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Abstract
The validity of estimation and smoothing parameter selection for the wide class of generalized additive models for location,
scale and shape (GAMLSS) relies on the correct specification of a likelihood function. Deviations from such assumption
are known to mislead any likelihood-based inference and can hinder penalization schemes meant to ensure some degree of
smoothness for nonlinear effects. We propose a general approach to achieve robustness in fitting GAMLSSs by limiting the
contribution of observations with low log-likelihood values. Robust selection of the smoothing parameters can be carried out
either by minimizing information criteria that naturally arise from the robustified likelihood or via an extended Fellner–Schall
method. The latter allows for automatic smoothing parameter selection and is particularly advantageous in applications with
multiple smoothing parameters.We also address the challenge of tuning robust estimators for models with nonlinear effects by
proposing a novel median downweighting proportion criterion. This enables a fair comparison with existing robust estimators
for the special case of generalized additive models, where our estimator competes favorably. The overall good performance
of our proposal is illustrated by further simulations in the GAMLSS setting and by an application to functional magnetic
resonance brain imaging using bivariate smoothing splines.

Keywords Bounded influence function · Nonparametric regression · Penalized smoothing splines · Robust smoothing
parameter selection · Robust information criterion

1 Introduction

Generalized additive models for location, scale and shape
(GAMLSS) are flexible nonparametric regression models
that have been introduced by Rigby and Stasinopoulos
(2005); see also the recent book and tutorial by Stasinopou-
los et al. (2017) and Stasinopoulos et al. (2018) for a review.
These models allow the use of explanatory variables not
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only to model the location parameter (e.g., the mean) of
a response distribution, like in generalized additive mod-
els (GAM; Hastie and Tibshirani 1990), but also the scale
and shape parameters. GAMLSSs also go beyond the expo-
nential family of distributions. In fact, the approach can be
seen more broadly as a way to model any parameter of any
given distribution. As such, some authors refer to it as dis-
tributional or multi-parameter regression (e.g., Burke and
MacKenzie 2017; Lang et al. 2014; Pan and Mackenzie
2003; Stasinopoulos et al. 2018). Software availability for
a wide range of families of distributions, such as the R pack-
age gamlss (Stasinopoulos and Rigby 2020), has helped
making these models very popular and widely applied in
several fields: We can cite Glasbey and Khondoker (2009)
(normalizing cDNAmicroarray), Rudge andGilchrist (2005)
(health impact of temperatures in dwellings), De Castro et al.
(2010) (long-term survival models for clinical studies), Bey-
erlein et al. (2008) (childhood obesity), and Cole et al. (2009)
(charts for child growth curves).

The motivation of this paper comes from challenging
applications similar to the real data presented in Sect. 5 as an
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illustration. The study first reported in Landau et al. (2003)
investigates differences in the brain physiological response
to controlled stimuli between anatomically distinct regions.
The continuous response variable consists in the brain activ-
ity response measured at voxels in a brain slice (a 2D raster
image). The sole explanatory variables are the coordinates
identifying the location of each voxel. The measurements
are highly noisy, but the nonnegative mean response level
and its spread are believed to vary smoothly over the brain
slice, thus prompting nonlinear effects for both location and
scale parameters of some continuous distribution supported
over the positive reals. Wood (2017, p. 329) identified two
voxel responses in these data that were deemed too extreme
and were then discarded for the subsequent analysis. We
believe a robust fitting of a GAMLSS is hence appropriate
here, where throughout the paper we understand the term
“robust” as implying a bounded maximum bias under arbi-
trary contamination in the response distribution (e.g.,Hampel
et al. 1986; Huber and Ronchetti 2009). Such robustness is
important here for two reasons: to guarantee that estimates
and uncertainties are reliable, and to identify potentially out-
lying observations in an automated way thanks to robustness
weights.

The fitting of GAMLSSs is typically performed by penal-
ized maximum likelihood (ML) estimation. For datasets like
the one above, where extreme observations likely occur,
the ML estimation procedure suffers from a lack of robust-
ness, meaning that the estimated smooth functions can be
distorted by the outliers. Both the nonparametric function
estimates themselves and the choice of the smoothing param-
eters associated to them are affected. To address these issues,
we introduce a general robust estimator for GAMLSSs. Our
approach covers special cases where robustness has been
previously addressed, in particular, in the (extended) GAM
context (Alimadad and Salibian-Barrera 2011; Wong et al.
2014; Croux et al. 2012). These works, however, cannot be
extended to the more general setting of GAMLSS. Specif-
ically, in contrast with the cited literature which acts at the
level of the score equations, we introduce robustness bymod-
ifying the objective function following an idea introduced by
Eguchi andKano (2001).Wealso propose a novel andgeneral
procedure to tune the robustness parameter associated with
the robust approach. This problematic issue has beenpartially
ignored in the literature for robust (extended) GAMs. For
the selection of the smoothing parameters, we additionally
propose robust versions of the Akaike information criterion
(AIC) and Bayesian information criterion (BIC), that can be
typically minimized in a grid search, and an adaptation of
the Fellner–Schall automatic multiple smoothing parameter
selectionmethod (Wood andFasiolo 2017),which has impor-
tant practical advantages. The proposed robust models can
be easily used via the newly revised gamlss function in the
R package GJRM (Marra and Radice 2020).

Reviewers pointed out the recent publication of a textbook
by Rigby et al. (2019) where an alternative robust estimation
method for GAMLSSs is presented. This method achieves
robustness by winsorizing the observed response through
(normalized) quantile residuals, in the spirit of the general
robust estimator of Field and Smith (1994). This alternative
method is not complete at the time of writing: theoretical
properties are lacking, such as the sampling distribution nec-
essary for inference; the correction for Fisher consistency
cannot be directly extended beyond continuous families of
distribution due to the reliance on quantile residuals; and the
challenges of tuning a robust estimator with non-parametric
effects and smoothing parameter selection are not discussed.
In addition, to the best of our knowledge this method is
not implemented in any publicly available software pack-
age, thus preventing any meaningful comparison with the
method we propose here. Some preliminary simulations in a
simple parametric setting with independent and identically
distributed data are encouraging for this alternative method,
but a thorough comparison in the much broader GAMLSS
setting represents future work.

In Sect. 2, we introduce the GAMLSS framework and
the related estimation procedure which is based on penal-
ized maximum likelihood. Our proposal is fully introduced
in Sect. 3, with subsections devoted to the definition of a
penalized robust objective function, theoretical properties
and inference, the practical implementation of the estimation
procedure, smoothing parameter selection, and the choice of
the robustness tuning constant. In Sect. 4, we present two
simulation studies to highlight the good behavior of our pro-
posal: one in the GAMLSS setting with a design mimicking
the brain imaging data example, and one in the special case of
a GAM to allow comparison with existing robust procedure
in this context. The brain imaging data illustration is then
presented in Sect. 5, while conclusions are given in Sect. 6.

2 GAMLSS framework and penalized
estimation

2.1 Framework and notation

Given a sequence of n independent response random vari-
ablesY1, . . . , Yn , the generalized additivemodel for location,
scale and shape (GAMLSS; Rigby and Stasinopoulos 2005)
for the particular case of a three parameter distribution is
defined by

Yi ∼ D(μi , σi , νi ), i = 1, . . . , n

η1i = g1 (μi ) = β10 + s11(x11i ) + · · · + s1k(x1ki )

+ · · · + s1K1(x1K1i ),

η2i = g2 (σi ) = β20 + s21(x21i ) + · · · + s2k(x2ki ) (1)
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+ · · · + s2K2(x2K2i ),

η3i = g3 (νi ) = β30 + s31(x31i ) + · · · + s3k(x3ki )

+ · · · + s3K3(x3K3i ),

where D denotes a family of distributions canonically
parametrized in terms of location μi , scale σi and shape νi
which are related to the respective predictors ηdi via specified
link functions gd , for d = 1, 2, 3, βd0 ∈ R are overall inter-
cepts, xdki denotes the kth subvector of covariates pertaining
to term d and observation i (which includes binary, categori-
cal, discrete, and continuous variables), and the Kd functions
sdk(·) represent generic effects of covariates (linear or not).
The distributional assumption of Yi is understood to be con-
ditional on all covariates. We approximate each sdk(xdki ) by
a linear combination of Jdk basis functions bdk j (xdki ) and
regression coefficients βdk j ∈ R (e.g., Wood 2017)

sdk(xdki ) ≈
Jdk∑

j=1

βdk j bdk j (xdki ).

This allows the model summarized by (1) to be written in a
compact form for the random vector Y = (Y1, . . . ,Yn)� as
Y ∼ D(μ, σ , ν) by some slight abuse of notation, where the
parameter vectors μ = (μ1, . . . , μn)

�, σ = (σ1, . . . , σn)
�

and ν = (ν1, . . . , νn)
� are modeled through

η1 = g1(μ) = 1nβ10 + X11β11 + · · · + X1K1β1K1
= X1β1,

η2 = g2(σ ) = 1nβ20 + X21β21 + · · · + X2K2β2K2
= X2β2,

η3 = g3(ν) = 1nβ30 + X31β31 + · · · + X3K3β3K3
= X3β3,

(2)

where the functions gd are applied element-wise, 1n is an
n-dimensional vector of ones, the (n × Jdk) matrix Xdk has
(i, j)th element bdk j (xdki ), and βdk = (βdk1, . . . , βdk Jkd )

�.
The predictors can thus be rewritten as ηd = Xdβd , where
Xd = (1n,Xd1, . . . ,XdKd ) andβd = (βd0,β

�
d1, . . . ,β

�
dKd

)�.
We note that our results and methods here are understood in
a fixed-knot framework, i.e., that the number of basis func-
tions is fixed at a high value so that any approximation bias
in sdk(xdki ) is negligible compared to estimation variability
(as in, e.g., Vatter and Chavez-Demoulin 2015).

To enforce a certain degree of smoothness for every
approximated sdk(·) function, each βdk has an associated
quadratic penalty λdkβ

�
dkDdkβdk , where Ddk only depends

on the choice of basis functions. The smoothing parame-
ter λdk ∈ [0,∞) controls the trade-off between fit and
smoothness and plays a crucial role in determining the
shape of the estimated ŝdk(·). For d = 1, 2, 3, the over-
all penalty can be written as β�

d Ddβd , where Dd =
diag(0, λd1Dd1, . . . , λdKdDdKd ). Following Wood (2017),
the approximated sdk(·) smooth functions are subject to

centering constraints to ensure identifiability. Examples
of smooth function specification include one-dimensional,
multi-dimensional, randomfield and randomeffect smoothers;
see e.g., Wood (2017) for details. Note that we have consid-
ered distributions with up to three parameters (location, scale
and shape), hence the adopted notation with d = 1, 2, 3, yet
the proposed framework can be conceptually extended to dis-
tributions with more parameters in a straightforwardmanner.
The families of distributions implemented in this work are
listed in Table S1 in “Web Appendix D”.

2.2 Penalized log-likelihood

Let δ = (β�
1 ,β�

2 ,β�
3 )� ∈ � ⊆ R

p denote the full
model parameter vector. Given a sample of n realizations
y1, . . . , yn , the log-likelihood function corresponding to (2)
is given by

�(δ) =
n∑

i=1

�(δ)i =
n∑

i=1

log f (yi |μi , σi , νi ) , (3)

where f (yi |·) can either denote the probability density
function (pdf) or the probability mass function (pmf) cor-
responding to the distribution D. Because of the flexibility
of the smooth terms, the use of an unpenalized optimization
algorithm is likely to result in unduly wiggly estimates (e.g.,
Wood 2017). Estimation is thus typically performed by max-
imizing the penalized version �p(δ) = �(δ)− 1

2δ
�Sδ, where

S = diag(D1,D2,D3). The smoothing parameters contained
in the Dd ’s make up the vector λ = (λ�

1 ,λ�
2 ,λ�

3 )�. Esti-
mation of δ is typically achieved for a given value of λ,
while the selection of λ is often performed by minimizing
some prediction error criterion, either as an outer optimiza-
tion or by alternating the estimation of δ given λ and the
selection of λ given δ (Wood 2017). Examples of such a
criterion include cross-validation (CV; e.g., Hastie and Tib-
shirani 1990) and generalized cross-validation (GCV;Craven
and Wahba 1979) estimates of prediction error, as well as
estimates of the Kullback–Leibler divergence between a true
model and the fitted one such as the AIC, and the General-
ized Information Criterion (GIC) of Konishi and Kitagawa
(1996).

3 Robust estimation

The estimation procedures mentioned in the previous sec-
tion rely on strict distributional assumptions. These methods
are known to be highly sensitive to deviations from model
assumptions (e.g., Hampel et al. 1986; Huber and Ronchetti
2009). To this end, we propose a general robust fitting
approach, which is valid for the entire class of GAMLSS
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and that directly yields robust criteria for the selection of
smoothing parameters.

3.1 Penalized robustified log-likelihood

Based on the �-divergence approach of Eguchi and Kano
(2001), we introduce the robustified log-likelihood

�̃(δ) =
n∑

i=1

ρc
(
�(δ)i

) − bρ(δ),

where, for a given δ, the user-specifiedρc function is designed
to reduce low log-likelihood values �(δ)i while leaving large
log-likelihood values essentially unchanged, and

bρ(δ) =
n∑

i=1

bρ(δ)i =
n∑

i=1

∫
ρ

c

(
log f (y|μi , σi , νi )

)
dy

(4)

is a correction term ensuring Fisher consistency (see The-
orem 1 in Sect. 3.2), where ρ


c is directly derived from the
specified ρc through

ρ

c (z) =

∫ z

−∞
exp(s)ρ′

c(s) ds,

where ρ′
c(s) = ∂ρc(s)/∂s, see Eguchi and Kano (2001,

Section 2). The ρ function is indexed by a so-called robust-
ness tuning constant c > 0 which regulates the trade-off
between, on the one hand, the loss of estimation efficiency in
the ideal case that the data exactly come from the assumed
GAMLSS, and, on the other hand, themaximumbias induced
by some contamination whenever the data do not come from
the assumed GAMLSS. For any given c, ρc is assumed to
be convex, monotonically increasing and twice continuously
differentiable over R and have bounded first derivative ρ′

c
within [0, 1]. The latter can be interpreted as a multiplica-
tive robustness weight, as one would do when weighting the
estimating equations in robust M-estimation. The important
difference here is that the “robustification” happens at the
log-likelihood level and not by directly applying weights at
the score level, such as in Wong et al. (2014) for example.
An advantage of our approach is that it leads to a natural
definition of robust criteria for the selection of smoothing
parameters (see Sect. 3.2).

Eguchi and Kano (2001) proposed the following log-
logistic ρ function:

ρc(z) = log
1 + exp(z + c)

1 + exp(c)
, c > 0,

with correspondingρ

c (z) = exp(z)−exp(c) log

(
1+exp(z+

c)
)
and first derivative ρ′

c(z) = exp(z+ c)/
(
1+ exp(z+ c)

)
.

WebFigureS1 in “WebAppendixC”displays the log-logistic
ρc and its first derivative. It illustrates howa smaller value of c
leads to an earlier flattening of the ρ function applied on log-
likelihood contributions, thus limiting earlier their impact.
Note that limc→∞ ρc(z) = z so that an increasingly large c
value leads to the (non-robust) original �(δ). We discuss the
choice of c in Sect. 3.5. We note that the particular form of
ρc matters little beyond the requirements mentioned earlier
and summarized in condition (C1) in “Web Appendix A”; it
is not part of the model or the fit since no assumptions are
beingmade about the subset of the data that may not conform
to the model assumptions.

For a given smoothing parameter λ, we define our robust
estimator δ̂ = δ̂(λ) by maximizing the penalized robustified
log-likelihood

δ̂ = arg max
δ

�̃p(δ) = arg max
δ

{
�̃(δ) − 1

2
δ�Sδ

}
, (5)

where the penalty is identical to that of non-robust penalized
estimation. Our robustification scheme targets only devia-
tions in the response variable, the latterwhich does not appear
in δ�Sδ so that only contributions to the unpenalized log-
likelihood �(δ) need to be accounted for. The robust estimator
is thus the solution in δ to the following estimating equations
(first-order conditions):

0 = ∂�̃(δ)

∂δ
− Sδ =

n∑

i=1

ρ′
c

(
�(δ)i

)∂�(δ)i

∂δ
− ∂bρ(δ)

∂δ
− Sδ.

(6)

In (6), the response variable Yi only appears through �(δ)i
since bρ is an expectation. Thus ρ′

c indeed plays the role
of a multiplicative weight within [0, 1] which limits the
impact of potentially deviating observations given some δ.
This robustness weight is proved useful both for selecting c
(see Sect. 3.5) and as a diagnostic tool (see the data analysis
in Sect. 5).

3.2 Asymptotic properties and inference

The unpenalized robust estimator which maximizes �̃(δ)

admits a statistical M-functional representation T (F), for
some generic probability distribution F , which is the solu-
tion in δ to E [ψ(Y , δ)] = 0 where

ψ(Y , δ) = ρ′
c

(
log f (Y |μ, σ, ν)

)∂ log f (Y |μ, σ, ν)

∂δ

− ∂

∂δ
E

[
ρ

c

(
log f (Y |μ, σ, ν)

)]
(7)
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with expectations taken under F . Thus, the finite-sample
solution in δ to

1

n

n∑

i=1

{
ρ′
c

(
�(δ)i

)∂�(δ)i

∂δ
− ∂bρ(δ)i

∂δ

}
= 0

can be written as T (Fn), where Fn denotes the empirical
distribution putting mass 1/n on each observation. T (Fn)
amounts to an unpenalized robust estimator.

To discuss the asymptotic properties of the proposed
(penalized) robust estimator, we define δ0 as the parameter
value to which the unpenalized MLE maximizing �(δ) in (3)
converges, as n → ∞. By viewing δ0 as the “true” parameter
that generates the data under distribution D with parameters
defined in Eq. (2), Theorem 1 establishes the Fisher con-
sistency of δ̂ and its asymptotic distribution; the proof is
deferred to “Web Appendix A”.

Theorem 1 Under conditions (C1)–(C5) in“WebAppendixA”,
as n → ∞ the penalized robust estimator δ̂ admits the
same M-functional representation T as the unpenalized
robust estimator and we have T (D) = δ0. Moreover,√
n(δ̂ − δ0)

d−→
n→∞ N(0,V(δ0)), where the asymptotic covari-

ance matrix is given by the so-called sandwich formula
V(δ) = M(δ)−1Q(δ)M(δ)−T, where

M(δ) = −E

[
∂2�̃(δ)

∂δ∂δ�

]
and

Q(δ) = E

⎡

⎣
(

∂�̃(δ)

∂δ

) (
∂�̃(δ)

∂δ

)�⎤

⎦ , (8)

with expectations taken under the assumed distribution D.

In Theorem 1, T (D) = δ0 means that δ̂ is Fisher consis-
tent: It returns the true parameter when T is evaluated at the
assumed distribution D, which implies that δ̂ is asymptot-
ically unbiased for δ0. The influence function (IF; Hampel
1974) of the Fisher consistent functional T is proportional to
the score ψ(Y , δ) given in (7). This score being bounded in
the response variable Y thanks to ρ′

c ∈ [0, 1], the IF is itself
bounded. This guarantees a bounded maximum asymptotic
bias under arbitrary contamination in Y , which is the main
robustness property of δ̂.

Remark 1 The asymptotic variance V(δ0) in Theorem 1
corresponds to an unpenalized robust estimation because
we assume the usual asymptotically vanishing penalty for
consistency (see condition (C5) in “Web Appendix A”).
A better approximation of the finite-sample covariance
matrix with nonzero penalty can be obtained from a Tay-
lor expansion of the penalized robustified score, as given
in Eq. (2) in “Web Appendix A”. It amounts to Vp(δ0) =

Mp(δ0)
−1Q(δ0)Mp(δ0)

−T,whereMp(δ) = −E

[
∂2�̃p(δ)

∂δ∂δ�

]
=

M(δ) + S. In these expressions, δ0 being unknown in prac-
tice one would typically “plug-in” the estimate δ̂ to compute
standard errors. This allows for the computation of approx-
imate (point-wise) confidence intervals, which can then be
interpolated for confidence bands for nonlinear effects. See,
for instance, Croux et al. (2012, p. 39) for the analogue in
the extended GAM setting.

Remark 2 Analternative covariance canbe computed follow-
ing an empirical Bayes approach, which is often reported to
lead to good finite-sample coverage of confidence intervals
in the frequentist sense (see, e.g., Marra and Wood 2012;
Wood 2017). For a given λ, viewing the quadratic penalty
as an improper Gaussian prior distribution for δ (seen as a
random vector here), with mean zero and covariance S−1,
the joint density of (Y , δ) is given, up to normalization con-
stants, by L( y, δ;λ) = exp

(
�̃(δ)

)
exp

( − δ�Sδ/2
)|S|1/2,

with | · | denoting matrix determinant. We seek the covari-
ance of the posterior distribution of δ|Y , as the posterior
mode corresponds to the robust estimate δ̂. As in Wood and
Fasiolo (2017), a second-order Taylor expansion of the pos-
terior log-density about its mode reveals that as n → ∞
the posterior distribution approaches a multivariate Gaus-
sian with covariance given by Mp(δ̂)

−1. Our experience is
that the observed version of this posterior covariance matrix,

M̂p(δ̂)
−1 =

(
M̂(δ̂) + S

)−1
, where M̂(δ) = − ∂2�̃(δ)

∂δ∂δ� , can be

used as a computationally efficient alternative to Vp(δ̂).

The effective degrees of freedom (edf) of smooth terms
are a valuable tool for assessing the degree of smooth-
ness achieved by a fit. We follow the discussion of Wood
(2017, Chapter 6) based on links with generalized linear
mixed models and restricted ML estimation to obtain that
the edf of a GAMLSS robust fit is tr

{
M̂p(δ̂)

−1Q̂(δ̂)
} =

tr
{
(M̂(δ̂) + S)−1Q̂(δ̂)

}
, where Q̂(δ) =

(
∂�̃(δ)
∂δ

) (
∂�̃(δ)
∂δ

)�
.

This termmatches the “penalty term” of our robustAIC intro-
duced in Sect. 3.4 below.

3.3 Estimation approach and implementation

To maximize (5), we have modified the efficient and stable
trust region algorithm of Marra et al. (2017) to accommo-
date the robustified objective function and corresponding
correction term bρ(δ). Estimation of δ and λ is carried out as
follows. At iteration a, holding λ fixed and for some tuning
constant value c, for a given δ[a] we maximize Eq. (5) using
a trust region algorithm (Conn et al. 2000):

δ[a+1] = δ[a] + arg min
e:‖e‖≤
[a]

˘̃
�p(e; δ[a]), (9)
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where ‖ · ‖ denotes the Euclidean norm, 
[a] is the radius of
the trust region which is adjusted throughout the iterations,
˘̃
�p(e; δ[a]) = −

(
�̃p(δ

[a]) + e�g p(δ
[a]) + 1

2 e
�Hp(δ

[a])e
)
,

g p(δ
[a]) = g(δ[a])−Sδ[a] andHp(δ

[a]) = H(δ[a])−S, and
where the vector g(δ[a]) consists of the stacked gd(δ

[a]) =
∂�̃(δ)/∂βd |βd=β

[a]
d

for d = 1, 2, 3, and the Hessian matrixH

has elements H(δ[a])d,h = ∂2�̃(δ)/∂βd∂β�
h |

βd=β
[a]
d ,βh=β

[a]
h
,

for d, h = 1, 2, 3. Equation (9) uses a quadratic approxi-
mation of −�̃p about δ[a] (the so-called model function) in
order to choose the best e[a+1] within the ball centered in δ[a]
of radius 
[a], the trust region. Close to the converged solu-
tion, the trust region usually behaves like an unconstrained
optimization algorithm.

Trust region algorithms have several advantages over clas-
sical alternatives. For instance, in line search methods, when
an iteration falls in a long plateau region, the search for
step δ[a+1] can occur so far away from δ[a] that the eval-
uation of the model log-likelihood may be indefinite or not
finite, in which case the user’s intervention is required. Trust
region methods, on the other hand, always solve the sub-
problem (9) before evaluating the objective function. So,
if �̃p is not finite at the proposed δ[a+1] then step e[a+1]
is rejected, the trust region shrunken, and the optimization
computed again. The radius is also reduced if there is no
agreement between the model and objective functions (i.e.,
the proposed point in the region is not better than the current
one). Reversibly, if an agreement occurs, the trust region
is expanded for the next iteration. In summary, δ[a+1] is
accepted if it improves over δ[a] and allows for the evalu-

ation of ˘̃
�p, whereas the reduction/expansion of 
[a+1] is

based on the similarity between model and objective func-
tions. Theoretical and practical details of the method can be
found in Nocedal and Wright (2006, Chapter 4) and Geyer
(2015). The latter also discusses the necessary modifications
to the sub-problem (9) and the radius for ill-scaled variables.

The analytical score and Hessian of (the non-robust) �(δ)

can be derived in a modular way. This allows for a direct
extension to other families of distributions not included in
Table 1 in “Web Appendix D” as long as their pdf/pmf are
known and their derivatives with respect to their parameters
exist. Regarding the optimization of the robustified �̃p(δ),
the integral defining bρ(δ) in (4), as well as its derivatives, in
general have to be approximated. For discrete distributions
over countably infinite supports, this amounts to a straightfor-
ward truncation of a converging infinite sum. For continuous
distributions, we rely on a unidimensional adaptive Gaus-
sian quadrature rule for which we compute data-based finite
bounds for numerical stability and to increased speed.

The procedures are all implemented in the gamlss func-
tion in the R package GJRM (Marra and Radice 2020). In

“WebAppendix E”, we provide someR code and brief expla-
nations on the usage of this function.

3.4 Robust selection of smoothing parameters

Our robustification scheme with ρc directly applied on log-
likelihood contributions has the advantage of yielding a
natural robust AIC (RAIC). Following the construction of
the generalized information criterion (GIC) of Konishi and
Kitagawa (1996), we can define the Kullback–Leibler diver-
gence dKL between the true distribution G that generated the
data, with density g, and the distribution corresponding to
our robustified likelihood (up to normalization constants) as

dKL = EG
[
log

(
g(Y )/ exp(�̃(δ,Y ))

)]

= EG[log g(Y )] − EG[�̃(δ,Y )], (10)

where �̃(δ,Y ) = ρc
(
log f (Y |μ, σ, ν)

) − ∫
ρ

c

(
log f (y|μ,

σ, ν)
)
dy. The generic random variable Y here stands for an

out-of-sample observation to be predicted, thus dKL repre-
sents a measure of prediction error. Minimizing dKL with
respect to δ is equivalent to maximizing EG[�̃(δ, Y )] since
the first term on the right hand side of (10) is a constant. But
because G is unknown, the estimator (1/n)

∑n
i=1 �̃(δ, Yi ) is

used, which is biased for EG[�̃(δ,Y )]. In the GIC frame-
work, the first-order correction of this bias depends on the
estimator used for δ. We consider here the penalized robust
estimator δ̂, so that by Theorem 2.2 of Konishi and Kitagawa
(1996) the bias correction amounts to tr

{
Mp(δ)

−1Q(δ)
} =

tr
{
(M(δ) + S)−1Q(δ)

}
. Thus we define the RAIC as

RAIC(λ) = −2�̃(δ) + 2tr
[
(M̂(δ) + S)−1Q̂(δ)

]
, (11)

where recall that S = S(λ), and the observed matrices M̂(δ)

and Q̂(δ) allow for fast computations. Selecting λ can thus
be done by minimizing RAIC(λ). In (11), since all terms
are based on the robustified �̃(δ), the RAIC naturally inherits
robustness and the selectedλ is thus expected to remain stable
in the presence of model deviations.

Minimizing an AIC-type criterion for smoothing param-
eter selection is known to favor more complex models, with
function estimates more on the wiggly side. As this feature
may carry over to our RAIC, an alternative is to consider a
robust version of the Bayesian information criterion where
its heavier penalty coefficient (log(n) rather than 2) gener-
ally favors simplermodels,with smoother function estimates.
Similarly to Wong et al. (2014), in our setting a robust BIC
(RBIC) is naturally given by

RBIC(λ) = −2�̃(δ) + log(n)tr
[
(M̂(δ) + S)−1Q̂(δ)

]
.

That being said, the proposed RAIC and RBIC proce-
dures involve twonestedoptimizations: an inner optimization
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for computing δ̂ given λ, and an outer optimization over
λ. The high computational cost involved makes the selec-
tion of λ nearly unfeasible, or unbearably slow, whenever
more than one or two smoothers are considered. We there-
fore propose an alternative robust selection method that can
be automated as part of the estimation process with little
computational overhead. This alternative is a robust ver-
sion of the Fellner–Schall method recently introduced in
Wood and Fasiolo (2017), which we will call the extended
Fellner–Schall (EFS) method. “Web Appendix B” provides
the detailed development, the main ideas can be summarized
as follows. First, we take the empirical Bayes viewpoint as
in Remark 2 in Sect. 3.2 to consider the quadratic penalty
as an improper Gaussian prior on δ, resulting in the joint
(robustified) likelihood L( y, δ;λ). Next, we approximate
the integral defining the marginal likelihood L( y;λ) =∫
� L( y, δ;λ) dδ by Laplace’s method. By considering the

estimate δ̂ = δ̂(λ) as based on a previous iterate for λ, we
obtain a tractable expression for (the Laplace-approximated)
∂ log L( y;λ)/∂λ. Finally, we follow the heuristic reasoning
of Wood and Fasiolo (2017) to derive the following update
from iteration [k] to [k + 1] for all elements of λ:

λ
[k+1]
j = λ

[k]
j × tr

{
S(λ[k])−1 ∂S(λ)/∂λ j

∣∣
λ=λ[k]

} − tr
{
M̂p(δ̂)

−1 ∂S(λ)/∂λ j
∣∣
λ=λ[k]

}

δ̂
�(

∂S(λ)/∂λ j |λ=λ[k]
)
δ̂

,

where δ̂ = δ̂(λ[k]) here. In this expression, ∂S(λ)/∂λ j is
straightforward to write down and implement since S(λ) is
block-diagonal and each block is typically linear in the com-
ponents of λ and only involves the (known) basis functions.
We note that under the conditions of Theorem 1 the update
guarantees by construction that λ remains positive and that
the iterates converge whenever the gradient with respect to
λ gets arbitrarily close to zero. This update rule can thus be
alternated with computing δ̂ in an automated and efficient
way since both rely on similar quantities (see Sect. 3.3).

Remark 3 The proposed EFS method is simple to implement
and avoids unfeasible grid searches. All that is required is a
set of explicit formulas, as given above, to update λ in order
to increase the (Laplace-approximated) marginal robustified
log-likelihood. Our derivation also highlights the method’s
broader appeal since it can be easily adapted to modeling
situations requiring the use of non-standard models and esti-
mators (i.e., beyond the robust estimation in this paper) as
long as a Laplace-approximated marginal likelihood is avail-
able.

3.5 Choice of the Robustness tuning constant

The robustness tuning constant c regulates how earlyρc starts
to diminish the contribution of an observation to the objective
function �̃. The choice of c is typically made before fitting
the model to data by targeting a certain loss of estimation
efficiency of the robust estimator relative to the MLE at the
assumed model. With strictly parametric models, the usual
criterion is the ratio of the traces of the asymptotic covariance
matrices of the model parameters. But with non-parametric
models, where basis function coefficients are subject to some
smoothness constraint (as is the case here) the asymptotic
covariance matrices of the penalized MLE and of the robust
estimator are not necessarily comparable. The reason is that
robust estimation may achieve a different degree of smooth-
ness, i.e., a different bias-variance trade-off stemming from
different λ values selected by minimizing some prediction
error criterion. If the two estimators achieve different degrees
of smoothness, then the coefficients variances are not nec-
essarily on the same scale and are thus not comparable.
One may constrain the smoothness to be similar between
the two estimation methods, but this would defeat the pur-

pose of robustness: we are indeed interested in potential
differences between the fitted functions and typically sus-
pect that deviating observations may push classical estimates
to be too wiggly. Hence, the need for a different criterion
for the choice of c. We note that previous works (Alimadad
and Salibian-Barrera 2011; Croux et al. 2012; Wong et al.
2014) have not discussed this important issue, resorting to
somewhat default values for c taken from strictly parametric
cases.

We propose a novel general criterion for the selection of
the tuning constant c which covers both additive models and
strictly parametric ones. It is simulation-based and relies on
the heuristic idea of controlling how the robustness weights
at the score level (represented here by ρ′

c) behave under data
generated from the assumed model. Our procedure is as fol-
lows:
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Step 1: For a given tuning constant value c, compute the
robust estimator δ̂c on the original data bymaximiz-
ing (5), including the optimal smoothing parameter
λ̂c.

Step 2: For a large number of Monte Carlo replications B,
for b ∈ {1, . . . , B} repeat:

(a) Generate a response vector yb given the original
design and covariates according to the assumed
model in (2) using δ̂c as generating parameter.

(b) Use both δ̂c and λ̂c to compute the vector of
robustness weights (wb,1, . . . , wb,n)

�, wherewb,i =
ρ′
c(�(δ̂c)b,i )with �(δ̂c)b,i denoting the log-likelihood

value corresponding to the i th entry in yb. Compute
the sum of the robustness weights wb = ∑n

i=1 wi,b.

Step 3: The criterion corresponding to c is the median
downweighting proportion (MDP) over the B inde-
pendent replicates: median{w1/n, . . . , wB/n}.

Step 4: Repeat Steps 1–3 to find the c value matching a
target MDP (e.g., MDP = 0.95).

Since ρ′
c(�(δ)b,i ) ∈ [0, 1] for any δ by construction, the

ratio wb/n indeed represents how much downweighting has
occurred on a particular sample yb. The value wb/n = 1
indicates no downweighting at all, i.e., the corresponding
estimate is the penalized MLE. The MDP criterion essen-
tially quantifies information in the data the user is prepared
to lose in order to gain robustness, where this loss of informa-
tion (in a loose sense) is represented by the downweighting
of data points in the ideal case of the model being correctly
specified. Thus the target MDP should be based on the sus-
pected magnitude of any contamination in the response: a
harsh contamination can be easily detected thus the target
MDP can be set close to 1, resulting in a relatively large
value of the tuning constant c, while a subtle contamination
requires a smaller MDP, resulting in c being correspondingly
smaller.

We empirically confirmed over a variety of models
(through simulations not presented here) that the MDP
indeed increases monotonically with c until reaching one
and remaining constant beyond that. This implies that our
new criterion shares a one-to-one relation with the tradi-
tional criterion of the ratio of the trace of the asymptotic
covariance matrices within the subset of c values that lead
to some downweighting under the given design. The MDP
is not asymptotic and is in effect tailored to the model and
design of the data under study. We finally note that no heavy
computation is involved in Step 2: we do not estimate param-
eters on the simulated yb vectors, we only need to evaluate
the log-likelihood at the true parameter δ̂c that generated the
sample. In addition, our experience is that Monte Carlo sim-

ulation variability is quite small in the MDP so that B = 100
seems sufficient for most practical purposes.

4 Simulation studies

To investigate the finite sample properties of the proposed
estimator, we carry out two simulation studies. In the first
one, we assess the robustness properties of our methodology
in a GAMLSS setting inspired by the brain imaging data
we analyze in Sect. 5. In the second simulation study, we
compare our proposal to existing alternatives in the simpler
setting of a GAM. All computations are performed in R (R
Core Team 2020). Our robust estimator is available in the R
package GJRM (Marra and Radice 2020).

4.1 Simulation under a GAMLSS

The data inspiring the GAMLSS simulation design come
from functional magnetic resonance imaging (fMRI) of the
human brain. These data were presented in Landau et al.
(2003) and subsequently used inWood (2017), and are avail-
able in the R package gamair, available on CRAN, as a data
frame called brain. The goal of the original study is to test
for a difference in the timing (phase shift) of the physiologi-
cal response between two anatomically distinct brain regions.
For this purpose, a set of fMRI measures were acquired from
a healthy participant during the performance of a verbal flu-
ency task. The active task of this experiment consisted of
generating words beginning with a cued letter, while the
baseline condition was given by covertly repeating a letter.
Brain activity was then summarized as the median of three
measurements of fundamental power quotient on each brain
voxel. This physiological activity summary is the nonnega-
tive continuous response variable medFPQ. The coordinates
x1 and x2 of each voxel (labeled X and Y, respectively, in
the brain data frame in gamair) are used as covariates
to model the response surface. The medFPQ measurements
roughly range from 0 till 21, with a median around 0.86,
and are heavily right-skewed. They are known to be rather
noisy with possible spikes and troughs in activity which do
not relate to the controlled stimulus (Landau et al. 2003),
but the mean response level and its spread are likely to vary
smoothly over the 2D brain slice.

In this simulation study, we use the x1 and x2 covariates to
generate a response for each voxel according to a GAMLSS
with a gamma distribution with expectation μ and variance
σ 2μ2 where log(μ) = η1 = s1(x1, x2) and log(σ ) = η2 =
s2(x1, x2). The smooth functions s1 and s2 are constructed
to mimic the main features of the fitted surfaces on the real
data in Sect. 5, see Figure S2 in “Web Appendix C”. The
combinations of x1 and x2 values result in a sample size of
n = 1567.
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To generate data that is contaminated in a similar way to
what is observed in the real data, wemodify a clean simulated
dataset by choosing at random 78 (= 5%) of the responses
falling in the upper-right corner of the brain slice, for x1 >

70 and x2 > 30, and by adding 10 to their original value.
We simulate 200 replications of the above in both a “clean”
scenario (at the assumed model) and in the contaminated
scenario. For each replication, we fit a gamma GAMLSS
with log links for both μ and σ , both with a classical (ML)
and with our robust estimation method. We use bivariate thin
plate regression splineswithk=100bases to approximate the
s1 and s2 smooth functions. Both estimators rely on the EFS
method for selecting the smoothing parameters. The robust
estimator is tuned to achieve an MDP of 0.95, resulting in
c = 3.1 given the design. We assess estimation performance
by investigating the differences between the true parameter
and the estimated one, both on the linear predictor scale (η1
and η2) and on the canonical parameter scale (μ and σ ),
computed as a bias averaged over the n observations. We
also compute the mean squared error (MSE) of each target
θ computed as MSE(θ̂ , θ) = 1

n

∑n
i=1(θ̂i − θi )

2, where θ is
one of η1, η2, μ or σ .

Figure 1 presents boxplots of the MSE of both methods
under both scenarios, while Figure S3 in “Web Appendix C”
shows the same but with the vertical scales manually set to
improve visualization. Similarly, Figures S4 and S5 present
boxplots of MSEs on the scale of μ and σ . In “Web
Appendix D”, Tables S2 and S3 report summary statistics
for the MSE and average bias, respectively. In the clean data
scenario, the MSE of classical estimates for both parameters
is slightly smaller than that of robust estimates, as theoret-
ically expected. When the data are contaminated, the MSE
and average bias of classical estimates explode, whereas the
MSE of the robust method only shows a slight increase with
somewhat more variability across replications and average
bias quite comparable to that with clean data.

We investigate these differences further by looking at the
fitted surfaces for s1(x1, x2) and s2(x1, x2). Figure 2 shows
colored surfaces representing the average bias across repli-
cations 1

200

∑200
j=1(θ̂i, j − θi ), where i = 1, . . . , n and θ is

either η1 or η2, in the clean data scenario; Fig. 3 shows
the same under the contaminated scenario. Note that the
coloring scales are not the same between the two figures.
At the assumed model, we see that both methods perform
equally well, showing overall little bias centered about zero.
However, under contamination the classical estimates show
a large positive bias in the top-right corner of the brain slice,
which is precisely the area that is contaminated (x1 > 70 and
x2 > 30). Under contamination, the robust estimates show
roughly similar biases to those at the model, meaning that the
fitted surfaces are quite stable in spite of the contamination.
In “WebAppendix C”, Figures S6 and S7 present similar col-
ored surfaces but for μ and σ ; the results are essentially the

same. Overall, this simulation study not only highlights the
robustness property of our proposed estimator but also how
tuning for an MDP of 0.95 yields smooth functions estima-
tions that are nearly indistinguishable from ML-based ones
when the data come from the assumed model.

4.2 Comparison to Robust alternatives in a GAM
setting

In order to compare our proposed estimation method to
existing robust approaches in the special case of a GAM,
we consider here one of the simulation designs of Wong
et al. (2014). For i = 1, . . . , n, we generate indepen-
dent responses Yi ∼ Poisson(μi ) with μi = exp(ηi ) and
ηi = 4 cos(2π(1 − x2i )), where the xi ’s are independently
drawn from a Uniform(0, 1) distribution. The sample size
is set to n = 100. Following Wong et al. (2014, p. 280),
contaminated data are obtained by randomly selecting 5% or
10% of the original responses and changing them to the near-
est integer yiu

u2
1 , where u1 is drawn from a Uniform(2, 5)

distribution and where u2 is randomly set to either 1 or −1.
We simulate 200 replications.

We compare the following methods, with the same setting
choices as in Wong et al. (2014):

• AS: the approach of Alimadad and Salibian-Barrera
(2011) with span=0.5;

• CGP: the approachofCrouxet al. (2012)withnknots=15;
• WYL: the approach of Wong et al. (2014) with k = 30
basis functions and with smoothing parameter chosen by
minimizing their robust BIC, following their recommen-
dation;

• GAMLSS: our proposed approach with k = 20 basis
functions;

• Classical: ML-based estimation with k = 20 basis func-
tions and smoothing parameter selected by the Fellner–
Schall method of Wood and Fasiolo (2017).

All existing approaches build on Cantoni and Ronchetti
(2001b) to define robust penalized estimating equations for δ.
Croux et al. (2012) additionally define a similar set of estimat-
ing equations for the dispersion parameter in their extended
GAM setting. That is, all these approaches robustify esti-
mating (score) equations, typically by appending weights,
whereas our proposed approach directly robustifies a like-
lihood. Regarding smoothers and basis functions, Alimadad
andSalibian-Barrera (2011) use local linear fits as smoothers;
Croux et al. (2012) useP-splines, while inWong et al. (2014)
the nonparametric fits are based on thin plate regression
splines. Regarding the smoothing parameter selection, Ali-
madad and Salibian-Barrera (2011) use a robust version of
CV defined as a sum of squared weighted residuals in line
with Cantoni and Ronchetti (2001a), and implemented it in
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Fig. 1 GAMLSS simulation, MSE of the linear predictors η1 (left panel) and η2 (right panel) for classical and robust methods with data generated
at the assumed model and under contamination

a “brute-force” way; Croux et al. (2012) construct a robust
GCV criterion and a robust AIC by applying some bounded
function to the deviances appearing in the classical counter-
parts; whileWong et al. (2014) define robust versions of AIC,
BIC and leave-one-out CV, all of them borrowing from the
quasi-likelihooddefinition inCantoni andRonchetti (2001b).
The proposals based on brute-force (G)CV are generally too
demanding to be practical for medium to large applications.
The robust information criteria are more tractable, although
still with a high computational cost if grid searches are to
be used. In all of the three existing approaches, there is no
formal treatment of the robustness tuning constant selection.
Alimadad and Salibian-Barrera (2011, p. 723) advise to use
c = 1.5, commenting on the fact that “values of c between 1
and 4 produce similar qualitative results”. Croux et al. (2012,
p. 33) suggest using c = 1.345 for both estimating equations
for themean and the dispersion, borrowing from theGaussian
regression setting and stating that “this value gives reason-
able results for other models as well”. Finally, Wong et al.
(2014) suggest to use c = 1.6 as in Cantoni and Ronchetti
(2001b) without further discussion, even though the simula-
tion designs are different.

Since we only have one smooth term here, we can afford
the computational cost of the brute-force CV of AS and
consider three variants of our estimator to compare smooth-
ing parameter selection methods: minimizing our proposed
robust AIC (RAIC); minimizing our robust BIC (RBIC); and
the extended Fellner–Schall method (EFS). The RAIC/RBIC
minimizations are performed by a grid search starting from
EFS, with a relative numerical tolerance of 10−5 on the
RAIC/RBIC scale. All the methods have been tuned to
achieve an MDP of 0.95 following the procedure introduced

in Sect. 3.5, to make them comparable. The resulting tuning
constants are k = 1.2 for the AS method, tccM = 1.2 and
tccG = 1.345 for CGP, c = 1.2 for WYL, and c = 5.8
for our approach. As already noted by Wong et al. (2014,
p. 286), the CGP method estimates an additional disper-
sion parameter by default. This implies greater modeling
flexibility and may make the comparison unfair in some sit-
uations, but we do not expect this to contribute much to
its performance in the simulation settings considered here.
We evaluate and compare the performances of the methods
by assessing their MSE for the Poisson mean parameter μ

computed as MSE(μ̂, μ) = 1
n

∑n
i=1(μ̂i − μi )

2. The R code
for the WYL approach is available through the R package
robustGAM, whereas theAS approach is available via the R
packagergam. The code for theCGP approachwas retrieved
from theonline supplementarymaterial ofWonget al. (2014).

Figure 4 displays boxplots of theMSE for allmethods both
at the assumed Poisson GAM model (left sub-panel), under
5% contamination (center sub-panel), and under 10% con-
tamination (right sub-panel). Some summary statistics for the
MSE are given in Table 1, while summary statistics for the
average bias are reported in Table S4 in “Web Appendix D”.
The classical (ML-based) estimation has the lowest MSE
under clean data, while it unsurprisingly shows poor perfor-
mance under contamination. Among the robust methods, AS
has the largest MSEs and both AS and WYL tend to vary
more across samples than the others. CGP, WYL and our
method all roughly have the same MSEs on average, while
CGP tends to vary the least under contamination. Among our
three variants (RAIC, RBIC and EFS) performance is similar
at themodel, but under contamination RAIC features slightly
largerMSEs than RBIC and EFS. This is in line with remarks
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Fig. 2 GAMLSS simulation, surfaces of the average bias for the linear predictors η1 (top row) and η2 (bottom row) based on classical (left column)
and robust (right column) estimation methods, at the assumed model

made by Wong et al. (2014) about AIC/RAIC favoring wig-
glier fits which here may allow contaminated observations to
contribute relatively more to the fit than with heavier penal-
ties such as BIC/RBIC, and this regardless of the robustness
property of the method.

Timings for all methods at the model, including the grid
searches for minimizing our RAIC/RBIC, are reported in
Tables S5 and S6 in “Web Appendix D” (running on a laptop
housing a 2.9GHzCPU). TheClassical andCGPusually take
less than 1 s and are much faster than the others. Our method
with EFS is generally faster than WYL, both of the order
of a few seconds, while AS with its brute-force CV is the
slowest. Our somewhat crude grid search, with nonetheless
strict convergence criteria, generally takes between 1 and
3 min and is usually faster than AS.

Overall, these simulation results yield two main conclu-
sions. First, our proposed robust method performs similarly
to the best-performing existing alternatives in the GAM spe-
cial case. Second, the extendedFellner–Schallmethod allows
for a reliable selection of the smoothing parameter and is on
par with minimizing the RBIC but at a fraction of the com-
putational cost of a grid search.

5 Application to brain imaging data

In the brain imaging data first presented in Landau et al.
(2003), the response variable is the median fundamental
power quotient medFPQ which represents the physiologi-
cal response of the brain to controlled stimuli. This response
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Fig. 3 GAMLSS simulation, surfaces of the average bias for the linear predictors η1 (top row) and η2 (bottom row) based on classical (left column)
and robust (right column) estimation methods, under contamination

is measured at voxels in a 2D brain slice with two covariates
x1 and x2 identifying the location of each voxel.

Following Wood (2017), we model both the mean and
variance of medFPQ as joint functions s(x1, x2) to be
approximated by thin plate regression spline basis functions
with a smoothness penalty based on second order deriva-
tives. However, contrary to the analysis in Wood (2017,
p. 329) where two voxels with medFPQ ≤ 5 × 10−3 were
excluded on the ground that they can be regarded as out-
liers, we will consider the entire data set without exclusions,
which amounts to n = 1567. Given the nonnegative and
positively skewed nature of medFPQ, we postulate a gamma
distribution parameterized with mean μ and variance σ 2μ2,
with log(μ) = η1 = s1(x1, x2) and log(σ ) = η2 =
s2(x1, x2). Other familieswere considered, including the log-
logistic distribution which is outside the exponential family;

diagnostics and model validation confirmed that a gamma
distribution provides the best fit, see Figure S8 in “Web
Appendix C”.

We fit the gamma GAMLSS with a classical (ML, non-
robust) estimation method and our proposed robust method.
Because of the joint smoother used here, we rely on the EFS
method which provides fast computations. The robust esti-
mator is tuned to achieve an MDP of 0.95, resulting in a
robustness constant of c = 4.5.

The fitted surfaces for η1 and η2 are given in Fig. 5.
Overall, the robust fitted surfaces appear smoother for both
parameters, with a surface that is nearly flat for η2. The classi-
cal fit uses a total of 77.2 effective degrees of freedom (56.09
for fitting η1, 19.11 for η2, plus 2 for the constants), whereas
the robust fit only uses 30.04 effective degrees of freedom
(26.00 for fitting η1, 2.04 for η2, and 2 for the constants). This
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Fig. 4 GAM simulation, MSE at the assumed model and under contaminated data (vertical scale manually set for better visualization, some points
not displayed)

Table 1 GAM simulation, summary statistics of MSE for the robust methods (SD is standard deviation, IQR is inter-quartile range)

AS CGP WYL GAMLSS RAIC GAMLSS RBIC GAMLSS EFS

At the model

Average 102.51 3.83 12.29 4.62 4.94 4.10

SD 282.49 1.95 23.15 3.62 5.52 3.09

Median 4.76 3.43 3.49 3.95 3.75 3.51

IQR 4.69 2.64 3.72 2.50 2.56 2.35

Under 5% contamination

Average 61.40 5.33 16.47 26.95† 27.61† 21.41†

SD 217.46 4.55 29.68 161.38† 160.51† 119.47†

Median 5.27 4.33 4.17 4.24 4.08 4.07

IQR 4.94 3.17 6.36 3.01 3.12 3.30

Under 10% contamination

Average 60.70 14.17 24.57 32.91‡ 21.54‡ 29.97‡

SD 212.41 47.29 57.20 422.19‡ 265.96‡ 300.74‡

Median 5.91 5.14 5.23 4.83 4.63 4.76

IQR 5.45 3.53 10.44 4.36 4.30 4.70

†Higher values due to five samples creating divergence
‡×103 due to six samples creating divergence

hints that the automatic selection of the smoothing param-
eter in the classical fit was influenced by some potentially
outlying observations.

Consider the largest local differences in Fig. 5 between
the two fits: in the upper-right corner of the brain for η̂1
(which hasmotivated the contamination scheme of Sect. 4.1),
and in the leftmost part of the brain for η̂2. For the latter,
classical estimates imply a much larger localized response

variance than robust estimates do. This is driven by two
observations in this area which are the ones excluded from
the analysis in Wood (2017). Regarding the large differences
in η̂1 between the two fits, the spike in mean brain activ-
ity implied by classical estimates is much subdued when
considering robust estimation. This is explained when inves-
tigating the robustnessweights, which are displayed in Fig. 6.
A few observations in the top-right corner are heavily down-
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Fig. 5 Brain imaging data, fitted surfaces for the linear predictors η1 (top row) and η2 (bottom row) based on classical (left column) and robust
(right column) estimation methods

weighted by the robustmethod, which results in the smoother
mean surface in Fig. 5. These low weights do not imply that
these observations are necessarily outliers, but simply that
they do not seem to follow the same trends as the major-
ity of the data given the gamma GAMLSS assumed here.
The downweighted observations in the top-right corner may
indeed represent a physiological response of interest here,
we note that the robustness weights identify them in an auto-
mated way. Also, note that the two observations excluded
by Wood (2017) are also heavily downweighted; these are
indicated in Fig. 6 as green crosses for reference. Hence, the
robust fitted surfaces combined with the robustness weights
are effective at both modeling smooth functions in a reliable
way and at automatically detecting observations deviating
from trends and model assumptions.

6 Discussion

We introduced a robust estimation method for the broad
class of GAMLSS. Our approach is quite general since
it can be employed for any differentiable likelihood. By
directly robustifying the log-likelihood and correcting it for
Fisher consistency, this method yields natural robust ver-
sions of AIC and BIC. For more complicated designs where
grid searches are not feasible, our extended Fellner–Schall
method allows for a reliable and automatic selection of
smoothing parameters. Our implementation in the R package
GJRM, based on the trust region algorithm, is modular and
stable. Furthermore, the introducedMDP criterion addresses
the challenge of the selection of the robustness tuning con-
stant for models with flexible nonlinear effects in a simple
and effective way. We believe this criterion has broad appli-
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Fig. 6 Brain imaging data, robustness weights from the robust
GAMLSS fit, with the two green crosses identifying the two observa-
tions excluded from the analysis in Wood (2017). (Color figure online)

cability in the implementation of robust methods in many
contexts, including the ones where efficiency criteria based
on asymptotic covariances already exist but may be compu-
tationally expensive.

Simulations in the special case of a GAM showed that our
robust estimator is on par with the best-performing existing
approaches, when tuned for comparable robustness under the
assumedmodel. Simulations in the broaderGAMLSS setting
as well as our application to the brain imaging data showed
that our robust estimator allows for the automatic detection of
deviating observations through the robustness weights, and
that the approach yields trustworthy estimates.

The proposed robust estimator has of course some lim-
itations. Like any robust M-estimator, the proportion of
contaminated data cannot be unreasonably large without the
estimator starting to break at some point (the so-called break-
down point). In our GAM simulations, 10% contamination
seems to remain safe for all robust methods given the design
but some numerical instabilities do start to arise (notably, our
method did diverge on six samples). In a similar fashion, the
EFS automated smoothing parameter selection can definitely
be improved for numerical stability as it is based on heuris-
tics. Another aspect where more work is needed is in the
computation of the Fisher consistency correction term. This
term is defined as an integral/sum over the response support,
which often needs to be approximated. This approximation
can involve heavy computations which may contribute to the
numerical stability of the estimator, and ultimately to its reli-
ability. That said, these aspects are not specific to ourmethod,
we note that Rigby et al. (2019, p. 259) state in similar way
that “Further research is needed on the robust fitting of a
GAMLSSmodel.” Futurework also includes the extension to

high-dimensional settings, following for instance Mayr et al.
(2012) where the problem of variable selection is considered.
An alternative strategy for variable selection is developed in
Hambuckers et al. (2018) and Groll et al. (2018) using L1-
type of penalties.
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