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Abstract—The area of the foveal avascular zone (FAZ) from
en face images of optical coherence tomography angiography
(OCTA) is one of the most common measurement based on this
technology. However, its use in clinic is limited by the high
variation of the FAZ area across normal subjects, while the
calculation of the volumetric measurement of the FAZ is limited
by the high noise that characterizes OCTA scans. We designed
an algorithm that exploits the higher signal-to-noise ratio of en
face images to efficiently identify the capillary network of the
inner retina in 3-dimensions (3D), under the assumption that the
capillaries in separate plexuses do not overlap. The network is
then processed with morphological operations to identify the 3D
FAZ within the bounding segmentations of the inner retina. The
FAZ volume and area in different plexuses were calculated for a
dataset of 430 eyes. Then, the measurements were analyzed using
linear mixed effect models to identify differences between three
groups of eyes: healthy, diabetic without diabetic retinopathy
(DR) and diabetic with DR. Results showed significant differences
in the FAZ volume between the different groups but not in the
area measurements. These results suggest that volumetric FAZ
could be a better diagnostic detector than the planar FAZ. The
efficient methodology that we introduced could allow the fast
calculation of the FAZ volume in clinics, as well as providing the
3D segmentation of the capillary network of the inner retina.

Index Terms—foveal avascular zone, volumetric image segmen-
tation, optical coherence tomography angiography

I. INTRODUCTION

Optical coherence tomography angiography (OCTA) is a
recent technology that allows non-invasive imaging of retinal
microvasculature. In short, OCTA measures the decorrelation
signal between successive OCT scans (b-scans) to highlight
areas where motion is present. This process produces depth-
resolved maps of the flow of erythrocytes inside blood vessels
(1], [2].

OCTA has transformed the evaluation of diseases that
affect retinal microvasculature by allowing the development of
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objective, quantitative biomarkers. The most used biomarkers
that can be obtained with this technology include vessel
density, fractal dimensions and length; intracapillary spaces;
avascular areas; and detection and measurement of the foveal
avascular zone (FAZ) area. The measurement of the FAZ
for the qualitative assessment of nonperfusion associated with
diabetic retinopathy (DR) is one of the most common uses of
OCTA [2]. In fact, imaging of the FAZ with OCTA is more
suitable than fluorescein angiography (FA) and indocyanine
green angiography (IGA) due to the lack of leakage and clearer
capillary detailing, without the need of dye injections [2]—[5].
FAZ is commonly identified through the analysis of 2-
dimensional (2D), maximum projections of OCTA slabs. It
has been demonstrated that these projections improve contrast
and signal-to-noise ratio (SNR) of OCTA [6]. En face views
are calculated using the segmentation of anatomically relevant
slabs after the removal of projection artifacts [3], producing
angiograms in a format similar to FA / IGA. In literature, FAZ
is often calculated from en face projections of the superficial
vascular complex (SVC) or deep capillary plexus (DCP)
though restricting the measurement solely to these slabs is not
well justified. Published studies have revealed a large variation
in 2D FAZ measurements, even among healthy subjects [3],
[5]. These results have driven recent efforts to develop and
identify better detectors of foveal ischemia using OCTA [4],
[7], [8]. However, it is recognized that there has been little
effort in the development of 3D algorithms that can clearly
and reliably identify the capillary network and, consequently,
the volumetric FAZ. It is also recognized that the problem
lies in the complexity of the analysis of the volumetric OCTA
signal, characterized by a considerable amount of noise [2].
With this work we introduce a novel algorithm for the fast
estimation of the FAZ in 3D. We achieve this by exploiting
the morphology of the inner retinal vasculature, allowing the
introduction of a key assumption that simplifies the problem.
We can then robustly and efficiently identify the 3D network



by an extensive use of morphological operations based on the
2D maximum projections, where contrast and SNR is higher,
and identify a volumetric FAZ. Finally, we used the proposed
algorithm to evaluate differences between the 3D and 2D FAZ
measurements in in a large cohort of healthy subjects, and
diabetics with and without DR.

II. RELATED WORK

Several works have been published around the measurement
of the FAZ in 2D from OCTA, since the recent introduction of
this technology in clinics. A detailed review can be found in
[2], [3]. Efforts to improve and automatize the measurement
are ongoing, with new publications exploiting the latest tech-
nologies [8]-[13]. However, only a few of these publications
are based on 3D measurements from OCTA [8], [13], and no
attempt to segment the FAZ in 3D has been made yet.

III. MATERIALS AND METHODS
A. Dataset

The Northern Ireland Sensory Ageing Study (NISA) [14], a
follow-up to the Northern Ireland Cohort for the Longitudinal
Study of Ageing (NICOLA) [15], is a prospective, population-
based study of early imaging and functional biomarkers of DR
and age-related macular degeneration (AMD). The sample of
participants was enriched with patients with diabetes (type I or
type II) recruited concurrently from the Belfast Trust Diabetic
Retinopathy Hospital Clinics at QUB were later added to the
dataset. A number of functional test and measurements were
acquired during the visits: Best Corrected Visual Acuity; Con-
trast Sensitivity; mesopic microperimetry and Frequency Dou-
bling Technology perimetry; an SD-OCT scan (Spectralis SD-
OCT, Heidelberg Engineering, Heidelberg, Germany); fundus
colour picture (CX-1 Digital Fundus Camera, Canon U.S.A.,
Inc, Tokyo, Japan); and axial length (AL, Lenstar LS 900
Biometer, Haag-Streit AG, Switzerland). An OCTA volume
scan (Spectralis SD-OCT) was also acquired for a subgroup
of the participants. Dilation was induced pharmacologically
with tropicamide 1% before any imaging procedure.

1) OCTA data: A 10x10 degrees volume scan pattern
centred on the fovea was used for the OCTA imaging acquisi-
tion with the Spectralis SD-OCT. Each volume included 512
successive, horizontal b-scans of 496x512 pixels of resolution
(axial x horizontal) for a total volume of 512x512x496 pixels.
Therefore, the 512x512 pixels, planar resolution of these
volumes was isometric (with varying resolution across eyes,
depending on the AL), while the axial resolution was 3.87
pm (instrument resolution, provided by the manufacturer).
All OCTA scans were processed by the Projection Artefacts
Removal (PAR) tool (Heidelberg Engineering, Heidelberg,
Germany) before export. The OCTA segmentations of the
Inner Limiting Membrane (ILM), Inner Plexiform Layer (IPL),
Outer Plexiform Layer (OPL) and Retinal Pigment Epithelium
(RPE), as well as the OCTA en face images, were provided
by the manufacturer of the device and were obtained from
.vol files generated with a version of the Heyex software

(Heidelberg Engineering, Heidelberg, Germany) enabled for
RAW data export.

2) Clinical classification: Two clinical graders examined
all fundus photographs to identify signs of pathologies. If
participants were not recruited from the DR clinic, self-
reported diagnosis of diabetes was used for their classification
as diabetic. Participants aged 50 years or over and all subjects
classified as diabetic were invited to take a blood test to mea-
sure concentration of plasma glycated haemoglobin (HbA1C).
A HbAI1C concentration of over 6.5% was used as to classify
the participants as diabetic when another diagnosis was not
available. Blood test refusal did not prevent inclusion.

3) OCTA dataset selection: For this work, only OCTA
volume scans that were judged of sufficient quality by a
manual classification were considered. Out of 686 scans avail-
able, 483 were manually identified. Of these, 41 scans were
excluded, as showing signs of intermediate or advanced AMD.
This resulted in a dataset of 442 scans from eyes of healthy
participants and diabetics with or without DR. A further
selection excluded 12 OCTA scans from eyes with macular
oedema and/or segmentation errors that could have affected
the measurement. The final dataset included 430 OCTA scans,
with 317 eyes from 189 healthy controls and 113 eyes from 82
people with diabetes. Of these, 20 eyes had DR. Five patients
had DR in one eye and no DR in the fellow eye. Descriptive
statistics of the selected sample are reported in (Table I).

B. Image processing

The proposed algorithm identifies the vascular network of
the inner retina as the combination of three vascular networks,
each calculated independently. These networks are in three
different plexuses: superficial vascular complex (SVC); in-
termediate capillary plexus (ICP); and deep capillary plexus
(DCP) [16]. Plexuses are delimited by segmentation of retinal
layers or from their derivations: SVC located between the ILM
and a posterior offset of -17 pum to the lower boundary of the
IPL (IPL-), ICP between IPL— and a +22 um offset to the
lower boundary of the IPL (IPL+), DCP between IPL+ and
OPL (Fig. 1). These boundaries are used for the generation
of the maximum projection en face images from the OCTA
volume. Within each plexus, the overwhelming majority of
vessels of the same network do not overlap, and this is a key
working assumption for the algorithm. This is coherent with
the morphology of parafoveal capillary layout, except for inter-
plexuses capillary connections. However, these connections are
not depicted in OCTA images since they are almost invariably
masked by signal from overlying vessels. Crucially, such
an assumption imposes a one-to-one association between a
vessel-location on the planar, en face image and the location
on the 3-dimensional OCTA scan within the boundary of its
relative plexus. Having defined this association, vessels of
one network could first be identified on the en face image,
a relatively simple task given the higher contrast and SNR.
Then, the axial position of each identified vessel-location could
be obtained from the OCTA volume for a full 3-dimensional
representation. Finally, the combination of the three networks,



TABLE I
DESCRIPTIVE STATISTICS OF THE SELECTED SAMPLE

Healthy Diabetes w/o Diabetes w/
(N=317) | DRY (N =93) | DR? (N = 20)
Age? 65 69 67
(years) [60, 73] [63, 74] [60, 71]
Sex® 81:107 8:54 8:11
(Male:Female) : . :
HbA1C?P 55 6.78 8.54
(%) [5.29, 5.73] [6.24, 8.02] [6.86, 8.72]
BCVA®© 85 87 83
(Letters) [80, 89] [82, 90] [82, 87]
Axial length® 23.46 23.32 23.65
(mm) [22.95, 23.9] [22.8, 24.36] [23.09, 24]

#Median [interquartile range].

PHbA1C = glycated hemoglobin.
°BCVA = Best Corrected Visual Acuity.
dDR = Diabetic Retinopathy.

Fig. 1. Inner retina layers in an OCTA b-scan and the three plexuses:
superficial vascular complex (SVC); intermediate capillary plexus (ICP); and
deep capillary plexus (DCP). ILM = inner limiting membrane; IPL = inner
plexiform layer; OPL = outer plexiform layer.

with the ILM and OPL segmentations, could be used to define
the 3D FAZ. All image processing operations were performed
using Matlab R2020a software (MathWorks, Natick, MA,
United States) with the Image Processing Toolbox.

1) OCTA and segmentation pre-processing: OCTA volumes
were resized along the axial dimension to match the planar
resolution and make voxels isometric. The planar resolution in
f M (resplane) Was calculated correcting for the axial length
with the procedure described in [17]. The calculated resyigne
and the known axial resolution of the instrument (3.87 pm)
provided the rescaling ratio R for the axial dimension: R =
3.87 pm / respiane. Segmentations were also rescaled accord-
ingly and were regularized by the identification of outliers
through a median moving window of 15x15 pixels in size and
by their replacement with values obtained with cubic spline
interpolation. Each column of each b-scan was then shifted to
move the RPE location to the bottom of the scan, “flattening”
the retina on this layer. Finally, the volume was filtered using a
3D Gaussian filter (¢ = 3) to reduce noise and to incorporate
the information of adjacent scans into each b-scan.

2) 2D network segmentation: The same process for the
identification of each of the three capillary networks within
their relative plexus (SVC, ICP, DCP) was performed inde-
pendently (Fig. 2A-E). The process started from the en face,
maximum-intensity-projection provided by the manufacturer
and obtained from the OCTA, and the segmentations of the
respective bounding layers: ILM to IPL- for the superior;
IPL- to IPL+ for the intermediate; and IPL+ to OPL for

the deep plexus (Fig. 2A). The three, en face images were
processed with a multi-scale vessel enhancing algorithm [18]
to remove noise and enhance the signal from vessel-like
structures (Fig. 2B). Parameters used in the process were
identified experimentally, accounting for the morphological
characteristics of the microvasculature depicted in these im-
ages: ScaleRange = [2;3]; ScaleRatio = 1; BetaOne =
0.6; BetaTwo = 22. Then, vessel enhanced images were
binarized using a global histogram threshold calculated with
Otsu’s method [19]. Binary images were skeletonized, and,
for each logical true pixel of the skeleton (sk(zx,y)), the
distance transform was calculated with a two-pass, sequential
scanning algorithm [20] (Fig. 2C). This process was used to
obtain an estimate of radiuses of vessels at each location of
the skeleton ( rg = radius(sk(x,y)) ), when the skeleton
is interpreted as the centerline of the vessel and assuming
that vessels have a tubular shape with circular section. For
the regularization of inconsistent, adjacent radius sizes, the
distance transform was filtered with a Gaussian filter (o = 1),
then discretized to integers with rounding. As a result of
this process, the superficial, intermediate and deep capillary
networks were fully described by their centerline locations
(8ksup(T,Y), Skint(®,y), Skieep(w,y)) and radiuses (rq,,,.
Tskines> Vskaeep) 11 2-dimensions, with a resolution equal to the
planar resolution of the scans.

3) 3D network segmentation: The 3-dimensional recon-
struction was based on the search of the coordinate z in the
third, axial dimension for each 2D skeleton (sksup, Skint,
5kgeep). Under the aforementioned assumption derived from
the morphology, no more than one vessel could be located in
a single plexus for a single location of the centerline sk(x,y).
Therefore, the search of the axial coordinate was performed
on the pre-processed OCTA volume (OCT A(x,y, z)), using
the segmentations to restrict the search field on the axial
dimension (Fig. 2D). For each location (z,y) of sksyp, Skint
and skgecp, the index of the maximum value z, in the
corresponding vertical column of the OCTA volume and
between the boundaries of the plexus, was defined by:

Zskeu, = loc(max(OCTA(z,y, 2)))
V(z,y) € skgup; IPL— < zgx,,, <ILM, (1)

Zskin, = loc(max(OCTA(z,y,2)))

V(z,y) € skint; IPL+ < zgp,,, < IPL—, )

int

Zskgee, = loc(max(OCT A(z,y, 2)))
V(z,y) € skaeep; OPL < zgp,,., <IPL+, (3)

where loc is a function that returns the index of an el-
ement in an array. In the detection of the z-coordinate,
the pre-processing of the OCTA volume with a 3D Gaus-
sian filter helped reducing the detection of spurious, local-
maxima values. Of notice, all scans are already pre-processed
by a proprietary algorithm to remove projection artefacts
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Fig. 2. A visualization of the processing operations in a random OCTA of the dataset. A) En face maximum projection images. B) Vessel-enhanced images.
C) Vasculature skeletonization with radius map. D) A random pre-processed b-scan showing the axial location of the vessels (in magenta) for each location
of the skeletonized map, within the respective bounding segmentations (in green). E) Reconstructed 3-dimensional (3D) capillary network for the individual
plexuses. F) Reconstructed cumulative capillary network of the inner retina. G) Calculated 3D Foveal Avascular Zone (FAZ, in red) depicted in the 3D
capillary network (top) and in the central, 256" b-scan along the Y dimension (bottom). In the b-scan, the blue and red areas represent a section of the dilated
FAZ volume, that is then restricted to the volume between the segmentations of the inner limiting membrane and outer plexiform layer (in green). H) The
calculated FAZ 3D volume.



upon extraction. Then, each resulting 3D skeletonization,
Sksup(X, Y, 2), Skint(x,y, 2) and skqeep(, y, 2) was separated
into n subsets based on the radius-values measured in the 2D
maps: sk(x,y,z,7,), n = 1,2, ...,max(rg). Each of these
sk(z,y, z,7,) was convoluted with a spherical structuring
element of radius 7, to represent the 3D size of vessel
segments of the same size. The n, logical, 3-dimensional sets
of coordinates obtained with this operation were combined
back together using the logical OR operation to represent the
superior, intermediate and deep capillary networks (Fig. 2E).
Finally, these three networks were combined with another
logical OR to represent the full capillary network of the inner
retina (Fig. 2F).

4) Segmentation and measurement of 2D FAZ: The bina-
rized images obtained after the vessel-enhancement procedure
were used for the identification of the FAZ in 2-dimensions.
Connected components smaller than 5 pixels were removed
from the binary maps to reduce false, spurious detection of the
vasculature. Then, the map was dilated with a morphological
structuring disk of radius 15 pixels. The radius was determined
experimentally to fill the gaps between the vascular structures.
Then, the largest connected component of the inverted, result-
ing map was taken as the eroded FAZ. A dilation operation
with the same structuring disk used in the dilation of the
vasculature produced the 2D FAZ. The number of pixels of
the FAZ multiplied by the area of a pixel (res provided
the area of the FAZ in mm?.

5) Segmentation and measurement of 3D FAZ: The proce-
dure in 3D was equivalent to that described for the FAZ in the
2D domain, except for the use of the calculated 3D network
representation in place of binary images, for the replacement
of the disk with a spherical structural element (of equal
radius), and for the axial restriction of the volume between
the segmentations of the ILM and OPL (Fig. 2G). Finally, the
volume of the FAZ in mm3

2
plane)

3 was estimated multiplying the
number of voxels by the known size of a voxel (resilane)
(Fig. 3H).

C. Evaluation

The volume of the FAZ in 3D and the areas of the FAZ in
2D from the three vascular plexuses were calculated with the
proposed algorithm for all the OCTA scans in the dataset.
Results were displayed superimposing the 2D FAZ on the
vessel-enhanced images and as a point cloud plot for the
3D FAZ (as shown in Fig. 2G-H) to be manually inspected
for errors by a clinical grader [G. Montesano]. Then, the
measurements were analyzed to identify differences between
the three groups: healthy, diabetic without DR and diabetic
with DR. All statistical analyses were performed in R (R
Foundation for Statistical Computing, Vienna, Austria) using
linear mixed effect models. Random intercepts were used
to account for correlations between the two eyes from the
same subject. The statistical significance level was set at 0.05.
The results are reported as mean estimate [95% Confidence
Intervals].

IV. RESULTS

The algorithm successfully calculated all FAZ in the dataset.
The inspection of the results by a clinical grader found no
errors (100% success rate). Mean (standard deviation; SD)
processing time was 38.7 (2.6) seconds per OCTA volume,
running on a laptop computer with an Intel (Santa Clara, CA,
US) Core i7-1065G7 CPU @ 1.30 GHz and 16 MB of RAM
memory.

The results of the linear mixed effect model are reported in
Table II using the mean estimate [95% Confidence Intervals].
There was no statistically significant difference between the
different groups for the FAZ area calculated from different
vascular plexuses. On the contrary, for both groups of diabetic
eyes, there was a significant difference in the mean FAZ
volume compared to the healthy group (Fig. 3).

TABLE II
MEASUREMENT DIFFERENCE BETWEEN GROUPS

Diabetes P Diabetes P

Healthy w/o DRP value w/ DRP value
FAZ 0.013 0.016 0.018

Volume? [0.012, [0.014, 0.032* [0.014, 0.013*
(mm?3) 0.015] 0.018] 0.021]
Superficial 0.525 0.580 0.537

FAZ area® [0.492, [0.522, 0.102 [0.438, 0.817
(mm?) 0.557] 0.637] 0.636]
Intermediate 0.216 0.224 0.218

FAZ area® [0.200, [0.198, 0.585 [0.180, 0.922
(mm?) 0.231] 0.250] 0.255]
Deep 0.465 0.459 0.453

FAZ area® [0.443, [0.420, 0.774 [0.394, 0.708
(mm?) 0.487] 0.497] 0.513]

2Estimates [95% Confidence Intervals]. FAZ = Foveal Avascular Zone
PDR = Diabetic Retinopathy.
*Statistically significant (significance level = 0.05).

FAZ Volume Superficial FAZ area

. 44 °

0.064

0.02

| o =

Healthy

1]}
1
-

Healthy Diabetes

w/o DR

Diabetes
w/ DR

Diabetes
w/o DR

Diabetes
w/ DR

Intermediate FAZ area Deep FAZ area

H 1.004

. I i :
J ‘ NE ool .
i#?ﬁx%$$

Healthy

mm

Diabetes
w/o DR

Diabetes
w/ DR

Healthy Diabetes

w/o DR

Diabetes
w/ DR

Fig. 3. Boxplot of the distribution of the calculated FAZ volume and
area for the three groups in the dataset. Boxes extends from the 25" to
75™ percentile (inter-quartile range, IQR), with the mid-line representing the
median. Whiskers extends to a maximum of 1.5 * IQR from the edges of the
box. Dots represent outliers. FAZ = Foveal Avascular Zone. DR = Diabetic
Retinopathy



V. DISCUSSION

The fast processing time and success rate of this novel
algorithm suggest it is possible to reliably and efficiently
segment the 3D FAZ from OCTA. This was likely achieved
thanks to the assumption that the capillary vasculature of a
single plexus does not overlap, allowing for an important
part of the image processing operations to take place in 2-
dimensions. The benefits of this were dual: on one hand,
the analysis of 2D images helped overcome the problem of
low SNR in OCTA volumetric scans; on the other hand,
the proposed 2D analysis is fast. Moreover, the discretized,
logical representation of the 2D vasculature that we propose
makes it possible to extensively use efficient, morphological
operations in 3D. Finally, the algorithm provided the full
segmentation of the capillary network of the inner retina
as a by-product of the process. Results from the statistical
analysis showed that the FAZ volume was significantly dif-
ferent between groups. This was not true for FAZ areas,
suggesting that the volume is preferable than the conventional
area as a diagnostic measure. Of note, results still show
large overlaps between groups. Therefore, the FAZ volume
should still be interpreted by physicians in conjunction with
other clinical evidence to support diagnostic and treatment
decisions. However, an improved characterization of the FAZ
can justify and promote further research, not only in diabetes,
where it is currently predominately used, but potentially in
other diseases as well. The proposed algorithm has some
limitations. First, the algorithm requires the segmentations and
the artifact-corrected, en face images as well as the OCTA
volume. While these are often offered by the manufacturers
for visualization, their export and manipulation are not as
widely available. However, if the proposed methodology was
implemented within the processing software of acquisition
devices, this requirement would not represent a limitation.
Second, the algorithm was used to process only manually
selected, good-quality scans, using correct segmentations and
in absence of edema or macular degeneration. The lack of any
of these conditions could lead to inaccurate measurements,
either because the input data is inaccurate or because the
definition of the FAZ is invalid under these pathological
circumstances. Third, some parameters in the algorithm are
experimentally determined and the variation of these param-
eters could change the measurements. However, the use of
a fixed, pre-selected parameter over another one could only
lead to global changes in the statistical analysis. The statistical
analysis is also limited by unbalanced observation in the
three groups. The number of eyes of diabetic patients, and
particularly those with presence of DR, is much smaller than
healthy eyes and this is reflected in the variance of the 3D
FAZ measurements (Fig. 3). While the availability of a dataset
with a greater number of diabetic eyes would improve the
estimate of differences between groups, statistically significant
differences of the 3D FAZ were observed, and this highlights
the importance of the proposed, volumetric measurement.

VI. CONCLUSIONS

We introduced a novel, fast algorithm for the calculation
and measurement of the volumetric Foveal Avascular Zone
based on OCTA volume scans. Statistical analysis of measures
from this technique on scans from a very large cohort of
eyes showed significant differences for the selected groups,
indicating potential clinical usefulness. The analysis did not
identify differences in the mean area of the FAZ. The efficient
methodology that we introduced could offer real-time, 3D
measurements of the FAZ for the clinical use, while also
providing the 3D segmentation of the capillary network of
the inner retina.
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