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Abstract

Implicit systems provide a general framework in which many important proper-
ties of dynamic systems can be studied. Implicit systems are especially relevant to
Behavioural Systems Theory, the analysis and synthesis of Complex Interconnected
Systems, Systems Identification and Robust Control. By incorporating algebraic
constraints, implicit models provide additional versatility relative to the standard
input-output framework. Problems of robust stability in implicit systems lead in a
natural way to non-standard structured singular value (�) formulations. In this note it
is shown that for a class of uncertainty structures involving repeated scalar parame-
ters these problems reduce to a standard � problem which is well studied and for the
solution of which several numerical algorithms are available. Our results are based
on a matrix dilation technique and the redefinition of the uncertainty structure of the
transformed problem. The main results of the paper are illustrated with a numerical
example.

KEYWORDS:
structured singular value, robust control, implicit systems, distance problems

1 INTRODUCTION

Throughout its history, the input-output framework has dominated the Systems and Control Theory paradigm. Building on early
work of Rosenberg1, the behavioural framework was introduced in2 as an alternative. In this framework, the system is described
by the collection of its trajectories rather than input-output relations. Implicit systems play an important role in this context. By
incorporating constraints in the model description, they provide additional versatility relative to standard input-output models.
Areas where implicit systems have proved useful include the analysis and synthesis of complex Interconnected Systems, Systems
Identification and Robust Control3,4.

A formal definition of implicit systems is given next5. This is closely related to the behavioural definition given by Willems6.
Note that no distinction is made between input and output variables and that the system equations are defined as equality
constraints restricting the values variables can take. This set of values is the behaviour of the system.

Definition 1. An implicit system (W ,E,G) is defined by two vector spaces, the variable space W and the equation space E,
and an equation operator G ∶ W → E. The behaviour of the implicit system is the set B = Ker(G) = {w ∈ W ∶ Gw = 0}.
The system is called linear if G is a linear map.

Following5 a more concrete formulation can be developed by restricting attention to discrete-time dynamic systems (time
index set isℤ orℤ+) and restrictingG to the class of linear bounded operatorsG ∈ (ln2, l

m
2 ) (or simplyG ∈ ), i.e.G ∶ ln2 → lm2 .

Here ln2 denotes the Hilbert space of square-summableℝn-valued sequences overℤ orℤ+. AlternativelyGmay be characterised
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as a causal, finite-gain operator, G ∶ ln2e → lm2e, equivalently denoted as G ∈ e(ln2e, l
m
2e) (or simply G ∈ e). Here l2e is the

extended l2 space over + corresponding to positive-indexed discrete sequences (signals) which do not “blow-up" in finite time
(see5 for a more formal definition). The analysis can be further simplified by restricting G to the class of linear time-invariant
(LTI) operators, i.e.G� = �G where � is a delay operator7 . l2 stability for the linear implicit system (W ,E,G) over l2 is defined
as the left invertibility of G in (l2), i.e. the existence of L ∈ (l2) such that LG = I . The corresponding notion of stability for
causal implicit systems is well posedness, i.e. G has a causal left inverse L ∶ E → W and the requirement that L has a finite
gain over the range of G 5.

Uncertain systems description can be incorporated in the theory of implicit systems via a set framework, similarly to standard
systems defined as input-output maps. Robust Control analysis of implicit systems is useful in the formulation of uncertainty
models of various types, e.g. linear time-invariant (LTI), linear time-varying (LTV), polytopic, delay, sector-nonlinearity, etc.
All these descriptions can be unified via Integral Quadratic Constraints (IQC) resulting in constrained system descriptions7. The
main idea of IQC’s is to replace uncertain operators which are difficult to model by integral quadratic constraints on the input-
output pair which applies for all uncertain conditions. This results in robust stability and performance criteria which can be
checked via semi-definite programming. Considerable work has been done recently in formulating and solving distance problems
involving uncertain systems5. Some examples of constrained H∞ and H2 problems are presented in4,3,8 providing systematic
methods for the control structure selection.
Uncertainty can be incorporated into the implicit modelling framework by replacing the equation map G by a parametrised

map G(�) where � represents a structured set of uncertainty descriptions of the form:

Δ = block-diag(�1Ir1 ,… , �sIrs ,Δs+1,…Δs+F ) (1)

In this equation �i represent real uncertain parameters and Δi linear dynamic non-causal (causal) perturbations Δ ⊆ (ln2)
(Δ ⊆ e(ln2e)). More general classes of block perturbations can also be defined. The uncertainty set can be normalised to a unit
ball B� = {Δ ∈ � ∶ ‖Δ‖ ≤ 1} where ‖ ⋅ ‖ is the operator norm. Uncertain implicit systems can be studied in the setting of
linear fractional transformations on Δ5 depicted in Figure 1 in which

M =
[

A B
C D

]

∈ (ln+q2 , lm+p2 ) or M ∈ e(l
n+q
2e , l

m+p
2e ) (2)

The equations corresponding to Figure 1 can be written in the form:

'(Δ,M)
[

z
w

]

= 0, '(Δ,M) =
[

I − ΔA −ΔB
C D

]

(3)

The implicit system withM ∈ 2 and � ⊆ 2 is now defined as robust l2 stable if it is l2 stable for every Δ ∈ B�. It can be
shown that a necessary and sufficient condition for robust l2 stability is that D is l2 stable with bounded left inverse L and that
the implicit system

[

I − ΔÂ
Ĉ

]

, where Â = A − BLC, and Ĉ = C −DLC (4)

is l2 robust stable. Note that equation (4) is obtained by eliminating variable w = −LCz in equation (3). A similar definition
and conditions for robust stability apply for an implicit systemM ∈ 2e and � ⊆ 2e 5.

The problem is considerably simplified if we assume that Â, Ĉ and Δ are finite-dimensional linear time-invariant maps in
(l2). In this case Â and Ĉ are rational functions in � and necessary and sufficient condition for the implicit system (4) to be l2
robust stable is that:

null
[

I − ΔÂ(ei!)
Ĉ(ei!)

]

= 0 for all Δ ∈ BΔ for all ! ∈ [0 2�) (5)

Here Δ is a constant matrix with the block-diagonal structure of (1) and BΔ contains all constant matrices with this structure
with |�i| ≤ 1, i = 1, 2,… , s and �1(Δs+i) ≤ 1, i = 1, 2,… , F , where �1(⋅) denotes the largest singular value (spectral norm) of
a matrix. In the remaining part of the paper we will consider the (single-frequency) problem of calculating the minimum norm
of a matrix Δ with block-diagonal structure (1) such that

null
[

I + ΔM
N

]

≠ 0

This problem follows directly from (5) by identifyingM = −Â(ei!0) andN = Ĉ(ei!0) for a fixed !0 ∈ [0, 2�). We will simplify
the problem further by considering only real repeated scalar perturbations �i in the uncertainty structure (1), i.e. we will restrict



OLGA LIMANTSEVA ET AL 3

� to the set:
� = {diag(�1Ir1 ,… , �sIrs) ∶ �i ∈ ℝ, i = 1, 2,… , s} (6)

Alternatively we can define the uncertain implicit system via the state-space description in which:
[

M
N

]

=
⎡

⎢

⎢

⎣

A B
CM DM
CN DN

⎤

⎥

⎥

⎦

(7)

in which A, B, CM , CN , DM and DN are constant matrices of appropriate dimensions. Let � be a delay operator, then the
implicit form can be obtained as

(

I +
[

�I 0
0 Δ

] [

A B
CM DM

])[

x
z

]

= 0, (8)

[

CN DN
]

[

x
z

]

= 0. (9)

that is equivalent to

null
[

I + ΔSM
N

]

= 0, (10)

where ΔS = diag(�,Δ) is the uncertainty set.

FIGURE 1 An upper LFT of plant

The structured singular value (�) is a fundamental analysis and synthesis tool of Robust Control theory of input-output
models with several applications in model validation and the characterisation of robust stability and performance of dynamic
systems; see9,4,10,11,12,13,7 and references therein. The analysis of structured perturbations introduced in14 has been developed
and extended to various problems including general structured singular value problems9, mixed �-value problems10,11, lower
and upper bound estimation11, minimal magnitude norm perturbations in polynomials15,16, stability radii analysis17,12, pseudo
spectrum4, and many others.

Calculation of the exact �-value is an NP-hard problem. Thus, most optimisation techniques aim to evaluate tight upper and
lower bounds. Most upper bound calculations rely on convex relaxations and can be performed efficiently via Linear Matrix
Inequalities or other convex programming techniques.

In the Linear Time Invariant (LTI) case robust stability properties of an implicit system defined by the pair (M,N) can be
analysed using a Scaled Linear Fractional Transformation (SLFT). This leads to a generalised �-problem involving additional
constraints in the form of equation (10) which is formally defined in the next section. Since exact calculations are numerically
hard, it is more appropriate to develop optimisation procedures for lower and upper bounds. Calculation of an upper bound can
be achieved via a convex relaxation technique using Linear Matrix Inequalities, similar to the non-negative scaling approach
used for the standard problem18. Unfortunately, however, in contrast to the standard version of the problem, there is not sufficient
numerical experience to assess the effectiveness of this method, i.e. the proximity of the upper bound to the exact generalised �
value.

In this paper we focus on a special class of generalised � problems arising in robust stability analysis of uncertain implicit
systems involving repeated real scalar perturbations. It is shown that in this case the problem is equivalent to a standard �
problem arising in robust control of uncertain LTI input-output models which is well studied and for which several numerical
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algorithms are applicable. Our results are based on a matrix dilation technique and the redefinition of the uncertainty structure
of the transformed problem. The results of the paper are illustrated with a simple numerical example.

The paper is organised as follows. Section 2 contains some background results and highlights the importance of the implicit
framework. Section 3 adapts a technique established in a previous paper by the authors16 and introduces an alternative approach
for solving the generalised �-value problem arising in the analysis and synthesis of uncertain implicit systems. It is shown that
in the case of real repeated uncertain parameters, the problem can be expressed in the standard � setting using a matrix dilation
technique and by redefining the uncertainty structure. Both cases of real and complex matrix pair (M,N) are considered.

The notation used in paper is standard and is included here for convenience. ℝ,ℂ are the sets of real and complex numbers,
respectively. For a given matrix A ∈ ℂn×m the complex-conjugate transpose is denoted by A′. The characteristic polynomial of
A ∈ ℂn×n, det(�In−A), is denoted as �A(�) and the spectrum ofA as �(A). We define the right null-space (kernel) and the range
(column span) of A ∈ ℂn×m as (A) and(A), respectively. We also define rank(A) = dim((A)) and null(A) = dim( (A)).
The rank-nullity theorem then says that rank(A) + null(A) = m. N⊥ is a maximal rank right annihilator of N , i.e. NN⊥ = 0.
The singular values of A ∈ ℂn×m are denoted by �1 ≥ �2 ≥ ⋯ ≥ �min(n,m) ≥ 0. The spectral norm of A is defined as the largest
singular value, i.e. ‖A‖ = �1(A). A⊗ B denotes the Kronecker product of matrices A and B.

2 PRELIMINARIES AND PROBLEM DEFINITION

Robust stability of an implicit system can be evaluated via a Linear Fractional Transformation (LFT) of a nominal system and
an uncertainty structure7. Its canonical form is given by equation (10) in which M ∈ ℂn×n, N ∈ ℂm×n are given matrices
that characterise the system and � is a set of perturbations which in general combines different types of structured uncertainty.
This canonical representation can be derived either from transfer function or from a state-space description in discrete time (see
previous section)19,7 and leads to stability analysis under performance constraints.

The generalised structured singular value for implicit systems is defined as follows (see8,5,7 and19 for more details). Note
that the set � in the definition is restricted to the set of real repeated scalar parameters, which corresponds to the structure
considered in this paper. Although more general diagonal structures can be defined (combining real/complex and scalar/matrix
perturbations) these will not be considered here.

Definition 2. [7] LetM andN be real (or complex) matrices of dimension n× n and m× n, respectively, with m ≤ n Then, the
generalised structured singular value �̂Δ(M,N) of the implicit system is defined as:

�̂Δ(M,N) =
(

min
{

‖Δ‖ ∶ Δ ∈ �, null
[

In + ΔM
N

]

≠ 0
})−1

(11)

where
� = {diag(�1Ir1 , �2Ir2 ,… , �sIrs) ∶ �i ∈ ℝ, i = 1, 2,… , , s} (12)

in which
∑s
i=1 ri = n. If for all Δ ∈ � the nullity of the pencil is zero, then �̂Δ(M,N) = 0.

The standard definition of the structured singular value is also included below for completeness:

Definition 3. LetM ∈ ℝn×n (orM ∈ ℂn×n). Then the structured singular value ofM is defined as:

��(M) =
(

min{‖Δ‖ ∶ Δ ∈ �, det(In + ΔM) = 0}
)−1 (13)

where � is a set of structured perturbations defined in equation (12). If for all Δ ∈ � det(In + ΔM) ≠ 0, then we define
��(M) = 0.

Note again that although more general structures can be defined (combining real/complex and scalar/matrix perturbations),
we restrict Δ to the set defined in equation (12). It is clear that �̂Δ(M,N) in Definition 2 is a generalisation of ��(M) in
Definition 3 and that the two definitions coincide if N = 0. The rank of the matrices involved in both problems is full and
equal to n when Δ = 0. As the norm of Δ increases, while Δ varies within the structured set, the rank of the two matrices
may eventually drop. The minimum norm of Δ at which this occurs (if it does) defines the structured and generalised structured
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singular value, respectively. If the rank remains equal to n irrespective of the size of the norm, then the structured singular value
(resp. generalised structured singular value) is defined as zero.

The computational difficulties of the standard �-problem are amplified in the general case. Thus, it is more promising to rely
on the lower and upper bound calculations in this case as well. The lower bound can be obtained by maximising the modulus of
a generalised eigenvalue of a pair of matrices over a bounded structured set. This procedure inherits the problems of algorithms
corresponding to the standard �-problem by exhibiting multiple local maxima.9. Fundamental work on upper-bound estimation
of the generalised �-value has been reported in19,7,5 and8. Reference8 uses the right annihilator of N to transform the nullity
constraint:

null
[

In + ΔM
N

]

≠ 0⇐⇒ null(N⊥ + ΔMN⊥) ≠ 0 (14)

and then applying convex relaxations to calculate the upper bound of �̂(M,N)8 based on a scaling technique. Consider a set X
of positive scaling matrices X that commute with the structure of �, i.e.

X = diag(X1, X2,… , Xs), Xi = X′
i > 0, Xi ∈ ℝri×ri (15)

Then an upper bound of �Δ(M,N) is obtained as:

�̂�(M,N) = inf{� > 0 ∶ ∃X ∈ X ∶M ′XM − �2X −N ′N < 0} (16)

Unfortunately the class of �-simple structures for which this convex bound coincides with the actual value of �̂�(M,N) is rather
restricted as shown in the following result:

Theorem 1 (8). In the implicit case the following are simple-� structures:

(i) {Δ = �I ∶ � ∈ ℂ}.

(ii) Full real blocks: Δ = diag(Δ1,… ,ΔF ) ∶ Δi ∈ ℝni×ni , F ≤ 2 forM ,N real.

(iii) Full complex blocks: Δ = diag(Δ1,… ,ΔF ) ∶ Δi ∈ ℂni×ni , F ≤ 3

The following section develops an alternative methodology for calculating �̂�(M,N). This is based on a matrix dilation
technique and the transformation of the uncertainty structure �. It is shown that the transformed problem is equivalent to a
standard �-problem. This is potentially significant since, in contrast to �̂�(M,N) computational experience with � calculations
is extensive.

3 EQUIVALENCE BETWEEN � AND GENERALISED � PROBLEM ARISING IN
UNCERTAIN IMPLICIT SYSTEMS

3.1 Implicit structured singular value
Let M ∈ ℝn×n and N ∈ ℝm×n with m ≤ n. We consider the �̂�(M,N) problem defined in equation (11). The uncertainty
structure � throughout the rest of the paper is assumed to be as defined in equation (12). Before stating the main result of the
paper we need the following lemma.

Lemma 1. LetM ∈ ℝn×m, n ≥ m and define:

A =
[

In M
M ′ 0m

]

∈ ℝ(n+m)×(n+m) (17)

Then null(M) = null(A). In particularM has full column rank if and only if matrix A is nonsingular.

Proof. Let Rank(M) = r andM = UΣV ′ be the singular value decomposition ofM withUU ′ = U ′U = In, V V ′ = V ′V = Im
and

Σ =
[

Σr 0
0 0

]

, Σr = diag(Σr) ∈ ℝr×r, det(Σr) ≠ 0
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Then:
[

U ′ 0
0 V ′

]

A
[

U 0
0 V

]

=

⎡

⎢

⎢

⎢

⎢

⎣

Ir 0 Σr 0
0 In−r 0 0
Σr 0 0 0
0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎦

and hence:
Rank(A) = n − r + Rank

[

Ir Σr
Σr 0

]

= n + r

Hence from the rank-nullity theorem null(A) = n + m − (n + r) = m − r = null(M) as required. The equivalence between the
conditions: (i)M is full column rank, and (ii) A is nonsingular follows in the special case r = m.

The following Lemma is standard but is included here for ease of reference.

Lemma 2. Let A ∈ ℝm×n, B ∈ ℝn×m with n ≥ m. Then null(In + BA) = null(Im + AB).

Proof. First note that
[

In B
0m,n Im

] [

0n,n 0n,m
A AB

] [

In −B
0m,n Im

]

=
[

BA 0n,m
A 0m,m

]

Thus the two matrices:
[

0n,n 0n,m
A AB

]

and
[

BA 0n,m
A 0m,m

]

are similar and hence:
�ndet(�Im − AB) = �mdet(In − BA)⇔ �n−m�AB(�) = �BA(�)

and hence
�Im+AB(�) = �

q
∏

i∈Z
(� − �i(AB) − 1), Z = {i ∶ �i(AB) ≠ −1}

and
�In+BA(�) = �

q(� − 1)n−m
∏

i∈Z
(� − �i(AB) − 1)

Hence null(Im + AB) = null(In + BA) = q, the algebraic multiplicity of the eigenvalue � = −1 of AB (or BA).

The following Theorem which is our main result shows the equivalence between � and generalised � in the real-valued case.

Theorem 2. ConsiderM ∈ ℝn×n andN ∈ ℝm×n with m ≤ n. Then,

�̂�(N,M) = ��̃(M̃), (18)

where �̂�(N,M) denotes the generalised structured singular value of the pair (N,M) with respect to structure � as defined
in Definition 2 and ��̃(M̃) denotes the structured singular value of M̃ with respect to structure �̃ as defined in Definition 3 in
which

M̃ = P ′
[

(I +N ′N)−1M ′ N ′N(I +N ′N)−1

−M(I +N ′N)−1M ′ M(I +N ′N)−1

]

P (19)

Further,

� = {diag(�1Ir1 ,… , �sIrs) ∶ �i ∈ ℝ, i = 1, 2,… , s} ⊆ ℝn×n (20)
�̃ = {diag(�1I2r1 ,… , �sI2rs) ∶ �i ∈ ℝ, i = 1, 2,… , s} ⊆ ℝ2n×2n (21)

and P is a permutation matrix such that diag(�,�) = P �̃P ′.

Proof. From Lemma 1 it follows that

� = null
[

I + ΔM
N

]

= null
⎡

⎢

⎢

⎣

In 0 In + ΔM
0 Im N

In +M ′Δ N ′ 0

⎤

⎥

⎥

⎦
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which is equivalent to:

� = null

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

⎡

⎢

⎢

⎣

In 0 In
0 Im N
In N ′ 0

⎤

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
Φ

+
⎡

⎢

⎢

⎣

0 In
0 0
M ′ 0

⎤

⎥

⎥

⎦

[

Δ 0
0 Δ

] [

In 0 0
0 0 M

]

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(22)

Let Δ ∈ � and introduce a permutation matrix P such that diag(Δ,Δ) = Pdiag(Δ̃)P ′, Δ̃ ∈ �̃. (This is just a “reshufling” of
diag(Δ,Δ)). Let Φ be as defined in equation (22). From Lemma 1, Φ is non-singular. Then, using Lemma 2,

� = null
⎧

⎪

⎨

⎪

⎩

I2n + P ′
[

In 0 0
0 0 M

]

Φ−1
⎡

⎢

⎢

⎣

0 In
0 0
M ′ 0

⎤

⎥

⎥

⎦

P Δ̃

⎫

⎪

⎬

⎪

⎭

On noting (after some algebra) that

Φ−1 =
⎡

⎢

⎢

⎣

N ′N(I +N ′N)−1 −(I +N ′N)−1N ′ (I +N ′N)−1

−N(I +N ′N)−1 I −N(I +N ′N)−1N ′ N(I +N ′N)−1

(I +N ′N)−1 (I +N ′N)−1N ′ −(I +N ′N)−1

⎤

⎥

⎥

⎦

we conclude that:
� = null

[

In + ΔM
N

]

= null(I2n + M̃Δ̃)

where
M̃ = P ′

[

(I +N ′N)−1M ′ N ′N(I +N ′N)−1

−M(I +N ′N)−1M ′ M(I +N ′N)−1

]

P

and Δ̃ ∈ �̃. Furthermore, Δ ∈ � ⇐⇒ Δ̃ ∈ �̃ and ‖Δ‖ = ‖Δ̃‖. Since
{

null
[

In + ΔM
N

]

≠ 0,∀Δ ∈ �
}

⇐⇒
{

det(I2n + Δ̃M̃) ≠ 0,∀Δ̃ ∈ �̃
}

we conclude that
�̂�(N,M) = 0 ⇐⇒ ��̃(M̃) = 0.

Similarly, if �̂�(N,M) ≠ 0 we conclude that

�̂−1� (N,M) = min
{

‖Δ‖ ∶ Δ ∈ �, null
[

In + ΔM
N

]

≠ 0
}

= min
{

‖Δ̃‖ ∶ Δ̃ ∈ �̃, det(I2n + Δ̃M̃) = 0
}

= �−1�̃ (M̃)

and hence �̂�(N,M) = ��̃(M̃) as required.

Remark 1. Note that the augmentation (18) doubles the number of uncertain parameters computational complexity of the �
calculation may be significant. For the complex data case considered in the next section the number of uncertain parameters
increase by a factor of four.

Remark 2. In the standard robust interpretation of the implicit-systems problem matrices M and N are in general complex
since they arise by evaluating rational functions of the Z-transform variable z on the unit circle. Real data matrices M and
N result only when these two transfer functions are evaluated at z = 1 or z = � (equivalently at the zero or half-Nyquist
angular frequency � rads per sample). There are, however, other constant problems with real data which do not involve this
frequency-response interpretation, e.g. model validation problems, see Paganini, Analysis of Implicit Uncertain Systems part
II: Constant Matrix Problems and Application to RobustH2 Analysis. In reference16 we analyse an approximate GCD problem
for multiple polynomials with real coefficients and perturbations via a structured Sylvester resultant approach which has a very
similar structure to the implicit systems problem considered here.



8 OLGA LIMANTSEVA ET AL

Theorem 2 shows that the standard �-problem and the generalised-� problem are essentially equivalent. In particular, all
theoretical results and numerical algorithms developed for the solution of the former can also be applied directly to the later.
This is significant since � is a well studied problem, with an extensive range of theoretical and numerical work devoted to its
calculation.

3.2 The case of complex matricesM andN
Consider nowM ∈ ℂn×n and Δ ∈ ℝn×n. Then we have the following result:

Lemma 3. LetM = X + iY ∈ ℂn×n, X ∈ ℝn×n, Y ∈ ℝn×n and Δ ∈ ℝn×n. Then det(I + ΔM) = 0 if and only if

det
{

I2n +
[

Δ 0
0 Δ

] [

X −Y
Y X

]}

= 0. (23)

Proof. Assume that det(I + ΔM) = 0. Then there exists � = � + i� ∈ ℂn, �, � ∈ ℝn, � ≠ 0 such that

ΔM� = −� ⇐⇒ Δ(X + iY )(� + i�) = −� − i�,
[

�
�

]

≠ 0

This is further equivalent to:

ΔM� = −� ⇐⇒
ΔX� − ΔY � = −�
ΔY � + ΔX� = −�

}

,
[

�
�

]

≠ 0

⇐⇒

[

I + ΔX −ΔY
ΔY I + ΔX

] [

�
�

]

= 0,
[

�
�

]

≠ 0

⇐⇒ det
{

I2n +
[

Δ 0
0 Δ

] [

X −Y
Y X

]}

= 0.

This completes the proof.

The following Lemma is a direct consequence of Lemma 3:

Lemma 4. Let M = X + iY ∈ ℂn×n, X ∈ ℝn×n, Y ∈ ℝn×n, N = A + iB ∈ ℂm×n, A ∈ ℝm×n, Y ∈ ℝm×n with m ≤ n and
Δ ∈ ℝn×n. Then:

null
[

In + ΔM
N

]

≠ 0 ⇐⇒ null

⎡

⎢

⎢

⎢

⎢

⎣

In + ΔX −ΔY
ΔY In + ΔX
A −B
B A

⎤

⎥

⎥

⎥

⎥

⎦

≠ 0 (24)

Proof. Note that:

null
[

In + ΔM
N

]

≠ 0 ⇐⇒ ∃x ≠ 0, x ∈ (I + ΔM) ∩ (N)

From Lemma 3 this is equivalent to the existence of a vector � ≠ 0 such that:
(

I2n + (I2 ⊗ Δ)
[

X −Y
Y X

])

� = 0 and
[

A −B
B A

]

� = 0

which is also equivalent to the condition stated in the RHS of equation (24).

The next Theorem generalised Theorem 2 to the case of complexM and N matrices. The solution involves only real data.
This is achieved at the expense of dilating the uncertainty structure.

Theorem 3. LetM = X + iY ∈ ℂn×n, N = A + iB ∈ ℂm×n, where X ∈ ℝn×n, Y ∈ ℝn×n, A ∈ ℝm×n, B ∈ ℝm×n and m ≤ n.
Then,

�̂�(M,N) = ��̃(M̃) (25)
where

M̃ = P ′
[

(I2m + Ñ ′Ñ)−1Ω Ñ ′Ñ(I2m + Ñ ′Ñ)−1

−Ω(I2m + Ñ ′Ñ)−1Ω′ Ω(I2m + Ñ ′Ñ)−1

]

P , (26)
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� is defined in equation (12), �̃ = {diag(�1I4r1 ,… , �sI4rs) ∶ �i ∈ ℝ}, P is a permutation matrix such that P (I4 ⊗ �)P ′ = �̃,

Ñ =
[

A −B
B A

]

and Ω̃ =
[

X −Y
Y X

]

Proof. Applying Lemma 4 gives:

� = null
[

In + ΔM
N

]

≠ 0 ⇐⇒ null

⎡

⎢

⎢

⎢

⎢

⎣

In + ΔX −ΔY
ΔY In + ΔX
A −B
B A

⎤

⎥

⎥

⎥

⎥

⎦

≠ 0

and hence from Lemma 1, � ≠ 0 if and only if, assuming that Δ ∈ �:

� = null

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

In 0 0 0 In + ΔX −ΔY
0 In 0 0 ΔY In + ΔX
0 0 Im 0 A −B
0 0 0 Im B A

In +X′Δ Y ′Δ A′ B′ 0 0
−Y ′Δ In +X′Δ −B′ A′ 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

≠ 0

This is equivalent to:

null

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Φ +

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 ΔX −ΔY
0 0 0 0 ΔY ΔX
0 0 0 0 0 0
0 0 0 0 0 0

X′Δ Y ′Δ 0 0 0 0
−Y ′Δ X′Δ 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

≠ 0 (27)

where we have defined:

Φ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

In 0 0 0 In 0
0 In 0 0 0 In
0 0 Im 0 A −B
0 0 0 Im B A
In 0 A′ B′ 0 0
0 In −B′ A′ 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Note that from Lemma 1 matrix Φ is nonsingular. The second matrix in equation (27) can be factored as:

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 In 0
0 0 0 In
0 0 0 0
0 0 0 0
X′ Y ′ 0 0
−Y ′ X′ 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(I4 ⊗ Δ)

⎡

⎢

⎢

⎢

⎢

⎣

In 0 0 0 0 0
0 In 0 0 0 0
0 0 0 0 X −Y
0 0 0 0 Y X

⎤

⎥

⎥

⎥

⎥

⎦

Next define permutation matrix P such that

P (I4 ⊗ Δ)P ′ = Δ̃ = diag(�1I4r1 ,… , �sI4rs)

(this is just a reshuffling of the diagonal entries of I4⊗Δ). Using Lemma (2) then shows that � ≠ 0 if and only if null(I4n+M̃Δ̃) ≠
0 where

M̃ = P ′

⎡

⎢

⎢

⎢

⎢

⎣

In 0 0 0 0 0
0 In 0 0 0 0
0 0 0 0 X −Y
0 0 0 0 Y X

⎤

⎥

⎥

⎥

⎥

⎦

Φ−1

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 In 0
0 0 0 In
0 0 0 0
0 0 0 0
X′ Y ′ 0 0
−Y ′ X′ 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

P

Using the definitions of � and �̂ establishes (25). The expression of M̃ given in equation (26) follows after several intricate but
straightforward calculations.
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4 NUMERICAL EXAMPLE

In this section we illustrate our results with a simple numerical example. Consider an implicit dynamic system defined by the
pair (N̂(�), M̂(�)) where � is the unit delay operator,

M̂(�) =
[

� �2

0 �

]

and N̂(�) =
[

� −1
]

Uncertainty in the model is introduced as an upper linear fractional transformation of
[

M̂(�)
N̂(�)

]

with diag(�1, �2) where �1 and

�2 are real uncertain parameters (see Figure 1). Thus the set of all perturbations is

� = {diag(�1, �2) ∶ �i ∈ ℝ, i = 1, 2}

Evaluating M̂(�) and N̂(�) at zero frequency (� = 1) gives:

M ∶= M̂(1) =
[

1 1
0 1

]

, N ∶= N̂(1) = [1 − 1]

Then for Δ ∈ �:
[

I2 + ΔM
N

]

=
⎡

⎢

⎢

⎣

1 + �1 �1
0 1 + �2
1 −1

⎤

⎥

⎥

⎦

loses rank if and only if there exists (x, y)′ ∈ ℝ2, (x, y) ≠ 0 such that

⎡

⎢

⎢

⎣

1 + �1 �1
0 1 + �2
1 −1

⎤

⎥

⎥

⎦

[

x
y

]

= 0

which implies that x = y ≠ 0, �1 = −
1
2
and �2 = −1. Thus �̂�(N,M) = 1. Next write

⎡

⎢

⎢

⎣

I2 02,1 I2 + ΔM
01,2 1 N

I2 +M ′Δ N ′ 0

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 1 + �1 �1
0 1 0 0 1 + �2
0 0 1 1 −1

1 + �1 0 1 0 0
�1 1 + �2 −1 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

which can be decomposed as

⎡

⎢

⎢

⎣

I2 02,1 I2 + ΔM
01,2 1 N

I2 +M ′Δ N ′ 0

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 1 0
0 1 0 0 1
0 0 1 1 −1
1 0 1 0 0
0 1 −1 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 �1 �1
0 0 0 0 �2
0 0 0 0 0
�1 0 0 0 0
�1 �2 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

Then Theorem 2 says that �̂�(N,M) = ��̃(M̃) where

M̃ =

⎡

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0
0 0 0 1 1
0 1 0 0 0
0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 1 0
0 1 0 0 1
0 0 1 1 −1
1 0 1 0 0
0 1 −1 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

−1
⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 1 0 0
0 0 0 1
0 0 0 0
1 0 0 0
1 0 1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

and
�̃ = {diag(�1, �1, �2, �2); �1, �2 ∈ ℝ}

The singular values of M̃ are:

{3.29623546, 0.78314066, 0.69807278, 0.18497798}
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Setting Δ = diag(− 1
2
,− 1

2
,−1,−1) verifies that det(I4 + M̃Δ) = 0 so that ��̃(M̃) ≥ 1. Using Matlab’s mussv function gives the

convex upper bound of ��̃(M̃) ≤ 1.000599. Thus,

1 ≤ ��̃(M̃) ≤ 1.000599 (28)

Using the symbolic Matlab toolbox the solutions of equation det(I4 + M̃Δ) = 0 are obtained as

�2 = −1 ± i
2�1 + 1

√

�21 + 2�1 + 2

and hence the only real solutions are �1 = −
1
2
and �2 = −1 as expected. Thus, ��̃(M̃) coincides with the lower bound given in

equation (28) and is equal to �̂�(N,M).

5 CONCLUSION

The paper has defined and developed a framework for calculating the generalised structured singular value of implicit systems
in the case of real scalar repeated perturbations. By dilating the problem it is shown that it is equivalent to a standard structured
singular value calculation for which extensive numerical algorithms are available. Our approach applies to implicit systems
described by both real and complex data. Extensions to more general classes of uncertainty are currently under investigation.
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