another beneficial side effect. During software

development we are (at times) confronted with both the lack of information and its abundance. Whenever we deal with

new issues, variables, changes, and so on (e.g., new requirements) we usually lack information and our ability to analyze

its impact seems limited. Conversely, once some aspect has been investigated, we are often confronted with a plethora of

information spread across multiple models (e.g. documents, design models, implementation). Our dual filtering process

can handle both situations. We find the first filter being most effective early on in the software life cycle – as early as

requirements negotiation – where choices of components, their features, and configurations are still very vague. Our

second filter requires more detailed information that becomes available later on. Architectural analysis techniques [5]

used in our second filter frequently also support refinement, making it possible to use the second filter recursively for

even more detailed mismatch analyses if desired.

The third tier of our development approach is a synthesis technique supporting the consistent refinement of viable

architectural options (determined via the first two steps) into end-user-applications. After all, regardless how pretty an

architectural model looks and how effective it is in addressing stakeholder requirements, it adds little value to the final

product unless the information specified through it can somehow be transitioned into the final product. Consistent

refinement is thus necessary to ensure that architectural options, which passed our analysis filters, are subsequently

implemented correctly.

The contributions of this paper are an incremental, rapid, and comprehensive approach to component-based

software modeling with a strong emphasis on component mismatch detection and consistent refinement. In following,

this paper will introduce and discuss our three-tier development approach. To complement the discussion, a non-trivial

example is used to illustrate our approach. The three sections discussing the individual pieces of our approach are

structured by giving an initial high level and generic overview, followed by a demonstration in context of the example,

and concluded with a follow-up discussion on how other scenarios may require a different treatment than the one given

in the example. Due to the limited space, references are provided whenever the details cannot be discussed in this paper.

2 APPROACH

Simply speaking, we see a typical software

development process as consisting of requirements

modeling, evaluation of architectural options, architectural

modeling, designing, and finally coding. Figure 1 depicts

the portion of the process following requirements

engineering, which is the specific focus of this paper.

Evaluating Architectural Options deals with the

exploration of different possible realizations of the requirements. At this level, functional details are not yet (fully)

known. Instead, the focus is on coarse-grain modeling, often also involving outside components like commercial-off-the-

shelf components (COTS) or legacy systems. Analyzing architectural options tends to evaluate the suitability of

components to work together and solve the proposed problem.

Since it would be too expensive to model each architectural option in detail, only a few suitable options should be

selected for further modeling and evaluation. Architectural modeling [6] [5] focuses on modeling the interior workings

and interactions of all to-be-developed parts of a proposed system. Architectural modeling partitions the system into

Architectural
Modeling

Evaluating
Architectural

Options

choose
option

information scarcity
plattform independence

Design
Modeling

refine
architecture C

 O
 D
 E

information abundance
plattform dependence

generate

Figure 1. Our Modeling Framework

coherent subsystems, describes the presumed interactions between the subsystems, and involved external components

and entities (e.g., COTS, humans, etc.). Analyzing architectures focuses on the evaluation of roles and responsibilities of

architectural components as well as their interaction protocols.

Design modeling refines architectural modeling by using lower-level constructs conceptually closer to the

implementation. Thus, the design supplements the architecture by modeling how roles, responsibilities, and interaction

protocols are actually realized. The design typically also extends the architecture by further subdividing architectural

components into smaller pieces and providing additional details for them. Analyzing designs primarily focuses on

evaluating the consistency between the design and its architecture so that the design faithfully realizes the architecture

and is internally consistent.

Our three-tier development approach has a strong emphasis on mismatch detection. Mismatches are introduced

during software development and evolution at various levels while combining (1) models (diagrams) into system

representations and (2) components into systems. In [4] we have shown that component integration and model

integration are two complementary activities. We use components (e.g., libraries, COTS, legacy) as building blocks to

create more complex components or systems. Component-based development decreases subsystem dependency and

increases (component) reuse. Likewise, we use models (diagrams) as building blocks for creating more complex

representations of systems. Model-based development decreases modeling complexity and increases separation of

concerns.

The primary benefits of using our approach to component-based development is the combination of early risk

assessment of mismatches (e.g., incompatibilities) between (OTS) components, the exhaustive modeling of components

(and their interconnections) for detailed mismatch analysis, and the well-defined refinement process for implementing

component wrappers (e.g., “glue code”) and additional functionalities not captured by OTS components. Our approach is

supported by several techniques that, together, cover the three stages of the life-cycle discussed above. Our techniques

also augment one another in their ability to detect larger sets (and more detailed types) of component mismatches.

In the following sections we will discuss the three stages of our component-based development approach. Each

section will describe what information is available at that stage, what are the goals, and what approaches have to be

followed to reach those goals. We will illustrate how mismatches can be identified during each stage in the context of an

example discussed below. We will also discuss the tool support that is available for each stage.

3 THE EXAMPLE SYSTEM

Our proposed example is a Hospital System that extends a legacy application and incorporates some COTS

capabilities. The COTS component Medication DB is a comprehensive database about existing medications and their

side effects. It is used in the Hospital System to automatically identify whether a newly introduced medication for a

patient conflicts with previous or current medications.

The current legacy system covers parts of the

proposed capabilities (see shaded area in Figure 2).

However, the legacy system needs to be extended to

support automated medication analysis. In particular,

elements of the legacy system dealing with patients and

treatments require a more precise definition of their

activities. The legacy system describes treatment information in plain English. For an automated analysis of treatments

and side effects, as well as automated report generation of treatment options and results, the information capture part of

the legacy system needs to be enhanced to do so more systematically.

4 EVALUATING ARCHITECTURAL OPTIONS

Early on, in any software engineering effort, several architectural options may be considered. These are based on the set

of given requirements and must be evaluated, supporting a reduction in the number of options, and then further refined

[7]. These architectural options are high-level descriptions of components and their expected interactions. Among others,

they must be evaluated in order to determine the architectural mismatches that they may entail. The goals described in

this section are to model components with their architectural features and to minimize mismatches between them.

4.1 Finding Conceptual Features to describe Components

The existence of architectural mismatches among various parts of a system may seriously hinder a component-

based software engineering effort [2]. Architectural mismatches are caused by inconsistencies between two or more

constraints of different architectural parts being composed. Architectural mismatches may vary considerably in terms of

the kind of impact they have – some may be easily avoided by the simple use of a wrapper, whereas others may be

extremely expensive to handle. Hence the importance of early risk assessment while considering reuse possibilities.

In order to perform early risk assessment during component composition, we use the Architect’s Automated

Assistant approach and tool (AAA). AAA is a mismatch detection approach that supports rapid evaluations of

Patient
Handling

Medication
DB

Legacy System

COTS

Patient
Processing

Treatment
Processing

Staff
Processing

Facility
Processing

Figure 2. Proposed Hospital System Overview

components with respect to the potential incompatibilities among them. AAA takes as input a high level description of

the (sub)systems to be composed and the kinds of interactions expected among the components in the subsystem. Based

on those descriptions it is possible to infer mismatches among the components. Subsystem descriptions can be given in

terms of architectural styles or specific architectural features. Some of the component features supported by AAA are: 1

• Backtracking – does the component support backtracking while trying to solve a problem?

• Concurrency – is the component multi-threaded or not?

• Control unit – is there a special sub-component within the component responsible for arbitrating which

components are to execute at any given point in time? If so, is this a central control unit or are there distributed

ones?

• Distribution – is the component mapped to more than one hardware node or not?

• Encapsulation – does the component include some private data and/or control elements?

• Layering – does the component use some layering with respect to control or data connectors?

• Preemption – is preemption required in the subsystem? I.e., are there tasks that must be interrupted and

suspended in order to start or continue running another task?

• Reconfiguration – does the component support on-line reconfiguration or does it require off-line intervention?

• Reentrance – A reentrant code can have multiple simultaneous, interleaved, or nested invocations which will

not interfere with each other. Does the component contain reentrant parts?

• Response times – does the component have some predictable, bounded, or unbounded response time

requirements? Is it cyclic (i.e., does it contain a cycle that will run indefinitely)?

• Supported data transfers – how is data transferred within the component? Is it via shared variables, explicit data

connectors (such as pipes), and/or shared repositories?

The various component features are gathered by interviewing the people that were or will be involved in their

development and maintenance. Reengineering existing parts may also be of help, as long as not too much effort is

invested. The same approach is also used for COTS packages, since vendors may be willing to give out at least general

1 Other features supported by AAA and not included here are component priorities, dynamism, and triggering

capabilities. For a detailed description of the complete feature set as well as their relevance for architectural mismatches

refer to [11].

information on these characteristics – they do describe the system and often help describe API’s, without giving away

secrets that could reduce the vendor’s competitive advantage. Features whose values are unknown are simply reported as

such.

An architectural style defines a family of systems based on a common structural organization [5]. It constrains both

the design elements and the formal relationships among the design elements [6]. The set of constraints imposed on a

style determine the set of features that are fixed for the style, as well as those that may vary from system to system within

the given style. Consequently, the use of architectural styles simplifies the description task by already inheriting the

values for the features relevant at the style level. Those features not fixed for the style are initially set to unknown and

may potentially be refined as system-specific knowledge becomes available. AAA contains a set of predefined

architectural style descriptions, but allows descriptions of other styles based on their feature set, covering both fixed and

unconstrained values. The set of software connectors (interactions) supported by AAA are calls, spawns (or forks), data

connectors (e.g., pipes), shared data variables, triggers, and shared resources (e.g., a hardware node).

AAA handles partial descriptions of software components due to the fact that it can be used very early in the

software development process, when information is scarce and not yet fully defined. AAA deals with incomplete

information by making pessimistic assumptions while checking for architectural mismatches. Since component

mismatch analysis is done based on assumptions, the results obtained are not precise. However, these results are highly

valuable for risk assessment and provide some insight for later refinement of the previously unconstrained features.

4.2 Detecting Component Mismatches with AAA

In the context of the Hospital System, AAA was given the information depicted in Figure 3. This is a very high-

level architectural model describing the proposed interactions of the existing legacy system (Patient System), COTS

product (Medication DB), and the subsystems under development (Hospital Core, User Interface). The component

Hospital Core is yet to be developed, thus, we do know its set of desirable component features, yet do not want to over-

constrain our options at this point by already committing to an architectural style. Features for the Hospital Core have

been set in AAA according to the description shown in Figure 3. Note that some features, such as control unit and

preemption, have been set as “unknown.” The other components are defined similarly. Note that for brevity we only

listed the features of the most significant component, excluding those of others like User Interface.

Using the information from Figure 3, AAA can generate a list of potential mismatches . This is done by checking

the component descriptions against a set of predefined mismatch rules. Mismatch rules are specified in terms of

preconditions and potentially resulting problems that may result from them. A mismatch example would be “This

component is sharing data with some component(s) that may later backtrack”, with the associated precondition that at

least one of the subsystems sharing a given data set has backtracking, and the specific problem of concern being the fact

that, while backtracking, we may have undesired side-effects on the overall system state.

As a result of the AAA analysis, we get an indication of potential risks we might encounter at a later state when

combining those components. AAA, however, comes up short in actually specifying the details of how the components

interaction is enabled and, specifically, how Hospital Core component is actually realized. Here is an excerpt of

mismatches detected by AAA while processing the Hospital System information (we will discuss them in more detail in

the next section):

• A remote connector is extended into or out of a non-distributed subsystem. The originally non-distributed

subsystem(s) cannot handle delays and/or errors occurring due to some distributed communication event

(Violating subsystems: Hospital Core and Patient System, Hospital Core and Medication DB)

• Sharing data with some component(s) that may later backtrack. Backtracking may cause undesired side effects

on the overall composed system state (Violating subsystems: Hospital Core and Patient System)

• Only part of the resulting system automatically reconfigures upon failure. (Violating subsystems:

Reconfiguration on-line: Hospital Core, Reconfiguration off-line: User Interface, Patient System)

• Call to a component that performs on-the-fly garbage collection. Undesirable side effects on the overall

predictable response times (Violating subsystems: Hospital Core and Patient System)

The AAA approach is tool supported. The results obtained while analyzing the information relevant to the Hospital

System can be seen in Figure 4. One of the great advantages of using the AAA tool is the minimal effort required for

obtaining results, as well as experimenting on varying the features and/ or connectors used.

Subsystem Hospital Core Patient System Medication DB

Pre-defined Style undefined Database-centric Database-centric
Background Info. In-house Legacy COTS
Backtracking no yes yes
Concurrency yes yes yes
Control unit unknown central central
Distribution single node single node single node
Encapsulation yes yes unknown
Data/Control Layer yes/yes yes/unknown unknown
Preemption unknown unknown unknown
Reconfiguration on-line off-line off-line
Reentrance no yes yes
Response time unbounded bounded bounded
Shared Variable
Data Connector

unknown
yes

no
unknown

no
unknown

Hospital
Repository

User
Interface

<<COTS>>

<<calls>>

<<calls>> <<calls>>

<<calls>>

Hospital Core

Medication DB

<<COTS>>

Ethernet

Patient System
<<Legacy>>

<<shares
repository>><<calls>>

<<spawns>>

Figure 3. Hospital System Architecture and Component Features

4.3 Minimizing Component Mismatches through Architectural Trade-Off Analysis

The results obtained by analyzing architectural descriptions with AAA must be dealt with by domain and

application experts in order to determine the mismatches that are a real threat and decide how to deal with them. Some of

the approaches that may be used for mismatch risk minimization include but are not limited to: using a different (set of)

component(s) with differing characteristics to support same required functionality, changing the means of components

interaction (connectors), varying the features of the components to be built, and introducing wrappers or instrumented

connectors [8]. All but the last of these approaches are of an exploratory character, hence easily supported by AAA

requiring only a very limited set of actions. The main result of this risk minimization activity is a high level architectural

description reflecting the component configuration that has the most chances of success.

5 ARCHITECTURE MODELING TO INTEGRATE COMPONENTS

The preceding section presented an approach (AAA) whereby a preliminary, coarse-grain model of a system based on its

major components is used to (1) identify one or more viable architectural options for the system and (2) highlight any

unresolved risks associated with each option. These issues are dealt with early in a system’s lifecycle, thus potentially

minimizing the costs of selecting suboptimal options or failing to mitigate the major risks. However, the AAA approach

by itself does not provide the mechanisms needed to perform in-depth comparisons of identified options or to resolve the

risks. Instead, AAA must be accompanied by additional approaches that will, for each architectural option,

(1) Find an architectural style that supports the system’s current components, their conceptual features, and their

interactions (recall the discussion in Section 4). Certain styles may be better suited than others to handle particular

types of components, features, and interactions. Some styles may even resolve certain risks carried over from the

Figure 4. AAA Screen Snapshots

evaluation of architectural options. Additionally, an architect must ensure that styles do not clash with system

requirements exacerbate other known risks. Finally, it may be difficult to assess the impact of a style and the

architectural model on a given issue, in which case, any decision must be deferred pending additional modeling and

analysis (e.g., as proposed in Section 6);

(2) Assess the ability of the chosen style to help minimize the mismatches between those components, features, and

interactions;

(3) Carefully model the critical aspects of the system in the chosen style, e.g., by using an architecture description

language (ADL) [9]; and

(4) Analyze the architectural model for model mismatches. Note that these mismatches will typically differ from those

identified by AAA since the architectural model will be more detailed and complete.

5.1 Finding Architectural Style to fit Components

Architectural options, as found through AAA in Section 4, come up short in specifying how components have to be

built (or wrapped in the case of OTS) and how they must interact. In order to refine a given architectural option into an

eventual implementation, one has to define the components, connectors, and their interconnections (guided by the rules

of a given style) in a more rigorous manner. All software systems adhere to some architectural style. Common styles

include layered, client-server, pipe and filter, event-based, and main-subroutine [5] [10]. An architectural style defines

the relationships of components and connectors that are shared across systems. Choosing an (in)appropriate architectural

style(s) has considerable impact on the feasibility of a project. Our method provides help in this regard. For clarity, the

method is illustrated in the context of the Hospital System example.

Table 1 couples the notion of component features (Section 4) and styles, showing their relationship (A more

complete version of the table is given in [11]). The table can be used as a selection mechanism to infer candidate styles

out of known components, connectors, and their configurations. For example, although the Hospital Core component in

the Hospital System currently has no style explicitly associated with it, its conceptual features exclude many potential

styles. From Figure 3, we know that Hospital Core must support concurrency. We learn from Table 1 that all of the

considered styles, except for main-subroutine, support concurrency. The main-subroutine style should therefore not be

used as an architectural style in this case. This exclusion method can be applied in context of all other features.

Further analysis establishes that, of the four major components in our case study, two follow the database-centric

style (Hospital Repository and Medication DB), one follows the event-based style (User Interface), and the last one is

unspecified (Hospital Core). In choosing an architectural style for the overall system, we must also choose an

architectural style that fits all components and their proposed forms of interactions.2 In this case, all components are

currently defined as non-distributed, i.e., each individual component resides in a single address space. By itself, this

property does not place any constraints on the configuration of the entire system, meaning that all styles remain in the

candidate pool. Because of the need for concurrent components, the overall system must also be concurrent (excluding

the main-subroutine style again). Since some components require reentrance and others do not, we must use a style that

supports both (excluding pipe-and-filter and real-time). Finally, since some components require a central control unit, all

styles not supporting such a unit may be excluded as well (e.g., distributed processes).

With the remaining three styles—event-based, database-centric, and C2—we encounter a conflict. On the one hand,

system response time needs to be unbounded due to the Hospital Core component. On the other hand, backtracking

capabilities are needed to support the Patient System component. The former favors the event-based or C2 styles,

whereas the latter favors the database-centric style. To resolve this conflict, we either need to investigate additional

styles or use additional information:

2 Note that it is indeed possible to select multiple architectural styles for different parts of a given application. Our

approach allows this, in the same manner as discussed above, assuming the styles are inherently compatible.

Architectural style incompatibilities [34] are beyond the scope of this work.

Table 1. Mapping Component Features to Architectural Styles

Features
Distributed
Processes

Event-
Based

Main-
Subroutine

Pipe and
Filter

Database
Centric

Real-Time C2SADEL

Backtracking No No No No Yes No No

Concurrency Multi-
threaded

Multi-
threaded

Single-
threaded

Multi-
threaded

Multi-
threaded

Multi-
threaded

Multi-
threaded

Control unit None None None Central Central

Distribution Multiple
nodes

Single
nodes

Encapsulation
Data/Control

layer

Preemption No No Yes
Reconfiguration

Reentrance No No Yes No
Response time Unbounded Unbounded Unbounded Unbounded Bounded Unbounded Unbounded

Shared variable Yes No
Data connector Yes Yes Yes

1) To choose between event-based and C2, we may choose the one with the greatest feature coverage: In this case, the

example favors the C2 style since it supports explicit data connectors as required by the Hospital Core component

(C2 is an event-based styles with exactly that extension).

2) To choose between C2 and database-centric, we may choose the one with the highest potential for resolving known

architectural mismatches (or risks) as they were identified in Section 4. To address the remote connector mismatch,

C2-style connectors limit the effects of individual components on overall system structure and evolution. C2

components exhibit very low coupling: a component is only aware of a single connector above and/or a single

connector below it. That means that components can be added, removed, replaced, or reconnected in a C2-style

architecture, even at runtime, without their neighboring components ever needing to know about those changes [12].

One the other hand, the database-centric style is not well suited to this case. Conversely, the database-centric style is

well suited to address the sharing data and component backtracking mismatch, for which C2 is not as well suited.

The automatic reconfiguration mismatch is addressable by C2: the message-based interaction of C2 components via

connectors presents an ideal foundation for system adaptability, both off-line and at system runtime [12]. It is

important to note that the fourth mismatch discovered by the AAA tool—response time due to on-the-fly garbage

collection—is neither well supported by C2 nor by the database-centric style.

As will likely often be the case, none of the three styles is the perfect fit to this problem. In such a case, the

selection of a style is based on an evaluation of which style can be most easily amended to address its deficiencies. If the

selected architectural options simply cannot be implemented by any of the candidate styles, another option should be

chosen. If no architectural option can be satisfied, then this may indicate a need for a change in the requirements.

Specifically, in the case of the hospital application, C2 can be amended to deal with the backtracking issue. The

topological rules and message-based communication of C2 support easy update of components. In particular, if the

Patient System component from Figure 3 backtracks, it can send a message to that effect to the Hospital Repository; in

turn, the Repository will issue a notification message, which will be relayed by the appropriate connector(s) to the

Hospital Core component. Note that Hospital Repository is a COTS component and, as such, is unlikely to adhere to

C2’s interaction rules. However, C2 provides a set of simple mechanisms and resulting tools for incorporating

heterogeneous, OTS components [13]. In particular, a light-weight wrapper can be constructed for Hospital Repository,

as will be discussed below.

The next section will, therefore, model in more detail the chosen architectural option from Section 4 using the C2

style and its accompanying suite of modeling, analysis, and implementation technologies. The goal of the further

analysis is to investigate in more detail whether the above shortcoming can be mended and whether there are other,

currently unknown risks. We will also briefly discuss the potential role of other architectural technologies as candidates

for effecting additional architectural styles (e.g., layered, event-based, database-centric).

5.2 Modeling the Hospital System in C2SADEL

In this section we discuss the approach to leveraging an architectural style (C2) and using an ADL (C2SADEL) to

further refine (or define) the component and connector features that were not elucidated as part of the process of

evaluating architectural options (Section 4). An explicit architectural model allows for mismatches to be detected at the

level of component interfaces, behaviors, and interaction protocols. Explicit models are also amenable to analysis tools

that support rapid evaluations of architectural descriptions and highlight key problem areas in a given system’s model.

The C2-style breakdown of the Hospital System architecture is shown in Figure 5. The shaded portion in the center

of the architecture represents a refinement of the Hospital Core component from Figure 3. C2 allows Hospital Core to be

modeled as a single component or, hierarchically, to contain an internal architecture of its own.

Recall from Section 4 that the reengineered hospital

system will include components that supplement the

architecture functionality already provided by one or more

of the legacy components. Thus, for example, the Patients

component in Hospital Core will supplement the legacy

Patient System component. The Patient Handling

component will issue patient handling messages. In turn,

those messages will be routed by the appropriate

connector(s) to one of the two patient processing

components (e.g., based on their interfaces). Occasionally,

Patient Handling will issue patient treatment related

messages to the Treatment component, which will, in turn,

consult the COTS Medication DB component to determine,

e.g., any conflicts in prescribed medications. Similarly, the

Patient
Handling

Medication
DB

(COTS)

StaffPatientsFacilities Treatment

Patient
System
(Legacy)

User
Interface

ReportsHospital
Core

Hospital
Repository

PatSysConn

Repository Conn

MDB Conn

Internal Conn

UI Conn

Figure 5. Hospital System Architecture modeled in C2

Facilities and Staff components will handle their respective responsibilities, while the Reports component will invoke

any of the components above it needs to produce a report the user demands via the User Interface component. The

Hospital Core and Patient System components may store some information internally, or they may occasionally request

information from a central, COTS Hospital Repository.

The diagram shown in Figure 5 gives us good understanding of the “big picture,” i.e., the hospital system’s overall

architectural breakdown. However, in order to ensure that the architecture exhibits the desired properties and that the

different components can interact in envisioned ways, a more detailed and formal specification of the architecture is

needed. For that purpose, we employ C2SADEL, a

language for describing and evolving C2-style architectures

[14].

A C2SADEL architecture is specified in three parts:

component types, connector types, and topology. The

topology, in turn, defines component and connector

instances for a given system and their interconnections. A

partial description of the architecture shown in Figure 5 is

given in Figure 6. The Treatment component type is

specified externally, i.e., in a different file (Treatment.c2).

The Medication DB component type is specified as a virtual

type: it can be used in the definition and analysis of the

topology, but it does not have a specification and does not

affect analysis of component conformance. The concept of

virtual types is useful in the case of components for which

implementations are known to already exist, but which are

not specified in C2SADEL (e.g., COTS).3

3
Medication DB is modeled as a virtual component in this case only to demonstrate this feature of C2SADEL. A typical approach to modeling

COTS components has been to extract from their available documentation (e.g., API) the desired services and model them in C2SADEL, thus enabling

more meaningful component conformance analysis.

HospitalSystem is {
 component_types {
 component TreatmentComp is extern {TreatmentComp.c2;}
 component MedicationDBComp is virtual {}
 ...
 }
 connector_types {
 connector FiltConn is {filter msg_filter;}
 connector RegConn is {filter no_filter;}
 }
 architectural_topology {
 component_instances {
 Treat : TreatmentComp;
 MedDB : MedicationDBComp;
 ...
 }
 connector_instances {
 TreatConn : FiltConn;
 PatConn : FiltConn;
 ...
 }
 connections {
 connector TreatConn {
 top MedDB, PatConn;
 bottom Treat;
 }
 connector PatConn {
 top PatSys, RepConn;
 bottom TreatConn, InternConn, Fac, Pat, Staff;
 }
 ...
} } }

Figure 6. Partial specification of the Hospital System
architecture in C2SADEL

component Treatment is {
 state {
 cur_pats : \set PatID;
 pat_meds : \set Med; //implement as PatID -> \set Med;
 }
 invariant { cur_pats \eqgreater 0; }
 interface {
 prov ip1: prescribeMed(p : PatID; m : Med);
 req ir1: medConf(new_m: Med; old_m: \set Med): Bool;
 }
 operations {
 prov op1: {
 let pid : PatID; m : Med;
 pre (m \not_in pat_meds);
 post (pid \in ~cur_pats) \and (m \in ~pat_meds);
 }
 req or1: {
 let m : Med; ms : \set Med;
 post \result = (m \in ms);
 }
 }
 map {
 ip1 -> op1 (p -> pid, m -> m);
 ir1 -> or1 (new_m -> m, old_m -> ms);
} }

Figure 7. Partial specification of the Treatment component
in C2SADEL

Individual components, such as Treatment shown in Figure 7, are specified to contain a set of component state

variables, a component invariant, and a set of services. Each service comprises an interface and an operation; operations

are modeled via pre- and post-conditions in first-order logic. A service can be provided by the modeled component or

required of some other component in an architecture. Finally, interfaces and operations are separated, so that it is

possible for an operation to export multiple interfaces.

5.3 Minimizing Component Mismatches through Architectural Analysis

The specification of component invariants and services in C2SADEL allows components that are composed in an

architecture to be analyzed for conformance. For example, the required medConf service of the Treatment component

must be matched by a provided service of one of the components to which Treatment is attached in the hospital system

architecture. More specifically, due to C2’s style rules, this service must be matched by one of the components above

Treatment in the architecture, namely Medication DB, Patient System, or Hospital Repository. A required service P

matches a provided service Q if the following conditions hold [15]:

• P and Q have identical interface and interface parameter names;

• either both P and Q have a return value or neither does;

• the types of P’s interface parameters are subtypes of the types of Q’s interface parameters;

• the type of P’s return value is a supertype of the type of Q’s return value;

• P’s precondition implies Q’s precondition; and

• Q’s postcondition implies P’s postcondition.

At a minimum, these rules ensure that, if, e.g., procedure calls are used to enable the interactions of the

implementations of the components containing P and Q, those interactions will be allowed by the underlying

programming language. Additionally, the analysis of pre- and postconditions allows us to establish the behavioral

conformance of the two components. Since manual conformance checking would be a time consuming and error prone

task, we use the SAAGE environment to perform automatic model checking of an architecture. Furthermore, SAAGE

supports automated generation of the architecture’s prototype implementation [14]. The prototype allows observation

and rapid evaluation of critical dynamic system properties.

Once the software architect is satisfied that the modeled architecture exhibits the desired properties, (s)he can use

SAAGE to generate a Unified Modeling Language (UML) model of the architecture [16] [17] and, subsequently, refine

that model into a lower-level design and, eventually, into code (see Section 7).

Figure 8 shows a screenshot of SAAGE and the results of its analysis of the hospital system specified in

C2SADEL. The figure also shows the resulting UML model automatically generated in Rational Rose. Note that

SAAGE reported three mismatches in the “Architectural Type Mismatch” pane. The first mismatch states that the

Treatment component’s required service medConf cannot be matched because no components are attached above it. In

this case, this simply means that all components attached above Treatment in the hospital system architecture, such as

Medication DB, are virtual and SAAGE was unable to use them to establish component conformance.

The second mismatch is more interesting: it indicates that SAAGE was able to successfully match the interface of

Patient Handling component’s required service prescribeMed to Treatment’s corresponding provided service. However,

the required behavior does not match the provided behavior. The pre- and postconditions of the two operations are

specified in the table below.

Patient Handling
req service

Treatment
prov service

pre (p \in pats) pre (m \not_in pat_meds)
post (m \in ~meds) post (p \in ~cur_pats)

 \and (m \in ~pat_meds)

To satisfy behavioral conformance rules, the following two relationships must hold:

• req precondition implies prov precondition, i.e.,

(p \in pats) => (m \not_in pat_meds)

Figure 8. Screenshot of SAAGE. The automatically generated UML model in Rational Rose is shown in the right

• prov postcondition implies req postcondition, i.e.,

(p \in ~cur_pats) \and (m \in ~pat_meds) => (m \in ~meds)

The first relationship clearly cannot be established: the left hand side (LHS) of the implication deals with patients

and the right hand side (RHS) with medications. The second relationship is of the form A and B => A, which is always

true. To enable the match of the postconditions, SAAGE had to unify the RHS variable meds, which is of the generic

type STATE_VARIABLE [15] [14], with the LHS variable pat_meds, which is defined as part of the Treatment

component’s state (recall Figure 7).

Since the necessary relationship between the preconditions could not be established, SAAGE also attempts to

match Patient Handling component’s required service prescribeMed to the provided services of the other components

attached above it in the hospital system architecture. None of the other components provide a corresponding service,

resulting in the third architectural type mismatch shown in Figure 8. Finally, note that the architect’s decision to generate

the UML model in spite of the mismatches indicates the architect’s belief that those mismatches are either not critical or

would be remedied during the system’s design phase.

5.4 Applicability to Other Styles and ADLs

The above discussion demonstrated the coupling of AAA and C2, two techniques independently developed by the

authors. However, our overall approach to exploiting architectures to aid component mismatch detection is in no way

predicated upon the use of C2. Quite the contrary, the same general process can be used when other styles and ADLs are

coupled to aid in software modeling and analysis [9]. For example, the event-based style may be effectively used in

conjunction with the Rapide ADL [18]; similarly, the layered style may be used with the GenVoca ADL [19]; and the

distributed style may be coupled with Darwin [20]. Finally, certain ADLs, such as Aesop [21] and Wright [22], allow an

architectural style to be formally modeled using the same environment and language that is, in turn, used to model

application architectures within that style. In each such situation, the details of the models and analyses depend upon the

characteristics of the style and features and tool support of the chosen ADL.

6 DESIGN MODELING AND REFINEMENT INTO CODE

The process of choosing an architectural option, selecting its architectural style, and modeling the resulting

architecture in detail yields an architectural model. At this stage, we have available a fairly well validated architectural

model of components, connectors, and their combined configurations of which we know that they exhibit properties that

satisfy the given requirements. What remains to do is to refine that architectural model into a software system. That

refinement involves: (1) the implementation of components that are not off-the-shelf; (2) the implementation of glue

code (e.g., wrappers) around components that are pre-existing (e.g., COTS or legacy); and (3) the implementation of

connectors that enable components to interact (unless they are COTS themselves like in CORBA [23]).

The traditional way if implementing software models of any kind is the manual process of reading and interpreting

available documentation followed by programming it. With the availability of architectural models, the task of

refinement is simplified in that major components are specified; those components provide the major partitions of a

system and programming those partitions is less complex in that they can be implemented separately. The downside of a

manual development approach is in its manual nature where there are no guarantees that the model descriptions are

implemented correctly. Refinement from architectures into code must however ensure consistency. In [24], we have

investigated the issue of consistency among model descriptions and have found that its major cause is information

discontinuities among models where information specified in one model cannot easily be transitioned into the other in an

automated manner (e.g., from architecture to code). In [25], we further found that this discontinuity among models can

be dealt with by employing automated synthesis and analysis.

Synthesis enables one to generate a new model (e.g., code) from an existing model (e.g., architecture), while

analysis provides mechanisms for ensuring the preservation of certain properties across (independently created) models.

Software engineers extensively employ both kinds of techniques. For example, program compilation involves both the

analysis of the syntactic and semantic correctness of one model (source code) and the synthesis of another model from it

(executable image). Synthesis and analysis techniques span a spectrum from manual to fully automated. Manual

techniques tend to be error prone, while fully automated techniques are often unfeasible [26]. Furthermore, in some cases

one technique (e.g., analysis) is easier to perform than another (synthesis). For this reason, one typically has to resort to

using some combination of synthesis and analysis techniques of varying degrees of automation when ensuring inter-

model consistency. In the following, we will discuss synthesis and analysis in context of architectural models.

6.1 Synthesizing a Design from an Architecture

The synthesis process for refining architectures may vary depending on the different architectural styles available

(e.g., event-based, main-subroutine, C2, etc.). Our example mandates the refinement of a C2 style, however, if we had

chosen another type of style, we would require a different refinement technique. For our purposes, the starting point of

refinement is an architecture composed of coarse-grained components and connectors, and their configurations. The

architecture adheres to some architectural style (e.g., client-server, pipe-and-filter, layered) and its representation may be

formalized using an architecture description language.

Refining the architecture into code would be the most straightforward approach, however, it can often not be done

directly. We therefore use design languages such as the Unified Modeling Language (UML) [3] as intermediate models

for refinement. Using a generic-purpose notation like UML for refinement has four major advantages: (1) refining into

design models instead of code is less of an gap to bridge and thus easier; (2) design languages are generally easier

understandable which makes subsequent non-automatable refinement simpler; (3) design specifications provide

additional, more program-language-specific constructs that might increase the degree of (automated) code generation;

and finally (4) design modeling can make use of design patterns, such as wrapper technologies, which in turn increases

the degree of reuse.

Based on our example in C2SADEL, the SAAGE environment is capable of generating a partial implementation of

its architecture [14]. At the same time, many lower-level issues (e.g., any additional processing and data objects, specific

data structures, and algorithms) that are needed to complete that implementation are not provided at the architectural

level. For that reason, the “outer skeleton” of the application generated from the architectural model is complemented

with the details typically provided through general-purpose design activities. [16] discusses in detail what is involved in

refining architectural descriptions into UML where different refinement scenarios are presented. It is also shown how

transformation from C2SADEL to the intermediate UML model is enabled by a set of specific refinement rules. Those

refinement rules make sure that the refined architecture still reflects the structure, details, and properties of the

architectural model, thus guaranteeing consistency between the architecture and design. The Rational Rose screen snap

shot in Figure 8 (right half) depicts the refined hospital example using UML. UML objects are used to represent

architectural instances and UML classes are used to define their interfaces.

We have conducted an in-depth study of the feasibility of mapping ADLs to UML [17]; this study involved three

representative ADLs (C2SADEL, Rapide [18], and Wright [22]). Furthermore, related works of other researchers have

done similar things for other types of ADLs and architectural styles (e.g., [27] for a specific type of layered style, [28]

for real-time styles, [29] for object-oriented and main subroutine styles, or [30] for styles that can be modeled via proof-

carrying architectures). Those works demonstrate that other types of architectural styles can be refined into code, either

directly or via intermediate design models. Those technologies usually provide processes, rules, and tools to support

refinement based on architectural styles. All those refinement techniques reduce manual labor but have one major

deficiency – they only guarantee consistency initially.

6.2 Analyzing Consistency between Architectures and Refinements

Model analysis extends synthesis by also ensuring that the architecture and all its refinements remain consistent

after their creation. The basic problem is that after the synthesis of design and code, all models (architecture, design, and

code) may be altered concurrently. For instance, since 100% automated code generation out of architectural descriptions

is rare, additional manual programming is required to complete the code – a task that may introduce inconsistencies.

Furthermore, it is possible that the architectural or design information change even after coding has commenced. Those

architecture and design changes must be validated against one another and against the source code to ensure their

continuing consistency.

We therefore have developed a view integration

approach to ensure continued consistency of models

throughout the refinement process – even if models are

changed due to evolutionary considerations. Our view

integration framework approach [31] [24] exploits the

redundancy between models: for instance, if model A

contains information about model B, this information can be

seen as a constraint on B (e.g., as this is the case between

the architecture in Figure 5 and the design in Figure 9). Our

view integration framework is used to enforce such

constraints and, thereby, the consistency across views. In

addition to constraints and consistency rules, our view integration framework also defines what information can be

exchanged and how information can be exchanged. This is critical for a scalable and automated mismatch identification

and resolution process.

Figure 9 shows an excerpt of the design refinement of our hospital system using a UML class diagram model. At

this point, we can assume that the automatically generated design was manually refined potentially negating consistency.

The basic question now is whether the depicted UML class diagram is still consistent with the original C2 architecture.

We distinguish between structural consistency and behavioral consistency. Structural consistency ensures that the

Treatment C ollection

C atego ry B

C ategory C

AWT

Medicati

Aid
D octor

Employ ee Collection

Vis iting R ecord

Patient C ollec tion

Visiting Record C ollection

0..*

1..1

0..*

1..1

Patient

Av

R oom

OP

R adiology

N ursery

Storage C ollection

Side Ef f ects

D ef iciency Storage

Medication

has

Medicatio n C olle ction

Treat ment

Patient Processing

Facilit ies

Facility C ollection

superv ises

perf ormed_by

Av ailable Fac ilit ies

depends_on

applies_on

uses

uses

Figure 9. Design Refinement using UML Classes

interfaces provided through C2 component and connectors are equivalent to those provided through UML classes.

Basically, C2 components and connectors may be seen as the interfaces for compact, self-sustaining sections of the

implementation. Since C2 elements are often coarse-grain, it is reasonable to assume that a collection of classes is

needed to implement a single C2 element.

Figure 10 shows a piece of the UML design

model depicting the relationships between Patient

Processing, Treatment, and Facilities. The dashed

lines around classes indicate mappings between C2

elements and design elements. For instance, the

classes Facilities Collection, Available Facilities and

Treatment Collection are part of the C2 connector

Internal Conn linking Patient Handling with

Treatment and Facilities (recall Figure 5). Note that

this figure is simplified in that not all classes are

shown. Analyzing Figure 10, it can be seen that the dependency relationship between Patient Processing and Treatment

is in violation with the C2 architectural structure: no corresponding link between Patient Handling and Treatment can be

found in the C2 architecture shown in Figure 5.

Even if we were to correct the above problem, ensuring structural consistency between design and architecture does

not guarantee proper behavior of the design. For instance, a C2 behavioral constraint states that no two components of

the same level are allowed to interact; instead, C2 interactions go strictly up and down. In Figure 10 we can also see a

potential violation of that constraint. The class Treatment depends (uses) on the class Available Facilities, which, in turn,

depends on the class Facility Collection. This, in itself, is not a mismatch since both classes are part of Internal Conn

connector and a corresponding link exists in C2. However, Available Facilities can only access the classes Facility

Collection and Facilities, the latter being another

component at the same level as Treatment. Given

the current design knowledge, it is possible for

Treatment to interact with Facilities, which is a

behavioral violation of C2.

connector
Internal Conn

component
Patient Handling

component
Treatment

component
Facilities

RoomOP RadiologyNursery Medication

Treatment

Treatment Collection

Patient Processing

Facilities

Facility Collection

Available Facil ities

depends_on

uses

supervises

us es

Potential Mismatch:
Link between Patient

Processing and Treatment
violates C2 structure

Potential Mismatch:
Treatment’s ability to
interact with Facilities
violates C2 behavior

Figure 10. Mismatches between C2 and UML

Treatment Available Facilities Facility Collect ion Facilities

Treatment Facilities

Treatment

Available Facilities

Facilities

Figure 11. Automated Class Abstraction

The above example is trivial enough for a human to identify the design mismatches with relatively little effort. The

UML/Analyzer tool [24] supports the consistency checking of much more complex cases. Two factors add to the

complexity here: 1) the existence of ‘helper classes’ in the design and 2) the number of classes and possible interactions.

UML/Analyzer uses an abstraction technique to eliminate helper classes [32]. For instance, to identify the behavioral

mismatch in Figure 10, we need to eliminate the helper classes Available Facilities and Facility Collection that ‘obstruct’

our view of the direct relationship between Treatment and Facilities. In this particular example, UML/Analyzer sees a

dependency to from Treatment to Available Facilities followed by a generalization (inheritance) from Available

Facilities to Facility Collection; this is, in turn, followed by an aggregation from Facilities to Facility Collection (Figure

11 top row). The tools’s abstraction method then uses its abstraction rules (some depicted in Figure 12 upper right) to

eliminate helper classes. The UML/Analyzer tool finds a dependency relationship between Treatment and Facilities after

two subsequent transformations (Figure 11). This tool and underlying model can be applied to arbitrary complex class

patterns. Figure 12 depicts screenshots of the UML/Analyzer tool. Currently only class diagrams and C2 diagrams are

fully supported. This work is being extended on other types of UML diagrams as well as other architectural description

languages.

Figure 12. Screen Snapshots of UML/Analyzer and Rational Rose

Like in the previous section, the approach to consistency analysis varies depending on the architectural styles

chosen. In [4] we discuss consistency checking issues that apply to layered styles and pipe-and-filter styles. Real-time

styles and their refinement are discussed in [33].

7 DISCUSSION

Our proposed approach “interfaces” with requirements engineering on one side and implementation on the other.

Requirements modeling needs feedback to evaluate the feasibility of suggested options. If it takes weeks or months to

give that feedback, system requirements modeling may never stabilize or artificial cut-off dates must be set with negative

side effects onto flexibility (e.g., waterfall model). If, on the other hand, the feedback can be obtained in days,

requirements modeling intertwined with architectural modeling becomes feasible. Our approach provides feedback about

unfeasible options in mere hours; in turn, we can select promising options and refine them into architectures for more

thorough risk analysis in days or weeks.

We believe that it is very beneficial to combine model-based and component-based development since model

descriptions provide the context for how to combine components, whereas components address more specific system

needs. Furthermore, components are helpful in partitioning architecture and design models: since components represent

independent subsystems, any resulting models tend to become more independent themselves. Our proposed three-tiered

development approach combines modeling constructs and processes that were previously separated.

The power of compositional modeling techniques provided through AAA and SAAGE lies in the fact that major

development concerns can be modeled, analyzed and simulated early on, resulting in a very cost effective way of dealing

with development risks. However, as discussed earlier, those models add little value to the final software product if the

product-related information stored in them cannot be transitioned into the final product. For instance, we chose the C2

architectural style because the AAA analysis suggested that there are potential risks that C2 could remedy (e.g., remote

connector). To ensure that the final product still resolves those risks, we need to also verify that the final product

inherited all relevant characteristics from its C2 architecture. In other words, we need to ensure consistent refinement.

Since the example we chose in this paper is not representative for all software products, we also discussed how

other types of situations could be addressed via our approach. In order to summarize the big picture of our proposed

development approach, consider Table 2. The table shows the three major elements of our development approach

(columns) and their properties. The table briefly summarizes the constructs we have available at those respective stages,

the questions one would like to answer, the information initially available, the goals that need to be achieved, the

approaches one has available, and the tools that support it. The table has been extrapolated from the discussion provided

in the previous sections. It represents a quick reference for assessing the issues, progress, and results in a component-

based development effort.

Table 2. Impact of our Component-Based Development Approach
 Modeling Architectural Options Modeling Architecture Modeling Design and Coding

Modeling
Constructs

• Components
• Interactions
• Conceptual features

• Architectural configuration
• Architectural styles
• Roles and responsibilities

• Classes
• Methods
• Variables

Questions

• What are the components
required to do?

• Can we exclude potentially
unfeasible architectural options?

• What are the component
characteristics?

• How can architectural options be
modeled and analyzed without
implementing it?

• Does the architectural solution
satisfy requirements?

• How can architectural model be
implement?

• How are configurations, styles,
roles, and responsibilities
transformed into programming
constructs?

Timeframe • Can frequently be done in hours
for complex systems

• Can frequently be done in days or
weeks for complex systems

• Frequently takes many months or
even years in complex systems

Given
• requirements
• domain Knowledge
• COTS and legacy components

• one or more viable architectural
options based on components

• known risks from previous stage
that were not resolved

• one or more viable architectural
models that satisfy requirements

• known risks from previous stages
that were not resolved

Goals

• find components that could
satisfy requirements (with or
without overlapping
functionalities)

• minimize mismatches between
those components

• find an architectural style that
supports components, their
conceptual features, and their
interactions

• minimize the mismatches than
could occur between those
components, features, and
interaction with the respective
chosen style (note: some styles
may be more suitable than others
in handling known mismatches)

• consistently refine architectural
model into code

• use of design language as
intermediate model if necessary
(e.g., to enable design pattern
reuse)

Approaches

• vary components to minimize
potential risks (e.g., replace
event-based component with
blackboard-style component)

• vary component interactions
(connectors) to minimize
potential risks

• toggle variable component
characteristics (e.g., of to-be-built
subsystems)

• evaluate different architectural
styles to investigate their
potential impact

• refine (define) undeclared
component and connector
features to tailor integration
between styles, components, and
connectors.

• refine known style, component,
and connectors information into
code

• refine known style, component,
and connectors information into
design information

Tools

tradeoff analysis tool that supports
rapid evaluations of components

with respect to potentially
incompatibilities among them

• selection mechanism that infers
styles out of known component
and connector characteristics

• tradeoff analysis tool that
supports rapid evaluations of
architectural descriptions
between styles, components, and
connectors

• defined refinement mechanism
for all types of styles and ADLs

8 CONCLUSION

This paper discussed three modeling and analysis approaches dealing with the “upstream” activities in the software

engineering life cycle: architectural options, architectures, and designs. We used an example to illustrate their respective

advantages in identifying and resolving mismatches. We also showed how (mismatch) feedback from one could impact

others and drive development decisions.

Our technique on evaluating architectural options may yield useful feedback (e.g., risk assessments) within hours

and is highly useful for eliminating infeasible options early on (e.g., even during requirements negotiations), however, at

the expense of precision. Our technique on architectural modeling is complementary since it is capable of performing

more detailed and precise component mismatch analyses, however, at the expense of the effort required. Both are needed

to rapidly develop component-based software, and thus, both have to be connected. To that extend, we defined

mechanisms for information sharing among our technique. Additionally, we found techniques on how to systematically

refine architectures (with their incorporated component definitions) into more detailed architectures, designs and code.

We believe that mismatch detection should happen as early on as possible. One software engineering truism is that

the longer a mismatch remains undetected the more harm it might cause. We also believe that automated analysis

techniques are invaluable in getting easy and fast initial feedback on potential problems and challenges regardless of the

current development stage. We have shown that our techniques are useful as early on as the initial system analysis stage,

where the lack of information drives development. We have also shown that our techniques can be used as late as coding

and maintenance, when information abundance constitutes key complexities.

We are continuously working on our tool support in three primary directions: 1) more extended coverage of other

development models such as architectural description languages and design models; 2) more complete data, control, and

process integration between our tools; and 3) more comprehensive coverage of the software-lifecycle (e.g., product

families, requirements engineering, reuse).

ACKNOWLEDGEMENTS

This research is partially sponsored by the Defense Advanced Research Projects Agency, and Air Force Research

Laboratory, Air Force Materiel Command, USAF, under agreement numbers F30602-94-C-0195 and F30602-99-C-

0174, and by the Affiliates of the USC Center for Software Engineering. This material is also partially based on work

supported by the National Science Foundation under Grant No. CCR-9985441. The U.S. Government is authorized to

reproduce and distribute reprints for Governmental purposes notwithstanding any copyright annotation thereon. The

views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing

the official policies or endorsements, either expressed or implied, of the Defense Advanced Research Projects Agency,

Air Force Research Laboratory or the U.S. Government.

REFERENCES

 1. Boehm, B. and Scherlis, W. L.: "Megaprogramming," Proceedings of the DARPA Soft ware Technology Conference (available

via USC Center for Software Engineering, Los Angeles, CA, 90089-0781), April 1992.

 2. Garlan D., Allen R., and Ockerbloom J.: Architectural Mismatch or Why it’s hard to build systems out of existing

parts. IEEE Software, 1995, 17-26.

 3. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language Reference Manual. Addison Wesley, 1999.

 4. Egyed, A. and Gacek, C.: "Automatically Detecting Mismatches during Component-Based and Model-Based

Development," Proceedings of the 14th IEEE International Conference on Automated Software Engineering, Cocoa

Beach, Florida, October 1999, pp.191-198.

 5. Shaw, M., Garlan, D.: Software Architecture: Perspectives on an Emerging Discipline. Prentice Hall, 1996.

 6. Perry D. E. and Wolf A. L.: Foundations for the Study of Software Architectures. ACM SIGSOFT Software

Engineering Notes, 1992.

 7. Boehm B. W.: Anchoring the Software Process. IEEE Software, 1996, 73-82.

 8. Balzer, R.: "An Architectural Infrastructure for Product Families," Proceedings of the 2nd International Workshop on

Development and Evolution of Software Architectures for Product Families, Lecture Notes in Computer Science

1429, 1998, pp.158-160.

 9. Medvidovic N. and Taylor R. N.: A Classification and Comparison Framework for Software Architecture Description

Languages. IEEE Transactions on Software Engineering 26(1), 2000, 70-93.

 10. Fielding, R. T.: "Software Architectural Styles for Network-based Applications," Unpublished manuscript, June

1999.

 11. Gacek, C.: "Detecting Architectural Mismatches During System Composition," PhD Dissertation, Center for

Software Engineering, University of Southern California, Los Angeles, CA 90089-0781, USA, 1998.

 12. Oreizy, P., Medvidovic, N., and Taylor, R.: "Architecture-Based Runtime Software Evolution," Proceedings of the

20th International Conference on Software Engineering (ICSE), 1998.

 13. Medvidovic, N., Oreizy, P., and Taylor, R. N.: "Reuse of Off-the-Shelf Components in C2-Style Architectures,"

Proceedings of the 1997 Symposium on Software Reuseability (SRR’97) and Proceedings of the 1997 International

Conference on Software Engineering (ICSE’97), Boston, MA, May 1997.

 14. Medvidovic, N., Rosenblum, D. S., and Taylor, R. N.: "A Language and Environment for Architecture-Based

Software Development and Evolution," Proceedings of the 21st International Conference on Software Engineering

(ICSE’99), Los Angeles, CA, May 1999, pp.44-53.

 15. Robbins, J. E., Medvidovic, N., Redmiles, D. F., and Rosenblum, D. S.: "Integrating Architecture Description

Languages with a Standard Design Method," Proceedings of the 20th International Conference on Software

Engineering (ICSE’98), April 1998, pp.209-218.

 16. Abi-Antoun, M. and Medvidovic, N.: "Enabling the Refinement of a Software Architecture into a Design,"

Proceedings of the 2nd International Conference on the Unified Modeling Language (UML), October 1999.

 17. Medvidovic, N. and Rosenblum, D. S.: "Assessing the Suitability of a Standard Design Method for Modeling

Software Architectures," Proceedings of the First Working IFIP Conference on Software Architecture (WICSA1),

February 1999, pp.161-182.

 18. Luckham D. C. and J. Vera J.: An Event-Based Architecture Definition Language. IEEE Transactions on Software

Engineering, 1995.

 19. Batory D. and O’Malley S.: The Design and Implementation of Hierarchical Software Systems with Reusable

Components. ACM Transactions on Software Engineering and Methodology, 1992.

 20. Magee, J. and Kramer, J.: "Dynamic Structure in Software Architectures," October 1996.

 21. Garlan, D., Allen, R., and Ockerbloom, J.: "Exploiting Style in Architectural Design Environments," Proceedings of

SIGSOFT Foundations of Software Engineering, pp.175-188.

 22. Allen R. and Garlan D.: A Formal Basis for Architectural Connection. ACM Transactions on Software Engineering

and Methodology, 1997.

 23. Vinoski S.: CORBA: Integrating Diverse Applications Within Distributed Heterogeneous Environments. IEEE

Communications Magazine, 1997.

 24. Egyed, A.: "Heterogeneous View Integration and its Automation," PhD Dissertation, University of Southern

California, Los Angeles, CA, May 2000.

 25. Medvidovic, N., Gruenbacher, P., Egyed, A., and Boehm, B.: "Software Lifecycle Connectors: Bridging Models

across the Lifecycle," submitted to 8th Conference of Foundations of Software Engineering (FSE 8), 2000.

 26. Partsch H. and Steinbruggen R.: Program Transformation Systems. ACM Computing Surveys 15(3), 1983, 199-236.

 27. Hofmeister, C., Nord, R., Soni, D.: Applied Software Architecture. Addison Wesley, 2000.

 28. Selic B, Rumbaugh J: Using UML for Modeling Complex Real-Time Systems. (UnPub)

 29. Siegfried, S.: Understanding Object-Oriented Software Engineering. IEEE Press, 1996.

 30. Riemenschneider, R. A.: "Checking the Correctness of Architectural Transformation Steps via Proof-Carrying

Architectures," Proceedings of the First Working IFIP Conference on Software Architecture (WICSA1), February

1999, pp.65-81.

 31. Egyed, A.: "Using Model Transformation to Detect Inconsistencies between Heterogeneous Views," submitted to

the 8th Conference on Foundations of Software Engineering (FSE 8), 2000.

 32. Egyed, A.: "Automated Abstraction for Object-Oriented Models," to appear in Proceedings of the 15th IEEE

International Conference on Automated Software Engineering (ASE 2001), September 2000.

 33. Magee, J., Kramer, J.: Concurrency: State Models and Java Programs. Wiley, 1999.

 34. Shaw, M. and Clements, P.: "A Field Guide to Boxology: Preliminary Classification of Architectural Styles for

Software Systems," Proceedings of the 1st International Computer Software and Applications Conference

(COMPSAC), August 1997.

