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A (unit) disk graph is the intersection graph of closed (unit) disks in the plane. Almost three decades ago, an
elegant polynomial-time algorithm was found forMaximum Cliqe on unit disk graphs [Clark, Colbourn,
Johnson; Discrete Mathematics ’90]. Since then, it has been an intriguing open question whether or not
tractability can be extended to general disk graphs. We show that the disjoint union of two odd cycles is never
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we derive a simple QPTAS and a subexponential algorithm running in time 2Õ (n2/3 ) forMaximum Cliqe
on disk and unit ball graphs. We then obtain a randomized EPTAS for computing the independence number
on graphs having no disjoint union of two odd cycles as an induced subgraph, bounded VC-dimension, and
linear independence number. This, in combination with our structural results, yields a randomized EPTAS for
Max Cliqe on disk and unit ball graphs.Max Cliqe on unit ball graphs is equivalent to finding, given a
collection of points in R3, a maximum subset of points with diameter at most some fixed value.

In stark contrast,Maximum Cliqe on ball graphs and unit 4-dimensional ball graphs, as well as intersection
graphs of filled ellipses (even close to unit disks) or filled triangles is unlikely to have such algorithms. Indeed,
we show that, for all those problems, there is a constant ratio of approximation which cannot be attained even
in time 2n

1−ε
, unless the Exponential Time Hypothesis fails.

CCS Concepts: • Mathematics of computing→ Graph theory; Approximation algorithms; • Theory
of computation→ Computational geometry.

Additional Key Words and Phrases: disk graph, maximum clique, computational complexity, approximation
algorithms, subexponential algorithms
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1 INTRODUCTION

In an intersection graph, the vertices are geometric objects with an edge between any pair of
intersecting objects. Intersection graphs have been studied for many different families of objects
due to their practical applications and their rich structural properties [18, 50]. Among the most
studied ones are disk graphs, which are intersection graphs of closed disks in the plane, and their
special case, unit disk graphs, where all the radii are equal. Their applications range from sensor
networks to map labeling [34], and many standard optimization problems have been studied on
disk graphs, see for example [60] and references therein. Most of the hard optimization and decision
problems remainNP-hard on disk graphs and even unit disk graphs. For instance, disk graphs contain
planar graphs [44] on which several of those problems are intractable. However, shifting techniques
and separator theorems may often lead to subexponential classical or parameterized algorithms
[5, 12, 49, 56]. Many approximation algorithms have been designed specifically on (unit) disk graphs,
or more generally on geometric intersection graphs, see for instance [3, 26, 27, 33, 36, 53, 54, 59] to
cite only a few. Besides ad hoc techniques, local search and VC-dimension play an important role in
the approximability of problems on (unit) disk graphs. For the main packing and covering problems
(Maximum Independent Set,Min Vertex Cover,Minimum Dominating Set,Minimum Hitting
Set, and their weighted variants) at least a PTAS is known.
However, all the mentioned techniques are only amenable to packing and covering problems.

TheMaximum Cliqe problem is arguably the most prominent problem which does not fall into
those categories. For example, anything along the lines of exploiting a small separator cannot work
forMaximum Cliqe, where the densest instances are the hardest. Therefore, it seems that new
ideas are necessary to get improved approximate or exact algorithms for this problem. In this paper,
we focus on solving Maximum Cliqe on (unit) disk graphs in dimension 2 or higher.

Previous results. In 1990, Clark et al. [29] gave an elegant polynomial-time algorithm forMaximum
Cliqe on unit disk graphs when the input is a geometric representation of the graph. It goes as
follows: guess in quadratic time the two more distant centers of disks in a maximum clique (at
distance at most 2), remove all the centers that would contradict this maximality, observe that the
resulting graph is co-bipartite. Hence, one can find an optimum solution in polynomial time by
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looking for a maximum independent set in the complement graph, which is bipartite. However,
recognizing unit disk graphs is NP-hard [19], and even ∃R-complete [41]. In particular, if the input
is the mere unit disk graph, one cannot expect to efficiently compute a geometric representation in
order to run the previous algorithm. Raghavan and Spinrad showed how to overcome this issue and
suggested a polynomial-time algorithm which does not require the geometric representation [55].
Their algorithm is a subtle blind reinterpretation of the algorithm by Clark et al. It solvesMaximum
Cliqe on a superclass of the unit disk graphs or correctly claims that the input is not a unit disk
graph. Hence, it cannot be used to efficiently recognize unit disk graphs.
The complexity of Maximum Cliqe on general disk graphs is a notorious open question in

computational geometry. On the one hand, no polynomial-time algorithm is known, even when
the geometric representation is given. On the other hand, the NP-hardness of the problem has not
been established, even when only the graph is given as input.

The piercing number of a collection of geometric objects is the minimum number of points that
hit all the objects. It is known since the fifties (although the first published records of that result
came later in the eighties) that the piercing number of pairwise intersecting disks is 4 [30, 57],
meaning that 4 points are always sufficient and sometimes necessary. An account of this story can
be found in a recent paper by Har-Peled et al. [38]. The same paper gives a linear-time algorithm to
find 5 points piercing any collection of pairwise intersecting disks, as well as a configuration with
13 pairwise intersecting disks for which checking that 4 points are necessary to hit all the disks is
quite simple. Carmi et al. [24] improved the former result by presenting a linear-time algorithm
that finds a hitting set of at most 4 points.
Ambühl and Wagner observed that this yields a 2-approximation for Maximum Cliqe [7].

Indeed, after guessing in polynomial time four points hitting a maximum clique and removing
every disk not hit by those points, the instance is partitioned into four cliques; or equivalently,
two co-bipartite graphs. One can then solve optimally each instance formed by one co-bipartite
graph and return the larger solution of the two. This cannot give a solution more than twice
smaller than the optimum. Since then, the problem has proved to be elusive with no new positive
or negative results. The question on the complexity and further approximability of Maximum
Cliqe on general disk graphs is considered as folklore [11], but was also explicitly mentioned
as an open problem by Fishkin [34], Ambühl and Wagner [7]. Cabello even asked if there is a
1.99-approximation for disk graphs with two sizes of radii [21, 22].

Our results. We fully characterize the disk graphs whose complements have maximum degree 2,
i.e., are unions of cycles and paths: A complement of a disjoint union of paths and cycles is a disk
graph if and only if the number of odd cycles in this union is at most one. For algorithmic purposes,
the interesting part of that statement is:

Theorem 1.1. A complement of a disk graph cannot have a disjoint union of two odd cycles as an

induced subgraph. In other words, if G is a disk graph, then iocp(G ) ⩽ 1.

In the previous statement iocp denotes the induced odd cycle packing number of a graph, i.e., the
maximum number of odd cycles as a disjoint union in an induced subgraph.
We show the same forbidden induced subgraphs for unit ball graphs as for disk graphs. The

proofs for disk graphs and unit ball graphs are quite different and the classes are incomparable.

Theorem 1.2. A complement of a unit ball graph cannot have a disjoint union of two odd cycles as

an induced subgraph. In other words, if G is a unit ball graph, then iocp(G ) ⩽ 1.

We then present a randomized EPTAS (Efficient Polynomial-Time Approximation Scheme, that
is, a PTAS in time f (ε )nO (1)) for Maximum Independent Set on graphs of X (d, β , 1). The class
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X (d, β, 1) denotes the class of graphs whose neighborhood hypergraph has VC-dimension at most
d , independence number at least βn, and no disjoint union of two odd cycles as an induced subgraph
(for formal definitions see Section 2).

Theorem 1.3. For any constants d ∈ N, 0 < β ⩽ 1, for every 0 < ε < 1, there is a randomized

(1 − ε )-approximation algorithm running in time 2Õ (1/ε3 )nO (1)
, and a deterministic PTAS running in

time nÕ (1/ε3 )
for Maximum Independent Set on graphs of X (d, β , 1) with n vertices.

It is then easy to reduce Maximum Cliqe on disk graphs to Maximum Independent Set
on X (4, β, 1) for some constant β . We therefore obtain, due to Theorem 1.3 and Theorem 1.1, a
randomized EPTAS (and a deterministic PTAS) for Maximum Cliqe on disk graphs, settling
almost1 completely the approximability of this problem.

Theorem 1.4. There is a randomized EPTAS forMaximum Clique on disk graphs, even if a geometric

representation is not given. Its running time is 2Õ (1/ε3 )nO (1)
for a (1 − ε )-approximation on a graph

with n vertices.

Similarly, Theorem 1.3 and Theorem 1.2 naturally lead to:

Theorem 1.5. There is a randomized EPTAS in time 2Õ (1/ε3 )nO (1)
for Maximum Clique on unit

ball graphs, even if a geometric representation is not given.

Before that result, the best approximation factor was 2.553, due to Afshani and Chan [1]. In
particular, even getting a 2-approximation algorithm (as for disk graphs) was open.

Finally we show that such an approximation scheme, even in subexponential time, is unlikely for
ball graphs (i.e., intersection graphs of 3-dimensional balls with arbitrary radii), unit 4-dimensional
ball graphs, as well as intersection graphs of (filled) triangles and (filled) ellipses. Our lower bounds
also imply NP-hardness. To the best of our knowledge, the NP-hardness of Maximum Cliqe on
unit d-dimensional ball graphs was only known when d is superconstant (d = Ω(logn)) [2].
In the following paragraphs, we sketch the principal lines of our three main contributions.

The complement of the union of two odd cycles is not a disk graph. Let H be the complement of
two cycles C1 ⊎C2. We focus on the possible configurations for the four centers associated to two
non-edges of H : one edge of C1 and one edge of C2. It can be shown that, if those four centers
are in convex position, then the non-edges of H should cross. In other words, there is a forbidden
configuration: four centers in convex position with the two non-edges being sides of the quadrangle.
For each edge e of C1 (resp. C2), we define three quantities counting how many edges of C2 (resp.
C1) are crossed by e (for three different meanings of crossing). The forbidden configuration and
parity arguments on sums of those quantities bring the desired result that the two cycles cannot be
both of odd length.

The complement of the union of two odd cycles is not a unit ball graph. Given a needle in R3
whose middle-point is attached to the origin, one can apply a continuous motion in order to turn it
around (a motion à la Kakeya, henceforth Kakeya motion). A Kakeya motion can be seen as a closed
antipodal curve on the 2-sphere. If we now consider two needles, each with a Kakeya motion, then
the two needles have to go through a same position. This simply follows from the fact that two
antipodal curves on the 2-sphere intersect. The second main result of this paper is a translation
of this Jordan-type theorem in terms of intersection graphs: The complement of a unit ball graph
does not contain the disjoint union of two odd cycles. The proof can really be seen as two Kakeya

1The NP-hardness, ruling out a 1-approximation, is still to be shown.
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motions, each one along the two odd cycles, leading to a contradiction when the needles achieve
parallel directions.

Together with the next result, it implies a randomized EPTAS for the following problem: Given a
set S of points in R3, find a largest subset of S of diameter at most 1.

EPTAS for Maximum Independent Set on X (d, β , 1). We show that if a graph G satisfies that
every two odd cycles are joined by an edge, the Vapnik-Chervonenkis dimension (VC-dimension
for short) of the hypergraph of the neighborhoods of G is bounded, and α (G ) is at least a constant
fraction of |V (G ) |, then α (G ) can be approximated in polynomial time at any given precision.
More precisely, we present in that case a randomized EPTAS running in time 2Õ (1/ε3 )nO (1) and a
deterministic PTAS.

Our algorithm works as follows. We start by sampling a small subset of vertices. Hoping that this
small subset is entirely contained in a fixed optimum solution I , we include the selected vertices to
our solution and remove their neighborhood from the graph. Due to the classic result of Haussler
and Welzl [39] on ε-nets of sizeO (d/ε log 1/ε ) (where d is the VC-dimension), this sampling lowers
the degree in I of the remaining vertices. We compute a shortest odd cycle. If this cycle is short, we
can remove its neighborhood from the graph and solve optimally the problem in the resulting graph,
which is bipartite by assumption. If this cycle is long, we can efficiently find a small odd-cycle
transversal. This is shown by a careful analysis on the successive neighborhoods of the cycle, and
the recurrent fact that this cycle is a shortest among the ones of odd length.

Organization. The rest of the paper is organized as follows. In Section 2, we recall some relevant
notations for graphs and elementary geometry, the definitions of VC-dimension, disk graphs,
and approximation schemes. We finish this section by introducing a class X (d, β, i ) of graphs
parameterized by three constants: d , upper-bounding the VC-dimension, β , lower-bounding the
ratio α (G )/|V (G ) | (independence number divided by number of vertices), and i , upper-bounding the
maximum number of odd cycles that can be found as a disjoint union in an induced subgraph. In
Section 3, we characterize disk graphs whose complements have maximum degree 2. The most
useful result of this section is that the complement of the disjoint union of two odd cycles is not a
disk graph. In Section 4, we show that unit ball graphs have the same forbidden induced subgraphs.
In Section 5, we show that those forbidden induced subgraphs, together with existing results and
algorithms, readily give a subexponential algorithm and a QPTAS forMaximum Cliqe on disk
and unit ball graphs. In Section 6, we design a randomized EPTAS for Maximum Independent Set
on the class X (d, β, i ). We then show how this yields a randomized EPTAS forMaximum Cliqe
on disk and unit ball graphs. This is tight in two directions: having different values of radii, and
the dimension of the ambient space. Indeed, in Section 7, we complement those positive results by
showing thatMaximum Cliqe is unlikely to have a QPTAS (even a SUBEXPAS) on ball graphs
where all the radii are arbitrarily close to 1, and on 4-dimensional unit ball graphs. We also show
the same lower bounds for intersection graphs of simple objects in the plane, namely filled triangles
and filled ellipses. In Section 8, we make some observations about the EPTAS and propose some
lines of thoughts on how to tackle the computational complexity of Maximum Cliqe in disk and
unit ball graphs.

2 PRELIMINARIES

For two integers i ⩽ j, we denote by [i, j] the set of integers {i, i + 1, . . . , j − 1, j}. For a positive
integer i , we denote by [i] the set of integers [1, i].

J. ACM, Vol. 0, No. 0, Article 0. Publication date: .



0:6 M. Bonamy et al.

The Exponential Time Hypothesis (ETH) is a conjecture by Impagliazzo et al. asserting that there
is no 2o (n)-time algorithm for 3-SAT on instances with n variables [40]. The ETH, together with
the sparsification lemma [40], even implies that there is no 2o (n+m)-time algorithm solving 3-SAT.

Graph notations. LetG be a simple graph. We denote byG its complement, i.e., the graph obtained
by making every non-edge an edge and vice versa. V (G ) and E (G ) represent its set of vertices and
its set of edges, respectively. We denote by α (G ) the independence number ofG, i.e., the size of a
maximum independent set (or stable set), and by ω (G ) the clique number of G, i.e., the size of a
maximum clique. For S ⊆ V (G ), its open neighborhood, denoted by NG (S ), is the set of vertices that
are not in S and have a neighbor in S , and its closed neighborhood is defined by NG [S] = S ∪NG (S ).
We omit the subscript G if the graph is obvious from the context and we write NG (x ) instead of
NG ({x }).
The odd cycle packing number of G, denoted by ocp(G ), is defined as the maximum number of

vertex-disjoint odd cycles and the induced odd cycle packing number of G, denoted by iocp(G ), is
the maximum number of vertex-disjoint odd cycles with no edge between any two of them.
The 2-subdivision of a graph G is the graph H obtained by subdividing each edge of G exactly

twice. IfG has n vertices andm edges, thenH has n+2m vertices and 3m edges. The co-2-subdivision
ofG is the complement of H . Hence it has n + 2m vertices and

(
n+2m

2

)
− 3m edges. The co-degree of

a graph is the maximum degree of its complement. A co-disk is a graph that is the complement of a
disk graph.

VC-dimension. VC-dimension has been introduced by Vapnik and Chervonenkis in the seminal
paper [61]. Let H = (V ,E) be a hypergraph. A set X ⊆ V of vertices of H is shattered if for every
subset Y of X there exists a hyperedge e ∈ E such that e ∩X = Y . An intersection between X and a
hyperedge e of E is called a trace (on X ). Equivalently, a set X is shattered if all its 2 |X | traces exist.
The VC-dimension of a hypergraph is the maximum size of a shattered set. As an abuse of language,
we call VC-dimension of a graphG , denoted by VCdim(G ), the VC-dimension of the neighborhood
hypergraph (V (G ), {NG (v ) | v ∈ V (G )}). The geometric VC-dimension of a collection of objects is
the VC-dimension of the (uncountable infinite) hypergraph where vertices are all the points of the
ambient space and the hyperedges are the objects. If, in general, the geometric VC-dimension does
not necessarily coincide with the VC-dimension of the intersection graph, it does coincide for unit
balls in any dimension. Indeed, shattering a set S of points with balls of radius 1 is equivalent to
shattering the balls of radius 1/2 centered at S with balls of radius 1/2.

Geometric notations. For a positive integer d , we denote by Rd the d-dimensional euclidean space.
We denote by d (x ,y) the euclidean distance between x and y. If x and y are two points of Rd ,
seg(x ,y), or simply xy, is the straight-line segment whose endpoints are x and y. If x and y are
distinct, ℓ(x ,y) is the unique line going through x and y. If s is a segment with positive length, then
we denote by ℓ(s ) the unique line containing s .

We will often define disks and elliptical disks by their boundary, i.e., circles and ellipses, and
also use the following basic facts. There are exactly two circles that pass through a given point
with a given tangent at this point and a given radius; one if we further specify on which side of
the tangent the circle is. There is exactly one circle which passes through two points with a given
tangent at one of the two points, provided the other point is not on this tangent. Finally, there
exists one (not necessarily unique) ellipse which passes through two given points with two given
tangents at those points.
A d-dimensional closed ball is defined from a center x ∈ Rd and a radius r ∈ R+, as the set of

points {y ∈ Rd | d (x ,y) ⩽ r }, i.e., at distance at most r from x . The diameter of a subset S ⊆ Rd is
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EPTAS and Subexponential Algorithm for Maximum Clique on Disk and Unit Ball Graphs 0:7

defined as sup
x,y∈S

d (x ,y). The piercing number (also called hitting set or transversal) of a collection

O of geometric objects in Rd is the minimum number of points of Rd that pierce (or hit) all the
objects of O, i.e., each object contains at least one of these points.

Disk graphs and their forbidden induced subgraphs. A d-dimensional ball graph is the intersection
graph of d-dimensional closed balls of Rd . We shorten 2-dimensional ball graph in disk graph, and
3-dimensional ball graph in ball graph. A d-dimensional unit ball graph is the intersection graph of
unit d-dimensional closed balls of Rd , that is, balls with radius 1. Unit d-dimensional ball graphs
can be thought of only with points: vertices are points (at the center of the ball) and two points are
adjacent if they are at distance at most 2. In particular, solvingMaximum Cliqe on those graphs is
equivalent to finding a maximum sub-collection of points whose diameter is at most a fixed value.

Approximation schemes. A PTAS (Polynomial-Time Approximation Scheme) for a minimization
(resp. maximization) problem is an approximation algorithm which takes an additional parameter
ε > 0 and outputs in time nf (ε ) a solution of value at most (1 + ε )OPT (resp. at least (1 − ε )OPT)
where OPT is the optimum value. Observe that from now on, we consider that approximation ratios
of maximization problems are smaller than 1, unlike the convention we used in the introduction.
An EPTAS (Efficient PTAS) is the same with running time f (ε )nO (1) , an FPTAS (Fully PTAS) has
running time (1/ε )O (1)nO (1) , a QPTAS (Quasi PTAS) has running time npolylog n for every ε > 0.
Finally, and this is less standard, we call SUBEXPAS (subexponential AS) an approximation scheme
with running time 2nγ for some γ < 1 not depending on ε , for every ε > 0. All those approximation
schemes can come deterministic or randomized.

The class X (d, β , i ). In Section 6, we present a randomized EPTAS and a deterministic PTAS
for approximating the independence number α on graphs with constant VC-dimension, linear
independence number, and the induced odd cycle packing number equal to 1.

Actually, we extend these algorithms to the case iocp(G ) = i , for any constant i . Let X (d, β, i ) be
the class of simple graphs G satisfying:
• VCdim(G ) ⩽ d ,
• α (G ) ⩾ β |V (G ) |, and
• iocp(G ) ⩽ i .

For any positive constants d, β < 1, i , we get a deterministic PTAS and a randomized EPTAS for
Maximum Independent Set on X (d, β , i ).

3 DISK GRAPHS WITH CO-DEGREE AT MOST 2

In this section, we fully characterize the degree-2 complements of disk graphs. We show the
following:

Theorem 3.1. A disjoint union of paths and cycles is the complement of a disk graph if and only if

the number of odd cycles is at most one.

We split this theorem into two parts. In the first one, Section 3.1, we show that the union of two
disjoint odd cycles is not the complement of a disk graph. This is the part that will be algorithmically
useful. As disk graphs are closed under taking induced subgraphs, it implies that in the complement
of a disk graph two vertex-disjoint odd cycles have to be linked by at least one edge. This will turn
out useful when solvingMaximum Independent Set on the complement of the graph (to solve
Maximum Cliqe on the original graph). In the second part, Section 3.2, we show how to represent
the complement of the disjoint union of even cycles and exactly one odd cycle. Although this result
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0:8 M. Bonamy et al.

is not needed for the forthcoming algorithmic section, it nicely highlights the singular role that
parity plays and exposes the complete set of disk graphs of co-degree at most 2.

3.1 The disjoint union of two odd cycles is not co-disk

We call positive distance between two non-intersecting disks the minimum of d (x ,y) where x is in
one disk and y is in the other. If the disks are centered at c1 and c2 with radius r1 and r2, respectively,
then this value is d (c1, c2) − r1 − r2. We call negative distance between two intersecting disks the
length of the straight-line segment defined as the intersection of three objects: the two disks and
the line joining their centers. This value is r1 + r2 − d (c1, c2), which is positive.
We call proper representation a disk representation where every edge is witnessed by a proper

intersection of the two corresponding disks, i.e., the interiors of the two disks intersect. It is easy to
transform a disk representation into a proper representation (of the same graph).

Lemma 3.2. If a graph has a disk representation, then it has a proper representation.

Proof. If two disks intersect non-properly, we increase the radius of one of them by ε/2 where
ε is the smallest positive distance between any two disks in the representation. □

In order not to have to discuss about the special case of three aligned centers in a disk represen-
tation, we show that such a configuration is never needed to represent a disk graph.

Lemma 3.3. If a graph has a disk representation, it has a proper representation where no three

centers are aligned.

Proof. By Lemma 3.2, we have or obtain a proper representation. Let ε be the minimum between
the smallest positive distance and the smallest negative distance. As the representation is proper,
ε > 0. If three centers are aligned, we move one of them to any point which is not lying in a line
defined by two centers in a ball of radius ε/2 centered at it. This decreases the number of triples of
aligned centers by at least one, and can be repeated until no three centers are aligned. □

From now on, we assume that every disk representation is proper and without three aligned
centers. We show the folklore result that in a representation of K2,2 that sets the four centers in
convex position, both non-edges have to be diagonal.

Lemma 3.4. In a disk representation of K2,2 with the four centers in convex position, the non-edges

are between vertices corresponding to opposite centers in the quadrangle.

Proof. Let c1 and c2 be the centers of one non-edge, and c3 and c4 the centers of the other
non-edge. Let ri be the radius associated to center ci for i ∈ [4]. It should be that d (c1, c2) > r1 + r2
and d (c3, c4) > r3+r4 (see Figure 1). Assume c1 and c2 are consecutive on the convex hull formed by
{c1, c2, c3, c4}, and say, without loss of generality, that the order is c1, c2, c3, c4. Let c be the intersection
of seg(c1, c3) and seg(c2, c4). It holds that d (c1, c3)+d (c2, c4) = d (c1, c )+d (c, c3)+d (c2, c )+d (c, c4) =
(d (c1, c )+d (c, c2))+ (d (c3, c )+d (c, c4)) > d (c1, c2)+d (c3, c4) > r1+r2+r3+r4 = (r1+r3)+ (r2+r4).
Which implies that d (c1, c3) > r1 + r3 or d (c2, c4) > r2 + r4; a contradiction. □

We derive a useful consequence of the previous lemma, phrased in terms of intersections of lines
and segments.

Corollary 3.5. In any disk representation of K2,2 with centers c1, c2, c3, c4 with the two non-edges

between the vertices corresponding to c1 and c2, and between c3 and c4, it should be that ℓ(c1, c2)
intersects seg(c3, c4) or ℓ(c3, c4) intersects seg(c1, c2).
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c1

c2
c3

c4

Fig. 1. Disk realization of a K2,2. As the centers are positioned, it is impossible that the two non-edges are
between the disks 2 and 3, and between the disks 1 and 4 (or between the disks 1 and 3, and between the
disks 2 and 4).

Proof. First, assume that the disk representation has the four centers in convex position. Then,
by Lemma 3.4, seg(c1, c2) and seg(c3, c4) are the diagonals of a convex quadrangle. Hence they
intersect, and a fortiori, ℓ(c1, c2) intersects seg(c3, c4) (ℓ(c3, c4) intersects seg(c1, c2), too).

In the other case, the disk representation has one center, say without loss of generality, c1, in the
interior of the triangle formed by the other three centers. In this case, ℓ(c1, c2) intersects seg(c3, c4).
If instead a center in {c3, c4} is in the interior of the triangle formed by the other centers, then
ℓ(c3, c4) intersects seg(c1, c2). □

We can now prove the main result of this section thanks to the previous corollary, parity
arguments, and some elementary properties of closed plane curves, namely Property I and Property
III of the eponymous paper [58].

Theorem 1.1. A complement of a disk graph cannot have a disjoint union of two odd cycles as an

induced subgraph. In other words, if G is a disk graph, then iocp(G ) ⩽ 1.

Proof. Let s and t be two positive integers and G = Cs +Ct the complement of the disjoint
union of a cycle of length s and a cycle of length t . Assume that G is a disk graph. Let C1 (resp.
C2) be the cycle embedded in the plane formed by s (resp. t ) straight-line segments joining the
consecutive centers of disks along the first (resp. second) cycle. Observe that the segments of those
two cycles correspond to the non-edges ofG . We number the segments of C1 from S1 to Ss , and the
segments of C2, from S ′1 to S

′
t .

For the i-th segment Si of C1, let ai be the number of segments of C2 intersected by the line
ℓ(Si ) prolonging Si , let bi be the number of segments S ′j of C2 such that the prolonging line ℓ(S ′j )
intersects Si , and let ci be the number of segments of C2 intersecting Si . For the second cycle, we
define similarly a′j , b

′
j , c
′
j . The quantity ai + bi − ci counts the number of segments of C2 which can

possibly represent a K2,2 with Si according to Corollary 3.5. As we assumed that G is a disk graph,
ai + bi − ci = t for every i ∈ [s]. Otherwise there would be at least one segment S ′j of C2 such that
ℓ(Si ) does not intersect S ′j and ℓ(S

′
j ) does not intersect Si .

By summing, it holds that Σsi=1 (ai + bi − ci ) = st . Observe that ai is an even integer since C2 is a
closed curve. This implies that st and Σsi=1 (bi − ci ) have the same parity. Note that Σsi=1ci counts
the number of intersections of the two closed curves C1 and C2, and is therefore even. Finally,
observe that Σsi=1bi = Σtj=1a

′
j by reordering and reinterpreting the sum from the point of view of

the segments of C2. Since the a′j ’s are all even, Σ
s
i=1bi is also even.

This means than st is even. Therefore, s and t cannot be both odd integers. □
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3.2 The disjoint union of cycles with at most one odd is co-disk

We only show the following part of Theorem 3.1 to emphasize that, rather unexpectedly, parity
plays a crucial role in disk graphs of co-degree at most 2. It is also amusing that the complement
of any odd cycle is a unit disk graph while the complement of any even cycle of length at least
8 is not [10]. Here, the situation is somewhat reversed: complements of even cycles are easier to
represent than complements of odd cycles.

Theorem 3.6. The complement of the disjoint union of even cycles and one odd cycle is a disk graph.

Proof. We start with a disk representation of the complement of one even cycle C2s . Recall that
this construction is not possible with unit disks for even cycles of length at least 8. We assume that
the vertices of the cycle C2s are 1, 2, . . . , 2s in this order. For each i ∈ [2s], the disk Di encodes the
vertex i . We start by fixing the disks D1, D2, and D2s . Those three disks have the same radius. We
place D2 and D2s side by side: their centers have the same y-coordinate. They intersect and the
distance between their centers is ε > 0. We define D1 as the disk above D2 and D2s tangent to
those two disks and sharing the same radius. We denote by p1 its intersection with D2 and by ps
its intersection with D2s . We then slightly shift D1 upward so that it does not touch (nor does it
intersect) D2 and D2s anymore. While we do this translation, we imagine that the points p1 and ps
remain fixed at the boundary of D2 and D2s respectively (see Figure 2a). Let p2,p3, . . . ,ps−1 points
in the interior of D1 and below the line ℓ(p1,ps ) such that p1,p2, . . . ,ps−1,ps form an x-monotone
convex chain (see Figure 2b).

D2 D2s

D1

p1 ps

(a) Three important disks with
the same size D1, D2, D2s .

p1 psp2 p3 p4
ps-1ps-2ps-3. . .

D1

(b) Zoom where D1 almost touches D2 and D2s .

Fig. 2. The disks D1, D2, D2s and the convex chain p1,p2, . . . ,ps . The curvature of the boundary of D1 is
exaggerated in the zoom for the sake of clarity.

Now, we define the disks D4,D6, . . . ,D2s−2. For each i ∈ {4, 6, . . . , 2s − 2}, let Di be the unique
disk with the same radius as D2 and such that the boundary of Di crosses pi/2 and is below its
tangent τi/2 at this point which has the direction of ℓ(pi/2−1,pi/2+1).
It should be observed that the only disk with even index i which contains pi/2 is Di . We can

further choose the convex chain {pi }i ∈[s] such that one co-tangent τi,i+1 to D2i and D2i+2 has a
slope between the slopes of τi and τi+1. Finally we define the disks D3,D5, . . . ,D2s−1. For each
i ∈ {3, 5, . . . , 2s − 1}, let Di be tangent to τi,i+1 at the point of x-coordinate the mean between the
x-coordinates of p i−1

2
and p i+1

2
. Moreover, Di is above τi,i+1 and has a radius sufficiently large to

intersect every disk with even index which are not Di−1 and Di+1. It is easy to see that the disks
Di with even index (resp. odd index) form a clique. By construction, the disk Di with odd index
greater than 3 intersects every disk with even index except Di−1 and Di+1 since Di is on the other
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side of τi,i+1 than those two disks. As the line τi,i+1 intersects every other disk with even index,
there is a sufficiently large radius so thatDi does so, too. The particular case ofD1 has been settled
at the beginning of the construction. This disk avoids D2 and D2s and contains p2,p3, . . . ,ps−1, so
intersects all the other disks with even index.

We now explain how to stack even cycles. We make the distance ε between the center of D2 and
D2s a thousandth of their common radius. Note that this distance does not depend on the value of
s . We identify the small region (point) where the disk D1 intersects with the disks of even index,
between two different complements of cycles. We then rotate from this point one representation
by a small angle (see Figure 3 for multiple complements of even cycles stacked).

D1

D2i+1

D2i

Fig. 3. A disk realization of the complement of the disjoint union of an arbitrary number of even cycles.

The reason why there are indeed all the edges between two complements of cycles is intuitive
and depicted in Figure 4 and more specifically Figure 4b. We superimpose all the complements of
even cycles in a way that the maximum rotation angle between two complements of cycles is small
(see for instance Figure 7).

Finally, we need to add one disjoint odd cycle in the complement. There is a nice representation
of a complement of an odd cycle by unit disks in the paper of Atminas and Zamaraev [10] (see
Figure 5).
However, we will use a different and non-unit representation for the next step to work. Let

2s + 1 be the length of the cycle. We use a similar construction as for the complement of an even
cycle. We denote the disksD ′1,D

′
2, . . . ,D

′
2s+1. The difference is that we separateD

′
1 away fromD

′
2

but not from D ′2s . Then, we represent all the disks with odd index but D ′2s+1 as before. The disk
D ′2s+1 is chosen as being cotangent to D ′1 and D

′
2s and to the left of them. Then we very slightly

move D ′2s+1 to the left so that it does not intersect those two disks anymore. The disk D ′2s has the
rightmost center among the disks with even index. Therefore D ′2s+1 still intersects all the other
disks of even index.
Moreover, the disks with even index form a clique and the disks with odd index form a clique

minus an edge between the vertex 1 and the vertex 2s + 1. Hence, the intersection graph of those
disks is indeed the complement of C2s+1 (see Figure 6).

This representation of C2s+1 can now be put on top of complements of even cycles. We identify
the small region (point) where the disk D1 intersects the disks of even index (in complements of
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D1

D2i

(a) The only potential non-edges are between two disks rep-
resented almost tangent.

(b) Zoom in where the boundary of the
disks intersect.

Fig. 4. Zoom in where the disk D1 of the several complements of even cycles intersects all the D2i of the
other cycles.

Fig. 5. A disk realization of the complement of an odd cycle with unit disks as described by Atminas and
Zamaraev [10]. Unfortunately, we cannot use this representation.

even cycles) with the small region (point) where the disk D ′1 intersects the disks of even index (in
the one complement of odd cycle). We make the disk D ′1 significantly smaller than D1 and rotate
the representation of C2s+1 by a sizable angle, say 60 degrees (see Figure 7).
It is easy to see that the disks of the complement of the odd cycle intersect all the disks of the

complements of even cycles. A good sanity check is to observe why we cannot stack representations
of complements of odd cycles, with the same rotation scheme. In Figure 8, the rotation of two
representations of the complement of an odd cycle leaves disks D ′1 and D

′′
2s ′+1 far apart when they

should intersect. □
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D ′2i+1

D ′2i

D ′2s+1

D ′1

Fig. 6. A disk realization of the complement of an odd cycle of length 2s + 1.

D1

D2i+1

D2i

D ′2i+1

D ′2s+1

Fig. 7. Placing the complement of odd cycle on top of the complements of even cycles.

Theorem 1.1 and Theorem 3.6, together with the fact that disk graphs are closed by taking
induced subgraphs prove Theorem 3.1.

4 SAME OBSTRUCTION FOR UNIT BALL GRAPHS

In this section, we show that unit ball graphs, like disk graphs, do not contain the complement of
two disjoint odd cycles. In other words, for any unit ball graph G, iocp(G ) ⩽ 1. It is interesting to
note that the proofs we could find for disk graphs and unit ball graphs turn out to be quite different.

A closed polygonal chainC inRd is defined by a sequence of points (or vertices) x1,x2, . . . ,xp ∈ Rd
as the straight-edge segments x1x2, x2x3, . . . , xp−1xp , xpx1. We call direction of a non-zero vector its
equivalence class by the relation u⃗ ∼ v⃗ ⇔ ∃λ ∈ R+, u⃗ = λv⃗ . We denote the direction of u⃗ by dir(u⃗).
We define the set of directions

Needle(C ) :=
⋃

1⩽i⩽p

[xi−1 ← xi → xi+1] ∪ [xi−1 → xi ← xi+1],
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D ′2i+1

D ′2i

D ′2s+1

D ′1

D ′′2s ′+1

Fig. 8. Sanity check: trying to stack the complements of two odd cycles fails. The disks D ′1 and D
′′
2s ′+1 do

not intersect.

where the indices are taken modulo p, [xi−1 ← xi → xi+1] := {dir(−−→xix ) | x ∈ xi−1xi+1}, and
[xi−1 → xi ← xi+1] := {dir(−−→xxi ) | x ∈ xi−1xi+1}.

Lemma 4.1. Let C1 and C2 be two closed polygonal chains of R
3
on an odd number of vertices each.

Then, Needle(C1) ∩ Needle(C2) is non-empty.

Proof. We want to establish the existence of a direction which is common to Needle(C1) and
Needle(C2). We identify Needle(Ci ) (i ∈ {1, 2}) to its trace on the 2-sphere. Indeed the set of
directions in R3 is isomorphic to the set of points on the 2-sphere.
Let x1,x2, . . . ,xp be the vertices of C1. We show that Needle(C1) is path-connected (due to p

being odd). To do so, we continuously modify (within Needle(C1)) the initial vector dir(−−−→x1x2) into
any other vector ofNeedle(C1). We start with a in x1 and b in x2. We continuously move a from x1 to
x3 (on the straight-edge segment x1x3) while b stays fixed at x2 (we are moving in [x1 ← x2 → x3]).
For the next step, a is fixed at x3 and b continuously moves from x2 to x4. (we are moving in
[x2 → x3 ← x4]). And in general, we move the point with index i − 1 from xi−1 to xi+1 while
the other point stays fixed at xi (where the indices are modulo p). Since p is odd, we reach the
situation where b is set to x1 and a is set to x2, when we have completed once the walk on the
closed polygonal chain. We repeat a walk on the chain once again, so that a is back to x1 and b is
back to x2, and we stop. This process spans Needle(C1).
Therefore, C1 is a closed curve on the 2-sphere since we are finally back to dir(−−−→x1x2), that

is, from where we started. Furthermore, C1 is antipodal, i.e., closed by taking antipodal points.
Indeed, for each direction attained in a [xi−1 ← xi → xi+1], we reach the opposite direction in
[xi−1 → xi ← xi+1]. Similarly Needle(C2) draws a closed antipodal curve C2 on the 2-sphere. The
curves C1 and C2 intersect since they are closed and antipodal. An intersection point corresponds
to a direction shared by Needle(C1) and Needle(C2). □
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We will apply this lemma on the closed polygonal chains C1 and C2 formed by the centers of
unit balls realizing two odd cycle complements. The contradiction will come from the fact that not
all the pairs of centers x ∈ C1 and y ∈ C2 can be at distance at most 2.

Theorem 1.2. A complement of a unit ball graph cannot have a disjoint union of two odd cycles as

an induced subgraph. In other words, if G is a unit ball graph, then iocp(G ) ⩽ 1.

Proof. Let x1,x2, . . . ,xp ∈ R3 (resp. y1,y2, . . . ,yq ∈ R3) be the centers of unit balls representing
the complement of an odd cycle of length p (resp. q), such that xi and xi+1 (resp. yi and yi+1) encode
the non-adjacent pairs. Let C1 (resp. C2) be the closed polygonal chain obtained from the centers
x1,x2, . . . ,xp (resp. y1,y2, . . . ,yq ). By Lemma 4.1, there are two collinear vectors −−→xix and −−→yjy with
x on the straight-line segment xi−1xi+1 and y on the straight-line segment yj−1yj+1.

xi

x

y

yj xi

x

yj

y

Fig. 9. The two cases for the collinear vectors −−→xix and −−→yjy.

Let us suppose that −−→xix and −−→yjy have the same direction (Figure 9, left). In the plane2 containing
xi , x , yj , and y, those four points are in convex position and the convex hull is cyclically ordered
xi ,x ,y,yj . We obtain a contradiction by showing that the sum of the diagonals d (xi ,y) +d (yj ,x ) is
strictly smaller than the sum of two opposite sides d (xi ,x ) + d (yj ,y).

Considering edges and non-edges, for every i , the only vertices at distance greater than 2 from
yi in ∪{x j ,yj } are yi−1 and yi+1. Then, we have d (xi ,yj−1) ⩽ 2 < d (yj ,yj−1) and d (xi ,yj+1) ⩽ 2 <
d (yj ,yj+1). The points strictly closer to xi than toyj form an open half-space. In particular, they form
a convex set and all the points in the segment yj−1yj+1 are therefore closer to xi than to yj . Hence,
d (xi ,y) < d (yj ,y). Symmetrically, d (yj ,x ) < d (xi ,x ). So d (xi ,y) + d (yj ,x ) < d (yj ,y) + d (xi ,x ), a
contradiction.
Let us now assume that −−→xix and −−→yjy have opposite direction (Figure 9, right). In that case, the

four coplanar points xi ,x ,yj ,y are in convex position in their plane and the convex hull is cyclically
ordered xi ,x ,yj ,y. Wewill attain the similar contradiction thatd (x ,y)+d (xi ,yj ) < d (xi ,x )+d (yj ,y).
As previously, d (yj−1,xi−1) ⩽ 2 < d (xi ,xi−1) and d (yj−1,xi+1) ⩽ 2 < d (xi ,xi+1). Hence, by
convexity of the set of points closer to yj−1 than to xi , we have d (yj−1,x ) < d (xi ,x ). Similarly,
d (yj+1,x ) < d (xi ,x ). We obtained that point x is closer to yj−1 and yj+1 than to xi . Therefore,
applying again the convexity argument, we get that d (x ,y) < d (x ,xi ). Besides, d (xi ,yj ) ⩽ 2 <
d (y,yj ). So we arrive at the contradiction d (x ,y) + d (xi ,yj ) < d (x ,xi ) + d (y,yj ). □

5 DIRECT ALGORITHMIC CONSEQUENCES

Now we show how to use the structural results from Section 3 and Section 4 to obtain algorithms
forMaximum Cliqe in disk and unit ball graphs. A clique in a graphG is an independent set inG .
2or a plane if it is not unique
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So, leveraging the result from Theorem 1.1 and Theorem 1.2, we will focus on solvingMaximum
Independent Set in graphs without two vertex-disjoint odd cycles as an induced subgraph.

5.1 QPTAS

Here, we present a simple argument to get a QPTAS for Maximum Cliqe in disk and unit ball
graphs due to a known approximation algorithm for Maximum Independent Set on graphs with
relatively small odd cycle packing number. In Section 6, we will improve the QPTAS to a randomized
EPTAS using a different approach. We recall that the odd cycle packing number ocp(H ) of a graph
H is the maximum number of vertex-disjoint odd cycles in H . Unfortunately, the condition that G
does not contain two vertex-disjoint odd cycles as an induced subgraph is not quite the same as
saying that the odd cycle packing number of G is 1. Otherwise, we would immediately get a PTAS
by the following result of Bock et al. [14].

Theorem 5.1 (Bock et al. [14]). For every fixed ε > 0 there is a polynomial (1− ε )-approximation

algorithm for Maximum Independent Set for graphs H with n vertices and ocp(H ) = o(n/ logn).

The algorithm by Bock et al. [14] works in polynomial time if ocp(H ) = o(n/ logn), but it does
not need the odd cycle packing explicitly given as an input. This is important, since finding a
maximum odd cycle packing is NP-hard [42]. We start by proving a structural lemma, which spares
us having to determine the odd cycle packing number.

Lemma 5.2. Let H be a graph with n vertices, whose complement is a disk graph (resp. unit ball

graph). If ocp(H ) > n/ log2 n, then H has a vertex of degree at least n/ log4 n.

Proof. Consider a maximum odd cycle packingP. By assumption, it contains more thann/ log2 n
vertex-disjoint cycles. Hence, a shortest cycle C in P has size at most log2 n. Now, by Theorem 1.1
(resp. by Theorem 1.2), H has no two vertex-disjoint odd cycles with no edges between them.
Therefore there must be an edge from C to every other cycle of P, which constitutes at least
n/ log2 n edges. Let v be a vertex of C with the maximum number of edges to other cycles in P. By
the pigeonhole principle, its degree is at least n/ log4 n. □

We are ready to suggest a QPTAS for Maximum Cliqe in disk and unit ball graphs.

Theorem 5.3. For any ε > 0, Maximum Clique can be (1 − ε )-approximated in time 2O (log5 n)
,

when the input is a disk graph (resp. unit ball graph) with n vertices.

Proof. Let G be the input disk graph (resp. unit ball graph) and let G be its complement,
we want to find a (1 − ε )-approximation for Maximum Independent Set in G. We consider
two cases. If G has no vertex of degree at least n/ log4 n, then, by Lemma 5.2, we know that
ocp(G ) ⩽ n/ log2 n = o(n/ logn). In this case we run the PTAS of Theorem 5.1 and we are done.
In the other case, G has a vertex v of degree at least n/ log4 n (note that it may still be the case

that ocp(G ) = o(n/ logn)). We branch on v: either we include v in our solution and remove it
and all its neighbors, or we discard v . The complexity of this step is described by the recursion
F (n) ⩽ F (n−1)+F (n−n/ log4 n) ⩽ F (n−2)+2F (n−n/ log4 n) ⩽ · · · ⩽ (n/ log4 n)F (n−n/ log4 n).
Thus F (n) ⩽ nO (log4 n) = 2O (log5 n) . Note that this step is exact, i.e., we do not lose any solution. □

We can actually generalize the QPTAS from graphs with iocp ⩽ 1 to graphs with iocp = O (1).

Lemma 5.4. Let H be a sufficiently large graph with n vertices, and iocp(H ) = i for some integer i .
If ocp(H ) > n/ log2 n, then H has a vertex of degree at least

n
2i log5 n .
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Proof. Again, let P be an odd cycle packing (|P | ⩾ n/ log2 n). The number of cycles of P with
length at least log3 n is at most n/ log3 n. Thus there are at least n/ log2 n − n/ log3 n > 1

2n/ log
2 n

cycles of P of length at most log3 n. We now consider the graph J whose vertices are the cycles of
P of length at most log3 n, and where there is an edge between C1 and C2 if there is at least one
edge in H between a vertex of C1 and a vertex of C2. Let n J := |V (J ) | > 1

2n/ log
2 n.

By assumption, α (J ) ⩽ i (since iocp(H ) = i). Hence by Turan’s theorem, J has at most (1− 1
i )
(
n J
2

)
non-edges. So J has at least 1

i

(
n J
2

)
edges, and average degree at least n J −1

i ⩾ n/(2i log2 n). LetCℓ be
a vertex of maximum degree in J . By construction, the cycle Cℓ is adjacent to at least n/(2i log2 n)
other cycles of P, and |Cℓ | ⩽ log3 n. Hence the vertex of Cℓ with the largest degree in H has at
least n/(2i log5 n) neighbors. □

From the previous lemma, we get a QPTAS with slightly worse running time, similarly to
Theorem 5.3.

Theorem 5.5. For any ε > 0 and for every integer d , Maximum Independent Set (resp. Maximum

Clique) can be (1 − ε )-approximated in time 2O (i log6 n)
, when the input is a graph G on n vertices

with iocp(G ) = i (resp. iocp(G ) = i).

5.2 Subexponential algorithm

The odd girth of a graph is the size of a shortest odd cycle. An odd cycle cover is a subset of vertices
whose deletion makes the graph bipartite. We will use a result by Györi et al. [37], which says that
graphs with large odd girth have small odd cycle cover. Bock et al. [14] turned the non-constructive
proof into a polynomial-time algorithm.

Theorem 5.6 (Györi et al. [37], Bock et al. [14]). Let H be a graph with n vertices and no odd

cycle shorter than δn (δ may be a function of n). Then there is an odd cycle cover X of size at most

(48/δ ) ln(5/δ ) Moreover, X can be found in polynomial time.

Let us show the following three options for an algorithm.

Theorem 5.7. Let G be a disk graph (resp. unit ball graph) with n vertices. Let ∆ be the maximum

degree of G and c the odd girth of G (they may be functions of n). Maximum Clique has a branching

or can be solved, up to a polynomial factor, in time:

(i) 2Õ (n/∆)
(branching), (ii) 2Õ (n/c )

(solved), (iii) 2O (c∆)
(solved).

Proof. Let G be the input disk graph (resp. unit ball graph) and let G be its complement, we
look for a maximum independent set in G.
To prove (i), consider a vertex v of degree ∆ in G. We branch on v: either we include v in our

solution and remove N [v], or discard v . The complexity is described by the recursion F (n) ⩽
F (n − 1) + F (n − (∆ + 1)) and solving it gives (i). Observe that this does not give an algorithm
running in time 2Õ (n/∆) since the maximum degree might drop. Therefore, we will do this branching
as long as it is good enough and then finish with the algorithms corresponding to (ii) and (iii).

For (ii) and (iii), let C be a cycle of length c , it can be found in polynomial time (see for instance
[6]). By application of Theorem 5.6 with δ = c/n, we find an odd cycle cover X in G of size
Õ (n/c ) in polynomial time. Next we exhaustively guess in time 2Õ (n/c ) the intersection I of an
optimum solution with X and finish by finding a maximum independent set in the bipartite graph
G − (X ∪ N (I )), which can be done in polynomial time. The total complexity of this case is 2Õ (n/c ) ,
which shows (ii).
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Finally, observe that the graph G − N [C] is bipartite, since otherwise G contains two vertex-
disjoint odd cycles with no edges between them. Moreover, since every vertex in G has degree
at most ∆, it holds that |N [C]| ⩽ c (∆ − 1) ⩽ c∆. Indeed, a vertex of C can only have c (∆ − 2)
neighbors outsideC . We can proceed as in the previous step: we exhaustively guess the intersection
of the optimal solution with N [C] and finish by finding the maximum independent set in a bipartite
graph (a subgraph of G − N [C]), which can be done in total time 2O (c∆) , which shows (iii). □

Now we show how the structure of G affect the bounds in Theorem 5.7.

Corollary 5.8. LetG be a disk graph (resp. unit ball graph) with n vertices. Maximum Clique can

be solved in time:

(a) 2Õ (n2/3 )
,

(b) 2Õ (
√
n)

if the maximum degree of G is constant,

(c) polynomial, if both the maximum degree and the odd girth of G are constant.

Proof. We use the notation from Theorem 5.7. Both ∆ and c can be computed in polynomial
time (see e.g. [6]). Therefore, knowing what is faster among cases (i), (ii), and (iii) is tractable. For
case (a), while there is a vertex of degree at least n1/3, we branch on it. When this process stops, we
do what is more advantageous between cases (ii) and (iii). Note that min(n/∆,n/c, c∆) ⩽ n2/3 (the
equality is met for ∆ = c = n1/3). For case (b), we do what is best between cases (ii) and (iii). Note
that min(n/c, c ) ⩽

√
n (the equality is met for c =

√
n). Finally, case (c) follows directly from case

(iii) in Theorem 5.7. □

Observe that case (b) is typically the hardest one for Maximum Cliqe. Moreover, the win-win
strategy of Corollary 5.8 can be directly applied to solve Maximum Weighted Cliqe, as finding
a maximum weighted independent set in a bipartite graph is still polynomial-time solvable. On
the other hand, this approach cannot be easily adapted to obtain a subexponential algorithm for
Cliqe Partition (even Cliqe p-Partition with constant p), since List Coloring (even List
3-Coloring) has no subexponential algorithm for bipartite graphs, unless the ETH fails (see [45],
the bound can be obtained if we start the reduction from a sparse instance of 1-in-3-Sat instead of
Planar 1-in-3-Sat).

6 EPTAS FOR MAXIMUM INDEPENDENT SET ON X (d, β , i )

We start this section by showing that X (d, β, 1) has a randomized EPTAS.

Theorem 1.3. For any constants d ∈ N, 0 < β ⩽ 1, for every 0 < ε < 1, there is a randomized

(1 − ε )-approximation algorithm running in time 2Õ (1/ε3 )nO (1)
, and a deterministic PTAS running in

time nÕ (1/ε3 )
for Maximum Independent Set on graphs of X (d, β , 1) with n vertices.

Proof. Let H be a graph in X (d, β, 1) with n vertices and I be a maximum independent set of H .
In particular, |I | ⩾ βn. Since finding a maximum independent set in a bipartite graph can be done
in polynomial time, we get the desired (1 − ε )-approximation if we can find a subset of vertices T
such that:
• T is an odd-cycle transversal, i.e., its removal yields a bipartite graph, and
• |T ∩ I | ⩽ ε |I |.

At high level, our algorithm will thus select and remove some odd-cycle transversalsT , and then
apply the bipartite case algorithm. We will do this at least once for a set T that satisfies the second
item, with some strong guarantee. Of course the key ingredient in finding a suitable odd-cycle
transversal is the fact that iocp(H ) ⩽ 1. Indeed, this implies that for any odd cycle C , the set N [C]
is an odd-cycle transversal.
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Let c := 8( 1
(βε )2 +

1
βε + 1) = O (1/ε2), δ := ε

c = O (ε3), and s := 10d
δ log 1

δ . We call short induced
odd cycle an induced odd cycle of length at most c , and long induced odd cycle an induced odd cycle
of length more than c . First we can assume that βn is larger than 2s , otherwise we can find an
optimum solution by brute-force in time 2n = 2Õ (1/ε3 ) . Hence, |I | > 2s .

Claim 1. There exists a subset S ⊆ I of size s = 10d
δ log 1

δ such that N (S ) contains all vertices that
have more than δ |I | neighbors in I .

Proof. Let A denote the set of vertices v such that |N (v ) ∩ I | ⩾ δ |I |. We define the hypergraph
K := (I , {N (v ) ∩ I ,v ∈ A}). By assumption on H , the hypergraph K has VC-dimension at most d .
By the definition of K , all its edges have size at least δ |V (K ) |. A celebrated result in VC-dimension
theory by Haussler and Welzl [39], later improved by Blumer et al. [13], ensures that every such
a hypergraph K admits a hitting set (a set of vertices that intersects every edge) of size at most
10d
δ log 1

δ . □

Algorithmically, we have two ways of selecting the set S , leading to a deterministic PTAS (see
Theorem 6.3) or a randomized EPTAS. Either we run the rest of the algorithm for every subset of
V (H ) of size 10d

δ log 1
δ inducing an independent set (which constitutes nf (ε ) possible sets), or we use

another result proven in [39]: not only the hitting set exists but a uniform sample of V (K ) of size
10d
δ log 1

δ is a hitting set with high probability. So we do the following t := ⌈ log(10−10 )
log(1−(β/2)s ) ⌉ = 2Õ (1/ε3 )

many times: we select uniformly at random a set S of size s = 10d
δ log 1

δ , and continue the rest
of the algorithm if S is an independent set. Since |I | > 2s , it holds that Pr(S ⊆ I ) > (β/2)s . As
we try out t samples, at least one satisfies S ⊆ I with probability at least 1− (1− (β/2)s )t ⩾ 1−10−10.

We now assume that the sample S satisfies the properties of Claim 1. We start by putting in T all
the vertices of N (S ) (note that no such vertex is in I since I is an independent set). We define the
graph H ′ := H − N (S ). We got rid of the vertices with at least δ |I | neighbors in I : in H ′, there are
no such vertices anymore. We want to find an odd-cycle transversal in H ′ that has few vertices in I .
We now run a polynomial-time algorithm (see for instance [6]) that determines whether the

graph is bipartite and, if not, outputs a shortest odd cycle Cog = v1v2 . . .vд in H ′.

• If H ′ is bipartite, then T := NH (S ) is an odd-cycle transversal of H with |T ∩ I | = 0.
• If д = |Cog | ⩽ c , that is, ifCog is a short induced odd cycle, then |NH ′[Cog] ∩ I | ⩽ cδ |I | = ε |I |,
and therefore T := NH (S ) ∪ NH ′[Cog] is an odd-cycle transversal of H with |T ∩ I | ⩽ ε |I |.

We can now safely assume that д > c , i.e., Cog is a long induced odd cycle. We decompose
H ′ into the successive neighborhoods of Cog, which we call layers. We define the first layer as
L1 := NH ′ (Cog). We define by induction the other layers as the non-empty sets Li := {v | there
exists u ∈ Li−1 with uv ∈ E (H ′) and v < Lj for j < i}. Let us denote by λ the index of the last
non-empty layer. Before entering into the formal details of the second part of the proof let us briefly
explain its structure:

• First, we observe that if there are many layers, there is one with index at most 2
βε that

contains at most εβ
2 n ⩽ ε

2 |I | of the vertices. We can thus delete this layer, and note that
connected components that do not containCog are bipartite. We then focus on the component
containing Cog, which has only few layers.
• Secondly, we show that this component admits an odd-cycle transversal of size at most ε

2 |I |

(informally, the neighborhood at distance up to O ( 1ε ) of O ( 1ε ) consecutive vertices on the
cycle Cog).
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In other words, we can find ε |I | vertices whose deletion yields a bipartite graph (see Figure 10),
which together with N (S ) form the desired odd-cycle transversal.

Fig. 10. The layers (columns) and the strata (rows of a column). If the number of successive neighborhoods is
large, a small cutset (in blue) is found among the first ⌈ 2

βε ⌉ layers. To the right of this cutset, we know that

the graph is bipartite. This brings us back to the case with fewer than 2
βε layers, where we can find a small

odd cycle transversal (in red).

If λ > 2
βε , then there is some index i ⩽ ⌈ 2

βε ⌉ such that Li is of size at most βε
2 n ⩽ ε

2 |I |. We
remove that layer Li from the graph. Since iocp(H ′) = 1, the set

⋃
i<j⩽λ Lj induces a bipartite

graph. Indeed, it is disjoint from the closed neighborhood of the odd cycle Cog. We can easily
find a maximum independent set on this part of the graph, and focus on the other part, which is
Cog ∪

⋃
1⩽j<i Lj . We set H ′′ := H ′[Cog ∪

⋃
1⩽j<i Lj ]. If λ ⩽ 2

βε , we set H
′′ := H ′.

So the graphH ′′ has at most 2
βε layers emanating fromCog. We will find an odd-cycle transversal

of size at most ε
2 |I |. We first need some new definitions.

For 1 ⩽ j ⩽ д, let S j be the set of verticesw ∈ V (H ′) such that there is a shortest path fromw to
Cog which ends in vj , while no shortest path fromw to Cog ends in vi with i < j (note that vj ∈ S j ).
We point out that the sets (S1, . . . , Sд ) induce a partition of each layer Lk . This simply follows from
the fact that for every vertexw ∈ Lk , there is a minimum index j (w ) such that there is a shortest
path from v to Cog ending in vj (w ) . For each pair (k, ℓ), we define a stratum as Lℓk := Sℓ ∩ Lk . Note
that if Lℓk = ∅, then for any k ′ > k , Lℓk ′ = ∅.
Let z := ⌈ 4

βε ⌉ + 2 and for any integer γ such that 0 ⩽ γ ⩽ д
z − 1, let Sγ :=

⋃
γ z+1⩽j⩽(γ+1)z

S j .

Informally, Sγ consists of the layers emanating from z consecutive vertices of Cog. Note that if
γ , γ ′, then Sγ and Sγ ′ are disjoint.

Claim 2. For any non-negative integer γ ⩽ 2
βε , the graph B := H ′′ − Sγ is bipartite.

Proof. Observe that д
z − 1 ⩾

2
βε , so each S

γ of the claim is well-defined. It holds thatCog ∩ S
γ =⋃

γ z+1⩽j⩽(γ+1)z {vj }. We exhibit a proper 2-coloring of B by coloring its vertices as follows. We
start by coloring each vertex of the path Cog \ S

γ in an alternated fashion, i.e., one endpoint of the
path gets color 0, its neighbor gets color 1, the next vertex gets color 0, and so on.
For each pair (k, ℓ) such that 1 ⩽ k < i , 1 ⩽ ℓ ⩽ д, and ℓ < [γz + 1, (γ + 1)z], we color all

the vertices in the stratum Lℓk = Sℓ ∩ Lk with the opposite color of the one used for the stratum
Lℓk−1 = Sℓ ∩ Lk−1 (with the convention that L0 := Cog). This process colors unambiguously all the
vertices of B.

Let us prove that the resulting coloring is proper. First note that the vertices of a same stratum
form an independent set. Indeed, assume by contradiction that Lℓk contains an edge uw . There is a
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shortest path P1 from vℓ to u and a path P2 fromw to vℓ . Since u andw are in the same layer Lk , P1
and P2 have the same length; more precisely, |P1 | = |P2 | = k < i ⩽ 2

βε . Thus, P1,uw, P2 defines a
closed walk with 2k + 1 edges. An odd closed walk of length 2k + 1 implies the existence of an odd
induced cycle of length at most 2k + 1. As 2k + 1 < 4

βε + 1 < д, we reach a contradiction on the
minimality of Cog.
There is no edge between a stratum Lℓk and a stratum Lℓ

′

k ′ with |k − k
′ | ⩾ 2, by definition of

the layers. Moreover, for 1 ⩽ ℓ < ℓ′ ⩽ д, there is no edge uw with u ∈ Lℓk and w ∈ Lℓ
′

k ′ with
min(ℓ′ − ℓ, ℓ + д − ℓ′) ⩾ 4

βε + 1 since otherwise it would be possible to construct an odd cycle
strictly shorter than Cog. Indeed, if P1 is a shortest path between vℓ and u and P2 is a shortest path
betweenw and vℓ′ , then P1,uw, P2 is a walk of length k + k ′ + 1. However, a shortest path between
vℓ and vℓ′ within Cog has length min(ℓ′ − ℓ, ℓ + д − ℓ′) ⩾ 4

βε + 1 > k + k ′ + 1. Hence, the walk
P1,uw, P2 can be extended into an odd closed walk of length strictly smaller than д, by taking the
path from vℓ′ to vℓ in Cog with the same parity as k + k ′; a contradiction.
Therefore, if there is a monochromatic edge uw in B, it must be between Lℓk and Lℓ

′

k ′ with
|k −k ′ | ∈ {0, 1},min(ℓ′− ℓ, ℓ +д− ℓ′) < 4

βε + 1, and {ℓ, ℓ
′} ∩ [γz + 1, (γ + 1)z] = ∅. We fix k,k ′, ℓ, ℓ′

satisfying those conditions. We call small interval of ℓ and ℓ′, denoted by si(ℓ, ℓ′), the integer
interval [ℓ, ℓ′] ifmin(ℓ′− ℓ, ℓ+д− ℓ′) = ℓ′− ℓ and [ℓ′,д]∪ [1, ℓ] ifmin(ℓ′− ℓ, ℓ+д− ℓ′) = ℓ+д− ℓ′.
What we showed in the previous paragraph implies that if {ℓ, ℓ′} ∩ [γz + 1, (γ + 1)z] = ∅, then
si(ℓ, ℓ′) ∩ [γz + 1, (γ + 1)z] = ∅. Indeed, the small interval of ℓ and ℓ′ is a circular interval over
[1,д] of length less than 4

βε + 1 < z. In particular, the vertices of Cog indexed by the small interval
of ℓ and ℓ′ are all in B.
Assume first that k = k ′. There is a path P1 from vℓ to u, and a path P2 from w to vℓ′ , both of

length k . Since by assumption the color for Lℓk is the same as the color for Lℓ′k ′ , the vertices vℓ and
v ′
ℓ
have the same color (by construction of the 2-coloring). Thus we have, in Cog − S

γ , a path P

indexed by si(ℓ, ℓ′) from vℓ′ to vℓ of even length less than 4
βε + 1. We emphasize that it is crucial

that si(ℓ, ℓ′) ∩ [γz + 1, (γ + 1)z] = ∅ (meaning that all the vertices of Cog indexed by si(ℓ, ℓ′) are
still in B), to deduce that there is a path of even length between vℓ and vℓ′ . It follows from the mere
fact that vℓ and v ′ℓ have the same color. Finally, the concatenation P1,uw, P2, P yields an odd cycle
of length less than 2k + 1 + 4

βε + 1 ⩽
8
βε + 2 < д.

Now let us assume that |k − k ′ | = 1; say, without loss of generality, k ′ = k + 1. In that case, by
construction of the 2-coloring, the edge can only be monochromatic if vℓ and vℓ′ receive distinct
colors. Furthermore, there is a path P1 from vℓ to u, and a path P2 from w to vℓ′ with length of
distinct parities (k and k + 1, respectively). Moreover, since vℓ and vℓ′ get distinct colors, there is
in Cog − S

γ , a path P indexed by si(ℓ, ℓ′) from vℓ′ to vℓ of odd length at most 4
βε + 1. Again, we

crucially use that all the vertices of Cog indexed by si(ℓ, ℓ′) are in B, to deduce that P is of odd
length from the fact that vℓ and vℓ′ get distinct colors. Finally, the concatenation P1,uw, P2, P is an
odd cycle of length less than k + 1 + k + 1 + 4

βε + 1 ⩽
8
βε + 3 < д; a contradiction.

We conclude that the 2-coloring is indeed proper. □

Since the sets of {Sγ }γ ∈[0, ⌊ 2
βε ⌋]

are pairwise disjoint, a smallest set of the collection satisfies

|Sγ | ⩽ βε
2 n ⩽ ε

2 |I |. By Claim 2, removing this Sγ from H ′′ makes the graph bipartite. We finally
compute a maximum independent set in polynomial time in H ′′ − Sγ . We return the best solution
found. The pseudo-code is detailed in Algorithm 1. □
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Algorithm 1 EPTAS for Maximum Independent Set on X (d, β , 1)
Precondition: H satisfies d := VCdim(G ) = O (1), α (G ) ⩾ β |V (G ) |, and iocp(G ) ⩽ 1
1: function Stable(H , ε):
2: c ← 8(1/(βε )2 + 1/(βε ) + 1)
3: δ ← ε

c
4: s ← 10d

δ log 1
δ

5: if β |V (H ) | < 2s then solve H optimally by brute-force ▷ |V (H ) | = Õ (1/ε3)
6: end if
7: for _← 1 to t = 2Õ (1/ε3 ) do
8: S ← uniform sample of V (G ) of size s ▷ S ⊆ I with probability > (

β
2 )

s

9: if G[S] contains an edge then break and go to the next iteration
10: end if
11: H ′← H − N [S] ▷ remove S and its neighborhood
12: Cog ← shortest odd cycle in H ′ ▷ in polynomial time [6]
13: д← |Cog | ▷ Cog = v1v2 . . .vд
14: if д ⩽ c then ▷ short induced odd cycle
15: S ← S ∪ max stable on the bipartite H ′ − N [Cog] ▷ iocp(G ) = 1
16: else ▷ long induced odd cycle
17: Lℓ ← vertices of H ′ at distance exactly ℓ from Cog
18: Li ← smallest layer among {Lℓ }1⩽ℓ⩽ ⌈2/βε ⌉ ▷ |Li | ⩽ ε

2α (G )
19: H ′′← H ′[Cog ∪

⋃
1⩽j<i Lj ]

20: Sk ← vertices of H ′′ whose closest vertex on Cog of minimum index is vk
21: z ← ⌈ 4

βε ⌉ + 2
22: Sγ ← smallest set among {

⋃
k ∈[γ z+1, (γ+1)z] Sk }γ ∈[0, ⌊ 2

βε ⌋]
▷ |Sγ | ⩽ ε

2α (G )

23: S ← S ∪ max stable on the bipartite H ′[
⋃

j>i Lj ] ▷ iocp(G ) = 1
24: S ← S ∪ max stable on the bipartite H ′′ − Sγ ▷ Claim 2
25: end if
26: end for
27: return S at the iteration maximizing its cardinality
28: end function
Postcondition: output S is a stable set of size at least (1 − ε )α (G ) with high probability

Theorem 1.4. There is a randomized EPTAS forMaximum Clique on disk graphs, even if a geometric

representation is not given. Its running time is 2Õ (1/ε3 )nO (1)
for a (1 − ε )-approximation on a graph

with n vertices.

Proof. With a geometric representation, we can invoke the following argument to get a linear
maximum stable set. Recall that the piercing number of a family of geometric objects is the minimum
number of points such that each object contains at least one of those points. The piercing number
of a collection of pairwise intersecting disks in the plane is 4 [24, 30, 57]. The number of faces in
an arrangement of n circles (disk boundaries) is O (n2), and all the points within one face hit the
same disks. In time O (n8), one can therefore exhaustively guess four points piercing a maximum
clique C. We can remove all the disks which are not hit by any of those four points, since they
are not part of C. This new instance G can have its vertices partitioned into four cliques, hence
α (G ) ⩾ |V (G ) |/4.
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Without a geometric representation, we suggest the following. Disk graphs always contain a
vertex whose neighborhood has independence number at most 6 (think of a vertex which has
the smallest radius in one representation). For each vertex v , we run the robust PTAS of Chan
and Har-Peled [27] for Maximum Independent Set in G[N (v )] with ratio strictly larger than 6/7
(say 7/8). By robust we mean that their local-search based algorithm does not require a geometric
representation. By the previous remark, at least one run has to report a value of at most 6 (indeed,
7(7/8) > 6). Let u be a vertex corresponding to such a run. For every disk graph G, χ (G ) ⩽ 6ω (G )

(actually a better bound of 6ω (G ) − 6 is known [48]). Then α (G )ω (G ) ⩾ χ (G )α (G )
6 ⩾ |V (G ) |

6 , hence
ω (G ) ⩾ |V (G ) |

6α (G ) .
We branch on two outcomes. Either u is in a maximum clique: we run the approximation of

Theorem 1.3 on Gu := G[N [u]] which satisfies ω (Gu ) = α (Gu ) ⩾ |V (Gu ) |/36 (recall that we chose
u so that α (Gu ) ⩽ 6). Or this vertex is not in any maximum clique: we delete it from the graph.
Our branching tree has size 2n + 1, so it only costs an extra linear multiplicative factor.

The VC-dimension of the neighborhoods of disk graphs, and even pseudo-disk graphs [8], is at
most 4. Since the VC-dimension of a graph is equal to the one of its complement, the VC-dimension of
G is also at most 4. Finally, by Theorem 1.1, iocp(G ) ⩽ 1. We only call the approximation algorithm
(a polynomial number of times) with disk graphsG ′ such that G ′ ∈ X (4, 1

36 , 1) (argument without
the geometric representation) or G ′ ∈ X (4, 14 , 1) (argument with the geometric representation).
Hence, we conclude by Theorem 1.3. □

It is folklore that unit ball graphs have geometric VC-dimension 4. One can observe that, in
the case of unit ball graphs, the geometric VC-dimension coincides with the VC-dimension of
the neighborhoods. At the price of a multiplicative factor n in the running time, one can guess
a vertex v in a maximum clique of a unit ball graph G, and look for a clique in its neighborhood
H := G[N (v )]. As the kissing number for unit spheres is bounded (it is 12), one can also show
that the neighborhood of this vertex (in fact, of any vertex) can be partitioned into a constant
number of cliques. The exact number is irrelevant here: An easy volume-based argument can show
that this number is no greater than 30. Thus α (H ) ⩾ |V (H ) |/30. Therefore, from Theorem 1.3 and
Theorem 1.2, we immediately obtain the following.

Theorem 1.5. There is a randomized EPTAS in time 2Õ (1/ε3 )nO (1)
for Maximum Clique on unit

ball graphs, even if a geometric representation is not given.

We can extend the EPTAS to work for constant (not necessarily 1) induced odd cycle packing
number.

Theorem 6.1. For any constants d, i ∈ N, 0 < β ⩽ 1, for every ε > 0, there is a randomized

(1 − ε )-approximation algorithm running in time 2Õ (1/ε3 )nO (1)
for Maximum Independent Set on

graphs of X (d, β, i ) with n vertices.

Proof. Let I be a maximum independent set. We show by induction on i that for any ε ′ we
can find in time 2Õ (1/ε ′3 )nO (1) a stable set of size (1 − iε ′) |I |. The base case is Theorem 1.3. We
assume that there is such an algorithm when the induced odd cycle packing number is i − 1. We
follow Algorithm 1 with a graph H such that iocp(H ) = i . On line 15 and 23, the graph is not
necessarily bipartite anymore (on line 24, the resulting graph is still bipartite in this case). Although,
the induced odd cycle packing number is decreased to i − 1. So, by the induction hypothesis we get
a stable set within a factor (1 − (i − 1)ε ′) of the optimum. To get there, we removed a subset of
vertices of size at most ε ′ |I |. Therefore, the solution S that we obtain satisfies |S | ⩾ (1 − iε ′) |I |.

We obtain the theorem by setting ε := iε ′ since i is absorbed in the Õ in the running time. □
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To the detriment of the efficiency of the approximation scheme, when iocp(G ) ⩽ 1 (or even
iocp(G ) = O (1)), we can discard one of the two other assumptions of Theorem 1.3. Namely, we do
not need bounded VC-dimension or that the optimum solution is a positive fraction of the number
of vertices.

Theorem 6.2. There is a randomized PTAS forMaximum Independent Set on graphs ofX (∞, β, 1).

Proof. We observe that VCdim(G ) is always at most log |V (G ) | = logn. So following Algo-
rithm 1, we now sample a set S of size 10 logn

δ log 1
δ . The probability for S to be successfully contained

in an optimum solution I is at least 1
nÕ (1/ε3 ) . Thus by repeating this experience nÕ (1/ε3 ) times, S ⊆ I

holds in at least one branch, with high probability. The rest of the algorithm is unchanged. □

Theorem 6.3. There is a deterministic PTAS forMaximum Independent Set on graphs ofX (d, 0, 1).

Proof. Now, instead of sampling s = 10d
δ log 1

δ vertices, we try all the ns = nf (ε ) subsets of
size s . One of them falls entirely in an optimum solution I and is a desired ε-net (note that if the
largest independent set contains less than s vertices, we can find it in time O (ns )). We also change
line 18 and 22 of Algorithm 1: Instead of deleting the lightest layer among the first O ( 1ε ), and the
lightest block of strata among O ( 1ε ) disjoint blocks, we try all possible such pairs. This only adds a
multiplicative factor in O (1/ε2) to the running time. One of the deleted pair contains less than ε |I |
vertices of I , and we conclude similarly. □

Both results generalize to X (∞, β, i ) and X (d, 0, i ), for every integer i , with the same arguments
as in the proof of Theorem 6.1.

7 OTHER INTERSECTION GRAPHS

In this section, we discuss the impossibility of generalizing our algorithms to higher dimensions and
related classes of intersection graphs. We first show some hardness of approximation forMaximum
Independent Set on the class of all the 2-subdivisions, hence the same lower bound for Maximum
Cliqe on all the co-2-subdivisions.
It is folklore that from the PCP of Moshkovitz and Raz [52], which roughly implies that Max

3-SAT cannot be (7/8 + ε )-approximated in subexponential time under the ETH, one can derive
such inapproximability in subexponential time for many hard graph and hypergraph problems;
see for instance [16]. The following inapproximability result forMaximum Independent Set on
bounded-degree graphs was shown by Chlebík and Chlebíková [28]. As their reduction is almost
linear, the PCP of Moshkovitz and Raz boosts this hardness result from ruling out polynomial-time
up to ruling out subexponential time 2nγ for any γ < 1.

Theorem 7.1 ([28, 52]). For any ∆ ⩾ 3, and γ < 1, there is a constant η < 1 such that Maximum

Independent Set on graphs with n vertices and maximum degree ∆ cannot be η-approximated in

time 2nγ , unless the ETH fails.

We could actually state a slightly stronger statement for the running time but will settle for this
for the sake of clarity.

Theorem 7.2. For any γ < 1, there is a constant ζ < 1 such that Maximum Independent Set on

the class of all the 2-subdivisions has no ζ -approximation algorithm running in subexponential time

2nγ , unless the ETH fails.

Proof. Let G be a graph with maximum degree a constant ∆ ⩾ 3, with n vertices v1, . . . ,vn
andm edges e1, . . . , em , and let H be its 2-subdivision. Recall that to form H , we subdivided every
edge of G exactly twice. These 2m vertices in V (H ) \ V (G ), representing edges, are called edge
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vertices and are denoted by v+ (e1),v− (e1), . . . ,v+ (em ),v− (em ), as opposed to the other vertices of
H , which we call original vertices. If ek = vivj is an edge of G, then v+ (ek ) (resp. v− (ek )) has two
neighbors: v− (ek ) and vi (resp. v+ (ek ) and vj ).

Observe that there is a maximum independent set S which contains exactly one ofv+ (ek ),v− (ek )
for every k ∈ [m]. Indeed, S cannot contain both v+ (ek ) and v− (ek ) since they are adjacent. On
the other hand, if S contains neither v+ (ek ) nor v− (ek ), then adding v+ (ek ) to S and potentially
removing the other neighbor of v+ (ek ) which is vi (with ek = vivj ) can only increase the size of
the independent set. Hence S containsm edge vertices and s ⩽ n original vertices, and there is no
larger independent set in H .

We observe that the s original vertices in S form an independent set in G. Indeed, if vivj = ek ∈
E (G ) and vi ,vj ∈ S , then neither v+ (ek ) nor v− (ek ) could be in S .

Now, assume there is an approximation with ratio ζ := (1+ 2(1−η)
η (∆+1)2 )

−1 forMaximum Independent
Set on 2-subdivisions running in subexponential time, where η < 1 is a ratio which is not attainable
forMaximum Independent Set on graphs of maximum degree ∆ according to Theorem 7.1. On
instance H , this algorithm would output a solution withm′ edge vertices and s ′ original vertices.
As we already observed this solution can be easily (in polynomial time) transformed into an at-
least-as-good solution withm edge vertices and s ′′ original vertices forming an independent set in
G. Further, we may assume that s ′′ ⩾ n/(∆ + 1) since for any independent set of G, we can obtain
an independent set of H consisting of the same set of original vertices andm edge vertices. Since
m ⩽ n∆/2 and s ′′ ⩾ n/(∆+ 1), we obtainm ⩽ s ′′∆(∆+ 1)/2 and 2m/(∆+ 1)2 ⩽ s ′′∆/(∆+ 1). From
m+s ′′
m+s ⩾ ζ and ∆ ⩾ 3, we have

s ⩽m ·
2(1 − η)
η(∆ + 1)2

+ s ′′ · (1 +
2(1 − η)
η(∆ + 1)2

) ⩽ s ′′(
(1 − η)∆
η(∆ + 1)

+ 1 +
2(1 − η)
η(∆ + 1)2

) ⩽ s ′′(1 +
1 − η
η

) =
s ′′

η

This contradicts the inapproximability of Theorem 7.1. Indeed, note that the number of vertices
of H is only a constant times the number of vertices of G (recall that G has bounded maximum
degree, hencem = O (n)). □

We get the following as a direct corollary.

Corollary 7.3. For every γ < 1, there is a constant ζ < 1, Maximum Clique on the class of all the

co-2-subdivisions has no ζ -approximation algorithm running in subexponential time 2nγ , unless the
ETH fails.

For exact algorithms, the subexponential time that we rule out under the ETH is not only 2nγ

(with γ < 1) but actually any 2o (n) .

7.1 Balls and higher dimensions

In sharp contrast to the algorithms for disk and unit ball graphs, we will prove that with an extra
dimension or with different radii (even arbitrarily close to each other), a PTAS is highly unlikely.

By Corollary 7.3, we just need to show that all co-2-subdivisions can be realized by our geometric
objects. This appears like a simple and powerful method to rule out a PTAS (QPTAS, and even
SUBEXPAS) for a geometric clique problem.
The co-2-subdivision of a graph with n vertices andm edges can be thought of as follows. It is

made of a clique on n vertices, representing the initial vertices, and a clique on 2m vertices minus a
perfect matching, representing endpoints of the initial edges. Each anti-matched pair of vertices
corresponds to an edge in the initial graph. Each vertex representing one endpoint of an initial
edge is adjacent to all the vertices representing the initial vertices but this endpoint.

Theorem 7.4. The class of 4-dimensional unit ball graphs contains all the co-2-subdivisions.
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O

P

C

π (p +(e1 ))

π (p −(e1 ))

1

P⊥
p (v1 )

√
3 − ε

Fig. 11. The overall construction for 4-dimensional unit balls. We only represent the centers.

Proof. Given any simple graph G = (V ,E) with n vertices andm edges, we want to build a set
S of n + 2m points in R4 where each vertex v is represented by a point p (v ) and each edge e , by
two points p+ (e ) and p− (e ). A pair of points in S should be at distance at most 2, except if it is the
two points of the same edge e , or if it is a point p (v ) with either a p+ (vw ) or a p− (wv ); those pairs
should be at distance strictly more than 2. We denote by x ,y, z, t the coordinates of R4. Let P be
the plane defined by the intersection of the hyperplanes of equation z = 0 and t = 0. The projection
π onto P of the points p+ (e ) (resp. p− (e )) fall regularly on the “top” part (resp. “bottom” part) of
a circle C of P centered at the origin O = (0, 0, 0, 0) and of diameter 2, such that for each edge e ,
π (p+ (e )) and π (p− (e )) are antipodal on C. We just defined the points π (p+ (e )) and π (p− (e )). The
actual points p+ (e ) and p− (e ) will be fixed later by moving them very slightly away from their
projection in a two-dimensional plane orthogonal to P. Let η be the maximum distance between a
pair (π (p+ (e )),π (p− (e ′))) with e , e ′. By construction η < 2.

Let P⊥ be the (2-dimensional) plane containing the center O of C and orthogonal to P; in other
words, the intersection of the hyperplanes of equation x = 0 and y = 0. We observe that all the
points of P⊥ are equidistant to all the points π (p+ (e )) and π (p− (e )). We place all the points p (v )
in P⊥ regularly spaced on a arc of a circle lying on P⊥ centered atO and of radius

√
3 − ε . One can

notice that for any (v, e, s ) ∈ V × E × {+,−}, d (p (v ),π (ps (e ))) =
√
4 − 2

√
3ε + ε2. We will choose

ε ≪ 2 − η ≪ 1 so that this shared distance is just below 2, and the points {p+ (e ),p− (e )}e ∈E realize
the same adjacencies than their projection by π .

For every e = uv ∈ E, we place p+ (e ) such that
−−−−−−−−−−−−→
π (p+ (e ))p+ (e ) = − (ε+ε ′)

∥Op (u ) ∥
−−−−→
Op (u) and p− (e ) such

that
−−−−−−−−−−−−→
π (p− (e ))p− (e ) = − (ε+ε ′)

∥Op (v ) ∥
−−−−→
Op (v ). In words, we push very slightly p+ (e ) (resp. p− (e )) away

from π (p+ (e )) (resp. π (p− (e ))) in the opposite direction of
−−−−→
Op (u) (resp.

−−−−→
Op (v )). This way, p+ (e ) is

at distance more than 2 from p (u). Indeed,

d (p+ (e ),p (u)) = ∥
−−−−−−−−−−−−→
p+ (e )π (p+ (e )) +

−−−−−−−−−→
π (p+ (e ))O +

−−−−→
Op (u)∥ = ∥

−−−−−−−−−→
π (p+ (e ))O +

−−−−→
Op (u) +

−−−−−−−−−−−−→
p+ (e )π (p+ (e ))∥

= ∥
−−−−−−−−−→
π (p+ (e ))O + (

√
3 − ε + ε + ε ′)

−−−−→
Op (u)

∥
−−−−→
Op (u)∥

∥ =

√
1 + (
√
3 + ε ′)2 > 2.

Similarly, d (p− (e ),p (v )) > 2. We choose ε ′ infinitesimal (in particular, ε ′ ≪ ε) so that, still,
d (p+ (e ),p (w )) < 2 for anyw , u and d (p− (e ),p (w )) < 2 for anyw , v . □
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O

P

C

p (v5 )
p (v8 )

p+ (e6 )

p− (e6 )

π (p +(e1 ))

π (p −(e1 ))

1

Fig. 12. The overall construction for 3-dimensional balls. Blue centers indicate unit balls, while the red-
der the center, the larger the radius of the ball. We only represented the two centers for the edge
e6 = v5v8, showing how p+ (e6) is pushed away from p (v5), and p− (e6), from p (v8). One may observe
that p (v1), . . . ,p (vn ),O,π (p+ (e6)),π (p− (e6)),p+ (e6),p− (e6) are coplanar.

Corollary 7.5. For every γ < 1, there is a constant ζ < 1 such that Maximum Clique on 4-

dimensional unit ball graphs is not ζ -approximable even in time 2nγ , unless the ETH fails. Moreover,

Maximum Clique is NP-hard on 4-dimensional unit ball graphs.

The proof of Theorem 7.4 can be tweaked for 3-dimensional balls of different radii. For a real
ε > 0, we say that the radii of a representation (or the representation itself) are ε-close if the radii
are all contained in the interval [1, 1+ ε]. We denote by B (1, 1+ ε ) the ball graphs having an ε-close
representation.

Theorem 7.6. For any ε > 0, the subclass of ball graphsB (1, 1+ε ) contains all the co-2-subdivisions.

Proof. Let x ,y, z be the coordinates of R3. We start similarly and define the same π (p+ (e )) and
π (p− (e )) as in the previous construction for the points p+ (e ) and p− (e ) on a circle C of diameter 2
centered atO = (0, 0, 0) on a plane P of equation z = 0. One difference is that π (p+ (e )) and π (p− (e ))
are no longer projections. We then place the points p (v ) regularly spaced along the z-axis. More
precisely, if the vertices are numbered v1,v2, . . . ,vn , the position of p (vi ) is (0, 0,

√
3 + iε ′). The

radius of the disk representingvi centered at p (vi ) is set to ri :=
√
1 + (
√
3 + iε ′)2−1+ε ′′. The radii

associated to the centers p+ (e ) and p− (e ) are all set to 1. We move p+ (vivj ) (resp. p− (vivj )) away
from π (p+ (vivj )) (resp. π (p− (vivj ))) in the opposite direction of

−−−−−−−−−−−−→
p+ (vivj )p (vi ) (resp.

−−−−−−−−−−−−→
p− (vivj )p (vj ))

by an infinitesimal quantity, in order to only suppress the overlap of the disks centered at p+ (vivj )
and p (vi ) (resp. p− (vivj ) and p (vj )). See Figure 12 for an illustration of the construction. We make
ε ′ and ε ′′ small enough that all the values ri are between 1 and 1 + ε .

□

We call quasi unit ball graphs those graphs in the intersection
⋂

ε>0 B (1, 1 + ε ). As a corollary,
we get some strong inapproximability even for quasi unit ball graphs.

Corollary 7.7. For every γ < 1, there is a constant ζ < 1 such that Maximum Clique on quasi

unit ball graphs is not ζ -approximable even in time 2nγ , unless the ETH fails. Moreover, Maximum

Clique is NP-hard on quasi unit ball graphs.

We observe that the lower bounds of Corollaries 7.5 and 7.7 also hold when the geometric
representation is given in input. For that we need to argue that we can compute the coordinates
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(and radii) of our constructions in polynomial time. Let us estimate η, the maximum distance
between a pair (π (p+ (e )),π (p− (e ′))) with e , e ′, for anm-edge graph withm sufficiently large.
We place the 2m points π (p+ (e1)), . . . ,π (p+ (em )),π (p− (e1)), . . . ,π (p

− (em )) regularly spaced every
π/m radians. Thus

η = 2
√
1 − sin2 (

π

2m
) = 2 cos(

π

2m
) ⩽ 2(1 −

π 2

8m2 ).

Hence 2 − η ⩽ π 2

4m2 . This implies that in the proof of Theorem 7.4, we can choose ε := 1
100m3 and

ε ′ := 1
100m4 . Now all the centers can be snapped to grid points on a three-dimensional grid with

precision 1
100m5 (i.e., two adjacent grid points are at distance 1

100m5 ). In the the proof of Theorem 7.6,
we can choose ε ′ := ε

100m3 and ε ′′ := ε
100m4 . And all the centers and radii can be defined up to

precision ε
100m5 .

Note that we realize both constructions with polynomial precision (inm and, for Theorem 7.6,
in 1/ε), although even a single-exponential precision would be allowed in a polytime construction.
Indeed, in binary, polynomially many bits yield exponentially precised coordinates.

7.2 Filled ellipses and filled triangles

A natural generalization of a disk is an elliptical disk, also called a filled ellipse, i.e., an ellipse plus
its interior. Arguably the simplest convex set with non empty interior is a filled triangle (a triangle
plus its interior).

APX-hardness was shown forMaximum Cliqe in the intersection graphs of (non-filled) ellipses
and triangles by Ambühl and Wagner [7]. Their reduction also implies that there is no subexponen-
tial algorithm for this problem, unless the ETH fails. Moreover, they claim that their hardness result
extends to filled ellipses since “intersection graphs of ellipses without interior are also intersection

graphs of filled ellipses”. Unfortunately this claim is incorrect, as we prove below: We construct a
graph, which can be represented by ellipses without their interior, but cannot be represented by
any convex sets (and thus by filled ellipses).

Theorem 7.8. There is a graph G which has an intersection representation with ellipses without

their interior, but has no intersection representation with convex sets.

Proof. The argument is similar to the one used by Brimkov et al. [20], which was in turn inspired
by the construction by Kratochvíl and Matoušek [47]. Consider the graphG in Figure 13, containing
what we will henceforth refer to as black, gray, red, blue, and white vertices. Gray, blue, and red
vertices are called connector vertices. We aim to show thatG cannot be represented by a family of
convex sets.

For the sake of contradiction, suppose thatG admits a representation by convex sets.We denote by
Rv the convex set representing the vertex v . The high-level idea is as follows. First, we observe that
the union of representatives of white vertices separates the rest of the plane into two disjoint regions.
Furthermore, since the subgraph induced by black vertices is connected, their representatives must
all lie in one of these two regions. Next, we look at the set Ra ∪ Rb ∪ Rc , for the black vertices a, b,
and c , and observe that due to the connector vertices, certain parts of Ra ,Rb ,Rc need to appear in a
prescribed order as we move along the boundary of Ra ∪ Rb ∪ Rc . This forces the representation of
G − {d } to have a somewhat rigid structure. We carefully analyze this structure and conclude that
the only way to realize all the adjacencies of d is to place Rd where it partially overlaps Rc , which
contradicts the non-edge between c and d .

We refer to Figure 14 for a picture of the construction. The union of the representatives of white
vertices contains a (closed) Jordan curve that we will call the outer circle. Let us choose the outer
circle in such a way that it intersects the representatives of all connector vertices and such that its
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Fig. 13. A graph (left), which has a representation with empty ellipses (right) but no representation with
convex sets.

intersection with each white or connector vertex representative is a connected set. The outer circle
divides the plane into two faces – an interior and an exterior.
Since no black vertex is adjacent to a white vertex, the outer circle cannot be crossed by the

representative of any black vertex. Moreover, as black vertices form a connected subgraph, they
have to be represented in the same face F (with respect to the outer circle). Since the circle
intersects vertex representatives only in connected sets, as we traverse it, it enters and leaves the
representatives exactly once. We order the representatives of white vertices in such a way that
when traversing the circle in a clockwise fashion the representatives of connector vertices are
visited in the following order: a1, c1, c1,b1, c2, c2,a2, c3, c3,b2, c4, c4, where each zi for z ∈ {a,b} is
a distinct gray neighbor of z, each ci is a distinct blue neighbor of c , and each ci is a distinct red
neighbor of c .
Clearly, each gray neighbor of a must intersect Ra outside Ra ∩ (Rb ∪ Rc ), each gray neighbor

of b must intersect Rb outside Rb ∩ (Ra ∪ Rc ), and each blue or red neighbor of c must intersect Rc
outside Rc ∩ (Ra ∪Rb ). Thus, some parts of Ra , Rb , and Rc are exposed (i.e., outside the intersection
with the union of the representatives of the remaining two vertices) in the order: a, c,b, c,a, c,b, c ,
as we move along the boundary of Ra ∪ Rb ∪ Rc .

Let z ′ be a connector vertex and let z ∈ {a,b, c} be its neighbor. Notice that for each z ′, the vertex
z is uniquely defined. The set Rz′ contains a segment s (z ′), whose one end is on the boundary of
Rz and the other end is on the outer circle (recall that all representatives are convex).
Observe that the segments s (a1), s (a2), s (b1), s (b2) are pairwise disjoint and they separate F \

(Ra ∪ Rb ) into four regions Q1,Q2,Q3,Q4, such that for i ∈ [4] it holds that Rci ∩ F ⊆ Qi . Note that
one of these regions may be unbounded, if F is the unbounded face of the outer circle. For each
i ∈ [4], since ci is non-adjacent to ci , we observe that (Rci ∩ F ) \ Rc is contained in the subregion
of Qi bounded by s (ci ) ∪ Rc .
For i = {1, 2, 3, 4}, let pi be a point in Rd ∩ Rci . Such a point exists since d is adjacent to ci . By

convexity of Rd , the segment p1p2 is contained in Rd . Since d is non-adjacent to c, c1, and c2, we
observe that p1p2 must cross the s (b1) ∪ Rb . As d is non-adjacent to b1, the segment p1p2 intersects
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Fig. 14. A hypothetical representation of G with intersecting convex sets.

Rb . Let q1 be an intersection point of p1p2 and Rb . In an analogous way, we define q2 to be an
intersection point of p3p4 and Rb .

Let us now consider the segment q1q2. By convexity of Rd and Rb , we have q1q2 ⊆ Rb ∩ Rd . The
segmentq1q2 must intersect s (c1)∪Rc∪s (c2), and letq′ be this intersection point. Ifq′ ∈ s (c1)∪s (c2),
we get the contradiction from the fact that b is non-adjacent to c1 and c2. On the other hand, if
q′ ∈ Rc , we get the contradiction from the fact that d and c are non-adjacent.

Finally, it is easy to represent G with empty ellipses (see Fig. 13 right). □

This error and the confusion between filled ellipses and ellipses without their interior has
propagated to other more recent papers [43]. Fortunately, we show that the hardness result does
hold for filled ellipses (and filled triangles) with a different reduction. Our construction can be seen
as streamlining the ideas of Ambühl and Wagner [7]. It is simpler and, in the case of (filled) ellipses,
yields a somewhat stronger statement.

Theorem 7.9. For every γ < 1, there is a constant ζ < 1 such that Maximum Clique on the

intersection graphs of filled ellipses has no ζ -approximation algorithm running in subexponential time

2nγ , unless the ETH fails, even when the ellipses have arbitrarily small eccentricity and the different

lengths of the major axis are arbitrarily close.

This is in sharp contrast with our subexponential algorithm and PTAS when the eccentricity is 0
(case of disks). For any ε > 0, if the eccentricity is only allowed to be at most ε , a SUBEXPAS is very
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unlikely. This result subsumes [25] (where NP-hardness is shown for connected shapes contained
in a disk of radius 1 and containing a concentric disk of radius 1 − ε for arbitrarily small ε > 0) and
corrects [7]. We show the same hardness for the intersection graphs of filled triangles.

Theorem 7.10. For every γ < 1, there is a constant ζ < 1 such that Maximum Clique on the

intersection graphs of filled triangles has no ζ -approximation algorithm running in subexponential

time 2nγ , unless the ETH fails.

Once again, to show Theorem 7.9 and Theorem 7.10, it is sufficient to show that intersection
graphs of (filled) ellipses or of (filled) triangles contain all co-2-subdivisions. We start with (filled)
triangles since the construction is simpler.

Lemma 7.11. The class of intersection graphs of filled triangles contains all co-2-subdivisions.

Proof. Let G be any graph with n vertices v1, . . . ,vn andm edges e1, . . . , em , and H be its co-2-
subdivision. We start with n + 2 points p0,p1,p2, . . . ,pn ,pn+1 forming a convex monotone chain.
Those points can be chosen as pi := (i,p (i )) where p is the equation of a positive parabola taking its
minimum at (0, 0). For each i ∈ [0,n + 1], let qi be the reflection of pi by the line of equation y = 0.
Let x := (n + 1, 0). For each vertex vi ∈ V (G ) the filled triangle δi := piqix encodes vi . Observe that
the points p0 = q0, pn+1, and qn+1 will only be used to define the filled triangles encoding edges.

To encode (the two new vertices of) a subdivided edge ek = vivj , we use two filled triangles ∆+k
and∆−k . The triangle∆

+
k (resp.∆

−
k ) has an edgewhich is supported by ℓ(pi−1,pi+1) (resp. ℓ(qj−1,qj+1))

and is prolonged so that it crosses the boundary of each δi′ but δi (resp. but δ j ). A second edge of
∆+k and ∆−k are parallel and make with the horizontal a small angle εk , where ε > 0 is chosen so that
εm is smaller than the angle formed by ℓ(p0,p1) with the horizontal line. Those almost horizontal
edges intersect for each pair ∆+k ′ and ∆−k ′′ with k ′ , k ′′ intersects close to the same point. Filled
triangles ∆+k and ∆−k do not intersect. See Figure 15 for the complete picture.
It is easy to check that the intersection graph of {δi }i ∈[n] ∪ {∆+k ,∆

−
k }k ∈[m] is H . The family

{δi }i ∈[n] forms a clique since they all contain for instance the point x . The filled triangle ∆+k (resp.
∆−k ) intersects every other filled triangles except ∆−k (resp. ∆+k ) and δi (resp. δ j ) with ek = vivj .

One may observe that no triangle is fully included in another triangle. So the construction works
both as the intersection graph of filled triangles and triangles without their interior. The edges of
∆+k and ∆−k crossing the boundary of all but one δi can be arbitrary prolonged to the right. The
almost horizontal edges of these triangles can be arbitrary prolonged to the left. Thus, the triangles
can all be made isosceles. □

We use the same ideas for the construction with filled ellipses. Two tangents of the ellipse will
play the role of the two important sides of the triangles encoding edges of the initial graph G.

Lemma 7.12. The class of intersection graphs of filled ellipses contains all co-2-subdivisions.

Proof. Let G be any graph with n vertices v1, . . . ,vn andm edges e1, . . . , em , and H be its co-2-
subdivision. We start with the convex monotone chain p0,p1,p2, . . . ,pn−1,pn ,pn+1, only the gap
between pi and pi+1 is chosen very small compared to the positive y-coordinate of p0. The disks Di
encoding the vertices vi ∈ G must form a clique. We also take p0 with a large x-coordinate. For
i ∈ [0,n + 1], qi is the symmetric of pi with respect to the x-axis. For each i ∈ [n], we define Di as
the disk whose boundary is the unique circle which goes through pi and qi , and whose tangent at
pi has the direction of ℓ(pi−1,pi+1). It can be observed that, by symmetry, the tangent of Di at qi
has the direction of ℓ(qi−1,qi+1).

Let us call τ+i (resp. τ−i ) the tangent of Di at pi (resp. at qi ) very slightly translated upward (resp.
downward). The tangent τ+i (resp. τ−i ) intersects every disks Di′ but Di (see Figure 16). Let denote
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Fig. 15. A co-2-subdivision of a graph with 5 vertices (in red) represented with triangles. Only two edges are
shown: one between vertices 1 and 4 (green) and one between vertices 2 and 3 (blue).

p1

q1

p2

q2

p3

q3

p4

q4

D3

τ+3

Fig. 16. The blue line intersects every red disk but the third one.

by p ′i (resp. q
′
i ) be the projection of pi (resp. qi ) onto τ+i (resp. onto τ−i ). For each k ∈ [m], let ℓk be

the line crossing the origin O = (0, 0) and forming with the horizontal an angle εk , where εk is
smaller than the angle formed by ℓ(p0,p1) with the horizontal. Let ℓ+k (resp. ℓ−k ) be ℓk very slightly
translated upward (resp. downward). To encode an edge ek = vivj , we have two filled ellipses E+k
and E−k . The ellipse E

+
k (resp. E−k ) is defined as being tangent with τ+i at p ′i (resp. with τ

−
j at q′j ) and

tangent at ℓ+k (resp. ℓ−k ) at the point of x-coordinate 0 (thus very close to O), where ek = vivj . The
proof that the intersection graph of {Di }i ∈[n] ∪ {E

+
k , E

−
k }k ∈[m] is H is similar to the case of filled

triangles.
As no ellipse is fully contained in another ellipse, this construction works for both filled ellipses

and ellipses without their interior.
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We place p0 at P := (
√
3/2, 1/2) and make the distance between pi and pi+1 very small compared

to 1. All points pi are very close to P and all points qi are very close to Q := (
√
3/2,−1/2). This

makes the radius of all disks Di arbitrarily close to 1. We choose the convex monotone chain
p0, . . . ,pn+1 so that ℓ(p0,p1) forms a 30-degree angle with the horizontal. As, the chain is strictly
convex but very close to a straight-line, ℓ(p0,p1) ≈ ℓ(pn ,pn+1) ≈ ℓ(pi ,pi+1) ≈ ℓ(pi ,pi+2). Thus, all
those lines almost cross P and form an angle of roughly 30-degree with the horizontal. The same
holds for points qi . For the choice of an elliptical disk tangent to the x-axis at O and to a line with
a 60-degree slope at P (resp. at Q), we take a disk of radius 1 centered at (0, 1) (resp. at (0,−1)); see
Figure 17.

E−k

E+k

Di

P

Q

O

Fig. 17. The layout of the disks Di , and the elliptical disks E+k and E−k .

The acute angle formed by ℓ1 and ℓm (incident inO) is made arbitrarily small so that, by continuity
of the elliptical disk defined by two tangents at two points, the filled ellipses E+k and E−k have
eccentricity arbitrarily close to 0 and major axis arbitrarily close to 1. □

In the construction, we made both the eccentricity of the (filled) ellipses arbitrarily close to 0 and
the ratio between the largest major axis and the smallest major axis arbitrarily close to 1. We know
that this construction is very unlikely to work for the extreme case of unit disks, since a polynomial
algorithm is known for Max Cliqe. Note that even with disks of arbitrary radii, Theorem 1.1
unconditionally proves that the construction does fail. Indeed the co-2-subdivision ofC3 +C3 is the
complement of C9 +C9, hence not a disk graph.
As in the previous section, the constructions of Lemmas 7.11 and 7.12 require only polynomial

precision (when single-exponential precision would be enough for a polytime algorithm). Hence
the lower bounds of Theorems 7.9 and 7.10 also hold when the geometric representation is part of
the input.

7.3 Homothets of a convex polygon

Another natural direction of generalizing a result on disk intersection graphs is to consider pseu-
dodisk intersection graphs, i.e., intersection graphs of collections of closed subsets of the plane
(regions bounded by simple Jordan curves) that are pairwise in a pseudodisk relationship (see
Kratochvíl [46]). Two regions A and B are in pseudodisk relation if both differences A \ B and B \A
are arc-connected. It is known that Phom graphs, i.e., intersection graphs of homothetic copies of
a fixed polygon P , are pseudodisk intersection graphs [4]. As shown by Brimkov et al., for every
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convex k-gon P , a Phom graph with n vertices has at most nk maximal cliques [20]. This clearly
implies thatMaximum Cliqe, but also Cliqe p-Partition for fixed p is polynomially solvable in
Phom graphs. Actually, the bound on the maximum number of maximal cliques from [20] holds for
a more general class of graphs, called kDIR-CONV, which admit a intersection representation by
convex polygons, whose every side is parallel to one of k directions.
Moreover, we observe that Theorem 3.6 cannot be generalized to Phom graphs or kDIR-CONV

graphs. Indeed, consider the complement Pn of an n-vertex path Pn . The number of maximal cliques
in Pn , or, equivalently, maximal independent sets in Pn is Θ(cn ) for c ≈ 1.32, i.e., exponential in
n [35]. Therefore, for every fixed polygon P (or for every fixed k) there is n, such that Pn is not a
Phom (kDIR-CONV) graph.

8 REMARKS AND FURTHER DIRECTIONS

The algorithm of Theorem 1.3 also works for weighted graphs.

Theorem 8.1. Maximum Weighted Independent Set admits a randomized EPTAS and a deter-

ministic PTAS on disk and unit ball graphs.

The slight modifications to approximate Maximum Weighted Independent Set consist in
sampling S proportionally to the weights, and to remove the lightest layer Li (among the first
⌈2/βε⌉) and the lightest set Sγ (rather than the ones of minimum size). We then use repeatedly that
Maximum Weighted Independent Set can be solved in polynomial time on bipartite graphs.
This implies a randomized EPTAS for Maximum Weighted Cliqe on disk graphs and unit

ball graphs, with the same arguments used to get |I | ⩾ β |V (G ) |. Now, what we obtain isw (I ) ⩾
βw (V (G )) wherew is the weight function andw (X ) := Σu ∈Xw (u).

One might wonder what is the constant hidden inO (1) in the time complexity of the randomized
EPTAS f (ε )nO (1) . Here is how to achieve near quadratic time f (ε )n2 logn where n is the number of
vertices of our unit ball graphG (the geometric representation is not required). The first observation
is that instead of finding an optimum stable set in a bipartite graph (which we do several times as a
subroutine), one only needs a (1 − ε )-approximation of it. This can be done in time f (ε )m, where
m is the number of edges [31]. We also need to overcome our first branching guess of a vertex
which belongs to an optimal solution (and hence multiply by n our complexity). To achieve this, we
start by packing greedily disjoint neighborhoods N (v1),N (v2), . . . ,N (vk ) ofG , while it is possible.
Then we consider the set of subgraphs G1,G2, ...,Gk induced by the vertices at distance at most 3
of v1,v2, ...,vk , respectively. Observe that by maximality of the packing, every vertex is at distance
at most 2 of some vi , and thus, every edge, and even every clique ofG belongs to at least oneGi . By
a volume argument, any vertex, and thus any edge, belongs to at most a constant number of graphs
Gi . Thus we only need to compute the maximum clique over the graphs Gi , each with number of
edgesmi , with the property that

∑k
i=1mi = O (m). Now, the difference is that the clique number

of each Gi is at least a constant fraction of its number of vertices, so the sampling step succeeds
with probability at least a positive constant. We consider the complement of each graph Gi and
approximate the independence number. The main and only obstacle is that finding a shortest odd
cycle in quadratic time seems hopeless. Indeed, the other elements of the algorithm: removing
N [S], computing the sets Li and Sγ , removing the lightest of them, and (1 − ε )-approximating the
maximum stable set in a bipartite graph, can all be done in quadratic time.
We only compute one (not necessarily shorter) odd cycle of length h, via breadth-first search

for instance. We can assume that h = ω (1/ε2) otherwise we are done. We take potentially thicker

slices for Sγ : instead of z = Θ(1/ε ) consecutive strata in each layer up to Li , we take 10βεh
consecutive strata. Either the suggested 2-coloring of H ′′ − Sγ is proper and we are done. Or there
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is a monochromatic edge, which, going through the different cases of Claim 2, yields a new odd
cycle of length O (1/ε ) (which is an easy case to handle) or short-cutting the previous odd cycle by
at least Ω(εh) vertices. In the latter case, our new odd cycle is shorter by a constant multiplicative
factor 1 − ε . Hence, after at most O (logn) improvements, we find an odd cycle which is small
enough to conclude. Therefore, the overall complexity of the algorithm is f (ε )n2 logn.

The obvious remaining question is the complexity of Maximum Cliqe in disk graphs and in
unit ball graphs. We showed why the versatile approach of representing complements of even
subdivisions of graphs forming a class on whichMaximum Independent Set is NP-hard fails if
the class is general graphs, planar graphs, or even any class containing the disjoint union of two
odd cycles. This approach was used by Middendorf and Pfeiffer for some string graphs [51] (with
the class of all graphs), Cabello et al. [23] to settle the then long-standing open question of the
complexity of Maximum Cliqe for segments (with the class of planar graphs), in Section 7 of
this paper for filled ellipses, filled triangles, quasi unit ball graphs, and 4-dimensional unit ball
graphs (with the class of all graphs). Determining the complexity of Maximum Independent Set
on graphs without two vertex-disjoint odd cycles as an induced subgraph is a valuable first step
towards settling the complexity of Maximum Cliqe on disks.

An interesting direction would be to find a toy problem on which we could prove NP-hardness. A
nice class, which appears to be a subclass of unit ball graphs, is that of the so-called Borsuk graphs:
We are given some (small) real ε > 0 and a finite collection V of unit vectors in R3. The Borsuk
graph B (V , ε ) has vertex setV and its edges are all pairs {v,v ′} whose dot product is at most −1+ ε
(i.e., near antipodal).

The difficulty of computing the (weighted) independence number on Borsuk graphs is also
an open question. A notable subclass of Borsuk graphs where this problem is polynomial-time
solvable is the class of the quadrangulations of the projective plane. These well-studied objects
have the striking property to be either bipartite or 4-chromatic. Furthermore, the odd cycle packing
number of these graphs is at most 1. Artmann et al. recently showed that so-called bimodular

integer programming, that is integer programming where the constraint matrix has full rank
and all its subdeterminants are in {−2,−1, 0, 1, 2}, can be solved in strongly polynomial time [9].
They also observe that Maximum Weighted Independent Set on graphs with ocp ⩾ 1 is a
bimodular integer programming problem. This implies the tractability of computing the weighted
independence number on quadrangulations of the projective plane.

A second question is to derandomize the EPTAS. The difficulty here is concentrated in the
sampling. The VC-dimension argument seems easy to deal with, however we need that our sampling
falls in the maximum independent set (or at least in some independent set which is close to
maximum).

Another natural question is to find a superclass of geometric intersection graphs which both
contain unit ball graphs and disk graphs. More generally, is it possible to explain why we have
the same forbidden induced subgraph (the complement of a disjoint union of two odd cycles) for
disk graphs and unit ball graphs? The suggested proofs for Theorem 1.1 and Theorem 1.2 are quite
different.

Let us call quasi unit disk graphs those disk graphs that can be realized for any ε > 0 with disks
having all the radii in the interval [1, 1 + ε]. Recall that we showed that, for the clique problem,
quasi unit ball graphs are unlikely to have a QPTAS, while unit ball graphs admit an EPTAS. In
dimension 2, it can be easily shown that unit disk graphs form a proper subset of quasi unit disk
graphs, which form themselves a proper subset of disk graphs. Can we find for this intermediate
class an efficient exact algorithm solving Maximum Cliqe?
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Problem 1. Is there a polynomial-time algorithm for Maximum Clique on quasi unit disk graphs?

Our randomized EPTAS works for Maximum Independent Set under three assumptions. While
it is clear that we crucially need that iocp ⩽ 1 (or at least that iocp is constant), as far as we can
tell, the boundedness of the VC-dimension and the fact that the solution is of linear size might
not be required. Recall that we did obtain a randomized PTAS in the class X (∞, β,O (1)), and a
deterministic PTAS in X (d, 0,O (1)).

Problem 2. Is there an EPTAS for Maximum Independent Set on graphs without the union of two

odd cycles as an induced subgraph, or even with iocp = O (1), and either one of the following conditions:
• there is a solution of size at least βn for some constant β ,
• the VC-dimension of the graph is bounded by a constant d?

As this paper was under review, Dvořák and Pekárek [32] answered the first item positively.
More precisely they obtained a randomized EPTAS for the class X (∞, β , i ) with running time
f (ε )Õ (ni+4). Matching the f (ε )Õ (n2)-time for unit balls (hence with i = 1), as well as the second
item remain open.

It might also be that no additional condition is needed.

Problem 3. Is there a(n E)PTAS for Maximum Independent Set on graphs without the union of two

odd cycles as an induced subgraph?

Atminas and Zamaraev [10] showed that the complement of K2 +Cs is not a unit disk graph
when s is odd (where K2 is an edge and Cs is a cycle on s vertices). Is this obstruction enough to
obtain an alternative polynomial-time algorithm for Maximum Cliqe on unit disk graphs?

Problem 4. Is Maximum Independent Set solvable in polynomial-time on graphs excluding the

union of an edge and an odd cycle as an induced subgraph?
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