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Abstract

In this paper, we propose two new representation formulas for the conditional marginal probability density of
the multi-factor Heston model. The two formulas express the marginal density as a convolution with suitable
Gaussian kernels whose variances are related to the conditional moments of price returns. Via asymptotic
expansion of the non-Gaussian function in the convolutions, we derive explicit formulas for European-style
option prices and implied volatility. The European option prices can be expressed as Black-Scholes style
terms plus corrections at higher orders in the volatilities of volatilities, given by the Black-Scholes Greeks.
The explicit formula for the implied volatility clearly identifies the effect of the higher moments of the price
on the implied volatility surface. Further, we derive the relationship between the VIX index and the
variances of the two Gaussian kernels. As a byproduct, we provide an explanation of the bias between
the VIX and the volatility of total returns, which offers support to recently proposed methods to compute
the variance risk premium. Via a series of numerical exercises, we analyse the accuracy of our pricing
formula under different parameter settings for the one- and two-factor models applied to index options on
the S&P500 and show that our approximation substantially reduces the computational time compared to
that of alternative closed-form solution methods. In addition, we propose a simple approach to calibrate
the parameters of the multi-factor Heston model based on the VIX index, and we apply the approach to the
double and triple Heston models.

1 Introduction

1.1 Motivation

The well-known Heston model (1993) provides a natural generalization of the Black and Scholes approach to
option pricing by introducing stochastic dynamics for the volatility of returns. With its ability to reproduce
several empirical features in the dynamics of asset prices, such as the leverage effect and the clustering of
volatility, the Heston model has become one of the most widely used stochastic volatility models in the
derivatives market. While the Heston model can generate smiles and smirks, it does not provide sufficient
flexibility to capture the shape of the implied volatility surfaces, in particular, the largely independent
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fluctuations in slope and level over time. Another drawback of the Heston model is that it predicts a
flattening of the curvature of the implied volatility that is faster than that observed in the market when
time to maturity increases. To address these shortcomings, a multi-factor extension of the Heston model
has been proposed. Christoffersen et al. (2009) were among the first to show that at least two factors are
needed to realistically capture the implied volatility slope and level dynamics. Their results indicate that
one factor is strongly mean reverting, whereas the other is slowly varying, providing more flexible modelling
of the volatility term structure.

Exact analytical solutions for the price of vanilla European call options under the Heston and multi-factor
Heston model are available in terms of integrals in the complex plane that must be computed by numerical
integration over the characteristic functions (Heston 1993; Duffie et al. 2000; Lewis 2000; Christoffersen et
al. 2009; Fatone et al. 2009, 2013; Recchioni and Sun 2016; Cui et al. 2017; Recchioni and Tedeschi 2017;
Veng et al. 2019).

Here, we propose two new closed analytical solutions based on two integral representation formulas for
the conditional marginal density function, which we express as a convolution with suitable Gaussian ker-
nels. These formulas provide a natural way to connect the margins of the multi-factor Heston model to
the probability density function of the Black-Scholes model. Specifically, we extract two Gaussian kernels
(Theorems 2.1 and 2.2). The first kernel, GΓ0 , well known in the literature, has a variance Γ0 that is in-
dependent of the volatilities of volatilities (vols of vols) and is given by the integrated conditional mean of
the point-in-time variance. The other kernel, GΓ2 , is hidden in the marginal probability density and has
therefore not been explored in the literature. The variance Γ2 coincides with the conditional variance of
continuously compounded returns. We show that GΓ2 is the “complete” kernel of the Heston model and
its multi-factor generalization. Our representation formulas allow us to express the price of any derivative
contract, not just vanilla contracts, as the price in a Black-Scholes world, with variance Γ0 or Γ2, convolved
with a suitable function that does not depend on the specific payoff of the contract.
The convolution formulas can be computed by solving the integrals numerically. While numerical integra-
tion methods are extremely powerful in terms of accuracy, they do not provide an explicit link between
the structural properties of the model and the characteristics of the prices. In addition, while closed-form
solutions are particularly useful for model calibration, common practice is to calibrate the implied volatility
observed in the market, rather than the option prices, because implied volatility is a standardized measure
of option prices that makes them comparable even when the underlying assets are not the same. Unfortu-
nately, exact closed-form solutions for implied volatilities are not available in the Heston and multi-factor
Heston framework. Therefore, easy-to-implement analytical approximations based on perturbation and
asymptotic methods have become popular. Approximations not only help to accelerate the calibration to
market-observed quantities but also enhance the understanding of the analytical features of the model and
the implied volatility surface.

1.2 Literature Review

The earliest and best known asymptotic results are from Lewis (2000), who derived an asymptotic expansion
for small values of the vols of vols. This result was followed by Lee (2001), who obtain similar results
assuming a slow mean reversion of volatility, and Fouque and Lorig (2011), who assume fast mean-reverting
volatility. Additionally, Antonelli and Scarlatti (2009) make an expansion around zero correlation. Fritz et
al. (2011) derive an asymptotic expansion for the implied volatility of the Heston model for a large strike
price. Forde and Jacquier (2009) obtain the small-time behaviour of the implied volatility in the Heston
model (with correlation), while Forde and Jacquier (2011) use large deviation techniques to obtain the
small-time behaviour of the implied volatility for general stochastic volatility models with zero correlation.
Kristensen and Mele (2011) do not approximate the asset price directly but develop a power series expansion
of the expected bias that would arise if the Black-Scholes model was used to price derivatives when the true
market dynamics obeyed the Heston model. Drimus (2011) follows a similar approach using a different
series expansion and shows how the convexity in volatility, measured by the Black-Scholes Volga, and the
sensitivity of delta with respect to volatility, measured by the Black-Scholes Vanna, impact option prices in
the Heston model. Fouque et al. (2011) derive an asymptotic expansion for general multiscale stochastic
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volatility models using combined singular and regular perturbation theory. Bergomi et Guyon (2011) also
consider multi-factor stochastic volatility models and derive an approximation for the volatility smile at the
second order in the vols of vols. Their results coincide with those of Lewis (2000) in the case of the Heston
model. Lorig et al. (2017) derive a family of asymptotic expansions for European-style option prices and
implied volatilities for a general class of local stochastic volatility models.

Some authors have derived asymptotic expansions in a jump-diffusion stochastic volatility setting (see
Medvedev and Scaillet (2007), Berestycki et al. (2004)). More recently, Jacquier and Lorig (2014) provide
an explicit implied volatility approximation for any model with an analytically tractable characteristic
function, which includes both affine stochastic volatility and exponential Lévy models. Nicolato and Sloth
(2012) and Takahashi and Yamada (2012) develop asymptotic expansions around the Black-Scholes model
for stochastic volatility models with jump diffusion. Pagliarini and Pascucci (2013) add jumps to a local-
stochastic volatility model.

Benhamou et al. (2010) employ Malliavin calculus to develop an approximation formula under the one-
factor Heston model with time-dependent parameters. Their option prices are given by a Black-Scholes term
plus corrections related to the Greeks of the option. Nagashima et al. (2014) extend these results to the
general multi-factor Heston model with time-dependent parameters and find a similar expansion but with
an extra term that captures the interaction between the different variance factors. Alós et al. (2012) use
Malliavin calculus to study the short-term behaviour of implied volatility for jump-diffusion models with
stochastic volatility. Veng et al. (2019) derive an asymptotic expansion for put prices, extending the results
of Benhamou et al. (2010) to the general multi-factor Heston model with time-dependent parameters.

Considerable attention has also been devoted to approximating the risk-neutral density, as proposed by
Abadir and Rockinger (2003), Aı̈t-Sahalia (2002), Egorov et al. (2003), and Yu (2007).

In line with this literature, we propose an asymptotic expansion of the conditional marginal density for
small values of the vols of vols. The main difference with respect to the literature is that the expansion
is done after extracting the Gaussian kernels, i.e., we expand only the function that is convolved with the
Gaussian kernels. This approach yields particularly interesting results when the GΓ2 kernel is used, given
that its dependence on the vols of vols is fully retained. With our approach, we naturally obtain option
prices that can be expressed as the Black-Scholes price plus correction terms related to the Greeks of the
options. Similarly, the implied volatility can be written as the square root of the integrated conditional
variance plus corrections due to higher-order risks. These decompositions provide a clear understanding
of how option prices and implied volatility respond to changes in the model parameters and underlying
quantities, which is very important in practice for hedging purposes.

1.3 Main Contribution

Our paper contributes to the existing literature in several respects. First, we provide two new exact formulas
for the conditional marginal density of the multi-factor Heston model (Theorems 2.1 and 2.2). As mentioned
above, each formula expresses the marginal probability density as a convolution of a Gaussian kernel whose
variance is related to the price-return process. While we do not compute these formulas numerically, this
approach avoids some numerical challenges in computing the complex integrals involved in option pricing in
the multi-factor Heston model.
Second, following the approach of Zhang et al. (2010; 2017), we derive analytical formulas for the higher-
order cumulants in the multi-factor Heston framework. These formulas show that the variance of the
Gaussian kernel, GΓ2 , is given by the variance of the continuously compounded return.
Third, we provide explicit approximation formulas for the marginal density function as a Gaussian kernel
plus corrections using an asymptotic expansion for the non-Gaussian term in the convolution that defines
the marginal probability. With this expansion, we obtain explicit formulas for European vanilla call and put
options prices that can be expressed as the Back-Scholes price plus corrections at higher orders of the vols of
vols (see Propositions 3.1). These formulas satisfy the put-call parity equation at any order of approxima-
tion. The formulas using the Gaussian kernel GΓ0 , while derived with a different approach, are equivalent to
those of Bergomi and Guyon (2011) for the Heston model and are similar to those of Veng et al. (2019) for

3



the multi-factor Heston model. However, these authors explicitly compute the first-order corrections in the
slow and fast time scales, so they do not capture the effect of price skewness on the convexity of the implied
volatility. The formulas using the Gaussian kernel GΓ2 are new and outperform those obtained using the
Gaussian kernel GΓ0 for out-of-the-money options.
Finally, we derive an approximation for the implied volatility from a second-degree polynomial function of
the forward moneyness. This formula allows the effect of price skewness on the asymmetry of the volatility
smile to be clearly identified, in addition to the level, slope, and curvature of the implied volatility smirk.
For the Heston model with zero drift, our formula is analogous to that of Bergomi and Guyon (2011), and
is in line with the approximation formula in a non-parametric setting proposed by Zhao et al. (2013). The
key insight of our formula is explicit expressions for the level, slope and convexity in terms of the cumulative
uncertainty of the asset price and the integrated volatility process. This is a new result that has not been
reported in the literature.
Our work also contributes to the growing literature that explores the bias between the VIX index and the
integrated conditional mean of the point-in-time variance, and it provides a possible interpretation of the
variance risk premium. Defining the variance risk premium as the positive difference between the second cu-
mulants in the physical and risk-neutral measures (in line with Zhao et al. 2013), we compute the premium
explicitly in the multi-factor Heston model. In particular, we show that the risk-neutral second cumulant
coincides with the square root of Γ2/T , which is an implied volatility. Furthermore, we show that the VIX
index can be associated not only with Γ0 (i.e., the integrated conditional variance) but also with Γ2 (i.e.,
the variance of the compounded return in the risk-neutral measure) opening the opportunity to calibrate
the parameters of the multi-factor Heston model directly from the VIX. This result also provides support to
recently proposed methods to compute the variance risk premium from model-free option-implied volatility
measures. We also propose an explanation for the bias usually observed between the VIX index and the
volatility of total returns. This topic is discussed further in Section 3.3.
Finally, we provide a one-dimensional integral representation formula for European call and put options in
the multi-factor Heston model following the approach in Recchioni and Sun (2016). These formulas are used
as an exact benchmark against which to test the accuracy of our option price approximations.

The rest of this paper is organized as follows. In Section 2, we review the multi-factor Heston model, derive
the main results of the paper, i.e., the two representation formulas for the conditional marginal density
function, and introduce the two Gaussian kernels GΓ0 and GΓ2 . In Section 3, we derive approximation for-
mulas, in powers of the vols of vols, for option prices and implied volatility, and we provide an interpretation
of the volatility smile. We then derive the relationship between the variances of the two kernels and the
VIX index. In Section 4, we present two simulation studies to assess the accuracy of our approximated
formulas, and in Section 5, we present empirical analyses to assess the effectiveness of our approach in terms
of model calibration and forecasting option prices one day ahead. In Section 6, we show empirically that the
squared VIX is better approximated by Γ2 than Γ0, and we use the VIX index to calibrate the parameters
of the double and triple Heston models. Our results suggest that the dynamics of the third factor may be
influenced by changes in macroeconomic conditions. Section 7 concludes. The proofs of the main results
are given in Appendix A, while Appendices B and C report the derivation of the formulas for the option
pricing with the expansion based on the Gaussian kernel GΓ0 (Appendix B) and the true marginal density
(Appendix C). Supplementary material with detailed proofs and some additional results is available online.

2 Multi-factor Heston model treatment

In this section, we present the multi-factor Heston stochastic volatility model and the main theoretical
results of the paper. The final goal is to derive an explicit, approximate expression for the price of European
call and put options and for the implied volatility in the multi-factor Heston framework. The key results are
two representation formulas for the conditional marginal density function (which is the starting point for
the derivation of the option prices) associated with the multi-factor Heston model. The first representation
formula shows that the conditional marginal density can be expressed as the convolution of a Gaussian
kernel, that does not depend on the Heston vols of vols parameters, and a function that includes all the
effects of the vols of vols. The second formula reveals the complete Gaussian kernel, i.e., the one that
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includes all the effects of the vols of vols and is able to fully capture the process dynamics.
The multi-factor Heston model (Christoffersen et al. (2009)) assumes the following stochastic volatility

model:

dxt =

r(t)− 1

2

n∑
j=1

vj,t

 dt+
n∑
j=1

√
vj,tdZj,t, t > 0, (1)

dvj,t = χj(v
∗
j − vj,t)dt+ γj

√
vj,tdWj,t, t > 0, (2)

where xt denotes the log-price variable, v1,t, . . . , vn,t is the corresponding variances, r(t) is the instantaneous
risk-free rate (assumed to be known in advance), χj , v

∗
j , and γj are positive constants, and Zj,t, Wj,t,

j = 1, 2, . . . , n, are standard Wiener processes. All correlations among the Wiener processes are zero, except
for E(dZj,t, dWj,t) = ρj dt, where ρj ∈ (−1, 1), j = 1, 2, . . . , n are constant correlation coefficients. Dividends
are not included. The system of equations (1)-(2) is equipped with the following initial conditions:

x0 = log S̃0, (3)

vj,0 = ṽj,0, (4)

where S̃0 and ṽj,0, j = 1, 2, . . . , n, are the initial spot price and variance respectively, which are assumed to
be random variables concentrated at a point with probability one.
As specified in Heston (1993), the quantities χj are the speeds of mean reversion, v∗j represents the long-term

means, and γj denotes the local variances (or volatilities of volatility) of each volatility process vj . These
parameters are assumed to be positive, so the process is well defined.
Notably, if the Feller condition is enforced, i.e., 2χj v

∗
j /γ

2
j > 1, the variances vj,t are positive for any t > 0

with probability one (stationary volatility) and vj,0 = ṽj,0 > 0, j = 1, 2, . . . , n (see Revuz and Yor [25,
Chapter XI] for the Bessel process).
Furthermore, we use γ, v to denote the vectors containing the vols of vols, γ = (γ1, γ2, . . . , γn), and the
variances, v = (v1, v2, . . . , vn), respectively. The transition probability density function (pdf) associated

with the stochastic differential system (1), (2) is denoted by pf (x, v, t, x′, v′, t′), (x, v), (x′, v′) ∈ R×Rn+
, t,

t′ ≥ 0, t′ − t > 0, where R denotes the set of real numbers, Rn is the n-dimensional Euclidean vector space,

and Rn+
the positive orthant. We also introduce the processes Xt′ and Yt′ associated with the multi-factor

Heston model (1):

Xt′ =

∫ t′

t

n∑
j=1

√
vj,τdZj,τ , (5)

Yt′ =

∫ t′

t

n∑
j=1

[vj,τ − E(vj,τ |Ft)]dτ , (6)

where Ft is the information set, i.e., the continuous σ-algebra generated by the point-in-time volatility
processes, and E(vj,s |Ft) is the conditional mean of the point-in-time variance given by

E(vj,t′ |Ft) = vj,te
−χj(t′−t) + v∗j (1− e−χj(t

′−t)), t < t′. (7)

According to Zhang et al. (2017), Xt′ measures the cumulative uncertainty of the asset return and Yt′
1

is the uncertainty of the integrated variance process over the time interval [t, t′]. Rt
′
t is the continuously

compounded return defined as

Rt
′
t = xt′ − xt =

∫ t′

t

r(τ)− 1

2

n∑
j=1

vj,τ

 dτ +

n∑
j=1

√
vj,τdZj,τ

 (8)

1 The conditional moments of the process Yt′ are also known as risk-neutral cumulants (see, Zhou et al. 2013).
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with

E(Rt
′
t | Ft) =

∫ t′

t

r(τ)− 1

2

n∑
j=1

E(vj,τ | Ft)

 dτ
which is related to processes Xt′ and Yt′ as follows

Rt
′
t − E(Rt

′
t | Ft) = Xt′ −

1

2
Yt′ . (9)

In the following, we provide a representation formula for the conditional marginal density function, which
enables extraction of the Gaussian kernel underlying the multi-factor Heston model (Theorems 2.1 and 2.2).
Specifically, we use GΓ to denote the Gaussian kernel with variance Γ(t, t′), t < t′, that is:

GΓ(y, t, t′) =
1√

2πΓ(t, t′)
e
− 1

2Γ(t,t′)

(
y−
∫ t′
t r(s)ds+ 1

2
Γ(t,t′)

)2

=
1

2π

∫ +∞

−∞
e
ık
[
y−
∫ t′
t r(s)ds+ 1

2
Γ(t,t′)

]
− 1

2
Γ(t,t′)k2

dk . (10)

We extract two Gaussian kernels2, identified in Theorems 2.1 and 2.2, that we denote as the zero-order
kernel GΓ0 and the second-order kernel GΓ2 . As we show later, the terms “zero-order” and “second-order”
reflect the fact that they contain, respectively, no powers of γ and all terms of second degree in γ.

Theorem 2.1 shows that the marginal probability density of the log-price variable can be written (see
Eq. (18)) as the convolution of the Gaussian kernel GΓ0 (independent of the vols of vols) and the function
Lγ , which accounts for the vols of vols effect.

Theorem 2.1 The marginal probability density of the log-price variable conditioned on vt = v is given by

M(x, v, t, x′, t′) =

∫
Rn+

pf (x, v, t, x′, v′, t′)dv′

=
1

2π

∫ +∞

−∞
e
ık
[
(x′−x)−

∫ t′
t r(s)ds+ 1

2
Γ0(t,t′)

]
− 1

2
Γ0(t,t′)k2︸ ︷︷ ︸

Fourier transformof Gaussian kernel

e

∑n
j=1

∫ t′
t E(vj,s | Ft)

[
γ2
j
2
B2
j (k,s,t′)+ı kρjγjBj(k,s,t′)

]
ds︸ ︷︷ ︸

contribution fromvols of vols

dk,

x, x′ ∈ R, v ∈ Rn
+
, t, t′ ≥ 0, t′ − t > 0, (11)

where ı is an imaginary unit and E(vj,s | Ft) is the conditional mean (7). Here, Bj is given by

Bj(k, t, t
′) =

1

2
(k2 − ı k)

1− e−2ζj(t
′−t)

(ζj + νj) + (ζj − νj)e−2ζj(t′−t)
, (12)

where ζj and νj are the following quantities:

ζj(k) =
1

2

(
4ν2
j + γ2

j (k2 − ı k)
)1/2

, (13)

νj(k) =
1

2
(ı kρjγj + χj). (14)

Furthermore, M can be written as:

M(x, v, t, x′, t′) =

∫ +∞

−∞
GΓ0(x′ − x− y, t, t′)Lγ(y, t, t′)dy, (15)

where Γ0(t, t′) is given by:

Γ0(t, t′) =
n∑
j=1

∫ t′

t
E(vj,s | Ft)ds, (16)

2We refer the reader to the supplementary material for a discussion of an additional Gaussian kernel GΓ1 .
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where GΓ0 is the Gaussian kernel in (10), computed for Γ(t, t′) = Γ0(t, t′), and Lγ is a function that accounts
in full for the effects of the vols of vols:

Lγ(y, t, t′) =
1

2π

∫ ∞
−∞

eı k ye

∑n
j=1

∫ t′
t E(vj,s | Ft)

[
γ2
j
2
B2
j (k,s,t′)+ı kρjγjBj(k,s,t′)

]
ds

dk . (17)

Proof of Theorem 2.1 See Appendix A.

Building from the previous result, we derive Theorem 2.2, which provides an alternative representation
of the marginal density function expressed as the convolution of the Gaussian kernel GΓ2 and the function
L∗γ .

Theorem 2.2 The marginal probability density of the log-price variable conditioned on vt = v is given by

M(x, v, t, x′, t′) =
1

2π

∫ +∞

−∞
e
ık
[
(x′−x)−

∫ t′
t r(s)ds+ 1

2
Γ2(t,t′)

]
− 1

2
Γ2(t,t′)k2

e
∑n
j=1

∫ t′
t E(vj,s | Ft)Hj(k,s,t′)dsdk

=

∫ +∞

−∞
GΓ2(x′ − x− y, t, t′)L∗γ(y, t, t′)dy, (18)

where L∗γ is:

L∗γ(y, t, t′) =
1

2π

∫ ∞
−∞

eı k ye
∑n
j=1

∫ t′
t E(vj,s | Ft)Hj(k,s,t′)dsdk . (19)

Here, Γ2 is defined by

Γ2(t, t′) = Γ0(t, t′)− 2S1(t, t′) + 2S2(t, t′)

=
n∑
j=1

∫ t′

t
E(vj,s | Ft)

[
(1− ρ2

j ) +

(
γj

2χj

(
1− e−χj(t′−s)

)
− ρj

)2
]
ds, (20)

and S1 and S2 are given by:

S1(t, t′) =
1

2

n∑
j=1

ρjγj
χj

∫ t′

t
E(vj,s | Ft)

(
1− e−χj(t′−s)

)
ds, (21)

S2(t, t′) =

n∑
j=1

γ2
j

8χ2
j

∫ t′

t
E(vj,s | Ft)

(
1− e−χj(t′−s)

)2
ds, (22)

while Hj is given by:

Hj(k, t, t
′) =

γ2
j

2
B2
j (k, t, t′) + ı kρjγjBj(k, t, t

′) +
1

2
(k2 − ık)

[
−ρjγj
χj

(1− e−χj(t′−t)) +
1

4

γ2
j

χ2
j

(
1− e−χj(t′−t)

)2
]
.

(23)

Furthermore, the following expansion holds:

L∗γ(y, t, t′) =

1

2π

∫ ∞
−∞

eı k yeS1(t,t′)(ı k3+ı k)+S2(t,t′)(k4−2ık3−ık)+S2c(t,t′)(k4−ı k3)−ık(k2−ık)2S3c(t,t′)−ı k(k4−ı k3)S3d(t,t′)+o(‖γ‖3)dk ,

‖γ‖ → 0+, (24)
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where S1 and S2 are given in Eqs. (21) and (22), while S2c, S3c and S3d are:

S2c(t, t
′)=

n∑
j=1

γ2
j ρ

2
j

2χj

∫ t′

t
E(vj,s | Ft)e−χj(t

′−s)
∫ t′

s

(
eχj(t

′−τ) − 1
)
dτds, (25)

S3c(t, t
′)=

n∑
j=1

γ3
j ρj

χj

∫ t′

t
E(vj,s | Ft)

{
1

8
ψ2
j (s, t

′) +
(t′ − s)

4χj

(
e−2χj(t

′−s) − 2e−χj(t
′−t)
)

+
ψj(s, t

′)

4χj

}
ds,

(26)

S3d(t, t
′) =

n∑
j=1

γ3
j ρ

3
j

2χj

∫ t′

t
E(vj,s | Ft)

[
ψj(s, t

′)

χj
− (t′ − s)

χj
e−χj(t

′−s) − (t′ − s)2

2
e−χj(t

′−s)
]
, (27)

where ψj is given by:

ψj(t, t
′) =

(1− e−χj(t′−t))
χj

, t < t′. (28)

Proof of Theorem 2.2 See Appendix A.

We note that the expansion of Hj in powers of γj , as γj → 0+, with degree greater than two involves
polynomial functions of k with degree greater or equal to three (see Appendix A). Thus, the function L∗γ
contains only terms of order k or kn with n ≥ 3. All terms of order k2 are absorbed in GΓ2 . Therefore, we
call GΓ2 the complete kernel of the multi-factor Heston model, and formula (18) is used to derive the option
prices and implied volatility approximations in the next section of this paper3.
Te functions Lγ in (17) and L∗γ in (24) satisfy the following equation:

L̂γ = e−(k2−ık)(S2(t,t′)−S1(t,t′))L̂∗γ , (29)

where L̂γ and L̂∗γ are the Fourier transforms of the functions Lγ and L∗γ with respect to the log-price, re-

spectively.

To provide intuition for the two Gaussian kernels, we derive the relationship between their variances, Γ0

and Γ2, and the processes Xt, Yt and Rt
′
t , defined by Eq. (5), Eq. (6) and Eq. (8).

Proposition 2.3 Let t < t′ and Xt′, Yt′, and Rt
′
t be the processes in (5), (6) and (8). We have the following

expressions for the conditional moments of Xt′ and Yt′:

E(X2
t′ | Ft) = Γ0(t, T ), E(X3

t′ | Ft) = 6S1(t, t′), E(Y 2
t′ | Ft) = 8S2(t, t′), E(Xt′Yt′ | Ft) = 2S1(t, t′),

(30)

E(X2
t′Yt′ | Ft) = 4S2c(t, t

′) + 8S2(t, t′), E(Xt′Y
2
t′ ) = 8S3c(t, t

′). (31)

where Γ0, S1, S2, S2c, and S3c are given in (16), (21), (22), (25) and (26)4. Finally, in the multi-factor

Heston model (1), the conditional variance of the continuously compounded return Rt
′
t and the price skewness

formula, as defined in Das and Sundaram (1999), are:

var(Rt
′
t | Ft) = E

(
(Rt

′
t − Et(Rt

′
t ))2 | Ft

)
= Γ2(t, t′), (32)

and

SkewnessDS =
E(X3

t′ | Ft)[
E(X2

t′ | Ft)
]3/2 = 6

S1(t, t′)

Γ0(t, t′)3/2
. (33)

where Γ2 is given in (20).
3Higher-order Gaussian kernels have been discussed in Wand and Schucany (1990).
4The explicit formula for the conditional moment Et(Y

3
t′ ) is derived in the supplementary material. Notably, Et(Yt′) is a

homogeneous function of degree four in the vols of vols
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Proof of Proposition 2.3 The proof follows using the approach proposed in Zhang et al. (2017). A detailed
proof is given in the supplementary material online.

Notably, the proposed formulas hold for the expectation both in the risk-neutral and physical probability
measures. This distinction is necessary in the discussion of the variance risk premium (in Section 3.3).

Interestingly, the variance of the Gaussian kernel GΓ0 is given by the second-order conditional moment
of the process Xt in (5) and is independent of the vols of vols, while the variance of the Gaussian kernel

GΓ2 coincides with the conditional variance of the continuously compounded return Rt
′
t and, through its

dependence on the vols of vols, γj , fully captures the dynamics of the multi-factor Heston model. This
makes GΓ2 the most natural kernel representation of the conditional marginal M .
Furthermore, Eq. (33) shows that the function S1 is responsible for the price skewness and the mixed moment
between the cumulative uncertainty of the asset return and the uncertainty of the integrated variance process
over the time interval [t, t′]. In the next section, we show that the price skewness, SkewnessDS , given in
(33), appears in the coefficient of the second-order term of the implied volatility in Eq. (63) and may cause
the “volatility smile” convexity to change.

As a corollary of Theorem 2.2, we provide expansions of the conditional marginal density M in powers
of the vols-of-vols vector γ up to the third order.

Corollary 2.4 The following expansion of the conditional marginal M in (11) in powers of γ as ‖γ‖ → 0
holds:

M(x, v, t, x′, t′) = GΓ2(x′ − x, t, t′) +M1(x, v, t, x′, t′) +M2(x, v, t, x′, t′) +M3(x, v, t, x′, t′) + o
(
‖γ‖3

)
,

‖γ‖ → 0, (34)

where GΓ2 is the Gaussian kernel defined in (10), M1 is given by

M1(x, v, t, x′, t′) = S1(t, t′)

[
−d

3GΓ2

dx′3
(x′ − x, t, t′) +

dGΓ2

dx′
(x′ − x, t, t′)

]
,

(35)

M2 is given by

M2(x, v, t, x′, t′) = S2(t, t′)

[
d4GΓ2

dx′4
(x′ − x, t, t′) + 2

d3GΓ2

dx′3
(x′ − x, t, t′)− dGΓ2

dx′
(x′ − x, t, t′)

]
+

S2c(t, t
′)

[
d4GΓ2

dx′4
(x′ − x, t, t′) +

d3GΓ2

dx′3
(x′ − x, t, t′)

]
+

1

2
S2

1(t, t′)

[
d6GΓ2

dx′6
(x′ − x, t, t′)− 2

d4GΓ2

dx′4
(x′ − x, t, t′) +

d2GΓ2

dx′2
(x′ − x, t, t′)

]
,

(36)

and M3 is given by

M3(x, v, t, x′, t′) = S3c

[
− d3

dx′3
GΓ2 − 2

d4

dx′4
GΓ2 −

d5

dx′5
GΓ2

]
+ S3d

[
− d4

dx′4
GΓ2 −

d5

dx′5
GΓ2

]
+

1

6
S3

1

[
− d9

dx′9
GΓ2 + 3

d7

dx′7
GΓ2 − 3

d5

dx′5
GΓ2 +

d3

dx′3
GΓ2

]
+S1S2

[
− d7

dx′7
GΓ2 − 2

d6

dx′6
GΓ2 +

d5

dx′5
GΓ2 + 3

d4

dx′4
GΓ2 −

d2

dx′2
GΓ2

]
+S1S2c

[
− d7

dx′7
GΓ2 −

d6

dx′6
GΓ2 +

d5

dx′5
GΓ2 +

d4

dx′4
GΓ2

]
. (37)

In Eq. (37), we have dropped the arguments on the right side to keep the notation simple. Here, Γ2, S1, S2,
S2c, S3c and S3d are given in (20), (21), (22), (25), (26) and (27), respectively.
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Proof of Corollary 2.4 The proof is based on the expansion in powers of the vols of vols of the function
Lγ, and it is available in the supplementary material online.

We denote the approximations of the marginal density up to the third order as

M0(x, v, t, x′, t′) = GΓ2(x′ − x, t, t′),
M1(x, v, t, x′, t′) = GΓ2(x′ − x, t, t′) +M1(x, v, t, x′, t′),

M2(x, v, t, x′, t′) = GΓ2(x′ − x, t, t′) +M1(x, v, t, x′, t′) +M2(x, v, t, x′, t′),

M3(x, v, t, x′, t′) = GΓ2(x′ − x, t, t′) +M1(x, v, t, x′, t′) +M2(x, v, t, x′, t′) +M3(x, v, t, x′, t′). (38)

Proposition 2.5 below shows that the approximations of the marginal density in Eqs. (38) satisfy the
conditions that guarantee mass conservation, the martingale property (i.e., the asset price should be a
martingale in the multi-factor Heston model) and the so-called symmetry condition. These conditions avoid
norm-defecting and martingale-defecting pdfs, as discussed in Lewis (2000) Chapter 2.

Proposition 2.5 Let M0, M1, M2 and M3 be given in (38). The following equations then hold∫ +∞

−∞
Ml(x, v, t, x

′, t′)dx′ = 1, l = 0, 1, 2, 3, (39)

∫ +∞

−∞
ex
′
Ml(x, v, t, x

′, t′)dx′ = exe
∫ t′
t r(s)ds, l = 0, 1, 2, 3, (40)

and ∫ +∞

−∞

(
x′ − x−

∫ t′

t
r(s)ds+

1

2
Γ2(t, t′)

)
Ml(x, v, t, x

′, t′)dx′ = 0, l = 0, 1, 2, 3, (41)

which represent mass conservation (39), the martingale property (40) and the symmetry condition (41).
These properties also hold for the marginal density M in (11).

Proof of Proposition 2.5 See the supplementary material online.

We conclude this section by emphasizing that Corollary 2.4 shows that the third-order expansion of the
marginal density continues to involve only the Gaussian kernel GΓ2 , confirming that GΓ2 is the complete
Gaussian kernel of the multi-factor Heston model.

In the next section, we use Corollaries 2.4 to derive closed-form formulas for the option prices and im-
plied volatility.

3 Applications of the multi-factor Heston kernel approximations

3.1 Option pricing

In this section, we derive explicit formulas for European vanilla call and put options starting from the
representation of the multi-factor Heston conditional marginal M provided in Theorem 2.2 and its approx-
imations up to the third order in the vols of vols, given by Eqs. (38). The equivalent derivation starting
from the representation of the conditional marginal M in terms of the Gaussian kernel GΓ0 , Eq. (15) is
provided in Appendix B.

We use C(S0, T, E) and P (S0, T, E) to denote the price of European vanilla call and put options in the
multi-factor Heston model, with spot price S0, maturity T , strike price E, and discount factor B(T ), which
is given by

B(T ) = e−
∫ T
0 r(s)ds. (42)

10



Specifically, C and P are defined as:

C(S0, T, E) = B(T )

∫ +∞

logE
(ex
′ − E)M(logS0, v0, 0, x

′, T )dx′ , (43)

and

P (S0, T, E) = B(T )

∫ logE

−∞
(E − ex′)M(logS0, v0, 0, x

′, T )dx′ , (44)

where v0 is a vector of the variances at time t = 0.

Furthermore, we use CBS

(
S0, T, E,

√
Γ
T

)
and PBS

(
S0, T, E,

√
Γ
T

)
to denote the classic Black-Scholes

formulas for vanilla call and put options, where Γ = Γ(0, T ) > 0 is the integrated variance over the time
interval [0, T ], that is,

CBS

(
S0, T, E,

√
Γ

T

)
= S0N(d1(Γ))− Ee−

∫ T
0 r(s)dsN(d2(Γ)), (45)

and

PBS

(
S0, T, E,

√
Γ

T

)
= −S0N(−d1(Γ)) + Ee−

∫ T
0 r(s)dsN(−d2(Γ)), (46)

where N(x) is given by

N(x) =
1√
2π

∫ x

−∞
e−y

2/2dy, (47)

and d1(Γ) and d2(Γ) are given by

d1(Γ) =
log
(
S0
E

)
+
∫ T

0 r(s)ds+ 1
2Γ

√
Γ

, (48)

d2(Γ) = d1(Γ)−
√

Γ =
log
(
S0
E

)
+
∫ T

0 r(s)ds− 1
2Γ

√
Γ

. (49)

Proposition 3.1 Let C(S0, T, E) and P (S0, T, E) be the prices of European call and put options, respec-
tively, with spot price S0, maturity T , strike price E and discount factor B(T ), as given in Eqs. (43)–(44).
We have

C(S0, T, E) = CBS

(
S0, T, E,

√
Γ2

T

)
+R1(S0, T, E) +R2(S0, T, E) +R3(S0, T, E) + o

(
‖γ‖3

)
,

‖γ‖ → 0, (50)

and

P (S0, T, E) = PBS

(
S0, T, E,

√
Γ2

T

)
+R1(S0, T, E) +R2(S0, T, E) +R3(S0, T, E) + o

(
‖γ‖3

)
,

‖γ‖ → 0. (51)

Here, Γ2(0, T ) is given by (20), CBS and PBS denote the classic Black-Scholes formulas in (45) and (46),
and R1, R2 and R3 are corrections to the standard Black-Scholes formula due to the contribution of the
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first-, second-, and third-order correction terms of the expansion in powers of the vols of vols of the function
L∗γ (see, Eq. (19)):

R1(S0, T, E) = S1(0, T )B(T )E

[
−dGΓ2

dx′
+ GΓ2

]
(log(E/S0), 0, T ) (52)

R2(S0, T, E) = S2(0, T )B(T )E

[
d2GΓ2

dx′2
+
dGΓ2

dx′
− GΓ2

]
(log(E/S0), 0, T ) + S2c(0, T )B(T )E

d2GΓ2

dx′2
(log(E/S0), 0, T )

+
1

2
S2

1(0, T )B(T )E

[
d4GΓ2

dx′4
− d3GΓ2

dx′3
− d2GΓ2

dx′2
+
dGΓ2

dx′

]
(log(E/S0), 0, T ), (53)

and

R3(S0, T, E) = S3c(0, T )B(T )E

[
−d

3GΓ2

dx′3
− d2GΓ2

dx′2

]
(log(E/S0), 0, T )

−S3d(0, T )B(T )E
d3GΓ2

dx′3
(log(E/S0), 0, T ) + S1(0, T )S2c(0, T )B(T )E

[
−d

5GΓ2

dx′5
+
d3GΓ2

dx′3

]
(log(E/S0), 0, T )

+
1

6
S3

1(0, T )B(T )E

[
−d

7GΓ2

dx′7
+
d6GΓ2

dx′6
+ 2

d5GΓ2

dx′5
− 2

d4GΓ2

dx′4
− d3GΓ2

dx′3
+
d2GΓ2

dx′2

]
(log(E/S0), 0, T )

+S1(0, T )S2(0, T )B(T )E

[
−d

5GΓ2

dx′5
− d4GΓ2

dx′4
+ 2

d3GΓ2

dx′3
+
d2GΓ2

dx′2
− dGΓ2

dx′

]
(log(E/S0), 0, T ), (54)

where S1, S2, S2c, S3c and S3d are given in (21), (22), (25), (26) and (27), respectively. The notation
[·] (·, ·, ·) in Eq. (53) and Eq. (54) means that the function in the square brackets is evaluated at the argument
(·, ·, ·), Note that for γ = 0, GΓ2 coincides with GΓ0, the correction terms R1, R2 and R3 become zero, and the

option prices become the classic Black and Scholes prices for options with time-dependent but deterministic
volatilities.

Dropping the arguments of Γ2, S1, S2 and S2c, Eqs. (52), (53) can be rewritten as

R1(S0, T, E) =
V ega(Γ2)
√
TΓ

3/2
2

S1

(
mE +

3

2
Γ2

)
, (55)

R2(S0, T, E) = +S2c
V ega(Γ2)
√
T Γ

3/2
2

[
(mE + 1

2Γ2)2

Γ2
− 1

]
+ S2

V ega(Γ2)
√
T Γ

3/2
2

[
(mE + 1

2Γ2)2

Γ2
− (mE +

1

2
Γ2)− 1− Γ2

]

+
1

2
S2

1

V ega(Γ2)
√
T Γ

3/2
2

[
(mE + 1

2Γ2)4

Γ3
2

+
(mE + 1

2Γ2)3

Γ2
2

−
(mE + 1

2Γ2)2

Γ2

(
1 +

6

Γ2

)]

+
1

2
S2

1

V ega(Γ2)
√
T Γ

3/2
2

[
−(mE +

1

2
Γ2)

(
1 +

3

Γ2

)
+

(
1 +

3

Γ2

)]
, (56)

where mE is the log-moneyness associated with the forward price defined as

mE = log

(
E

S0e
∫ T
0 r(s)ds

)
, (57)

and the Black-Scholes Vega is V ega(Γ2) =
√
TEe−

∫ T
0 r(s)dsN ′(d2(Γ2)) with d2(Γ2) = −

(
mE + 1

2Γ2

)
/
√

Γ2.

Proof of Proposition 3.1 See Appendix A.
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We denote the approximated European vanilla option prices up to the the first-, second- and third-order
approximations as

Cm(S0, T, E) = CBS

(
S0, T, E,

√
Γ2

T

)
+

m∑
i=1

Ri(S0, T, E), m = 1, 2, 3, (58)

Pm(S0, T, E) = PBS

(
S0, T, E,

√
Γ2

T

)
+

m∑
i=1

Ri(S0, T, E), m = 1, 2, 3. (59)

Notably:

(i) Proceeding further with the expansion of the function L∗γ in the powers of the vols of vols, we can

only add higher-order corrections to the option price approximations without affecting the zero-order
contribution. The Black-Scholes-type term is, in fact, determined by the Gaussian kernel GΓ2 , which
is not affected by higher-order expansions in γ of L∗γ .

(ii) When the vols of vols go to zero, the option prices converge to the Black-Scholes-like term with

volatility
√

Γ0(0, T )/T .

(iii) The Black-Scholes-type formulas for the European vanilla options (that is, the zero-order approxima-
tions) overprice at-the-money options. The first-order correction term R1, which affects the call and
put options in the same way, can correct for this overpricing. In fact, R1 is negative when the options

are at-the-money (i.e., E/(S0e
∫ T
0 r(s)ds) ≈ 1) and the correlations are negative. This finding indicates

that in the case of the Heston model, where negative correlation values are usually observed, the prices
of call and put options are smaller than those calculated using the standard Black-Scholes formulas
for at-the-money options, thereby reducing the overpricing of the Black-Scholes formulas.

(iv) The correction term, R1, shows why S1 may be deemed responsible for the smile asymmetry. We
observe zero price skewness (33) when ρj = 0, j = 1, 2, . . . , n. Indeed, zero correlation implies a null
third-order correction to option pricing, indicating the crucial effect of non-null correlations.

(v) The correction terms Rm, m = 1, 2, 3 are the same for the call and put options. As a consequence,

the pairs Cm, Pm, m = 1, 2, 3, satisfy the put-call parity. In fact, Cm − Pm = CBS

(
S0, T, E,

√
Γ2√
T

)
−

PBS

(
S0, T, E,

√
Γ2√
T

)
= S0 − Ee

∫ t
0 r(s)ds, m = 1, 2, 3. The fact that the put-call parity holds is implied

by the fact that the Fourier transforms of M1, M2 and M3 with respect to the log-price are equal
to zero when the conjugate variable is equal to zero and to the imaginary unit (see Section 8 of the
online supplementary material.)

(vi) The correction termsRm, m = 1, 2, 3, are linear in the Vega of the Black-Scholes formulas (see Eqs. (55)
and (131)). Thus, small values of Vega imply small corrections. Note that for large values of γj , the

Vega goes to zero as e−Γ2/8. Thus, for large values of γj , the second- and third-order approximations

of the option prices move toward the Black-Scholes-like term with volatility
√

Γ2(0, T )/T . A higher-
order approximation is needed in this case to capture non-zero correction terms. In Section 4.1, we
numerically determine the range of values of γ that are coherent with expansion to the third order.

(vi) Theorem 2.2) implies that any contract with maturity T and payoff P that allows for a closed or
semi-closed form in the Black-Scholes framework can be written as a convolution of the Black-Scholes
price with integrated variance Γ2(0, T ) and the function L∗. Using the expansion in powers of the vols
of vols of the Fourier transform of L∗, which implies a representation of L∗ as a weighted sum of the
derivatives of the Dirac delta function of the log-price, we obtain an expansion of the contract price
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given by the Black-Scholes price at zero order plus corrections at higher orders given by the Black-
Scholes Greeks5. Moreover, the current representation shows that the corrections to the Black-Scholes
term are equal for the put and call options, at any order of approximation, implying that the put-call
parity equation is satisfied at any order of approximation.

3.2 Implied volatility

The implied volatility Σ in the multi-factor Heston model is defined as the quantity such that the following
equality holds:

CBS

(
S0, T, E,

√
Σ2

T

)
= C(S0, T, E). (60)

We derive the first- and second-order approximations of Σ as a function of the vols of vols (i.e., Σ = Σ(γ))
by solving

CBS

S0, T, E,

√
Σ2
m(γ)

T

 = CBS

(
S0, T, E,

√
Γ2

T

)
+Rm(S0, T, E), m = 1, 2. (61)

Proposition 3.2 The first-order, Σ1(γ), and second-order, Σ2(γ), approximations are given by

Σ1(γ) =
√

Γ0 +
S1

Γ0

√
Γ0

(
mE +

1

2
Γ0

)
, (62)

Σ2(γ) =
√

Γ0 +
√

Γ0

[
a0(T, γ) + a1(T, γ)

(
mE +

1

2
Γ0

)
+ a2(T, γ)

(
mE +

1

2
Γ0

)2
]
. (63)

Here, mE is the log-moneyness associated with the forward price (see Eq. (57)), Γ0 and S1 are defined in
(16) and a0(T, γ), a1(T, γ) and a2(T, γ) are given by

a0(T, γ) =

[
3

2

1

Γ3
0

S2
1 −

(S2 + S2c)

Γ2
0

]
, (64)

a1(T, γ) =

[
(S1 − S2)

Γ2
0

+
3

2

1

Γ3
0

S2
1

]
, (65)

and

a2(T, γ) =
1

Γ0

[
(S2 + S2c)

Γ2
0

− 3

Γ3
0

S2
1

]
. (66)

with S2 and S2c given in (22), (25), respectively. Here, we have dropped the arguments (0, T ) of the functions
Γ0, S1, S2 and S2c.

Proof of Proposition 3.2 See Appendix A.

The fact that the implied volatility expansion depends only on Γ0 and not on Γ2 is a consequence of the
choice of γ = 0 as a base point of the Taylor expansion of the implied volatility. In fact, the same formula
for the implied volatility can be derived using the second-order approximation to the call option price based
on the Gaussian kernel GΓ0 . A suitable double expansion would allow a similar formula to be obtained for
the implied volatility, with Γ0 replaced by Γ2. This approach, however, is not reported in this paper, as it

5The expansion of L∗ and call option prices as the Black-Scholes prices plus Greeks are found in Section 8 of the online
supplementary material.
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deserves further investigation.
Notably, the implied volatility resulting from the second-order approximation to the option price is a
quadratic function of the forward moneyness and reduces to the approximation of Bergomi and Guyon
(2011) in the case of the Heston model. The coefficients a0(T, γ) and a2(T, γ) are second-degree homoge-
neous functions of γ, while a1(T, γ) is a homogeneous function of degree one.

Interestingly, by considering formula (63) as a function of mE +Γ0/2 = log(E/S0e
rT−Γ0/2), we can derive an

explicit dependence of the level, a0(T, γ), and convexity, a2(T, γ), on the price skewness (given in Eq. (33)),
that is:

a0(T, γ) = −a2(T, γ)Γ0 −
1

24
Skewness2

DS , (67)

and

a2(T, γ) =
1

Γ0

[
(S2 + S2c)

Γ2
0

− 1

12
Skewness2

DS

]
. (68)

The expression of a2 reveals that the convexity of the volatility smile depends on the function S2
1 . This

finding confirms that the quantity S1 is responsible for the asymmetry in the smile since it allows for a
concave smile. Bearing in mind that Γ0, S2 and S2c are non-negative for any time horizon and model
parameters, Eq. (68) clearly shows the effect of price skewness on the volatility smile, i.e., large values of
price skewness can destroy the U shape of implied volatility. Indeed, concave volatility smiles are allowed in
mean-reverting underlying assets, where the option tenor is comparable to the characteristic reversion time
of the asset6.
The second-order approximation of the implied volatility leads to the following approximation for the implied
volatility skew:

IVskew(T ) =

∣∣∣∣ ∂

∂mE
Σ2

∣∣∣∣
mE=0

=
√

Γ0

(
a1(T, γ) + Γ0a2(T, γ)

)
=
√

Γ0

∣∣∣∣(S1 + S2c)

Γ2
0

− 1

24
Skewness2

DS

∣∣∣∣
=
√

Γ0

∣∣∣∣ 1

Γ2
0

(
1

2
Et(XTYT ) +

1

4
Et(X

2
TYT )− 1

4
Et(Y

2
T )

)
− 1

24
Skewness2

DS

∣∣∣∣ . (69)

For null correlation coefficients S1 = 0, S2c = 0, and IVskew = 0, the second-order approximation, Σ2,
of the volatility surface is a strictly convex function with vertex at mE = 0 (i.e., when the option is at the
money):

Σ2(γ) =
√

Γ0 +
S2

Γ0

√
Γ0

[
1

Γ0

(
mE +

1

2
Γ0

)2

−
(
mE +

1

2
Γ0

)
− 1

]
. (70)

Finally, a simple calculation proves that the implied volatility skew decays according to 1/
√
T as T → +∞

since we have

lim
T→+∞

Γ0(0, T )

T
=

n∑
j=1

v∗j , lim
T→+∞

S1(0, T )

T
=

n∑
j=1

ρjγj
2χj

v∗j , lim
T→+∞

S2c(0, T )

T
=

n∑
j=1

γ2
j ρ

2
j

2χj

v∗j
χj

.

Therefore, we obtain

lim
T→+∞

IVskew(T ) =
1√

T
(∑n

j=1 v
∗
j

)
 n∑
j=1

v̂∗j

(
ρjγj
2χj

+
ρ2
jγ

2
j

2χ2
j

)
− 1

24

 n∑
j=1

v̂∗j
ρjγj
2χj

2 , (71)

where v̂∗j = v∗j /
∑n

i=1 v
∗
i is the weight of the j-th long-term variance mean. The limit for large maturity

shows that, in the multi-factor Heston model, the interaction between the variances plays a crucial role in
the implied volatility skew (see the squared term on the right-hand side of Eq. (71)), as previously observed
in Veng et al. (2019).

6Some empirical evidence can be found at http://faculty.baruch.cuny.edu/jgatheral/Bachelier2008.pdf (see pages 53–56)
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3.3 The VIX Index

The VIX volatility index, disseminated by the Chicago Board Options Exchange (CBOE), is built to provide
a model-free, option-implied, return volatility measure for the S&P 500 index. The CBOE7 computes the
VIX from non-zero bid prices of European call and put options on the S&P 500 index using the formula(

V IX

100

)2

=
2

T

∑
i

∆Ei
E2
i

erTQ(Ei)−
1

T

[
F0,T

E0
− 1

]2

, (72)

where T is 30-day maturity, Ei is the strike of the i-th out-of-the-money option, Ft,t+τ = Ste
rτ is the forward

index quotation with constant interest rate, St = ext is the price at t, and E0 is the first strike below the
forward index level. The quantity Q(Ei) is the midpoint of the bid-ask spread of each option with strike Ei.

This definition is based on the following representation of the expected value of the future realized
variance, given by Demeterfi et al. (1999):

E0

[∫ T

0
vtdt

]
= 2

[
rT −

(
F0,T

E0
− 1

)
− ln

(
E0

S0

)
+ erT

∫ E0

0

P0(S0, T, E)

E2
dE + erT

∫ ∞
E0

C0(S0, T, E)

E2
dE

]
,

(73)
where P and C are put and call prices. Eq. (73) can then be rewritten (see Zhang et al. 2010) via a
second-order Taylor approximation of the log function for E0 ∼ F0,T as:(

V IX0,T

100

)2

=
2erT

T

[∫ E0

0

1

E2
P (S0, T, E)dE +

∫ +∞

E0

1

E2
C(S0, T, E)dE

]
− 1

T

[
F0,T

E0
− 1

]2

. (74)

Jiang and Tian (2005, 2007) discuss the potential biases that can arise from approximating (74) with (72)
such as (i) truncation errors (the minimum and maximum strikes are far from zero and infinity in practice);
(ii) discretization errors (piecewise linear functions approximate the integrals in equation); (iii) expansion
errors (the Taylor series expansion is truncated to the second order); and (iv) interpolation errors (linear
interpolation of the maturities). In fact, a number of empirical studies indicate that the VIX overestimates
the future volatility of the underlying assets. To improve the fit between the VIX index and the volatility
of the underlying assets, Pacati et al. (2018) proposed a new specification in the double Heston model that
leads to a deterministic non-negative shift, or displacement φt, of the stochastic volatility level such that:(

V IX0,T

100

)2

=
Γ0(0, T )

T
+

∫ T
0 φsds

T
. (75)

Here, we take a different approach and show that the squared VIX can be associated with both Γ0 and Γ2,
which in our framework, are both candidates for the implied volatility. In fact, by taking the zero-order
approximation in Eq. (60), i.e., only the Black-Scholes term, it is trivial to derive Σ0(γ) =

√
Γ2. Similarly,

if we expand the option price formulas around the Gaussian kernel GΓ0 , we find Σ0(γ) =
√

Γ0 at the zero
order.

To derive the link between the VIX, Γ0 and Γ2, we use different approximations of Eq. (74). The starting
point in both cases is to replace the following identities:∫ E0

0

1

E2
P (S0, T, E)dE = e−rT

∫ E0

0
f(S)

[
log(E0/S) +

S

E0
− 1

]
dS, (76)∫ +∞

E0

1

E2
C(S0, T, E)dE = e−rT

∫ +∞

E0

f(S)

[
log(E0/S) +

S

E0
− 1

]
dS. (77)

Here, to maintain simple notation, f(S) denotes the price density. Using (76) and (77) in Eq. (74), we
obtain: (

V IX0,T

100

)2

=
2

T

[
−E (log(ST /E0) | F0) + E

(
ST
E0
− 1 | F0

)]
+

1

T

[
F0,T

E0
− 1

]2

. (78)

7see the CBOE white paper at http://www.cboe.com/micro/vix/vixwhite.pdf
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Remark 3.3 V IX2 ∝ Γ0(0, T )
To derive the relationship between the VIX and Γ0, we use the following expansion (see Zhang et al. 2010):

log

(
F0,T

E0

)
=

(
F0,T

E0
− 1

)
− 1

2

(
F0,T

E0
− 1

)2

+O

[(
F0,T

E0
− 1

)3
]
. (79)

In fact, neglecting the third- and higher-order terms in Eq. (79) and replacing the expansion of the second
term of the right-hand side of Eq. (78), we obtain(

V IX0,T

100

)2

=
2

T

[
−E (log(ST /E0) | F0) + E

(
ST
E0
− 1 | F0

)]
+

2

T

[
log

(
F0,T

E0

)
−
(
F0,T

E0
− 1

)]
. (80)

Assuming a constant risk-free interest rate, we have F0,T = E(ST | F0) = S0e
rT , while considering that

E
(

log
(
ST
S0

)
| F0

)
= rT − 1

2

∑n
j=1

∫ T
0 E (vj,s | F0) ds, we obtain:

(
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)2

=
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log

(
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E0

)
| F0

)
+ log

(
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=

2

T

[
−E

(
log

(
ST
S0

)
| F0

)
+ rT

]
=

Γ0(0, T )

T
.

(81)

Note that the recent paper by Huang et al. (2018), which proposes a stochastic volatility model with
stochastic vols of vols, reports a similar result. The squared VIX, in fact, is shown by the authors to be
equal to the conditional mean of the integrated variance, which, as in our model, coincides with Γ0.

Remark 3.4 V IX2 ∝ Γ2(0, T )
To derive the relationship between the VIX and Γ2, we first use the following Taylor expansion

log

(
S

E0

)
=

(
S

E0
− 1

)
− 1

2

(
S

E0
− 1

)2

+O

[(
S

E0
− 1

)3
]
, S → E0,

on the right-hand side of Eqs. (76)–(77), then the expansion of ST /E0 around the conditional mean, denoted
by E(ST /E0) = E (ST /E0 | F0) for simplicity:

log

(
ST
E0

)
≈ log

(
E

(
ST
E0
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+

1

E
(
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) [ST
E0
− E

(
ST
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. (82)

Therefore, we first have(
V IX0,T

100

)2

=
1
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, (83)

where Var is the variance. Taking the variance of Eq. (82), we obtain:(
V IX0,T
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)2

=
1

T

(
E

(
ST
E0

))2

Var

(
log
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.

(84)

Thus, when E0 is very close to F0,T , as in the CBOE computation, Γ2(0, T )/T is a proxy for V IX2/100.
This formula is in line with Theorem 1 from Chow et al. (2018). Note that the variance is computed in the
risk-neutral measure.
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This finding suggests that the VIX index typically overestimates the conditional mean of the integrated
spot volatility (given that normally Γ2 > Γ0, as the correlation ρj between prices and volatility is typically
negative), and our analysis is in line with the results of Pacati et al. 2018. In fact, our derivation provides

an interpretation of the displacement parameter in Pacati et al. (2018) implying that
∫ T
0 φs
T = 2(S2(0, T )−

S1(0, T )).
Our analysis, not only provides an explanation for the bias between the VIX and the conditional mean
of the integrated spot volatility but also offers a theoretical foundation for recently proposed methods to
compute the variance risk premium (VRP). Zhou et al. (2013) provide a natural definition of the variance
risk premium, expressing it as the difference between the variances of the continuously compounded returns
evaluated in the risk-neutral scenario and in the physical probability measures. In our framework, the
variance risk premium for the multi-factor Heston model can be expressed as

V RP = ΓQ2 − ΓP2 , (85)

where Q and P denote, respectively, the risk-neutral and physical probability measures (here ΓQ2 is the

same quantity denoted earlier as Γ2). In fact, as discussed above, ΓQ2 and ΓP2 , which are the variances of
the Gaussian kernel underlying the price process in the risk-neutral and physical measures, coincide with
the variances of the continuously compounded returns under the same two measures. Bondarenko (2014),
Bollerslev, Tauchen and Zhou (2009), and Carr and Wu (2009)) have proposed constructing the volatility risk
premium based on the assumption that model-free option-implied volatility measures can provide a natural
empirical analog to the market’s risk-neutral expectation of the conditional total variation of returns. These
authors had the correct intuition to use the VIX index as a proxy of the risk-neutral variance of returns,
and by deriving this link explicitly, via Γ2, we provide a theoretical justification for this approach.
Finally, we note that our results imply a nonlinear effect of the vols-of-vols risk on the VIX index, given that
Γ2 is a quadratic function of the vols-of-vols parameters. Huang et al. (2018) also uncovered a nonlinear
effect of the vols-of-vols risk on VIX options.

4 Accuracy of the option price approximations: simulation study

In this section, we study the accuracy of the approximation formulas derived in Sections 2 and 3 in repro-
ducing European option prices and their performance in terms of computational time. As a benchmark,
we compute the “true” European option prices by following the approach proposed in Recchioni and Sun
(2016) (derivations are reported in Appendix C).

In the following, we use the subscripts “H”, “DH” and “TH” to denote option prices and their approxi-
mations in the Heston, double Heston and triple Heston frameworks.

4.1 Simulation study 1: Heston and double Heston on “reasonable” grid of parameters

We being this section by assessing the performance of the second- and third-order approximations, Eqs. (58)–
(59), of the call and put option prices, Cm,H , Pm,H , with m = 2, 3, in the Heston framework.

The Heston exact formula is obtained by imposing n = 1 in Eqs. (134) in Appendix C. Eqs. (132) and
(133) in Appendix C are equal except for the values of q, which are valid over different intervals. In the
following, we choose q = 1.05 for a call option and q = −0.05 for a put option8. Equations (132) and (133)
are defined via convergent integrals that can be computed accurately using a simple composite rectangular
rule.

We evaluate the exact formulas CH and PH and the approximated formulas Cm,H and Pm,H for the

8 These values permit numerical integration with a simple rectangular rule for high values of the vols of vols. Numerical
integration of the integral formulas in Appendix C for very large values of vols of vols deserves further investigation.
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Table 1: Descriptive statistics for the exact call and put option prices evaluated on grid M of the Heston model.
γ average call price min call max call average put price min put max put
0.01 32.292 14.337 56.822 31.101 10.081 64.549
0.05 31.846 14.294 56.847 30.655 10.091 64.567
0.1 31.908 14.193 57.206 30.717 10.166 64.997
0.25 32.116 14.102 57.970 30.925 10.242 65.958
0.5 33.211 13.925 61.368 32.020 10.338 70.310
0.8 35.390 13.807 67.253 34.199 10.526 77.262
2.0 47.997 14.392 89.417 46.806 12.010 107.451

points in the following set:

M = { (S0, E, T, γ, v0, χ, v
∗, ρ, r) |S0 = 100, E = 80 + 10(j − 1), T = 2 j/5, j = 1, 2, . . . , 5,

γ = 0.01, 0.05, 0.15, 0.25, 0.5, 0.8, 2, v0 = 2 + j/5, j = 1, 2, . . . , 5, χ = 1.5 + 1.5(j − 1), j = 1, 2, . . . , 5,

v∗ = j γ2/(2χ), ρ = −j/6, j = 1, 2, . . . , 5, r = 0.01
}
. (86)

These values of model parameters in grid M include those estimated by Christoffersen et al. (2009) in
Section 4.2 (see, also the online supplementary material).
Some descriptive statistics for the call and put option prices, computed with the exact formulas CH and
PH , are shown in Table 1.

Table 2 compares the exact option prices with their second- and third-order approximations. From left
to right we report the vols of vols (γ), mean (meanC), median (medianC), and standard deviation (stdC)
of the relative call option errors, eC,m, and the mean (meanP ), median (medianP ), and standard deviation
(stdP ) of the relative put option errors, eP,m, associated with the second-order approximation, m = 2 (in
the top panel), and the third-order approximations, m = 3 (in the bottom panel).

Table 2: Descriptive statistics for the relative errors of second- and third-order option price approximations evaluated on grid
M in the case of the Heston model.

Second-order approximations in vols of vols (C2,H , P2,H)
γ meanC medianC stdC meanP medianP stdP
0.01 2.7090e-9 0.000 8.7598e-8 2.3767e-9 0.000 7.1053e-8
0.05 3.3058e-7 0.000 9.9919e-7 2.9665e-7 0.000 9.1210e-7
0.15 8.6177e-6 2.9231e-6 1.9097e-5 8.0870e-6 2.8545e-6 1.6523e-5
0.25 3.9080e-5 8.7593e-6 8.5551e-5 3.6756e-6 9.2254e-6 7.4764e-5
0.5 2.8757e-4 6.0871e-5 6.1026e-4 2.7410e-4 6.5693e-5 5.5215e-4
0.8 1.0428e-3 2.3942e-4 2.1199e-3 1.0099e-3 2.4380e-4 1.9904e-3
2.0 1.0785e-2 3.4351e-3 1.8412e-2 1.0854e-2 3.3176e-3 1.8488e-2

Third-order approximations in vols of vols (C3,H , P3,H)
γ meanC medianC stdC meanP medianP stdP
0.01 4.5346e-10 0.000 3.3345e-8 9.2518e-10 0.000 4.7762e-8
0.05 1.1567e-7 0.000 6.1056e-7 1.0622e-7 0.000 5.5577e-7
0.15 3.0780e-6 0.000 5.3205e-6 2.8741e-6 0.000 4.9957e-6
0.25 1.2798e-5 4.5284e-6 2.0294e-5 1.2180e-5 5.3118e-6 1.9446e-5
0.5 8.0037e-5 3.4110e-5 1.0768e-4 7.8271e-5 3.6047e-5 1.0436e-4
0.8 2.8491e-4 1.1447e-4 4.0639e-4 2.8161e-4 1.2737e-4 3.6937e-4
2.0 4.0807e-3 7.8427e-4 8.8272e-3 4.1534e-3 8.4030e-4 8.7858e-3

The results in Table 2 show that while the quality of the approximations decreases as γ increases, the
second-order approximation guarantees four correct significant digits up to a volatility of 50%. The average
error of the second-order approximation is at most of the order of a percent for larger values of γ. The
third-order approximation improves the estimation by less than one order of magnitude for the values of γ
considered. Given that only marginal improvements are obtained with the third-order approximation, we
focus on the second-order approximations when presenting numerical and empirical results in the following
sections.

In the remainder of this section, we illustrate the computational advantages of using the second-order
approximation formulas (58) and (59) in the Heston and double Heston models. To this end, we consider
the same gridM as in Eq. (86) and compute 3,125 call and put option prices for each value of γ, averaging
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over the other parameters on the grid, using the second-order approximations C2,H and P2,H . In the case
of the double Heston model, we have chosen (S0, E, T, γ1, v1,0, χ1, v

∗
1, ρ1, r) ∈ M and (γ2, v2,0, χ2, v

∗
2, ρ2) =

(γ1, v1,0, χ1, v
∗
1, ρ1), where γ2 = γ1 = γ. This choice is made to limit the number of call and put options

to be evaluated to 31250 for each value of γ, as in the Heston model. We then evaluate the number of
points to be used in the quadrature rule to achieve the same level of accuracy when pricing the options
with integral formulas Eqs. (134). In the top panel of Table 3, we report, from left to right (and for
γ = 0.01, 0.05, 0.15, 0.25, 0.5, 0.8, 2), the average, mean and max number of points (truncated to the closest
integer) required by the rectangular rule to achieve the same level of accuracy (i.e., relative error) in option
prices as the second-order approximation formulas; the total times, TimeH and Time2,H , required to compute
31250 European call and put options, respectively, with the integral formula and with formulas C2,H and
P2,H ; and the average relative errors (i.e, Err. PH , Err. CH , Err. P2,H and Err. C2,H) of the put and
call options with the integral formulas PH and CH and with the second-order approximations P2,H and
C2,H . The columns in the bottom panel of Table 3 are the same as those in the top panel, but the results
correspond to the double Heston model. The computations were conducted on an Intel CORE i7 (8th
generation) processor. The true values are obtained with the integral formulas (132) and (133) using 216

quadrature points.
Table 3 shows that using formulas (58) and (59) allows considerable savings in computation time with
respect to using the integral formulas for both the Heston model (top panel) and double Heston model
(bottom panel). This computation time reduction is important because, for the same level of accuracy, the
time required to evaluate option prices with the integral formulas in the double Heston model is, in the best
case, approximately twice that needed for the Heston model.

Table 3: From left to right: average, min and max number of points, avg Np, min Np, and maxNp, required by the rectangular
rule to achieve the same accuracy as that of the second-order approximation formulas in the Heston (upper panel) and double
Heston (lower panel) models; the total time TimeH (TimeDH) and Time2,H (Time2,DH) required to compute the European
options with integral formulas (132) and (133) with Np points and the second-order approximations C2,H , P2,H (C2,DH , P2,DH);
Avg. rel. err. are the average relative errors of the put and call option approximations with integral formulas CH , PH (PDH ,
CDH) and second-order approximations P2,H , C2,H (P2,DH , C2,DH). For a fixed vol of vol (or pair of vols of vols), the relative
errors are computed by averaging over the remaining parameters in the set M for a total of 31250 option prices. The time is
expressed in seconds. The computation was conducted on an Intel CORE i7 (8th generation) processor. The true values are
obtained from integral formulas (132) and (133) using 216 quadrature points.

Heston model
γ avg Np min Np max Np TimeH Time2,H Avg. rel. Avg. rel. Avg. rel. Avg. rel.

(secs) (secs) err. PH err. CH err. P2,H err. C2,H

0.01 57487 49182 64287 1000.53 5.6703e-3 2.1214e-9 1.9918e-9 2.4319e-9 2.6084e-9
0.05 45065 38204 51445 786.37 5.5438e-3 2.3726e-7 2.2266e-7 3.0146e-7 3.2296e-7
0.15 36241 27982 42899 636.62 5.6344e-3 7.5595e-6 7.1100e-6 8.0736e-6 8.6186e-6
0.25 32372 24001 3944 1 568.72 5.4188e-3 3.4802e-5 3.2779e-5 3.6758e-5 3.9068e-5
0.50 27219 18728 34661 489.77 5.4844e-3 2.6347e-4 2.4914e-4 2.7410e-4 2.8760e-4
0.80 25146 16029 33311 430.12 5.4781e-3 8.6383e-4 8.2078e-4 1.0099e-3 1.0428e-3
2.00 17287 9376 27407 311.37 5.4531e-3 9.7082e-3 9.3358e-3 1.0854e-2 1.0785e-2

Double Heston model
γ1(= γ2) avg Np min Np max Np TimeDH Time2,DH Avg. rel. Avg. rel. Avg. rel. Avg. rel.

(secs) (secs) err. PDH err. CDH err. P2,DH err. C2,DH

0.01 57729 48699 63986 1697.921 6.9875e-3 2.0766e-9 1.9851e-9 2.6669e-9 2.7042e-9
0.05 43997 35194 50835 1318.594 6.8625e-3 3.0610e-7 2.9264e-7 3.3035e-7 3.3479e-7
0.15 35510 26646 42507 1059.156 7.0593e-3 8.3366e-6 7.9724e-6 8.8086e-6 8.9091e-6
0.25 31331 22505 38302 1000.29 7.3562e-3 3.9098e-5 3.7409e-5 4.0008e-5 4.0365e-5
0.50 26043 17388 33159 792.57 6.8687e-3 2.9259e-4 2.8042e-4 2.9844e-4 2.9902e-4
0.80 22437 16392 29641 709.57 7.1750e-3 8.2388e-4 7.9060e-4 1.1009e-3 1.0947e-3
2.00 15222 8232 22594 490.907 6.8609e-3 1.0089e-2 9.7601e-3 1.0252e-2 1.0060e-2

4.2 Simulation study 2: Heston and double Heston with empirical parameters

In this subsection, we repeat the previous exercise using model parameters calibrated to real data. Specif-
ically, we use the parameters estimated by Christoffersen et al. (2009)9 for the Heston and double Heston
models for the years 1990 to 2004. The spot variance of the Heston model is chosen to be 0.9, while the

9 We report the values of these parameters in the online supplementary material. We also present the Feller condition
corresponding to each set of parameters estimated by Christoffersen et al. (2009). The Feller condition is violated in several cases;
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spot variances of the double Heston model are v1 = 0.13 and v2 = 0.75. These choices are supported by the
results of the empirical analysis discussed in Christoffersen et al. (2009) p. 1926. In fact, in Christoffersen
et al. (2009), the sum of the factor estimates v1,0 and v2,0 is 88% in the two-factor model, and the difference
is approximately 62%, while it is 90% in the one-factor model. Finally, the risk-free interest rate is chosen
to be 0.15.

As the first step, we compute the prices of 25 European vanilla call and put options with spot price
S0 = 100, strike prices E = 80 + j/5, j = 1, 2, . . . , 5 and time to maturity T = j/12 years, j = 1, 2, . . . , 5
using the exact integral formulas with 216 nodes. As in Section 4.1, these values are denoted the “true
values”. Then, we compute the average relative errors, over the twenty-five options, for the put and call
options second-order approximations in the Heston and double Heston frameworks. Finally, we determine
the number of nodes necessary to achieve, with the integral formulas, the same average accuracy of the
second-order approximation formulas and compare the computational times of the two methods. Tables 4
and 5 show the results of this experiment, respectively, for the Heston and double Heston frameworks. The
columns in these tables are the same as those in Table 3, with the only difference being that the time and
accuracy are computed for a specific set of model parameters, average across the strike and time to maturity.

Table 4: From left to right: year, vol of vol γ1, number of points Np required by the rectangular rule to achieve the same
accuracy as that of the second-order approximation formulas in the Heston model; TimeH , Time2,H time required to compute
the fifty put and call options with the integral formulas and the BS-second-order approximations; Avg. rel. err P, · and Avg.
rel. err. C, ·: average relative errors on put and call options of the integral formulas with Np points and the second-order
approximations. For each set of model parameters estimated by Christoffersen et al. (2009) (see Tab. 3 Panel A) over the years
1990-2004, we compute European put and call options with spot price S0 = 100, time to maturity T = j/12 years, and strike
prices Ej = 80 + 10(j − 1), j = 1, 2, 3, 4, 5. The risk-free interest rate is r = 0.15. The computation was conducted on an Intel
CORE i7 (8th generation) processor. The true values are obtained with the integral formulas (132) and (133) using 216 points.

Heston model
Year γ1 Np TimeH Time2,H Avg. rel. Avg. rel. Avg. rel. Avg. rel.

(secs) (secs) err. PH err. CH err. P2,H err. C2,H

1990 0.85 25104 0.984 9.375e-6 5.197e-4 3.959e-4 5.290e-4 5.547e-4
1991 0.58 28143 1.078 1.094e-5 1.642e-4 1.223e-4 1.720e-4 1.690e-4
1992 0.55 28566 1.078 1.094e-5 1.406e-4 1.042e-4 1.425e-4 1.405e-4
1993 0.51 29284 1.125 9.375e-6 1.076e-4 7.920e-5 1.098e-4 1.088e-4
1994 0.46 29724 1.328 1.094e-5 1.014e-4 7.280e-5 1.058e-4 9.277e-5
1995 0.56 29284 1.125 1.094e-5 1.068e-4 7.837e-5 1.128e-4 1.216e-4
1996 0.58 29139 1.109 1.094e-5 1.177e-4 8.579e-5 1.232e-4 1.339e-4
1997 0.60 28283 1.078 9.375e-6 1.530e-4 1.138e-4 1.571e-4 1.665e-4
1998 0.81 25229 0.984 1.094e-5 4.871e-4 3.733e-4 5.025e-4 4.944e-4
1999 0.76 25993 1.797 9.375e-6 3.677e-4 2.795e-4 3.858e-4 3.808e-4
2000 0.66 27316 1.051 1.319e-5 2.275e-4 1.700e-4 2.319e-4 2.331e-4
2001 0.65 27864 1.141 1.187e-5 1.986e-4 1.459e-4 2.087e-4 2.123e-4
2002 0.60 27864 1.141 1.406e-5 1.936e-4 1.429e-4 1.969e-4 1.862e-4
2003 0.68 27046 1.106 1.187e-5 2.402e-4 1.810e-4 2.518e-4 2.655e-4
2004 0.38 30472 1.219 1.344e-5 6.277e-5 4.686e-5 6.432e-5 5.516e-5
Avg. 0.62 27954 1.533 1.344e-5 2.126e-4 1.595e-4 2.196e-4 2.210e-4

We observe that, on average, the relative error of the second-order approximations is 0.02% for both put
and call options in the Heston framework and 6.1% and 5.4%, respectively, in the double Heston model.
These relative errors guarantee four correct significant digits for the Heston model and two correct significant
digits for the double Heston model. The discrepancy in the accuracy between the two tables is due to the
different magnitude of the vols of vols. In fact, in the years 1992–1995 and 2003, the vol of vol γ1 is larger
than 520%, with peaks of 943% in 1994 and 880% in 2003. In these years, we observe the largest relative
errors for the double Heston model. In contrast to that of the double Heston model, the estimated vol of
vol of the Heston model is always less than 80% and larger than 37% (see Tables 4 and 5).

We conclude this section by comparing the relative errors of the call option prices given by the zero-order
Black-Scholes-type term (with Gaussian kernel GΓ2) and by the first-, second- and third-order approximations
as a function of vol of vol in the case of the Heston model and as a functions of the largest of the two vols

therefore, the square root process of the variance can reach zero with positive probability unless, as remarked in Christoffersen
et al. (2009), the process satisfies a standard reflecting barrier at the origin. Interestingly, the Feller condition never holds in
the case of process v1,t. Violation of the Feller condition has also been noted in Pacati et al. (2018).
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Table 5: From left to right: year, vols of vols γ1, γ2, number of points Np required by the rectangular rule to achieve the same
accuracy as that of the second-order approximation formulas in the double Heston model; TimeDH and Time2,DH time required
to compute the fifty put and call options with the integral formulas and the second-order approximations; Avg. rel. err P, · and
Avg. rel. err. C, ·: average relative errors on put and call options of the integral formulas with Np points and the second-order
approximations. For each set of model parameters estimated by Christoffersen et al. (2009) (see Tab. 3, Panel B) over the years
1990-2004, we compute European put and call options with spot price S0 = 100, time to maturity T = j/12 years, and strike
prices Ej = 80 + 10(j − 1), j = 1, 2, 3, 4, 5. The risk-free interest rate is r = 0.15. The computation was conducted on an Intel
CORE i7 (8th generation) processor. The true values are obtained with the integral formulas (132) and (133) using 216 points.

Double Heston model
Year γ1 γ2 Np TimeDH Time2,DH Avg. rel. Avg. rel. Avg. rel. Avg. rel.

(secs) (secs) err. PDH err. CDH err. P2,DH err. C2,DH

1990 1.05 0.68 25413 1.250 1.094e-5 9.909e-4 7.086e-4 1.109e-3 9.213e-4
1991 1.82 0.34 19914 0.968 1.094e-5 6.647e-3 4.796e-3 7.391e-3 8.293e-3
1992 6.28 0.27 12099 0.578 1.094e-5 1.056e-1 7.999e-2 1.236e-1 1.103e-1
1993 5.25 0.21 13338 0.641 1.094e-5 6.533e-2 4.941e-2 8.140e-2 7.451e-2
1994 9.43 0.17 9956 0.484 1.250e-5 2.243e-1 1.691e-1 2.646e-1 2.266e-1
1995 6.89 0.24 11523 0.562 1.094e-5 1.387e-1 1.033e-1 1.702e-1 1.491e-1
1996 2.01 0.19 19914 0.969 1.094e-5 5.380e-3 4.058e-3 5.590e-3 5.985e-3
1997 1.54 0.12 23051 1.141 1.094e-5 1.623e-3 1.224e-3 2.356e-3 2.582e-3
1998 2.12 0.40 19914 1.016 1.094e-5 5.331e-3 4.101e-3 5.388e-3 5.646e-3
1999 1.99 0.38 20909 1.031 1.094e-5 3.691e-3 2.831e-3 4.490e-3 4.748e-3
2000 1.94 0.23 20909 1.031 1.094e-5 3.642e-3 2.770e-3 4.531e-3 4.849e-3
2001 1.91 0.20 20909 1.016 1.094e-5 3.623e-3 2.753e-3 4.340e-3 4.651e-3
2002 1.98 0.17 20909 1.016 1.250e-5 3.621e-3 2.746e-3 4.978e-3 5.307e-3
2003 8.81 0.40 9956 0.484 1.250e-5 2.263e-1 1.720e-1 2.366e-1 2.041e-1
2004 1.98 0.20 20909 1.016 1.094e-5 3.627e-3 2.755e-3 4.940e-3 5.267e-3
Avg. 3.67 0.28 17975 0.880 1.125e-5 5.323e-2 4.017e-2 6.143e-2 5.419e-2

of vols (i.e., γ1) in the case of the double Heston model. In the left panel of Fig. 1, the model parameters
are the same as those used for Tables 4 and 5. In this case, the prices for different levels of vols of vols
are not perfectly comparable, as they also depend on the remaining model parameters. To isolate the effect
of the vols of vols and expand the range of values considered for this parameter, in the central panel, we
plot the approximated option prices when fixing the model parameters to the values estimated for the year
1990 (see Table 8 Year 1990), while the vol of vol γ1 is chosen to be γm1 = e−3+m/2, m = 1, 2, . . . , 30, and
γ2 = 0.007. The grid of strike prices and times to maturity, over which the average is taken, is the same for
both panels. In the right panel, we show for the same parameters as the central panel, the correction terms
Ri, for i = 1, 2, 3.

The curves log-error vs log vol-of-vol (left and central panels) depicted in Figure 1 show that the errors
grow linearly with the vols of vols for values of γ up to approximately 200%. The figures also provide
empirical evidence that while the third-order expansion slightly improves the approximation for volatilities
up to approximately 200%, beyond this value, the second- and third-order approximations become indistin-
guishable from each other and converge to the Black and Scholes price, in line with the discussion in Section
3.1. Interestingly, for larger values of the vols of vols, and in line with the theory of asymptotic series (as
further explained in Section 7 of the supplementary material), the first-order approximation provides better
estimates than higher-order approximations. This is a consequence of the fact that for large values of the
vols of vols, the asymptotic expansion of L∗γ may diverge. This is also signalled by the correction terms

R2 and R3 becoming larger than R1. However, despite the non-convergence, the asymptotic expansion may
still provide a satisfactory approximation when truncated to a finite number of terms.

5 Accuracy of the option price approximations: empirical calibration
study

In this section, we assess the performance of the Heston second-order approximation formula (58)–(59) to
reproduce and to forecast traded European call and put option prices on the US S&P 500 index. In this
exercise, the U.S. three-month government bond index is used as a proxy for the interest rate r.

The availability of an explicit and elementary formula for the implied volatility provides an advantage
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Figure 1: Left and middle panels: relative errors of zero-, second-, and third-order approximations to the call options obtained
in a log-log scale. Zero order: dash-dot line; first order: dashed line; second order: solid line; third order: dotted line. (Right)
panel: correction terms R1 (dashed line), R2 (solid line), and R3 (dotted line) as a function of the log of the vols of vols.

in terms of calibrating the model rather than estimating the parameters directly from the option prices.
This is because it avoids biases caused by different magnitudes of option prices that are typically corrected
by introducing appropriate weights in the optimization algorithm (i.e., the inverse of option Vegas, see
Christoffersen et al. 2009, or the bid-ask spread, see Date and Islyaev, 2015). Additionally, the simple link
between implied volatility and model parameters allows for reliable estimates while accelerating the solution
of the optimization problem. We note that, while formulas similar to ours for the implied volatility (i.e., Eq.
(63)) were derived by Bergomi et Guyon (2011), their effectiveness for calibration purposes has not been
tested in the literature.

Here, we provide empirical evidence that by using the second-order approximations for the implied
volatility Σ2,H , we can obtain “consistent” estimates of the Heston model parameters from both the call and
put options. Typically, option prices are filtered to avoid inconsistency resulting from the simultaneous use
of call and put option prices (see Pacati et al. 2018). We do not filter any observations that do not satisfy
standard no-arbitrage conditions while investigating how this affects the model calibration.

Our dataset consists of 1200 European vanilla call and put options with four strike prices (i.e., nE = 4)
and nT = 150 maturities. Starting from the traded call option prices Co(Si, Ti, Ej) with spot price Si,
time to maturity Ti and strike price Ej , and using the U.S. three-month government bond yield as the
risk-free interest rate, r, we compute the observed implied volatility, σoC(Si, Ti, Ej), for i = 1, 2, . . . , nT ,
j = 1, 2, . . . , NE . This computation is performed using the Matlab function calcBSImpVol , which uses Li’s
rational function approximator for the initial estimate (see, Li 2006; 2008), followed by Householder’s root
finder of the third order to improve the convergence rate of the Newton-Raphson method.

For any time i = 1, 2, . . . , nT , we then estimate the Heston model parameters Θi = (χi, v
∗
i , γi, ρi, v

i
0) ∈ R5,

i = 1, 2, . . . , nT , to solve the optimization problem:

min
ΘC∈V

nE∑
j=1

[
σoC(Si, Ti, Ej)−

Σ2,H(Si, Ti, Ej)√
Ti

]2

, (87)

where Σ2,H is given in formula (63) with n=1 and V is the following set of constraints:

V =
{

Θ= (χ, v∗, γ, ρ, v0) ∈ R5 | γ, v∗, χ, v0 > 0, −1 < ρ < 1
}

; (88)

To solve problem (87), we use a metric variable steepest descent algorithm (see, for example, Recchioni and
Scoccia (2000), Fatone et al. (2013)). This is an iterative algorithm that generates a sequence of points, Θk,
k = 0, 1, . . ., belonging to the interior of the feasible region and moving opposite to the gradient vectors of
the objective function computed in a suitable metric.

We then repeat the calibration procedure starting from the observed put prices P o(Si, Ti, Ej), where P o

is the observed value of the put option, i = 1, 2, . . . , nT , and j = 1, 2, . . . , nE , and solve the problem

min
ΘP∈V

nE∑
j=1

[
σoP (Si, Ti, Ej)−

Σ2,H(Si, Ti, Ej)√
Ti

]2

. (89)

In this way, we obtain two optimal sets of model parameters, one starting from the call options, ΘC ,
and the other starting from the put options, ΘP .
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Table 6: Descriptive statistics for estimated values of the model parameters and observed implied volatility σo.
Call Set

χ v∗ γ ρ v0
2χv∗

γ2
obj. func. σo

mean 5.7999 0.014663 0.50098 -0.8502 0.08060 0.677512 8.35e-5 0.1581
median 5.7999 0.012726 0.50100 -0.8502 0.08200 0.588756 2.28e-5 0.1546
std 0.00057 0.007032 0.000303 0.000220 0.004912 0.324606 1.46e-4 0.020

Put Set

χ v∗ γ ρ v0
2χv∗

γ2
obj. func. σo

mean 5.7999 0.029102 0.5009 -0.8502 0.08384 1.34530 7.84e-5 0.1931
median 5.7999 0.029114 0.5009 -0.8502 0.08489 1.29907 2.02e-5 0.1923
std 0.000020 0.006205 0.00026 0.00018 0.004243 0.28708 2.87e-4 0.0168

Some descriptive statistics for the estimated model parameters, initial variance, Feller ratio, objective
function and observed implied volatility are given for the two sets in Table 6. The values of the objective
function compare favourably with those in Table 1 of Veng et al. (2019). The two sets of parameters are
almost identical, with the exception of the estimate of the long-term mean parameter. We argue that the
difference in the v∗ parameter estimate from the call and put prices is due to market imperfections that
lead to a spread between the implied volatility σo of call and put options. In fact, the absolute value of the
implied volatility spread, |σoC(Si, Ti, Ej) − σoP (Si, Ti, Ej)| derived from the call and put options is 0.04 on
average, while the relative absolute spread (i.e., the ratio of the spread to implied volatility from the call) is
0.24. Interestingly, the absolute difference between the square root of the two long-term variance parameters
is 0.05, and the ratio of this difference to the square root of the call variances is 0.29, thus mirroring the
implied volatility spread.
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Figure 2: Left Panel: Observed call option prices (solid line) and second-order approximations C2,H (dotted line) for four

different strike prices E1 = 1900, E2 = 1975, E3 = 2000, and E4 = 2025 and expiry date T = December 19, 2015, versus time

(September 1, 2014 – March 30, 2015) obtained with the optimal parameters from the observed implied volatility of call options

(i.e., call set). Right Panel: Observed put option prices (solid line) and Black-Scholes second-order approximations P2,H (dotted

line) for four different strike prices E1 = 1900, E2 = 1975, E3 = 2000, and E4 = 2025 and expiry date T = December 19, 2015,

versus time (September 1, 2014 – March 30, 2015) obtained with the optimal parameters from the observed implied volatility

of call options (i.e., call set).

To evaluate the model consistency, we compute the European call and put option prices using formulas
C2,H and P2,H in Eqs. (58)–(59) with both sets of estimated parameters. Figure 2 shows the observed and
second-order (solid line and dotted line, respectively) call option prices. The approximations in Figure 2 are
obtained using the model parameters estimated by the observed implied volatility from call options (i.e.,
call set). The corresponding figures for the put prices, obtained using the model parameters estimated by
the observed implied volatility from put options (i.e., put set) are available in the supplementary material.
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Figure 3: Observed option prices (solid line) and one-day-ahead estimates computed using second-order approximation (dotted

line) for four different strike prices E1 = 1900, E2 = 1975, E3 = 2000, and E4 = 2025 and with expiry date T = December 19,

2015, versus time (September 1, 2014 – March 30, 2015). Call price one-day-ahead estimates using the call set (left panel); Put

price one-day-ahead estimates using the put set (on the right). The average relative errors of call and put options are 7.9% and

6.2%, respectively.

For each set, we compute the mean and standard deviation of the relative errors for the call options as:

E
C,ΘL

i,j = |Co(Si, Ti, Ej)− C2,H(Si, Ti, Ej ; ΘL)|/Co(Si, Ti, Ej),with L = C,P,

and we also compute the equivalent errors for the put options. The average relative errors EC,Θ
C

and EP,Θ
P

(i.e., when parameters are estimated starting from the corresponding option prices) are, respectively, 0.027
(i.e., 2.7%) and 0.031 (i.e., 3.1%). These errors are in line with those in Pacati et al. (2018), where a double
Heston model with jumps is used. By contrast, when using the model parameters of the put set to estimate

the call prices, and vice versa, the relative errors EC,Θ
P

and EP,Θ
C

are, on average, 0.21 (i.e., 21%) for the
call and 0.22 (i.e., 22%) for the put options. Thus, while the cross estimates produce a clear bias, the error
is of the same order as the relative error in the implied volatility (i.e., 24%), suggesting that the bias is
driven by market imperfections rather than an inconsistency with the methodology.

We conclude this section by testing the potential of the calibrated parameters to forecast option prices
one day ahead. Figure 3 shows the one-day-ahead estimates for call (left panel) and put (right panel) option
prices. Specifically, the option estimates at time t + 1 are calculated using the optimal parameter values
at time t. The one-day-ahead estimated call prices are obtained using the model parameters ΘC

t , while
the one-day-ahead estimated put prices are obtained from ΘP

t . The relative errors of the one-day-ahead
estimates are, on average, 4.67% for call options and 4.72% for put options.

6 Variance of the Gaussian kernels and the VIX index

In this section, we focus on the relationship between the VIX and the variances Γ0 and Γ2 in the Heston,
double Heston, and triple Heston models. We use the VIX time series for the years 2000, 2001, 2002 and
2003 provided by the CBOE10 and two time series for the realized variance, the median truncated realized
variance and the 5-minute realized variance, both available from the Oxford-Man Institute11. For the Heston

10The VIX level was downloaded from http://www.cboe.com/products/vix-index-volatility/vix-options-and-futures/vix-
index/vix-historical-data

11website https://realized.oxford-man.ox.ac.uk/data .
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model, we assume that the realized variance from the Oxford-Man Institute database plays the role of the
spot variance; thus, vt = RVt. The use of the realized variance as a proxy for the short-term volatility
factor is supported by the results illustrated in Corsi et al. (2013). In the double Heston model, each factor
variance is evaluated as a fraction of the total realized variance; thus, v1,t = α1RVt and v2,t = (1− α1)RVt.
In the triple Heston model, the stochastic variances vj,t, j = 1, 2, 3 are chosen to be a fraction of the total

realized variance, as vj,t = αjRVt, j = 1, 2, 3, αj ≥ 0, αj ≤ 1. We use Σ̃n,model(t) to denote the quantity

Σ̃n,model(t) =

√
Γn,model(t, t+ T )

T
, model = H,DH, TH n = 0, 2. (90)

6.1 Gaussian kernels and the VIX index in the Heston and double Heston frameworks

We now empirically test the relationship between the VIX, Γ0 and Γ2 in the Heston and double Heston
frameworks. For each fixed year, we use the model parameters in Christoffersen et al. (2009), provided in
Table 7 and Table 8, to compute the kernel variance Γ0 and Γ2, while the α1 parameter is obtained by
minimizing the squared residuals (sum of squared errors):

SSE =
∑
t

[
Σ̃2,TH(t;α1)− V IXt

]2
. (91)

across the four years (thus, α1 is imposed to be the same for the four years). We find that the optimal
value of α1 is α1 = 0.15 when we use the median truncated realized variance and α1 = 0.06 in the case of
5-minute realized variance.

Table 7: Estimated parameters for the Heston model from Christoffersen et al. (2009)
Heston model parameters

year χ v∗ γ ρ
2χ v∗

γ2

2000 2.5751 0.0678 0.6561 -0.6975 0.8111
2001 3.8191 0.0564 0.6489 -0.7410 1.0231
2002 3.3760 0.0532 0.5973 -0.7725 1.0068
2003 1.7201 0.0691 0.6837 -0.5939 0.5085

Table 8: Estimated parameters for the double Heston model from Christoffersen et al. (2009)
Double Heston model parameters

year χ1 v∗1 γ1 ρ1 χ2 v∗2 γ2 ρ2
2χ1v

∗
1

γ21

2χ2v
∗
2

γ22

2000 0.1404 0.0052 1.9382 -0.9915 0.3542 0.1690 0.2292 -0.9024 0.0004 2.2789
2001 0.1433 0.0054 1.9115 -0.9911 0.2347 0.1655 0.2047 -0.8983 0.0004 1.8539
2002 0.1491 0.0058 1.9754 -0.9902 0.1855 0.1607 0.1715 -0.8896 0.0004 2.0270
2003 0.1638 0.0032 8.8078 -0.9838 0.4625 0.1198 0.3976 -0.6569 0.0000 0.7009

We start by comparing, in Figures 4 and 5, the VIX time series (solid line) and Σ̃2,model (dotted line)
in the Heston (Fig. 4) and double Heston (Fig. 5) models as a function of the day index for each year

considered. The figures show that Σ̃2,DH(t) (see Eq. (90)) more closely follows the VIX behaviour for all
years and both time series. This result is confirmed in Table 9, which shows that the double Heston model
outperforms the Heston model in terms of the sup-norm. The RMSE shown in Table 9 compares favourably
with the results obtained by Corsi et al. (2013) (see Section 4.3, Table 4).

We then compare, in Figure 6, the fit between the VIX and Σ̃2,model versus Σ̃0,model. The figures clearly
show, as discussed in Section 3.3, that the VIX overestimates Σ0,model.

To provide further evidence of this point, we test for linear dependence between the VIX index and
Σ̃0,model and Σ̃2,model with model = H and DH . This is done by regressing the daily VIX observations on

the daily estimates of Σ̃0,model(t) and Σ̃2,model(t) when using, respectively, the median truncated realized
variance (see, Table 10, left panel) and the 5-minute realized variance (see Table 10, right panel) as proxies
of the spot variance process vt =

∑n
j=1 vj,t. The results of these zero-intercept regressions show that
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Figure 4: Each panel contains the VIX time series and the model implied volatility Σ̃2,H (i.e., Eq. (90) - Heston model) as

a function of day. The model parameters in Table 2 were used with the spot variance of the price log-return corresponding to

the daily time series of the median truncated realized variance (left panels) and the 5-minute realized variance (right panels)

from the Oxford-Man Institute.
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Figure 5: Each panel contains the VIX time series and the model implied volatility Σ̃2,DH (i.e., Eq (90) - Double Heston model)

as a function of day. The model parameters in Table 8 were used with the spot variance of the price log-return corresponding to

the daily time series of the median truncated realized variance (left panels, α = 0.15) and the 5-minute realized variance (right

panels, α = 0.06) from the Oxford-Man Institute.

Table 9: Root mean square error (RMSE) obtained using Σ̃2,model to approximate the VIX index.
Model median truncated RV 5-minute RV

RMSE min err max err RMSE min err max err
Heston 0.0276 0.0131 0.0453 0.0253 0.0168 0.0380

Double Heston 0.0239 0.0152 0.0341 0.0301 0.0233 0.0347
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Figure 6: Comparison of V IX,
√

Γ0/T and
√

Γ2/T (double Heston model) when the spot variance is computed with the

RV median truncated realized variance.

both Σ̃0,model(t) and Σ̃2,model(t) perform better than the naive linear model VIX t = β1RVt + noise. The
coefficients are statistically significant at the 5% level. These results are in line with the findings of Huang
et al. (2018). These results also confirm our hypothesis that Σ̃2,model(t) in the Heston and double Heston

models captures the VIX dynamics better than Σ̃0,model(t). In fact, in both the Heston and double Heston

models, the coefficient β1 is, on average, closer to one when we regress on Σ̃2,model(t) rather than Σ̃0,model(t).

Table 10: Zero-intercept regression models with two proxies for spot variance. The model parameters of the Heston and
double Heston models are taken from Table 3 in Christoffersen et al. 2009.

Proxy: median truncated realized variance
V IXt = β1RVt + noise

year β1 S.E. t-stat R2

2000 0.589 0.0089 65.94 0.271
2001 0.490 0.0075 64.54 0.352
2002 0.574 0.0081 68.20 0.532
2003 0.524 0.0063 82.66 0.597

V IXt = β1Σ̃0,H(t) + noise
year β1 S.E. t-stat R2

2000 0.93603 0.0069 134.65 0.609
2001 0.8142 0.0087 93.718 0.5583
2002 0.745 0.0095 78.416 0.6095
2003 0.8846 0.0107 82.43 0.6042

V IXt = β1Σ̃2,H(t) + noise
year β1 S.E. t-stat R2

2000 1.002 0.0075 132.2 0.600
2001 0.860 0.0092 92.67 0.553
2002 0.786 0.0102 76.65 0.599
2003 0.962 0.0120 80.17 0.591

V IXt = β1Σ̃0,DH(t) + noise
year β1 S.E. t-stat R2

2000 0.8677 0.0063 138.28 0.6192
2001 0.6979 0.0063 109.85 0.6300
2002 0.6995 0.0067 104.7 0.7288
2003 0.8096 0.0079 101.75 0.6961

V IXt = β1Σ̃2,DH(t) + noise
year β1 S.E. t-stat R2

2000 0.964 0.0072 132.60 0.599
2001 0.879 0.0079 110.74 0.635
2002 0.699 0.0068 104.73 0.7328
2003 0.8071 0.0079 101.33 0.6944

Proxy: 5-minute realized variance
V IXt = β1RVt + noise

Σ̃2,DH year β1 S.E. t-stat R2

2000 0.807 0.0156 51.68 0.186
2001 0.706 0.0138 50.86 0.253
2002 0.784 0.0140 55.73 0.431
2003 0.671 0.0101 66.40 0.489

V IXt = β1Σ0,H(t) + noise
year β1 S.E. t-stat R2

2000 1.004 0.0076 132.1 0.5981
2001 0.8594 0.0082 103.57 0.6048
2002 0.8044 0.0092 76.65 0.6554
2003 0.9371 0.01095 85.53 0.6204

V IXt = β1Σ̃2,H(t) + noise
year β1 S.E. t-stat R2

2000 1.068 0.0080 132.2 0.602
2001 0.904 0.0088 102.3 0.599
2002 0.843 0.0098 85.254 0.646
2003 1.013 0.0121 83.488 0.609

V IXt = β1Σ̃0,DH(t) + noise
year β1 S.E. t-stat R2

2000 1.013 0.0111 91.21 0.414
2001 0.8518 0.0110 77.58 0.4578
2002 0.8698 0.0116 75.24 0.5806
2003 0.8957 0.0094 94.66 0.664

V IXt = β1Σ̃2,DH(t) + noise
year β1 S.E. t-stat R2

2000 1.087 0.0120 90.56 0.410
2001 1.008 0.0106 94.51 0.557
2002 0.992 0.0112 88.14 0.655
2003 1.107 0.0114 94.23 0.660

We further investigate the quality of the VIX approximation by analysing the bias, i.e., E(Σ̃m,model −
V IX), for m = 0, 2, for the Heston and double Heston models. Table 11 shows that Σ̃0,model has a more

pronounced bias than Σ̃2,model and that, particularly for the years characterized by large vols of vols, the

use of Σ̃2,model substantially improves the fit.
To provide further intuition about the above results, we compare the accuracy of the double Heston call
option pricing formulas when the expansion in the vols of vols is performed starting from the representation
in Eq. (15), after extracting the Gaussian kernel Γ0, and from the representation in Eq. (18), after extracting
the Gaussian kernel Γ2. We focus on out-of-the-money call options, which are the ones used to compute the
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VIX index. A better performance of the approximation formulas, written in terms of Γ2, in pricing out-of-
the-money options, would provide justification for the better performance of Γ2 itself in approximating the
VIX.

Table 11: Comparison of the bias in the estimates obtained with Σ̃0,H , Σ̃2,H , Σ̃0,DH and Σ̃2,DH using the two proxies for the
spot variance.

Proxy: Median truncated realized variance Proxy: 5-minute realized variance
Heston Double Heston Heston Double Heston

year BiasΣ̃0,H BiasΣ̃2,H BiasΣ̃0,DH BiasΣ̃2,DH BiasΣ̃0,H BiasΣ̃2,H Bias Σ̃0,DH Bias Σ̃2,DH

2000 -0.0114 0.0045 -0.0294 -0.0070 0.0037 0.0192 0.0033 0.0207
2001 -0.0414 -0.0290 -0.0748 -0.0260 -0.0306 -0.0187 -0.0373 0.0050
2002 -0.0596 -0.0473 -0.0797 -0.0357 -0.0446 -0.0329 -0.0354 0.0018
2003 -0.0166 0.0016 -0.0359 0.0284 -0.0054 0.0125 -0.0172 0.0220
Avg -0.0322 -0.0175 -0.0549 -0.0101 -0.0192 -0.0049 -0.0216 0.0123

Figure 7: Relative errors of the second-order approximations of call options in the double Heston framework obtained using
the Gaussian kernels GΓ0 (solid-line) and GΓ2 (dashed line) as a function of the initial spot variance v1,0 = α, v2,0 = (1 − α).
The double Heston parameters used to compute the call option prices are those estimated in the year 2003 and shown in Table
8. A logarithmic scale is used for the y-axis (logarithm base=10).

As an illustration, we use the double Heston parameters estimated by Christoffersen et al. (2009) for
European call options on the S&P500 in the year 2003 (see the last row of Table 8). The first factor of
the double Heston model in 2003 is characterized by a high vols of vols (881%), a very small long-term
mean (i.e., 0.33%) and a slow mean reverting speed (i.e., 0.1638), so the parameters do not satisfy the
Feller condition. The second factor is characterized by less volatile dynamics, with a vols of vols of 39%,
a long-term mean equal to 11% and a faster mean reverting speed (i.e., 0.4625). This suggests that the
volatility remains closer to its long-term mean, with parameters satisfying the Feller condition. The initial
value of each factor variance is evaluated as a fraction of the total variance, so v1,0 = α and v2,0 = (1− α).
The risk-free interest rate is chosen to be 0.15.
We analyse the accuracy of the approximations as a function of α (which is the only parameter we estimated
in the VIX exercise) to assess the sensitivity of the option price approximations to the choice of spot
volatility. The comparison is presented in Figure 7, where the relative errors of the second-order call option
approximations in the double Heston framework are shown in a logarithmic scale. The solid lines are the
approximations obtained with the Gaussian kernel GΓ0 , while the dashed lines are those obtained with GΓ2 .
In all panels, a logarithmic scale with logarithm-base 10 is used. The x-axis shows the values of the spot
variance v1,t = α. Figure 7 shows that the approximations obtained with the complete kernel GΓ2 are more
accurate than those obtained with GΓ0 for the considered parameter values. Interestingly, some values of
the spot variance v1,0 (i.e., v2,0) reduce the relative pricing errors. We note that as we move from v1,0 = 0
to v1,0 = 1, we start closer to or further from the long-term means of the two factors. This movement
has the effect of changing the relative contribution of each factor to the overall dynamics, which, as the
process transitions from smooth mean reverting dynamics with a small vol of vol to dynamics with abrupt
fluctuations, could make the option more difficult to price, explaining the observed changes in pricing errors.
While we restrict the analysis to out-of-the-money options for a specific set of parameters, the comparison
of the accuracy of the two approximations when expressed in terms of Γ0 or Γ2 deserves a full investigation,
which will be the subject of future work.
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6.2 Calibration of the double and triple Heston models from the VIX index

Given the encouraging results in the previous subsection, we explore the possibility of calibrating the pa-
rameters of the double and triple Heston models directly from the VIX daily data.
For this exercise, we use only the median truncated realized variance as a proxy of the spot variance vt.
In this case, both the model parameters and αi are obtained by minimizing the squared residuals (SSE)
separately for each year (thus, αi differs by year). We use the Matlab lsqnonlin function to minimize the
SSE. As a starting point, we the Heston and double Heston parameters from the previous section.
We first calibrate the double Heston model. The results reported in Table 12 are similar to those of Christof-
fersen et al. (2009) for a large basket of options. The estimated parameters for the triple Heston model are
reported in Table 13, and the relative values of the coefficients αj , j = 1, 2, 3 are shown in Table 14.

Figure 8 presents the VIX time series (solid line) and Σ̃2,TH (dotted line) in the triple Heston model as a

function of the day index for each year considered. The fit with Σ̃2,TH(t) appears to better capture the VIX
behaviour than the Heston and double Heston models presented in the previous subsection. The visual in-
spection is supported by the lower values of the average, minimum and maximum RMSE, which are 0.0187,
0.0126 and 0.0258, respectively, and of the bias, reported in the last column of Table 14, which is two orders
of magnitude lower than the values in Table 11. The coefficient β1 is also closer to one.

Table 12: Estimated parameters for the double Heston model from VIX data
Double Heston model parameters

year χ1 v∗1 γ1 ρ1 χ2 v∗2 γ2 ρ2 α1 α2 Bias
2000 0.4128 0.0001 1.8897 -0.9664 1.0737 0.0937 0.2225 -0.8773 0.1439 0.8560 -1.064e-4
2001 0.1462 0.0204 3.5930 -0.9623 0.2534 0.3103 0.2077 -0.8762 0.1914 0.8085 -1.187e-4
2002 0.1463 0 .0960 3.198 -0.9922 0.1979 0.1994 0.2073 -0.9149 0.2533 0.7466 -3.869e-4
2003 0.0367 0.0027 8.0235 -0.8953 0.3951 0.1030 0.3501 -0.5771 0.1372 0.8627 2.6097e-5

Table 13: Triple Heston model parameters estimated from the VIX and the median truncated realized variance data by

minimizing the SSE in Eq. (91).

Triple Heston model parameters
year χ1 v∗1 γ1 ρ1 χ2 v∗2 γ2 ρ2 χ3 v∗3 γ3 ρ3

2000 0.4840 0.0046 1.6951 -0.8672 0.3231 0.1516 0.2023 -0.8027 4.3913 0.0170 2.529 0.1009
2001 0.1286 0.0056 4.5488 -0.9988 0.2271 0.1607 0.2024 -0.8916 0.4429 0.1197 0.0123 -0.5101
2002 0.1317 0.0069 4.1944 -0.9873 0.1623 0.1490 0.1624 -0.7542 0.3289 0.1435 0.10931 -0.5354
2003 0.1128 0.0016 8.9596 -0.9752 0.4326 0.0920 0.3884 -0.6436 5.2722 0.0001 7.2568 0.4272

Notably, the estimation performed using the VIX provides model parameter values for the first two
factors that are similar to those obtained by Christoffersen et al. (2009). In particular, the second factor,
which is dominant, is consistently slowly mean reverting around its long-run mean, while the first factor
has more volatile dynamics around its very small long-term mean across the whole period. By contrast, the
temporal dynamics of the parameters characterizing the third factor appear to switch between these two
types of behaviour. Specifically, the vol of vol, γ3, and the speed of mean reversion, χ3, are lower in the
years 2001 and 2002, while the long-term mean, v∗3, is higher in the same years. The correlation coefficient,
ρ3, changes sign, going from positive in 2000 to negative in 2001 and 2002 and positive again in 2003. This
behaviour may be driven by the 2001 crisis, which was triggered by the collapse of the dot-com bubble and
the 9/11 attacks. The long-term mean, in particular, is anti-correlated with the dynamics of the real U.S.
GDP growth, which registered 4.1% in 2000, 1.1% in 2001, 1.7% in 2002 and 2.9% in 2003, i.e., the long-term
volatility is higher in 2001 and 2002 when the GDP experiences a decline. The third factor may thus have
macro-economic significance.

This result is not surprising since other studies have shown a correlation between GDP growth and stock
market returns (see, Ritter 2005 and the references therein; Cournéde and Denk 2015)12.

12Real U.S. GDP growth data have been downloaded from https://www.statista.com/statistics/188165/annual-gdp-growth-
of-the-united-states-since-1990/; S&P 500 annual returns are from https://www.macrotrends.net/2526/sp-500-historical-annual-
returns
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Table 14: (Left) Parameters αj , j = 1, 2, . . ., with v1,t = α1RVt, v2,t = α2RVt, v3,t = α3RVt estimated from the VIX and the

median truncated realized variance data by minimizing the SSE in Eq. (91). (Right) Results of zero-intercept linear regression

V IXt = β1Σ̃2,TH(t) + noise, that is, β1, SE, t-stat, R2 and Bias.

year α1 α2 α3 β1 SE t-stat R2 Bias
2000 0.1120 0.6499 0.2379 0.9883 0.0069 143.165 0.6362 -1.088e-4
2001 0.1340 0.7598 0.1061 0.9987 0.0077 129.88 0.7029 -1.186e-4
2002 0.1789 0.7458 0.0752 0.9816 0.0089 109.21 0.7455 -3.837e-4
2003 0.1283 0.7451 0.1265 1.0038 0.0074 134.91 0.7980 3.353e-5
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Figure 8: Each panel contains the VIX time series and the model implied volatility Σ̃2,TH (i.e., Eq (90) - Triple Heston model)
as a function of day. The model parameters are in Table 13.

7 Conclusions

This paper introduces an approach to extract the Gaussian kernel behind the multi-factor Heston model,
which allows a clear connection of the prices of European option contracts in the multi-factor Heston frame-
work to the corresponding prices in the Black-Scholes model. Our simple formulas illustrate how the option
prices and implied volatility respond to changes in model parameters. A series of numerical exercises shows
that our formulas are accurate, computationally efficient, and easy to calibrate. We numerically demonstrate
that our approximations compare favourably with other pricing formulas available in the literature, such as
those of Pacati et al. (2018) and Veng et al. (2019), when we use them to calibrate the model parameters
to the implied volatility and forecast the option prices one day ahead.

The approach proposed in this paper, while applied only to the multi-factor Heston framework and
implemented for vanilla contracts, is more generally valid. Extensions to exotic derivatives whose payoff
allows for a closed or semi-closed form in the Black-Scholes framework would be straightforward. More
importantly, the representation of the marginal density function as a convolution with an appropriate Gaus-
sian kernel applies to any model for which an analytically tractable characteristic function exists, including
affine stochastic volatility, exponential Lévy models, and jump diffusion models. We plan to explore the
implications of our representation formulas, and related asymptotic expansions, more generally for this
broader class of models and contracts in future work. We also defer to future work a detailed study of the
potential advantages of the convolution formulas in terms of computing option prices exactly via numerical
integration. In fact, the convolution formula allows us to price any derivative as the convolution of the
corresponding price in a time-dependent Black-Scholes framework and the function Lγ (in the case of the

Gaussian kernel GΓ0) or L∗γ (in the case of the Gaussian kernel GΓ2), which do not depend on the payoff

of the contract. A comparison of the performance of these formulas for option pricing and those derived
from Recchioni and Sun (2016) deserves further investigation. Additionally, the use of Γ2 to estimate the
variance risk premium from the VIX and S&P 500 indices and to price VIX options is worthy of further
rigorous analysis.
The results of this work, and in particular the decomposition of the option prices and implied volatility in
terms of the Greeks of the options and higher-order risks, may have applications in other areas, such as
portfolio management and asset allocation.
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Appendix A: Proofs

Detailed proofs of all the results are provided in the supplementary material. Here, we provide the most
relevant points of each proof.

Proof of Theorem 2.1

We recall the backward Kolmogorov equation satisfied by the function M given in (11) as a function of the
past log-price x and time t:

−∂M
∂t

=
1

2

n∑
j=1

vj
∂2M

∂x2
+

1

2
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j vj

∂2M
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∂vj
+
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2

n∑
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vj

 ∂M

∂x

(92)

with final condition

M(x, v, t′, x′, t′) = δ(x− x′), (93)

where δ(·) is the Dirac delta function. We look for M in the form

M(x, v, t, x′, t′) =
1

2π

∫ +∞

−∞
eık(x′−x))−ı k

∫ t′
t r(s)ds+Q(k,t,t′,v;Θv)dk, x, x′ ∈ R, v ∈ Rn

+
, t, t′ ≥ 0, t′ − t > 0,(94)

where Q is defined as

Q(t′ − t, v, k; Θv) = A(k, t, t′)−
n∑
j=1

vjBj(k, t, t
′). (95)

Substituting Eq. (95) into Eq. (92), we obtain the Riccati equation satisfied by A and Bj (see Duffie et al.
2000; Fatone et al. 2009):

d

dt
A =

n∑
j=1

χjv
∗
jBj , (96)

and for j = 1, 2, . . . , n,

d

dt
Bj = χjBj +

1

2
γ2
jB

2
j + ı k ρjγjBj −

k2

2
+
ı k

2
,

(97)

with final conditions

A(k, t′, t′) = 0, Bj(k, t
′, t′) = 0, j = 1, 2, . . . , n. (98)

We now rewrite Q in Eq. (95). Eqs. (96) and (98) yield

A(k, t, t′) =
n∑
j=1

Aj(k, t, t
′) = −

n∑
j=1

χjv
∗
j

∫ t′

t
Bj(k, τ, t

′)dτ , (99)

where

Aj(k, t, t
′) = −χjv∗j

∫ t′

t
Bj(k, τ, t

′)dτ , (100)
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while Eqs. (97) and (98) yield

d

dt

(
e−χjtBj(k, t, t

′)
)

= e−χjt
(
ı kρjγjBj(k, t, t

′) +
1

2
γ2
jB

2
j (k, t, t′)

)
−e−χjt

(
k2

2
− ık

2

)
. (101)

Since Bj(k, t
′, t′) = 0, integration yields:

Bj(k, t, t
′) = −

∫ t′

t
e−χj(s−t)

[
ı kρjγjBj(k, s, t

′) +
1

2
γ2
jB

2
j (k, s, t′)

]
ds −

(
−k

2

2
+ ı

k

2

)∫ t′

t
e−χj(s−t)ds.

(102)

From Eqs. (99) and (102), we obtain:

Aj(k, t, t
′) = −χjv∗j

∫ t′

t
Bj(k, τ, t

′)dτ =

= χjv
∗
j

∫ t′

t

[∫ t′

τ

[
e−χj(s−τ)

(
ı kρjγjBj(k, s, t

′) +
1

2
γ2
jB

2
j (k, s, t′)

)
+ e−χj(s−τ)

(
−k

2

2
+ ı

k

2

)]
ds

]
dτ .

(103)

so by inverting the integration order and using Eqs. (102) and (103), we obtain

Aj(k, t, t
′)− vjBj(k, t, t′) = −

(
k2

2
− ık

2

)∫ t′

t

[
v∗j

(
1− e−χj(s−t)

)
+ vje

−χj(s−t)
]
ds

+

∫ t′

t

[
ı kρjγjBj(k, s, t

′) +
1

2
γ2
jB

2
j (k, s, t′)

] [
v∗j

(
1− e−χj(s−t)

)
+ vje

−χj(s−t)
]
ds

(104)

Noting that vj is the variance at time t and the conditional mean of the point-in-time volatility given in
(7), Eq. (104) becomes

Aj(k, t, t
′)− vjBj(k, t, t′) =

∫ t′

t

[
ı kρjγjBj(k, s, t

′) +
1

2
γ2
jB

2
j (k, s, t′) +

(
−k

2

2
+ ı

k

2

)]
E(vj,s | Ft)ds.

(105)

Eq. (105) implies

n∑
j=1

(
Aj(k, t, t

′)− vjBj(k, t, t′)
)

=

= −(k2 − ık)

2
Γ0(t, t′) +

n∑
j=1

∫ t′

t
E(vj,s | Ft)

[
1

2
γ2
jB

2
j (k, s, t′) + ı kρjγjBj(k, s, t

′)

]
ds, (106)

where Γ0 is given in formula (16). This proves formula (11).
Formula (15) follows if we apply the convolution theorem for the inverse Fourier transform to formula (11).
The proof of Eq. (12) follows using a standard approach for the Riccati equations. This concludes the proof.
�

Proof of Theorem 2.2

Eqs. (18) and (23) follow from Eq. (11) by adding and subtracting the quantity
(
k2 − ık

)
(−S1(t, t′) +

S2(t, t′)), where S1 and S2 are given in Eqs. (21) and (22), and applying the convolution theorem for the
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inverse Fourier transform. We now prove the expansion of L∗γ in Eq. (24). To this end, we prove the

following expansion for Bj (12):

Bj(k, t, t
′) = Bj,0(k, t, t′) + γjBj,1(k, t, t′) +O(γ2

j ), γj → 0+, t < t′. (107)

Substituting Eq. (107) into (97) and equating the coefficients of the same powers of γj , we obtain that the
zero- and first-order terms Bj,0 and Bj,1 solve the following equations:

dBj,0
dt

(k, t, t′)− χj Bj,0(k, t, t′) = −k
2

2
+
ı k

2
(108)

dBj,1
dt

(k, t, t′)− χj Bj,1(k, t, t′) = ı k ρj Bj,0(k, t, t′), (109)

with final conditions
Bj,0(k, t′, t′) = 0, B1,1(k, t, t′) = 0. (110)

The solution Bj,0 is

Bj,0(k, t, t′) =
1

2

(
k2 − ı k

) (1− e−χj(t′−t))
χj

=
1

2

(
k2 − ı k

)
ψj(t, t

′), (111)

where ψj is given in (28), while Bj,1 is

Bj,1(k, t, t′) = − ı k ρj
2χj

(
k2 − ı k

)
fj(t, t

′) , (112)

where fj is defined as

fj(t, t
′) =

(
ψj(t

′ − t)− (t′ − t)e−χj(t′−t)
)

= e−χj(t
′−t)

∫ t′

t
(eχj(t

′−s) − 1)ds t < t′. (113)

Using Eq. (107) in Eq. (23), we obtain

Hj(k, s, t
′) =

γ2
j

2

(
ψ2
j (s, t

′)

4
(k2 − ık)2 +

(k2 − ı k)

4
ψ2
j (s, t

′)

)

+ı kρjγj

(
ψj(s, t

′)

2
(k2 − ı k) +

γjρj
2χj

fj(s, t
′)(−ık3 − k2) +

(ık + 1)

2
ψj(s, t

′)

)
+ o(γ2

j ) , γj → 0+.

(114)

Proceeding similarly (see online supplementary material), we obtain Eq. (24). This concludes the proof. �

Proof of Corollary 2.4

We sketch the proof for the first three-order terms, GΓ2 , M1 and M2. From Theorem (2.2) and using the
expansion in formula (24) up to the second order, we have:

M2(x, v, t, x′, t′) =

1

2π

∫ +∞

−∞
e
ık
[
(x′−x)−

∫ t′
t r(s)ds+ 1

2
Γ2(t,t′)

]
− 1

2
Γ2(t,t′)k2

eS1(t,t′)(ı k3+ı k)+S2(t,t′)(k4−2ık3−ık)+S2c(t,t′)(k4−ı k3)dk,

(115)

where S1 is a linearly homogeneous function of the vols of vols, while S2 and S2c are homogeneous functions
of degree two. We compute the first three terms of the expansion in powers of the vols of vols of the function

E(γ) = eS1(t,t′)(ı k3+ı k)+S2(t,t′)(k4−2ık3−ık)+S2c(t,t′)(k4−ı k3). (116)
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The proof follows based on:

E|γ=0 = 1,
∂E
∂γj

∣∣∣∣
γ=0

= (ı k3 + ı k)
∂S1

∂γj
,

∂2E
∂γjγi

∣∣∣∣
γ=0

= (ı k3 + ı k)2∂S1

∂γi

∂S1

∂γj
, i 6= j, (117)

and

∂2E
∂γ2

j

∣∣∣∣∣
γ=0

= (ı k3 + ı k)2

(
∂S1

∂γj

)2

+
∂2S2

∂γ2
j

(k4 − 2ık3 − ık) +
∂2S2c

∂γ2
j

(k4 − ı k3). (118)

This concludes the proof. �

Proof of Proposition 3.1

The proof follows by substituting M with its third-order approximation and integrating by parts. Details on
why we obtain an explicit formula for the corrections terms are given in the online supplementary material.
As mentioned above, the correction Rm,MH , m = 1, 2, 3 for the call option is the same as the put correction
since there are two changes of sign: one due to the payoff function and the other due to integration by parts
over the interval (−∞, logE) rather than (logE, +∞). This concludes the proof. �

Proof of Proposition 3.2

Let us now prove formula (62). When γ = 0 (i.e., all vols of vols are equal to zero), we have Γ2(0, T ) equal
to Γ0(0, T ) and the correction terms R1, R2 equal to zero, which implies

Σ1(0) =
√

Γ0(0, T ). (119)

We compute the first- and second-order partial derivatives of both sides of Eq. (61) with respect to γj ,

j = 1, 2, . . . , n, and we evaluate the derivatives at γ = 0. Using the Black-Scholes Vega (i.e., ∂CBS
∂σ |γ=0 =

S0N
′(d1(Γ0))

√
T ) and the derivatives of Γ2, S1 and S2 with respect to γj , we obtain

∂

∂γj
Σ1

∣∣∣∣
γ=0

=
ρj Tj(0, T )

2χj

1√
Γ0(0, T )

(
+

1

2
−

(ln(S0/E) +
∫ T

0 r(s)ds)

Γ0(0, T )

)
, (120)

thus implying

Σ1(γ) =
√

Γ0(0, T )− 1√
Γ0(0, T )

(
(ln(S0/E) +

∫ T
0 r(s)ds)

Γ0(0, T )
− 1

2

)
n∑
j=1

γjρj
2χj
Tj(0, T ). (121)

To prove Eq. (63), we proceed by computing the second-order derivatives, which are given by:(
∂Σ2

∂γj

)∣∣∣∣
γ=0

=
1√
Γ0

(
∂S1

∂γj

)
(mE + 1

2Γ0)

Γ0
. (122)

An easy, but involved, computation illustrated in the online supplementary material shows that the addenda
containing powers of (mE + 1

2Γ0) higher than two are cancelled by the addenda involving the Black-Scholes
Vomma. In fact, we have:

∂2

∂γ2
j

Σ2(0) =
1√
Γ0

(
∂S1

∂γj

)2
[
− 6

Γ0

(mE + 1
2Γ0)2

Γ2
0

+
3

Γ0

(mE + 1
2Γ0)

Γ0
+

3

Γ2
0

]

+
∂2S2

∂γ2
j

1√
Γ0

[
(mE + 1

2Γ0)2

Γ2
0

−
(mE + 1

2Γ0)

Γ0
− 1

Γ0

]
+
∂2S2c

∂γ2
j

1√
Γ0

[
(mE + 1

2Γ0)2

Γ2
0

− 1

Γ0

]
. (123)
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Proceeding in a similar manner, we obtain mixed-order mixed derivatives:

∂2

∂γj∂γk
Σ2(0) =

1√
Γ0

(
∂S1

∂γj

)(
∂S1

∂γk

)[
− 6

Γ0

(mE + 1
2Γ0)2

Γ2
0

+
3

Γ0

(mE + 1
2Γ0)

Γ0
+

3

Γ2
0

]
.

(124)

The thesis follows since we have S2 = 1
2

∑n
j=1 γ

2
j
∂2S2

∂γ2
j

, S2c = 1
2

∑n
j=1 γ

2
j
∂2S2c

∂γ2
j

and S2
1 =

∑n
j=1

∑n
k=1 γjγk

∂S1
∂γj

∂S1
∂γk

.

This concludes the proof. A more detailed proof is provided in the supplementary material section available
online. �

Appendix B: Formulas in terms of the Gaussian kernel GΓ0

In this section, we provide the second-order approximations of the option prices starting from the represen-
tation of the marginal density function given by formula (11).

Corollary 7.1 The following expansion of the conditional marginal M in powers of γ as ‖γ‖ → 0 holds:

M(x, v, t, x′, t′) = GΓ0(x′ − x, t, t′) +M1,0(x, v, t, x′, t′) +M2,0(x, v, t, x′, t′) + o
(
‖γ‖2

)
, ‖γ‖ → 0,(125)

where M1,0 and M2,0 are given by

M1,0(x, v, t, x′, t′) = S1(t, t′)

[
−d

3GΓ0

dx′3
(x′ − x, t, t′)− d2GΓ0

dx′2
(x′ − x, t, t′)

]
, (126)

M2,0(x, v, t, x′, t′) = +S2(t, t′)

[
d4GΓ0

dx′4
(x′ − x, t, t′) + 2

d3GΓ0

dx′3
(x′ − x, t, t′) +

d2GΓ0

dx′2
(x′ − x, t, t′)

]
+S2c(t, t

′)

[
d4GΓ0

dx′4
(x′ − x, t, t′) +

d3GΓ0

dx′3
(x′ − x, t, t′)

]
+

1

2
S2

1(t, t′)

[
d6GΓ0

dx′6
(x′ − x, t, t′) + 2

d5GΓ0

dx′5
(x′ − x, t, t′) +

d4GΓ0

dx′4
(x′ − x, t, t′)

]
. (127)

Here, S1 is given by (21), GΓ0 is the Gaussian kernel defined in (10), and S2 and S2c are given in (22) and
(25), respectively. The following expansion holds for the European vanilla call and put option prices, CMH

and PMH , with spot price S0, maturity T , strike price E and discount factor B(T ):

CMH(S0, T, E) = CBS

(
S0, T, E,

√
Γ0√
T

)
+R1,0(S0, T, E) + R2,0(S0, T, E) + o

(
‖γ‖2

)
, ‖γ‖ → 0, (128)

and

PMH(S0, T, E) = PBS

(
S0, T, E,

√
Γ0√
T

)
+R1,0(S0, T, E) + R2,0(S0, T, E + o

(
‖γ‖2

)
, ‖γ‖ → 0. (129)

Here, Γ0(0, T ) is given by (16), CBS and PBS denote the classic Black-Scholes formulas, as in (45) and
(46), and R1,0 and R2,0 are the corrections to the standard Black-Scholes formula due to the contribution
of the first- and second-order terms of the expansion in powers of the vols of vols of the marginal density
function:

R1,0(S0, T, E) = B(T )E
S1(0, T )

Γ0(0, T )

(
+ log

(
E

S0e
∫ T
0 r(s)ds

)
+

1

2
Γ0(0, T )

)
GΓ0(log(E/S0), 0, T ), (130)

and

R2,0(S0, T, E) = S2(0, T )B(T )E

[
d2GΓ0

dx′2
+
dGΓ0

dx′

]
(log(E/S0), 0, T )

+S2c(0, T )B(T )E
d2GΓ0

dx′2
(log(E/S0), 0, T ) +

1

2
S2

1(0, T )B(T )E

[
d4GΓ0

dx′4
+
d3GΓ0

dx′3

]
(log(E/S0), 0, T ). (131)
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Proof of Corollary 7.1 The proof is based on the proof of Corollary 2.4 and Proposition 3.2 for the ex-
pansion in powers the vols of vols considering that the Fourier transform of Lγ is equal to the product of the

Fourier transform of L∗γ multiplied by e(k2−ık)(S1(t,t′)−S2(t,t′)).

Appendix C: Formulas derived from Recchioni and Sun (2016)

Starting from the approach of Recchioni and Sun (2016), with a straightforward computation, the follow-
ing explicit formulas for the option prices in the multi-factor Heston model are derived (see the online
supplementary material):

CMH(S0, T, E) =e(q−1)
∫ T
0 r(s)ds S0

2π

∫ +∞

−∞

(
S0

E

)(q−1−ık)

e−ı k
∫ T
0 r(s)dseQv,q(T,v0,k;Θv)

−k2 − (2q − 1)ık + q(q − 1)
dk, (132)

and

PMH(S0, T, E) =e(q−1)
∫ T
0 r(s)ds S0

2π

∫ +∞

−∞

(
S0

E

)(q−1−ık)

e−ı k
∫ T
0 r(s)dseQv,q(T,v0,k;Θv)

−k2 − (2q − 1)ık + q(q − 1)
dk, (133)

where, in the case of the Heston/double Heston models, Qv,q is the elementary function given by

Qv,q(t
′ − t, v, k; Θv) =

n∑
j=1

−(2χjv
∗
j /γ

2
j ) ln(sq,vj ,b,/(2ζq,vj ))

−(2χv∗j /γ
2
j )(ζq,vj + µq,vj )(t

′ − t)−(2vj/γ
2
j )(ζ2

q,vj − µ
2
q,vj )sq,vj ,g/sq,vj ,b ,

with µq,vj , ζq,vj , sq,vj ,g, and sq,vj ,b defined as follows:

µq,vj = −1

2
(χj + (ı k − q) γj ρj), ζq,vj =

1

2

[
4µ2

q,vj + 2γ2
jϕq(k)

]1/2
, (134)

sq,vj ,g = 1− e−2ζq,vj (t′−t), sq,vj ,b = (ζq,vj + µq,vj )e
−2ζq,vj (t′−t) + (ζq,vj − µq,vj ). (135)

The quantity ϕq in Eq. (134) is given by ϕq(k) =
k2

2
+ ı

k

2
(2q − 1)− 1

2(q2 − q), k ∈ R. Formulas (132) and

(133) differ in the calculations of call and put prices only in the choice of the real parameter q, which should
be larger than one to compute a call option and smaller than 0 to compute a put option. These formulas
are in line with the Lewis regularization technique (i.e., Lewis 2000, Chap 2), whose integrand functions are
smooth functions.
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