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Abstract 
 

One of typical bases for floating offshore wind turbines is the barge platform that has merits 

of simpler structure and lower costs, but disadvantages of significant responses in waves. In 

order to improve the hydrodynamic performance of the barge platforms, in this paper a novel 

Air cushion Barge Platform (ACBP) is proposed, into which multiple air chambers are 

incorporated to mitigate the wave loads and reduce the dynamic motions due to waves. 

However, there is a lack of analytical tools that can evaluate the stability of the ACBP with 

multi-air cushions at large angles. To address this issue, an analytical method is developed for 

evaluating the stability of the ACBP in the whole range of trim angles, including very large 

angles with possible emergence of the platform bottom and so with air leakage from a few 

chambers before capsized. The newly proposed analytical method is calibrated by the CFD 

results, and then is employed for investigating the static and dynamic stability of the ACBP 

for a typical design. 

Keywords: Offshore Wind Turbine (OWT); Air cushion Barge Platform (ACBP); Stability 

performance; Large angle 

1. Introduction 

 

There are two main types of offshore wind turbines (OWT): the fixed OWT and the 

floating one. In general, the fixed one works in shallow water or moderate deep water (e.g. 

less than 50m), but its cost increases very quickly with the water depth. The floating one is 

generally employed in the deep water. Because the floating one can be built and assembled in 

the shipyard, and then be towed to the working sea, its cost is not very sensitive to the water 

depth. 

The wind energy in deep seas is more plentiful and steady than at near shore seas. 

Moreover, in deep seas the wind turbines have less impact on human activities. So it can be 

predicted that the wind energy exploitation will gradually moves to the deep seas, where the 

floating supporting platforms are more suitable for the OWT. There are mainly four types of 

supporting platforms for floating OWT (FOWT): spar-buoy, tension-leg platform (TLP), 



 

 

semi-submersible platform and barge [1]. It is considered that the water depth for spar-buoy 

platform should be more than 100m [2] and 70m for TLP. The semi-submersible platform and 

barge do not have special requirement for water depth, but the barge is more adaptable to 

relatively shallower water depth. Besides, the barge has simpler structure, which makes it 

possible to be built using low-cost concrete. However, the seakeeping motion of the barge in 

large waves is more significant than the semi-submersible one [3]. Nonetheless, it can be 

improved by the high cost-effective passive damping systems. 

There are mainly four types of passive damping systems: Tuned Liquid Column Damper 

(TLCD), Tuned Mass Damper (TMD), Open-bottom Tank (OBT) and Heave Bottom Plate 

(HBP) [4]. It was found that the TLCD and TMD can considerably reduce the pitch motion 

[5-9], and the OBT and HBP can effectively reduce the pitch but also the heave motions [10]. 

The OBT is more suitable, because it is more economically attractive, and the air cushion 

trapped in the OBT can reduce the wave loads as well as the bending moment acting on whole 

structures. Pinkster et al. experimentally and numerically studied the behavior of a large 

air-supported mobile offshore base, which shows that the midship bending moment can be 

reduced by air cushion [11]. Kessel studied the effect of air cushion division on the structural 

load of large floating offshore structures, and a significant reduction of bending moment was 

obtained [12]. 

Besides, the air cushion can provided buoyancy to reduce the draft, which is very beneficial 

for the transportation of the FOWT through shallow water. It has been known for a long time 

that the air cushion was used to increase the buoyancy of bottom-founded structures, which 

can reduce the draft of structure to allow transportation over a shallow water area [13-15]. 

The OBT has internal water free surface and trapped air above it, and so the structures with 

OBT are also called air cushion or air supported floating structures (ASFS). The water inside 

the structure is connected to the water outside. The internal free surface and trapped air bring 

difficulties to stability analysis.Although it is similar to damaged ships in the sense that the 

internal and external water is connected, the air above the internal free surface is assumed to 

be open to the atmosphere [16] for stability analysis of damaged ships. Therefore, the 

well-developed methods for analyzing damaged stability of ships cannot be used for the 

stability analysis of the ASFS.  

Nonetheless, some efforts have been devoted to evaluating the stability of the ASFS 

literature. Bie at al. studied the static stability of air floated structures consisting of three small 

buoys, and an air-floating force reduction factor is put forward to embody the differences 



 

 

between the air floated structures and ordinary floating structures in buoyancy variations 

[17][18]. They assumed that the buoys are axisymmetric and small in diameter with thin walls, 

and that the solid parts of the structure always submerge in water without air leakage, 

implying that the trim or heeling angle are limited. Ding et al. considered the case with 

multiple air cushions in one floating body and studied the towing motion characteristics of 

composite bucket foundation for OWT [19]. They gave some idea about how to calculate the 

stability but did not give enough details. Their focus was the motions of CBF which just 

needs initial stability properties. Liu et al. [20-21] studied a similar air cushion structure to 

that in [17], and gave only the properties of initial stability. Chenu at al. [22] presented their 

experimental investigations on initial stability of a structure with two air chambers, 

complementing to that studied by Pinkster et al [11]. Thiagarajan [23] dedicated their study on 

the stability of a multi-chamber air cushion structure with a thin wall at the small trim and 

heeling angles by linearizing the pressure expression in air cushion. Kessel[24] presented the 

air cushion supported structures numerically and experimentally. In the work, they described 

the principle for analyzing large angle on stability in term of air cushion reduction factor but 

gave only its expression for small angle or displacement, without the results for righting 

moment at large angles. Their theory did not consider possible air escaping from underneath 

the structure at large trim or heeling angle like in [17]. 

In summary, most publications for the air cushion supported structures with multi air 

chambers studied only their initial stability (i.e., small trim or heeling angles), a few gave 

some idea about analyzing the stability without results at large angles, but none has 

considered the stability at very large angles with a possibility of emergence of structural 

bottom and so leakage of air. In practice, one should consider the static and dynamic stability 

of the structures during design. For analyzing the dynamic stability, one does need the 

righting moment in the whole range of trim or heeling angles until capsized. 

In this paper, we will present a method and corresponding equations for analyzing the 

stability of a structure with multi-air cushions, the ACBP, in the whole range of trim or 

heeling angles, including the air leakage from a few air chambers before capsized.The 

principle may also be applied to other types of air cushion structures.For ease of discussions, 

the concept of the ACBP was presented firstly. Then an analytical method was developed for 

evaluating the stability of the ACBP with validation by CFD calculating results. Finally the 

stability properties of the ACBP were investigated. 

2. Concept of ACBP 



 

 

 

Many researchers have investigated the concepts or stabilities of OBT and ASFS. Typical 

works are as follows. Ma and Patel have incorporated 8 OBTs into a spar platform, in which 

the water columns can flow in and out through open bottoms and the trapped air above water 

columns acts as a spring [25]. Bie et al. [26], Chenu at al. [22] and Kessel[24] found that, if 

the platform is completely supported by a large single air cushion, the stability will deteriorate 

due to the fact that the relative center of buoyancy is not shifted when the platform heels. It 

can be improved by increasing the thickness of vertical walls around the air cushion or 

subdividing the air cushion into multiple compartments. 

In this paper, a new structure named Air cushion Barge Platform (ACBP) was presented for 

offshore wind turbines, which is formed by incorporating the subdivided air chambers and a 

ballast tank onto a barge, as shown in Figure 1. The barge platform and the ballast tank are 

connected by a truss (see Figure 1a), which is similar to the structure of the Truss-Spar 

platform. The barge platform consists of a buoyancy tank, internal air chambers and a central 

moon pool (Figure 1b). The air chambers uniformly distribute around the central moon pool 

(Figure 1c). Moreover, the bottom of the buoyancy tank was equipped with a damping plate 

to increase the heave damping and reduce the heave response. 

 

(a) 

 

(b) 

 

(c) 

Figure 1. The sketch of Air cushion Barge Platform (ACBP) 



 

 

The buoyancy tank is the main part of the barge platform, which provides the main 

buoyancy for the system. The air in the chambers plays the role of air springs to mitigate the 

wave loads and reduce the motion response. Obviously, the air chambers can provide positive 

buoyancy if the water level in air chambers is lower than the external one. Inversely, the 

buoyancy is negative if the water level in air chambers is higher than the latter. 

The ballast tank can help lowering the center of gravity (COG) and so increasing the 

stability performance. Besides, the ballast tank can also play the function of damping plate to 

increase the heave damping and reduce the heave response. 

The barge platform can climb up and down along the truss with the help of hoisting 

equipment. As a result, the drought of the ballast tank can be adjusted to adapt to the water 

depth, which makes the ACBP be possible to be transported through the shallow water as 

whole after built and assembled in shipyard, helping reducing installation time on site and 

costs. The conceptional design parameters are shown in Table 1. 

Table 1. The principal parameters of the ACBP 

Internal radius of air cushion R1 5.6 m Installed draft 20.0 m 

External radius of air cushion R2 14.0 m Buoyancy tank draft d 6.18 m 

External radius of buoyancy tank R3 18.0 m Number of air chambers 8 

Radius of ballastR4 20.0 m Ballast mass 2,000,000 kg 

Radius of damping skirt 20.0 m Total mass 2,704,000 kg 

Deck clearance zf0 4.0 m COG of ACBP (0.0, 0.0, -14.65) m 

Free Surface in air cushion za0 0.0 m COG of ACBP-OWT (0.0, 0.0, 1.468) m 

*COG is the center of gravity 

Table 2. The principal parameters of the NREL-5MW Offshore Wind Turbine (OWT) 

Rotor orientation, configuration Upwind, 3 Blades Rotor diameter Drotor 126m 

Rated tip speed Vtip-R 80m/s Hub diameter Dhub 3m 

Hub height Hhub 90 m Cut-in wind speed Vin 3m/s  

Rotor mass mrotor 110,000 kg Rated wind speed Vrated 11.4m/s  

Nacelle mass mnacelle 240,000 kg Cut-out wind speed Vout 25m/s  

Tower mass mtower 347,460 kg Cut-in rotor ωin 6.9rpm 

Overall COG location GCOG (-0.2, 0.0, 64.0) m Rated rotor ωrated 12.1rpm 

For this conceptional design, the NREL-5MW Offshore Wind Turbine (OWT) is selected. 

For simplicity, the combined system of the NREL-5MW OWT and ACBP is called 

ACBP-OWT. The main parameters of the NREL-5MW OWT is shown in Table 2 [27-28].  



 

 

Other turbines may be employed with different parameters. 

Obviously, the stability performance of the ACBP-OWT is vital and must be evaluated 

carefully. However, the air cushion makes the problem very complex and different from 

conventional ones due to the following facts. 

1) The righting moment is provided by the buoyancy of structure and air cushion, which 

might affect each other. 

2) The compressibility of the air cushion makes their displacement vary. 

3) The shape of immersion volume can be very complicated at large heeling/trim angles 

due to the possibility that the wet deck or free board is immersed into water. 

4) Some air chambers might open to atmospheres at large heeling/trim angles, and suddenly 

completely lose the buoyancy, but others still submerge in water. 

The stability of ACBP-OWT is similar to the second and third type of damage stability in 

ships, but there exist some significant differences. In ships’ damage stability, the air above the 

internal free surface is assumed to be open to the atmosphere, so the well-developed theories 

of damage stability in ships cannot work for analyzing the stability of ACBP-OWT. 

There are some stability theories of air-cushion supported floating structures, but they 

cannot analyze the stability performance of ACBP-OWT adequately. Firstly, the existing 

methods aims to analyzing the initial stability at little trim angles, which may be invalid at 

large trim angles due to the strong nonlinear effects. Secondly, the intercoupling between 

structure and air-cushion is not appropriately taken into account, and it should be analyzed 

appropriately when ACBP-OWT locates at large trim angles. Thirdly, the righting moment in 

the whole range of trim until capsized will be studied, and the structural bottom will emerge at 

very large angles and the air leakage cannot be ignored, which is not considered in previous 

studies. Lastly, the shape of air-cushion in ACBP-OWT is very complicated, which make it 

difficult calculate the center of gravity and buoyancy. Thereby, the existing stability methods 

cannot be directly used for analyzing the stability of ACBP-OWT, and a new stability 

analysis method will be developed for this novel system. 

3. Theoretical analysis of stability 

 

According to the above discussions, the existing stability methods cannot be directly 

applied to the ACBP-OWT, so we need to develop a new stability analysis method. The 

righting moment of the system can be divided into two parts for any given trim angle, that is 

SAR
MMM +=                               (1) 

where MA is the contribution of air cushion, MS the contribution due to the displacement and 



 

 

weight of structures,which is made up by the contribution of buoyancy tank, ballast tank and 

gravity, that is 

gbalBTS
MMMM ++=                           (2)

 

Where MBT and Mbal are the moment of buoyancy provided, respectively, by the buoyancy 

tank and the ballast tank, and Mg is the moment of gravity.
 

On the other hand, the righting moment can be written as 

RRR
LFM =                                (3) 

where FR is the righting force and LR is the arm of FR. It is noted that the wetted volume and 

shape of structures may be different at different trim/heeling angles and so the above 

components of moments are dependent on each other, which cannot be estimated separately. 

 

(a)                             (b) 

Figure 2.Definition of the coordinate systems 

Since the ACBP is symmetric about the horizontal axes, only trim and sinkage are 

investigated in this paper, though the method can be extended to consider more general cases. 

As shown in Figure 2a, the ACBP-OWT floats vertically at undisturbed floating state without 

any angle.L is its center line and intersects with free surface (FS) at Point O. Let O-xyz be the 

body-fixed coordinate system. At the undisturbed floating state, x-axis is the horizontal axis 

pointing to the right direction, and z-axis is the vertical axis pointing upwardly. Let O-x’y’z’ 

be the accompanied coordinate system, which is parallel to O-xyz at the undisturbed floating 

state, and always shares the same origin as the O-xyz but does not rotate with it as indicated in 

Figure 2b. 

If an external moment ME is applied to the system, the ACBP-OWT will move to a new 

floating state, in which the righting moment MR can balance the external ME, as shown in 

Figure 2b at an angle. In the O-xyz coordinate system, let (xg, yg, zg) be the COG of the 

ACBP-OWT and (xbal, ybal, zbal) be the centroid of ballast tank. In the defined coordinate 



 

 

system, xg=yg=xbal=ybal=0, let θ be the trim angle of the system at the new equilibrium state 

under action of the external moment. Then Mbal and Mg can be obtained directly by 

' sing g gM mgx mgz = − = −                           (4) 

' sinbal bal bal bal balM gV x gV z  = =                      (5) 

where xg’ and xbal’ are the x-coordinate of the COG and the centroid of ballast tank in the 

O-x’y’z’ coordinate system, respectively; and Vbal the volume of ballast tank. 

At the new equilibrium state, the positions of external and internal free surfaces are 

unknown. The details below will be given for finding them. 

3.1 Equations for the relative positions of internal and external water surface at new 

equilibrium state 

At the new equilibrium state, the system has an angle and also a sinkage relative to the 

undisturbed state, leading to different positions of internal and external water surfaces relative 

to the coordinate systems. At this state, two conditions should be satisfied. One is that the 

total buoyancy is constant. The other is that the ideal gas state equation is satisfied in every air 

chamber. There are three compression models for gas in air chamber, which are the 

isothermal process, isochoric process and adiabatic process. In isochoric process model, the 

air is considered incompressible that is used in the third type of damage stability. In this paper, 

the three compression models for gas in air chamber are all studied for the comparison 

purpose. 

 

(a)                                (b) 

Figure 3. Sketch of ith air chamber in undisturbed floating state and new equilibrium state 

Let V0i andP0i be the volume and pressure, respectively, of the ith air chamber at 

undisturbed floating state (shown in Figure 3a); Viand Pi be those at the new equilibrium state 



 

 

(shown in Figure 3b), respectively. Then if no air leaks from the ith air chamber, one obtains 

iiii
VPVP =

00
                               (6) 

in which 

)(
0000 iaifii

zzSV −=                           
(7) 

)(
00 iaai

zgPP −+=                             (8) 

Wherezf0i and za0i are the z-coordinates of the centroid of the top surface of ith air chamber 

and the internal free surface in it, respectively;S0iis the horizontal section area of ith air 

chamber, Pa the standard atmospheric pressure. 

Let t and zai’ be the z-coordinates of external and internal free surface in the O-x’y’z’ 

coordinate system, respectively, and zai be the z-coordinate of internal free surface centroid in 

the O-xyz coordinate system. Then Vi and Pi can be written as 

)(
00 aiifii

zzSV −=                           (9) 

)'-( tzgPP
aiai
++=                           (10) 

where Si is the area of internal free surface at the new equilibrium state and Eq. 9 will be 

proved later in Eq. 21. 

Providing that the ballast tank is always under water, the sum of buoyancy from air 

chambers and buoyancy tank keeps constant, i.e. 

1
0

n

i BTi
F g V

=
 +  =                        (11) 

where ΔVBT is the increase of the displacement volume of the buoyancy tank, ΔFi is the 

increase of buoyancy from ith air chamber and can be obtained from 

)'()()(
0000

tSzSzSgSPPSPPF
iaiiiaiiaiiaii
+−=−−−= 

    (12) 

Combining Eqs. 6-12, one can solve zai and t, and thus the new equilibrium state is obtained 

now. 

3.2 Righting moment of the air cushion 

At the undisturbed floating state, the sketch of the ith air chamber is shown in Figure 4, 

where ABCD is the internal free surface and Oi its centroid, li the centre line that connects the 

centroid of the wetted surface and internal free surface. The horizontal cross-section of the 

internal free surface is shown in Figure 4b, where EF is the symmetric line of ABCD, φi the 

angle from Ox to OE,α1i and α2i the angles from OE to OB and OA, respectively. 

Assuming that the internal and external radius of the ith air chamber is R1 and R2, 

respectively, the area of ABCD can be calculated by 
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(a) 

 

(b) 

Figure 4.Sketch of the ith air chamber 

If O1i, O2i are the centroid of area AOB, COD, respectively, the distance from Oi to L is 
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in which, OO2i=2R2/3, OO1i=2R1/3. 

At the new equilibrium state, the internal free surface moves to A’B’C’D’, as shown in 

Figure 5, in which the centroid is Oi’. For the convenience of analysis, the internal free 

surface ABCD and A’B’C’D’ were enforced to move along the center line L untilza0i = 0 and 

zai’ = 0, as shown in Figure 6, which does not falsify the conclusion. It is assumed that P and 

P’ are points on AB and A’B’, respectively, and PP’ is a line on surface ABB’A’ that parallels 

to AA’. 

  

Figure 5.The sketch of the internal free surface at 

the new equilibrium state 

Figure 6. The sketch of the internal free surface that 

move to za0i = 0 and zai’ = 0 

In the O-xyz coordinate system, let (xp, yp, zp) be the coordinate of P, φP be the angle from 

Ox to OP, α1P and α2Pbe the angles from OP to OB and OA, respectively, and then we have 
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Analogously, in the O-x’y’z’ coordinate system, let (x’p’, y’p’, z’p’) be the coordinate of P’, 

φP’ the angle from Ox’ to OP’, and then according to the geometrical relationship we get 
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This is the equation of an ellipse, so A’B’ is a segment of an ellipse. Let 𝛼1𝑃′ and 𝛼2𝑃′ be 

the angles from OP’ to OB’ and OA’, respectively, the area of A’OB’ is 
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Eq. 17 shows that the area of ABCD is the projection of A’B’C’D’, which is the same to 

regular shapes. 

According to the geometrical similarity,Oi must be on li and OiOi’ is parallel to PP’ and 

AA’. So OiOi’ is parallel to li and Oi’ should also be on li, which means that the centroid of 

internal free surface is always on the centre line of the ith air chamber. 

In Figure 6, let K and K’ be the points on surface ABCD and A’B’C’D’, and KK’ is parallel 

to li. If OK = RK, the angle from Ox to OK is φK, the volume of the bulk ABCD-A’B’C’D’ can 

be obtained by the integral 
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in which, KK’ =Rk·tanθ·cosφk, dS=Rk·dφk·dRk. 

On the other hand, according to the geometrical relationship 
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It can be proved by algebraic simplification that 
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One obtains 
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It means the volume of this irregular shape with vertical side walls is equal to the area of 

vertical bottom surface multiply the distance of centroids between the bottom and top 

surface.So the volume of the ith air chamber at the new equilibrium state is 
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Besides, according to the geometrical relationship 
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iaiai

Rzz                       (22) 

The buoyancy from the i-th air chamber is 
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In the O-xyz coordinate system, the buoyancy center of Fi is 

iiF Rx cos= , iiF Ry sin= , 2/]cos/tancos[  tRzz iaiiF ++=  

which can be expressed in the O-x’y’z’ coordinate system as 
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Therefore, the righting moment provided by the i-th air chamber is 
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And the overall righting moment from air chambers is 
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3.3 Righting moment of the buoyancy tank 

Let R3, d be the external radius, draft of the buoyancy tank at the undisturbed floating state, 

respectively. The area of horizontal cross-section Sb can be written as 
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And the initial displacement of the buoyancy tank VBT0 is 

dSV
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In the O-xyz coordinate system, the buoyancy center of the buoyancy tank is 
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Figure 7 portrays the transverse cross-section of the buoyancy tank. The water line moves 

to W1W2 at the new equilibrium state, which intersects with center line L at the point W and 

intersects with the external edge of buoyancy tank at points W1 and W2. W1’W2’goes through 

W and is vertical to L. W1’W2’ intersects with the external edge of the buoyancy tank at points 



 

 

W1’ and W2’. Let J1, J2 be the external, internal corner point, respectively, at the upper surface 

of the transverse cross-section of the buoyancy tank. Analogously, let J3, J4 be the external, 

internal corner point at the bottom surface, respectively. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

Figure 7. Transverse cross-section of the buoyancy tank 

At the undisturbed floating state, the points J1, J2 stay in the air and J3, J4submerge in the 

water. With the increasing of the external moment ME, the floating state of the buoyancy tank 

will experience the following 5 stages. 

Stage-a: The trim angle is small, and points J1, J2 still stay in the air and J3, J4 still 

submerge in the water, as shown in Figure 7a. 

Stage-b: A small part of the deck submerges in the water, i.e. J2 still stays in the air and J3, 

J4 still submerge in the water, while J1 submerges in the water, as shown in Figure 7b. 

Stage-c: A significant part of the deck immersed into water, i.e. J3, J4 still submerge in the 

water, while both of J1, J2 submerges in the water, as shown in Figure 7c. 

Stage-d: A small part of the bottom surfaces out of water, i.e. J4 still submerges in the 

water, while J3 surfaces out of water and J1, J2 submerge in the water, as shown in Figure 7d. 

Stage-e: A significant part of the bottom surfaces out of water, i.e. J3, J4 surfaces out of 

water and J1, J2 submerge in the water, as shown in Figure 7e. 

Let J, J’ be the intersection points of the water line W1W2 and the deck, bottom of the 

buoyancy tank, respectively. 

At the Stage-a, the geometry of the buoyancy tank under water is shown in Figure 8. 



 

 

Obviously, the increase of displacement is 

  

Figure 8. Sketch of the buoyancy tank under water 

at the Stage-a 

Figure 9. Sketch of oblique truncation of a cylinder 
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In the O-xyz coordinate system, let (xBT, 0, zBT) be the buoyancy center of the buoyancy 

tank. In order to get xBT and zBT, the geometrical characteristics of a special structure EGFHE 

should be determined firstly, as shown in Figure 9. It is an oblique cut from a cylinder, the 

angle between the bottom surface EFHE and the slope surface EFGE is θ. Let R0be the radius 

of cylinder, h the z-coordinate of the surface EFHE, s the half length of EF. According to 

geometrical relationship, one gets 
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The volume of the structure EGFHE is the function of R0, h and s, i.e. VEGFHE=fV(R0, h, s), 

which can be calculated by 
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Let (fx(R0, h, s), fy(R0, h, s), fz(R0, h, s)) be the buoyancy centre of EGFHE, which is also the 

function of R0, h and s, and can be expressed as 
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where ),,( 0 shR  and ),,(
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shR  are the function of R0, h and s, and 
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Let (xg1, yg1, zg1) and (xg2, yg2, zg2) be the centroid of the triangle WW1W1’ and WW2W2’ in 

the O-xyz coordinate system, respectively. According to Eqs 31-32, one obtains their volume 

and centroid 
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And the buoyancy center of buoyancy tank in the O-xyz coordinate system should be 
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(a)                                      (b) 

Figure 10. Sketch of the buoyancy tank under water at the Stage-b (a) and Stage-c (b) 

At the Stage-b, the shape of the buoyancy tank under water is shown in Figure 10a. The 

increase of displacement can be written as 
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Let (xg3, yg3, zg3) be the centroid of the triangle W1JJ1 in the O-xyz coordinate system. 

According to Eqs 33-34, one gets 
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Analogously, at the Stage-c (see Figure 10b) one obtains the increase of displacement and 

the centroid of the triangle W1JJ1 in the O-xyz coordinate system 
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In Stage-b and Stage-c, the buoyancy center of buoyancy tank in the O-xyz coordinate system 

should be 
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(a)                                      (b) 

Figure 11. Sketch of the buoyancy tank under water at the Stage-d (a) and Stage-e (b) 

At the Stage-d (see Figure 11a), the increase of displacement can be written as 
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Let (xg4, yg4, zg4) be the centroid of the triangle W2J’J3 in the O-xyz coordinate system. 

According to Eqs 33-34, the coordinate is 
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Analogously, at the Stage-e (see Figure 11b) one has the increase of displacement and the 

centroid of the triangle W2J’J3 in the O-xyz coordinate system 
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In Stage-d and Stage-e, the buoyancy center of buoyancy tank in the O-xyz coordinate system 

should be 
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Let (xBT’, yBT’, zBT’) be the buoyancy center of the buoyancy tank in the O-x’y’z’ coordinate 

system. The total contribution of the buoyancy tank to righting moment is 
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At the Stage-e, however, air could leak from the air chamber adjacent to point J4, which 

makes the air chamber lose buoyancy. Assuming that the kth air chamber leaks out, then we 

get tz
ak
=' , and an extra condition should be imposed on Eq 6. The modified Eq 6 is 
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4. Numerical results 

4.1 Verification of the new analytical method 

To verify the analytical method presented in the last section, the commercial CFD software 

Star-CCM+ [29] was employed for comparison. The numerical results are shown in Figure 12, 



 

 

where the solid line is the result from the analytical method and the black points are the 

results from Star-CCM+. One can observe that the solid line agrees very well with black 

points when the trim angle is less than 38o. One can also note that when the trim angle is 

larger than 38o, discrepancy between two results appears and gradually increases. This is 

because the wetted surface in air chambers submerges in water under very large trim angles, 

which is not considered in the analytical model in this paper. Nevertheless, under very large 

trim angles, the ACBP-OWT system nearly completely loses righting moment and thus it 

makes no sense to precisely predict the stability under such situation. Therefore, the presented 

analytical method is appropriate for the stability analysis of the ACBP-OWT system. 

In Figure 12, S1(θ1=12.6o), S2(θ2=16.09o), S3(θ3=19.2o), S4(θ4=25.6o) are the 4 critical states, 

at which the upper corner point J1 or J2 starts to submerge into water, or the bottom corner 

point J3 or J4 starts to surface out of water. In other words, S1, S2, S3, S4 are the critical states 

between each pair of adjacent floating stages (Stage-a~Stage-e). From the figure one notices 

that the righting moment linearly increases before critical state S1, and then smoothly 

increases with a gradually decreasing growth rate when passing through S1, S2, S3 until 

reaches its maximum at θm=23o. After that, the righting moment gradually decreases until 

state S4, at which the air chamber adjacent to J4 starts to leak out and its buoyancy suddenly 

completely loses. As a result, the righting moment falls sharply. After state S4, the righting 

moment almost linearly decreases with the trim angle and the stability completely loses at 

θ=46o. One might also observe that there is a slightly jump on the righting moment at θ=44o, 

which suggests that more air chambers leak out. It is worth mentioning that the air chambers 

that leak out at θ=44o do not contribute much to the righting moment due to the fact that the 

arm of righting force is very short. 



 

 

 

Figure 12. Righting moment MR against the trim angle 

 

Figure 13. Righting moment MR against the trim angle in different compression model 

Figure 13 shows the righting moment of ACBP-OWT in different compression models. 

The red, green and blue lines are the results of isothermal process, isochoric process and 

adiabatic process. As shown above, the results of isothermal process agree well with CFD 

results, which means the compression model is reasonable and the compressible of gas in air 

chamber cannot be ignored. If the internal gas is considered incompressible, the results will be 

the green line that is larger than the CFD results. By this way, the safety factor in stability 

assessment will be larger, which is dangerous in practical application. The adiabatic process 

model has slightly different results as compared to the isothermal or CFD simulation ones, 



 

 

which might be more appropriate for the dynamic stability analysis due to insufficient heat 

exchange. In a word, the gas in ACBP-OWT system must be considered compressible, which 

is different to the third type of damage stability, and the compression model can be considered 

as isothermal process in the static stability analysis. 

According to Table 2, the rated wind speed of the NREL-5MW Offshore Wind Turbine is 

11.4m/s, and the resulting maximum wind load thrust is 800kN that acts on the wind turbine 

hub[28]. So the maximum external moment from the wind load is 
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It is speculated that the wind turbine will lose substantial efficiency when the trim angle is 

beyond 10o [27]. In this case, the righting moment of the ACBP-OWT system is 7.61×107N.m 

at θ=10o, which is sufficient to balance the maximum wind load ME-max. It is also worth 

mentioning that the ACBP-OWT system is about 1800 tons lighter than the MIT/NREL SDB 

[27], which can greatly reduce the material cost of the system. 

 

Figure 14. The contribution from air cushion MA, the displacement and weight of structures MS to the 

righting moment MR 

4.2 Contribution from structures and air cushion to the righting moment 

The total righting moment of the ACBP-OWT system is contributed by the structures and 

air cushion, which are shown in Figure 14. In the figure, the solid, dashed, dash-dotted line 

are the total righting moment, air cushion righting moment, righting moment due to the 

displacement and weight of structures, respectively. S1, S2, S3, S4 are the 4 critical states that 

are the same as those in Figure 12. It can be seen that the dashed line is always beyond the 



 

 

horizontal axis, which suggests that the air cushion always makes positive contribution to 

righting moment. In contrast, the dash-dotted line is below the horizontal axis when trim 

angle θ>40o, which reveals that the structures can contribute negative righting moment at 

large trim angles. One can find that the air cushion righting moment almost linearly increases 

with the trim angle until air leaks out, after which the air cushion righting moment slowly 

decreases with the trim angle. In contrast, the righting moment due to the displacement and 

weight of structures smoothly increases with a gradually decreasing growth rate when passing 

through S1, S2, S3 until θ=19.5o, and then quickly decreases with the trim angle. One can also 

notice that there are two jumps occurring on the righting moment due to the displacement and 

weight of structures when air leaks out from chambers, which is due to the change of the 

buoyancy from structures when the internal free surface falls to the external one. 

The sinkage of the ACBP-OWT system is shown in Figure 15. Obviously, the sinkage is 

very small and can be ignored before the critical state S2. After that, the ACBP-OWT system 

sinks down approximately linearly with the trim angle. Then the sinkage has a significant 

jump at the critical state S4, which means that the air chambers from which air leaks out 

provide negative buoyancy. Simultaneously, the sinkage jump makes the center of buoyancy 

move to a new position and causes a jump on MS. 

 

Figure 15. The sinkage of the ACBP-OWT system 



 

 

 

Figure 16. The proportion of the air cushion displacement FA to the ACBP-OWT displacement mg 

Figure 16 depicts the proportion of the air cushion displacement FA to the ACBP-OWT 

displacement mg. The initial displacement of air cushion is zero, which is given by setting the 

altitude of the free surface in air cushions as za0=0 (see Table 1). When the trim angle is small 

(θ<12.5o), the proportion FA/mg is extremely small and increases very slowly. After the 

critical state S1, the proportion FA/mg increases quickly with the trim angle, which suggests 

the displacement from structures is decreasing. At the critical state S4, air leaks out from a 

chamber and its negative buoyancy suddenly changes to zero, which makes the proportion 

FA/mg jump from 3.8% to a significant value 11%. After that, the proportion FA/mg still 

slowly increases with the trim angle and gets another jump when air leaks out from more 

chambers. 

 

Figure 17. Righting moment of ACBP-OWT and TBP-OWT against trim angle 

4.3 Comparison of righting moment between ACBP-OWT and TBP-OWT 



 

 

According to the above analysis, the newly presented ACBP-OWT shows good stability 

performance, in which the air cushion plays an important role. To demonstrate it, the function 

of the air cushion is disabled by removing the top surface of air chambers from the 

ACBP-OWT system. For simplicity, the ACBP-OWT system without air cushion is called the 

TBP-OWT (Traditional Barge Platform Offshore Wind Turbine) system. Since the 

displacement of the air cushion in the ACBP-OWT system is zero, the total displacement of 

the TBP-OWT system is the same as the ACBP-OWT one (the mass of the top surface of air 

chambers was neglected). Figure 17 shows the righting moment of the TBP-OWT system 

(blue line) against trim angle, as compared with that of the ACBP-OWT system (red line). It 

is obviously that the righting moment of the ACBP-OWT system is significantly larger than 

the TBP-OWT system, and the latter is much earlier to lose stability. It is interesting that the 

critical states S’1, S’2 for the TBP-OWT system arrive a little earlier than S1, S2 for the 

ACBP-OWT system, while S’3, S’4 arrive significantly later than S3, S4. The discrepancies 

between Si and S’i (i=1~4) are due to the influence of air cushion. 

Besides, the maximum righting moment of the TBP-OWT system is 6.55×107N.m at 

θ=17.5o, which is smaller than the maximum wind load ME-max. In order to obtain larger 

righting moment, the physical dimension of the TBP should be upscaled, which inevitably 

makes its displacement and manufacturing cost increase. Therefore, the air cushion can 

greatly increase the righting moment of the ACBP, as well as the stability of the ACBP-OWT 

system. 

4.4 Dynamic stability of ACBP-OWT 

The above is the preliminary static design of ACBP-OWT, in which the principal 

dimensions are referred to the MIT/NREL SDB [27] and the performance of static stability is 

studied. In order to obtain good dynamic performance, the ACBP need to be upscaled. For 

floating wind turbine, the mean and maximum trim angle in operating state should be less 

than 5 and 10 degrees []. According to the law of similarity, the upscale factor is about 1.125 

and the principal parameters of upscaled ACBP is shown in Table 3. 

Table 3. The principal parameters of the upscaled ACBP 

Internal radius of air cushion R1 6.3 m Installed draft 22.5 m 

External radius of air cushion R2 15.75 m Buoyancy tank draft d 6.953 m 

External radius of buoyancy tank R3 20.25 m Number of air chambers 8 

Radius of ballastR4 22.5 m Ballast mass 2,847,656 kg 

Radius of damping skirt 22.5 m Total mass 4,146,000 kg 



 

 

Deck clearance zf0 4.5 m COG of ACBP (0.0, 0.0, -16.48) m 

Free Surface in air cushion za0 0.0 m COG of ACBP-OWT (0.0, 0.0, -4.323) m 

*COG is the center of gravity 

The work done by righting moment or external one, which can be depicted by the curve of 

dynamic stability, is obtained by the integral of static stability curve over the trim angle 

[16][30].  

If the wind load is considered solely and the effect of wave is ignored, the ACBP-OWT 

will pitch from zero angle and the works done by righting moment and wind heeling moment 

are shown in Figure 18.  

The red solid line is the work of righting moment, which is obtained by 
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It is worth noting that, since the pitch is fast and heat exchange is insufficient, the adiabatic 

law is employed in dynamic stability analysis, which would be more appropriate than the 

isothermal one.  

The blue solid line is the work of wind heeling moment at rated wind speed, according to 

[28], at which the maximum wind load thrust of NREL-5MW Offshore Wind Turbine is 

obtained. Assuming that the trim angle of ACBP-OWT is zero, the thrust can be obtained by 

TrotorratedTrated CDVCSVT == )25.0(5.05.0
22

0

2

max                (50) 

where Vrated is the rated wind speed, S0 is windward area of wind turbine and CT is the thrust 

coefficient of wind turbine at Vrated.  

If the ACBP-OWT has a trim angle, the wind load thrust of wind turbine will be 
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In which, S is the windward area of wind turbine at this moment. 

The wind load thrust acts on the hub of wind turbine, its arm and wind heeling moment in 

the O-x’y’z’ coordinate system will be  
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Then the work done by wind load thrust at rated wind speed can be obtained by integrating 

the wind heeling moment with respect to trim angle 
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Figure 18. Dynamic stability curve of ACBP-OWT against trim angle without effect of wave  

The blue solid line intersects with the red one at θr=8.63o, which is solved by 

WR(θ)=WW-r(θ). According to [16][30], it means that the works done by them are the same, 

and the angular velocity of trim at that point is zero. When the trim angle is 8.63o, the angular 

velocity of trim is zero and the righting moment of ACBP-OWT is larger than the moment of 

wind load at this state. Consequently the ACBP-OWT will have surplus righting moment to 

help itself return to the equilibrium position θ=4.33o, which is solved by MR(θ)=MW-r(θ). It 

means that the ACBP-OWT is in stable dynamic equilibrium state and the maximum dynamic 

trim angle in rated wind speed is 8.63o, which meets the requirements of floating wind turbine 

in operating state. 

 

Figure 19. Dynamic stability curve of ACBP-OWT against trim angle in weather criterion 

If the effect of wave is taken into consideration, according to the weather criterion of [31], 

the ACBP-OWT will have an angle of pitch to windward due to wave action, and the angle 



 

 

should not exceed 16o. In this case, the worst case is considered, i.e. the pitch angle |θw1| due 

to wave action is 16o at the rated wind speed and the ACBP-OWT makes pitch motion from 

the negative angle θ=θw1<0 rather than zero. As shown in Figure 19, the red and green solid 

lines are the works done by righting moment and wind heeling moment, which are obtained 

by 
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The two lines begin from θrw1= -16o and intersect with each other at θrw2= 25.87o, which is 

solved by WR-w(θ)=WW-rw(θ). The righting moment does the negative work when trim angle is 

less than zero and the total work becomes positive after the trim angle is larger than -θw1. The 

righting moment does the same work to wind heeling moment when θ=θrw2, meanwhile, the 

ACBP-OWT is in stable dynamic equilibrium state and can return to the equilibrium position.  

For the upscaled ACBP-OWT, the air escaping will occur after the trim angle is more than 

27.1o, which is larger than θrw2 and the upscaled ACBP-OWT can meet the requirements of 

the weather criterion of [31]. 

5. Conclusions and Discussions 

 

The concept of Air cushion Barge Platform (ACBP) is proposed, which incorporates 

multiple air chambers, used for supporting an Offshore Wind Turbine (OWT). To evaluate the 

stability of the system, a new analytical method is presented in this paper, which can analyze 

the stability of a multi-air cushion structure. The method is validated by the CFD results. 

Then the characteristics of the static and dynamic stability of the ACBP-OWT system is 

investigated using this method, and the following observations are demonstrated. 

1) For analyzing the static stability of the ACBP-OWT structure at large trim angles, the 

isothermal air model achieves desirable results as compared to the CFD ones. In contrast, the 

adiabatic law is more appropriate in the dynamic stability analysis. 

2) The air cushion always makes considerable positive contribution to the righting moment, 

but it will suffer great loss if the air leaks from cushions at very large trim angles. In contrast, 

the structure can provide negative righting moment at large trim angles. 

3) The righting moment provided by air cushions decreases much more slowly than the one 

due to the displacement and weight of structures at large trim angles. 



 

 

4) Although the displacement due to air chambers can be set at zero in the undisturbed 

floating state, the air chambers provide significant righting moment with increase in the trim 

angle, making the system to be more stable at the whole range of angles compared with the 

designs without the air chambers. 

5) The dynamic trim angle at rated wind load is much less than the trim angle of maximum 

righting moment, which suggests the ACBP-OWT is stable under the working conditions. 

It is noted that the principle of the method for stability analysis can be applied to other type 

of air cushion structures, thought the specific equations may be different. 
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