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1 Introduction

In this online supplementary material, we provide all the Theorems, Corollaries and Propositions introduced
in the paper as well as some supplementary material. To make this online material self-consistent, we recall
the main notation and quantities already introduced in the paper.

Table of contents:

e Section 2 Detailed proofs of the theoretical results in Section 2
e Section 3 Proofs of the results in Section 3

e Section 4 Estimated parameters in Christoffersen et al. (2009) for the Heston and Double Heston
models

e Section 5 Formulas derived from Recchioni and Sun (2016)

e Section 6 Accuracy of the second- and third-order approximations in the Heston framework on a
“reasonable” grid of parameters



e Section 7 Some details on asymptotic expansions
e Section 8 Further details on the expansions for option pricing and Greeks

e Section 9 Option price calibration

2 Detailed proofs of theoretical results in Section 2

To make this supplementary material self-consistent, we report some content contained in the associated

paper by providing detailed proofs and some new results.

We consider the following stochastic volatility model

n n

1
dxt = T‘(t) — 5 Zvj’t dt + Z w/'Uj,tde,ta t > 0, (1)
j=1 j=1
where x; denotes the log-price variable and vy ,..., v, the corresponding variances, while r(¢) is the in-

stantaneous risk-free rate (assumed to be known in advance) and y;, v}, 7; are positive constants. Zj,
Wi, 7 =1,2,...,n, are standard Wiener processes such that all correlations among the Wiener processes
are zero except for E(dZ;,dW;,) = p; dt, with constant correlation coefficients p; € (—1,1), j =1,2,...,n.
Dividends are not included. The system of equations (1)-(2) is equipped with the following initial conditions:

To = log SO: (3)
/U],O = ;-l\)/j707 (4)
where §0 and vj0, j = 1,2,...,n are the initial spot price and variances respectively, which are assumed

to be random variables concentrated at a point with probability one. Specifically, we use Gr to denote the
Gaussian kernel with variance I'(¢,t'), t < t/, that is,

! 2 !
i) L [ ety

Or(y, t,t) = ——— _1
vy 1) STIN(RD 2

—0o0

We consider two choices of I'. The first is T'(¢,¢") = To(¢,t'):
n ¢
To(t,t) =3 / Blv;., | Fi)ds, (6)
j=1""

where F; is the information set, i.e., the continuous o-algebra generated by the point-in-time volatility
processes, while E(v; s |F¢) is the conditional mean of the point-in-time volatility given by

E(vp|Fe) = vje 000 p (1 — e D) g <t (7)
The second choice is T'(¢,t") = T'y(t, '), where I'y is defined as

F2(t? t/) = FO(tv t,) - QSl(ta t/) + 252(t7 t/)

n " i , 2
= Z/t E(vjs | Fe) | (1= p5) + <2>Z (1 — et ,s)) _ pj> ] ds, (8)
j=1 J




and S7 and Ss are given by

Zpﬂlj/ E(vjs| Ft) (l—e Xf(tfs))dS, (9)
7=1

t/

Z % E(vjs|Ft) <1 — e Xt _s)> ds. (10)

These kernels are related to the processes, Xy and Yy, associated with the multi-factor Heston model (1):
t n
Xy = / >N oz, (11)
t .
7j=1

vo- lose = Bl Flen (12)

According to Zhang et al. (2017), Xy measures the cumulative uncertainty of the asset return and Yy the
uncertainty of the integrated variance process over the time interval [¢,¢']. Note that Iy is the conditional
variance of X/, while I'y is the conditional variance of the continuously compounded return Rf defined as

, t/ 1 n n
Rl =xp — a2 = / r(T) — B S v | AT+ JisdZis |t <, (13)
t : 1
j:l j:1

with
t n
/ 1
B(R( |70 = [ |r(0) = 5 Bl | 7| ar
t -
J=1

which is related to the processes Xy and Yy as follows

/7 ! 1
RY — B(RY | F)) = Xv = 3Yor. (14)

Theorem 2.1, which provides two representation formulas for the above-mentioned marginal density, was
already illustrated in the paper. Here we provide more details about the proof.

Theorem 2.1 The marginal probability density of the log-price variable conditioned to v, = v is given by
M(z,v,t,2",t') = / L pr(wyut ol o )y

2
n t/ ) i B2 / ~ B ’
1 /+oo ezk [(;r’—a:)—ftt/ r(s)ds—l—%%(t,t')] —%Fo(t,t’)k2 ezjil Ji E(js|Fe) |4 B5 (ksit')+rkpjy; By (kysit') | ds

= dk,
2T

Gaussian kernel Fourier transform contribution fromwvolsof vols

z, 7' €R, veRY ¢t >0t —t>0, (15)

where 1 is the imaginary unit and E(vj¢|F;) is the conditional mean (7). Here, Bj is given by

Bi(k ) = (k2 — 1k) Loy (16)
2 (G +v5) + (G —vye a0
where (j and vj are the following quantities:
GR) = 5 (477 + 728 — k)%, (17)



vj(k) = %(Z kpjvi + Xj)- (18)

Furthermore, M can also be written as

+o0
M($727t7 x,at/) == gFo(x/ — T — yatat,)£1<y7t7t/)dy7 (19)
—0oQ
where To(t,t') is the integrated conditional variance given in (6), while Gr, is the Gaussian kernel in (5)
and L 1is the function that fully accounts for the effects of the vols of vols:

ezkye

—00

El(yv ta t/) =

, 2
1 oo i ftt (vj,s | Ft) |:2] 2(k,s,t")+1kpjv;Bj(k,s,t') | ds
/ dk . (20)

Proof of Theorem 2.1 We recall the backward Kolmogorov equation satisfied by the function M given in
(15) as a function of the past log-price x and time t:

aM 1 —
Z Uy axg Z%UJ v 2 +Z’YJPJ ]a +ZX] Tj 522’]

7j=1
(21)
with final condition
M (z,v,t' 2" ) = 6(x — '), (22)
where §(-) is the Dirac delta function. We look for M in the form
1 [T n
M(x,v, t,l‘/,t/) _ / ezk x'—) zkft r(s)ds+ Akt ) —327_y v B (kitt! )Clk,
- 2 J_ o
1 oo ’ t/ ’
M(I’,U,t,.’lﬁ'/,t/) _ / ezk(z —x))—k [, r(s)ds+Q(k,t,t ’y;@”)dk‘,
- 21 ) _
z, 7 €ER, veRY ¢ >0t —t>0, (23)
where Q) is defined as
Q' —t,v,k;0,) = A(k,t,t') ZUJ (K, t,t) (24)

Substituting Eq. (24) into Eq. (21), we obtain the Riccati equation satisfied by A and B; (see Duffie et al.
2000; Fatone et al. 2009):

d
th ;XJUJB% (25)

and for j=1,2,...,n

d 1 5 5 k> ok
%Bj =x;B; + i’Yij +1kpjv; B — o + 5



with final conditions
Ak, ¢, ')y =0, Bj(k,t',t')=0,7j=1,2,...,n. (27)

We now rewrite Q in Eq. (24). Eqs. (25) and (27) give
Ak, t,t) ZA k,t,t) ZXH Bj(k,,t")dr (28)

where
t/

Aj(k,t,t") = —va;f Bj(k,r,t")dr, (29)
¢

while Eqs. (26) and (27) give

d , _.. . 1 .

7 (€9 By(k, t,1)) = e (2 kpjy;Bi(k,t,1') + 2%2332‘(’@75,15’0 —e it (2 - 12> . (30)
Integrating, we obtain

" d t Kk
/ e (e7X°Bj(k,s,t")) ds = / [exﬂ's (z kpjv;Bj(k, s, t') + ’yj B2(k s,t )> e Xi* (2 — 22” ds
t as t
(31)

and

t Kk
e X' B; (k) — e X' Bj(k,t, 1) = / [eXJ'S (z kpjv;iBj(k, s, t') + ’yj B2(k7 s,t )) — e Xi® (2 — z2>] ds.
t

(32)
Since Bj(k,t',t") = 0 we have
v ok
—e Xi'Bj(k,t,t') = / [e—x]-s (z kpjv;Bj(k,s,t') + 7] BQ(k: s t)> e s (2 - z2>] ds,
¢
! ! —x;(s—t) / L o / —x;(s—1) k2 k
Bj(k,t,t') = — e Xi zk:pjfijj(lc,s,t)+§'ijj(k,s,t) —e X T ds,
t
(33)

so Bj can be written as

t, 1 k2 k t/
Bj(k,t,t") = —/ e X (s=0) {Z kpjy;Bj(k,s,t') + 3 BQ(k s, t )} ds — (—2 + 12> / e Xi(s—1) gg.
t t

(34)
From Egs. (28) and (34) we have
t/
Aj(k,t,t/) = —Xj’l);/ Bj(k,’]’, t/)dT
t
v [t K2k
va;-‘/ / [er(ST) (zkpj7] (K, s,t) + 232(/€ s t)> + e X577 <—2 —|—22>} ds| dr.
t T



Inverting the integration order, we obtain
t s
Akt t) = va;‘/ (z kpjv;Bj(k,s,t") 2B?(k,s,t')) [/ e_Xf(S_T)dT} d
t t
- (36)

2 t s
¥ +Zk> / [/ e (s T)dT:| d
t t
1— 6x]'(st)> ds

vy <_ 2 "2
Xi
(37)

which reads
t/
Aj(k,t, 1) = X; / <Z’fPﬂij(k,8,t) B} (k,s t)) (

1 — e Xi(s—1)
e]) o

K2 k\ [
Ik <‘z“z>/t X

Using Eqs. (34) and (37), we obtain
Bj(k,t,t") = —
2B2(k,s,t )} [v;‘ <1 — el ”) + peNils t)] ds

Aj(k,t,t") —v

t/
+/ {z kpjv;Bj(k,s,t)
t

Bearing in mind the conditional mean of the point-in-time volatility given in (7) and that v; is the
k2 k

_? + Z2>:| E(Uj75 ].Ft)ds

(39)

variance at time t, Eq. (38) becomes
t/
Aj(k,t,t") —v;B (k:,t,t)—/ {zkpj’ijj(k,s,t)—i- ~viBj(k,s,t') + (
t

(40)

Eq. (39) implies
i(k,t,1)) =

- UjB

> (Aj(k, 1)
Fott —I—Z Evjs|]:t Q'Yij(k:,st)+zkp]’y] (k,s,t")| ds

7j=1
where Ty is given in formula (6). This proves formula (15). Formula (19) follows if we apply the convolution

(41)

theorem for the inverse Fourier transform to formula (15)

We now prove Eq. (16). First, we observe that Bj can be computed explicitly using a standard approach
for the Riccati equations

5 2@l
TG
Substituting Bj into (26), we obtain
2
thQC 2 (4 4o, 2 [(4cy 1,
+— (xj +1kpjv;) +— (k" +1k), (42)
C; 7?(03' TG g\ G 2
6

Vi



that is, C; is the solution to the following initial value problem:

d? d e
@Cj - (Xj + zkpﬂj)%C’j + Z(*k‘ + Zk?)Cj = O, (43)
with tnitial conditions p
C;(k,t',t") =1, ﬁcj(k:,t’,t/) =0. (44)
Solving problem (43), (44) we obtain
1 ~
Bj(k,t,t) = 5(k2 —1k)Bj(k,t,1), (45)

where
- 1 — =26 (t'—1)

B j k? t? t/ = ! )
i) (¢ +vj) + (G —vy)e a0
in which (j and vj are the quantities in Eqs. (17) and (18). Note that \1 = v; — (5 and Ay = vj + (; are the

complex roots of the characteristic equation associated with differential equation (43).
This concludes the proof. O

(46)

The following theorem provides a formula for the marginal density that captures the Gaussian kernel
whose variance is the conditional variance of the continuously compounded return Rf in the multi-Heston
model (see formula (81)). This Gaussian kernel is therefore the most relevant one hidden in the multi-factor
Heston model.

The statement of this theorem differs from the statement in the associated paper since here we also
provide the expansion in the third order of the Gaussian kernel (see formula (53)).

Theorem 2.2 The marginal probability density of the log-price variable conditioned to v, = v is given by

M(;U, Q, t, :C/’ t/) — 2i oo elk I:(z/*x)iftt, T(S)ds“l’%FQ (trt/)] 7%F2(tatl)k2 62?:1 ftt/ E('l)j,s ‘ff)H] (k,s,t/)dsdk
™ —0oQ
+o0o
= Gry (2’ —x —y,t,¢) L3 (y, t,t)dy, (47)
—00 -
where L7 is the function
E:(y, ¢ t/) _ 2i /OO ezkyez:?:1 ftt/ E(vj,s |]-'t)H]-(k,s,t’)dsdk ) (48)

Here I's is defined by

Doft,t) = To(t,) = 281(t,¢) +285(t, )
n t ) , 2
= > [ Bl F) (0= (L (1m0 ) <) | ds (49)
. t 2XJ
7=1

and S1 and Se are given by

1=y [* :
Sit) =33 B /t By F) (1 00 d, (50)
J

J=1



n 2 +/ , 2
Salt,t) =3 2L / B(oje| F) (1 e 0) ds (51)
= X Jt
while Hj is given by:

1 Y , 177 i\ 2
Hj(k,t,t) = i 2B} (ks t, ') + 1k By, t.t) + 5 (K — ak) [—W(l — ety Zlg (1 — et —t)> ] .
Xj X

Furthermore, the following expansion holds:

Lyt t) =

i > zkyesl(tt V(2 k340 k)4+-Sa (t,t") (k*—2uk3 —1k)+Sac (t,t)) (k*—1 k3) —1k (k2 —1k)2 Sz (t,t") —1 k(k* —2 k) Saq(t,t )+o(||'yH3)dk
27

o]l — 0. (53)

S1 and Sy are given in Egs. (50) and (51), while Sa., S3. and Ssq are

. 7 P Cloow
Sae(t,t') = QJXJ / E(vs | F)e =) / (w7 —1) dras (54)
J s

! _ , , . /
Sse(t, 1) Z / (vjs | Fr) { 2(s,t) + QL v s) (e—%(t —5) _9e X3t —t)) + 27¢J(8’t ) } ds,
j=1 J

Xj

and

n

’YJ p] ¢j<3’t/) o (t, — 8) —x;(t'—s) _ (t/ — 8)2 —x;(t'—s)
Sgd t t Z 2X] / UJS ’./rt) I: Xi X e 5 e ™ s (56)

where 1; is given by
(1 . e_Xj(tl_t))

, <t 57)
Xj (

V; (t, t/) =
We remark that the functions £, in (20) and £ in (53) satisfy the following equation:

£, = o (=St -51) Ez (58)

where /31 and Ei‘/ are the Fourier transforms of the functions £, and L7 with respect to the log-price,
respectively. a B

Proof of Theorem 2.2 We start by proving Eqs. (47) and (53). Eqs. (47) and (52) follow from Eq. (15)
by adding and subtracting the quantity (k2 — zk) (—=S1(t,t") + Sa(t,t')), where S and Sy are given in Egs.
(50) and (51), and applying the convolution theorem for the inverse Fourier transform to the inverse Fourier
product of the Fourier transform of Gr, and L.

We now prove the expansion of L7, in Eq. (53). To this end, we prove the following expansion for B,

(16):
Bj(k,t,t') = Bjo(k, t,t') +v;Bja(k,t,t') + O(v7), v; — 0F, t < ¢, (59)

8



Substituting Eq. (59) in (26) and equating the coefficients of the same powers of y;, we see that the zero and

first-order term Bjo and Bj1 solve the following equations:

dBjO ’ ’ k‘Q 1k

Dk t, 1) — xj Bjo(k, t,t) = = + —

dt (77 ) Xi J,O( s by ) 92 + 9
dB;,

dt (katat/) —Xj Bj,l(k7t7t,) = ka] Bj,O(k7t7t/)7

with final conditions

szo(k’t,’ t/) = 07 Bl,l(k,t, t/) == 0-
The solution Bjo reads

(2 — oy L=

Bjo(k,t,t") = "
J

(k* — k) ¥;(t,t),

N | —
(NN

where 1; is given in (86), while Bj is

vk pj

Bjyl(k’tvt/) = 2Y i
J

(k* — k) f(t, 1),
where f; is
t/
fit, ) = (%(t’ —t)— (¢ — t)e_xf(t,_t)) = e_Xj(t,_t)/ (=) _1)ds t <t
t

Using Eq. (59) in Eq. (52), we have

2 2
i k*—k
Hj(k,s,t/) = ?'] <Bg(l€,$,t/) —+ ww;(s,tq)
k+1
+1kp;v; (Bj,o(knsat’) +7;Bja(k,s,t') + ( 5 )%Z)j(S’t')) +o(vi), v = 0%,

which also reads as follows:

2 [ 2(s. ¢ 2_
Hj(k,s,t') = %] (wj(jt)(kQ —1k)® + sz?(s,t’)>
sy (50 o+ P2 s,k )+ D 6,0)) 4 otr2) 2y 0
J

Using expansion (67) in (20) and (47), we obtain

+ / ! / /
M(z,v,t,2/,t') = 2i / e st g gk
™

% Fourier tran form Gausstan kernel
2 20,4 2 2

t/ 75 5 (s,t") 5§

Z?zl I, E(vjs|Ft) [zj(k4—2zk3—zk)3+2]xjj

e

(st =) £ () + P52 (kP k) (s, )o(77) | ds
dk.

function Ly, i.e. Fourier transformof Ly

(66)

(67)



Now we compute the third-order term in the expansion in wvolatilities of volatilities. To this end, we
compute the third-order derivative of the function H; in Eq. (52) with respect to ;. We drop the argument
of the functions to simplify the demonstration.

OH; 2 20B; 0B 1., V2
oy Vi Bj +7; T%Bj +1kp;iBj + kajVjTW + 5 (7 = k) (=pjihj + 5 47),
(69)
O°H; =B +4 aBJB + 5 20°B; !B +~7 9B; 2+2zk -%—Hk ; ~%+1(k2—zk)¢2
8’yj %a 5 Oy 2 3T 0 Pj R P 87]2 1 ,
(70)
&H; 0B, OB;\? &’B ,0>B; OB; 0B, & B; O B;
] =6—LB;j+6v; [ -2 6y JB —L 4 3k k 2Z 2B
oy T ’(6%) o2 'Va 9 pra?“””fai%*%ai% /
(71)
We now compute all the derivatives at v; = 0, which are
OH,;
8—7? =1kpjB; — = (k k)pivj, (72)
i
0%*H, 5 B, 1
= B? + 2kp;—2 + ~ (k* — 1k)y)?
072 J+ija,yj+4( k),
(73)
and
O3H, 0B; 0°B;
=6—-—DBj + 3kp . 74
578 = O, Bt ke (74)

The function B; evaluated at v; = 0 and its first-order derivative with respect to v; are given by the terms of
the expansion in powers of v; as v; — 07, that is, Bjo (see Eq. (63)) and Bj1 (see Eq. (64)), respectively.
Now we compute the second-order derivatives. The second-order derivative at v; = 0, which we denote as

B”, 1s the solution to the following initial value problem:

d
%B;’ = xsB"+ BZ+ 2ukp;Bj1, (75)
with final condition

B (k,t',t") = 0.

To solve Eq. (75), it is sufficient to solve

d [ (k2 — ik)? PP o
il xj@=t) gy =\ TP 20 X () o PD 22 X (=) oy
> (e ) B]> T Ve R — k) [ (t t)} . (76)
Integrating Eq. (76) with the final condition, we obtain
k2 — k)2 |3 (L) (' —t)e =t 2
B!(k,t,t) = ( J +2 — =it
7 1 X; X X3 &%)
2 . _ 2
O~y [% ) _E=t) - T8 e’“(t/t)] : (77)
X; X; X; 2

10



From Egqs. (74) and (77), we have

no 3 st 93
gl OPH
S5 G| Fvieds=
j=1 t 7 ;=0
no 3, ot ’_ —2x;(t'=s) _ o,—x;(t'—s) ) /
VP 1 1(t'—s)(e ™™ 2e70 079 (s,t)
— 1 k(K% — ik)? 3/ Ei(vig) | =12(s,t) + = + ds
( );Xj ¢ t(J’)ISJ( )t X 4x;
7j=1
vk tydpd ot Vils, ) (=) _ (t' — s)2 ,
— (K — k3 J ]/ Ei(vj s { A e Xa(t'=s) _ e Xt s)] ds 78
5 ( );Xj t t(vj,5) N " 5 (78)

This concludes the proof. [

The following result, partially illustrated in the paper, is proved in more detail.

Proposition 2.3 Lett <t and Xy, Yy, Rf be the processes in (11), (12), and (13). We have the following
expression for the conditional moment of Xy and Yy :

E(X2|F) =To(t,T), E(X}|F)=681(t,t), EYZ|F)=8S(tt), EXpYy|F)=25I(t1),
(79)

E(X2Yy | Fy) = 4Sac(t,t') + 8Sa(t, '), E(XpY7Z|Fi) = 8Ss.(t,t), (80)

where Ty, S1, Sa, Sac, Ssc are given in (6), (50), (51), (54) and (55), respectively. Finally, in the multi-
factor Heston model (1), the conditional variance of the continuously compounded return Ril and the price

skewness formula as defined in Das and Sundaram (1999) are
var(R} | ) = B ((RY — B(R}))?| i) = Ta(t,t) (1)

and

B(Xp|F) . Sitt)
[E(x2| 7)) Toltt)3?

where 'y is given in (49). The third conditional moments of the process Yy constitute a homogenous fourth-

Skewnesspgs = (82)

degree polynomial in the vols of vols:
n t/ tl
E(Y}|F)=3> / Ey(vjs)1hi(s,t') / Wi (1, ") 2e X dr ds . (83)
j=1 t s

Proof of Proposition 2.3 This proof generalizes the results of Zhang et al. (2017) to the multi-factor
Heston model (1) following the approach therein. Let Xy, Yy, and RI’E/ be the processes defined in (11), (12),
and (13). We start by proving Eq. (13), that is,

/ / 1
Rl — E(RY) = Xy — 3V (84)

Here, Ei(-) = E(-| Ft) to keep the notation simple. Bearing in mind that Eq. (1) implies

d(eXiT Dy, ) = va;e*Xj(T*t) + ’yjefxf(Tft)\/vjﬁde,T, t<t,j=1,2,...,n,

11



we integrate over the interval [t,s], t < s, thereby obtaining

S

S
Vjs = 0] + (v — v})e T 4y /t e XU JoimdWi = By(v)s) + 7 /t e S dW 7

which implies
n

Z [ — Ei(vjs) Z i / e~ Xi(s—T) ViAW) 7 .

J=1

Hence, we can rewrite the process Yy as follows:

n t s n
Yu=> 1 / / e AW pds =) / VAW, / e Xl T)ds—Z'yj wj 7, )05 AW 1,
j=1 “Jt 7 j=1

(85)
where 1; is given by
1 — e~ Xi('—1)
T P Gl s R (86)
X
The variance of the continuously compounded return Rl is
¢/ 1) 1 ? 2 1 2

B (R~ Bi(B)) ) =B | (X0 - Ve ) | = Bu(XE) - Bu(XeYe) + BV, (87)

Thus, the proof of Eq. (81) follows from Eq. (79).

We now derive explicit expressions for the conditional moments in Eq. (79). A key ingredient is that all

correlations between the Wiener processes in (1) are zero except for E(dZjy, dWjy) = pjdt, 5 =1,2,...,n.
We start with Et(Xf,). Bearing in mind dX, = 2?21 VUjrdZ; -, the correlations between the Wiener
processes Zjr, j =1,2,...,n, and It6’s lemma, we obtain

dE;(X?) = ZEt (vj7)d
which implies
n t
-y / Ey(v;.)dr = To(t, ). (88)
j=171

Now we derive Ey(XyYy) and Ey(Y}?). To this end, we use the shadow process, Y introduced by Zhang et
al. (2017), which is defined as

n s
Vi =3 [ e t) s, (s9)
j=1 7t
which is an Ité’s process (martingale) such that Y, = Yy.
Since we have Yy = Y and dY) = Y71, vjbi(s,t')/0;5dWj s applying It6’s lemma and bearing in mind
the correlation structure, we obtain
tl
E(XpYy) = E(XuY))=E, / (Y dX, + X,dY* + dX,dY)
t

t/
_ g / AX, Y = me s ) B = 251 (1., (90)
t
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2 x2 t *2 v * * *\2
E/(Y?) = E (Yt, ) :Et/t d(YT ):Et/t (2YTdYT +(dY?) )
t/
_ g / Zyj (5, )2 Eu(0s,0)ds = 8Sa(t, ). (91)

Now we prove the relationships of Sa. and the processes (11) and (12) in Eq (80). It is easy to see that Sa.
can be rewritten as

1 — e~ X ('=7)
Soc(t, t') Z%p]/ Ev]s|.7-"t/ e X (T 8)( N )drds. (92)
J

Due to the assumption about correlations in (1) and the definitions of the processes Xy, Yy, and Y;; given
in (11), (12), and (89), we have

t/
Ey(X2Yy) = E((X2Y)) = E; / [2X, Y} dX, + X2dY} + Y} (dX,)? + 2X,dX, dY}],
t

t/
Xt,Y}/ Z/ Ey(Yvj, dT—i—QZ'y]p] ¢J 7, ") By (X7, )dT,
where 1; is given in (86) and Ey(-) = E(-| F¢). To complete the proof, we compute E, (Y v;s) and Ey(Xvjs),

s >t > 0, following Zhang et al. (2017) Proposition 2. Bearing in mind again the assumption about the
correlations in (1), we have

Ey (Y5 vj,5) = Ex / d(Y7vjr) = E / (vjrdY7 + Y dvjr + dY dvjr) =
t t
E, </ (Y*X]( —vj, T)) dT—l—/ 7]2¢j(7, t/)vj,.rdr> =
t t
_Xj/ Et(YT*Uj,T)dT + ")/J2/ ¢j(T,tl)Et(vj77—>dT. (93)
t t

We solve the ordinary differential equation (93) and obtain

t/

t T
Ey (Y vjr)dr = 7]2/ / e_Xj(T_S)LZJj(s, t")E(vjs)dsdr =
t ¢ Ji

tl /

t/
'yjz E(vj5)0i(s,t) [/ €Xj(TS)dT] ds = 7]2/ Et(vj’s)wj(s,t’)st. (94)
t S t

Differentiating, we have
S
BV i) = [ €00y () Brlug (95)
¢

Now we compute Ey(Xsv;,). Using Ité’s lemma and the martingale property of X, we have

S S

Ei(Xvjs) = Et/ d(X7vj.) = Et/ (v d X + X;dvj - + dXdvj ;]
t t

= Et/ [XTX]( — v )dT + pjvivj - dT] = —XjEt(XTUjﬂ—)dT—pj’yj/ Eyi(vj-)dr . (96)
t t

13



We solve the ordinary differential equation (96) and obtain
S S u S
| By dr =pp; [ e [ Bdrdu=pp; [ wirs) Bl o)
t t t t
Deriving Eq. (97) with respect to time, we obtain
S
Bi(Xavja) =y [ €790 Euluy ). (98)
t

Using Eq. (94) and the following:

t/ t

t/
(T, t')Et(Xij,T)dT = pj"yj/ / e*Xj(T*S)Et(vjﬁ)dsdT = P
t t Jt t

t/
Ei(vg.0)5(s.t) [ / exf‘”)dT] ds

t/ t/
= P Ei(vjs) [/ 67Xj(T78)”(/Jj(T, t’)dr] ds, (99)
t s
we show that Ey(X2Yy) = 4S2.(t, ') + 8Sa(t, /).
We now compute Et(Xt/Yt?) using the assumption about the correlations. We have

t/

tl
Ei(XpY?) = Ey(Xp (Yi?) = By / d(X,Y?) = E; / (V%X + 2X, Y dY] + 2V dX,dY) + Xs(dY])?]
t t

—Z

Substituting Eqs. (95) and (99) into Eq. (100), we obtain

tl

Qpﬂ/] w](s tE (Y vjs)ds + ’yj @bj(t, S)ZEt(XsUjjs)dS] ) (100)

Ey(XpY?) ZZp]’yj 1/)] s t)/ _XJ(S_TWJ]-(T, t"Ey(vj . )dr ds

-l-ZV?pj / P;(t, s)? / e X By (v; ., )dr ds . (101)
=1 t t

The thesis follows by computing the elementary integrals appearing in Eq. (101).
Now we derive is (82). To this end, we need to compute Ey(X}). Arguing as in the proof of Proposition
2 in Zhang et al. (2017), we have

tl /
Ei(X3) :Et/t de:Et/t [3X2dX, + 3X,(dX,)? _32/ Ey(Xsvjs)ds. (102)

Hence we have
t/
= 32/ Ey(Xvjs)ds = Sij'y] Vi(s,t")E(vjs)ds = 651(t, 1)
J=1
Finally, we compute Et(Y;’) Using Ito’s lemma and the martingale property of Y, we have

t! t!
E/(Y3) = BV :Et/t d(vy)? :Et/t [3v:" vy +3v7 (av; )] —32%/ (5, 1) By (Y050 )ds.
7j=1
(103)
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Substituting Eq. (95) into Eq. (103) we have
Ey(Y3) = = 327] zpj s, 1) / e X (7, 4 By (v, )dr ds. (104)

This concludes the proof. [

Corollary 2.4 The following expansion of the conditional marginal M in (15) in powers of v as ||y|| — 0
holds:

M(l‘,g,t,l’l,t/) = gfz ('17/ - T, tat,) + Ml(xvya taxlvt/) + MQ(.I,Q,t,l',,t/) + MS(l'aQat?x,a t,)

+o(lxI?), Il =0, (105)
where Gr, is the Gaussian kernel defined in (5).
M is given by
Gr dgr
Mi(z,v,t,2',¥') = S (t,t) [_ dm/; (2" — 2, t, ') + ﬁ(gj —x,t,t )}
(106)
My is given by
d* d? d
Mg(a;,y,t,a:’,t') = SQ(t7tl) [ dxg/I;Q( - 7t7t/) +2 dg}; ( - ,t,t/) - dg;/2 (x/ - x,t,t')} +
d*G d3G
Soc(t,t") [ dac/l} (2 —x,t,t') + dx’? (2 — x,t, t’)}
1, d5Gr d*Gr d*Gr
+§S1 (t, 1) [ dx,; (2 — 2, t,t) -2 dx,j (' — 2, t, 1) + dx,; (2 —z, t, )],
(107)
and M3 is given by
d? d* d® d* d®
Mg(x7y7 t? xlvt,) = S3c |:_d,3gF2 - ngr‘g - MgF2:| + S3d |: d /4gF2 dx/S gF2:|
1 d9 d7 d d3
d7 d® d4 d?
+5152 [—dxﬂg d ,6QF2 77 —=0r, + d —9r, — Mgr ]
d’ d’ d® d*
+5152¢ [—dxﬂgr T —59r, + = —=0r, + dx’4gr2] (108)

In Eq. (108) we have dropped the arguments on the right side to keep the notation simple. Here, Sy is given
by (50) and Ty, S2, Sac, Ssc, and Ssq are giwven in (49), (51), (54), (55), and (56), respectively.

Proof of Corollary 2.4 The proof is based on the expansion in powers of vols of vols of the function L.
From Theorem 2.2 and the expansion in formula (53), we have

1
M(z,v,t,2' t') = /
27

—00

S1(t,t") (2 k32 k) +S2 (t,8) (% =20k —1k)+S2c (t.8) (B =0 k3) — S5 (£, )k (k2 —1k) 2 — Saq(t,t' Jok(k*—1 k) +o(|| /|3 )d/.g, (109)

Feo o [x —) ft (s)ds+1Ta(t,t/ )] 10o(t,t)k? y

(&
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where S1 is a linearly homogeneous function of the vols of vols, while Sy and Ss. are second-degree homoge-
neous functions and Ss. and Ssq are third-degree homogeneous functions. We compute the first four terms of
the expansion in powers of the vols of vols of the function bearing in mind that the mized partial derivative
of the functions S1, S2, Soc, S3c, and S3q as a functions of v are equal to zero. We therefore have

5(,}/ k.t 25/) — 651(t,t/)(zk3+zk)+Sg(t,t/)(k472zk371k)+Szc(t,t/)(k47zk3)+53c(zk372k47@k5)+s3d(7k471k5)' (110)

We derive the third-order expansion by using e* =14z + %x2 + %x?’ +o(z3), where x is the argument of the
function € in Eq. (110) and we drop all the terms that go to zero faster than the third power. Thus we have

E(y) =
1+ [Si( ; (k> + 0 k) + So(t, ') (k* — 20k® — ak) + Sac(t, ') (k* — 1 k%) + Ssc(0k® — 2k* — k) + Saq(—k* — 1k°)]
+% [Sy(t, ) (1P + 1) + Sot, ') (k* — 20k — 1k) + Sac(t, ) (k* — 15?) + Sse(0k® — 2k — k) + Ssa(—k* — k7))
+é [Sy(t, ) (1P + 1) + So(t, ') (k* — 20k — 1) + Sac(t, ) (K — 15?) + Sse(1k® — 2k — k) + Sag(—k* — k)]
+o ( [S1(t, )0k + 1 k) + Sa(t, ') (k* — 20k® — k) + Soc(t, ') (k* — 1k%) + Ssc(0k® — 2k* — k) + Szq(—k* — zk5)]3> ,

7]l = 0. (111)

Now selecting only the terms with monomials of degree smaller than or equal to 3, we have

E(v) =1+ [sl(t, (k> k) + So(t, ') (k* — 20k® — 1k) + Soc(t, t')(K* — 1 k) + %sl (t, ") (1 k> + zk)2]

v
contribution up to second order

1
483 (0 k3 — 2kt — kD) + Szq(—k* — kD) + &5 (t, ") (k> + k)3

thirdfordervcontribution
+81(t, ) Sa(t, t") (0 k> + 2 k) (E — 20k3 — 1k) + S1(t, ') Sac(t, t') (1 k> + k) (K* — 1 E3) . (112)

~
third—order contribution

We now order the powers of k, separating the first-, second- and third-order contributions. Bearing in mind

that we hCLU(Z
( k)mtil ydk — 5( ) - O7 17 2’ ey

and that from the convolution theorem we have

+oo

M(z,v,t, 2 t') ~ / Gr,(z' — 2 —y,t,t)

—00

o€ T YE) (ks t,)dk | dy, (113)
- ol
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we compute

1[re k d*5(y) | dé(y)
- vky g1 nl_
o [ et o)+ i) |08+ 2
d*o(y)  d*o(y)  dé(y) d45(y)  d35(y)
/ . /
—i—Sz(t,t)[ TR i }—FSgc(t,t)[ i ]
1 no [ d%(y) | d*0(y) dY(y)
- _ —9
+251(t,t) e + a2 iy
d3s d*s d°5 d*s d®5
L8y |- 0w doy) o) g [ ) do(y)
dy3 dy?t dy® dy* dyp
1 na [ d%(y) L d78(y) L dP0(y) | d3(y)
TSt | m e Y3 T T3 s T
d's(y) . d%(y)  dP0(y) | d%(y) d*3(y)
/ N _ B
+S1(t,t)52(t,t)[ a2 S s S ]
d's(y)  d%(y)  d°8(y) , d*(y)
t,t)Soc(t, t) | — — . 114
+S51(t, ) S2(t, )[ a7 4y + 0 + ' ] (114)

Using Eq. (114) in (113), the Dirac delta function property:

+o00 dms dm
Gr, (2 —x —y,t,t) 7S%y)aly = (=)™ ——0Gr, (2 —x—y,t,t) , (115)
and the fact that
am am
= (—1)" = _ 116
dy™ gr, = (-1) dz™ Oy, (116)

we have
M(LE,Q7 t) .’E/, t/) ~ grg (ﬂj‘/ — T, t7 t/) + Ml(xu v, t) lj) t,) + M2($727 t7 .’E/, t/) + M3(l’7£) tu xlv t/)v (117)
where My, Ma, and M3 are given in (106), (107), and (108), respectively. This concludes the proof. [

We denote the approximations of the marginal density up to the third order as

)
)+ Mi(z,v, t, 2" 1),

) —I— Ml(x7y’ t? '1‘/7 t/) + MQ(x7 Q? t? xl? tl)?

)

Proposition 2.5 below shows that the zero-, second-order, and third-order approximations of the marginal
density in Eqgs. (118) satisfy the conditions that guarantee mass conservation, the martingale property (i.e.,
the asset price should be a martingale in the multi-factor Heston model), and the so-called “symmetry

condition’.” These conditions avoid norm-defecting and martingale-defecting pdfs as discussed in Lewis
(2000) Chapter 2.

Proposition 2.5 Let My, My, Ms, and Ms be given in (118). The following equations then hold:
—+00
My(z,v,t, 2’ t)d’ = 1,1=0,1,2,3, (119)

—00
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+o0
/ e’ My(z, v, t, o', t)dx’ = e eft r@s)ds 1 =0,1,2,3, (120)

—0oQ
and
“+o00 t/ 1
/ (ac' —x— / r(s)ds + 2I‘2(t,t')> M(z,v,t,2' t")d2’ =0, 1=0,1,2,3, (121)
t

—0o0

that is, mass conservation (119), the martingale property (120), and the symmetry condition (121). These
properties also hold for the marginal density M in (15).

Proof of Proposition 2.5 We prove Eq. (119) for the marginal probability density M in Eq. (15). In-
tegrating Eq. (15) with respect to x’, changing the integration order, and bearing in mind that 6(k) =
(1/27) [ e dy, we have

+o0
M(x,v,t, 2’ t")dx' =
—00
2
/ n ot . 75 g2 ’ .
i +Oo€zk[— I r(S)ds+%Fo(t,t')]—%Fo(t,t’)kﬁez]:l Ji E(”Jysu'—f)[ 5 Bj (ks )+ukpjv; B (kost! ] /+°O k(@' ) !
27 — 00 o0
, 2

+o0 t/ 1 ’ 1 ’ ZT‘L: ft E('U',s ‘-Ft) LBz(kJ7S,t')+zkp"y kSt ):l ds
:/ 5(k)€zk[—ft r(s)ds+5To(t,t )]—QFo(t,t e 27 i1 dk=1. (122)

—0o0

To prove the martingale property, we use the following result regarding the Dirac delta function with a

complex argument:

I(k) = — / T ) gy — (ke — ). (123)

27 J_

We have

too
/ e M(x,v,t, o't )dz’ =

—0o0

eik(x’—r)—i-:r;’dx/dk

2
/ vE
L (720 k[ g r(s)ds+ §To ()] — ATo(t,t/)h2 Sia Jf E(vj,slft){2]B?(k’sft')ﬂkPmBj(kvs,t’)]ds +oo
2 e t 2 ’ 2 ’ e
7T

—0o0 —0o0

I(k)dk.  (124)

2
/ v
+oo ot 1 n_1 1.2 Z?:lftt E(vj,s|]:t)[27sz(k,s,t’)Jrzkpj'ijj(k,s,t/)]ds
:e””/ 5(k)ezk[ J! r(s)ds+3To(tt)| ~ 4o (t)k .

— 00

Formula (120) follows from Eq. (123) and the fact that the exponent in (127) reduces to ft s)ds when
k =1 since Bj(s,s,t') = 0, Vs < t'. Alternatively, the mass conservation and martingale property can be

proved using the fact that L. satisfies the following equations:

/ 2
+o0 +oo 0, ) E(vj,slft){wgBf-(k,sat’)ﬂkﬂj’Yij(kvsvt’)]ds 1 [t
/ dyL(y,t,t") :/ e o / e Ydy dk;, (125)
gl T ) oo

—0o0 —00

(k)

/ 2
~+o00 oo 30, ftt E(vj,s | Ft) |:W2]B]2»(k,s,t’)+z kpjv;B; (k,s,t’):| ds 1 “+oo .
/ dye¥ L (y,t,t") :/ e 2/ eV dy dk, (126)
A 7)o

—0o0 —0o0

d(k—1)
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since Bj(k,t,t') =0 at k=0 and k =1 for any t < t'. In fact, Eq. (126) holds since Bj(k,t,t") = 0 when
k=n1,j=1,2,...,n, as already stressed by Lewis (2000) Ch. 2, where conditions to avoid norm-defecting
and martingale-defecting pdfs are discussed.

Now we prove (121) for M, bearing in mind that

I

or ) o ye™dy = —8' (k),

where §' (k) denotes the derivative of the Dirac delta function with respect to k. We have

“+o00 t/ 1
/ <x' —x— / r(s)ds — 2F0(t,t’)> M(z,v,t, 2’ t")dx' =
t

—o0
, 2
1 +o00 1L o Z?:1 ftt E(vj,s | Ft) %B;(k,s,t/)—mkpj'ijj(k,s,t’) ds
. e 2 O(tzt )k e X
2 J_
+00 ot 1 / t 1
/ elk[(x o= J{ r(s)ds+3To(tt)] (x’ —x —/ r(s)ds — 2Fo(t,t/)> da'dk,
oo t

2
/ vE
/+oo IETS S E(vj,s|ft){29Bj?(k,s,t’)ﬂkmej(k,s,t')]ds /+oo
= e 2 ’ (&

yedydk =0,  (127)
—0o0 —oQ

since the derivative of the exponent with respect to k is zero because B;(0,s,t") =0, s < t'. The proof of Eqs.

(119)-(121) for My, My, and Ms can through a similar argument, bearing in mind the Fourier transform of

the Gaussian kernel and its derivatives, i.e., using Egs. (118), (106), (107), (108), (115), and (116). This

concludes the proof. [
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3 Proofs of the results in Section 3

In this section we derive explicit formulas for European vanilla call and put options by using the third-
order approximation, M3, for the multi-factor Heston conditional marginal probability density, M. In the
following, we use Cprpr(So, T, E) and Pyrr(So, T, E) to denote the price of European vanilla call and put
options, respectively, in the multi-factor Heston model, with spot price Sy, maturity 7', strike price E, and
discount factor B(T'), which is given by

B(T) = 6_ fOT T(s)ds' (128)
Specifically, Cprpr and Pypr read as
+oo
Cyu(So,T,E) = B(T)/ (e* — E)M ((log So,vy,0,2', T)dx", (129)
log E
and
log E ,
Py (So, T, E) = B(T)/ (E — e* )M (log So, vy, 0, 2", T')dz" (130)

where v, is the vector of the variances at time ¢ = 0. Furthermore, we use Cpg <SO,T, E, ﬁ) and

Pps (So, T FE, \/§> to denote the classical Black-Scholes formulas for call and put vanilla options, where
' =T(0,T) > 0 is the integrated variance over the time interval [0, 7], that is,

r — [T r(s)ds
CBS So, T, E, T = SQN(d]_ (F)) — Fe Jo N(dQ(F)), (131)
and
r — [T r(s)ds
PBS SO7T5 E) T = _SON(_dl(F)) + Ee o N(_dQ(F))7 (132)
where N (z) ia given by
Nz) = —— / e V' 2y, (133)
21 J -0

and dp (I") and dz(T") are given by

(134)

d>() = dy (1) — VT = 5 (135)

Proposition 3.1 Let C(Sy, T, E), P(So, T, E) be the prices of European call and put options with spot price
So, maturity T, strike price E, and discount factor B(T') as given in Eqs. (129)-(130). We have

T
C(S(),T, E) = Cgg (So,T, E, T2> —I-Rl(S[),T, E) + RQ(SO,T, E) +R3(50,T, E)

+o (I[71%), vl — 0, (136)
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and

r
P(S0, T, E) = Pps (SO7T7 E, \/E) +R1(So, T, E) + Ra2(S0,T,E) + R3(5,T, E)
+o (Il*) » Iyl = 0. (137)

Here, I'5(0,T) is given by (49), Cps and Pps denote the classical Black-Scholes formulas as in (131) and
(132), and R1, Rz, and R3 are the corrections to the standard Black-Scholes formula due to the contribution
of the first-, second-, and third-order correction terms of the expansion in powers of wvols of vols of the
marginal density function:

B $1(0,7) E 3
R (80,7, B) = BT) B 0T <+ log <SoefoTT(S)dS> + 2F2(0,T)> Gr, (log(E/So),0,T), (138)

d*Gr,  dGr,
dz'? da!

RQ(S(), T, E) = SQ(O, T)B(T)E |: - gr2:| (10g(E/S0), O, T)

d*Gr,
d:U’2

4 3 o
"‘%S%(O,T)B(T)E {d gr, d°6Gr, d°0r, N dGr,

+852:(0,T)B(T)E (log(E/Sp),0,T)

dx'* dx'3 dx'? dx’ } (log(E/50), 0, ),

(139)
and

d3 gFQ d2 gFQ

dx” dz”

Ra(S0.T. ) = B(T)E S3.(0,T) [— ] (log(E/S0), 0,7)

B B80.7) 8 Gog(/50),0.7) + BB 510, 7)82.00,7) [~ £ 4 L] og/50,0.1
+éB(T)E $3(0,7) [— d;j? + d;f,? + 2‘1?522 - 2{25}} - d;f};? + djiﬂ (log(E/So),0,T)

+B(T)E $,(0,T)S(0, T) [— d;f}k - d;f,? + 2d;f,§2 + d;f};? - ddg;,?] (log(E/Sy),0,T)

BB S10.7)52:00.1) [~ 5552 1 T (g /50).0.7), (110

where S1, Sa, Soc, Ssc, and Ssq are given in (50), (51) (54), (55), and (56), respectively. The notation
[](,+ ) in Eq. (139) and Eq. (140) means that the function in the square brackets is evaluated at the
argument (-, -,-).

Note that for v = 0, Gr, coincides with Gr,, the correction terms R, R2, and R3 become zero, and the
option prices become the classical Black and Scholes price for options with time-dependent but deterministic
volatilities. Dropping the arguments of 'y, S1, So, and Sa., Egs. (138), (139) also reads as

_ Vega(I'z) 3
R1(So0, T, E) = 7@1“;’/2 S1 <mE + 2F2> , (141)
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Vega(T + 502)? Vega(T + 3T2)? 1
Ro(So, T, E) = +Soe 6961(3/22) (mp ! sl2)” 1] L5 ega(3/22) (mg ! al2)” (me+ 2T) = 1T
VTT, 2 VTT, 2
Sz Vega(l's) | (mp + 5T2)* L (met 3[2)°  (mg + 30a)? <1 + 6>
\/T 3/2 F% F% Ty I'y
1 Vega(Fg) 1 3 3
S L~ =2 “To) (1 1 142
+3 V" —(mp + 5s) 5, ) T U (142)
where mp is the log-moneyness associated with the forward price defined as
E
=log| ——— |, 143
E g <Soef0T r(s)ds) ( )

and the Black-Scholes Vega is Vega(T's) = VT Ee~ Iy ()48 N(dy(T')) with dy(T'9) = — (mg + iT) /VTa.

Proof of Proposition 3.1 The price of a European vanilla call option with maturity T', spot price Sy, and
strike price E discounted by a deterministic factor B(T) is given in Eq. (129). Thus, using formula (105)
for M in (129), we have

+o0
C(Sy, T,E) = B(T)/ (e* — E)Gr, (2" —log Sp,0,T)dx’
log E
B 0.7) [ (e - B |- E9e 4] s 0Ty
( ) 1( J ) logE(e - ) - dx/3 dx/ (a”. - Og 0, Y, ) €
oo d*Gr d3Gr,  dGr
B(T T T - F 242 2 _ 2 -1 T)dx'
Ds:00.7) [ -y |Gl 27T - | 0 0w 0.7
+o00 o d4gF d3gr
B(T)S2.(0,T) /lOgE(e —E) [ dx’42 dw/;] (2’ —log Sp, 0, T)dx’
1 2 oo x d6gF2 d4gF2 d2gr2 /
+B(T)§5’1(O,T) /ng(e —F) [ 7, -2 e + 00 (2" —log Sp,0,T)dx
+oo o d3 d4 d5
B(T)85:(0,T) /ng(e - E) [ . ——39r, — 2WQF2 - Mgrg] (z' —log So, 0, T)dx'

e z’ d* d° / /
B(T')S54(0,T) logE(e —FE) |- o ——39r, — T —50r, | (2" —1log So,0,T)dx
1 3 +o0 " d9 d7
+6B(T)51(O,T) 10gE(e —E) _d /ggFQ +3 7QF2 — d /5gr2 dr /Sgrz (3? —IOgS(),O T)d
BIS10,0)50,7) [ — ) [--L o & & & & ' —log So, 0, T)dz'
( ) 1(07 ) 2(07 ) logE(e - ) dx /7gF2 d /6gF2 dx ,5gF2+3WgF2 _Wgrz (.Z' — log 50, 0, ) €L
+oo o d d4 , ,
B(T)S51(0,T)52.(0,T) lOgE(e —F) —dx,7gr2 T ,Ggrg iz ,5gr2 dx,4gr2 (z" —log Sp,0,T)dx

(144)

As mentioned above, the notation [-](-,-, -) means that the function in the square parentheses is evaluated
at (+,-, ). The put option price formula can be obtained from formula (144) by replacing fljgo%(ex, —F)

with fiofoE(E — el’/). Hence, the key ingredient to evaluate option prices is the computation of the integrals

“+o00 /dm
Ig;:/ e* d%} m=1,2,..., (145)
log E
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and

log E dmG
P o T
Im:/oo e dm’m2dx/’ m=1,2,.... (146)
From Eqs. (145) and (146) we have
, dmfl
1= T00 e (147)
dx z'=log £
m—1
L (148)
dx z'=log
so by recursion we have
- j x’dm_jgr m e m
5= (-1)e e F(=1)™IE = I + (~1)™ I, (149)
j=1 z'=log &
- j dm_ng m m
h=-Y (-1)e W + (=)™} = ~ Iy + (-1 IT, (150)
j=1 r’'=log &
where I, is given in (151), while IS and IF are
“ g d™I
In = (—1Y e ——2=Gr, (log E — log 50,0,T) (151)
j=1
too T
I§ = / ¥ Gr, (2’ — log Sy, 0, T)dx' = Spelo "N (dy(Ta)) = SoB(T) "IN (di(T2)) ,  (152)
log £
log E , T
jr / ¢ G, (2" — log S, 0, T)da’ = Seedt "N (—dy (T)) = SoB(T)"LN (—di(Ts)) , (153)
with .
log(So/E) + [y 7(s)ds + 3T
di(T'2) = .
VI
Furthermore, we have
+oo
/ Gr, (2" —log Sp,0,T)dx’ = N (d2(T2)) , (154)
log E
log E
/ Gr, (2' — log So,0, T)da’ = N (~da(Ts)) , (155)

(156)

where

dy(Ty) = [OBSV/E) + j(i:;(s)ds iy
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Integrating by parts yields

+oo
C (S0, T,E) = B(T)/ (e” — E)Gr, (2" —1og Sy, 0, T)dz’
log &
e z’ d2gf2 / /
+B(T)51(O,T)/ e 5 — 0r,| (2" —log So,0,T)dx
log E dx

+oo , dS gr d2 gr
_ T T 2 2 2
ey e

+o00 o d3gF2 d2gF2
—B(T)S2c(07T) /logE ‘ |: dxz’3 dx"?

+o00 em' |:d5g1"2 d3gF2

1 dgr,
_B(T)- —9 n
B(T) 2 S510,7) /l;)gE dz’> dxz'3 dx!

+00 , d2 d3 d4
—B(T)S3.(0,T S P, S R S, A
( ) 3 ( )/IL)gEe |: dxﬂgr? dl,/fﬂgr? dl"4

+o0 o dS d4 ,
—B(T)S534(0,T) /logE e |:_dx/3gl—‘2 - Mgr2] dx

1 3 +o0 o d8 d6 d4 d2
—EB(T)SNO’T) /logE e |:_dx,8gf2 +3—59r, — 3WQF2 + )

- grg] (2’ —1log Sp,0,T)dz’

] (2" —log Sy, 0,T)dx’

](x’ —log So,0,T)dx

QFQ] dx’

dx’® gF?] de’

+o00 2 d6 d5 d4 d3 d J ,
—B(T)51(0,T7)52(0,T) log 2 € —wgm - QFQFQ + Fgrz + 3@%“2 - %grz €T
+oo o d6 d5 d4 d3
€ |:_ dx'® gr? - dz'® gr? + dz'* gr2 + d.’L‘/ggF2:| dx’.

—mn&m¢wgmn/

log E
(157)

Now we can insert formulas (149), (151), (152), and (154) in formula (157) to obtain
C(Sy,T,E) = SyN(d1(T'2)) — B(T)E N(d2(T3))
+B(T)S51(0,T) [I2 + I — I5] — B(T)S2(0,T) [Is — I + 215 + 2I§ — If]
1
—B(T)SQC(O, T) [Ig — Ig + I, + Ig] - B(T)§S%(O,T) [I5 — IS — 2(]3 — Ig) + I — IS}
CB(T)S30(0,T) [ 15 — IS — 2(I3 — IE) — Iy — I§] — B(T)S34(0, T) [~ I3 + IS — Iy — I]
1
—gB(T)S{"(o, T)[—Is — I§ + 31 + 31§ — 3(Iy + I§) + Iz + If]
—B(T)51(0,7)52(0,T) [=(Is + I§) — 2(Is — I5) + La + I + 3(I3 — I5) — (11 — I5)]
BT (0,7)820(0,T) [~ (I + 1) — (I — I§) + L + I + s — I§)
(158)

C (S0, T, E) = SoN(d1(I'2)) — B(T)E N(d2(T'2))
+B(T)5:1(0,T) I — B(T)52(0,T) [I3 + 2I2] — B(T)S52.(0,T) [I3 + I2] — B(T)%S%(O,T) [Is — 213 + I1]
—B(T)S3:(0,T) [=12 — 213 — 4] — B(T)S34(0,T) [~ I3 — I4]
—éB(T)Sf(O, T)[~Is + 316 — 314 + In] — B(T)S1(0,T)S2(0,T) [~ Is — 2T5 + Is + 313 — ]
—B(T)S1(0,T)S2.(0,T) [—Ig — I5 + Iy + I3].

(159)
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Formula Ro follows bearing in mind that

_ dgr,
dx’

d2 gFQ dgF2
dx'? dx!

I, =

+0r,,

13—1—212:—E[ —Qrg],

4 3 )
I5—2Ig—|—[1:—E|:d gFQ_dgFZ_dgl_‘z dgl_‘2:|7

dz" dz” dz’ dz’
and )
d“Gr
Ig -+ IQ =-F d.CE/QQ .
The latter equation is more general since we have
dm—lgr
fm == dg;/‘m—1)2 = Im-1, (160)

where In =0, Iy = —Gr,. Using (160) and Eq. (159), we have

d3Gr,
dx’

d*Gr,

dz"”
1 7 6 5
—gB(T)S%(O,T) [Ed Gr, _ pdor, _opd'0r

dx'” dz® dz”®

+FE

R3(S0, T, E) = —B(T)S3(0,T) [E d"’grz]

] — B(T)S34(0,T) [E s
d4gF2 dggrg B Ed2gF2
dz" dz" dx"”
d°Gr, d*Gr d3Gr d*Gr dgr

E 2 _2F 2 _F 2+ FE 2
a dz” a” ]

d® d3

—B(T)S1(0,T)S5(0,T) [E 9r. _ g g“] .

5 3
dz” dz’

+2F +F

—B(T')51(0,7)52(0,T) {E

(161)

Proceeding in a similar manner, we obtain the approximation for the put option in Eq. (137). As mentioned
above, the corrections R, Ro, and Rs for the call option are the same as the put correction since there
are two changes of sign: one due to the payoff function and the other due to integration by parts over the
interval (—oo, log E') rather than (log E/, +00).

This concludes the proof. O

The implied volatility ¥ in the multi-factor Heston model is defined as the quantity such that the

2
Cis (SO,T,E, ,/?) — (S0, T, E). (162)

We derive the first and second-order approximations of X, as a function of the vols of vols (i.e., ¥ = (7))

following equality holds:

by solving

¥2() Iy
CBS 507T7E7 T = CBS SOaTa Ea T + Rm(507T7E)? m = 1’ 2. (163)

25



Proposition 3.2 The first-order approximation, X1, and the second-order one, Yo are given by:

=T+

I W (mE + ;r0> : (164)

=vTo++/To

1 1.2
ao ,’Y +CL1(T,1) <mE~I— 2F0> +a2(T,1) <mE + 2F0> ] . (165)

Here mp is the log-moneyness associated with the forward price (see Eq. (143)), Ty and S1 are defined in
(6), and ao(T,~v), a1(T,7), and az(T,v) are given by

31 9 (52 + SQC)

aw(y)=5=5T——= > (166)

= ot i

(S1—52) 31
a(T,y) = —— St (167)

- I3 213!
and

1 3

as (T, l) F?’ So + So. — —Sl . (168)

Sy and Sa. are given in (51), (54), respectively. Here, we have dropped the arguments (0,T') of the functions
FO, Sl, SQ, and SQC.

Proof of Proposition 3.2 Let us prove formula (164).
When v = 0 (i.e., all vols of vols equal zero), we have I'2(0,T) equal to I'o(0,T) and the correction terms
Ri1, Ro equal to zero, which implies

£1(0) = vI0o(0,T). (169)

We compute the partial derivative of both sides of equation (163) with respect to vj, j =1,2,...,n and we
a3 | g = SoN'(d1(To))VT), and

evaluate the derivatives at v = 0. Using the Black-Scholes Vega (i.e.,
the derivatives of I's and S1 with respect to vj, we have

dCBs 0 p; T;(0,T) 1
—21(0 75 N'(d1(To)) |- — dy(Ty)
0o |,y O 0= 2x; (¢1{To)) VTo(0,T) 2(To) + \/7
(170)
where Y
Tit,t') = / (1 —e—w'—s)) E(vj.s | F)ds, (171)
¢
while di and dy are given in Eqs. (134) and (135).
Eq (170) and the expression for the Black-Scholes Vega, 8035[ oN'(dy(To))VT, yield the deriva-
tive a Y1 aty=0:
) p; T;00,T) 1 1 (In(So/E) + [ r(s)ds)
| = += - ; (172)
;=0 2X; To(0,7) \ 2 To(0,7)
thus implying
L ((n(So/B) + fy rls)ds) 1Y) 5~ e
¥ =/T0(0,T) — — = HET(0,T). 173
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We now prove Eq. (165).
We need to compute the second-order derivatives of ¥ with respect to the vols of vols. We have
1 9Cps

(wQQ . @&fl
=0 8’)/]‘ \/T 0o =0 a’yj T'o
+i 0CBpgs 025y 1 (mp + %Fo)z B (mpg + %1—‘0) B 1

VT 00 |,y 97; VT, I3 Lo I'o

1 0Cgg| 0255 1

l 9%Cps
T Oo?

H? 1 9%Cpg
= %(0) = —
o 07 20 =7 5,2

(mp+ 3002 1 ]

VT ool o7 V| T3 T
+i 0Cpgs 1 <851>2 +(mE + %F0)4 B (mE + %Fo)?’ _ (1 n 6) (mE + %F0)2
\/T do =0 FD 8’)/]' Fé Fg Fo F%
1 9Cps 1 (051)2 ( 3) (mg + 3To) 3
+— T+ =) =22y = 174
VT 90 |,_g VTo \ 97 Lo o I (174)
Bearing in mind that we have
oC
655 = Vega(Ty), (175)
=0
o*C VT 1 1
3 ];S = Vomma(Ty) = Vega(Fo)g—ﬂ(mE + §F0)(mE - if‘o)
% =0 Ty
VT 1 1
0

and

<022> i 1 <851> (mE+%I‘0)

an easy but involved computation shows that the addenda containing powers of (mpg + %Fo) higher than two

(177)

are canceled by the addenda involving the Black-Scholes Vomma. In fact, we have

L %] P 1 PCs| | (5Y' L (0m)
\/T oo =0 67]2 o T Oo? =0 8’)@' T'g 8’7]' =0
+L 9Cgs 9*S; 1 |(mp+300)° (mp+300) 1
VT 90 |y 97 VTo r3 Lo Lo
+i 0CBps #Sse 1 | (mp+ 3T0)? 1
VT 00 | _o 977 VTo I3 Lo
L L 9Css 1 (351>2 Jr(mE +500)"  (me+300)° (1 N 6) (mg + 4T0)?
VT 90 |y VT \oy, Il I3 n) 1
1 0Cpgs 1 <851>2 < 3 > (mE + %Fo) 3
+—= 14— ) 22y 2 178
VT 00 |, VT \ 07, ) T, 1 1
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Using Eqs. (176) and (177) in Eq. (178) and simplifying, we have

0? 1 (mpg + %Fo)Q (mp + %Fo) (mpg + %F0)2 051 2
7222(9) = + ) - 1 - P)
97; VI I'5 Lo I'g M
L% 1 | (mp+alo)? (mptlo) 1) 928 1 |(mp+slo)* 1
7 VTo 2 Lo I v VTo 2 Ty
N 1 (981)° +(mE +500)"  (me+300)* 1+ 6\ (mp +3T0)°
VT \ 0v; rg rs o 2
1 asl>2 ( 3>(mE+§Fo) 3
— 1+ — )| —————+ = 179
vTo (8%’ Lo Lo 3 (179)
An easy computation gives
8> 1 (05\*| 6 (mp+3l0)? 3 (mp+ il 3
O o) = —= (1) _ 6 (metylo)” | 3 (metalo) | 3
a")/j \/FO 8’}/]' FO FO F() Fo FO
+82SQ 1 (mE + %Fo)g B (mE + %Fo) _ i n 82520 1 (mE + %Fo)z B i (180)
977 VTo I3 Iy Ty v; VTo I3 IV

Proceeding in a similar manner, we obtain mized-order mized derivatives:
0? 1 08 a5

50 = 7 (5) (53)
9707k VTo \ 97 ) \ O

. . 1 925 1 02Ss. a51 08
The thesis follows since we have Sp = 5>, VJZWﬁ, Soe =55 732 872? , and S? = D i1 Dokt VJ'WBTJBT;'
J J
This concludes the proof. [

Ty 2 Ty, To 2

1 1
6 (mp -+ iT)? L 3 (met3To) | 3]

(181)
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4 Estimated parameters in Christoffersen et al. (2009) for the Heston
and Double Heston models

Tables 1 and 2 show the parameters used in the paper.

Table 1: Estimated parameters, one-factor stochastic volatility model (see Panel A, Table 3 in Christoffersen et al. (2009)).
year X v y P =y
1990 1.9561 0.0593 0.8516 -0.6717 | 0.3198
1991  2.4240 0.0442 0.5834 -0.6957 | 0.6295
1992  2.5476 0.0375 0.5519 -0.6865 | 0.6272
1993 2.6846 0.0254 0.5105 -0.6703 | 0.5233
1994 4.4324 0.0233 0.4560 -0.8519 | 0.9933
1995 2.5070 0.0190 0.5597 -0.5061 | 0.3041
1996 3.1798 0.0298 0.5823 -0.5619 | 0.5589
1997 2.1672 0.0528 0.6018 -0.5666 | 0.6319
1998 1.8315 0.1029 0.8079 -0.7521 | 0.5774
1999 2.1310 0.1091 0.7552 -0.7404 | 0.8152
2000 2.5751 0.0678 0.6561 -0.6975 | 0.8111
2001 3.8191 0.0564 0.6489 -0.7410 | 1.0231
2002  3.3760 0.0532 0.5973 -0.7725 | 1.0068
2003 1.7201 0.0691 0.6837 -0.5939 | 0.5085
2004 1.6048 0.0464 0.3796 -0.7670 | 1.0335

Table 2: Estimated parameters, two-factor stochastic volatility model (see Panel B, Table 3 in Christoffersen et al. (2009)).

* * 2x1v7 2x205
year X1 U1 " pP1 X2 V2 72 P2 ’Yf ,Y%

1990 0.2370 0.0227 1.0531 -0.7695 8.4983 0.0273 0.6827 -0.8417 | 0.0097 0.9955
1991  0.2966 0.0197 1.8157 -0.8575 4.4513 0.0319 0.3360 -0.6057 | 0.0035 2.5155
1992 0.2022 0.0051 6.2755 -0.9670 0.7424 0.0684 0.2740 -0.8040 | 0.0001  1.3527
1993 0.2000 0.0052 5.2500 -0.9666 0.6131 0.0569 0.2123 -0.8216 | 0.0001 1.5480
1994 0.1668 0.0050 9.4346 -0.9877 0.2098 0.1633 0.1706 -0.9364 | 0.0000 2.3543
1995 0.2061 0.0050 6.8941 -0.9206 1.4677 0.0242 0.2413 -0.7512 | 0.0000 1.2200
1996 0.2101 0.0052 2.0149 -0.9684 0.5561 0.0575 0.1868 -0.7978 | 0.0005 1.8327
1997 0.1397 0.0053 1.5423 -0.9914 0.1878 0.1648 0.1239 -0.8928 | 0.0006 4.0321
1998 0.1374 0.0051 2.1196 -0.9917 0.6247 0.1733 0.3965 -0.9117 | 0.0003 1.3772
1999 0.1388 0.0051 1.9895 -0.9917 0.7322 0.1736 0.3828 -0.9108 | 0.0003 1.7372
2000 0.1404 0.0052 1.9382 -0.9915 0.3542 0.1690 0.2292 -0.9024 | 0.0004 2.2789
2001 0.1433 0.0054 1.9115 -0.9911 0.2347 0.1655 0.2047 -0.8983 | 0.0004 1.8539
2002 0.1491 0.0058 1.9754 -0.9902 0.1855 0.1607 0.1715 -0.8896 | 0.0004 2.0270
2003 0.1638 0.0032 8.8078 -0.9838 0.4625 0.1198 0.3976 -0.6569 | 0.0000 0.7009
2004 0.1500 0.0059 1.9829 -0.9902 0.2335 0.1621 0.1971 -0.8918 | 0.0005 1.9486
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5 Formulas derived from Recchioni and Sun (2016)

From the Recchioni and Sun (2016) approach® and a simple computation, we derived the following explicit
formulas for option prices:

1k
too <%> (q ' )eflkfoT T(S)dser,q(T/Uka?@v)

(a1 r()ds S0 / E
Cruu (S0, T, E) =e 0 or | —k?—(2¢— 1)k +q(¢—1)

dk,  (182)

and

(g—1—1k)
oo (SO) I ’ efzkfoTT(s)dser,q(T,vo,k;@v)

_o(a-1) T r(e)ds S0 / E
Priu (S0, T, E) =e 0 o | o —k?—(2q— 1)k +q(qg—1)

where, in the case of the Heston/double Heston model, @), 4 is the elementary function given by

dk,  (183)

n

Qua(t —t,0,k:0,) = > —(2x30} /77) 54,0,/ (2Cq0,)

j=1
—(2x0; /797) Ca; + ) (' = )= (205/7) (G, = K ;) Sa059/ 5050 (184)
with fig.v;5 Cqwjy Sqw;.g> and Sq0, p defined as follows:
fg.w; = —%(Xj + k=) ) Covy = % [4u§,vj + 27?%(%)] " (185)
Squpg = 1—e 200 s b= oy + tigy)e 2T 4 (G — g.))- (186)
The quantity ¢, appearing in Eq. (185) is given by
©q(k) —k;—i-Z];(Qq—l)—;((f—q), keR. (187)

Formulas (182) and (183) are obtained starting from the following formula for the marginal probability
density M in Eq. (15):
M(z,v,t,2',t) = e_Q(x/_x)Mq(x,y, t, ' ), (188)

where ¢ is a regularization parameter that allows for a suitable change of integration order in the option
pricing.
The Fourier transforms of M and M,, denoted by M and M, satisfy the following equation:

My(k,v,t,t") = M(k +1q,v,t,t'). (189)

The Fourier transform of M is in Eq. (15), so formula (182) for the call option follows by computing the
integral
too e OO )
/ (e¥ — E) e 1@ _””)277/ e*E =N (K + g, v, t, ¢ dkda!
—oo —00

for ¢ > 1, while formula (183) follows for the put option:

+OO ! / 1 +OO / -
/ (E —e€" )Jre_q(’C —) [2/ k@ _I)M(k +1q,v,t,t')dk | da’
—00 T J 0o

for ¢ < 0, with z = log(Sp), t = 0, t' = T. The double integrals reduce to one-dimensional integrals by
changing the integration order.

*Note that formulas in Appendix C for option pricing in the multi-factor Heston model have been derived by applying the
transformation suggested in Recchioni and Sun 2016 to the Kolmogorov backward equation associated with the multi-factor
Heston model. It is a straightforward computation and this is why we do not stress these formulas.
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6 Accuracy of the second- and third-order approximations in the Heston
framework on a “reasonable” grid of parameters

In this section we assess the performance of the first- and second-order approximations Co arrr, Poprm and
C3 v, P3arm of the call and put option prices in the Heston framework. This analysis is done to show that
these first- and second-order Black-Scholes approximations to option European vanilla option prices are of
sufficient quality to be used for estimating the multi-factor Heston model parameters.

Figures 1 and 2 show the empirical distributions of the relative errors in call and put prices, ec,, =
|Cr — Cp 1 |/|CH|, m = 2,3 (upper panels) and ep,, = |Pg — Py ul|/|Pul, m = 2,3 (lower panel), when
v = 0.15 (left panel), v = 0.25 (middle panel), and v = 0.5 (right panel) based on grid M. We observe
that the third-order approximations C3 i and P g of the call and put option prices, respectively, slightly
outperform the second-order approximations C5 7 and P g in terms of accuracy for vols of vols.

The exact Heston formula is obtained by imposing n = 1 in Egs. (184) in Appendix C of the paper.
As previously mentioned, Eqgs. (182), (183) in Appendix B are equal except for the values of ¢, which are
valid over different intervals. In the following, we choose ¢ = 1.05 for a call option and ¢ = —0.05 for a put
option. Equations (182) and (183) are defined via convergent integrals that can be computed accurately
using a simple composite rectangular rule with 2'6 quadrature nodes. Obviously, depending on the choice
of the model parameters and the time to maturity, the number of quadrature points could be reduced.

We evaluate the exact formulas C'y, Py and the second-order Black-Scholes formulas Cy, r, P, p, for
m = 1,2 at the points in the following set:

M ={ (S, E,T,~,v0,Xx,0",p,7) |So =100, E=80+10(j — 1), T=24/5,7j=1,2,...,5,
v =0.01,0.05,0.15,0.25,0.5,0.8,2v9 = 2+ 5/5,7 = 1,2,...,5, x = L5+ 1.5(j — 1),5 = 1,2,...,5,
v = jv*/(2x),p=—3j/6,5=1,2,...,5,r =0.01}. (190)

These values of model parameters in grid M include those estimated by Christoffersen et al. (2009) in
Section 4.2 Table 3.
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Figure 1: Relative error distributions ec,2 = |Cg — Ca,u|/|Cr| (upper panels) and ep2 = |Puy — P»,u|/|Pu| (lower panels)

when v = 0.15 (left panels), v = 0.25 (middle panels), and v = 0.5 (right panels) obtained with second-order approximations
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Figure 2: Relative error distributions ec.3 = |Cy — Cs,1|/|Cr| (upper panels) and eps = |Py — Ps,u|/|Pu| (lower panels)

when v = 0.15 (left panels), v = 0.25 (middle panels), and v = 0.5 (right panels) obtained with third-order approximations

(Cs,m, P3,1).
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7 Some details about asymptotic expansions

This section is related to Section 4.2 of the paper. It illustrates some details of the proposed expansion and
specifically, we stress that the two expansions of £, and L7, as a functions of the vols of vols are asymptotic
power series expansions.

We recall that the function f(z), z € 2 C C has an asymptotic representation (expansion) if

N
F(2) ~ fn(2) =) andn(2) + 0 (¢n) , asz — 2, (191)
§=0
for every N =0,1,2,..., where ¢,,(z) = 2". Intuitively, an asymptotic expansion of a given function f is a

finite sum which might diverge, yet it still provides an increasingly accurate description of the asymptotic
behaviour of f.

There is a caveat here: for a divergent asymptotic expansion, there is an optimal Ny = Ny(z) for some z
that gives a best approximation to f, i.e., adding more terms actually gives worse accuracy. When z tends
to zp, however, we have

lf(z) = fn(2)] <€ V|z—20] <d, N> Np. (192)

Coming back to our two representation formulas for the marginal density functions and the corresponding
asymptotic expansions of £, and L3 as 7 — 0, we stress that:

(i) the asymptotic expansion of £ is convoluted with the Gaussian kernel Gr,, which is independent of the
vols of vols, so the resulting asymf)totic expansion for the marginal density function diverges for large value
of vols of vols;

(ii) the asymptotic expansion of L7 is convoluted with the Gaussian kernel Gr,, which is dependent on
the vols of vols and approaches zero exponentially for large vols of vols. This implies that the asymptotic
expansion of the marginal density function does not make vols of vols that tend to +oo diverge. Figure 3
shows the average relative errors of the second-order approximations to the call options evaluated on the
parameters estimated by Christoffersen et al. (2009) obtained using the expansion with kernel Gr, (solid
line) and with Gr,. Both panels show the natural logarithm of the average relative error as a function of vol
of vol. The vol of vol in the left panel varies from 1 to 9.5, while in the right panel it varies from 1 to 95.
We see that the expansion with base point Gr, does not diverge.
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Figure 3: Average relative errors of the second-order approximation to the call option obtained using the kernel Gr, (dashed
line) and the kernel Gr, (solid line). The y-axis is the natural logarithm of the average relative errors; the z-axis is the natural
logarithm of the vol of vol.

We therefore focus on the expansion based on the kernel Gr, and we investigate whether the first-order
approximation outperforms the second- and third- order approximations for large vol of vols. We consider
the double Heston model with the parameters estimated in 1990 (see Table 2 Year 1990) except for the vol
of vol 71, which is chosen to be 7" = e 3tm/2 iy =1,2,...,30, and 72 = 0.007.
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Figure 4: Left panel: relative errors of zero-, second-, and third-order approximations to the call options obtained using the
kernel Gr, in a log-log scale. Zero order: dash-dot line; first order: dashed line; second order: solid line; third order: dotted
line. Right panel: correction terms R (dashed line), Rz (solid line), and R3 (dotted line) as a function of the log of vol of vol.

Figure 4 shows that the correction terms go to zero for very large values of vol of vol and that the
second-order expansion provides a satisfactory approximation up to a vol of vol equal to three (remember
that the x-axis is in log-scale). In fact, for values of the log of vol of vol less than 3, we observe that the
first-order correction is larger than the second-order correction and the latter is larger than the third-order
correction. This suggests that the second-order approximation can be used up to vol of vols of 250%.
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8 Further details on the expansions for option pricing and Greeks

In this section we provide some details regarding the use of the representation formulas for the marginal
probability density functions in Theorem 2.1 and Theorem 2.2. To keep the demonstration simple, we limit
our attention to the second-order correction.

We recall the following proposition:

Proposition 8.1 Let f be a function f = f(y), y € R with Fourier transform f(k) = fj;o ek f(y), k € R:

if f(k=0) =0 we have [T fy) =0

if f(k =1) = 0 we have fj_:: eVf(y) =0.

Proof of Proposition 8.1 The proof follows by simply evaluating the Fourier transform at k = 0 and
k=n1.

This proposition allows us to prove the following properties of the functions £, as in Theorem 2.1 and
L7 as in Theorem 2.2:

Proposition 8.2 Let L be as in Theorem 2.1 and L as in Theorem 2.2. We have

/_:O [.cl(y, tt') — 5(y)} dy =0, /_:o [Ez(y, tt') — 5@)] dy =0, (193)
and
/ :O o [Lwtt) - sw] a0, [ :O v 220, t,1) — 5)] dy = 0. (194)

Proof of Proposition 8.2 The proof follows, observing that the Fourier transforms of the functions El(y, t,t')—
6(y) and L:(y,t,t') — d(y) vanish at k =0 and k = 1 with Proposition 8.1.

Now we focus on the expansion of function £ up to the second-order terms in powers of vol of vol. We

recall that formula (53) for £7 is

)

L* (y " t/) _ i /OO elky€S1(t,t’)(zk3+zk)+Sg(t,t’)(k4721k372k)+520(t,t’)(k471k3)+o(H1H2)dk
l Y 27T o

Iyl = 0%, (195)
which implies the following expansion for the Fourier transform, EA,*Y of L:
L3y, 4,¢) = S0 I0R S50 (12K -tk £S5 (1=t +oalP) 1y 5 0, (196)
Eq. (196) allows for the following expansion of /:'fY for small vol of vols:
~ 1
Ly, t,) = 1+ Si(t, ) (0 k® + k) + St ¢') (k' — 206> —1k) + Sac(t, ') (k" — &%) + 331t 21k + 0 k)?
+o(|l7)1?), Iyl = 0*. (197)

Eq. (197) can be rewritten as

~

Syt t) = 1+ 816, ) [=(0k)? + (k)] + Sa(t,8) [(0k)" + 2(k)° — (k)] + Sae(t, ¢') [(h)* + (k)7

5820 8) [0R)° — 26)* + (0] + ol Il - 0% (198)
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It is worth of noting that the functions 57, So, Sa., and S? multiply polynomial functions of k, which vanish
at k =0 and k = . This is a relevant aspect since the following proposition holds.
Bearing in mind that in the sense of distributions we have
1 400 Jdm

o (1k)™e*V dk = dy—m&y), (199)

we obtain the following expansion for £ (y,t, t'):

£5(5.0.8) = 50) + Si(8.0) [~L5w) + o] + Sa(t.t) [Lroty) - 22500 - Laty)
0l Yy, i, - Yy (¢4, d 3 d Y 2\, dy4 Yy dy dy
d* d? 9 db al4 d? 9 "
#8utt) | 33000 + 53000 + 555000 | 15000 = 241060 + 1300)] + oI, Tl 0"
(200)
We now consider the integral representation formula in Theorem 2.2. Replacing Eq. 200 in Eq. (47) we
have
+oo
M(z,v,t, 2 t) = Gry (¢ —x —y,t,t") L2 (y,t,t)dy
+o0 -
~ Gr, (2" — 2 —y,t,¢)5(y)dy
+51(t, 1) +Oog (' — 2 —y,t,t) —d—gcs( )+i5( )| d
1\4y - Iy (T X Y, 1, dy3 ) dy Yy Yy
, +o0 , , d4 d3 d
#52(08) [ G0~ 0= ot 0) | 000 — 2580 — 50| d
, +oo , , d4 d3
#80) [ G - ) | 5800 + 1000 ay
1 9 +o00 dﬁ d4 d?
+380) [0 - a wtat) | 25000 - 205000 + 53000 do
- MO(.T,Q,t,Z'/,t/) + M1($,Q,t,$/,t/) + MQ(JZ’,Q,t,.TJ 7t )7 (201)
where M) is given by
+oo
Moy(z,v,t, 2’ t") = / Gr, (' —z —y,t,t")0(y)dy = Gr, (' — ., t,1), (202)
—0o0
and M,,, m = 1,2, are given by
+o00 d3 d
Mi(z,v,t, 2" t') = +51(t, 1) Gr,(z' —x —y,t,t) [dyz”é(y) + @6(y)] dy, (203)
Mot ) = St 0) [ Grale! = — gt 2) [ 3600 — 2-2500) — Lo)] a
2\, 0,1, T, — 2L, . o\ T €T Yy, i, dy4 Y dy3 Y dy Yy Y
, +o00 , , d4 d3
150.(0.0) [ Gna = ytt) [d46<y>+ d@/ga(w} dy
1 +oo 6 d2
#3570 [ e~ =t [£00) 2000 + 2000 . (204)

Formulas (202), (203), and (204) imply formulas (105), (106), and (107).
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Proposition 8.3 The functions My, Ma, and Ms in (106), (107), and (108) satisfy

“+oo
Mp(z,v,t,2" ¢ )da’ =0, m=1,2,3, (205)
too
/ e’ My (z,v,t, 2 t)dr’ =0, m=1,2,3. (206)

Proof of Proposition 8.3 Eq. (205) is proved by integrating formulas (106), (107), and (108). The proof
of Eq. (206) follows from Proposition 8.1 since the Fourier transform of (106), (107), and (108) with respect
to x' is zero at k = 1. Note that the Fourier transform is obtained using the properties

“+oo ! anz .
/ e 'NT Gr,dx’ = (—1k)™Gr,.

/
oo oz’

Proposition 8.3 is useful for understanding why the put-call parity is satisfied at each order of the
expansion in powers of vols of vols. To illustrate this point, we consider the second-order approximation.
Bearing in mind that the marginal probability density function is approximated by the following formula
(see Theorem 2.2), we have

+oo
My(x,v,t, 2" 1) = 3 Gr, (2 —x —y,t, t')ﬁ;(y, t,t")dy
+oo
~ Gr, (2’ —x —y,t,")d(y)dy
, +oo , , d3 d
#5u(tt) [ Grale! = a =t [~ 50 + 1500
+Sa(t t’)/+oog (' —x —y,t,t) d—é( ) — 2d—35( )—ié( )| d
2\, - T's Y, 1, d 4 dy3 ) dy Yy Yy
+00 4 ‘
+SQC(t7 t/) / gFQ (.CE/ —T =Y, t7t |:d 5(y):| dy
1 o, o [T , d® d?
+§Sl(t,7f) Gr, (2" —x —y,t,t') 7 45(y)+d7y25(y) dy
—0o0
= Mo+ M + Mas. (207)
We price vanilla call and put options under the multi-Heston model using the following formula:
+oo
C(50,7.B) = BT) [ (' = B).M(log S0, 0.2/, )i’

400 +oo
= B(T) / (ex - E)+ / gFQ (:E/ - log SO -V, 07 T)[‘E(Z% 07 T)dyd:]j‘/

— 00 —00

+o0 +oo
~ B(T)/ (ex - E)+M0($,’U,t7l‘,,t/)d$l+B(T)/ (ew - E)+ (Ml(xayvt>$/7t/) +M2($,Q,t,l’,,t/)) dxlv
(208)
+00 ,
P<S07 T, E) = B(T) / (E —e” )+M(10g SO;QO? 0, .'L‘/, T)dfl?/
+00 :7 +o0
= B(T) / (E —e” )-‘r / gFQ (.’El - IOg So — Y, 0, T)[’:(y) 0, T)dydl‘/
i+oo , - +o00 ,
~ B(T) / (E —e")y My(z,v,t, 2’ t)dx’ + B(T)/ (B —e")y (Mi(z,v,t,2",t') + Ma(z,v,t, 2, 1)) da’.
(209)
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Thus, the Black-Scholes second-order approximations to call and put option prices are

r too o,
C5(So, T, E) = Cpg <SO, E,T,\/ TZ) + B(T)/ (e — E)+ (Ml(:n,g,t,x',t') + Ma(x, v, t, 2, t')) dx’,

—0o0

(210)

r oo /
P5(Sy,T,E) = Ppg (SO,E,T, T2> + B(T)/ (E—e" )y (Ml(ac,y,t,a:',t’) + Mg(x,g,t,m’,t')) dx’.

(211)
Subtracting P from C9 while considering the put-call parity for the Black-Scholes option prices, we have
Cy(So, T, E) — P2(So, T, E) = So — B(T)E
Y B(T) /m [(ex’ B, (BE— eff)@ (M (log So, v, 0,2/, T) + Ma(log So, v, 0,2/, T)) dz’. (212)

— o

By virtue of Proposition 8.3, we obtain

Cy(So, T, E) — P2(So,T,E) = So — B(T)E

+oo
—i—B(T)/ (e” — E) (M (log So,v,0,2',T) + Ma(log So,v,0,2",T)) da’ = Sy — B(T)E. (213)
—00
Finally, we underline that the correction terms appearing in the first-, second-, and third-order approx-

imations can be interpreted as Greeks. Therefore, looking at the price of a vanilla call option under the
multi-Heston model (see Theorem 2.2), we rewrite formula (208):

+oo
C(80.7.B) = BT) | (' = B).M(log S0, 0.4/, )i’

—00

“+00 —+o00
—5@) [ @ =B [ Gn - 1ogS)— 5.0.1)25 (5.0 T)dyds

—00 —0o0

+o00 +oo
= B(T)/ E;(y,O,T) [/ (e* — E)4Gr, (2’ —log Sy — y,0,T) | d'dy

—00 — 00

—+00
_ / (5,0, T)Cps(Soe", 0, T)dy. (214)

—0o0

Substituting (200) into (214), we obtain the following Black-Scholes second-order approximation for the call

r
C5(So, T, E) = B(T)Cps (SO,T, E, ,/T2>
—+o00 T d3 d
y 2 B el
+51(0,7) . Cgs (506 T, B, T) [ dy35(y)+ dy5(y)] dy

oo r d* d? d
+50.7) [ s 506y7T7E,\/;> 100 ~ 22000 — 2.60)| dy

option price:

—00

+oo T d4 d3
+SQC(07 T) CBS Soey7 T7 Eu 2) 75(y) + 5(y):| dy

oo T ) |dy* dy3
1 9 +oo y FQ d6 d4 d2
551(07T) » Cps (506 T, E, T) [6@65@) 2d7y45(y)+d7y25(y) dy.

(215)



Bearing in mind that

+oo dam om
CBS(S(]eya OaT)id(y)dy = (_1)m 7CBS(SOey7 OvT) )

—c0 dy™ oy™ =0

formula (215) approximates the call option as the Black-Scholes call options plus corrections expressed as
derivatives of the Black-Scholes call option with respect to the log-price. These derivatives can be rewritten
in terms of Greeks.

9 Option price calibration

In this section we assess the performance of the Heston second order approximation formulas (58)-(59) of
the paper to reproduce and to forecast traded European call and put option prices on the US S&P 500
index. In this exercise, the U.S. three-month government bond index is used as a proxy for the interest rate
T.

The availability of an explicit and very elementary formula for the implied volatility provides an ad-
vantage in terms of calibrating the model rather than estimating the parameters directly from the option
prices. This is because it avoids biases caused by different magnitudes of option prices that are typically
corrected introducing appropriate weights in the optimization algorithm (i.e., the inverse of option Vegas, see
Christoffersen et al. 2009, or bid-ask spread, Date and Islyaev, 2015). Additionally, the simple link between
implied volatility and model parameters allows for reliable estimates while reducing the time necessary to
solve the optimization problem. Specifically, we provide empirical evidence that by using the second-order

7

approximations for the implied volatility, 35 g, via Eq. (165), we can obtain “consistent” estimates of the
Heston model parameters from both the call and put options. Option prices are usually filtered to avoid
inconsistency arising from the simultaneous use of call and put option prices (see Pacati et al. 2018). We
do not filter out any observation not satisfying standard non-arbitrage conditions, and we investigate how
this lack affects the model calibration.

Our dataset consists of 1200 call and put options with four strike prices (i.e., ng = 4) and ny = 150.
Starting from the traded call option prices C°(S;, T;, E;) with spot price S;, time to maturity 7; and strike
price Ej, and using the U.S. three-month government bond yield as risk-free interest rate, r, we compute
the observed implied volatility, o&(S;, T;, E;), for i = 1,2,...,np, j = 1,2,..., Ng. This computation
is done using the Matlab function calcBSImpVol, which uses Li’s rational function approximator for the
initial estimate (see, Li 2006; 2008), followed by Householder’s root finder of the third order to improve the

convergence rate of the Newton-Raphson method.

For any time ¢ = 1,2,...,np, we then estimate the Heston model parameters ©; = (v;, v, x4, pi, vé) € R?,
1=1,2,...,np, solving the optimization problem:
ng 2
by Si, T, E;
min [G%(SZ,T‘“EJ) . 2,H( 1y Ly ]) ’ (216)
eev i~ VT,
where Y9 f is given in formula (165) with n=1 and V is the following set of constraints:
Y = {@: (v,v*,x, p,v0) ER® | v,v*, x, 00 >0, =1 < p < 1}. (217)

To solve problem (216) we use a metric variable steepest descent algorithm (see, for example, Recchioni and
Scoccia (2000), Fatone et al. (2013)). This is an iterative algorithm which generates a sequence of points,
©F k=0,1,..., belonging to the interior of the feasible region and moving opposite to the gradient vectors
of the objective function computed in a suitable metric.
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We then repeat the calibration procedure starting from the observed put prices P°(S;, T;, E;), where P°

is the observed value of the put option, i1 =1,2,...,np, and j =1,2,...,ng, and we solve the problem
ng 2
by S, T;, B
min [a}’g(Si,Ti,Ej) _ Zan(Si T Ej) , (218)
LS VT

In this way we obtain two optimal sets of model parameters, one starting from the call options, ©¢, and
the other starting from the put options, ©F.

Some descriptive statistics for the estimated model parameters, initial variance, Feller ratio, and observed
implied volatility are given for the two sets in Table 3. We observe that the two sets of parameters are almost
identical, with the exception of the estimate of the long-term mean parameter. We argue that the difference
in the v* parameter estimate from the call and put prices is due to market imperfections that lead to a
spread between the implied volatility ¢° of call and put options. In fact, the absolute value of the implied
volatility spread, |0&(Si, T, E;) — 0%(Si, Ti, E;)|, derived from the call and put options, is 0.04 on average
while the relative absolute spread (i.e., the ratio of the spread to implied volatility from the call) is 0.24.
Interestingly, the absolute difference between the square root of the two long-term variance parameters is
0.05 and the ratio of this difference to square root of the call variances is 0.29, thus mirroring the implied

volatility spread.

Table 3: Descriptive statistics for estimated values of the model parameters and observed implied volatility o°.

Call Set
X v* ~ p o 22?—12’* obj. func. o’
mean 5.7999 0.014663  0.50098 -0.8502 0.08060  0.677512 8.35e-5  0.1581
median 5.7999 0.012726  0.50100 -0.8502 0.08200  0.588756 2.28e-5 0.1546
std 0.00057  0.007032 0.000303 0.000220 0.004912 0.324606 1.46e-4 0.020
Put Set
X v* ~ p o 2’;—;’* obj. func. o’
mean 5.7999 0.029102 0.5009 -0.8502 0.08384 1.34530 7.84e-5 0.1931
median 5.7999 0.029114 0.5009 -0.8502 0.08489 1.29907 2.02e-5 0.1923
std 0.000020 0.006205  0.00026 0.00018  0.004243  0.28708 2.87e-4  0.0168

To evaluate the model consistency, we compute the European call and put option prices using formulas
Co,1, P>, with both sets of estimated parameters. Figures 5 and 6 show the observed and second-order
(solid line and dotted line, respectively) call and put option prices. The approximations in Figure 5 are
obtained using the model parameters estimated by the observed implied volatility from call options (i.e.,
Call Set) while those in Figure 6 are obtained using the model parameters estimated by the observed implied
volatility from put options (i.e., Put Set). For each set we compute the mean and standard deviation of the
relative errors for the Call as

Ef]z@L = |C(Si, Ty, Ej) — Co.ut(Si, Ty, Ej; ©F)|/C°(Si, Ti, Bj), with L = C, P,
and the equivalent errors for the Put. The average relative errors EC8° and EPE" (i.e., when the param-
eters are estimated starting from the corresponding option prices) are, respectively, 0.027 (i.e., 2.7%) and
0.031 (i.e., 3.1%). These errors are in line with those in Pacati et al. 2018, where a double Heston model
with jumps is used. By contrast, using the model parameters of the Put set to estimate the Call prices and
vice versa, the relative errors ECO" and EPE° are, on average, 0.21 (i.e., 21%) for the call and 0.22 (i.e.,
22%) for the Put. Thus, while the cross estimates produce a clear bias, the error is of the same order as
the relative error in the implied volatility (i.e., 24%), suggesting the bias is driven by market imperfections
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Figure 5: Left Panel: Observed call option prices (solid line) and the second-order approximations Ca g (dotted line) for
four different strike prices F1 = 1900, E> = 1975, F53 = 2000, and F4 = 2025 and expiry date T" = December 19, 2015, versus
time (September 1, 2014 — March 30, 2015) obtained with the optimal parameters from the observed implied volatility of call
options (i.e., Call Set). Right Panel: Observed put option prices (solid line) and Black-Scholes second-order approximations
P, i (dotted line) for four different strike prices Ey = 1900, E; = 1975, E5 = 2000, and E; = 2025 and expiry date T =
December 19, 2015, versus time (September 1, 2014 — March 30, 2015) obtained with the optimal parameters from the observed
implied volatility of call options (i.e., Call Set).
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Figure 6: Left Panel: Observed put option prices (solid line) and second-order approximations P2 g (dotted line) for four
different strike prices 1 = 1900, F2 = 1975, F3 = 2000, and F4 = 2025 and expiry date T" = December 19, 2015, versus time
(September 1, 2014 — March 30, 2015) obtained with the optimal parameters from the observed implied volatility of put options
(i.e., Put Set). Right Panel: Observed call option prices (solid line) and second-order approximations Cy g (dotted line) for
four different strike prices F1 = 1900, E; = 1975, F5 = 2000, and F4 = 2025 and expiry date T = December 19, 2015, versus
time (September 1, 2014 — March 30, 2015) obtained with the optimal parameters from the observed implied volatility of put
options (i.e., Put Set).
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Figure 7: Observed option prices (solid line) and one-day ahead estimates computed using second-order approximation (dotted
line) for four different strike prices E1 = 1900, E2 = 1975, E5 = 2000, and E; = 2025 and with expiry date T' = December 19,
2015, versus time (September 1, 2014 — March 30, 2015). Call price one-day ahead estimates using the Call Set (left panel);
Put price one-day ahead using the Put Set (on the right). Average relative errors of call and put options: 7.9% and 6.2%
respectively.

rather than inconsistencies with the methodology.

We conclude this section by testing the potential of the calibrated parameters to forecast option prices
one-day ahead. Figure 7 shows the one-day ahead estimates for call (left panel) and put (right panel)
option prices. Specifically, the option estimates at time ¢ + 1 is carried out using the value of the optimal
parameters at time ¢t. The call one-day ahead estimated prices are obtained using the model parameters Qto,
while the put one-day ahead estimated prices use the parameters @f . The relative errors of the one-day
ahead estimates are, on average, 7.9% for the call options and 6.2% for the put options.
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