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Abstract

Impressive robotic solutions with astonishing capabilities have been designed to in-

herit certain propensities of living creatures and mimic some of their abilities in

order to perform real-life tasks. In the present work, two bio-inspired systems are

developed to investigate certain characteristics of biological hair-like structures and

employ their behaviours in robotic and sensory solutions in fluids. The first is an

intelligent sensor that is developed using deep learning to detect the position of un-

derwater wake-generating objects inspired by the seal’s ability to track its prey by

sensing the surrounding fluid motion using its facial hairs (i.e., whiskers). The pro-

duced sensor provides a safe, passive and lifelike way of underwater sensing which

can be utilized in robotic applications for underwater navigation in dark or cloudy

environments and in situations that require stealth. The second is a mechatronic

system that is designed and implemented to resemble the self-organization of bio-

logical cilia in an enlarged model and to generate flow propulsion at low-Reynolds

regimes using the metachronal coordination of rotational oscillators. Using two-

dimensional flexible flat-plates (i.e., flaplets) as the oscillating (beating) elements,

a metachronal-wave pattern is experimentally proven to spontaneously emerge due

to the hydrodynamic interaction among the oscillators. A mathematical model of

the physical system is then developed for a better understanding of the coordination

collective effects and for analysing its stability. The model can track the emerged

coordination over long periods and estimate the net propulsive force acting on the

physical model. The developed system is able to produce effective propulsion, that

can be utilized in robotic applications, despite the time-symmetric beating profiles

and the single degree-of-freedom actuation of the individual oscillators.
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Thesis Contributions

The present PhD thesis aims at researching two natural behaviours witnessed in

biological fluidic organisms and exploring how these behaviours can be implemented

in robotic solutions in fluids, using artificial mimicry tools and advanced imaging

and computational techniques. In the following section, I provide a list of brief

vindications on how this PhD thesis significantly contributes to the current state

of research in nature-inspired mechatronics, bridging the gap between well-known

biological abilities and applied mechanical systems.

Different contributions of this thesis can be classified into the following three

categories:

1. Investigation of nature-inspired processes and capabilities

(a) Understanding how the seal’s whiskers are utilized for performing

localization and tracking tasks

Even blindfolded, the seal can localize and track its target underwater using

its whiskers. Various studies have demonstrated these abilities of the seal

while performing astonishing tasks using its mechanical transducers. Some

studies have researched the behaviour of the whiskers and how they interact

with the surrounding flow. However, the seal’s perception of the whiskers’

vibrations as useful localization information has not been fully understood

yet. In this thesis, machine-learning models simulates how the seal’s brain

compares certain characteristics of the vibration signals of its whiskers in order

to localize the source of the disturbance in the surrounding water.

(b) Examining how the spontaneous-synchronization of cilia is achieved
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By applying the clutch control hypothesis and introducing system flexibility,

leading to the viscous-coupling of artificial cilia in an enlarged experimental

model, the resemblance of metachronal self-coordination for symmetric 2D

oscillating flaplets is achieved. The evolution stages of the coordination and

its collective effect could be analysed by means of a simulation model and

particle-image-velocimetry measurements.

(c) Explaining how the metachronal coordination of symmetric oscilla-

tors can produce fluid propulsion

A running metachronal wave at ciliated surfaces is crucial for increasing the

efficiency of the directed propulsion of the surrounding fluid. In this thesis,

it is demonstrated that the metachronal coordination of a row of oscillators

with time-symmetric beating profiles (i.e., each can not generate propulsion

on its own) provides the degree of asymmetry required to generate effective

propulsion.

2. Introducing novel biomimetic systems and discussing their applications

in fluidic and robotic solutions

(a) Introducing a whisker-array sensor that uses learning models for

localization tasks underwater

Neural-network models are applied to an artificial sensor composed of a 3D

printed head model and optical-fiber whiskers, and used for underwater two-

dimensional position sensing of a wake-generating body.

(b) Introducing a mechatronic system of flexible flaplets that uses metachronal

coordination for generating fluid propulsion

A system of five flapping oscillators, made of silicone rubber, is actuated using

rotational motors to mimic the metachronal self-coordination of cilia. The

system can successfully induce flow propulsion at low-Reynols number in its

coordinated state.
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3. Presenting new methodological approaches that can be adopted in

future research

(a) The use of computational-intelligence tools for the interpretation of

the whisker-flow interaction and hydrodynamic sensing

Analytical equations and numeric computations are often used to interpret

the problems of fluid-structure interaction. Here, the use of deep learning

is introduced to mimic and explore the behaviour of the whisker interaction

with the surrounding disturbed flow, instead of using complicated analytical

or numeric models.

(b) The use of vision-based feedback control for the online implemen-

tation of the geometric clutch hypothesis that describes the ciliary

gait cycle

The recorded frames of a high-speed camera are processed online to identify

the oscillator tips and control the motors so that the identified tips perform

fixed-amplitude oscillations, implementing the geometric-clutch hypothesis.
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Chapter 1

Introduction

Inspired by nature, from huge machinery to micro systems have been developed

to solve complex problems around the globe. Engineers and roboticists often seek

nature for sustainable and stable solutions to different challenges that face humanity.

This approach of innovation is known as biomimicry. In short, it is the strategy of

adopting nature-tested schemes and applying them to technological systems.

As it turns out day after day, living creatures are very good at what they are

doing. Scientists are very happy to steal some of their evolutionary skills and im-

plement them in a galaxy of clever machines that they design to turn our world into

a better place. That is not to say that they would replicate their exact behaviour

found in nature (good luck with that!). Instead, using artificial tools, they try to

investigate different approaches how to achieve a form of solution similar to that

witnessed in the natural behaviour. Nowadays, various tools that we witness and

use in our everyday life are designed to mimic some features of animals or plants.

They have shown impressive results in performing tasks more efficiently and a lot

easier than ever.

That said, to replicate the precise natural behaviour is not always the best

available option. Often, some features need to be altered so that the resulted product

can better address the required functionality. A well-known example of that is the

history of the aircraft development. At first, around 1490, humans tried to replicate

the way birds fly by building forms of flapping winds that they can strap onto their

arms (i.e., ornithopters). It was not until the early days of the twentieth century
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when the first capable aircraft was built by the Wright Brothers. The design showed

features such as propellers which was not witnessed in a natural flying bird before.

Examples of biomimetic devices are currently all over the place. To mention

but a few, butterfly wings have inspired scientists to integrate bio-inspired nano-

holes into light-harvesting cells to improve the efficiency of light absorption. The

unique bump protrusions on the fins of whales have inspired the design of serrated-

edge wind turbines which are reported to be much quieter and more efficient than

turbines with smooth blades. Last but not least, the natural shock absorbers of the

woodpeckers have inspired the creating of more shock-resistant flight recorders.

1.1 Motivations and research aims

1 In general, the investigation and understanding of the inspiring processes wit-

nessed in nature would help to produce imitating solutions that are capable of achiev-

ing functionalities currently beyond our reach, serving humanity on many levels.

In this thesis, I investigate two different behaviours witnessed in biological or-

ganisms that possess hair-like structures (i.e., cilia and whiskers) and live in fluidic

environments using artificial mimicry tools. I then study the characteristic features

of the developed artificial systems and how they can be utilized in relevant robotic

solutions. A brief background about the topics covered in this thesis is introduced

in chapter 2. In the following illustration, I build on the key concepts of these topics

to conclude with the different motivations and aims of our present studies.

1.1.1 Biomimetic sensors for underwater surveillance

Due to the diversified and significant contributions of underwater robotics in defence,

security and commercial applications, the advancement in underwater navigation

and surveillance systems is currently a trending research topic. The present sensing

techniques used for underwater localization (e.g., vision and sonar) feature a wide

range of drawbacks from the lack of stealth to the low energetic efficiency and the

dangerous impact on the surrounding life (Griffiths 2002, Kinsey et al. 2006). Ac-
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cordingly, scientists have been mining the marine life for safe and passive techniques

of hydrodynamic sensing that can be used in the harsh aquatic environment.

2 Exploring how marine animals navigate the underwater world, may reveal inno-

vative sensing techniques that can assist or replace the current tracking and surveil-

lance devices used in autonomous and non-autonomous underwater vehicles.

1.1.2 Hydrodynamic sensing using artificial seal whiskers

Neural systems within living creatures accomplish a unique job in the perception

of external stimuli and their interpretations as useful information. For example,

the visual and auditory cortices translate the perceived light or sound vibrations

into recognizable faces, objects and sounds. Inspired by the brain’s interpretation

abilities, artificial neural-models have been widely utilized for facial and speech

recognition in security, e-learning, scientific and entertainment purposes.

Pinnipeds such as seals and sea lions possess a remarkable ability of hydrody-

namic detection using their facial mechanoreceptors – known as whiskers. Up till

now, it is not entirely clear how the vibrations of whiskers (due to the surrounding

fluid movements) are interpreted in the brain for underwater navigation (e.g., as

locations of preys or objects). The reader is referred to section 2.1.1 and 2.1.2 for

an overview about biological whiskers and their uses in mammals for tactile sensing

and hydrodynamic detection.

3 The design of a localization sensor based on spatially-distributed whisker-like

transducers has not been attempted yet. Emulating the whisker-trigeminal system

of seals using machine learning would allow us to translate the underwater flow dis-

turbances, encoded in the vibrations of artificial whiskers, to information about the

hydrodynamic trails and the location of their sources.

1.1.3 Emergence of metachronal coordination in experiment

We know that motile cilia (e.g., in human windpipes, on the surface of locomoting

cells such as Paramecium, etc.) often beat in coordinated patterns forming travel-

ling metachronal waves (described in section 2.2.1). In these patterns, individual
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cilia appear to be controlled simultaneously so that they maintain certain phase

relationships during their beating (as if a cilium is aware of the configurations of

its neighbours’ beats). A while ago, it had been initially believed that the cilia

coordination was controlled by a neuroid mechanism (Sleigh 1963, 1968, Kinosita

& Murakami 1967). Later investigations of biological ciliated organisms, however,

showed that the metachronal coordination depend on the hydrodynamic interactions

between neighbouring cilia (Machemer 1974, Sleigh 1974, TAMM 1973). Many stud-

ies had experimentally demonstrated (for example by restricting the movement of

some cilia in the middle) that biological cilia lose their coordination when the viscous

coupling among them was interrupted (Tamm 1983, 1984). However, much less was

discovered about the build-up stage of the synchronization and whether this type

of coordination (i.e., metachronal waves) can emerge for different and more simple

shapes od artificial cilia.

4 Resembling self-coordination in experiment among cilia-like oscillators starting

from a chaotic phase pattern would be helpful to test the conditions and control

hypothesis that are necessary for the self-coordination to rise by viscous coupling.

It would also help to examine the coordination’s build-up stage as the interaction

among the beating elements takes place.

More recent studies have established that the synchronized behaviour of cilia is

nothing but a spontaneous form of hydrodynamic cross-talk among them that arises

from the nature of the viscous (low-Reynolds) environment they are in and the con-

formation of their own characteristic beats (Golestanian et al. 2011, Brumley et al.

2014). Numerical simulations, that resembled the unique asymmetric beating of cilia

with oscillation profiles that were fairly similar to those of natural cilia, have shown

the evolution of metachronal waves (an example is illustrated in section 2.2.4), some-

times with breaks in coordination at different stages (Niedermayer et al. 2008, Elgeti

& Gompper 2013). In experiment, such replication of the beating profiles of cilia is

complicated to achieve, due to the shape control of the beating elements required

through different stages of their oscillations (the reader is referred to the background

introduced in section 2.1.1 for more information about the motion of biological
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cilia). Therefore, experiments that tried to prove the emergence of hydrodynamic

synchronization have used simple structures, such as colloidal spheres, as rotating

or oscillating elements in the viscous medium (Kotar et al. 2010, Di Leonardo et al.

2012). However, up to now simple two-dimensional shapes like flaplets (i.e., thin

rectangular flat plates) have not been studies for their possible self-coordination.

Additionally, the hitherto known experiments using colloidal elements could not ex-

amine the evolution of the collective effects of self-coordination and whether or not

it could result in the emergence of effective flow propulsion. To sum up, most of the

studies that paid attention to the emergence of self-synchronization were numerical.

The few experimental studies used elements (e.g., colloidal spheres) that could not

highlight the collective effects of the synchronization on the beating system and its

surrounding fluid.

5 2D artificial cilia such as flaplets have not yet been tested for their possible self-

coordination. The flapping oscillators would be more cilia-like than the beating ele-

ments used in the previous experiments of self-synchronization. The resulted pattern

of coordination would also be better comparable to the metachronal wave witnessed

in natural cilia.

1.1.4 Propulsion as a result of spontaneous coordination

6 The development of micro- and nano-scale robots that are able to generate propul-

sion in viscous environments is one of the most appealing topics of modern research.

Further innovation in the micro-swimmer field is motivated by the significant poten-

tial of these devices in biomedical applications such as minimally invasive procedures

and drug-cell delivery.

Metachronal coordination is believed to play an important role in inducing a

directed transport at the surface of beating cilia. Recently, synchronization was im-

posed among ciliated walls by controlling a row of pneumatic-actuators to have a co-

ordinated pattern of oscillations (Rockenbach et al. 2015). It was demonstrated that

metachronal coordination could help the beating system achieve directed propulsion.

In addition, for a model of artificial magnetic-controlled cilia, it was shown that the
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imposed metachronal coordination increases the transport performance in the flow

significantly (Gauger et al. 2009). Although, these studies highlighted the propulsion

effect of metachronal coordination, they used asymmetric actuation of the individual

cilia to achieve preliminary low-Reynolds propulsion (illustrated in section 2.2.5). It

would be interesting to examine if the metachronal coordination is sufficient to solely

give rise to propulsion even for symmetric actuation of oscillators. The metachronal

coordination itself, presented in the uni-directional running surface wave, can in-

troduce the beating asymmetry required for propulsion at low Reynolds numbers.

Moreover, the previous studies did not examine the propulsion emergence stages as

the coordination is formed from chaos. The coordination of cilia in former studies

were controlled by external systems (e.g. pneumatic systems, magnetic fields) that

are difficult to utilize for embedded micro-swimmer applications. Developing cilia-

like systems that use the viscous environment to spontaneously achieve propulsion

would facilitate the embedded-control of individual oscillators independently using

conventional rotary actuators.

7 Scalable beating systems, that implement time-symmetric rotational (single-degree-

of-freedom) actuation of their oscillators and use self-coordination to generate flow

propulsion, have not been realized nor investigated yet. They would be prime candi-

dates for micro-swimmer applications and propulsion devices at low Reynolds num-

bers due to their time-symmetric and easy-to-control beating profiles as well as the

possibility to actuate them using embedded rotary motors.

8 Monitoring the internal states of the flapping oscillators (i.e., the forces acting

on the flaplets during their beating) experimentally or via a validated mathematical

model would facilitate the investigation of the gradual build-up of the coordination

collective role (i.e., effective propulsion) while the metachronal coordination is rising.

It would also help identify the effect of small changes of the phase-relationships

among the oscillators on the resulted propulsion.
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1.2 Thesis outline

This thesis is structured in the prospective-publications format. During my doctoral

research period, I have mainly conducted three studies that have been published

as journal peer-reviewed research articles of which I am a first author. In this

thesis, the three studies are included in separate chapters (Chapter 3, 4 and 5).

Each study is structured as follows: (i) Abstract; (ii) Introduction, containing a

brief literature review of the previously-conducted work related to the study and

describing how it clearly stands out. Here, any specific hypotheses being tested are

usually highlighted (sometimes the objective is included separately); (ii) Materials

and Methods, containing important material considerations, the experimental setup,

and the mathematical model if exists (sometimes this part is exploded into multiple

sections instead of one); (iii) Results and Analysis: containing a precise description

of the experimental or model results as well as their detailed interpretations; (iv)

Discussion and/or Conclusions, expanding on the analysis of the study findings as

well as highlighting the study’s conclusions. Future research directions may be also

mentioned here. Appended to each of these chapters, a critical analysis of the

study is presented where the study’s contributions and raised issues are thoroughly

discussed. Additional results may be also included at the end of each chapter.

Chapter 2 contains a theoretical background of the key terms and topics that are

discussed or used in the following studies. This chapter along with the introduction

sections of the following three chapters form a coherent literature review of the thesis

work.

List of Publications

� Elshalakani, M., Muthuramalingam, M., and Bruecker, C. (2020), ‘A Deep-

Learning Model for Underwater Position Sensing of a Wake’s Source Using

Artificial Seal Whiskers’, Sensors 20(11), 3522. – Published: 22 June 2020

� Elshalakani, M. and Brücker, C. (2020), ‘Simulation of self-coordination in a

row of beating flexible flaplets for micro-swimmer applications: Model and
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experiment study’, Journal of Fluids and Structures 94, 102923. – Published:

29 February 2020

� Elshalakani, M. and Brücker, C. H. (2018), ‘Spontaneous Synchronization of

Beating Cilia: An Experimental Proof Using Vision-Based Control’, Fluids

3(2), 30. – Published: 25 April 2018
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Chapter 2

Background

This chapter introduces the fundamental background of the research topics covered

in this thesis in order to familiarize the reader with the key terms used in the

presented studies. The reader is referred to the introduction sections of the following

chapters for a concise literature review of the previous experimental and numerical

studies related to the presented work.

2.1 Study one

2.1.1 Whiskers as tactile sensors

Whiskers or vibrissae are mammalian hairs that are usually characterized by their

long length. They typically grow around the nose and above the lips and eyes of

mammals and act as touch (tactile) sensors. The way they work as sensors can be

illustrated as follows: (i) as they brush or touch a near-by object or a surround-

ing medium, the details and movements of the touched surface is translated into

whiskers’ movements. (ii) hundreds of nerve cells located in the hair follicle can

transduce detailed information about the motion of each whisker. (ii) the whisker-

trigeminal system relays the transduced signals to the brain where they are inter-

preted as information about the touched object or medium. That said, the role

of whiskers is still an active area of research. So far, whiskers have been shown

to contribute to many functions such as: localization of food (preys), detection

of surrounding movements, shape and texture recognition, navigation, locomotion,
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maintanance of eqiulibrium, and swimming (Prescott et al. 2011).

2.1.2 Marine mammals and hydrodynamic detection

Pinnipeds possess a set of well-developed whiskers with up to 1500 nerve cells inside

each whisker follicle. They use these facial sensors to detect water movements and

hence navigate their surrounding environment. Various studies have demonstrated

the ability of harbour seal to track the hydrodynamic trails in water (i.e., distur-

bances generated by fish, another seal or pilot submarines) using its whiskers. A

control experiment was performed by Dehnhardt et al. where the movement of the

seal’s whiskers had been impeded. It was proven that the seal cannot detect the

water disturbances nor perform tracking tasks without the use of its whiskers (Dehn-

hardt et al. 2001). Fig. 2.1 shows a blindfolded seal in another experiment while

tracking the path taken by another trail-generating seal after it had left the water

(Schulte-Pelkum et al. 2007). In approximately 90 percent of the trials, the seal

could identify and follow the pilot’s path successfully (sometimes with undulatory

deviations to both sides).

Figure 2.1: Experiment of harbour seal tracking a hydrodynamic wake generated by another
pilot seal; from (Schulte-Pelkum et al. 2007). (a) the trail-tracking seal while blindfolded
detects the swimming direction using its whiskers. (b) the path followed by the seal (red line)
in approximately 60% of the performed trials while tracking the pilot’s path (blue line). In
most of the remaining trials, the seal could also follow the path successfully but with some
undulatory deviations from the original path.

Unlike rodents, pinnipeds keep their whiskers steady while sensing the underwa-

ter disturbances and hence maximizing their detection ability (Murphy et al. 2013).
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Usually, Pinnipeds’ whiskers have an elliptical cross-section that is tapered towards

the whisker tip. Harbor seals, however, possess a unique undulated design of the

cross-section along the whisker’s shaft that is different from the smooth whisker of

the California sea lions (see Fig. 2.5) (Murphy et al. 2013). This design was found

to have a higher signal to noise ratio than that of the smooth one (Hanke et al.

2010).

Figure 2.2: Outer surfaces of two whiskers that belong to a California sea lion (top) and the
Harbor seal (bottom); from (Murphy et al. 2013).

2.1.3 Whisker-inspired robotic sensors

Robotic e-whiskers have been implemented in various engineering systems for active

and passive sensing. Herein, we present some of these applications and highlight

the functionality of the used whisker-type sensors. In 2011, Sullivan et al. used

an active array of artificial rat-whiskers to recognize three different surface textures

(Sullivan et al. 2011). Fig. 2.6a shows the sensor while integrated on a robotic

arm for accurate and robust manipulation of its location in the 3D space. The

deflections of the whiskers’ shafts while brushing the different surfaces are measured

used instrumentation at their base. Using the gathered data, different classifiers

were trained to distinguish the texture of each surface. The work concluded that

artificial active whiskers could be successfully used as robotic tactile sensors. Other

studies have utilized whisker-type tactile sensors for shape-recognition and texture-

identification tasks (Kim & Möller 2007, Pearson et al. 2011, Lepora 2016).
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The use of artificial whiskered sensors in the aquatic environment has focused on

experimenting the sensitivity limits of these structure in the detection underwater

disturbances. The observation of the undulated cross-section of the seal’s whisker

has inspired a design of artificial whisker-like sensors whose resonant frequency can

be tuned to suppress unwanted environmental noise (y Alvarado et al. 2012). Eber-

hardt et al. developed a wake-detection sensor, shown in Fig. 2.6b, using an array of

artificial whiskers whose vibrations could be related to the trail of a pilot submarine

(Eberhardt et al. 2016). Recently, an experimental study revealed that the vibra-

tions of artificial whiskers while interacting with an underwater flow disturbance

could decode the shedding frequency of a Kármán vortex street (Muthuramalingam

& Bruecker 2019).

Figure 2.3: E-whisker sensors used for active and passive sensing in robotic applications; (a)
artificial rat-whisker array attached to a robotic manipulator and used for texture classification
of different surfaces; from (Sullivan et al. 2011); (2) wake-detection system composed of 8
artificial whiskers that can identify and track the trail of a pilot submarine; from (Eberhardt
et al. 2016).

Previous experiments that showed the seal’s abilities to track surrounding objects

in the aquatic environment (e.g. fish, submarines or other seals) using its whiskers

as well as the previous implementations of whisker-inspired underwater sensors form

the basis for the first study presented in chapter 3 of this thesis.
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2.1.4 Key questions addressed by the present research

The research presented in this study aims at providing adequate answers to the

following unknown research questions:

Research question 1: How does the seal’s brain interpret the surrounding water

disturbances as useful information for navigation and tracking?

Research Question 2: To what extent can the vibrations of flexible elements in

response to a body’s wake underwater encode information about the location of that

body?

Research question 3: Can artificial neural-networks mimic the whisker-trigeminal

system accurately-enough to be used in engineered applications for underwater sens-

ing?

2.1.5 Relevant previous studies

Table 2.1 summarizes the key studies highlighting the previous attempts to produce

whisker-type systems for robotic applications. The studies are classified according

to their publication date, the presented whisker-like device and its main utilization.

2.2 Study two and three

2.2.1 Cilia and metachronal coordination

Covering most of the human body’s cells and the surface of many cellular organisms

are microscopic hair-like structures known as cilia (length 2 ∼ 12 µm (Bottier et al.

2019)). Previously, they were thought of as some kind of vestigial remnants that

hardly play any role in biological processes. It was not until the last few decades

that the contributions of cilia began to be partially recognized (Marshall 2013).

Nowadays, the importance of cilia continues to be acknowledged further as many

illnesses are being associated with their dysfunction. Several medical conditions -
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Table 2.1: Previous studies on whisker-like devices in engineering applications.

year reference whisker-type device usage

2006 (Kim & Möller 2007,
Lepora 2016)

active-whisking platform based
on rodent whiskers

shape discrim-
ination

2011 (Sullivan et al. 2011) robotic manipulator with arti-
ficial rodent whiskers

texture recog-
nition

2012 (Beem et al. 2012) artificial seal whisker with un-
dulated cross-section

flow velocity
sensing

2008 (Eberhardt et al. 2016) torpedo-shaped sensor based
with artificial seal whiskers

wake detec-
tion

2017 (Zhuang et al. 2017) neural-network driven model
based on rodent whiskers

shape recogni-
tion

2019 (Muthuramalingam &
Bruecker 2019)

artificial whisker-array dis-
tributed on a pinniped head
model

vortices
frequency
detection

known as ciliopathies - such as respiratory infections, kidney disease and infertility

have been proven to be triggered by defects in cilia (Waters & Beales 2011).

Motile cilia possess the ability to move the surrounding fluid in a certain direction

which plays an essential role in the locomotion of sperms and sweeping dirt and

mucus outside of the lungs (Brokaw 1975, Fulford & Blake 1986a). A motile cilium

perform cyclic motion triggered by interactions of its composing microtubules, that

consists of repeating beat cycles. A single cycle is composed of two asymmetric

strokes; i.e., power stroke and return stroke. The ability of an individual cilium to

generate a fluid flow is essentially due to the asymmetry of its beating strokes. Fig.

2.4a highlights different phases during the two strokes of a cilium’s beat. If the beat

of an individual cilium were time-symmetric, the scallop theorem suggests that the

net displacement of its surrounding fluid would vanish (Purcell 1977). The switching

moment between power and recovery strokes is constrained by a mechanical (stress)

feedback in a biological cilium. Yet, Lindemann proved in what is known as the

geometric clutch hypothesis that mechanical stresses and geometrical configuration

of the cilia are coupled parameters and hence, the geometric feedback condition is a

simple way to represent how a cilium sense the moment to switch between the two

strokes (Lindemann 1994, 2007).
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Cilia often beat in groups while maintaining a certain phase shift among ad-

jacent neighbours forming a pattern known as a metachronal wave. A schematic

resemblance of this pattern is shown in Fig 2.4b. Similar patterns of coordinated

cilia are witnessed in human tissues (e.g., brain and lungs) and on the surface of

swimmer organisms such as ciliates (e.g., Paramecium) and Ctenophora (e.g., Pleu-

robrachia). The metachronal coordination was shown to have a significant role in

the generation of the steady-streaming transport of the surrounding fluid (Gauger

et al. 2009, Bruot & Cicuta 2016). In the work presented in this thesis, it is proven

that the metachronal coordination introduces a different degree of asymmetry to a

beating system of cilia-like flaplets even if the individual beating elements perform

time-symmetric beat profiles and cannot induce propulsion while beating separately.

Figure 2.4: Schematic representation of the periodic motion of cilia: (a) different phases of
a beat cycle of a single cilium where the power and return strokes are highlighted in blue and
red respectively. The dash line highlights the path undertaken by the cilium’s tip during the
cycle; (b) a metachronal wave formed by a group of beating cilia.

2.2.2 Dynamical similarity

Navier-Stokes equation (Tritton 2012) is the basic formula that describes Newton’s

second law of motion for an incompressible fluid. The non-dimensionalized form of

the equation can be written as:

∂u′

∂t′
+ u′.∇u′ = 1

Re
(∇′2u′ −∇′p′) (2.1)

Re =
ρULc
µ

, ∇.u = 0

where u, p velocity and pressure fields of the fluid respectively, the prime superscript

refers to a dimensionless quantity, t is time, Re is the Reynolds number, µ is the
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fluid’s dynamic viscosity, ρ is the fluid’s density, Lc is the characteristic length and

U is the speed scale selected for the given problem.

By examining the equation, one can realize that Re is the only parameter that

survived its normalization. Therefore, a correspondence can be created between

problems that have different length and speed scales but have similar Re. This

correspondence is known as dynamical similarity (Batchelor & Batchelor 2000). It

enables us to use the results of an enlarged experiment to investigate an observation

that happens at a much smaller scale.

2.2.3 Emergence of assembly

There is no such thing as a master ant that controls the organization of an ant

colony. An ant makes use of its own receptors and surroundings so that it can

automatically play an effective role in the group (Beckers et al. 1989). By keeping

track of the perceived information, an ant’s brain is chemically programmed to

perform a group-missing task and hence colonies of smart-acting ants are developed

(Allan et al. 1996). The rise of a collaborative behaviour due to individual body

reactions and surrounding environment properties with no central control involved

is called emergence.

Emergence is anything that once composed becomes more than the sum of its

parts. It results in the synergistic integration of individual parts when brought

together and act as a unit. That said, emergence can be noticed on many scales.

Humans when brought together form societies that have their own set of rules and

dynamics. On a tiny scale, water molecules that are relatively close to each other

interact under a specific set of rules giving birth to ”witness” which is not a property

of a single water molecule (Ball 2013). Similarly, the metachronal wave pattern of

cilia is believed to spontaneously emerge due to the hydrodynamic forces in the

viscous environment. A mechanical resemblance of this emergence phenomenon is

presented in the second study of this thesis.
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2.2.4 Hydrodynamic synchronization

Hydrodynamic synchronization is when the kinetics in a fluid cause a set of relatively-

close moving bodies to affect each other’s kinematics and finally have a coordinated

pattern of motion (e.g., in speed, phase, direction, etc.). Several models have demon-

strated the spontaneous emergence of hydrodynamic organization for bodies with

different shapes that are moving in viscous environments. Herein, light is spotted

on two of these examples as well as some of their key findings. The first is a nu-

meric model that is developed to mimic the beating of natural cilia and demonstrate

how a metachronal wave (MW) rises from an uncorrelated beating pattern (Elgeti

& Gompper 2013). Cilia were modelled as active rods that simulate the beating

of Paramecium and the surrounding fluid environment was modelled using multi-

particle collision dynamics (MPC). After approximately 130 cycles of beating, the

modelled cilia formed a MW-like beating pattern that possessed some minor defects

as shown in Fig. 2.5a. The model also studied the dependence of the fluid velocity

on the cilia spacing. It was revealed that the transport velocity of the surrounding

fluid increased as the cilia spacing decreased.

The second study is an experiment that was performed in the Cicuta laboratory

using two colloidal spheres (Kotar et al. 2010). By implementing the geometric

clutch hypothesis, the spheres are controlled using optical tweezers to have fixed

amplitude oscillations. The experiment demonstrated that with the help of the

viscous coupling between the oscillating spheres, a phase-lock is achieved between

their oscillations in an out-of-phase configuration. A microscopic view of the spheres

as well as the position trajectories of their centres are plotted in Fig. 2.5b.

2.2.5 Low-Reynolds swimmers

For biological and robotic swimmers with micro scale sizes (i.e., micro-swimmers),

the effect of inertial forces is suppressed compared to that of viscous forces; resulting

in a low Re. By examining Eq. 2.1 further, one can notice that as Re gets smaller

(less than one), the left-hand side terms gradually become less significant and can
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Figure 2.5: Emergence of hydrodynamic synchronization at low Reynolds numbers; (a)
model of cilia arrays self-assembly in metachronal waves; from (Elgeti & Gompper 2013); (b)
anti-phase synchronization of oscillating colloidal spheres; from (Kotar et al. 2010).

be neglected at Re� 1; simplifying the equation to the linear Stokes equations:

µ∇2u−∇p = 0, ∇.u = 0 (2.2)

Due to the linearity and time-invariance of the Stokes equations, it was proven

that for a body in a fluid, whose dynamics are described by the Stokes equations,

moving through a sequence of configurations C(t), the locomotion of the body and

the propulsion of its surrounding fluid do not depend on the speed of the performed

sequence. Herein, each point C in the configuration space represents the positions

of all points on the surface of the body at that instance in time t.

The proof can be outlined as follows:

� we know from applying the reciprocal theorem to the linear low-Reynolds

problem that the swimming (propulsion) speed U can be directly related to

the beating gait Ċ(t) of the swimmer (Stone & Samuel 1996)

U =

∫∫
S

Ċ · g(C)dS (2.3)

in which S is the instantaneous boundary of the swimming object and g is
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some general function that depends on the instantaneous gait configuration.

� the net displacement of the swimmer between t1 and t2 can be calculated by

the integral

∆X =

∫ t2

t1

Udt =

∫ t2

t1

∫∫
S

Ċ · g(C)dS dt (2.4)

� from there, if we consider another swimmer with a speed U ′ that undertakes

the same gait configurations but with a different rate, we give that different-

rate gait the notation C(τ) with τ = f(t), then we have

U ′(τ) =

∫∫
S

dC

dτ
τ̇ · g(C(τ))dS (2.5)

� we choose the temporal points t3 and t4 in the second swimmer’s gait to have

the same configuration as the points t1 and t2 in the first swimmer’s gait; such

that τ1 = f(t3) = t1 and τ2 = f(t4) = t1. The net displacement of the second

swimmer between t3 and t4 can be calculated by the integral

∆X ′ =

∫ t4

t3

U ′dt =

∫ t4

t3

∫∫
S

dC

dτ
τ̇ · g(C(τ))dS dt

=

∫ τ2

τ1

∫∫
S

dC

dτ
· g(C)dS dτ

= ∆X (2.6)

A consequence of this property of the Stokes flow is the so-called scallop theorem.

It states that if a body in a fluid, whose dynamics are described by the Stokes equa-

tions, undergoes a periodic cycle of configurations and the time-reversed sequence

of the configurations cannot be distinguished from the original sequence, the body

cannot produce net propulsion.

Purcell firstly introduced the theorem in 1977 where he stated that on order for a

body to generate fluid propulsion by cyclic motion, the time-reversed senescence of a

cycle needs to be different from the original (Purcell 1977). He suggested a three-link

swimmer that would follow a straight line in Stokes flow and was investigated later
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by Becker et al. in 2002. The model possesses two moving rods; each on its own

performs a reciprocal motion. However, the geometrical sequence of the swimmer

as a whole is not time-symmetrical (Fig. 2.6a) (Becker et al. 2003). Other micro-

swimmer designs have been utilizing Purcell’s arguments to generate propulsion at

low Reynolds numbers. Nasouri et.al. introduced a model micro-swimmer composed

of two spheres linked by a rod that changes its length in a periodic manner (Fig.

2.6b). One of the spheres was modelled as a hyperplastic solid that introduced

the required non-reciprocal pattern of deformations (Nasouri et al. 2017). Another

example was realized by Gao et al. of a helical micro-swimmer that was controlled

by an external rotating magnetic field (Gao et al. 2014). The rotation direction

of the helix controls the direction of resulted propulsion (Fig. 2.6c). The reader

is referred to Lauga’s review article (Lauga 2011) for more examples of synthetic

swimmers at low Reynolds numbers.

Figure 2.6: Schematics of numerical and experimental examples of micro-swimmer models.
(a) gait cycle of the Purcell’s three link swimmer; from (Becker et al. 2003); (b) model of a
linked two-sphere swimmer that can be actuated using optical tweezers; from (Nasouri et al.
2017); (c) realization of a magnetic-field-actuated helical micro-swimmer whose structure is
derived from different plants; from (Gao et al. 2014).

2.2.6 Key questions addressed by the present research

The presented research herein aims to provide adequate answers to the following

unknown research questions:

Research question 1: Can the metachronal self-coordination of cilia be replicated

using simple shapes like 2D flaplets?
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Research question 2: To what extent does the geometric clutch hypothesis play

a role in the cross-talk among adjacent oscillators in viscous environments?

Research question 3: What are the conditions necessary for oscillators (not

necessarily performing cilia-like profiles) to undergo hydrodynamic synchronization?

Research question 4: Can the metachronal coordination of oscillators with time-

symmetric beat profiles produce net propulsion?

2.2.7 Relevant previous studies

Tables 2.2 and 2.3 present the key relevant studies that demonstrated the previous

attempts of producing propulsion devices at low-Reynolds regimes and investigating

the hydrodynamic synchronization of artificial and model cilia. In Table 2.2 the

studies are classified according to their publication date, the main material of the

prolusion device and the actuation method of the produced mechanism. In Table

2.3, the studies are classified according to their publication data, type (experimental

or numerical) and the key finding or feature.

Table 2.2: Previous studies on micro-swimmers and propulsion devices at low-Reynolds
numbers.

year reference substantial material actuation

2007 (Kosa et al. 2007) piezoelectric beams electric filed

2007 (Evans et al. 2007) PDMS magnetic field

2011 (Kokot et al. 2011) superparamagnetic beads
(Dynabeads Epoxy M-450)

magnetic field

2014 (Gao et al. 2014) plant vessels magnetic filed

2015 (Rockenbach & Schnaken-
berg 2015, Rockenbach
et al. 2015)

PDMS pneumatics

2016 (Kim et al. 2016) polymer IP-Dip magnetic field

2019 (Ren et al. 2019) polymer IP-Dip acoustic field
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Table 2.3: Previous studies on the self-coordination of artificial and model cilia.

year reference type key feature

2003 (Kim et al. 2003) experiment bundling process of macroscopic
scale flagella

2010 (Kotar et al. 2010) experiment out-of-phase lock of two oscillat-
ing colloidal spheres actuated by
optical tweezers

2014 (Di Leonardo et al.
2012)

experiment
and numeri-
cal simulation

synchronization of two meso-
scopic rotors actuated by light
and radiation pressure

2008 (Niedermayer et al.
2008)

numerical
simulation

synchronization of spherical
beads using a phase-oscillator
model

2013 (Elgeti & Gompper
2013)

numerical
simulation

formation of metachronal waves
in a mesoscopic model of 2D cilia
arrays

2019 (Chakrabarti & Sain-
tillan 2019)

numerical
simulation

phase synchronization of a couple
of beating filaments
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Chapter 3

A Deep-Learning Model for Underwater Position Sens-

ing of a Wake’s Source Using Artificial Seal Whiskers

Abstract

Various marine animals possess the ability to track their preys and navigate dark

aquatic environments using hydrodynamic sensing of the surrounding flow. In the

present study, a deep-learning model is applied to a biomimetic sensor for underwater

position detection of a wake-generating body. The sensor is composed of a bundle of

spatially-distributed optical fibers that act as artificial seal-like whiskers and interact

with the body’s wake in the form of time-variant (bending) deflections. Supervised

learning is employed to relate the vibrations of the artificial whiskers to the position

of an upstream cylinder. The labeled training data are prepared based on the

processing and reduction of the recorded bending responses of the artificial whiskers

while the cylinder is placed at various locations. An iterative training algorithm

is performed on two neural-network models while using the 10-fold cross-validation

technique. The models are able to predict the coordinates of the cylinder in the two-

dimensional (2D) space with a high degree of accuracy. The current implementation

of the sensor can passively sense the vortex-street wake generated by the cylinder and

estimate its position with an average error smaller than the characteristic diameter

D of the cylinder and for inter-distances (in the water tunnel) up to 25-times D.
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3.1 Introduction

According to the market research report presented in (Underwater Robotics Market

Size 2018), the size of the underwater robotics market was estimated at USD 2.52

billion in 2017, which represented about 7.6 per cent of the global robotics mar-

ket size. With water covering about 71 percent of the earth’s surface, underwater

robotics has allowed for a broad range of applications in military, commerce, and

science. Generally, the robot’s perception of its surrounding environment is essential

for performing tasks, avoiding risks, and navigation. With the help of surveillance

sensors, robots can explore the unknown offshore world securely, despite the haz-

ardous and unpredictable underwater environment. However, further progression in

the development of navigation and object-tracking sensors faces a variety of technical

challenges (Leonard et al. 1998, Griffiths 2002, Kinsey et al. 2006).

Mostly, vision and sonar systems have been used for underwater surveillance.

However, both techniques feature some serious drawbacks. Firstly, vision-based

sensors are known for their limited perceptible range, which confines the use of cam-

eras to the near surrounding space. The absorption and scattering of light cause the

underwater environments to be muddy and cloudy, which results in images that can

hardly be featured (Kröger 2008, Lee et al. 2012). Additionally, an artificial source

of light energy is required in order to use a vision-based underwater sensor due to the

low level of natural illumination in the deep water (Yang et al. 2006). Similarly, the

transmission of acoustic waves is required for a sonar system to estimate the loca-

tion of the objects in the surrounding space (Akyildiz et al. 2004). Because both of

the techniques perform active sensing, the location of the emitter is revealed, while

a high level of stealth is often required in surveillance applications. On another

hand, sound emissions have been declared to be life-threatening to many marine

animals. Schrope, M. reported several death cases of beaked and minke whales due

to the emissions of the sonar systems used by the US Navy (Schrope 2002). Finally,

the energetic efficiency of both techniques is questionable. It has been shown that

the use of sonar sensing in a small autonomous-underwater-vehicle (AUV) leads to

significant inflation of the total consumed power (Akyildiz et al. 2004).
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Marine life is full of examples that can be studied to mine for new techniques that

can help to overcome the current challenges of underwater sensing. Fish and marine

animals demonstrate the ability to use their passive mechanical sensors for object-

detection and navigation under water, even with a partial or full lack of both visual

and bio-sonar. The blind cavefish is able to swim at high-speeds while avoiding col-

lisions with nearby objects. This fish developed the ability, known as hydrodynamic

imaging, to blindly sense the motion of water and recognize the surrounding objects

due to the usually-dark environment where it lives (Windsor et al. 2008, Von Camp-

enhausen et al. 1981, Montgomery et al. 2001). Pinnipeds (such as sea lions and

seals) have the ability to detect water disturbances using their facial mechanorecep-

tors, known as whiskers. They can use the acquired information to navigate the

surrounding environment, identify certain objects, and track their preys. Hanke et

al. demonstrated that the hydrodynamic trail of some preys remain detectable in

water for several minutes (Hanke et al. 2000, Hanke & Bleckmann 2004). This gives

Pinnipeds the ability to track far targets that can hardly be detected by vision. It

was experimentally shown that the Harbor seal can follow the path undertaken by

a submarine, even with an inter-distance of about 40 m (Dehnhardt et al. 2001).

It was also able to detect the direction of the submarine’s wake even with a 90◦

encountering angle. A control experiment was conducted under the same conditions

after the motion of the tracking seal’s whiskers had been impeded. In this exper-

iment, it was proven that the seal cannot detect the submarine’s wake without its

whiskers. In another study, a blindfolded Harbor seal was able to follow the hydro-

dynamic trail generated by a pilot seal after it had left the water (Müller & Kuc

2007). Harbour seals were also capable of detecting sinusoidal vibrations in water

with speeds that ranged from 0.245 to 1.8 mm· s−1 and frequencies ranging from 10

to 100 Hz (Dehnhardt et al. 1998). Last but not least, seals were also found to be

capable of distinguishing sizes and shapes of objects by sensing their hydrodynamic

wakes (Wieskotten et al. 2011).

Various sensing techniques have been adopted from biological models and used

for the characterization of underwater environments (Ju & Ling 2014, Tao & Yu

2012, Dijkstra et al. 2005, Kottapalli et al. 2017). Such sensors may assist or even
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replace the sonar and vision functionalities in some applications that require certain

levels of accuracy, stealth, or environmental impact. Kottapalli et al. developed a

MEMS pressure sensor for AUVs (autonomous-underwater-vehicles) that mimics the

fish lateral-line (Kottapalli et al. 2012). Motivated by Dehnhardt’s experiments of

Harbor seals, Eberhardt et al. presented a system of artificial whiskers that produced

vibration signals that were related to the hydrodynamic trail of a pilot submarine

(Eberhardt et al. 2016). We believe that further development of biomimetic sensory

systems would help marine robots to expand their perception of the surrounding

fluid motion.

Previous studies about seal’s sensing abilities have guided us to explore how

the seal interprets the perceived whiskers’ vibrations for hydrodynamic detection.

Different vortex structures were shown to carry information about the direction of

the disturbance source to the seal (Krüger et al. 2018, Wieskotten et al. 2010a).

Wieskotten et al. showed that the seal is able to track a propelled and gliding

submarine, even with two different wake’s inner fields (Wieskotten et al. 2010b).

By fluid-whisker interaction, the seal is able to detect the direction in which it

needs to swim to track the swimming body (Eberhardt et al. 2016). The wake of a

cylinder, which mimics the trail generated by a prey (fish), was reported to induce

time-variant deflection responses of artificial seal-like whiskers (Muthuramalingam

& Bruecker 2019). With the whiskers distributed over both sides of the frontal

area of the pinniped’s head, the generated wake affects each whisker differently,

depending on its adjacent local flow structure. We believe that, by comparing the

vibrations of different whiskers, information about the location of the wake’s source

can be deduced. The whiskers’ vibrations in (Muthuramalingam & Bruecker 2019)

were measured by tracking the whisker tips’ motion while using a camera. Other

embedded techniques, such as the fiber-Bragg-grating (Yu et al. 2004, Grattan &

Meggitt 2013) and strain gauges, can also be used to record the bending responses

of such whisker beams.

Neural systems of the brain do a unique job in exploiting the perceived noisy

raw data. In the visual cortex, signals that contain visual information (e.g., colours,

intensities, etc.) are interpreted as recognizable faces and objects. In the auditory
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cortex, the noisy vibration signals (i.e., amplitudes and frequencies) are interpreted

as meaningful sounds. Likewise, it is believed that the seal’s brain is capable of

translating the perceived whisker vibrations into a hydrodynamic image of the sur-

rounding aquatic environment. Accordingly, we aim to realize an artificial-neural

model that relates the vibration signals of an array of artificial whiskers to the

source of the disturbance that causes these vibrations. In 2017, the same approach

was taken by (Zhuang et al. 2017) for developing a goal-driven neural-network model

that mimics the rodent’s vibrissal-trigeminal system. They built a 31-whisker array

that performed as a bio-physical realistic model the rodent’s vibrissal system. As the

whiskers swept across various objects with different shapes, they collected the data

from different sweeps (i.e., torques and forces at the base of each whisker) and used

them to train the networks to perform a three-dimensional (3D) shape recognition

task.

Whisker-like artificial systems have been utilized in engineering applications for

both active and passive sensing. Pearson et al. demonstrated the use of active

whisker-arrays for increasing the amount and quality of tactile sensory information

for mobile robots inspired by the vibrissal sensory systems of small mammals, such as

rats (Pearson et al. 2011). Similar whisker-like tactile systems have been developed

and tested for recognizing the shapes and identities of different surrounding objects

(Lepora 2016, Kim & Möller 2007, Delamare et al. 2016). The hitherto known studies

of the use of whiskers in underwater sensing have focused on finding the sensitivity

limits of such structures in sensing flow disturbances in the aquatic environment.

A special undulated design of the cross-section along the whisker body was found to

suppress the vortex-induced vibrations of the whisker, thus removing the unwanted

responses induced by the seal’s own propulsive motion (Hanke et al. 2010, Beem &

Triantafyllou 2015). These results inspired Alvarado et al. to propose a whisker-type

sensor design that could be tuned in order to amplify certain hydrodynamic signals

and suppress others (e.g., noise) (y Alvarado et al. 2012). Recently, experimental

studies were carried out in our group for underwater sensing using arrays of whiskers,

where it was proven that the deflection signals of artificial whiskers can decode

the specific shedding frequency of a Kármán vortex street (Muthuramalingam &
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Bruecker 2019). The studies also highlighted the importance of the vortex-induced

pressure-gradients as a major contribution to the jerky response of the whiskers.

These studies have established the basis for the present work.

Objective

While previous studies have proposed and developed promising underwater sensors

based on seal whiskers’ behavior, the vast majority could only identify the hydrody-

namic wakes generated by different objects and some of their characteristics. Up to

now, to the best of the authors’ knowledge, whisker-like sensors were not used for the

position detection of a wake’s source or for navigation applications in autonomous

and non-autonomous underwater vehicles. In this study, we aim to employ the abil-

ity of seal whiskers to detect surrounding water movements in the development of an

underwater sensor that detects the position of the source of an upstream flow distur-

bance. Using supervised learning, we develop two models that relate the whiskers’

vibrations, on both sides of a pinniped’s head model, to the 2D coordinates of the

position of an upstream wake-generating body. The proposed sensory system imple-

ments a stealthy and life-like way of hydrodynamic sensing. It is meant to build the

basis for the development of a replacement or complementary device to the current

conventional underwater tracking systems.

3.2 Materials and methods

3.2.1 Physical model

A copy of a sea lion’s head was designed and 3D printed at City, University of

London based on the CT scan data of a real sea lion that was acquired from Museo

Delle Scienze, Italy. Optical fibers were gathered and illuminated from one end and

inserted through holes from the back side of a pinniped’s head model. The fibers’ free

endings, which are existing out of the holes from the front side of the head model,

perform as artificial whisker-like transducers. The diameter, lengths, and locations

of the fibers were selected so that their dimensions and spatial distribution are
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comparable to those of real whiskers based on the analysis presented in (Summarell

et al. 2015, Sawyer et al. 2016). The fibers are made of polymethylmethacrylate

(PMMA), which has a Young’s Modulus of about 3.5 GPa (Leal-Junior et al. 2018),

which is similar to the real whisker’s (Subramaniam et al. 2017). An illumination

source was attached to the end of the fibers that act as a guide to the light until it

exists from their tips. Figure 3.1 shows the 3D printed head and the attached fibre

cables that act as artificial whiskers. All of the fibers have the same diameter of

0.75 mm that is constant over their lengths. We capture the motion of 12 artificial

whiskers that have the same length and were previously shown in (Muthuramalingam

& Bruecker 2019) to have a similar response to real whiskers.

Figure 3.1: Three-dimensional (3D) printed model of the pinniped head. (a) captured image
of the head while the optical fibres are illuminated. (b) side view (c) plan view of the head.

3.2.2 Experiment

Figure 3.2 shows the experimental setup used for generating the data, which will

then be processed to prepare the training datasets (input-target pairs) of the learn-

ing models. The head model is placed and fixed in the center of an open-surface

water tunnel with a transparent test section (120 cm × 50 cm × 40 cm: length

× width × depth), which processes a water flow of 30 cm/s free-stream velocity.

A 35 mm cylindrical metal rod is vertically placed in the open-surface flow in the

upstream direction of the head. A high-speed camera records the coordinates of 12

whiskers’ tips that are distributed on both sides of the head and subjected to the

hydrodynamic trail of the cylindrical rod which can be located at different locations

in the water tunnel.
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The wake generated by the cylinder can be characterized by the Reynolds and

Strouhal numbers; Re and St, that are given by Equations (3.1) and (3.2):

St =
fD

U∞
(3.1)

Re =
U∞D

ν
(3.2)

where f is the Strouhal frequency, D is the diameter of the rod, U∞ is the free-stream

flow velocity, and ν is the kinematic viscosity of water. For cylindrical bluff bodies

and the present configuration; Re ' 104 and St ' 0.2 (Williamson 1996), a repeating

pattern of vortices (Kármán vortex street), is formed in the wake of the cylinder,

which interacts with the artificial whiskers, which act like cantilever beams, in the

form of bending deflections.

3.2.3 Data acquisition

The high-speed camera (ProcImage 500-Eagle high-speed camera, 1280 px × 1024

px, Photon Lines Ltd, Bloxham, UK) is used to record the bottom view of the head

and the illuminated whisker tips at a frame rate of 200 fps and with a pixel resolution

of 0.294 mm/px, given in Table 3.1. Figure 3.3 shows the image captured by the

camera in two different modes: (1) eight-bit grey level mode. (2) binary mode with

centroid detection of white connected pixels in a selected area in the frame. The 12

coordinates of the centroids of the white dots that correspond to the whiskers’ tips

are extracted from the second-mode frames and then saved for further processing.

The position trajectories of the tips of the outer whiskers that possess the largest

length (l '10 cm) are recorded throughout various tests. The inner whiskers are

less sensitive to the disturbance generated by the upstream rod that is placed at

different locations relative to the head due to their lengths and orientations. For

each of 32 different positions of the cylinder in the two-dimensional (2D) domain, a

separate recording of the image-coordinates of the whisker tips (that has a period of

approximately one minute) is saved for further processing. For the present set-up,

the recording has to be stopped each time before the position of the cylinder is
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Figure 3.2: Experimental set-up of the artificial head and the flow disturbance inside the
water tunnel. The side view (top) shows the optical setup of a high-speed camera underneath
the test section and a 45◦ mirror that are used to monitor the motion of the illuminated
whisker tips. The plan view (bottom) shows the boundary locations of the cylinder during
different tests. The recorded data of the whiskers’ vibrations due to the existence of the
cylinder at different locations are used for training the learning models. The origin of the
coordinate system is placed at the intersection of the head axis with its frontal face.

52



Table 3.1: Camera settings for the recording of the artificial seal whiskers.

setting frame rate [fps] resolution [px× px] pixel pitch [mm/px]

value 200 1280×1024 0.294

Figure 3.3: Camera views in the (x, y) plane of the two recording modes: (a) grey-level
compressed mode. (b) binary mode with centroid calculation. The grey-level image is masked
before binarization so that only the 12 whiskers’ tips of interest are visible. The whiskers are
numbered from 1 to 12 such that whiskers no. 1, 6, 7 and 12 indicate the front-left, rear-left,
front-right and rear-right whiskers respectively.

changed.

Measurement accuracy

The depth of field of the camera measurements is adjusted to about 10 cm in order to

capture an acceptably-sharp image the 12 whisker tips that have different locations

along the z direction. The resulted image in the grey-level compressed mode is shown

in Fig. 2.6.a. During the online recording of the tips, there exists a small uncertainty

in the detection of the tip coordinates that results from the centroid calculation

algorithm embedded in the camera barycentres recording mode. We could quantify

this error while monitoring a stationary tip coordinates in reference conditions and

found that the resulted measurement of the centroid has a maximum deviation from

the true value of less than the pixel pitch (|eγ| < 0.3 mm). We also kept the other

possible sources of error (e.g. instrumental, environmental or human) as minimum

as possible by keeping a dark environment with no light obstruction, minimizing

human interference with the optical setup and using a fast USB3 connection (i.e.,

with high bandwidth) for the transmission of the recorded coordinates.

53



3.2.4 Data processing and feature extraction

Using the recorded tip coordinates in the successive camera frames, the wake-induced

deflection vectors, γ, are calculated and saved at a sample rate r= 200 samples/sec.

As illustrated later in the results section 3.3.1, the recordings of the wake-induced

vibrations of the whiskers show that the y component of the vibrations, γ
y
, is the

dominant component in reaction to the cylinder wake. Here, the two-dimensional

coordinates in the (x, y) plane are recorded, which give us access to the x and y

components of whiskers’ vibrations. The reason we use this optical setup is that it

enables use to monitor the whiskers on both directions of the head which is essential

to predict the cylinder position. That said, the z component was also recorded in

another optical setup where the camera is fixed in front of the flow channel parallel

to the (y, z) plane, the camera scene is shown in Fig. 3.4. The recoded deflection

responses using that setup, presented in section 3.3.1, also show that the whiskers’

vibrations in the y direction in response to cylinder wake is dominant over those

in the z direction. The physical interpretation why the y deflection component is

the main component that captures the whiskers’ response to the cylinder wake is

illustrated in section 3.3.1. In the following analysis, we use the y component of

deflection to extract the required features for the machine-learning models.

Figure 3.4: Camera views in the (y, z) plane of the whiskers on the right side of the head;
from (Muthuramalingam & Bruecker 2019). This set-up was used in another study that
used the same whisker-array sensor. Here, we only borrow the recorded z-deflection response,
presented in section 3.3.1, to quantify the deflection response in the z direction in reaction to
the cylinder wake and compare it to the y component of deflection that we use in this study.

The y-deflection recordings of the whiskers result in 32 time-series instances of

γ
y

that correspond to the 32 different locations of the cylinder (refer to section 3.3.1,
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for example, responses of γ
y
). Each time-series is then divided into equal portions of

time period T that are then used to generate the input dataset. The corresponding

coordinates of the cylinder in the (x, y) space are also saved in order to generate the

target dataset.

When considering the whiskers’ bending responses that correspond to different

cylinder positions (presented in section 3.3.1), each time-series portion of the deflec-

tion vectors of time period T is reduced into two 12-element vectors that can capture

the reaction of the wake-induced deflection responses to changes in the cylinder’s

position. The two vectors are: the deflection mean; γ̄, and the root-mean-square of

the deflection fluctuations around the mean; γ′.

γ̄ =

∑N
i=1 γy(i)

N
, N = r × T (3.3)

γ′ =

√∑N
i=1(γy(i)− γ̄)2

N
(3.4)

γ̄ = [γ̄1 γ̄2 .. γ̄12]
T , γ′ = [γ′1 γ

′
2 .. γ

′
12]

T (3.5)

The generated data along with the corresponding cylinder positions compose

two 24-input-single-output datasets. The input dataset is composed of Q samples

of the two vectors: γ̄ and γ′ (each consists of 12 elements that correspond to 12

different whiskers), where the number of samples Q is dependent on the choice of

the sampling period T . The target dataset consists of the separated (x, y) coordi-

nates of the cylinder positions that correspond to each input sample. Figure 3.5a

shows the population of all the input data in the IR2 space (γ′, γ̄) during the record-

ings of 32 positions of the cylinder for T = 3 s and Q = 772 samples. The input

samples of the whiskers numbered 1 and 12 are highlighted in blue and red colours.

The underline in the notations γ̄ and γ′ indicates the vector representation of the

deflection values for the 12 whiskers (representing 12-element vectors). However,

when mentioning the deflection quantities of a single whisker (γ̄1 and γ′1) or men-

tioning the deflection features in general (γ̄ and γ′), the underline notation is not
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used. Figure 3.5b presents the sample distribution of all whiskers within two dif-

ferent complete recordings that correspond to positions (−15,75) and (5,75) of the

cylinder. Different colors in both plots in Figure 3.5b represent different whiskers.

The plots show the diversity of each whisker’s data of the mean and fluctuating

tip deflection during a single recording (the same position of the cylinder). The

diversity of the deflection data is more significant for the whiskers that are located

on the same side as the cylinder is.

Figure 3.5: Distribution of the mean and fluctuating deflection samples (inputs to the learn-
ing models) for the 12 whiskers in the (γ′, γ̄) space: (a) population of the complete input
dataset that correspond to all positions of the cylinder. Highlighted in blue and red are the
data samples of the whiskers numbered 1 and 12 respectively. (b) input samples of two se-
lected recordings that correspond to the cylinder positions (−15,75) and (5,75). The scattered
sample points are coloured by their whisker indexes as represented by the colour bar.
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3.2.5 Supervised learning models

The wake-induced deflection responses vary differently in response to changes in

the x and y coordinates of the wake-generating cylinder position, as illustrated in

section 3.3.1. Consequently, two separate neural-network models are developed in

Matlab, so that each one is responsible for the prediction of a single coordinate of

the cylinder position. The input samples are separately prepared to be fed into two

24-input-single-output NNs. Each NN is trained to predict the associated coordinate

of the cylinder position (x, y) that corresponds to a given 24-element sample q of the

input deflection data γ̄ and γ′ of the 12 whiskers. The selected structures of both

NNs as well as their learning algorithms are thoroughly described in Appendixes A

and B, respectively. The selection of the final structures and the optimization of the

NN parameters is based on maximizing the prediction accuracies of the models while

keeping them as fast and simple as possible. Finally, the feedforward neural network

(FFNN) model is used for the prediction of the x coordinate, while the time-delay

neural network (TDNN) model is used for the prediction of the y coordinate with

an input-memory (input-layer delay) of four samples.

The selection of the NN types, associated with the predictions of each coordi-

nate, was performed as follows: (i) Firstly, different NN types (e.g. feedforward,

time-delay, layer-recurrent, etc.) were tested for the prediction of each coordinate

separately. (ii) For each type, the models were trained and the best performances

were recorded. (iii) At the end, the selection of the final NN type for the prediction

of each coordinate was done separately so that the associated NN model achieved

the best performance with the simplest structure possible. For example, for the

prediction of the x coordinate, the FFNN type showed a very good performance us-

ing a small network structure while the addition of the dynamic behaviour through

testing the TDNN type required more computational resources without having a

positive effect on the resulted performance.

The task of the learning models is to compare the deflections of the whiskers

located at different locations on the head and on both sides and accordingly deduce

the position of the upstream wake-generating cylinder, without the need to further
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investigate the flow between the cylinder and the head. With a total number of

samples of Q, the network is trained to optimize the model that associates between

the different input-target pairs of the given dataset. The number of samples Q is

determined by the selection of the sampling period T . After setting different values

of T for different rounds of training for both models, we selected the sampling periods

3 s and 5 s, for the x-coordinate model and the y-coordinate model respectively.

Two strategies are followed in order to prevent the models from being over-fitted

to match the training dataset pairs. The problem of overfitting is a common one

when dealing with supervised machine learning and it is thoroughly described in

(Dietterich 1995, Jones 1957).

Firstly, the standard 10-fold cross-validation algorithm (Hastie et al. 2009) (de-

veloped in Matlab and the code is available with the authors) is performed, as

follows: (1) shuffling the training input-target pairs and dividing them into 10 sub-

sets; (2) performing 10 different rounds of the network training iterative algorithm;

(3) for each round of training, one of the 10 data folds is used as a validation set

while the rest are used for training the network; and, (4) the model accuracy of each

round is separately evaluated by calculating the correlation coefficient R between

the trained model response (output) to the validation set and their given targets.

The mean of the correlation coefficients ΣR/10 of the cross-validation rounds is con-

sidered to be an approximate representation of the generalized performance of the

model.

For additional validation, three extra recordings of the whiskers’ deflection data

(with cylinder locations different from those of the original 32 recordings) are pro-

cessed to come up with approximately Q/13 samples of input-target pairs that would

be used as a test dataset. This dataset serves the following purposes: (1) it is used

to evaluate the error ranges of the trained-NNs predictions of new cylinder positions

in the 2D space (x, y) that were completely excluded from the training itself; (2)

the accuracy of the test results is used as a feedback to minimize the number of

training iterations of the networks; and, (3) it is lastly merged with the validation

subsets of the 10-fold cross-validation to calculate unbiased estimates of the models’

accuracies.
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The following parameters are also selected in order to optimize the NN training:

the number of NN layers M and the number of neurons per each of the M -1 hidden

layers S1,2..M−1. The following steps summarize the training procedure and the

selection of those parameters:

1. the optimization parameters of the Marquardt–Levenberg Algorithm (MLA)

are initialized, as follows: µ = 0.001, β = 10 (refer to Appendix B for a brief

description of the MLA);

2. preliminary values of the two parameters are used, such that the hidden-layer

size is set to [S1 = 15, M = 2] for both models;

3. the network training algorithm is performed (as illustrated above) and the

overall model accuracy is estimated after the 10-fold cross-validation;

4. the hidden-layer size is then updated by increasing the number of neurons per

layer and/or the number of hidden layers and then jumping back to step 3 to

restart the training of the networks;

5. after several loops of the above sequence, the hidden-layer size associated with

the highest prediction accuracy is selected: [S1 = 15, S2 = 16, M = 3] for the

x-coordinate prediction model and [S1 = 29, S2 = 13, S3 = 18, M = 4] for

the y-coordinate prediction model.

3.3 Results

3.3.1 Wake-induced bending of the whiskers

The wake-induced deflection vectors, γ
x

and γ
y
, of the 12 whisker tips in the x and

y directions, respectively, are extracted by the processing of the camera output and

are defined as:

γ
x

= [γ1x γ2x .. γ12x]
T , γ

y
= [γ1y γ2y .. γ12y]

T (3.6)

γnx = xn − x0n, γny = yn − y0n, n ∈ [1..12] (3.7)
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where xn, yn are the position coordinates of the nth whisker tip in the (x, y) space

and x0n, y0n are the coordinates of the mean position of the nth whisker tip due to

the free flow U∞ (without the existence of the cylinder rod).

As a consequence of the orientation of the 12 whiskers along the lateral axis

of the head (the x axis) and due to the small angles of the whiskers’ bending, the

displacement of the tip in the (x, y) can be roughly approximated by its y component,

see Fig 3.6. Therefore, the x component of the wake-induced deflection can be

neglected. By examining the different components of the wake-induced deflection

of a selected whisker in the presence of the cylinder (plotted in Figure 3.7), it is

clear that the effect of the cylinder wake on the whisker’s deflection is dominant

in the y direction. For reference, we also plot the results of the z component of

the deflection at the whisker tip, γz = z − z0, where z is the position component

of the whisker tip along the z axis and z0 is the nominal position of the whisker

tip due to the free flow. The deflection data in the z direction were taken from a

former experiment with an optical setup that captures the whiskers’ vibrations in

the (y, z), illustrated by Fig 3.4, but using the same cylinder disturbance and the

same flow speed in the water tunnel (Muthuramalingam & Bruecker 2019). Since

the flow and the cylinder’s wake are mainly propagating in the y direction, the z

component of the whiskers’ deflection also appeared to be minor when compared to

the y component.

Figure 3.6: Schematic drawing highlighting the x and y components of the whisker’s bending
deflection in the (x, y) plane (the recorded plane in the used camera setup).

Now, let us investigate the effect of changing the position of the upstream cylinder

on the y-deflection curves of the whiskers. In Figure 3.8a, responses of the deflection

in the y-direction are plotted over 1 min. for different locations of the cylinder along

the x-axis and for a reference case of the free flow with no disturbance. In the

reference case, with no cylinder placed upstream, the tip location varies slightly from

its nominal position due to the self-induced vibration of the artificial whisker in the
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Figure 3.7: Wake-induced deflection values of a sample whisker in the z (bottom), x (middle)
and y (top) directions.

presence of the flow and the surface wave of the open channel (Muthuramalingam &

Bruecker 2019). After inserting the cylinder, the vortex street in its wake interacts

with the whisker and causes a noticeable large-scale variation of both the mean tip

deflection and the amplitude of the deflection’s fluctuations around the mean. The

deflection response of a whisker that is located on the left side of the head is found to

change with the position of the upstream cylinder. Among three different locations of

the cylinder, the largest variation of the deflection curve from its reference case (top

plot) is found when the cylinder is on the left and centre position with respect to the

head axis (i.e., positions (5,75) and (0,75), respectively). This variation gradually

shrinks as the cylinder is moved to the right position (−5,75). Similarly, the response

of the deflection is found to vary for different locations of the cylinder along the y-

axis. The fluctuations of the tip deflection curve around the mean (particularly the

high-frequency components) get larger as the cylinder moves closer towards the head

(from position (5,85) to position (5,29)), as illustrated in Figure 3.8b for the same

selected whisker. Despite that the deflection response is not solely dependent on a
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single coordinate of the position of the cylinder for a given Re and St numbers, we

believe that each coordinate can be separately deduced by comparing the deflection

data of different whiskers that are located on both sides of the head.

3.3.2 Prediction outcomes of the learning models

After the post-processing and reduction of the wake-induced y-deflection data of the

12 whisker tips that correspond to 32 different locations of the upstream cylinder,

24 inputs (two inputs per whisker) are sampled and used to train the learning

models (i.e., each sample is derived from a time-series portion of γ
y

of a period

T , as illustrated in the Methods section). Two separate artificial neural networks

(NN) are developed to associate between the 24-input samples and each one of the

cylinder’s position-coordinates in the (x, y) space. A feedforward neural network

(FFNN) is used for the prediction of the x coordinate, while a time-delay neural

network (TDNN) is used for the prediction of the y coordinate. The Methods

Section illustrates the selection and parameter optimization of both networks.

The prediction outcomes of the trained NN models of the x and y coordinates

of the cylinder positions are plotted in Figure 3.9 in the form of regression and

error-histogram plots. In Figure 3.9a,b, the predicted (output) coordinates, repre-

sented by the label o, are plotted as a linear fitted function of their labeled target

values, represented by the label g. The slopes of the fitting lines, as well as the

correlations between the output/target pairs, show the ability of both models to

accurately predict the upstream cylinder position. The error histograms, as plotted

in Figure 3.9c,d, show satisfactory ranges of the prediction deviations from the true

target values when considering the small size of the training datasets and the mea-

surement inaccuracies (deviations are represented in the plots by the label e). Note

that the number of prediction instances is different between the two models due

to the choice of different sampling periods T for both models while preparing their

training datasets. Increasing the size of the training samples has been attempted by

overlapping the time-series portions of data that are processed to generate training

inputs, described in Equations (3.3) and (3.4). However, the overlapping did not

have much influence on the resulted error ranges. It is expected that increasing the

62



Figure 3.8: Deflection responses of a selected whisker tip due to the existence of the cylinder
at different locations: (a) variation of the tip’s deflection response due to different x-coordinate
locations of the cylinder. The curves from top to bottom represent the following cases respec-
tively: no cylinder (reference case), cylinder positions: (−5,75), (0,75), (5,75). (b) variation
of the tip’s deflection response due to different y-coordinate locations of the cylinder. The
curves from top to bottom represent the following positions of the cylinder, respectively:
(5,85), (5,29).
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size of training dataset shall be done by performing more recordings of further posi-

tions of the cylinder as well as increasing the recording period to have more portions

of T -sampled data. The accuracy of the model as a function of the training-dataset

size is investigated later in this section.

Figure 3.9: Results of the NNs predictions of (x, y) coordinates of different cylinder locations
using the input samples of the training dataset. (a,b) predicted outputs of (x, y) as a linear
fitted function of their labeled targets. (c,d) histogram plots of the prediction error instances
resulted from both models.

For further validation of the networks’ training, the resulted models are tested to

predict three positions of the upstream cylinder that have not been included in the

training stage. The test datasets of both models are acquired from the processing

and reduction of the three extra recordings. Figure 3.10 presents the synchronized
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models’ prediction results of the test samples. With an average absolute error of

about 1 cm and 3 cm for the x and y models, respectively, around 85% of the

resulted predictions lie in a 2 cm×6 cm area around the true value of the cylinder

position. However, one can notice that some predictions of the y-coordinate have

larger deviation amounts from the true value (up to a maximum of 12 cm). This

might be due to the relatively small size of the y-model training dataset. It can also

be due to the fact that the recordings are not continuous and that the unrealistic

discrete changes in the cylinder position are hard to predict for the TDNN model

that possesses a dynamic behaviour. Overall, the test results show good agreement

with the training validation outcomes in terms of the mean prediction accuracy and

the ranges of output error.

Figure 3.10: Results of the NNs predictions of (x, y) coordinates of three different cylinder
locations using the input samples of the test dataset. For a total of 59 input samples and
three different locations of the cylinder, the prediction instances of each location and their
mean are represented by different colours (left). The two-dimensional (2D) error histogram
(algorithm available here (Efficient 2D histogram, no toolboxes needed, MATLAB Central File
Exchange. Retrieved from: n.d.)) is presented as a colour-contour plot with a total number of
25 bins and a biharmonic interpolant fitting function (right).

By considering the accuracy of the test results, an unbiased estimate of the

general accuracy of the NN models can be obtained by merging the test dataset

samples with the validation subsets of the 10-fold cross-validation and calculating

the correlation coefficient R between the model response to the merged input data

and their given targets. For output-target paired data that consist of n pairs, the
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coefficient R is calculated as

R =

∑n
b=1(ob − ō)(gb − ḡ)√∑n

b=1(ob − ō)2
√∑n

b=1(gb − ḡ)2
(3.8)

in which o represents the output, g represents the target, ō and ḡ are their mean

over the given number of pairs, respectively.

Note that the models are still trained with the same training datasets that do

not include input samples that correspond to the three test positions of the cylinder.

In this case, the mean correlation value at the end of the cross-validation algorithm

is found to be 98.68% and 96.15% for the x-coordinate model and the y-coordinate

model, respectively.

The presented results demonstrate that, in the current set-up, the models’ pre-

diction accuracy of the cylinder location does not depend on the distance between

the cylinder and the whisker-array sensor, see Fig. 3.9.b. Herein, the cylinder loca-

tion could be changed within the range 29 cm < y < 85 cm in which y is the distance

between the cylinder and the lateral axis of the head, see the experimental set-up in

Fig. 3.2. The upper limit of the sensor’s distance to the cylinder is restricted by the

size of the water-tunnel test section. We expect that for very far distances of the

cylinder, the wake signature in the flow would become more difficult to be identified.

However, similar wake signatures were reported to be clearly detectable in water for

distances as far as tens of meters (Dehnhardt et al. 2001). Regarding the very near

distances of the cylinder, other sensing techniques (e.g., vision, proximity) can be

used for the direct sensing of the cylinder position, similar to how the real seal use

its visual ability for spotting near objects.

3.3.3 Sensitivity of the predictions to the size of the training

dataset

The dependency of the models’ prediction accuracy on the size of their training

dataset is studied. For each model, the training is restarted with a different number

of input/target pairs fed into the NNs. For each size of the training dataset, the

accuracy estimate of the models’ prediction is calculated. Finally, the scores are
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recorded in Table 3.2. The accuracies of both models tend to decrease as the sizes of

their training datasets get smaller. However, one can notice that the y-coordinate

model’s accuracy is more sensitive to the training dataset size. Because the TDNN

model is used for the y-coordinate prediction, it is considering d+1 samples of inputs

at a given training iteration, where d is the model’s memory size (i.e., number of

input-layer delayed samples). On the other hand, the x-coordinate model is only

considering a single sample of the input vector at a given iteration. Therefore, it

is expected that the y-coordinate prediction can be improved further by increasing

the input dataset size. Another reason might be that, although the whiskers’ re-

sponses are recorded for 32 different cylinder positions, the y coordinates of these

positions vary on only six discrete levels. Although the current performance of the

NN models is satisfying, whiskers’ deflection data that correspond to more y-levels

of the cylinder locations can be used to reduce the y prediction error ranges.

Table 3.2: Sensitivity of the prediction accuracy (mean[R]) of the (x, y) models to the size
of the training dataset.

size of training
set of x-model
[samples]

mean[R] for pre-
dictions of x

size of training
set of y-model
[samples]

mean[R] for pre-
dictions of y

772 0.9868 432 0.9615

708 0.9795 400 0.9231

644 0.9845 368 0.9332

580 0.9757 336 0.8681

516 0.9734 304 0.8517

452 0.9659 272 0.8099

388 0.9789 240 0.7223

324 0.9718 208 0.6166

260 0.9429 176 0.7367

196 0.9459 144 0.6472

3.3.4 Sensitivity of the predictions to the number of whisker-

pairs included in the training

Table 3.3 shows the effect of varying the number of whisker pairs used in the prepa-

ration of the training datasets on the accuracy results of both models. The number
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Table 3.3: Sensitivity of the prediction accuracy (mean[R]) of the (x, y) models to the number
of whisker pairs included in the training stage. The number is varied in the front-to-rear
direction of the whiskers (top) and vice versa (bottom).

number of whisker
pairs in the training
set

mean[R] for predic-
tions of x

mean[R] for predic-
tions of y

6 0.9868 0.9615

5 0.964 0.8843

4 0.9851 0.8686

3 0.9738 0.763

2 0.9512 0.8447

1 (front pair) 0.9536 0.6604

6 0.9868 0.9615

5 0.98 0.9120

4 0.978 0.8766

3 0.9781 0.6595

2 0.9583 0.5928

1 (rear pair) 0.9532 0.3305

of whisker pairs is varied, such that one pair indicates the right and left whiskers that

have the same index when the whiskers are ordered according to their position on

the y-axis (whiskers that have approximately the same y position). At first glance,

one can say that the accuracy of the models has a direct relation to the number of

whisker pairs involved in the training. The more whiskers included, the more accu-

rate the prediction. It is believed that the flow disturbances, including any noise, do

not have the same effect on the deflection responses of different whiskers, because

they are located at different locations in the 3D space and due to slight variations in

their sensitivities. Therefore, increasing the number of whiskers could be providing

the NNs with the ability to filter out the noise in the flow and better decode infor-

mation about the wake source. It is believed that the y-coordinate model is more

sensitive to the variation of the number of whisker pairs included in the training due

to the same reasons that are detailed in the paragraph above (while considering the

accuracy sensitivity to the training-dataset size).

Table 3.3 also compares the two cases when the number of whisker pairs is firstly

varied in the front-to-rear direction and then the other way around. The accuracy
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of the y-coordinate model is noticeably sensitive to the location of the whisker pair.

When trained with the front whisker pair, the accuracy of the y-coordinate model

is almost double its value when trained with the rear pair. This can be explained

by the fact that the deflection responses of the rear whiskers are not only due to the

wake of the cylinder, but could also be due to the wakes of the frontal whiskers that

are located in their upstream direction. It is also shown that the effect of varying

the whisker-pair location is almost negligible on the accuracy of the x-coordinate

model. A possible explanation is that the corresponding pair of whiskers from both

sides of the head are used. Even being affected by the whisker-induced wakes, the

network compares the deflection responses of both sides and can successfully encode

the information about the lateral position (x-coordinate) of the upstream cylinder.

3.4 Discussion and conclusions

Previous experiments have demonstrated the ability of the real seal to detect and

track its prey while using the information acquired by its facial whiskers about the

surrounding water disturbances. In this study, an artificial sensor, inspired by the

seal’s whiskers, is developed using machine learning and tested for underwater 2D

position detection of a wake-generating body. The sensor consists of an array of

optical fibers that are illuminated from one end and inserted through holes from the

backside of a 3D printed model of a pinniped’s head and exited from its frontside.

The free endings of the fibers act like artificial whiskers that are distributed on both

sides of the head. The head, with the artificial whiskers, is mounted inside an open-

surface water tunnel that possesses a flow-speed of 30 cm/s. The whiskers are then

subjected to the wake that is generated by a cylinder placed at different upstream

locations. A high-speed camera, with a special online optical tracking feature, is used

to record the wake-induced vibrations of the whiskers at a frame rate of 200 frames

per second. The acquired data are processed and reduced in order to generate the

input dataset for the neural networks’ training. With their targets (output labels)

being the separated (x, y) coordinates of the different cylinder positions, two neural

networks are trained using the Marquardt–Levenberg learning algorithm and the
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10-fold cross-validation technique to associate between the input/target pairs.

The measured signal herein is the tip deflection of each optical fiber simultane-

ously, which is directly proportional to the applied bending moment (Euler–Bernoulli

beam theory). Although other alternatives to directly measure the bending of the

fibers are known and feasible, this path was initially chosen due to the availability

of the optical tracking camera. In our future work, we aim to implement Fiber-

Bragg-gratings (FBGs) in the optical fibers to estimate the bending fluctuations

from the corresponding shifts in the reflected Bragg-wavelength. This method, well

established in fiber-optical strain or bending sensors, would allow us to capture the

signal from inside an underwater vehicle while the fibers’ free ends protrude from

the body as in the current application. FBGs are known for their high measurement

sensitivity. Campanella et al. reported that the detection limit of the fiber’s strain

using FBG can reach down to the nano-strain range (Campanella et al. 2018). This

is expected to improve the measurement resolution compared to the current deflec-

tion measurement at the tip using the high-speed camera1. Yu et al. presented

a bend sensor using an embedded FBG which possessed a curvature measurement

resolution2 of about 0.0054 m−1 (Yu et al. 2004) which corresponds to a deflection

value at the tip of our optical fiber of about 0.027 mm which is also an order of

magnitude lower than the current detection limit of the current setup.

Another alternative is the implementation of strain gauges to measure the bend-

ing strain of the artificial whiskers. The whiskers in that case can be made from a

different material and have a different shape, other than the fiber-optic cables used

in the current implementation. Such embedded methodologies would facilitate the

integration of the sensor into realistic underwater vehicles.

The trained models can accurately predict the upstream locations of the cylinder

that correspond to the training samples of the deflection data as well as the samples

of a stranger test dataset, which corresponds to three new cylinder locations. The

developed sensor can passively sense the wake and deduce the position of its source

with an average absolute error of about 1 cm for the x-coordinate prediction and

1The current measurement resolution of 0.294 mm of the deflection at the fiber’s tip corresponds
to a strain value in the micro range (' 5 µε).

2The curvature resolution represents 1/R where R is the bend-radius of curvature
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3 cm for the y-coordinate prediction. The reported average error is less than the

characteristic parameter, D, of wake-generating body and for distances larger than

25-times D between the sensor and the body (limited by the size of the water tun-

nel). The accuracy of the resulted predictions is found to be sensitive to the training

dataset size and the number of cylinder locations associated with the recorded de-

flection data. The accuracy is also found to vary with the number and location of

the whisker pairs that are involved in the training process.

The study is limited by the size of the water-tunnel test section and the number

of cylinder locations in the performed measurements. Further data collection with

more cylinder positions can be performed in the future to minimize the prediction

errors of the models. Additionally, as a consequence of the equipment limitation in

the water tunnel, the captured recordings of the whisker vibrations is not continuous

(i.e., they correspond to discrete changes of the cylinder position). It is expected

that, given a continuous variation of the cylinder position in a real-time recording

experiment, the NNs can be trained to perform online trajectory-tracking of the

upstream cylinder. It is also of interest to test the tracking capability in a larger

environment, as we know from previous studies that the wake of a prey can last

visible in water for several minutes (more than 3 min. for a small goldfish of a

10 cm body length (Hanke et al. 2000)). The characteristic wake generated by

the cylinder in the current implementation of the experiment is comparable to that

generated by several fish and cruising submarines. The flow speed used herein is also

comparable to the speeds of existing underwater vehicles. Therefore, the responses

of the artificial whiskers in such environments are expected not to vary significantly

from the current reported ones.

The NN models need to be trained for several scenarios in an otherwise realistic

and time-variant environment in order to use the present sensor in underwater-

vehicles for tracking applications. The trained network models can then work in

real-time with the data acquisition system (i.e., that captures the vibrations of the

whiskers and generates the corresponding input data for the models) to continu-

ously update the location of the detected wake’s source. Large-scale water currents

are not expected to affect the tracking capability of the neural networks, as their
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influence would be seen along all the individual whiskers in a coherent manner. In

our experiments, when the whisker is placed in the water flow (independent of the

existence of the upstream cylinder rod), vortices are shed from the body of the

whisker itself (as the whisker is nothing but a cylinder with a relatively-small diam-

eter). Those vortices produce a time-variant force acting on the whisker that leads

to oscillations that we call the vortex-induced vibrations of the whisker (also called

self-induced vibrations) (Beem & Triantafyllou 2015). These oscillations, with a

relatively-high frequency component (the unique frequency of the vortex shedding

behind whisker) and a relatively-low amplitude, are different from the wake-induced

vibrations of the whiskers resulted from their interaction with the cylinder rod’s

wake, refer to section 3.7.2 for more information about the vortex-induced and the

wake-induced vibrations of the whiskers. In (Muthuramalingam & Bruecker 2019),

a detailed analysis of the vibrations spectrum of the whisker in the flow was pre-

sented for the same experimental-setup used here, where it was shown that the two

components of vibrations (wake-induced and vortex-induced) are clearly separable

and that the vortex-induced vibrations are hardly captured in the y component of

deflection which is recorded in the present setup. Herein, the NN models could show

a high degree of accuracy in estimating the cylinder position, which suggests that

the effect of that unwanted high-frequency noise on the current measurements, if

any, is suppressed. As the NNs receive their inputs from all whiskers, they possibly

can filter out any minor noise that is simultaneously-detected in the input measure-

ments of different whiskers, allowing the present sensor to be trained and used in an

otherwise noisy environment.

In light of the challenges that face the current techniques of underwater surveil-

lance, the presented sensor demonstrates an alternative methodology of target-

tracking that can be utilized in autonomous-underwater-vehicles. The sensor im-

plements a stealthy and passive way of perception that is suitable for use in dark

or muddy underwater environments. It possesses a minimum level of environmen-

tal impact by featuring a lifelike and safe way of sensing, which facilitates smooth

integration with the surrounding marine life.
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3.5 Appendix A

Structures of the neural-network models

The structures of both the x-coordinate and y-coordinate networks can be described

by the schematic in Figure 3.11. The diagram represents a feedforward network

structure with M layers; (M -1) hidden layers and one output layer, and an optional

input-memory function Πd.

Figure 3.11: Structure of the M -layer feedforward neural networks used for the prediction
of the x and y coordinates of the cylinder position.

The network input n to the layer k + 1 is a linear function of the output a of

its preceding layer k. In the following analysis until the end of this section, the

sample indexes and the layer indexes are represented by superscripts and subscripts

respectively.

nk+1 = Wk+1ak + bk+1, Wk+1ak =

Sk∑
j=1

wk+1(i, j)ak(j) (3.9)

where Sk is the size of the layer k (i.e., number of elements of vector ak), k ∈

{0, 1..M − 1} is the layer index, bk+1 is the biases vector and Wk+1 is the weights

matrix of layer k + 1.

The network output a of the layer k + 1 is

ak+1 = fk+1(nk+1), f1,2,.M−1(n) =
2

1 + e−2n
− 1, fM(n) = n (3.10)
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a0 is connected to the input vector p, that represent the deflection data of the whisker

tips, via the input-memory function Πd of which d=0 for x-coordinate prediction

(direct connection) and d=4 for y-coordinate prediction.

Π0(p
q) = pq, Π{d|d∈N}(p

q) = [pq .. pq−d]T , (3.11)

a0 = Πd(p) (3.12)

aM is connected to the network output o and the error e is defined as the difference

between the target label g, that represents one of the two coordinates of the cylinder

position (x, y), and the output of the network o.

aM = oq, eq = gq − oq (3.13)

where q is the sample index and d is the memory size of successive input samples. The

addition of a d-sample input-memory provides the model with a dynamic response

which could add a noticeable gain to its efficiency. Such networks with a finite-time

input-memory are known as time-delay neural networks (TDNN) and have been

reported to be particularly efficient in speech-recognition, property-prediction and

automatic-control applications (Waibel et al. 1989, Han et al. 1999, Vančura et al.

2008).
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3.6 Appendix B

Learning algorithm

The goal of the NN is to map each sample of its input vector to its corresponding

given output label (Anderson 1995). The performance of each network model is

evaluated by the cost function C which is defined as the mean squared error (MSE)

of all output-target pairs.

C =
1

Q

Q∑
q=1

(eq)2 (3.14)

in which Q is the total number of samples.

In order to minimize the cost function, the Marquardt-Levenberg algorithm

(Marquardt 1963) (i.e., an optimization of the of the steepest descent method

(Rosenbloom 1956) used in the standard backpropagation NN learning (Anderson

1995)) is used to update the weights and biases of the NNs. It updates the network

weights and biases in each iteration as follows (Hagan & Menhaj 1994):

∆z = [JTJ + µI]−1∇C, J(i, j) =
∂e(i)

∂z(j)
(3.15)

where z is the parameter vector which contains all weights and biases, e is the error

vector; e = [e1..eQ]T and J is the Jacobian matrix of the network error. The term

[JTJ +µI]−1 substitutes the learning rate of the original steepest decent algorithm.

The separate term JTJ is the Gauss-Newton approximation of the Hessian matrix

of the cost function; H(C). The parameter µ is initialized with a small value and

is multiplied by a factor β each time the update of z results in an increase in the

value of C. As µ gets larger, the algorithm approaches a steepest descent algorithm

with a learning rate of 1/µ.
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3.7 Critical Analysis

3.7.1 Overview and study contributions

The study demonstrates the use of optical fibers to mimics seal’s whiskers to localize

underwater wake-generating preys or bodies. It presents a novel type of sensing that

allows underwater robotic systems to perceive the underwater disturbances safely

and passively. The sensors detects the hydrodynamic vibrations in the object trail

and hence identify its two-dimensional location parallel to the water surface.

Using learning models, the study demonstrates how the vibrations of artificial

whiskers can be interpreted as useful information such as the position of the dis-

turbance source. By training two neural-network models the sensor could locate

the position of an upstream cylinder with high precision. Despite a few recognized

limitations of the study, it seam adequate for an exploratory phase of research in

underwater surveillance. In general, the main problem addressed in the study –

underwater localization using learning models – is appealing and worth being re-

searched given its potential to implement an affordable, passive and safe solution of

underwater sensing.

3.7.2 Exploratory discussion and future work

The subject of this study is implementing an underwater wake-tracking sensor in-

spired by pinniped’s whiskers. Other applications of whisker-like system (e.g., tactile

sensors inspired by mammals whiskers) were not detailed in this chapter. Instead,

previous experiments studying the seal’s tracking capabilities using its whiskers as

well as underwater bio-inspired sensors were given particular attention. In section

2.1.3 in the Background chapter, the light is spotted on some previous implementa-

tions of whisker-type engineering systems

3.7.2.1 Whisker-Flow interaction

As discussed in section 3.4, each whisker, being nothing but a cylinder placed in a

water flow, produces a local wake composed of shed vortices with a frequency much
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higher than the cylinder rod’s shedding frequency. That local wake produces what is

called the vortex-induced vibrations of the whiskers, which has a low amplitude and

a high frequency relative to the wake-induced vibrations of that same whisker due to

the presence of the cylinder rod in front of it. Fig. 3.12 demonstrates the difference

between the vortex-induced and the wake-induced vibrations of the whiskers (the

cylinder in the figure represents the whisker).

Figure 3.12: Schematic showing the difference between the vortex-induced vibrations (left)
and the wake-induced vibrations (right) of the whisker.

In Fig. 3.12 (left), the produced vortices behind the whisker induce a time-variant

force that acts on the whisker body which leads to the vortex-induced vibrations

of the whisker. The frequency of these vibrations is noticeably higher than that of

the wake-induced vibrations. The reason is that the frequency of the vortex-street

behind the whisker, in Fig. 3.12 (left), is approximately Drod/Dwhisker ' 47 times

higher that that behind the cylinder rod in Fig. 3.12 (right). It is important to note

that the high-frequency component of the whisker oscillations is the dominant mode

of vibration in the free flow (without the existence of the cylinder rod) (Muthura-

malingam & Bruecker 2019). The vortex-induced vibrations are mainly detected in

the measurements of the z component of whisker deflection which is not captured

in the current measurement setup.

Complexity of computational-fluid-dynamics simulations

The whisker interacts with the surrounding flow in form of in-line and cross-flow

vibrations of its body. In order to simulate the whisker dynamics in reaction to the

flow, direct numerical simulations can be used. The simulation of the whisker-fluid

interaction in complex shear-flow situations would provide a better understanding
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to the relation between the whisker’s vibrations and the surrounding flow charac-

teristics, which could be also related to the wake-generating body’s geometry and

position. However, to capture the dynamics of a single whisker, multiple servers

may be needed to perform the required computations. The time step of the compu-

tations, even in a clean-flow case, needs to be small enough to capture the whisker

flow-induced vibrations (Violette et al. 2007). Introducing the rod’s wake in the flow

adds an additional degree of complexity to the problem. For each computational

step, the flow field in between the rod and the whisker needs to be rendered. This

will increase the required computational power substantially for simulating the dy-

namics of a single whisker. In our case, if we consider multiple whiskers, it would

be very difficult to resolve such a problem.

The advantage of using machine learning is that there is no need to study the

detailed flow-field between the rod and the whisker or around the whisker itself.

The only required information to predict the cylinder’s location is the measured

vibrations of the whisker tip. The neural-network models, that mimic the whisker-

trigeminal system in the brain, can then extract the important features in these

vibrations and relate them directly to the upstream wake-generating body.

3.7.2.2 Usage of the whisker-array sensor in real-life applications

The characteristic wake generated by the cylinder in the current set-up, despite being

in a controlled environment, is comparable to the wake generated by seal preys (fish)

(Beem & Triantafyllou 2015). It is also comparable to the wake usually generated

by the fin of submarines (Lee et al. 2016). However, future work (e.g. testing the

sensor and training the networks in time-variant and complex environments) is still

required to validate the sensor for use in robotic navigation/tracking applications.

In our experimental facility, using the water flow in the water-tunnel enables

us to use a fixed cylinder as the wake-generating source. In real-life applications,

the prey (e.g., fish) produces the wake by swimming with a relative speed to the

background water. The use of a swimming object as the disturbance source requires

a wide facility with the wake-generating body and the sensor both moving inside it

(such as a swimming pool). However, that is not necessary in the current imple-
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mentation as the background water is moving instead of the cylinder and the sensor

themselves, simulating the required relative motion situation. That enabled us to

conduct a fairly-similar study in our available lab facilities and using the fixed setup.

The important feature herein that is required for the NN models to perform their

predictions is the recorded vibrations of the whisker-array sensor in response to the

wake.

The NN models are currently trained within a constant-speed flow situation.

Changing the speed of the flow in the water-tunnel would cause a change in the

frequency of the shed vortices from the cylinder rod (i.e., a shift in the Strouhal

frequency of the cylinder’s vortex street) which would be reflected, in a coherent

manner, on the measurements of the whiskers’ vibrations. Likewise, in case of

changing the speed of the wake-inducing body and the sensor or in case they have

different speeds (in a real-life application where the target and the sensor are moving

in a relatively-still background), a shift in the frequency spectrum of the recorded

wake-induced vibrations of the whiskers is also expected. Since these changes (either

in the current setup or in a real-scenario) would affect all whiskers simultaneously,

I expect the NN models to still be able to compare the deflection responses of

different whiskers, located at different locations on the head and on both sides,

and hence deduce accurate cylinder locations. Similarly, in case of existing water

currents, their effect would be mainly detected in the deflection measurements of

all whiskers simultaneously and is not expected to substantially impact the final

prediction accuracy.

Indeed, some difficulties will to rise while testing the sensor’s integration into an

underwater vehicle in a realistic environment as the network training would then

need to be expanded for different new situations. Nevertheless, the present study

can establish the basis for the models’ training in such future applications.

3.7.2.3 Implementation of the deep-learning sensor in real-time appli-

cations

The current data-acquisition technique using the high-speed camera allows for feed-

ing the neural models with the recoded deflection data of the whiskers after the
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experiments are concluded. Once the NNs are trained in a given environment, the

data acquisition process and the predictions of the trained models can run simulta-

neously in real-time. However, in order to perform such online data-acquisition, a

different measurement technique of the deflection data of the whiskers will be more

suitable. In future work, it is intended to use strain gauges or fiber Bragg-Gratings

as embedded methodologies to capture the vibrations of the whiskers from inside

the implemented sensor and feed them directly into the neural models in real-time

(described in the Discussion section 3.4).

Currently, the Neural models require a time-series of the vibration data that

has a period of 3–5 seconds to predict a new position of the cylinder. I expect

that this period can be minimized by expanding the training dataset used for the

neural models’ training (i.e., by training the networks for more cylinder locations).

The selection criterion of this period for the optimum prediction performance is

illustrated in section 3.7.3. That said, a shorter time period can still be selected

while keeping the resulted accuracy of predictions sufficiently high, see Fig. 3.14.

3.7.2.4 Optimization of the neural network parameters such as the hidden-

layer size

Since the whisker’s vibration response varies differently due to changes in the x

and y coordinates of the upstream cylinder, the parameters of each neural model

associated with the prediction of a separate coordinate are expected to be different

from those of the other model. In other words, the hidden layer sizes and the

number of neurons of the neural models depend, in a direct manner, on the predicted

quantity. Accordingly, the selected parameter values herein are only suitable for the

current application (i.e., prediction of the position of a wake-generating body using

the wake-induced deflection of the whiskers) and for the specific quantity (x or y)

associated with the model.

The selection of the NN parameters was performed based on the achieved per-

formance of the associated NN models. Several parameter values were tested, and

the corresponding prediction performances of the models were estimated. Finally,

the parameters associated with the models of the most accurate predictions were
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selected.

The choice of the NN architecture came down to multiple trials. During the

various tests to finally select the hidden-layer sizes, the NN models were initialized

with a single hidden layer with 15 neurons. Then, every possible configuration was

tested (increasing the number of neurons/hidden layers by one per each trial) until

the hidden-layer size reached: 3 hidden layers, 30 neurons each (every time a new

hidden layer was added, the number of neurons in that layer was initialized with

10). After reaching that size, the number of neurons per each of the three hidden

layers was increased by amounts of 2 until it reached 40. Larger values of increments

were chosen in this stage because the networks clearly showed overfitted behaviours

resulting in less validation accuracies as the number of neurons got higher. Bigger

hidden-layer sizes were tried (until the number of neurons reached 40) only to verify

that the overfitted behaviour continues. Finally, the hidden layer size associated

with the model that scored the highest prediction accuracy is selected.

The chosen approach and the choice of the increment values agree with the

suggestions in the literature:

� to reach a small-size network that successfully performs the required task, you

start with a small structure, growing additional neurons until the satisfactory

solution is reached (Neural Networks: An Introduction. By Berndt Müller,

Joachim Reinhardt, Michael T. Strickland)

� the number of neurons per a hidden layer should usually be between the size

of the input layer and the size of the output layer – less than twice the size of

the input layer (Introduction to Neural Networks with Java. By Jeff Heaton)

3.7.3 Prediction of the direction of the disturbance source

and selection of the parameter T

In this section, a third neural-network model is developed to predict the direction of

the upstream wake-generating body. The angle that the position vector of the body

makes with the anteroposterior axis of the head (the y axis in Fig. 3.2) is defined

as ψ = tan−1(x/y), in which x and y are the position coordinates of the upstream
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body in the head reference frame. Although the angle ψ can be derived directly

from the network outputs of the two developed models for the x and y coordinates,

the period of the deflection data time-series required to predict y is 5 seconds. The

aim here is to investigate if a model can be developed for the prediction of the angle

separately whose input data can be derived from a smaller time-series (T < 5s). I

will also demonstrate in this section the detailed procedure followed to select the

parameter T for sampling the input datasets of the neural models.

The feedforward network structure is again used for the prediction of the angle

ψ (the same structure as the one used for the x-coordinate prediction). The input

data for training and testing the model are derived from the same recordings of the

wake-induced deflection data used for the two previous models and using Eqs. 3.3

and 3.4. In the following analysis, the procedure followed to select the value of the

period T used for generating the input dataset is illustrated.

1. Firstly, the lower limit for T is set to a small enough value. Here, I start with

T = 0.1 s

2. The selected value of T is used to generate the training data of the NN model

and hence the network is trained to predict the value of ψ

3. The accuracy and the RMS error level of the trained model is recorded

4. the value of T is incremented by a discrete amount (in this case 0.1 s) and

then the two steps (2 and 3) are repeated

5. the process is stopped when a saturated performance is achieved

Fig 3.13 shows the performance values of the trained models for ψ prediction

(mean[R], maximum error – max[e] – and root-mean-squared error – RMSE – of the

predictions) in response to varying the parameter T .

As shown in the plot, the best prediction performance of the angle ψ is achieved

when the input training data are derived from 3-second time-series data of the

whiskers vibrations. That said, the performance of the direction prediction is also

satisfying for lower value of T. For example at T = 2 s, the correlation mean is 96%
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Figure 3.13: Performance results of the trained neural-network models for the prediction of
the disturbance source direction (the angle ψ) for varying values of T .

Figure 3.14: Error histogram plots of the angle ψ predictions of the associated neural network
models for: (a) T = 2 s and (b) T = 3 s.

and the RMSE is below 2 deg. Choosing a lower value of T would allow for using

smaller amount of data in the control of the orientation while running the networks

online in the assumed situations. This would in turn give the opportunity to track

the direction of targets that are varying their location quickly relative to the head

model. The error histogram of the angle ψ prediction of both the T = 2 s and

T = 3 s models is plotted in Fig 3.14.
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Chapter 4

Spontaneous Synchronization of Beating Cilia: An

Experimental Proof Using Vision-Based Control

Abstract

This article investigates the formation of spontaneous coordination in a row of flex-

ible 2D flaplets (artificial cilia) in a chamber filled with a high viscous liquid (Re

= 0.12). Each flaplet is driven individually to oscillate by a rotary motor with the

root of the flaplet attached to its spindle axle. A computer-vision based control loop

tracks the flaplet tips online and toggles the axle rotation direction when the tips

reach a pre-defined maximum excursion. This is a vision-controlled implementation

of the so-called “geometric clutch” hypothesis. While running the control loop with

the flaplets in an inviscid reference situation (air), they remain in their individual

phases for a long term. Then, the flaplets are studied in a chamber filled with a

highly viscous liquid, and the same control loop is started. The flexible flaplets

now undergo bending due to hydrodynamic coupling and gradually form a pattern

of metachronal coordination. The study proves in a macroscopic lab experiment

that viscous coupling is sufficient to achieve spontaneous synchronization, even for

a symmetric cilia shape and beat pattern.
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4.1 Introduction

A wide range of biological systems use synchronization in their movement patterns

(Pikovsky et al. 2003, Strogatz 2012), ranging from small-scale unicellular organisms

to larger scale sperms and microswimmers. At low Reynolds numbers, this coordina-

tion is crucial for the propulsion of microswimmers or the generation of transport on

ciliated walls (Knight-Jones 1954, Elgeti et al. 2015). Motile cilia are found in many

different tissues, from the brain (Sawamoto et al. 2006) to the lung and the oviduct,

and in many organisms, from Chlamydomonas (Rüffer & Nultsch 1997) and Volvox

(Short et al. 2006, Drescher et al. 2010) algae to Paramecium. It is the beat coordi-

nation of the invidiual cilia in the array that plays an essential role in the locomotion

of sperm, the cleaning of breathing air, and the movement of oocytes in the fallopian

tube (Fulford & Blake 1986b, Blake et al. 1983, Smith et al. 2008, Brokaw 1972).

Metachronal synchronization results when cilia beat with a certain constant phase

shift between each other. Similar coordination was imposed among artificial cilia

and flagella for microswimmer propulsion. Many studies have proposed ways to use

the cilia propulsion mechanism in nanomechanics and microfluidic devices (Drey-

fus, Baudry, Roper, Fermigier, Stone & Bibette 2005, Gauger et al. 2009, Sanchez

et al. 2011). Inspired by the progress made in the fabrication of small-scale flexible

structures, the hydrodynamic interaction of artificial cilia has become again of in-

terest to optimize such engineered systems. At low Reynolds numbers, the inertial

terms in the Navier–Strokes equation can be neglected (section 2.2.5), simplifying

the momentum equation to the linear Stokes equation

µ∇2u−∇p = 0, ∇.u = 0 (4.1)

with the pressure p, the velocity u and the dynamic viscosity µ of the fluid. As

the right-hand side in Eq. 4.1 is time-independent, it suggests that for symmetric

beating patterns it may not be possible to spontaneously come into a synchronized

beating pattern (Kim & Powers 2004, Elfring & Lauga 2009). However, the flexibility

of the cilia adds another degree of freedom to the equation (Reichert & Stark 2005,
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Bennett & Golestanian 2013). Typically, the beating pattern of natural cilia is non-

symmetric in time; i.e., during the power stroke, the cilium moves forward while

stretched out straight, and during the return stroke it moves back while retraced

(bent) near the wall (see Fig. 2.1a). This was adopted by computer-simulation

studies for 2D arrays of cilia (Elgeti & Gompper 2013, Gueron & Levit-Gurevich

2001), together with the “geometric clutch” hypothesis that was first introduced

by Lindemann (Lindemann 1994, 2007). The results suggested that hydrodynamic

interactions are sufficient to achieve spontaneous synchronization for such models of

natural cilia.

Synchronization of model flagella was studied for macroscopic rotating helices

(Kim & Powers 2004) and colloidal spheres driven by optical traps (Kotar et al. 2010,

Di Leonardo et al. 2012). However, up to now simple 2D symmetric flaplets have not

been tested for their possible self-synchronization. Often in such 2D systems, syn-

chronization was just imposed by the control of the actuators to achieve maximum

efficiency of the transport (Brücker et al. 2017). Therefore, the process of sponta-

neous synchronization has not been studied in such experiments under well-defined

conditions so far. The aim of the present work is to introduce such an experiment

and to test the conditions that lead to spontaneous synchronization. Therefore, we

use silicon rubber flaplets as artificial, macroscopic cilia that are driven by motor-

controlled rotating axles in which the flaplets are clamped at one end and are forced

to undergo a symmetric beating motion at a predefined frequency. The integration

of the fluidic system with a feedback control loop is done by vision-controlled imple-

mentation of the “geometric clutch” hypothesis. Bending deflections of the flaplets’

tips are tracked while applying geometric thresholds for the toggling of the rotating

direction of each individual motor separately. Hereby, we will experimentally prove

that viscous coupling can force a row of individually beating flaplets from random

initial conditions into a synchronized beating pattern, forming a metachronal wave.

The chapter is structured as follows: Section 2 describes the methods, and results

are shown in Section 3. Finally, discussion and conclusions are given in Section 4.
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4.2 Materials and methods

4.2.1 Fluidic chamber and artificial cilia

The experimental setup is designed to mimic a row of five artificial cilia (n = 5)

with individual beating actuations at their roots. Each of the flexible cilia with

a length l = 40 mm and width w = 20 mm is made of a silicon rubber sheet of

thickness t = 2 mm (material polydimethylsiloxane (PDMS), Young’s modulus E =

5.96 MPa). The Young’s modulus was qualified with an impulse-response test as

described in Favier et al. (Favier et al. 2017). The obtained value is well within the

range documented for standard silicon rubber (Young’s modulus 1 – 50 MPa).

Each of the flaplets (indicated with index i from 1 to 5) is clamped with one short

end to the spindle axle of a rotary DC servo motor. The individual DC motors with

the flaplets are fixed on a support frame in a horizontal row such that the flaplets’

free ends point vertically down with an interspacing between each of the spindles of

b = 22 mm. The row is inserted from top in the center of a closed chamber with

a squared (60 mm x 60 mm) cross section, see Fig. 4.1. The chamber is made out

of transparent Perspex to allow optical access to the system. Both lateral sides of

the chamber can be closed and liquid can be filled such that the flaplets are fully

submerged up to the top wall of the chamber. As working liquid, pure glycerol is

used with a density of ρ = 1260 kg · m−3 and a viscosity of µ = 0.95 Pa · s at room

temperature.

For the present study, the flaplet beating cycle is initiated with a beating fre-

quency

fbeat =
1

Tc
= 0.3 beat s−1 (4.2)

The beat amplitude A = 9 mm, which is set to ensure that each two neighbouring

flaplets do not just touch each other at an angle of |θ| ≤ 0.22 rad. The tip speed v is

given by the rotary velocity of the DC motor ω = 0.267 rad/s. Small adjustments of

the individual amplitudes Ai are necessary to take into account small uncertainties

in the DC motors controller response between programmed angular speed and the

actual measured ones. Therefore, a calibration procedure is done for the individual
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Figure 4.1: Schematic view of the closed working chamber: (a) front view of the chamber
with the five flexible flaplets at resting conditions and (b) side view of one flaplet clamped on
the short side to the axle of one of the five motors.

amplitudes Ai to end up with the same frequency fbeat for each individual flaplet i.

The characteristic parameter of the flow is the Reynolds number, which is defined

with the preset amplitude A and the tip speed v

Re =
ρvA

µ
' 0.12 (4.3)

For reference measurements with the control loop in an inviscid environment, the

chamber is emptied to ensure that no viscous coupling affects the flaplets’ motion.

4.2.2 Computer-vision system

The control loop presented herein requires the online tracking of the tips of the

flaplets and the feedback of the position to the main control processor and the

motors (see Section 4.2.3). Therefore, a high-speed camera (ProcImage 500-Eagle

high-speed camera, 1280×1024 px2, Photon Lines Ltd, Bloxham, UK) is monitoring

the tips of the five flaplets recognized by a fluorescent marker glued onto each tip.

Two mirrors are used to facilitate the illumination and imaging of the system, as

shown in Fig. 4.2. An LED light source (IL-106G Green LED Illuminator, HARD-

Soft, Krakow, Poland) is adjusted to continuous illumination mode. The fluorescent

material glued onto each tip scatters the emitted light back to the camera. An

optical filter (optical edge filter, cut-off wavelength 550 nm, Novasoft, Aarhus, Den-
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mark) is used to reduce stray light from the back of the frame, which is painted

in black. The markers are arranged in a zigzag pattern to help identify the tips

separately as single objects in the image processing phase, even when the flaplets

are getting close to each other. The scene is recorded with a rate of 505 fps at 700 ×

225 px2 image format, and a typical image of the 5 visible marker dots is shown in

Fig. 4.3. Each image is processed online to extract the tips coordinates using image

binarization and centroid detection. The resulting coordinates of the tip markers

are then fed to the main controller at a sampling frequency of fs = 15 Hz. The

current implementation allows a maximum observation period of approximately 1

min, corresponding to a total number of 18–20 cycles.

Figure 4.2: Schematic view of the optical set-up to record the tip motion of the artificial
cilia.

Figure 4.3: Original image of the flaplet tips after binarization and color inversion for a
single instant in the process of self-organization. For reference, we overlaid circles marking
the centroids and the flaplet tip contours (dashed lines). The oscillatory motion is along the
horizontal image axis, perpendicular to the flaplet span. The left-most flaplet is i = 1, and
the right most is i = 5 in rising order. Note that the roots of the model cilia are uniformly
spaced, as shown in Fig. 4.1.
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4.2.3 Feedback control-loop

A mechatronic system is designed to actuate, monitor, and control the row of flaplets.

The system shown in Fig. 4.4 is composed of three subsystems: (i) the main plant,

which consists of the chamber, the flaplets, and the five motors; (ii) the supervisor

controller for monitoring the flaplets and controlling the servo motors with the

desired speed and direction; and (iii) the optical recording system, which consists

of the high-speed camera and the illumination. The energy flows into and out of

the control system as follows: The five flaplets are controlled to start beating from

random initial positions at t = 0. The motors’ speeds and beating amplitudes are

set by the controllers to the same calibrated values. Then, the motion is started

and continuously monitored by tracking the tip markers. Each motor is advised

to reverse direction once the attached flaplet’s tip reaches its predefined maximum

position.

Figure 4.4: Schematic view of the integrated mechatronic system (a) and the feedback
control-loop flow chart (b).

This implementation in the control loop is equivalent to the geometric clutch

hypothesis introduced by Lindemann (Lindemann 1994, 2007), which suggests that

the cilium motor reverses the beating direction once a certain terminal position is

reached. Herein, the bending deformation is induced by the viscous coupling of

the surrounding liquid and neighbouring flaplets and causes the tip of the flaplet
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to deviate from the simple zig-zag trajectory prescribed by the rotating axle. This

allows for phase variations in the system due to force-induced bending deformation

of the flexible cilia.

4.2.4 Reference test in an inviscid environment

This step is required to guarantee that the measured time-variant phase differences

among neighbouring beating flaplets in the presence of the liquid can be regarded as a

reaction to the hydrodynamic forces of the surrounding fluid and the viscous coupling

among the flaplets and are not imposed by timing issues raised by uncertainties in

the image processing and motor control. Therefore, the control loop is first run in

an inviscid environment with the liquid chamber fully emptied. Theoretically, in the

reference case the phase relationship between the flaplets in the row should remain

exactly the same for infinite number of beats after the start of the control loop. All

uncertainties such as those in the imaging processing to detect the tips centroids

and in the calibrated motor speeds can accumulate to an observable variability of

the phase, which can then be used to quantify an upper limit within the observation

period. The performance in air is then compared to the control loop run with the

flaplets in the liquid. The coordinates of the tips are by-passed to a recorder during

the motion tracking while the control loop is running.

4.3 Results

Figure 5 shows the recorded position trajectories for both situations: the control

loop in reference situation and the control loop in the existence of strong viscous

coupling. Indeed, the results for the reference situation demonstrate that the phase

relationship between the flaplets in the row remains approximately constant over

the number of recorded cycles. A small variation of flaplet i = 3 is witnessed after

15 cycles, which is less than a 10% phase drift. All flaplets perform a zig-zag-type

oscillatory motion while they remain in straight shape. In contrast, for the system

with high viscous coupling, the phase differences are time-variant. The flexible

flaplets start bending as a reaction to the stronger fluid forces, which leads to a
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deviation of tip location relative to the position prescribed by the angle of the

motor with the flaplet in straight shape. Maximum values of about 2 mm were

observed, which corresponded to roughly 25% of the beat amplitude. The system

comes after about 15 cycles into a coordinated synchronous motion when the phase

lag among the tips remains approximately constant in space (between pairs) and in

time. The straight black lines in Fig. 4.5 (bottom) show this observation clearly.

The lines are passing through the instants where the individual beats reach their

peak position. Only flaplet i = 1 appears to be lagging behind the other tips. There

are some possible explanations for this observation, which are discussed in the next

section.

For further characterization of the metachronal coordination between neighbour-

ing beating flaplets i and i− 1, we define the cycle ratio CR from the phase differ-

ences of reversal times Tpeak in the corresponding beat cycles:

CRni(Tpeak) =
Tpeak i − Tpeak i−1

Tc

Fig. 4.6 shows the temporal evolution of the phase differences between each

couple of neighbouring flaplet tips for flaplet i = 2–5. The non-dimensional phase

differences CRni of the four synchronized flaplets are found to converge to 15–25%

of the cycle period between each neighbouring couple. This is close to the phase lag

observed in natural cilia models to obtain optimum transport conditions (Gauger

et al. 2009). For comparison, the black line shows the behavior of one pair of flaplets

CRn4 for the reference case in air.

4.4 Discussion and conclusions

Previous numerical models of the cilia beating patterns have simulated the sponta-

neous emergence of metachronal waves due to hydrodynamic interactions (Nieder-

mayer et al. 2008, Elgeti & Gompper 2013). Implemented in these models is often

the geometrical clutch hypothesis, which was introduced by Lindemann (Lindemann

1994, 2007) to explain how the cilium motor reverses the direction. Up to now, there

has been no experimental proof of this spontaneous synchronization for rows of arti-
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Figure 4.5: Position trajectories of the five flaplet tips while applying the feedback control
loop; (top): flaplets in reference case (air); (bottom): flaplets in highly viscous liquid. The
black lines indicate the phase relationships between maxima of neighbouring flaplets over time.
The position corresponds to the centroid coordinate of the flaplet tip marker in pixel units
along the horizontal image axis in Fig. 4.3. The colors indicate the different flaplets (red:
flaplet i = 1, blue: flaplet i = 5). Note that we selected for visibility reasons in the plot
for air the initial phase shift between pairs of cilia to be at the extreme value of 180°, which
results in out-of-phase beating. Therefore, the black lines in the upper plot do not indicate
any synchronization, as there is no interaction between the flaplets.

ficial 2D cilia under controlled conditions. In our study, we have verified the previous

hypotheses in a macroscopic experiment by documenting the spontaneous synchro-

nization in a row of flaplets due to their hydrodynamic interaction. This has been

made possible by (i) introducing system flexibility through the use of silicon rubber

flaplets as artificial cilia, which undergo bending in the highly viscous environment

at Re = 0.12 and (ii) introducing online computer vision as the feedback methodol-

ogy within the control loop that mimics the geometric clutch hypothesis. Since the

silicon flaplets bend as a reaction to the hydrodynamic coupling, it was important

to optically track the flaplet tips for control of the beat reversal commands. This

93



Figure 4.6: Evolution of the flaplet-to-flaplet phase relationship in the first 18 cycles, shown
in terms of the cycle ratio CRn3–5 between pairs of flaplets 2–5. For comparison, the black
line shows the behavior of one pair of flaplets CRn4 for the reference case in air. The curve
fitting is done with a smoothing spline. The gray shaded region is the range of cycle ratios
reported in literature for metachronal waves of model cilia to achieve optimum fluid transport
(Gauger et al. 2009).

additional degree of freedom in the cilium tip motion relative to the imposed motor

trajectory allows coordination to take place. This load response has been measured

and discussed for natural cilia and flagella in (Klindt et al. 2016). Our system is

therefore equivalent to the key property of natural cilia required for synchronization,

as they are able to change speed (or tip speed) in response to hydrodynamic load.

Hydrodynamic coupling is herein the source driving the system to synchronization,

as nothing has changed between the two control experiments except the fluid. This

agrees with the conclusions given in (Gueron et al. 1997).

The results show that a system of 5 individually beating flaplets can form spon-

taneous synchronization after several cycles, while the same system in an inviscid

environment remains fixed in its initial phase relationships. The observed conver-

gence to phase differences of 15–25% of cycle duration agrees with the range found

in natural cilia coordination for optimum flow transport (Gauger et al. 2009). This

hints at a possible relaxation of the control system to a minimum of dissipation in

the liquid mixing. Additional flow measurements in our experiment are planned to

gain details of the flow field during synchronization (see chapter 5).

Changing the stiffness of the flaplets is expected to affect the emergence of spon-

taneous synchronization. In case the flaplets were made from a rigid material, the

94



viscous-coupling effect would disappear completely, as it depends on the cross-talk

among the flaplets in from of the bending deflections at their tips. on the other

hand, the flaplets cannot be too flexible for the following reasons: (i) The amount

of the flaplet bending at the tip needs to be within a reasonable range as a fraction

of the beat amplitude so that the current implementation of the clutch control loop

can work. (ii) The flaplets need to remain untouched by their beating neighbours

during the process of self-synchronization which limits the bending allowance at the

tip. (iii) The more flexible the flaplet would be, the less momentum it would trans-

fer to the surrounding fluid, therefore, generating effective propulsion would not be

possible. The question of the optimum stiffness of the flaplets is not discussed in the

present study. However, the present stiffness was chosen according to the flaplet’s

geometry and the applied viscous forces such that the maximum deflection at the tip

during the self-synchronization process is approximately 25% of the beat amplitude.

As seen from the results, the synchronization is not perfect, as the differences in

phase do not converge to the exact same values. Flaplet number i = 1 could not

reach the phase relationship to the next as close as the others during the recording

period of total number of 18 cycles. This could be related to the non-symmetric

boundary effects for flaplet number i = 1 and i = 5. For both, the beating in

direction away from the inner neighbouring flaplets is less influenced by viscous

coupling than it is for the inner ones. As a result, the phase synchronization therefore

may drift towards lock-on to either of the end flaplets. A definite answer to the

boundary effects can only be found by testing a chamber with a circular row of

flaplets, which eliminates these effects. However, variations in the phase shifts were

also observed in the numerical simulations, even for imposed periodic boundary

conditions (Niedermayer et al. 2008, Elgeti & Gompper 2013). Real-time control is,

in general, sensitive to time constrains and system internal delays, which may lead

to aliasing effects (Grenander 1959). It may take around 0.067 s from reaching the

terminal position of the flaplet tip to the action of the flaplet reversing the beat,

given by the sampling frequency. At the current tip speed, this delay equates to a

possible variability of the amplitude of ∆A/Ai = 0.06. This uncertainty introduces

a time variant parameter in the system synchronization. However, this random
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effect can be fairly neglected compared to the phase shift introduced by the bending

of the flaplets due to hydrodynamic interactions, as proven by comparison to the

reference measurements in air, see also Fig. 4.6. In addition, during the calibration

stage, the five motors were found to have slightly different speeds. Nevertheless,

synchronization can even emerge in the presence of different intrinsic beat properties

and oscillator noise as long as hydrodynamic coupling is strong enough, see ref

(Brumley et al. 2014).

A number of additional results is shown here to address several questions of

importance regarding statistics and reproducibility of the results. Fig. 4.7 shows

another experiment in the viscous liquid at random initial conditions.

Figure 4.7: Repetition of the control experiment in glycerol; compare this to Figure 5b. Note,
again, emergence of metachronal coordination after about 15 cycles. Herein, the observed
metachronal wave runs in opposite direction to the one documented in Figure 5, bottom. For
explanation of the lines see the figure caption in Figure 5.

The results prove that the system again gets into metachronal synchronization

after about 15 cycles. Interestingly, while in Fig. 4.5 the metachronal wave runs

from left to right (or from flaplet i = 5 to i = 1), it is the opposite for the other

experiment shown in Fig. 4.7. As the beating profile of the cilia is in principle

time-reversible and the cilia shape is symmetric, and all cilia are uniformly spaced,

we assume that small deviations from symmetry in the motor response or in the

shape of the flaplets or the initial conditions play a role in selection of direction.

We even could observe spontaneous symmetry breaking at times larger than 1 min.
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However, we could not judge these observations as physically relevant, as they only

appeared at much later times, and possible accumulations and aliasing affects as

discussed above may then play a role. We believe that the number of cycles to get

into synchronization depends on the initial conditions. We also expect a dependency

on the Reynolds-number, which is left open for future studies with liquids of varying

viscosities.

For further illustration of the variability in the motion pattern, we calculated the

variance in the zig-zag type motion by superposition of the individual “triangular

cycles” in the zig-zag pattern. For reference, we fixed the tip of each tooth at the

position of cycle time equal to 0. From the data superposed in this way, we calculated

the probability function to be within a certain radial distance to the mean of the

triangular shape using a box-counting method. The resulting distribution is shown

as color plot in Fig. 4.8 for flaplet i = 2. Dark red color means a probability of 1

that this position is reached in all successive cycles in a similar time relative to the

cycle maximum (defined by the search radius).

As demonstrated, the air experiment shows a rather sharp-edged triangle with

small variations between individual beats. In comparison, the synchronization pro-

cess in the viscous environment causes larger deviations, especially at the flaplet

reversals, where neighbouring flaplets get closer to each other. Further evidence of

this variability is demonstrated by comparing the normalized auto-correlation pro-

files of the flaplet motion as given in Fig. 4.9. The normalized autocorrelation of

a perfect zig-zag motion pattern would result in extrema of 1 and -1 at time-lags

of even and odd multiples of half of the cycle ratio. For the air experiments, the

positive peaks are all above a correlation value of 0.95, shown by the “+” type

symbols in the plot. In comparison, in the viscous case successive cycles underlie

the documented small variability during the synchronization process; therefore, the

correlation peaks decrease with larger time-lags until correlation is fully lost after

8-9 cycles. Similar profiles can be shown also for other flaplets in the row.

In the future, further improvements will be possible on the control loop timing

to increase the sampling frequency and thus allow longer periods of study. This can

be achieved by embedding the PC monitoring and control logic into the high-speed
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Figure 4.8: PDF of the individual “teeth” to overlap with the mean in the zig-zag motion
profile for a selected flaplet in air (a) and glycerol (b) for a total period of 1 min. Blue values
show a larger deviation from the mean, while red is aligned with the mean of all teeth. Note
that all teeth are fixed with their maximum position at beginning of cycle time 0.
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Figure 4.9: Peaks of normalized autocorrelation function of the zig-zag motion profile for a
selected flaplet in air (red symbol “+”) and glycerol (blue symbol “x”) for a total period of 1
min. For illustration, the continuous auto-correlation profile is added for the case of glycerol
as a solid line in blue.

camera processor itself. It will allow for the extension of the studies to a wider range

of Reynolds-numbers and parametric variations of the geometry of the cilia. A major

difference between biological cilia and the flaplets in our study is their 2D shape

with rectangular cross-section. Nevertheless, we expect similar synchronization for

cylinders as long as we are in the low-Reynolds regime where the shape of the body

loses importance in the presence of viscous forces. Furthermore, the chamber offers

optical access to capture the flow details using Particle Image Velocimetry. It might

help to further investigate flow field around the flaplets while in coordination.
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4.5 Critical analysis

4.5.1 Overview and study contributions

The study presents the use of flexible two-dimensional flaplets (i.e., rectangular flat

plates) to resemble the emergence of spontaneous metachronal coordination of cilia.

The conditions to reach synchronization are tested (represented by the bending of

the flaplets in response to viscous loads and the control hypothesis that allows the

bending to slightly vary the period of individual beats of the flaplets oscillations).

Despite the symmetric shape of artificial cilia and the time-reversible actuation of the

individual oscillators, a pattern of metachronal coordination of the beating system

of five flaplets was reached. A part of the study’s results illustrates the variations of

the individual beat cycles due to the viscous coupling and compares that to reference

conditions when the flaplets beat in an inviscid medium. Further analysis and flow

measurements are required to reveal the collective role of the coordination on the

surrounding fluid.

4.5.2 Exploratory discussion and future work

4.5.2.1 Emergence of metachronal coordination for different shapes of

cilia

One major difference between biological cilia and the flaplets in this study is shape.

The initial interest was to study a simple 2D system. I expect similar synchronization

for other shapes such as cylinders as long as we are in the low-Reynolds regime. The

viscous coupling among the cilia, in the presence of a control hypothesis that allows

the individual beats to vary according to the applied load, is expected to be the

main condition of the emergence in this case. The same behaviour can be replicated

for other shapes as well.
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4.5.2.2 Dependency of the self-synchronization results on Reynolds num-

ber

In general, the spontaneous synchronization of cilia is not confined to a specific

Reynolds number. One can witness the natural synchronization of cilia on dif-

ferent scales, ranging from unicellular ciliates such as Paramecium to macro-scale

Ctenophora such as Pleurobrachia. In the current experiment, the variation of the

Reynolds number (for example by changing the fluid’s viscosity) is expected to af-

fect the degree of viscous coupling of the flaplets. That change may affect the

current time-scale to reach synchronization and may also lead to situations where

self-synchronization cannot be reached at all due to the current limitations of study

period and overshoot accumulations. It would be interesting in a future study to

quantify the changes in that time-scale and the resulted steady-state phase shift

among the flaplets due to the variation of the Reynolds number. For very high

Reynolds numbers, it is expected to lose the synchronization of the flaplets, as their

viscous-coupling will then deteriorate in the presence of the strong inertial effects.

4.5.2.3 Limitation of the study period

As explained in section 4.4, the current implementation of the control system has a

sampling frequency of 15 Hz (i.e., a latency of about 2% cycle time), limited by the

hardware and lack of the direct FPGA implementation of the computer-vision code.

Therefore, we could quantify a possible error accumulation, which limited the total

recording time to about 18–20 cycles, where the observed phase differences in an

inviscid medium due to the sampling frequency of the control loop could be neglected

in comparison to the phase shifts induced by the viscous coupling in glycerol. We

could run the control loop beyond this time, however, we could not guarantee that –

from there on – the observed change in phase relationships is physical or induced by

the level of overshoot-error accumulations. Following the present study, the beating

system of the flaplets along with the surrounding hydrodynamic interaction forces

were mathematically modelled thus allowing long periods of study. These results

are illustrated in chapter 5.
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4.5.2.4 Parameters affecting the deflection values of the flaplets

The deflection values of the flaplets are expected to depend on the flaplet material,

the speed of their oscillations and the viscosity of the surrounding fluid. If we change

the level of maximum deflection to lower values relative to the spacing of the flaps,

we might lose viscous coupling, thus the observed effect is expected to deteriorate.

The chosen value is such that the flap tips just don’t touch in the most critical

situation when the phase is 180°, i.e. anti-phase motion between pairs, plus a safety

distance due to the small latency in the online image processing.

4.5.2.5 Two-dimensionality of the study’s dynamics

The displacements of the flaplets’ tips are nearly homogeneous along the span of

the flaps. The flow resulted from coordination is expected to be three-dimensional

along the lateral edges of the flaplets while it is nearly two-dimensional at the centre

of the flaplets. This can by further investigated by direct flow measurements of the

flow field in the coordinated state of the system. The flow visualization results are

discussed in chapter 5.

4.5.2.6 Breaks in the spontaneous coordination

We could observe a spontaneous process of breaking of the synchronization after it

had been formed. However, we cannot judge this observation since it may be affected

by the accumulation of the overshoot errors and the variations in the motors’ speed

responses reported earlier. A definite answer is given by the development of a

mathematical model that fairly describes the system dynamics and behaviour with

time and then investigating the stability of the emerged coordination. The model is

introduced in chapter 5.

On the other hand, the fluctuations in the control loop and the resulted coor-

dination can be subsumed as fluctuations in the flaplets’ driving forces. In fact,

natural flagellar driving forces also possess fluctuations that had been observed ex-

perimentally (Ma et al. 2014). Overshoots in the individual beats and breaking of

symmetry have been reported both in experiments and numerical models of self-
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synchronization (an example is presented in section 2.2.4).

4.5.3 Flow propulsion as a consequence of metachronal self-

coordination

At viscous environments, time-reversible gait of the swimmer as a whole cannot

induce net propulsion. However, time-symmetric actuation of individual oscillators

in our system does not necessarily result in a time-reversible gait of the system as

a unit. In order for the system gait to be time-symmetric, the system needs to

undergo a sequence of motions in a given stroke and reverts back to the starting

configuration by going through the same sequence in reverse (this part is explained

in detail in section 2.2.5). In this way the time-reversed recording of the system

motion does not vary from the original (the property of time-reversibility). In the

present system, this is the case for in-phase ∆φ = 0 and out-of-phase synchrony

∆φ = 180 of the beating flaplets. In these two special cases, if the experiment is

stopped when one of the flaplets reaches its limit amplitude and then the motion is

reversed, it would not be different from continuing with the original motion without

stopping the experiment, see Fig 4.10a.

On the other hand, if the emerged coordination is found to have a pattern that

is neither an in-phase nor out-of-phase coordination 0 < ∆φ < 180, there will exist

a running wave on the flaplets’ surface whose direction would be reversed in case the

experiment is stopped at any moment and the motion sequence is reversed, see Fig.

4.10b. Therefore, I expect the system as a unit to violate the symmetry argument

of the scallop theorem and hence generate propulsion in such cases of metachronal

coordination. A definite answer would be possible by examining the forces build-

up on the oscillators during self-synchronization and measuring the flow field after

reaching the coordinated state, both of which is presented in chapter 5. It is also

worthy to mention that micro-swimmer examples have been already realized that

use time-symmetric actuation of individual oscillators and yet could violate Purcell’s

symmetry arguments using strategies other than metachronal coordination (Lauga

2011).
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Figure 4.10: Illustration of the time-reversibility principle for the phase-coordination of
five flaplets; (a) out-of-phase ∆φ = 180◦ coordination of the flaplets as a time-reversible
gait sequence; (b) ∆φ = 90◦ coordination of the flaplets as a time-irreversible gait sequence.
The sequence in (b) violates the Purcell’s symmetry arguments and therefore is expected to
generate uni-directional net transport of the surrounding fluid.
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Chapter 5

Simulation of Self-Coordination in a Row of Beat-

ing Flexible Flaplets for Micro-Swimmer Applica-

tions: Model and Experiment Study

Abstract

In this study we present a model that simulates hydrodynamic self-coordination

in a row of flexible flaplets. We control the flaplets in order that their tips fol-

low a fixed-amplitude oscillatory motion profile. When brought together at a low

Reynolds-number environment, the flaplets interact with each other in the form of

bending deflections at their tips, which causes the frequency of the individual oscil-

lations to vary until a coordinated steady state is reached. The model design steps

are experimentally verified and the coordination results of both the experiment and

the model are compared. The model’s internal states are then analysed for a bet-

ter understanding of the synchronization collective effect. The coordination of the

flaplets is found to settle in the direction of propulsion forces ascent. The stabil-

ity of the resulted synchronization and propulsion forces are examined over long

periods. The model is meant to be simplified and mostly linear so that it can be

utilized for state forecasting in a real-time control application of a swimmer robot.

Finally, we experimentally study the propulsion performance of five beating flaplets

that follow prescribed oscillation profiles forming a metachronal wave. The flow

results show that the flaplets, that beat in coordination, are efficient at generating
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a uni-directional steady-streaming transport of the fluid at their surface.
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5.1 Introduction

Nature is full of examples where a collaborative behaviour rises due to different

body reactions and surrounding environmental properties (Beckers et al. 1989, Allan

et al. 1996, Ball 2013). One of these examples is the hydrodynamic coordination of

flagella and cilia in biology. Sperms while swimming interact with the surrounding

semen and with each other forming a kind of cluster (Yang et al. 2008). In human

windpipes, cilia beat in a coordinated pattern while sweeping mucus and dirt outside

of the lungs (Shih et al. 1977). Similar coordination of cilia is witnessed at the surface

of many ciliated organisms (Ricci 1990, Machemer 1974, TAMM 1973). Each cilium

is found to maintain a certain phase shift to its neighbours while beating, forming a

pattern that is known as a metachronal wave (Eshel & Priel 1987). It is believed that

when brought together, cilia are coupled by the surrounding viscous forces of the

fluid and over time they appear to organize their oscillations allowing this collective

state to spontaneously emerge (TAMM 1973, Niedermayer et al. 2008, Golestanian

et al. 2011, Brumley et al. 2014, Bruot & Cicuta 2016). Previous numerical models

and experiments have shown that hydrodynamic forces can bring different types of

oscillators that are close to each other to various forms of self-organization (Kotar

et al. 2010, Di Leonardo et al. 2012, Putz & Yeomans 2009, Niedermayer et al. 2008,

Elgeti & Gompper 2013, Elshalakani & Brücker 2018), even with breaks in their

steady-state phase relationships (Niedermayer et al. 2008, Elgeti & Gompper 2013).

In the world of ciliated micro-swimmers, the viscous forces are dominant and fluid

propulsion cannot be created by a time-symmetric oscillator as explained by the scal-

lop theorem (Purcell 1977). Consequently, most of the developed swimmer models

or designs at low Reynolds numbers adopt the actuation of non-reciprocal motion

profiles. Some examples of these designs are swimmers made of: (1) asymmetric

rod joints (Becker et al. 2003) (2) soft deformable interfaces (Mason & Burdick

1999, Trouilloud et al. 2008) (3) connected spheres with certain kinematic inter-

relations (Earl et al. 2007, Dreyfus, Baudry & Stone 2005, Najafi & Golestanian

2004). (4) helical vibrating interfaces (Gao et al. 2014, Xu et al. 2014). In such

non-reciprocal motion profiles, the asymmetry of the generated viscous forces in-
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duce a net propulsion force in a certain direction (Kim et al. 2016, Abbott et al.

2009). That said, when a model of artificial cilia, that can be magnetically actuated

to follow non-reciprocal beating profiles, was examined in (Gauger et al. 2009), it

was shown that the pumping performance of interacting coordinated cilia was signif-

icantly higher than that of separate ones. Similarly, in (Blake & Sleigh 1974, Bruot

& Cicuta 2016), it is stated that the coordinated beating of cilia is particularity ef-

fective at maintaining more directed surface propulsion. It has been also shown that

the propulsive effect of a system of pneumatically controlled flexible oscillators is

strongly affected by their phase relationships (Rockenbach et al. 2015). Accordingly,

we suggest that the metachronal coordination of a system of individual oscillators

can itself result in collective propulsion if the oscillators are brought together in a

sufficiently-viscous environment.

Generally, further progression to realistic micro-swimmer robotic applications

faces two main challenges; (1) the design and control of applicable propulsion mech-

anisms and (2) the minimization of the actuation power (Cho et al. 2014). In case

of using oscillating elements to generate propulsion, a minimum of two degrees of

freedom per each element is required to be controlled to satisfy the desired non-

reciprocal motion profiles (Kim et al. 2016). In some models, even the shape of the

elements is required to be changed during different parts of the beating cycle which

brings more complexity to the system and control (Gauger et al. 2009). Addition-

ally, most of the micro-swimmer models are usually developed using multi-particle

collision dynamics (MPC) (Kapral 2008, Elgeti & Gompper 2013) or other numerical

solutions. Since the computations of finite element models are time-consuming, the

real-time tracking of the robot’s internal states using such models is not possible.

Hence, we claim that swimmer designs with linearized and fast-computed models

could facilitate better control and observation of such systems.

In this article, we firstly test the emergence of metachronal coordination in a row

of flexible flaplets at a low Reynolds number by means of an experimentally-validated

model. A single-degree-of-freedom oscillatory motion is controlled by an algorithm

that is based on the geometric clutch hypothesis (Lindemann 1994) where the indi-

vidual oscillations are bounded in amplitudes and free in phase and frequency. The
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induced bending of the flexible flaplets in the presence of a viscous medium allows for

the crosstalk to take place within the beating system. The net swimming force that

acts on the system is derived from the introduced model. The force response shows

that the resulted synchronization can be accompanied by a net swimming effect.

Then, the stability of the emerged synchronization is analysed over long periods

showing that the emergence of synchronization can have a predictable steady-state

behaviour. Finally, we experimentally visualize the flow field around the physical

system using Particle Image Velocimetry (PIV) while the flaplets are beating in

metachronal coordination. The measurement of the flow velocity field allows us to

quantify the net pumping effect due to the coordinated beating of the flaplets.

5.2 Concept formulation

5.2.1 Model objective

We aim at studying the transformation of an oscillating system of beating flaplets

from a chaotic to a coordinated pattern by means of an experimentally identified

model. The key factors to get into coordination are the flexibility of the structures

and the viscous coupling among them. A biological control hypothesis introduced

by Lindemann (1994) is implemented as the control algorithm, which follows the

“geometric clutch”. From there on, we look forward to highlighting the collaborative

swimming effect of the resulted coordination and study its stability.

5.2.2 Material and environment

The proof-of-concept experiment of self-synchronization in a row of flexible flaplets

was reported in detail in chapter 4 and the reader is referred to it. Herein, the

experiments are used to identify the parameters of the lumped element model of the

flaplets. The physical problem of the bending of a thin flexible plate in a viscous

environment is described by the two non-dimensional numbers, the Reynolds-number
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Re and the Cauchy number CY :

Re =
ULc
ν

(5.1)

CY =
1
2
ρU2

EI
(5.2)

with ν being the fluid’s kinematic viscosity, U the relative speed scale between the

oscillator and the fluid, Lc the characteristic length in the problem geometry, EI the

flexural rigidity of the flaplet and 1
2
ρU2 the dynamic pressure in the given problem.

The Cauchy number characterizes the deformation of an elastic solid under the effect

of a surrounding flow (De Langre 2001). It is defined as the ratio between the force

produced by the dynamic pressure of a flow on the flaplet surface and the bending

rigidity of the rectangular flaplet.

The configuration under investigation herein is for a Re-number in the range

of Re ∈ [0.1, 1] and a Cauchy-number of order CY = O(10−1). The method of

dynamical similarity (Batchelor & Batchelor 2000) enables us to use the results of

an enlarged experimental model to investigate an observation that happens at a

much smaller scale. It also enable us to use normalized quantities of size and speed

in our theoretical model.

5.3 Experiment description

5.3.1 Set-up and control loop

The laboratory experiments were conducted with a row of five rectangular flaplets.

The experimental set-up is illustrated in detail in section 4.2 in the previous chap-

ter. In order to further highlight the geometrical parameters used in modelling, we

present Fig. 5.1 showing different views and schematic drawings of the experimental

facility and the flaplet.

Each flaplet is controller to perform an oscillatory motion profile around its

equilibrium position (where all oscillators are vertical). The amplitude of oscillations

is selected so that the flaplets are not allowed to touch each others while beating.
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Figure 5.1: The experimental set-up of the five flexible flaplets in the viscous chamber. Each
flaplet is clamped from one end to the spindle axle of a rotary motor. (a,b) front view (c)
top view (d) side view (b,d) schematic drawings that show the geometrical parameters of the
flaplets.

Therefore, a minimum distance, rmin ' 0.2A, between the tips is set at the nearest

angular positions of a neighbouring couple of flaplets to allow for their bending

deflections. We represent the distance r between the tips with an offset equal to the

value of rmin so that; r = 0 when the tips are |rmin| apart.

The optical set-up and the control algorithm are detailed in sections 4.2.2 and

4.2.3 in the previous chapter. Fig. 5.2 shows a graphical description of the imple-

mentation of the control loop. It is important to note that the control algorithm

is a vision-based implementation of the geometric clutch hypothesis that provides

a geometrical mechanism of oscillations in biological swimmers (Lindemann 1994).
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As an alternative to the camera, strain gauges can be also used to measure the

deflection values at the tips used for the control of the flaplets’ oscillations.

Figure 5.2: Physical implementation of the control closed-loop based on the geometric clutch
hypothesis. The feedback signal is the position of the oscillators’ tips that are marked with
florescent dyes which can be captured by the high-speed camera. Another measurement of the
feedback signal is applicable by the use of strain gauges that can capture the tips’ deflection.

5.4 Theoretical modelling

We aim to introduce a simplified model of the experiment to study the synchroniza-

tion behaviour for longer periods and a larger number of flaplets. The fluid–structure

interaction is approximated by a representation of the individual flaplets as flexible

cantilever beams (Euler–Bernoulli beam) actuated by the individual motors and re-

acting to the surrounding viscous forces. Each flaplet is modelled as a second-order

system with a lumped element model while the build-up of the viscous interaction

forces in the fluid is modelled as a first-order system with a relatively small time

constant. The model is simplified and aligned with the experimental results. We

expect that the simplicity of the model would be a significant advantage because,

as elaborated later, the resulting coordination is found to be accompanied with the

emergence of propulsion forces which qualifies the model for micro-swimmer appli-

cations. Hence, the observability and fastness would allow the model to be used for

control design optimization and online state forecasting of swimmer robots in future

applications.
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5.4.1 Mathematical description

In this section, we introduce the analytical equations that describe the behaviour

of each oscillator while beating. Since the flaplets are identical, we can expand this

model to describe a row of beating flaplets. The model equations are deduced and

identified with the help of experimental and numerical data perceived from literature

and tests in the experimental setup. The modelling design steps are comprehensively

and experimentally validated. A detailed derivation of the mathematical model is

provided in appendix A.

Table 5.1 and Fig. 5.3 illustrate the system parameters that come from the

theoretical model of a single flaplet. The parameters are divided into the following

four categories:

1. Set parameters: these are the nominal constants that are given by the ex-

perimental setup and geometry.

2. Input variables: these are the variables that are controlled by the operator

or changed according to the states of the neighbouring flaplets. The flaplet

perceives the inputs and responds accordingly in the form of rotation and

bending deflection.

3. System states: these form a set of variables that fully describe the flaplet at

a given instance in time.

4. Output variables: the response of the oscillator derived from the system

states at a given instance.

In this case, we are particularly interested in the position trajectory of the

flaplets’ tip because the control loop uses this position as the feedback signal. Before

we start, we normalize all the system parameters against their nominal values to

obtain a scalable dimensionless system of equations. The parameters of length units

are divided by the amplitude of oscillation, A. The angular velocities are divided

by the nominal speed, ω0. We represent the normalized parameters in the equations

with the superscript notation ‘*’.
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Table 5.1: Description of the parameters of the mathematical model

Symbol Description value

Set Parameters

ω0 [rad · s−1] angular speed of the attached motor 0.267

A [m] limit amplitude of the tip position trajec-
tory

9× 10−3

Tc[s] nominal cycle period of the oscillatory mo-
tion

4A/(ωl)

Input Variables

ω [rad · s−1] angular velocity of the flaplet ±ω0

ωr,l [rad · s−1] angular velocity of the right/left neigh-
bour

±ω0

dr,l [−] normalized relative angular velocity of the
right/left neighbour

(ωr,l − ω)/ω0

rr,l [m] absolute distance from the oscillator’s tip
to the right/left neighbour’s tip

System States

θ [rad] angular position of the straight oscillator
(without accounting for the bending)

γo [m] deflection of the tip due to its rotation in
the viscous liquid

γr,l [m] deflection of the tip due to interaction
with the right/ left neighbour neighbour

γt [m] total dynamic deflection at the oscillator’s
tip

Output Variables

y [m] position of the oscillator’s tip at a given
set of states

Identified Parameters

C [m−5] constant relating the deflection of the tip
to the rotation velocity; given by Eq. 3

1.4× 105

T [s] time constant of the first order lag given
by Eq. 3, 4

0.02Tc

m [kg] mass of the second-order system given by
Eq. 5

3.4× 10−3

b [kg · s−1] damper factor of the second-order system
given by Eq. 5

0.22

k [N ·m−1] spring stiffness of the second-order system
given by Eq. 5

3.54
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Figure 5.3: Lumped element model of the flaplet highlighting the viscous-coupling parame-
ters. The description of the model parameters is provided in Table 5.1.

The material of the oscillators is flexible in order to allow bending to take place

as a result of the applied viscous forces. In the experiment, the viscous forces acting

on the oscillator induce dynamic deflection, γt, at the tip. The magnitude of that

deflection is always small enough compared to the length; γt ≤ 0.05l. By neglecting

the shear and torsion stresses on the flexible flaplet, it can be modelled as a simple

beam that experiences bending deflections while rotating.

In order to obtain the position of the tip as a function of time, we present the

following set of differential equations. The description of the model parameters is

given in Table 5.1. References to the corresponding equations in appendix A is

provided in bold font after each equation.

T γ̇∗o = −Cl5ω∗ − γ∗o (Eq. 16, 18)(Eq. 16, 18)(Eq. 16, 18) (5.3)

T γ̇∗r,l = ur,l − γ∗r,l (Eq. 17, 18)(Eq. 17, 18)(Eq. 17, 18) (5.4)

ur,l =

0.013dr,l r∗r,l > 1

dr,l(−0.082r∗r,l + 0.095) r∗r,l ≤ 1

mγ̈∗t = k

(
γ∗o + γ∗r + γ∗l

)
− bγ̇∗t − kγ∗t (Eq. 19)(Eq. 19)(Eq. 19) (5.5)

y∗ =
l

A
θ + γ∗t (5.6)
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5.4.2 State-space model

The above illustrated mathematical equations are gathered into a MISO state-space

model that fully describes the dynamics of each oscillator. The model is given in

the state-space standard form as described by Eqs. 5.7, 5.8. Since all equations

are dimensionless, we then represent the normalized parameters in the state-space

model without the superscript notation ‘*’ for the sake of simplicity.



θ̇

γ̇o

γ̇r

γ̇l

γ̇t

γ̈t


=



0 0 0 0 0 0

0 −1
T

0 0 0 0

0 0 −1
T

0 0 0

0 0 0 −1
T

0 0

0 0 0 0 0 1

0 k
m

k
m

k
m

−k
m

−b
m





θ

γo

γr

γl

γt

γ̇t


+



ω0 0 0

−Cl5
T

0 0

0 1
T

0

0 0 1
T

0 0 0

0 0 0




ω

ur

ul

 (5.7)

y =

[
l
A

0 0 0 1 0

]



θ

γo

γr

γl

γt

γ̇t


(5.8)

In Fig. 5.4, we present a comparison between the experiment and the model

results of the deflection of a flaplet’s tip due to the oscillation of its neighbour. The

plot demonstrates the ability of the model to fairly capture the dynamic interaction

between the neighbouring flaplets during the different phases of the beat cycle.

Although minor deviation between the two responses can be observed, we assume

that it does not affect the resulted variation of the beat cycle period during the

116



transition from a chaotic to a coordinated beating pattern as illustrated in the next

section.

Figure 5.4: Normalized deflection of a still flaplet’s tip due to the oscillation of its right
neighbour during two successive beat cycles. The distance r between the two neighbouring
tips varies in the domain 0 < r < 2A during a beat cycle.

5.5 Results and analysis

The system is configured with the same setup as in the physical experiment in or-

der to test the spontaneous mergence of synchronization among the oscillators and

compare the results of both the model and the experiment. The synchronization

is considered to start when the oscillators start to beat with the same frequency

while keeping a certain phase shift between each other forming a metachronal wave.

The experimental control loop algorithm is applied to the model as well. After in-

vestigating the emergence of hydrodynamic synchronization among the flaplets, the

internal states of the system are analysed to better understand the synchronization

effects.

5.5.1 Hydrodynamic synchronization

Starting from random initial angular positions, 32 oscillators are brought together

and allowed to interact by the help of their modelled bending deflections due to the

surrounding viscous forces. The system as a unit could clearly show the emergence

of metachronal coordination. Fig. 5.5 shows a colour representation of the position

trajectories of individual oscillator tips as a function of the number of beat cycles. A
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straight uni-coloured line in the figure indicates a uniform inter-phase relationship

throughout the system and hence metachronal coordination. The model has been

rendered several times with different random initial positions. At each time, the

system has eventually come into a synchronized state at which the phase slopes

throughout the whole system remain the same. For different initial conditions, the

emergence is found to choose between two steady-state phase slopes with the same

slope magnitude but opposite directions. In other words, the uni-coloured lines at

the steady state make an angle with the direction of time increase that can take

the two values: α and (180−α). We believe that the dominating direction depends

on the initial conditions and decides the direction of the swimming forces build-

up (discussed in the next section). Sometimes, either the very first or the very last

oscillator at the edges appears to slightly lag the others during the synchronized state

until it gradually joins the synchronization after a long term. As the edged oscillator,

the cross-talk with its neighbours takes place on one side only and therefore it can

be less sensitive to the viscous coupling.

Figure 5.5: Position trajectories of 32 oscillators’ tips in the modelled viscous environment.
The randomness in the phase relationship is shown as curvy lines at the start of the beating
(left). The emerged synchronization is shown as straight (constant slope) lines after 225 cycles
from the start of beating (right)

The spontaneous synchronization could also be witnessed in experiment for five

oscillators while beating inside the glycerine fluid. Starting from different phase

shifts between each couple of neighbours, the system has come into synchronization

after multiple cycles. Fig. 5.6 shows a comparison between the emerged synchroniza-

tion for five oscillators in the model (top) and in the experiment (bottom). As the
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Figure 5.6: Evolution of synchronization in a row of five flexible oscillators in the model
(top) and in the experiment (bottom). The different colours indicate different oscillators. The
solid lines indicate a constant phase slope among four neighbouring oscillators and the dash
lines are parallel to the solid ones and show the deviations from coordination at the early
stages.

oscillator moves inside the viscous fluid, it interacts with its neighbours in the form

of bending. This results in time-variant velocities of the tips and phase relationships

among the neighbouring oscillators. This behaviour lasts until the synchronization

is reached when each oscillator maintains a certain phase lag with its neighbour that

is constant among the beating system. The solid lines in the figure show a constant

phase slope that indicates the start of synchronization in both cases. The dash lines

that overlay the position trajectories are parallel to the synchronization lines. They

show the different phase relationships between the adjacent oscillators at the start

of beating and during the evolution of synchronization.
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5.5.2 Net propulsion force

In this section, we investigate the ability of the mechanism to generate a net propul-

sion force from the action of the group of beating flaplets. The modelled forces

acting on each oscillator are extracted from the system’s internal states during the

run-time such that:

fm(t) = kγ = k
(
γr + γl + γo

)
The force that acts on a single oscillator is dependent on the phase relationship

of the neighbours and takes the form of a quasi-harmonic function. In order to

represent the effective swimming force, a cyclic average of the harmonic force signals

as a function of time is calculated. The total effective swimming forces, Ft, is then

represented as the summation of the single forces for all the oscillators in the system.

fav(n) =
1

Tc

∫ nTc

(n−1)Tc
fm(t)dt, n ∈ {1..300}

Ft(n) =
N∑
i=1

f iav(n)

(5.9)

whereN is the total number of oscillators rendered in the model and i is the oscillator

index.

We found that a net propulsion force starts to emerge as the system is forming

a coordinated pattern of oscillations. The gradual build-up of the propulsion forces

can be tracked during the coordination build-up when the damping of the system

is sufficiently high. This is implemented in the model by increasing the damping

of the flaplet’s dynamic model. It can be also realized in experiment by selecting a

flaplet material of a lower Young’s Modulus or moment of inertia.

Fig. 5.7 shows the temporal evolution of the normalized total force, Ft/N , acting

on a model of 32 and 16 oscillators at a high damping ζ = b/
√
km ' 3. The resulted

synchronization is found to build up in the direction of the increase of swimming

effective forces and hence increasing the efficiency of propulsion. It is observed that

even the undetectable small phase variations during the synchronized state (after
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reaching the straight slope lines in the position trajectories) result in a noticeable

gain in the total effective forces. The periods after synchronization lines appear in

the two models are highlighted in Fig. 5.7 by the blue- and red-shaded areas. Notice

that the force gain, that is bounded by the dash lines in the figure, takes place in

during these shaded periods.

Figure 5.7: Evolution of the net propulsion force that arises due to the emerged synchro-
nization at ζ ' 3. The presented results are for 32- and 16-oscillator models respectively.
The shaded areas represent the period after the synchronization lines (constant slope lines)
are witnessed in the tips’ position trajectories (red for N = 16 and blue for N = 32). The
blue area is shown on top of the red area which also covers the part beneath it. The dash
lines bound the growth in the effective forces due to barely noticeable deviations in the phase
slopes during the coordinated state.

An interesting observation from the force response analysis is the stair-wise in-

crease in the force build-up during the emergence of coordination. During the early

stages, until approximately 50% of the settling time, the synchronization build-up

is partial and separate segments of synchronized 3 to 4 neighbouring oscillators are

formed. However, this is not reflected as a global increase in the effective swimming

forces. The reason is that there are counteracting segments that are synchronized in

opposite directions (slope angles of α and 180−α) and therefore, the net propulsion

force is not rising. After this period, a global tendency towards the final synchro-

nization direction starts to emerge and the effect of this tendency is then clearly

witnessed as an effective force build-up. The resulted net propulsion force is almost

proportional to the number of flaplets in the system.
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5.5.3 Stability of the synchronization

As demonstrated by Fig. 5.5 (right), once the model reaches its synchronized state,

it remains in that state and the synchronization does not break. Since the main

goal of the model is to prove the emergence of both synchronization and propulsion,

we choose the total effective force, Ft(n) defined in Eq. 5.9 to study its long-

term behaviour using the Lyapunov criterion. For a system of 32 oscillators we

select Ft(300) as the position of rest, Ft(e). By computing Ft(n) over a long period

(n = 103), we find that;

∀n > 280 ∃ε < 0.01Ft(e) [||Ft(n)− Ft(e)|| < ε]

This means that starting from any position close enough to Ft(e), the value of Ft(n)

remains close enough to Ft(e) and within a range which does not exceed 1% of

its value. Upon this analysis the synchronized system of 32 oscillator is Lyapunov

stable.

A strong correlation could also be noticed between the initial conditions and

the settling time the system takes until the position of rest is reached. In a robotic

swimmer application, it is recommended to include a supervisory controller that can

use the real-time model for state forecasting (as a state observer) and impose a set of

initial conditions that would minimize the settling time. That said, we believe that

even the maximum settling periods reported do not represent a problem in case of a

micro-swimmer application. The smaller the size scale of the swimmer body and the

inter-spacings is, the higher the beating frequency of oscillations that would keep

a low Reynolds number. In recently reported micro-swimmer studies, the beating

frequency reaches up to 60 Hz (Kim et al. 2016). This frequency boost would result

in a faster emergence of the required propulsion forces.

5.6 2D flow visualization

In this section, we experimentally test the system capability to generate a coherent

directed transport at the surface of the oscillators during metachronal coordination.
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In order to visualize the flow near the flaplet’s surface, a Particle-Image-Velocimetry

(PIV) measurement is prepared. Due to optical obstruction, the flow measurement

cannot be carried out simultaneously while running the vision-based control loop.

Therefore, an open-loop control algorithm is implemented to drive the five motors at

a predefined amplitude, frequency and phase difference between each adjacent couple

of motors. We define a general oscillatory profile of the motors as a triangle-wave

form of θ which is described as a function of time t in the following equation:

θ(t) =
4Aθ
Tc

(
t− Tc

2

⌊
2t

Tc
+

1

2

⌋)
(−1)b

2t
Tc

+ 1
2
c (5.10)

where the symbol bic is the floor function of the number i and Aθ is the amplitude

of the angular position of the motors. The trajectory of the nth motor’s rotation

follows the profile prescribed by:

θn(t) = θ(t− jTc(n− 1)), n ∈ {1..5}, j ' 0.2 (5.11)

where n is the motor index with the motors ordered from left to right and j is the

cyclic ratio which quantifies the metachronal-wave phase shift among the oscillators

as a factor of the beat cycle Tc.

The metachronal wave form is set to match the wave that spontaneously emerged

during the closed loop experiment which is reported in chapter 4 in detail. The

oscillatory profile of the motors here is the same as the original oscillation profile

after the emergence of the metachronal wave in experiment (i.e., the same phase-

relationships reported in Fig. 4.6 after 15 cycles). The only difference is that the

coordinated oscillations of the motors here are imposed by the controller and not left

to emerge spontaneously due to hydrodynamic interactions. The reason is that when

the PIV measurement is running, the laser light represents an optical obstruction to

the vision-based control loop of the spontaneous experiment, that is based on the

real-time tracking of the five tips as single white dots in the image. Therefore, we

imposed the metachronal-wave oscillation pattern by the external control of the five

motor trajectories.

The control algorithm is implemented in an NI cRio-9074 control unit (National
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Instruments, Austin, USA) using the LabVIEW FPGA software suite. Fig. 5.8

shows the experimental setup which is prepared in order to perform the PIV mea-

surements for visualizing the flow around the beating flaplets. A Phantom Miro

310/311 Ametek camera is used to record the image of the flow around the flaplets.

Fluorescent tracer-particles (50 µm in radius) are mixed with the glycerine liquid

inside the flaplets’ chamber. A continuous wave argon-ion laser beam (Raypower

5000, 5 W power at λ = 532 nm, Dantec Dynamics) is expanded to a light-sheet

and used to illuminate the flow in the vertical (X-Y) plane along the centre of the

flaplets. The light scattered by the particles is then captured and recorded in a syn-

chronized mode, where the camera is set to capture a single frame per each beating

cycle at the same phase (phase-locked imaging of the oscillators). Consequently,

displaying the successive frames provides a visualization of the net cyclic transport

of the particles.

Figure 5.8: Schematic of the experimental setup for the Particle Image Velocimetry mea-
surements. A vertical laser light-sheet parallel to the X–Y plane and passing through the
centre of the flaplets is used along with the shown camera configuration to record the 2D flow
field around the oscillators while beating in metachronal coordination.

A total of 105 particle images are recorded by the camera in a period of approx-

imately 6 min. Fig. 5.9 shows the pathlines followed by the fluorescent particles

while each oscillator is following the waveform prescribed by Eq. 5.11. The path-

lines show a coherent structure of the flow below the flaplets which suggests that

the flow at the vertical X–Y plane that passes through the centre of the flaplets can

be considered steady in the present configuration. The figure shows smaller vortex

124



structures below the flaplets’ surface which arise due to the fact that the flaplets are

close to the bottom wall while the chamber is closed.

Figure 5.9: The pathlines of the tracer particles in the glycerine fluid as the flaplets follow
the metachronal wave pattern prescribed by Eq. 5.11. The image is acquired by overlaying
the frame of the flaplets with 5 phase-locked particle images that are recorded with a frame
rate equal to the frequency of the flaplets’ oscillatory motion. The direction of the flaplet
oscillation at the instance of recording is shown by the white arrows.

In order to measure the velocity field of the flow, 2D cross-correlation of the

successive frames of the particles is performed. The resulting time-averaged vector

map of the velocity field of the 2D flow around the oscillators is shown in Fig. 5.10.

Since the flow below the flaplets is mostly horizontal, we overlaid the vector map

with the colour map of the horizontal component of the velocity u . As the graph

shows, the flow near the flaplets’ surface is roughly coherent and directed to the

left which shows a clear net pumping effect (steady streaming) of the metachronal

wave. Since the flaplets are still, this transport can be a directional measure of the

net cyclic force acting on the flaplets in the X direction.

In the lower part of the flow field near the bottom wall of the chamber, the fluid

is moving to the right direction; opposite to the flow at the flaplets’ tips. This is a

consequence of the conservation of mass in the closed chamber. Adding horizontal

fluid flow in the horizontal layer at the tips in an otherwise quiescent environment

must be counter-balanced by the generation of another horizontal layer of flow in the

opposite direction. Between the two layers, the fluid shear is forming the vortices
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Figure 5.10: Time-averaged vector map of the velocity field in a vertical plane around the
oscillators while beating in the metachronal coordination prescribed by Eq. 5.11. The colour
map overlaid with the graph represents the magnitude and direction of u in mm/s (the X
component of the velocity vectors).

known as the cat’s eye vortices that can be seen in Fig. 5.9.

5.7 Conclusion

For low-Reynolds propulsion, we developed a model of a flat-plate swimmer that

consists of rectangular shape-symmetric flexible oscillators. Each oscillator was

modelled as a cantilever beam of a rectangular cross-section, that can experience

small deflections depending on its material and the surrounding viscous forces. The

control of a single degree of freedom per each oscillator (the angle of rotation θ )

was used to bound the individual oscillations to a certain amplitude. The viscous

interaction forces among the oscillators and the surrounding fluid were modelled in

the form of induced bending deflections at each tip. This resulted in tip trajecto-

ries that slightly deviated from the position prescribed by the driving motor angles.

This deviation allowed for the cross-talk to take place throughout the system which

is necessary for the emergence of spontaneous coordination. The control algorithm

was based on the geometric clutch hypothesis that illustrates the geometrical limits

of the oscillations in biological ciliary micro-swimmers.

Starting from random phase relationships, we could show the emergence of
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both the hydrodynamic synchronization and the propulsion for this design of swim-

mers. The results of synchronization were compared to the produced data of a

five-oscillator experiment in a viscous environment. The comparison confirmed sim-

ilar coordination patterns and time scales.

The internal states of the model were then combined to represent the effective

global force that acts on the swimmer due to its body-fluid interaction. The temporal

evolution of the global force showed the emergence of a swimming action as the

system damping goes higher. After reaching the synchronized state, the effective

force still showed a remarkable increase towards its maximum value due to hardly

detected variations in the oscillators’ relative phases. The magnitude of the net

propulsion force was found to be a linear function of the number of oscillators in the

system.

Previous models of the hydrodynamic synchronization of oscillating elements

used numeric simulations to render the fluid-structure interactions and the fluid

dynamics. The main goal there was to reproduce and understand the process of self-

synchronization due to hydrodynamic forces without worrying about the physical

implementation of the simulated system nor the use of the mathematical model in

engineering applications for control optimization purposes. The presented model

herein bridges the gap between the simple analytical models that could not predict

the resulted propulsion effect of the synchronization (e.g., concentrated-beads model

of cilia (Niedermayer et al. 2008)) and the complicated high-fidelity numeric models

of real cilia where the model rendering was too slow and the computations were too

heavy to be used for control purposes (particle-collision-dynamics mesoscopic model

of cilia (Elgeti & Gompper 2013)). The reader is referred to Table 2.3 in chapter 2

for a summary of the previously-conducted experimental and numerical studies of

the hydrodynamic synchronization of cilia-like elements.

The simplicity of the proposed model’s design allows for its application in differ-

ent scales and environments. The flexible oscillator is a rotating flat plate attached

to a rotary motor. The deflection induced at the oscillator tip, due to the surround-

ing viscous forces and the neighbouring oscillators, is isotropic. Several actuation

mechanisms can be used to drive the rotary motion. The linearity of the model and
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the observability of its internal states nominate it for real-time observer applications.

Moreover, the model can be utilized for the forecasting of the settling time and the

direction of the resulting forces due to a set of initial conditions.

Furthermore, the stability of the emerged synchronization in the introduced

model was analysed. To begin with, the synchronization was defined as a constant

phase difference between each neighbouring couple of oscillators in the beating sys-

tem. This state was recognized by a constant slope (straight uni-coloured lines) in

the position trajectories plots. It was observed that once the system formed this

coordinated pattern, partially or globally, it kept this state from thereon. However,

after analysing the emerged swimming force, we found that it still tended to in-

crease up to its maximum value even after the first synchronization lines appeared.

Accordingly, we applied the Lyapunov stability criterion on the resulted swimming

forces. The long-term study showed that the system is Lyapunov stable as the value

of the induced force, starting from any position close to its rest position, remained

close enough to that steady-state value for the rest of the study period.

In the end, we experimentally measured the 2D velocity field of the flow around

the oscillators while beating in metachronal coordination (j ' 0.2) using Particle

Image Velocimetry. The results showed a uni-directional steady-streaming transport

of the fluid at the surface of the oscillators which can be translated into an effective

propulsion force if the oscillators were attached to a body that is free to move.
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5.8 Appendix A

Derivation of the mathematical model

At very low Reynolds numbers Re � 1, , analytical expressions that describe the

motion of slender bodies in Stokes flow can be used to mathematically represent

interacting oscillatory systems. The reader is referred to the study here (Koens &

Lauga 2016) which examines the hydrodynamic behaviour of a slender ribbon in the

Stokes flow, and the study presented in (Barta 2011) which investigates the unsteady

Stokes flow around oscillatory slender bodies. The analysis performed there can be

of interest in modelling the hydrodynamic interaction among oscillating elements in

that Reynolds regime. On the other hand, at a Reynolds number close to unity, the

effect of inertial forces cannot be completely neglected. Therefore the Stokes flow

expressions are less relevant in our present study where Re ∈ [0.1, 1].

The model described herein is derived on the basis of a dynamic system of which

the steady-state variables are identified from theory and the experiments. This

model is then rendered in Matlab Simulink to simulate the time-varying behaviour of

the system under given initial conditions (angle θ at time t = 0 ). The model assumes

a linear superposition of the bending contributions (self-oscillations and viscous

coupling) and a first order response for their causing viscous forces. The dynamic

behaviour of each oscillator is modelled as a second order response of a one-sided

clamped Euler–Bernoulli beam. The different contributions to the mathematical

model are given below.

Steady-state modelling

The steady-state of the cantilever beam is represented by the total deflection of the

tip γ(l). Fig. 5.11 shows the model beam and its curvature parameters in response

to an applied load. The radius of curvature of the deflected beam is inversely

proportional to the bending moment M applied on it (Bansal 2010). By relating

the beam deflection to the radius of curvature, we end up with the differential
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equation of static beam deflection (Eq. 5.12).

Figure 5.11: (a,b) Schematic view of the oscillator model as a simple beam (c) the curva-
ture of deflection and strain parameters in the x–y plane. The deflection of the oscillator is
magnified in the figures for better visibility. The actual deflection does not exceed 5% of the
total length. The coordinate system (x,y,z) introduced here is attached to the oscillator and
inherits its orientation while the global coordinate system (X,Y,Z) is presented in Fig. 5.8.

d2γ(t→∞)

dx2
=
M(x)

EI
,
d2M

dx2
=
dHs

dx
= q(x) (5.12)

where γ(t → ∞) is the steady-state deflection, EI is the flexural rigidity of the

oscillator, Hs is the shear load and q(x) is the distributed load per unit length

acting normal to the x-z face of the flaplet. Eq. 5.12 can be solved to find an

expression of the steady-state deflection of the beam’s tip for a given load profile.

The latter is composed of two contributions, first the load due to the drag-forces

acting on the flap while rotating in the viscous liquid and secondly the effect of the

neighbouring oscillators on the pressure and velocity due to viscous coupling. Given

that the beam differential equation 5.12 is linear, the principle of superposition

holds. It means that the steady-state total deflection of a beam can be represented

as the summation of the individual deflection amounts of multiple decoupled forces.

Eq. 5.13 describes the total steady-state deflection of a flaplet, γ as the sum of γ∗o
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due to its own rotation in the viscous medium and γ∗r,l due to its interaction with

the right and left neighbouring oscillators.

γ∗(t→∞) = γ∗o(t→∞) +
∑
i∈{l,r}

γ∗i (t→∞) (5.13)

Force contribution due to rotation in a still fluid

Considering the case when the flaplet is freely rotating inside the glycerine liquid.

Note that the background fluid in this case is considered still, therefore vr = ωx when

the flaplet is rotating with an angular speed of ω. The load profile on the oscillator

at Re ∈ [0.1, 1] can be derived from the drag coefficient of a flat rectangular plate,

which is experimentally investigated in (Jones 1957) for Re< 2 and found to be

inversely proportional to the Reynolds number, Eq. 5.14 (Jones 1957):

Cd =
κ

Re
=

κµ

ρvrl
→ q(x) =

1

2
ρwCdvr

2 (5.14)

q(x) = −R⊥vr

where ρ is the fluid density and vr is the velocity of the body relative to the back-

ground. Similar to the resistance definition in Stokes flow, we combine the factors

leading the relative velocity in Eq. 5.14 as the resistance drag coefficient −R⊥ in the

direction normal to the surface and use it in the following analysis (the negative sign

indicates that the direction of the drag force is opposite to the direction of the local

relative speed). Eq 5.14 suggests that the load q(x) acting on the rotating plate at

this regime is directly proportional to its speed vr = ωx and therefore varies linearly

along the flap q(x) ∝ x.

In order to validate this assumption and to show that the load is approximately

constant along the span a CFD numerical model of the flaplet was generated inside

the ANSYS Workbench multi-physics platform. The Finite Volume Fluent Solver

was used to solve the Navier–Stokes equations and capture the pressure field on

the flaplet while rotating at a Reynolds number of Re'0.2. Fig. 5.12 shows the

CFD results of the pressure field on the x–z face of the flaplet while rotating in the
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glycerine fluid. The dimensionless notations, p∗ and x∗ are used where p∗ = p/ρ(ωl)2

and x∗ = x/A. The figure shows a linear fit that fairly describes the load distribution

along the flaplet’s length.

Figure 5.12: CFD model results of the normalized pressure difference between the x–z faces
of a flaplet that rotates inside the viscous medium at a Reynold number of Re'0.2.

Finally, the solution to Eq. 5.12 with the boundary conditions Hs(0) = M(0) =

γ̇(0) = γ(0) = 0 provides the magnitude of deflection at a distance x from the

flaplet’s root in the direction opposite to the local velocity at this point:

q(x) = −R⊥vr = −R⊥ωx

γo(x, t→∞) =
R⊥

5! EI
ωx5

γ∗o(x, t→∞) = −Cω∗x5, C =
ω0

A

R⊥
5! EI

(5.15)

In order to evaluate the deflection magnitude for a given ω, the value of C is

experimentally identified. Therefore, we record the tip deflection of a flaplet while

rotating in glycerine with different speeds. Fig. 5.13 shows the relation between the

normalized deflection at the tip and the different angular speeds of the flaplet. The

linear fitting line provides the missing value given in Eq. 5.16. We only consider the

deflection at the tip; x = l in our model. Therefore, we will represent the deflection

as a function of time only; γ∗(l, t) = γ∗(t).

γ∗o(t→∞) = −0.0145ω∗, C = 1.4× 105 (5.16)
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Figure 5.13: Normalized deflection magnitude of a rotating flaplet in glycerine as a function
of its normalized angular speed. The bar lines indicates the deviation of the dynamic deflection
from its mean during a single beat cycle.

Force contribution due to viscous interaction

The effect of viscous interaction on the flaplet’s bending depends on the distance r

between the tips of the neighbouring flaplets. A further experiment was performed,

where we allow two neighbouring flaplets (one is rotating and the other is still;

∆ω = ω0) to interact in the viscous fluid and we measure the deflection at the tip

of the still flaplet. Fig. 5.14 shows a plot of the normalized deflection of the tip,

γ∗(l), as a function of r∗. For simplification, we fit a linear function to the part of

the curve where γ∗(l) > 0.02. We can then define the distance δ∗r ' 1 beyond which

the interaction is considered constant; γ∗(l) = 0.013 as highlighted on the plot. For

the given configuration in the experiment, δr is the boundary limit beyond which

the effect of an oscillator rotation on its neighbour deflection at the tip is almost

constant and fairly negligible.

The variation of the phase relationships among the flaplets until they reach

coordination is dependent on the deflection values at their tips. Fig. 5.14 shows

that the deflection of a still flaplet due to the rotation of its neighbour can reach up

to 10% of the oscillation amplitude. This observation highlights the significance of

the viscous interaction among the flaplets in the emergence of their self-assembly.

According to the experimental result shown in Fig. 5.14, we can approximate
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Figure 5.14: Normalized deflection of a still flaplet due to the rotation of its neighbour as
a function of the normalized distance between their tips. The ramp dashed line is a linear fit
for the deflection values that are greater than 2% of the oscillation amplitude. From there the
deflection is considered constant.

the bending interaction of a flaplet due to a rotating neighbour with the following

definition:

γ∗r,l(t→∞) =

0.013dr,l r∗r,l > 1

dr,l(−0.082r∗r,l + 0.095) r∗r,l ≤ 1

dr,l =
∆ω

ω0

(5.17)

in which dr,l is a dimensionless factor that accounts for the direction of the rotational

speed of the right/left neighbour, ωr,l, relative to the flaplet’s self-rotation, ω. This

linear approximation for the two different contributions allows for the use of the

principle of superposition.

Dynamics modelling

The system dynamics can be divided into two time-invariant dynamic systems that

describe the oscillator as well as its surrounding viscous medium. In this section the

two models are deduced and identified using results from the experiments.
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Fluid dynamics

The transient behaviour of the fluidic forces that cause the bending is represented by

a first-order system as the system is investigated at a low Re-number. This considers

the time-constant of the build-up of the deflection forces induced by the rotation of

the flaplet in the viscous medium and its interaction with the neighbouring oscilla-

tors. This leads to a first-order response of the deflection contributions:

γ∗(t) = γ∗(t→∞)(1− e
t
T ) (5.18)

The time constant, T, is tuned to best match the experimental response described

in section 5.4.2 and is found to be at least one order of magnitude lower than the

characteristic cycle period.

Oscillator dynamics

The proposed cantilever beam model, shown in Fig. 5.15, is a second order dynamic

system which is analogous to a mass-spring-damper system. This representation is

well established and can be derived from the Euler–Bernoulli beam theory and used

as a reduced order model of the oscillator (Rao 2007, Banks & Inman 1991). The

final response of the deflection of the oscillator tip can be represented by:

γ∗t (t) = γ∗
[
1−

(
λ2

λ2 − λ1
eλ1t +

λ1
λ1 − λ2

eλ2t
)]

(5.19)

λ1, λ2 = −ζωn ± ωn
√
ζ2 − 1

In order to identify the value of ωn at low Reynolds numbers, we refer to the

first mode of vibration of the Euler-Bernoulli beam model (Han et al. 1999).

ωn = 3.5161

√
EI

mtl3

in which mt is the total inertia of the oscillating mechanism.

The oscillator while moving is forcing a part of the liquid mass to move along

with it. This leads to an increase in the total effective inertia and consequently a
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Figure 5.15: The model of the flexible flat-plate oscillator as a mass–spring–damper system.

lower output frequency (Vančura et al. 2008). The above relation becomes:

ωn =
3.5161

l2

√
EI

ρobh+ µa
(5.20)

where ρo is the oscillator density, b is its width, h is its thickness and µa is the

added mass per unit length.

According to (Korayem et al. 2011, Greenspon 1961), the added mass density of

a rectangular plate in the presence of the viscous fluid can be approximated by:

µa = 0.6ρf l
0.5b1.5

where ρf is the liquid density. By substituting the value of µa in equation 5.20, we

get ωn = 32.3.

We then experimentally investigate the response of the flexible oscillator due

to an initial imposed small deflection at its tip, γ(0) = 0.05l. Using a high-speed

camera, we could capture the response of the oscillator in the viscous fluid as shown

in Fig. 5.16. We can then estimate the period that the tip takes to reach within a

range of 5% of γ(0) around its position of rest. This period represents the settling

time of the damped system, T95% = 0.026Tc, where Tc is the cycle period.

The damping ratio ζ is then tuned to achieve the same settling time in the

proposed second order model. The identified value of ζ is then found to be ζ = 1.04.

Accordingly, the values of k, m and b can be calculated assuming that the spring
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Figure 5.16: Measured response of the oscillator’s tip in the glycerine liquid due to an initial
imposed deflection; γ(0)

stiffness k = 3EI/L3 (Bellon 2008)

2ζωn =
b

meff

, ωn =

√
k

meff

meff = 3.4 ∗ 10−3, b = 0.22, k = 3.54

fm = kγ
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5.9 Critical analysis

5.9.1 Overview and study contributions

The emergence of metachronal waves in 2D flexible flaps beating in a chamber filled

with a high viscous liquid is experimentally demonstrated in Chapter 4. In this

study, a simple mathematical model of the system that reproduces the phenomena is

introduced. The model, that is identified from a set of experiments and from theory,

assumes a quasi-linear dynamic model of the rotating flaplets and their viscous

coupling in the viscous liquid. At the end of the study, a flow measurement was

performed in order to study the pumping performance of the swimmer-model while

in metachronal coordination using Particle-Image-Velocimetry. The contributions

of the present work can be summarized in the following points: (i) modelling of

a row of oscillating cilia-like flaplets in a viscous environment; (ii) presentation of

the spontaneous emergence of metachronal coordination and studying its long-term

stability; (iii) investigation of the net forces build-up on the flaplets during the self-

synchronization; (iv) study of the effective propulsion that results from the emerged

metachronal coordination.

5.9.2 Exploratory discussion and future work

5.9.2.1 Considerations of the flaplets model in different conditions

Although, the current model is tested inside a closed chamber, a similar behaviour

of the flaplets’ coordination and the resulted flow is expected in case of an open

environment in a real-life application. Firstly, due to the highly-viscous environment,

the side walls do not have a big influence on the flaplets’ bending and the resulted

flow profile. As shown from the PIV results the flow converges to zero in the near

region, close to the first and last flaplets, approximately 100 mm far away from the

wall from each side. If the side walls were close to the flaplets (less than 20 mm

away), their influence on the flaplet’s bending would be noticeable and therefore the

first and last flaplets would become less sensitive to the viscous-coupling effects that
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lead to synchronization. Regarding the bottom wall of the chamber, it is expected

that it currently has a detectable effect on the resulted fluid shear, forming the cat’s

eye vortices witnessed in Fig 5.9 while the falplets are in metachronal coordination.

Having the bottom wall more distant from the flaplets would increase the depth of

the uni-directional flow just below the coordinated flaplets.

In nature, the forward and return strokes of cilia are asymmetric, while, in the

present study, the oscillation profiles of the coordinated flaplets are in principle

time-symmetric. The addition of another degree of asymmetry (e.g., different gait

and speed for each stroke) is expected to enhance the propulsion performance of the

system at the current Reynolds numbers, by violating the Purcell’s symmetry argu-

ments for each oscillator separately. However, that adjustment would also increase

the complexity of the oscillators’ actuation and/or control. For both cases, the

metachronal coordination is still expected to have a significant effect on the resulted

propulsion performance. Since, the present results proved that the metachronal co-

ordination of the time-symmetric oscillators provides the system with the ability to

generate effective propulsion, the same profiles introduced herein can still be used

in real-world applications.

The present study is performed using a single row of the flaplets which allowed us

to deal with the hydrodynamic interaction forces and the emerged metachronal coor-

dination in a single direction (the streamwise direction – the X axis in Fig. 5.8) and

with the resulted flow field in the two-dimensional space (X, Y ). The current prob-

lem can be transformed into a three-dimensional problem by using a two-dimensional

array of the flaplents instead of a single row. In that case, the metachronal waves

can be produced in the (X, Y ) plane, giving rise to a three-dimensional flow filed.

Accordingly, in experiment, the metachronal waves are expected to emerge in both

the X and Y directions. This assumption is based on the illustration given by (El-

geti & Gompper 2013) when the emergence of metachronal waves was studied in

2D arrays of model cilia. The resulted coordination there was not confined to a sin-

gle dimension along the cilia. Instead, a two-dimensional spatial metachronal-wave

pattern was formed. In our simulation, in case an array of flaplets is considered, the

viscous-coupling model of the flaplet will need to be expanded in order to account
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for the hydrodynamic interaction forces in the spanwise direction. These forces will

arise from the coupling with the new neighbouring flaplets in that direction and will

need to be identified from a 3D experiment. The expanded model would then be

able to simulate the emergence of the emerged metachronal waves in two dimensions.

5.9.2.2 The role of flexibility in the emergence of both coordination and

propulsion

If the flaplets were rigid, the viscous forces in the given system would not influence

the phase relationship among the oscillators and hence they would keep their initial

phase relationships for all times. Because the clutch hypothesis is implemented into

the control loop by tracking the tips’ locations, the addition of flexibility allows the

viscous forces to affect the tips’ oscillatory motion. Their positions can differ from

those of the rigid ones, and hence the phase relationships among the oscillators can

vary from cycle to cycle. Herein, we observe the transition of the system gradually to

a metachronal wave. If the flexibility were too large (considering the applied viscous

forces), there would be no enough momentum added to the surrounding fluid and

the system could not generate an effective propulsion. The question of optimum

flexibility is not yet discussed in the present study.

5.9.2.3 Reynolds-number considerations

We believe that the rise of metachronal waves is not confined to a finite value of

Reynolds number (Re). The cilia on the surface of Ctenophora witness coordi-

nation while beating at relatively-high Reynolds numbers, ranged from 10 to 300

(Matsumoto 1991). The upper limit of Re for self-coordination is not studied here

and is left open for future studies with liquids of varying viscosities. We also expect

a similar behaviour of coordination in the Stokes regime which had been demon-

strated for other system types and shapes in previous studies. In the presented

simulation, we could not validate the proposed model and its physical assumptions

outside of the Reynolds range where we measured the deflection experimentally.

At slightly-higher Reynolds numbers, compared to the present study, the inertial

effects will come into play. It is expected that the system parameters particularly
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the system’s time constants will vary accordingly. Since, the model presented in this

study does not account for inertial effects, all parameters would have to be identified

from a different set of experiments than the one presented here. As the Reynolds

number goes more higher, the viscous coupling among the flaplets will partially

deteriorate in the presence of high inertial forces and, accordingly, the superposition

and time-independence assumption adopted in the present study might not be valid.

5.9.2.4 Future work of the model as a state-observer for controller design

optimization

Usually, the experimental measurements of some of the system’s internal states is not

possible. Being able to track these states provides the opportunity to design a more

efficient controller (pretty much like how tracking the speed and torque of an electric

motor would allow for a better control of its position since the input variables, i.e.

voltage and current, influence the output position through these internal states).

By the word “observation”, we mean computational tracking rather than exper-

imental measurement. There are observation techniques (e.g. a Kalman Filter) that

can be able to deduce the values of the internal states in real-time while the physical

system is running given only the measured output of the system. These techniques

require a fast computed digital model of the system (unlike finite element models)

which need to run faster than the physical system in order to be able to track the

values in real-time. The proposed model being linear and fast-computed can serve

as a real-time observer in a micro-swimmer control application.

5.9.3 Relation between the number of flaplets and the time

required for self-synchronization

One of the advantages of the proposed model is that it allows for studying the

emergence of coordination for large number of flaplets. It is plausible to assume

that a correlation exists between the number of flaplets and the period required

for the coordination to rise. To verify this assumption, the model of 32 oscillators

was rendered starting from random initial positions of the oscillators and ran the
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control loop until the system reached full and stable metachronal synchronization,

and then examined the periods required for each oscillator to reach synchronization.

The oscillator is marked as “joined coordination” once it reaches within 2% around

its steady-state phase relationship with its adjacent neighbour. Fig. 5.17 shows

the results of this investigation as a cumulative histogram plot of the number of

oscillators that reach coordination versus the time in beat cycles.

Figure 5.17: Number of oscillators to reach synchronization during the build-up stage of
full metachronoal coordination of 32 oscillators. Each oscillator is considered to join coordi-
nation once it reaches within 2% around its steady-state phase relationship with its adjacent
neighbour.

The plot shows that the time required for the first 7 oscillators to reach coordina-

tion is relatively short (approximately 14 cycles). From there on, a steady increase of

the number of oscillators that join coordination is observed with time. The average

period required for a new oscillator to join coordination is approximately 7 cycles.

5.9.4 Flow visualization results due to different coordina-

tion phase-shifts among the flaplets

As demonstrated in section 2.6, the row of five oscillating flaplets could produce net

transport of the fluid at the surface when forming a coordinated beating pattern

with a phase shift of 20% of a cycle between the neighbouring flaplets (j = 0.2 in

Eq. 5.11). Herein, I investigate the resulted flow field due changing the parame-
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ter j (the phase shift) of the coordinated beating flaplets. Firstly, I refer to the

illustration presented in the previous chapter (section 4.5.3) about the application

of the Purcell’s symmetry arguments to the physical system as a unit (not to the

individual oscillators). We concluded that as long as the system do not form an

in-phase or out-of-phase beating pattern, the running metachronal wave will have

a certain direction that is not time-reversible which suggests that net propulsion

could occur. After performing multiple PIV measurements with different values of

the parameter j, it was found out that a net transport of the fluid is achieved for

coordination patterns with 0 < |j| < 0.5. These findings are demonstrated in the

following three plots in Fig. 5.18; (top) the transport reported in section 2.6 when

j = 0.2; (middle) opposite-direction net transport of the fluid when j = −0.4; (bot-

tom) zero net transport at the surface when j = 0.5 (out-of-phase coordination).

The speed scale of the three plots is unified for a clear comparison.

The parameter j controls the direction of the running metachronal wave. When

positive, it indicates that the wave is running from left to right. An example of that

case is shown in Figure 5.9. The left-most flaplet (with angular position θ1) is the

leading flaplet in that figure. When the parameter j is negative, it indicates that

the wave is running from right to left, and that the right-most flaplet is the leading

flaplet. Depending on the direction of the resulted flow, the metachronal wave herein

was found to be antiplectic. It means that the direction of the resulted propulsion

is always opposite to the direction of the running metachronal wave. Accordingly,

as demonstrated in the figure, the direction of the resulted transport at the flaplets’

surface is to the left when the parameter j is positive and to the right when it

is negative. The case of antiplectic metachronism is popular in biological ciliated

systems (Knight-Jones 1954). It was demonstrated that this type of metachronal

waves is optimal for generating efficient transport in epithelial cilia (Chateau et al.

2019). A symplectic metachronal wave cannot be generated by the current setup.

This is because the individual oscillators do not feature a default power stroke on

their own, as their beat profiles are time-symmetric. Since the propulsion here is a

consequence of the metachronal coordination alone, its direction cannot be reversed

without reversing the direction of the running metachronal wave.
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Figure 5.18: Flow visualization results of the coordinated oscillators for different phase
relationships.
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Chapter 6

Conclusions

Using engineering tools to mimic the different processes and behaviours witnessed

in nature has helped humanity to achieve consequential advancements in multiple

fields. The research presented in this PhD thesis has focused on the understanding

and employment of two behaviours observed in organisms possessing superficial hair-

like structures in fluidic environments. In this chapter, the thesis key results are

summarized, highlighting the future work that can build on the present findings.

In the first study, a novel methodology of underwater sensing was developed and

tested using deep-learning models. The disturbance signature left behind a wake-

generating object in water could be sensed and interpreted as accurate locations of

the object. The idea was inspired from the ability of the seal to track preys in water,

even blindfolded, by sensing the vibrations of its facial hairs. The seal’s brain is able

to form a hydrodynamic image of its surroundings by processing these vibrations.

Similarly, the presented neural-network models herein could translate the vibrations

of an array of artificial whiskers into the two-dimensional position of the disturbance

source underwater with a high degree of accuracy.

The implementation of the whisker-array transducer presented here is affordable,

lifelike and has a minimum impact on the underwater environment. It can help

overcome the well-known challenges of sonar and vision-based sensors. It can also

be improved in order to be used for real-time tracking tasks in autonomous and

remotely-controlled underwater vehicles.

The introduced measurement setup used a high-speed camera to track the de-
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flection responses of the artificial whiskers made from optical fibers. Future work

has already been planned to investigate alternative ways of sensing the vibrations of

the artificial whiskers instead of the current vision-based system. Strain gauges or

Fiber-Bragg gratings will be considered to replace the camera in the current setup

and, therefore, the full embedded system will be ready for testing as a robotic solu-

tion. Another project has been also planned to implement the whisker-array sensor

in a real-time tracking task. The new measurement system should read the vibra-

tion signals of the different whiskers and send them to the controller, The learning

models implemented inside the controller will then predict the required orientation

of the robot in order to directly face the disturbance source, then the robot will be

actuated accordingly with the relative angle of rotation.

The study also introduced the use of computational-intelligence tools for inter-

preting natural behaviours and fluid-structure-interaction problems. The physics-

based modelling of fluid-mechanics problems is sometimes complicated or not pos-

sible. Numeric simulations, on the other hand, usually consume a big deal of time

and computational resources. Using machine learning to simulate the process or

capability being researched not only can facilitate its understanding by interpreting

the trained learning models but also allows for its direct deployment in relevant

engineered applications.

The second study presented an experiment and a model of the emergence of

metachronal self-coordination in a row of flexible oscillators similar to that witnessed

in biological ciliary systems. The conditions that lead to hydrodynamic coordination

of the oscillators were tested and the evolution of the resulted coordination was

closely examined. The hydrodynamic cross-talk among the oscillators (in form of

pending deflections at their tips due to the viscous-coupling forces) represented

the key factor in the system transformation towards its coordinated state. The

study used material flexibility and position feedback control of the oscillator tips

to implement the geometric clutch hypothesis that features the cilium beat. This

implementation is not confined to the present geometry and may be replicated in

future research using different materials and shapes.

The flow filed around the resulted coordination-state of the oscillators was in-
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vestigated using particle-image-velocimetry. The system of coordinated oscillators

could generate surface transport of the surrounding medium which can be translated

to a net swimming force in case that the system was free to move.

The study proved that flat-plate oscillators with time-symmetric beating profiles

can spontaneously synchronize their oscillations and generate propulsion at low-

Reynolds environments. The presented artificial-cilia model is simple and easy to

control using ordinary rotary actuators, and can generate propulsion at low-Reynolds

regimes. In future work, it can be tested in micro-swimmer applications or as a

propulsion device in viscous environments. The introduced mathematical state-

space model of the oscillators can facilitate the controller-design process in future

applications by using state-observation techniques, that would allow to optimize the

resulted propulsion performance.
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