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ABSTRACT  1 
 2 
The ability to identify our own body is considered a pivotal marker of self-awareness. Previous 3 

research demonstrated that subjects are more efficient in the recognition of images representing 4 

self rather than others’ body effectors (self-advantage). Here, we verified whether, at an 5 

electrophysiological level, bodily-self recognition modulates change detection responses. In a 6 

first EEG experiment (discovery sample), event-related potentials (ERPs) were elicited by a 7 

pair of sequentially presented visual stimuli (vS1; vS2), representing either the self-hand or 8 

other people’s hands. In a second EEG experiment (replicating sample), together with the 9 

previously described visual stimuli, also a familiar hand was presented. Participants were asked 10 

to decide whether vS2 was identical or different from vS1. Accuracy and response times were 11 

collected. In both experiments, results confirmed the presence of the self-advantage: 12 

participants responded faster and more accurately when the self-hand was presented. ERP 13 

results paralleled behavioral findings. Anytime the self-hand was presented, we observed 14 

significant change detection responses, with a larger N270 component for vS2 different rather 15 

than identical to vS1. Conversely, when the self-hand was not included, and even in response 16 

to the familiar hand in Experiment 2, we did not find any significant modulation of the change 17 

detection responses. Overall our findings, showing behavioral self-advantage and the selective 18 

modulation of N270 for the self-hand, support the existence of a specific mechanism devoted 19 

to bodily-self recognition, likely relying on the multimodal (visual and sensorimotor) 20 

dimension of the bodily-self representation. We propose that such a multimodal self-21 

representation may activate the salience network, boosting change detection effects specifically 22 

for the self-hand. 23 

 24 

Keywords: Bodily-self recognition; self-advantage; change detection; EEG; N270 25 
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1. Introduction  1 

The ability to recognize the own body visually (for example from a picture or when it is 2 

reflected in the mirror) has traditionally been considered as a pivotal marker of self-awareness 3 

(for a recent review see e.g. Apps & Tsakiris, 2014). However, while we usually distinguish 4 

other people’s body by vision only, for bodily-self recognition we can rely on information 5 

coming from different sensory modalities (Tsakiris, 2010). To identify own body effectors, we 6 

usually resort to a wide network of sensorimotor (e.g. proprioceptive, somatosensory and 7 

motor) inputs, rather than to visual features per se (Ehrsson, Holmes, & Passingham, 2005; 8 

Frassinetti, Ferri, Maini, Benassi, & Gallese, 2011). Nonetheless, in a series of previous studies 9 

employing visual-matching tasks, Frassinetti and colleagues demonstrated that subjects are 10 

faster and more accurate in discriminating grey-scale pictures representing bodily-self effectors 11 

as compared to others’ body effectors (the so-called self-advantage) (Frassinetti et al., 2011; 12 

Frassinetti et al., 2008; Frassinetti et al., 2009). The presence of such facilitation in participants’ 13 

performance has been associated with the recourse to a sensorimotor network recruited when 14 

subjects had to recognize the bodily-self in “implicit” tasks (see e.g. Frassinetti et al. 2009; 15 

Conson, Volpicella, De Bellis, Orefice, & Trojano, 2017; in other words, the self-recognition 16 

is task-irrelevant, i.e. not explicitly required in task instructions). More specifically, the self-17 

advantage was associated with the activation of a visual-sensorimotor network including, 18 

besides occipital areas, bilateral premotor cortex and right temporal cortex encompassing the 19 

extrastriate body area (Ferri, Frassinetti, Ardizzi, Costantini, & Gallese, 2012). However, even 20 

though the study by Ferri and colleagues revealed a direct involvement of the somatosensory 21 

cortices in self-hand recognition, since a motor task (i.e., hand-rotation) was performed, it 22 

cannot be excluded that the (motor) nature of the task might have contributed to the observed 23 

sensorimotor activation. 24 
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The idea that bodily-self recognition implies the interaction between visual and sensorimotor 1 

areas has been confirmed also by different lines of research that does not employ motor tasks, 2 

such as those studies investigating the neural correlates of a famous illusion of body ownership 3 

(i.e. the rubber hand illusion; see e.g., Botvinick & Cohen, 1998; Bucchioni et al., 2016; Burin 4 

et al., 2017; Della Gatta et al., 2016; Fossataro, Bruno, Giurgola, Bolognini, & Garbarini, 5 

2018). During this illusion, participants, while watching a human-like rubber hand being 6 

touched synchronously with their own hand hidden from view, experience the feeling that the 7 

fake hand has become part of their own body. It has been demonstrated that, during this 8 

procedure, the functional connectivity between visual areas (e.g. lateral occipitotemporal 9 

cortex and extrastriate body area; EBA) and ventral premotor cortex is specifically modulated 10 

during the embodiment (i.e. when the fake hand is attributed to themselves) (Limanowski & 11 

Blankenburg, 2015; Zeller, Friston, & Classen, 2016), consistently with the fact that the illusion 12 

reduces the perceived objective (visual) dissimilarities between the own and the rubber hand 13 

(Longo, Schuur, Kammers, Tsakiris, & Haggard, 2009). Moreover, lesion studies of brain 14 

damaged patients exhibiting an impairment of self-other hands discrimination support the 15 

involvement of a visual-sensorimotor network in self-recognition. Indeed, the core lesion 16 

underpinning this deficit has been identified in the subcortical white matter connecting 17 

temporal areas, involved in the visual recognition of the body (i.e., the extrastriate body area, 18 

EBA), with anterior multisensory areas, such as the premotor cortex (Pia et al., 2020).  19 

Furthermore, the recruitment of multimodal networks (including sensorimotor areas) in self-20 

recognition is not only observed for limb discrimination, but it has been described for faces as 21 

well, without the involvement of a motor task (Cardini et al., 2011; Morita et al., 2018; Sugiura, 22 

2015). For example, Cardini and colleagues found that ventral premotor cortex activity differed 23 

when viewing self-face as compared to another’s face, thus revealing a crucial role of 24 

sensorimotor areas in self-other face discrimination. Accordingly, the processing of the self-25 

face has been associated to a specific sensorimotor pattern of activations, involving sensory 26 
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(i.e., visual, somatosensory and interoceptive areas) and motor association cortices (i.e., 1 

premotor cortex and supplementary motor area – see Sugiura et al., 2015 for a review). Overall 2 

these findings suggest the presence of different mechanisms for self- versus other people’s 3 

body recognition (De Bellis, Trojano, Errico, Grossi, & Conson, 2017; Ferri, Frassinetti, 4 

Costantini, & Gallese, 2011; Hu et al., 2016; Myers & Sowden, 2008), thus highlighting the 5 

specificity of self-recognition. 6 

In the present study, we investigated whether implicit (task-irrelevant), bodily-self recognition 7 

has an observable electrophysiological correlate. To this aim, we exploited the repetition 8 

suppression phenomenon and we asked whether it could be modulated by implicit, bodily-self 9 

recognition. As widely described in the literature, event-related potential (ERP) amplitudes are 10 

strongly reduced when the same stimulus is repeated at short and constant time intervals 11 

(Iannetti, Hughes, Lee, & Mouraux, 2008; A. L. Wang, Mouraux, Liang, & Iannetti, 2010). 12 

Amplitude modulations induced by repetition have also been observed for abstract visual 13 

stimuli, such as different shapes (Y. Wang, Cui, Wang, Tian, & Zhang, 2004), and body-related 14 

pictures, mainly human faces (for a recent review see Schweinberger & Neumann, 2016). 15 

Importantly, the detection of a change within stimulus sequence is able to revert such amplitude 16 

reduction due to repetition. In other words, the sudden change of one or more stimulus basic 17 

features (e.g. modality, intensity, shape, or color) usually enhances the amplitude of the evoked 18 

responses (Valentini, Torta, Mouraux, & Iannetti, 2011; Y. Wang et al., 2004). However, this 19 

is not always the case. Through a paradigm exploiting intensity modulations of repeated painful 20 

stimuli, it has been shown that intensity increases but not decreases could revert repetition-21 

related amplitude reduction (Ronga, Valentini, Mouraux, & Iannetti, 2013). The authors 22 

interpreted their findings suggesting that only salient changes were able to induce change 23 

detection-related responses.  24 

Based on the above evidence, changes involving the self-hand should be considered salient by 25 

the nervous system. Previous studies highlighted the specificity of self-hand recognition, which 26 
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seems to rely on a peculiar sensorimotor mechanism. In other words, the difference between 1 

the self- versus other people’s hand recognition, by resorting to distinct neural mechanisms, 2 

may represent a kind rather than a degree property. It seems therefore likely that stimulus 3 

changes involving the self-hand may elicit salience effect (i.e. the reversion of repetition 4 

suppression), which are similarly described as kind phenomena. Indeed, as demonstrated by 5 

previous studies (Ronga et al., 2013; Torta, Liang, Valentini, Mouraux, & Iannetti, 2012), the 6 

change detection effects induced by salient stimuli are expressed in an all or nothing fashion 7 

(i.e., the reversion of repetition suppression is not gradable but either present or absent). 8 

Analogously, since the self-hand could be more salient than the other’s hands, we should expect 9 

that only the visual presentation of the self-hand may induce change detection-related 10 

responses. Conversely, changes between other people’s hands, and even between familiar and 11 

not familiar hands, may not be salient enough to revert repetition suppression phenomena.  12 

In our EEG paradigms, ERPs were recorded while participants were presented with grey-scale 13 

images depicting the right hands. Hand pictures were delivered in pairs (vS1 and vS2), at a 14 

constant 1-second interval, and might represent either the participant’s self-hand or other 15 

people’s hands. Experiment 1 was directed to explore whether the presentation of the self-hand 16 

boosts the change detection mechanism, reversing the repetition suppression phenomenon. It 17 

was divided into two different conditions (scenarios): in the With Self scenario, the self-hand 18 

was included within the presented visual stimuli; in the Without Self scenario, the self-hand 19 

was never presented (see 2.1.2 for a rationale description). Subjects were asked to judge 20 

whether vS2 was identical or different from vS1 (implicit recognition task). ERPs to visual 21 

stimuli, as well as accuracy and response times (RTs) were collected. Experiment 2 specifically 22 

aimed at replicating results of Experiment 1 also controlling for any familiarity bias in our 23 

behavioral and EEG results. In the design of Experiment 1, the self-hand is the only hand 24 

participants had some familiarity with. Therefore, in case we found any specific change 25 

detection response for the self-hand, we could not disentangle whether this result was driven 26 
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by a mechanism specific for the body-self or by a general familiarity effect. To control for this 1 

aspect, in Experiment 2 we included a third scenario, namely the With Familiar scenario, where 2 

one of the two others’ hands was familiar to the participants, by means of repeated presentation 3 

of such a hand in the immediately preceding scenario. 4 

From a behavioral point of view, both in Experiments 1 and 2, we expected to confirm the 5 

presence of the self-advantage, i.e. higher accuracy and faster RTs any time when at least one 6 

self-hand was included in the pair of visual stimuli. From an electrophysiological point of view, 7 

if bodily-self recognition actually represents a unique and salient phenomenon, recruiting 8 

dedicated mechanisms and neural networks, then in both experiments we should observe a 9 

significant change detection effect (i.e. greater amplitude difference between responses to 10 

repeated versus non-repeated stimuli) only for images representing the self-hand. Crucially, in 11 

Experiment 2 we should observe a clear difference in the change detection responses between 12 

the With Self scenario and the With Familiar scenario, with significant change detection effect 13 

for the self-hand. We expect that this effect might specifically be observed on the N270 14 

modulation, a component which has been systematically related to visual change detection 15 

(Bennett, Duke, & Fuggetta, 2014; Scannella et al., 2016; P. Wang et al., 2018; Zhang et al., 16 

2008).  17 

Alternative results, showing a similar change detection effect for self- and other people’s 18 

hands, would instead challenge the idea of the presence of a specific mechanism for bodily-19 

self recognition.  20 

 21 

2. Materials and Methods 22 
 23 
 24 
2.1 Experiment 1 (discovery sample) 25 
 26 
2.1.1 Participants 27 
 28 
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Fifteen healthy right-handed subjects participated in the study (5 women) aged 22-26 years 1 

(mean±SD: 24.1 ±1.2; years of education: 17.9 ±1.0). 2 

Sample size (N=15) was a priori determined to match the number of subjects involved in 3 

previous research investigating visual mismatch detection effects and exploiting the same EEG 4 

analyses employed in the present study (Wang et al. 2003, N=13; Wang et al. 2004, N=15; 5 

Bennet et al. 2014, N=16). 6 

 7 

All participants gave their written informed consent to participate in the study, which 8 

conformed to the standards required by the Declaration of Helsinki and was approved by the 9 

Ethics Committee of the University of Torino (prot. n. 125055, 12/07/16). 10 

 11 

2.1.2. Stimuli and Experimental Design 12 

Visual stimuli consisted of grey-scale pictures (10x15 cm) of the dorsum of open right hands 13 

belonging either to the participants or to other people. Hand pictures were taken before the 14 

experiment, all in the same room, with controlled illumination conditions and were post-15 

processed. As a first step, picture background was removed and replaced with a black uniform 16 

background, original color pictures were then converted in grey-scale images with the aim of 17 

standardizing different skin colors. Finally, hand images were resized in order to have all 18 

similar dimensions. The resulting visual stimuli were presented for 0.3s at the center of a 21-19 

inch Sony CRT computer screen. 20 

 21 

The experimental paradigm (presented in Fig. 1) partially replicated the methodology proposed 22 

by Frassinetti et al. (2009). However, stimulus presentation parameters (e.g. presentation mode, 23 

duration, interstimulus-interval, intertrial-interval) were modified in order to realize a paradigm 24 

suitable for EEG. The experiment consisted of a single session divided into two different 25 

scenarios (i.e. With Self and Without Self) and four 8-minute recording blocks (2 per scenario). 26 
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Each scenario was composed of 104 pairs of visual stimuli (vS1 and vS2), delivered at a 1 

constant 1 s inter-stimulus interval. The time interval between each pair was randomly jittered 2 

between 6 and 8 s, in a way that participants could not anticipate stimulus occurrence.  3 

In both scenarios, vS1 and vS2 could be either identical or different. In the With Self scenario, 4 

visual stimuli included participants’ self-hand. Four different types of pairs were presented: 5 

Self-Self (with both vS1 and vS2 depicting the self-hand); Other1-Other1 (with vS1 and vS2 6 

depicting the same hand belonging to a stranger – Other1); Self-Other1 (with vS1 representing 7 

the self-hand and vS2 Other1’s hand); Other1-Self (with vS1 representing Other1’s hand and 8 

vS2 the self-hand). 9 

In the Without Self scenario, the self-hand was never presented. Four different types of pairs 10 

were delivered: Other2-Other2 (with vS1 and vS2 depicting the same hand belonging to a 11 

stranger – Other2, different from Other1); Other3-Other3 (with both vS1 and vS2 depicting 12 

the same hand belonging to a stranger – Other3, different from Other1 and Other2); Other2-13 

Other3 (with vS1 representing Other2’s hand and vS2 Other3’s hand); Other3-Other2 (with 14 

vS1 representing Other3’s hand and vS2 Other2’s hand). Importantly, in both scenarios the 15 

others’ hands were matched for the gender of participants. 16 

The occurrence of each type of pair (probability of occurrence=0.25) was balanced and pseudo-17 

randomized within each block so that the maximum number of consecutive pairs of the same 18 

type was two. Scenarios’ presentation order was counterbalanced across subjects (i.e. With 19 

Self=A; Without Self=B; one half of the subjects follows the sequence ABBA and the other 20 

half BAAB). 21 

With the present paradigm, it was possible to compare behavioral and electrophysiological 22 

responses to pairs of identical or different visual stimuli, either when the self-hand was present 23 

(With Self scenario) or not (Without Self scenario). Crucially, we decided not to intermix all 24 

stimulus types (Self, Other1, Other2, Other3) in a single scenario to avoid making self-hand 25 

stimuli rare as compared to the other stimuli, always representing strangers’ hands.  26 
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 1 

 2 

Figure 1 A. Experimental paradigm. Experiment 1 was divided into two different scenarios: 3 

With Self (where the self-hand was included), and Without Self (where the self-hand was never 4 

presented). Experiment 2 was divided into three different scenarios: With Self, Without Self, 5 

and With Familiar (where the familiarized hand was presented). B. Experimental trial. In 6 

both experiments, visual stimuli (vS1 and vS2) were displayed for 300 ms and were delivered 7 

at a constant 1 s inter-stimulus interval. 8 

 9 

2.1.3 Behavioral task and EEG recording 10 

During the experiment, participants were seated in a comfortable chair in a silent, dimly lit 11 

room, with their chest at a distance of 55 cm from the computer screen. They were asked to 12 

focus on the stimuli and look at a fixation cross, placed at the center of the screen. Subjects’ 13 

task was to decide whether vS2 was identical or different from vS1 by pressing, as fast as 14 
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possible with the right index finger, the “s” key for identical pairs and the “d” key for different 1 

ones on the keyboard. Accuracy and RTs were recorded by Eprime V2.0 software (Psychology 2 

Software Tools Inc., Pittsburgh, PA, USA). 3 

  4 

The EEG was recorded using 32 Ag-AgCl electrodes placed on the scalp according to the 5 

International 10-20 system and referenced to the nose. Electrode impedances were kept below 6 

5 kΩ. The electro-oculogram (EOG) was recorded from two surface electrodes, one placed 7 

over the right lower eyelid and the other placed lateral to the outer canthus of the right eye. 8 

Signals were amplified and digitized at a sampling rate of 1,024 Hz (HandyEEG – SystemPlus 9 

Evolution, Micromed, Treviso, Italy). 10 

 11 

2.1.4 Data Analysis 12 

Behavioral data. Subjects’ correct responses (i.e. accuracy) and RTs for each pair type were 13 

collected and averaged. Importantly, trials with individual RTs exceeding two standard 14 

deviations below or above the mean (of each specific experimental condition) as well as trials 15 

with missing or wrong response were discarded from RT analysis (Conson et al., 2015; Ronga 16 

et al., 2018; Sarasso et al., 2019). The average number of discarded responses per participant 17 

was around 5%. In order to explore the presence of the self-advantage effect in our matching 18 

task, we performed, on both accuracy and RTs as dependent variables, separate 2*4 repeated-19 

measures ANOVAs with two within-subject factors: “Scenario” (two levels: With Self 20 

scenario; Without Self scenario) and “Condition” (four levels: the two pairs of identical and the 21 

two pairs of different stimuli in each scenario). The normal distribution of residuals was 22 

checked by using Shapiro-Wilk‘s test (p always > 0.05). To explore significant interactions, ad 23 

hoc planned comparisons were performed and corrected with Bonferroni’s test. Statistical 24 

analyses were performed using Statistica Software (StatSoft, release 8 RRID:SCR_014213). 25 

 26 
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Electrophysiological data. ERPs triggered by vS1 and vS2 were pre-processed and analyzed 1 

using Letswave v.6 (www.letswave.org) (Mouraux & Iannetti, 2008). Continuous EEG data 2 

were segmented into epochs using a time window ranging from 0.5 s before vS1 to 1 s after 3 

vS2 (total epoch duration: 3.1 s), and band-pass filtered (1-30 Hz) using a fast Fourier transform 4 

filter. Each epoch was baseline corrected using the interval from -0.5 to 0 s as reference. Filter 5 

and baseline correction were chosen according to previous studies investigating repetition 6 

suppression/change detection paradigms (Galigani et al., under review; Ronga et al., 2013; 7 

Torta et al., 2012; Y. Wang et al., 2004; Y. Wang et al., 2003). Artifacts due to eye blinks or 8 

eye movements were subtracted using a validated method based on an Independent Component 9 

Analysis (ICA – Jung et al. 2000). Finally, epochs belonging to the same pair kind (i.e. 26 10 

epochs) were averaged time-locked to the onset of vS1. Thus, for each subject, eight average 11 

waveforms (Self-Self; Other1-Other1; Self-Other1; Other1-Self; Other2-Other2; Other3-12 

Other3; Other2-Other3; Other3-Other2) were obtained. 13 

 14 

Statistical analyses on ERPs.  The analysis of electrophysiological data was performed on the 15 

second stimulus, focusing on the amplitude modulation of the N270 component, which is 16 

elicited around 270 ms after stimulus onset, in response to the detection of a mismatch in a pair 17 

of visual stimuli (see also § Introduction). Following the same methodology exploited by 18 

previous research investigating visual mismatch detection responses (Bennett et al., 2014; 19 

Scannella et al., 2016; P. Wang et al., 2018), ERP waveform amplitudes in the time window 20 

between 230 and 320 ms after the onset of vS2 were averaged and the resulting value was the 21 

object of further analyses. According to previous research (Bennett et al., 2014), mean 22 

amplitudes were extracted from four different clusters of electrodes (frontal: F3/Fz/F4; central: 23 

C3/Cz/C4; parietal: P3/Pz/P4; occipital: O1/Oz/O2). Importantly, despite the N270 is maximal 24 

at fronto-central electrodes (Li, Wang, Wang, Cui, & Tian, 2003; Scannella et al., 2016), we 25 

chose to analyse also central, parietal, and occipital clusters in order to have a broad picture of 26 
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the scalp, as well as to verify that the source of the observed effects matched those described 1 

in previous studies. For each cluster, a single mean amplitude value was obtained by averaging 2 

each electrode mean amplitude. 3 

With the aim of investigating change detection mechanisms for visual stimuli depicting self- 4 

versus other people’s hands, the mean amplitudes of N270 extracted from frontal, central, 5 

parietal and occipital electrodes were used as dependent variables and entered in four identical 6 

statistical models (one for each cluster), i.e. a 2*4 repeated measures ANOVA with two within-7 

subject factors: “Stimulus Sequence” (two levels: vS1=vS2, vS1vS2); and “Stimulus 8 

Identity” of vS2 (four levels: Self, Other1, Other2, Other3). The normal distribution of 9 

residuals was checked by using Shapiro-Wilk‘s test (p always > 0.06). Post hoc comparisons 10 

were performed by means of Bonferroni’s test. Statistical analyses were performed using 11 

Statistica Software (StatSoft, release 8 RRID:SCR_014213). 12 

 13 

2.2 Experiment 2 (replicating sample and control for familiarity bias) 14 

2.2.1 Participants 15 

Fifteen healthy right-handed subjects participated in the study (10 women) aged 19-30 years 16 

(mean±SD: 24.88±3.1; years of education: 18.1±2.7). None of them participated to Experiment 17 

1. Sample size (N=15) was a priori determined to match the sample of Experiment 1. 18 

All participants gave their written informed consent to participate in the study, which 19 

conformed to the standards required by the Declaration of Helsinki and was approved by the 20 

Ethics Committee of the University of Torino (prot. n. 125055, 12/07/16). 21 

 22 

2.2.2. Stimuli and Experimental Design 23 

General procedures were identical to the Experiment 1, with the following exceptions. In the 24 

experimental paradigm (Fig. 1) we included a third scenario, i.e. the With Familiar scenario. 25 

In this scenario, we presented two others’ hands. Importantly, one of these hands was familiar 26 
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for the participant (i.e. the Familiar hand), since it had already been repeatedly presented in 1 

the immediately preceding scenario (which, depending on the specific sequence assigned to 2 

subject, might either be the With Self or the Without Self scenario). Four different pair types 3 

were presented: Familiar-Familiar (with both vS1 and vS2 depicting the familiarized hand); 4 

Other4-Other4 (with vS1 and vS2 depicting the same hand belonging to a stranger – Other4); 5 

Familiar-Other4 (with vS1 representing the familiarized hand and vS2 Other4’s hand); 6 

Other4-Familiar (with vS1 representing Other4’s hand and vS2 the familiarized hand). The 7 

occurrence of each pair type (p=.25) was matched across conditions and pseudo-randomized 8 

within each block, so that the maximum number of consecutive pairs of the same type was two. 9 

The presentation of the scenarios was counterbalanced, except for the With Familiar scenario 10 

that was always presented immediately following the scenario including the other’s hand with 11 

which participants familiarized (i.e. With Self=A; Without Self=B; With Familiar=C; subjects 12 

may be administered with one of the following sequences: ACB; BAC; BCA; ABC). 13 

Furthermore, in order to exclude that any possible negative results observed in Experiment 1 14 

(such as the absence of a significant change detection effect in the Without Self scenario) were 15 

due to a signal to noise ratio problem rather than to a genuine absence of modulation, we 16 

doubled the number of trials in Experiment 2 (i.e. 52 trials per condition). Each scenario was 17 

therefore composed of 208 pairs of visual stimuli (vS1 and vS2), delivered at a constant 1 s 18 

inter-stimulus interval. The time interval between each pair was randomly jittered between 3 19 

and 4 s, in a way that participants could not anticipate stimulus occurrence. The whole 20 

experiment was divided into six 8-minute recording blocks (2 per scenario). 21 

 22 

2.1.3 Behavioral task and EEG recording 23 

All procedures were identical to those of Experiment 1. 24 

 25 

2.1.4 Data Analysis 26 
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Behavioral data. Subjects’ correct responses (i.e. accuracy) and RTs for each pair type were 1 

collected and averaged. Importantly, trials with individual RTs exceeding two standard 2 

deviations below or above the mean (of each specific experimental condition) as well as trials 3 

with missing or wrong response were discarded (Bruno, Ronga, Fossataro, Capozzi, & 4 

Garbarini, 2019; Bruno et al., 2020; Conson et al., 2015; Fossataro, Bucchioni, et al., 2018; 5 

Ronga et al., 2018; Sarasso et al., 2018). The average number of discarded responses per 6 

participant was around 5%. In order to explore the presence of the self-advantage effect in our 7 

matching task, we performed, on both accuracy and RTs as dependent variables, two 3*4 8 

repeated-measures ANOVA with two within-subject factors: “Scenario” (three levels: With 9 

Self scenario; Without Self scenario; With Familiar scenario) and “Condition” (four levels: the 10 

two pairs of identical and the two pairs of different stimuli in each scenario). The normal 11 

distribution of residuals was checked by using Shapiro-Wilk‘s test (p always > 0.05). To 12 

explore significant interactions, ad hoc planned comparisons were performed and corrected 13 

with Bonferron’s test. Statistical analyses were performed using Statistica Software (StatSoft, 14 

release 8 RRID:SCR_014213). 15 

 16 

Electrophysiological data. All the preprocessing of ERP data was identical to that of 17 

Experiment 1, except for the following. We obtained 52 epochs for each pair that were averaged 18 

time-locked to the onset of vS1. Thus, for each subject, twelve average waveforms (Self-Self; 19 

Other-Other; Self-Other; Other-Self; Other1-Other1; Other2-Other2; Other2-Other1; Other1-20 

Other2; Familiar-Other3; Other3-Other3; Ohter3-Familiar; Familiar-Other3) were obtained. 21 

The normal distribution of residuals was checked by using Shapiro-Wilk‘s test (p always > 22 

0.06). Post hoc comparisons were performed by means of Bonferroni’s test. Statistical analyses 23 

were performed using Statistica Software (StatSoft, release 8 RRID:SCR_014213). 24 

 25 
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Statistical analyses on ERPs. The analysis of electrophysiological data replicated that of 1 

Experiment 1. The mean amplitudes of N270 extracted from frontal, central, parietal and 2 

occipital clusters were used as dependent variables and entered in four identical statistical 3 

models (one for each cluster), i.e. 2x6 repeated measures ANOVAs with two within-subject 4 

factors: “Stimulus Sequence” (two levels: vS1=vS2, vS1vS2); and “Stimulus Identity” of vS2 5 

(six levels: Self, Other1, Other2, Other3, Other4, Familiar). The normal distribution of 6 

residuals was checked by using Shapiro-Wilk‘s test (p always > 0.07). Post hoc comparisons 7 

were performed by means of Bonferroni’s test. Statistical analyses were performed using 8 

Statistica Software (StatSoft, release 8 RRID:SCR_014213). 9 

 10 

3. Results 11 
 12 

3.1 Experiment 1 (discovering sample) 13 

3.1.1 Behavioral results 14 

Behavioral results are presented in Figure 2. Note that, overall are in line with our predictions, 15 

participants showed a more accurate and faster behavioral performance anytime the self-hand 16 

was included in the pair, thus indicating the presence of the self-advantage effect also in our 17 

sample. 18 

 19 

Accuracy 20 

The 2*4 repeated measures ANOVA performed on accuracy values revealed a significant 21 

Scenario*Condition Interaction (F3,42=4.967; p=0.004; η2=0.262), showing that the factor 22 

Condition was significantly modulated only in the With Self scenario. To further explore this 23 

interaction, four planned comparisons were run in the With Self scenario to compare identical 24 

pairs (Self-Self vs Other1-Other1), different pairs (Other1-Self and Self-Other1) and each 25 

identical pair with the corresponding different pair (Self-Self vs Other1-Self; Other1-Other1 vs 26 
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Self-Other1). By applying Bonferroni’s correction, alpha value was set at 0.012. Crucially, 1 

planned comparisons revealed that accuracy values of the Self-Self pair (meanSEM= 93.71  2 

2.09 %) were higher, even though it did not reach the significance level after Bonferroni’s 3 

correction (p=0.012), than those of Other1-Other1 pair (meanSEM= 83.643.81 %), whereas 4 

the accuracy rate of Other1-Self pair (mean  SEM= 94.591.71 %) and Self-Other1 pair 5 

(meanSEM=89.642.79 %) were not significantly different (p=0.048). Moreover, the 6 

percentage of accuracy response were higher in Self-Other1 pair as compared to Other1-Other1 7 

pair, even though the difference did not reach the significance level (p=0.014), but no 8 

significant differences emerged comparing Self-Self pairs to Other1-Self pair (p=0.683). This 9 

suggests the presence of a higher accuracy anytime the self-hand was included in the pair.  10 

 11 

Response Times (RTs) 12 

The 2*4 repeated measures ANOVA performed on RTs revealed a significant 13 

Scenario*Condition Interaction (F3,42=3.820; p=0.016; η2=0.214). Crucially, as for the 14 

accuracy, the factor Condition was modulated only in the With Self scenario and it was further 15 

explored with four planned comparisons (see above). Faster RTs were found in Self-Self pair 16 

(meanSEM= 675.4252.50 ms) as compared to Other1-Other1 pair (meanSEM= 745.72 17 

49.25 ms), even though the difference did not reach the significance level (p=0.017), whereas 18 

RTs of Other1-Self pair (meanSEM= 727.64 56.2 ms) and Self-Other1 pair (meanSEM= 19 

680.1652.78 ms) were not significantly different (p=0.057). Moreover, behavioral 20 

performance was significantly faster in Self-Other1 pair as compared to Other1-Other1 pair 21 

(p=0.0119), but no significant differences emerged comparing Self-Self pair to Other1-Self pair 22 

(p=0.102). Overall, the RT results parallel the accuracy results, showing the presence of a faster 23 

response anytime the self-hand was included in the pair.  24 

 25 
 26 
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 1 

 2 

 3 

Figure 2. Experiment 1: behavioral and electrophysiological results. The top left panel 4 

represents the accuracy values (in percentages) and the subjects’ RTs. Note that subjects’ 5 

performance was more accurate and faster anytime the self-hand was presented. The bottom 6 

left panel represents the mean of ERP amplitudes in the range between 230 and 320 ms post 7 

vS2 onset (i.e. the window including N270 component). Y axis: the mean voltage amplitude 8 

(V); X axis: experimental conditions. Note that the With Self scenario is represented in red, 9 

while the Without Self scenario is represented in blue. The top right panel represents the scalp 10 

map distribution of change response peaks (the latency corresponds to the peak of the 11 

subtractions waves). Maps are obtained by subtracting the response to vS2 of identical pairs 12 

from the response of vS2 of different pairs. The bottom right panel represents ERP waveforms 13 

in response to the vS2 at the central cluster (mean of the electrodes composing the cluster). Y 14 

axis: amplitude (V); X Axis: time (s). Waveforms in dotted lines represent pairs of identical 15 

stimuli (vS1=vS2), waveforms in solid lines represent pairs of different stimuli (vS1vS2). 16 
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Shaded areas correspond to ERP sem (standard error of the mean). Significant differences are 1 

highlighted in grey. The top panel represents ERP waveforms in the With Self scenario. The 2 

bottom panel represents ERP waveforms in the Without Self scenario.  3 

 4 

3.1.2 ERP results 5 

Electrophysiological results for the central cluster are presented in Figure 2. Results for all the 6 

other clusters are presented in the Supplementary materials. 7 

Note that, as expected, the contrast between pairs of identical stimuli (vS1=vS2) and pairs of 8 

different stimuli (vS1≠vS2) revealed a greater differential amplitude of the N270 in the With 9 

Self scenario when vS2 represented the self-hand (i.e. Self-Self vs. Other1-Self).  10 

 11 

Frontal cluster 12 

The 2*4 repeated measures ANOVA revealed a main effect of Sequence (F1,14= 6.949; 13 

p=0.019; η2=0.331), with overall larger ERP amplitudes for different as compared to identical 14 

vS2 (vS1=vS2: meanSEM= 0.160.29 V; vS1≠vS2: meanSEM= -0.600.33 V). A 15 

significant Sequence*Identity interaction (F3,42= 2.974; p=0.042; η2=0.175) was observed, 16 

suggesting that the difference between identical and different pairs was greater when vS2 17 

represented the self-hand. Crucially, post-hoc analyses showed that only the Self-Self vs 18 

Other1-Self comparison was significantly different in the N270 time window, with a larger 19 

amplitude for the different as compared to the identical pair (p<0.001). All other comparisons 20 

were 0.60. 21 

 22 

Central cluster 23 

The 2*4 repeated measures ANOVA revealed a main effect of Sequence (F1,14= 13.926; 24 

p=0.002; η2=0.499), with overall larger ERP amplitudes for different as compared to identical 25 
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vS2 (vS1=vS2: meanSEM= 0.760.34 V; vS1≠vS2: meanSEM= -0.180.35 V). A 1 

significant Sequence*Identity interaction (F3,42= 3,067; p=0.038; η2=0.180) was found. As for 2 

the frontal cluster, post-hoc comparisons showed that only Self-Self vs Other1-Self was 3 

significant, with a larger amplitude for the different as compared to the identical pair (p<0.001). 4 

All other comparisons were 0.08. 5 

 6 

Parietal cluster 7 

The 2*4 repeated measures ANOVA revealed a main effect of Sequence (F1,14= 14.705; 8 

p=0.002; η2=0.512), with overall larger ERP amplitudes for different as compared to identical 9 

vS2 (vS1=vS2: meanSEM= 1.270.32 V; vS1≠vS2: meanSEM= 0.510.29 V). 10 

Moreover, no significant Sequence*Identity interaction was found (F3,42= 2,822; p=0.051; 11 

η2=0.168).  12 

 13 

Occipital cluster 14 

The 2*4 repeated measures ANOVA revealed a main effect of Sequence (F1,14= 5.106; 15 

p=0.040; η2=0.267), with overall larger ERP amplitudes for different as compared to identical 16 

vS2 (vS1=vS2: meanSEM= 1.60  1.56 V; vS1≠vS2: meanSEM= 1.050.38 V). 17 

Moreover, no significant Sequence*Identity interaction was found (F3,42= 2.686; p=0.059; 18 

η2=0.161). 19 

 20 

3.2 Experiment 2 (replicating sample and control for familiarity) 21 

3.2.1 Behavioral results 22 

Behavioral results are presented in Figure 3. Note that behavioral results replicate the results 23 

of Experiment 1, showing a more accurate and faster performance anytime the self-hand was 24 

presented. 25 
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 1 

Accuracy 2 

The 3*4 repeated measures ANOVA performed on accuracy values revealed a significant 3 

Scenario*Condition Interaction (F6,84=5.130; p<0.001; η2=0.268), showing that the factor 4 

Condition was modulated only in the With Self scenario. As for the Experiment 1, to further 5 

explore this interaction, four planned comparisons were run in the With Self scenario to 6 

compare identical pairs (Self-Self vs Other1-Other1), different pairs (Other1-Self and Self-7 

Other1) and each identical pair with the corresponding different pair (Self-Self vs Other1-Self; 8 

Other1-Other1 vs Self-Other1)-. By applying Bonferroni’s correction, alpha value was set at 9 

0.012. Planned comparisons revealed that accuracy values of the Self-Self pair (meanSEM= 10 

96.601.04 %) were significantly higher (p<0.001) than those of Other1-Other1 pair 11 

(meanSEM= 85.572.18 %), whereas the accuracy rate of Other1-Self pair (meanSEM= 12 

89.462.36 %) and Self-Other1 pair (meanSEM=92.092.34 %) were not significantly 13 

different (p=0.266). Moreover, the percentage of accuracy response were significantly higher 14 

in Self-Other1 pair as compared to Other1-Other1 pair (p<0.001) and in Self-Self pair as 15 

compared to Other1-Self pair, even if it did not reach the significance level (p=0.012), 16 

suggesting that the greater the accuracy the greater the presence of self-hand in the pair.   17 

 18 

Response Times (RTs) 19 

The 3*4 repeated measures ANOVA performed on accuracy values revealed a significant 20 

Scenario*Condition interaction (F6,84=5.555; p<0.001; η2=0.284), showing that, as for the 21 

accuracy, the factor Condition was modulated only in the With Self scenario. All planned 22 

comparisons performed in the With Self scenario were significant here, revealing that RTs of 23 

the Self-Self pair (meanSEM= 623.81  48.34 ms) were significantly faster (p=0.003) than 24 

those of Other1-Other1 pair (meanSEM= 732.31  39.78 ms) and that RTs in Self-Other1 25 
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pair (meanSEM= 642.1646.37 ms) were significantly faster (p<0.001) as compared to 1 

Other1-Self pair (mean SEM=702.1742.74 ms). Moreover, RTs were significantly faster in 2 

Self-Other1 pair as compared to Other1-Other1 pair (p<0,001) and in Self-Self pair as 3 

compared to Other1-Self pair (p=0.010), suggesting that the behavioral performance was faster 4 

whenever the self-hand was present in the pair and it was depicted as the first stimulus. 5 

 6 
 7 

 8 
 9 
 10 
Figure 3. Experiment 2: behavioral and electrophysiological results. The top left panel 11 

represents the accuracy values (in percentages) and the subjects’ RTs. Note that subjects’ 12 

performance was more accurate and faster anytime the self-hand was presented. The bottom 13 

left panel represents the mean of ERP amplitudes in the range between 230 and 320 ms post 14 

vS2 onset (i.e. the window including N270 component). Y axis: the mean voltage amplitude 15 

(V); X axis: experimental conditions. Note that the With Self scenario is represented in red, 16 
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while the Without Self scenario is represented in blue, and the With Familiar scenario in green. 1 

The top right panel represents the scalp map distribution of change response peaks (the latency 2 

corresponds to the peak of the subtractions waves). Maps are obtained by subtracting the 3 

response to vS2 of identical pairs from the response of vS2 of different pairs.  The bottom right 4 

panel represents ERP waveforms in response to the vS2 at the central cluster (mean of the 5 

electrodes composing the cluster). Y axis: amplitude (V); X Axis: time (s). Waveforms in 6 

dotted lines represent pairs of identical stimuli (vS1=vS2), waveforms in solid lines represent 7 

pairs of different stimuli (vS1vS2).  Shaded areas correspond to ERP sem (standard error of 8 

the mean). Significant differences are highlighted in grey. The top panel represents ERP 9 

waveforms in the With Self scenario. The middle panel represents ERP waveforms in the 10 

Without Self scenario. The bottom panel represents ERP waveforms in the With Familiar 11 

scenario. 12 

Notably, overall present results confirmed the findings of Experiment 1. 13 

 14 

3.2.2 ERP results 15 

Electrophysiological results for the central cluster are presented in Figure 3. Results for all the 16 

other clusters are presented in the Supplementary materials. 17 

Note that, as in Experiment 1, the contrast between pairs of identical (vS1=vS2) and different 18 

stimuli (vS1≠vS2) revealed a significant modulation of the N270 only in the Whit Self scenario 19 

when vS2 represented the self-hand.  20 

 21 

Frontal cluster 22 

The 2*6 repeated measures ANOVA revealed a main effect of Sequence (F1,14=15,013; 23 

p=0.002; η2=0.517), with overall larger ERP amplitudes for different as compared to identical 24 

vS2 (vS1=vS2: meanSEM= -0.540.25 V; vS1≠vS2: meanSEM= -1.350.29 V).  A 25 
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significant Sequence*Identity interaction was found (F5,70= 4.895; p<0.001; η2=0.259). 1 

Crucially, post-hoc comparisons showed that only vS2s belonging to Self-Self vs Other1-Self 2 

pairs were significantly different in the N270 time window, with a significantly larger 3 

amplitude for the different as compared to the identical pair (p<0.001). All other comparisons 4 

were 0.08. 5 

 6 

Central cluster 7 

The 2*6 repeated measures ANOVA revealed a main effect of Sequence (F1,14=12.186; 8 

p=0.004; η2=0.465), with overall larger ERP amplitudes for different as compared to identical 9 

vS2 (vS1=vS2: meanSEM= -0.380.34 V; vS1≠vS2: meanSEM= -1.150.39 V).  A 10 

significant Sequence*Identity interaction was found (F5,70= 3.621; p=0.006; η2=0.201). 11 

Crucially,  post-hoc comparisons showed that only S2s belonging to Self-Self vs Other1-Self 12 

pairs were significantly different in the N270 time window, with a significantly larger 13 

amplitude for the different as compared to the identical pair (p<0.001). All other comparisons 14 

were 0.71. 15 

 16 

Parietal cluster 17 

The 2*6 repeated measures ANOVA revealed a main effect of Sequence (F1,14=11.462; p=.004; 18 

η2=0.450), with overall larger ERP amplitudes for different as compared to identical vS2 19 

(vS1=vS2: mean  SEM= 0.26 0.36 V; vS1≠vS2: mean  SEM= -0.38 0.43 V).). No 20 

significant Sequence*Identity interaction was found (F5,70= 2.154; p=0.069; η2=0.133). 21 

 22 

Occipital cluster 23 

The 2*6 repeated measures ANOVA revealed a main effect of Sequence (F1,14=9.257; p=0.009; 24 

η2=0.398), with overall larger ERP amplitudes for different as compared to identical vS2 25 
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(vS1=vS2: meanSEM= -0.070.51 V; vS1≠vS2: meanSEM= -0.660.63 V). No 1 

significant Sequence*Identity interaction was found (F5,70= 0.677; p=0.642; η2=0.046). 2 

 3 

4. Discussion  4 

The present paper, focused on bodily self-identification, explores whether the recognition of 5 

our physical identity has an observable electrophysiological correlate. More specifically, we 6 

exploited the amplitude modulation following different vs identical stimulation to verify 7 

whether implicit bodily-self recognition is able to modulate change detection responses, in a 8 

pair of sequentially presented visual stimuli. Importantly, previous literature investigating 9 

body-related change detection within the visual domain has mainly concentrated on face 10 

discrimination (Schweinberger & Neumann, 2016). Crucially, face visual features are 11 

extremely salient, since they are systematically employed for individual recognition. Still, self-12 

face recognition seems to rely on sensorimotor representations, exploiting multisensory cues, 13 

such as speech processing (Cardini et al., 2011; Sugiura, 2015; Tsakiris, 2008). Not 14 

surprisingly, therefore, face changes induced change detection responses in visual evoked 15 

potentials. Conversely, the present study focuses on body effectors (right hands), whose visual 16 

features are not equally relevant for their discrimination. However, similarly to faces, the self-17 

hand representation is supposed to recruit not only visual, but also sensorimotor brain networks 18 

(Apps & Tsakiris, 2014; Conson et al., 2017; Ferri et al., 2012; Limanowski & Blankenburg, 19 

2015). Thus, thanks to this multimodal representation, we hypothesized that self-hand visual 20 

recognition should still entail a special change detection mechanism, inducing greater 21 

electrophysiological responses than those elicited by others’ hands discrimination. 22 

In the following paragraphs we (1) outline our behavioral findings as supporting evidence of 23 

the self-advantage effect and (2) discuss our ERPs results, which seem to confirm the salience 24 

of bodily-self stimuli, which are able to boost identity recognition and change detection both 25 
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at behavioral and at electrophysiological levels. Importantly, the results highlighted in 1 

Experiment 1 (our discovering sample) were fully confirmed and extended in Experiment 2, 2 

which, besides controlling for a possible familiarity bias in our change detection effect, can be 3 

considered as a measure of internal replicability.  4 

 5 

The self-advantage and visual ERPs 6 

Our behavioral results highlighted the relevance of self-advantage (Frassinetti et al., 2009) in 7 

a repetition suppression paradigm, thus confirming the presence of such an effect for detection 8 

tasks, even though self-recognition is not explicitly required by experimental instructions.  9 

In both experiments, participants’ accuracy rate was modulated selectively in the With Self 10 

scenario (as indicated by the significant interaction between the factors Sequence and Identity 11 

in Experiments 1 and 2 - § Results 3.1.1; 3.2.1), where participants’ performance was overall 12 

more accurate whenever the self-hand was included in the pair. The statistical analyses on RTs 13 

paralleled accuracy results, thus reveling a significant modulation only in the With Self 14 

scenario. In both experiments, we observed a comparable pattern of results, showing a 15 

complete replicability of our findings. Interestingly, in the RT analysis of Experiment 2, likely 16 

because of the increased number of trials included in this second experiment, all the planned 17 

comparisons were significant, thus showing RT facilitation anytime the self-hand was the first 18 

stimulus of the pair. To explain this result, we can hypothesize that the self-hand, when 19 

presented as the first stimulus, boosted subjects’ working memory and thanks to its relevance 20 

for the system reduced the cognitive load and facilitated the active maintenance of the stimulus 21 

memory trace in order to solve the task (Scannella et al., 2016). 22 

Taken together, both accuracy and RTs point out a clear self-advantage effect in our behavioral 23 

results, with overall faster and better performance when the self-hand was included in the pair. 24 

  25 
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From an electrophysiological point of view, as indicated by previous literature (Iannetti et al., 1 

2008; Ronga et al., 2013), we hypothesized a significantly different ERP amplitude modulation 2 

between repeated and non-repeated conditions, highlighting, at least in the With Self scenario, 3 

a specific change detection mechanism. The present ERP data confirm our hypothesis (see 4 

below). Still, electrophysiological results in a way paralleled our behavioral findings, since in 5 

both experiments all significant modulations were selectively observed in the With Self 6 

scenario, thus pointing out the relevance of bodily-self recognition both from a behavioral and 7 

an electrophysiological point of view. 8 

 9 

A specific change detection mechanism for self-hands is revealed by N270 amplitude 10 

modulation 11 

From an electrophysiological point of view, in both experiments, we found a main effect of 12 

Stimulus Sequence, thus confirming also in the present samples the sensitivity of N270 13 

component in revealing sudden mismatches in a stream of visual stimuli (Y. Wang et al., 2004; 14 

Y. Wang et al., 2003). Ferrari, Bradley, Codispoti, and Lang (2010), by employing an oddball 15 

task with picture sequences, showed that N270 amplitude dramatically decreased already after 16 

the first stimulus repetition and immediately increased for novel pictures, thus confirming 17 

results by Y. Wang et al. (2004) obtained with stimulus pairs. Furthermore, the presence of 18 

overall greater N270 amplitudes when vS2 was different rather than identical to vS1, is in line 19 

with earlier evidence, proposing the N270 as an electrophysiological biomarker of conflict 20 

detection in a sequence of incoming visual stimuli (Enriquez-Geppert, Konrad, Pantev, & 21 

Huster, 2010; Folstein & Van Petten, 2008). 22 

More crucially for the present study, we also found a significant interaction between the factors 23 

Sequence and Identity, thus indicating that N270 amplitude was selectively modulated in the 24 

With Self scenario. Post-hoc comparisons revealed that the amplitude modulation between 25 

identical vs different pairs (i.e. change detection) was significant only for stimuli representing 26 
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the self-hand. Notably, this effect was found mainly over frontal and central electrodes, where 1 

in both experiments it was fully significant. For the parietal and occipital clusters, we found no 2 

significant modulations in both Experiment 1 and 2. These results are fully consistent with 3 

source localization studies, showing a fronto-central distribution of the N270 component (Li et 4 

al., 2003; Scannella et al., 2016). 5 

The confinement of significant change detection effects to the With Self scenario is a crucial 6 

finding since, as expected, it demonstrates that a reversion of repetition suppression mechanism 7 

within the N270 time window are not automatically elicited by the system anytime a change in 8 

the stimulation pattern occurs. Instead, mismatch detection responses emerge only when 9 

stimulation changes are valued as salient (Ronga et al., 2013). Importantly, our results confirm 10 

that the salience of the self-hand, as demonstrated by its ability to revert repetition suppression 11 

effectively, represents a kind rather than a degree property expressed by all or nothing effects. 12 

Interestingly, such salience of self-recognition turns up even when entailing the (task-13 

irrelevant) identification of body effectors, selectively through their visual appearances. 14 

Apparently, recognizing our own body seems to represent an aprioristic relevant matter for the 15 

individual, independently from specific task instructions.   16 

 17 

A similar line of research, focused on investigating the electrophysiological signatures of self 18 

and other’s face recognition, reported that the amplitude of an occipito-temporal negative 19 

component, peaking around 250 ms post stimulus onset, appeared larger in response to familiar, 20 

rather than unfamiliar faces (Schweinberger & Neumann, 2016; Tanaka & Pierce, 2009). Even 21 

though such a component was emerging from different neural sources as compared to our 22 

fronto-central N270 (see e.g., Caharel, d’Arripe, Ramon, Jacques, & Rossion, 2009), results of 23 

Experiment 1 cannot exclude that the familiarity of the self-hand could somehow contribute to 24 

N270 modulation in the With Self scenario. To explore this possible familiarity-related effect 25 

and confirm the results of Experiment 1, we run Experiment 2, where a scenario with a familiar 26 
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hand was added in the experimental paradigm. Importantly, and as supporting evidence of the 1 

specificity of our effect for the self-hand, we found that presenting a familiarized hand did not 2 

boost change detection responses (as demonstrated by the absence of any behavioral and 3 

electrophysiological modulations in the With Familiar scenario – see 3.2.1 and 3.2.2). This 4 

finding seems to indicate that the enhancement of change detection mechanisms is driven by a 5 

self-specific effect and not by a mere familiarity effect, even though we cannot rule out that 6 

the special familiarity acquired by the self-hand somehow contributed to the observed effect. 7 

Overall, it may be challenging to distinguish specific self-recognition driven effects from 8 

familiarity-driven effects and previous studies present controversial evidence. Butler and 9 

colleagues (Butler, Mattingley, Cunnington, & Suddendorf, 2013) found similar 10 

electrophysiological signatures of self-face and highly familiar faces (i.e., those of dizygotic 11 

twins), suggesting that self-bodies, when compared to other bodies with a similar exposure, do 12 

not involve unique featural encoding. On the other hand, Alzueta, Melcon, Poch, and Capilla 13 

(2019) recorded EEG activity while participants performed a facial recognition task, where 14 

they had to discriminate between their own face, a friend’s face, and an unknown face. 15 

Crucially, authors pinpointed a specific modulation (within the time window of P200), 16 

distinctive of the processing of self-face, suggesting that self-body parts have dedicated 17 

processing mechanisms, clearly distinguishable from the detection of others’ familiar bodies. 18 

We believe that our results, revealing a selective modulation of N270 component only when 19 

the self-hand was presented, may be considered as a supporting evidence of the tenet that self 20 

and other body parts have different neural representations (see below). 21 

 22 

Overall the present findings suggest that, in a visual detection task, self- and only self-hand 23 

changes are salient enough to reverse repetition suppression mechanism. In other words, self-24 

hand recognition, similarly to other sensory stimulation valued as relevant by the system, might 25 

trigger the activity of the “salience network” (mainly including multimodal, associative 26 
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cortices, such as the anterior cingulate cortex and the insula) (Legrain, Iannetti, Plaghki, & 1 

Mouraux, 2011; Mouraux, Diukova, Lee, Wise, & Iannetti, 2011), thus boosting the mismatch 2 

detection effect. However, this possible mechanism does not explain how the system 3 

recognizes the self-hand. Previous studies showed that the nervous system may employ a 4 

number of different strategies to recognize the bodily self, entailing the identification of visual 5 

features and/or the sensorimotor information (Ferri et al., 2012; Frassinetti et al., 2011; 6 

Tsakiris, 2010).  7 

The specificity observed for self-hand recognition in our data suggests that the self has a 8 

systematic processing advantage, likely related to its inherent multimodal dimension. 9 

Differently from images depicting others’ bodies, which cannot be felt, visual stimuli 10 

representing the bodily-self have immediate access also to sensorimotor information, thus 11 

enriching their representation and salience. The present results, therefore, are compatible with 12 

the idea of an integrated, multisensory network devoted to the recognition of the bodily-self 13 

(Limanowski & Blankenburg, 2015, 2016; Zeller et al., 2016). The visual representation of 14 

body effectors, besides primary visual cortices, may activate a circuit of sensorimotor areas 15 

(including the ventral-premotor cortex) and of extrastriate, associative visual cortices (such as 16 

the extrastriate body area – EBA – in the temporal lobe) (Ferri et al., 2012; Frassinetti et al., 17 

2011; Limanowski, Sarasso, & Blankenburg, 2018). However, how can this multimodal 18 

activity be observed? Recently, a novel EEG paradigm has been specifically designed to 19 

highlight the sensorimotor activity in response to visual body recognition (Galvez-Pol, Calvo-20 

Merino, & Forster, 2020). EEG responses to bodily-self visual information should be recorded 21 

either in isolation (visual-only condition) or in combination with task-irrelevant motor and 22 

somatosensory events (multimodal condition). Then, the activation recorded in visual-only 23 

condition should be subtracted from the multimodal condition. This subtraction should 24 

highlight the supposed contribution of sensorimotor activity in response to bodily-self images. 25 

In the present study, we demonstrate that the implicit self-body recognition boosts the change 26 
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detection and we postulate that this enhanced mechanism is related to the activation of a 1 

multimodal sensorimotor network devoted to the recognition of the bodily-self. If our 2 

hypothesis is correct, future studies should exploit such a multimodal EEG paradigm in the 3 

context of visual mismatch detection protocols, thus uncovering the neural mechanisms 4 

underlying the enhancement of change detection effects for the bodily-self.  5 
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