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Abstract 39 

Faces of different people elicit distinct functional MRI (fMRI) patterns in several face-40 
selective regions of the human brain. Here we used representational similarity analysis to 41 
investigate what type of identity-distinguishing information is encoded in three face-42 
selective regions: fusiform face area (FFA), occipital face area (OFA), and posterior 43 
superior temporal sulcus (pSTS). In a sample of 30 human participants (22 females, 8 44 
males), we used fMRI to measure brain activity patterns elicited by naturalistic videos of 45 
famous face identities, and compared their representational distances in each region with 46 
models of the differences between identities. We built diverse candidate models, ranging 47 
from low-level image-computable properties (pixel-wise, GIST, and Gabor-jet 48 
dissimilarities), through higher-level image-computable descriptions (OpenFace deep 49 
neural network, trained to cluster faces by identity), to complex human-rated properties 50 
(perceived similarity, social traits, and gender). We found marked differences in the 51 
information represented by the FFA and OFA. Dissimilarities between face-identities in 52 
FFA were accounted for by differences in perceived similarity, social traits, gender, and by 53 
the OpenFace network. In contrast, representational distances in OFA were mainly driven 54 
by differences in low-level image-based properties (pixel-wise and Gabor-jet 55 
dissimilarities). Our results suggest that, although FFA and OFA can both discriminate 56 
between identities, the FFA representation is further removed from the image, encoding 57 
higher-level perceptual and social face information. 58 

 59 

Keywords: representational similarity analysis; face identity; FFA; OFA 60 
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  62 

Significance statement  63 

Recent studies using functional magnetic resonance imaging (fMRI) have shown that 64 
several face-responsive brain regions can distinguish between different face identities. It is 65 
however unclear whether these different face-responsive regions distinguish between 66 
identities in similar or different ways. We used representational similarity analysis to 67 
investigate the computations within three brain regions in response to naturalistically 68 
varying videos of face identities. Our results revealed that two regions, the fusiform face 69 
area (FFA) and the occipital face area (OFA), encode distinct identity information about 70 
faces. Although identity can be decoded from both regions, identity representations in FFA 71 
primarily contained information about social traits, gender, and high-level visual features, 72 
whereas OFA primarily represented lower-level image features.  73 

 74 

 75 

 76 

 77 



 

3 
 

Introduction 78 

The human brain contains several face-selective regions that consistently respond more to 79 
faces than other visual stimuli (Kanwisher et al., 1997; Pitcher et al., 2011; Rossion et al. 80 
2012; Khuvis et al., 2018; Axelrod et al., 2019). Functional magnetic resonance imaging 81 
(fMRI) has revealed that some of these regions represent different face identities with 82 
distinct brain patterns. Specifically, studies using fMRI multivariate pattern analysis have 83 
shown that face identities can be distinguished based on their elicited response patterns in 84 
the fusiform face area (FFA), occipital face area (OFA), posterior superior temporal sulcus 85 
(pSTS), and anterior inferior temporal lobe (Nestor et al. 2011; Verosky et al., 2013; 86 
Goesaert & Op de Beeck, 2013; Anzellotti et al., 2014; Axelrod & Yovel, 2015; Zhang et 87 
al., 2016; Anzellotti & Caramazza, 2017; Guntupalli et al., 2017; Visconti di Oleggio 88 
Castello et al., 2017; Tsantani et al., 2019; see also Davidesco et al. (2014), Ghuman et 89 
al. (2014), and Khuvis et al. (2018) for results using intracranial electroencephalography, 90 
iEEG). But do these regions represent the same information and, if not, what information 91 
is explicitly encoded in each of these face-selective regions? 92 

Behaviourally, we distinguish between different faces using the surface appearance of 93 
the face, the shape of face features, and their spacing or configuration (e.g. Rhodes, 94 
1988; Calder et al., 2001; Yovel & Duchaine, 2006; Russell & Sinha, 2007; Russell et al., 95 
2007; Tardif et al., 2019). In particular, Abudarham and Yovel (2016) recently showed that 96 
features such as lip thickness, hair colour, eye colour, eye shape, and eyebrow thickness 97 
were crucial in distinguishing between individuals (see also Abudarham et al., 2019). 98 
Additionally, we perceive a vast amount of socially-relevant information from faces that 99 
can be used to distinguish between different individuals, such as gender, age, ethnicity, 100 
social traits (Oosterhof & Todorov, 2008; Sutherland et al. 2013), and even relationships 101 
and social network position (Parkinson et al., 2014; 2017). Therefore, if the response 102 
patterns in a certain brain region distinguish between two individuals, that region could be 103 
representing any one—or a combination of —these dimensions.  104 

Like several other studies (see above), Goesaert and Op de Beeck (2013) 105 
demonstrated that the FFA, OFA, and a face-selective region in the anterior inferior 106 
temporal lobe could all decode between different face identities based on fMRI response 107 
patterns. Importantly, the authors further tested what type of face information was 108 
encoded in these different regions. The authors found that all three regions could 109 
distinguish between faces using both configural and featural face information, and 110 
therefore all regions seemed to represent similar information. Goesaert and Op de Beeck 111 
(2013) also showed that representational distances between different faces in face-112 
selective regions did not correlate with low-level pixel-based information. This study 113 
however, used one single image for each person’s face, making it difficult to disentangle 114 
whether representations in a certain brain region are related to identity per se or related to 115 
the specific images used. 116 

To determine whether brain response patterns represent face identity per se, it is 117 
necessary to show that patterns generalise across different images of the same person’s 118 
face, in addition to distinguishing that person’s face from the faces of other people. 119 
Anzellotti et al (2014) showed that classifiers trained to decode face identities in the FFA, 120 
OFA, anterior temporal lobe, and pSTS (later analysed in Anzellotti and Caramazza, 2017) 121 
could also decode the same faces from novel viewpoints. Guntupalli et al (2017) 122 
additionally showed a hierarchical organisation of the functions of face-selective regions, 123 
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with the OFA decoding viewpoint of face independently of the face identity, the anterior 124 
inferior temporal lobe (and a region in the inferior frontal cortex) decoding face identity 125 
independently of the viewpoint, and the FFA decoding both viewpoint and identity 126 
information (see also Dubois et al., 2015). Extending these findings and using iEEG in 127 
epilepsy patients, Ghuman et al (2014) showed invariant decoding in the FFA across 128 
different facial expressions. In contrast, Grossman et al (2019) have recently shown that 129 
representational distances between different face identities (computed from brain 130 
response patterns recorded from implanted electrodes) were very similar across the OFA 131 
and the FFA (in the left hemisphere). Crucially, the representational geometries in both 132 
regions were associated with differences in image-level descriptions computed from a 133 
deep neural network (VGG-Face), which were not generalisable across different 134 
viewpoints of the same person’s face. These results thus suggest that the OFA and FFA 135 
both represent complex configurations of image-based information and not face identity 136 
per se.   137 

Also using iEEG, Davidesco et al. (2014) further showed that representational distances 138 
between face images in the FFA (and to a lesser extent in the OFA) were associated with 139 
perceived similarity and characteristics of facial features (such as face area and mouth 140 
width), but not with low-level features related to pixel-based information (see also Ghuman 141 
et al, 2014). Some fMRI studies have shown that even lower-level stimulus-based 142 
properties of face images, such as those computed by Gabor filters, explain significant 143 
variance in the representational geometries in the FFA (Carlin & Kriegeskorte, 2017) as 144 
well as OFA and pSTS (Weibert et al., 2018). On the other hand, other studies have 145 
shown that more high-level information, such as biographical information and social 146 
context, affects the similarity of response patterns to different faces in the FFA (Verosky et 147 
al., 2013; Collins et al., 2016).  148 

There is thus mixed evidence regarding whether different face-selective regions rely on 149 
similar or distinct information to distinguish between face identities, and what type of 150 
information may be encoded in different regions. In the present study, we used 151 
representational similarity analysis (RSA) (Kriegeskorte et al., 2008a; 2008b) to 152 
investigate what type of identity-distinguishing information is encoded in different face-153 
selective regions. In our previous work (Tsantani et al., 2019), we showed that famous 154 
face-identities could be distinguished in the right FFA, OFA, and pSTS based on their 155 
elicited fMRI response patterns. Here, for the same set of famous identities and using the 156 
same data as in Tsantani et al (2019), we compared the representational distances 157 
between identity-elicited fMRI patterns in these regions with diverse candidate models of 158 
face properties that could potentially be used to distinguish between identities.  159 

Importantly, we used multiple naturalistically varying videos for each identity that varied 160 
freely in terms of viewpoint, lighting, head motion, and general appearance. In addition, 161 
our representational distances were cross-validated across different videos, in order to 162 
deconfound identity from incidental image properties. By using a large, diverse set of 163 
candidate models, based on image properties of the stimuli (image-computable models) 164 
and on human-rated properties (perceived-property models), we were able to determine 165 
what types of identity-distinguishing information are encoded in different face-selective 166 
regions. 167 

 168 
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Materials and Methods 169 

This study involved an fMRI component, in which we measured brain representations of 170 
faces and voices, and a behavioural component, in which we collected ratings of the same 171 
faces and voices on social traits and perceived similarity. The fMRI part corresponds to 172 
the same experiment and data described in Tsantani et al. (2019) and the behavioural part 173 
is reported here for the first time. In the present study, we analysed the data related to 174 
faces only.  175 

Participants 176 

We recruited thirty-one healthy right-handed adult participants to take part in two fMRI 177 
sessions and a behavioural session (all on separate days, resulting in at least six hours of 178 
testing per participant). We did not conduct a formal power analysis as there were no 179 
previous studies at the time of the study design that had investigated the main effect 180 
described in Tsantani et al. (2019). Our sample size was determined based on similar 181 
fMRI studies within the field and on available funding. To ensure adequate exposure to our 182 
stimulus set of famous people, participants were required to be native English speakers 183 
between 18 and 30 years of age, and to have been resident in the UK for at least 10 184 
years. We also independently verified that all participants knew the famous people used in 185 
the experiment (please see Tsantani et al., 2019). No inclusion or exclusion criteria were 186 
applied based on race or ethnicity, and we did not formally record this information. It has 187 
been shown that the other-race effect does not apply to familiar faces (McKone et al., 188 
2007; Zhou & Mondloch, 2016). Participants were recruited at Royal Holloway, University 189 
of London, and Brunel University London. One participant was excluded due to excessive 190 
head movement in the scanner. The final sample consisted of 30 participants (22 females, 191 
8 males) with a mean age of 21.2 years (SD=2.37, range=19-27). Participants reported 192 
normal or corrected-to-normal vision and normal hearing, provided written informed 193 
consent, and were reimbursed for their participation. The study was approved by the 194 
Ethics Committee of Brunel University London. 195 

Stimuli 196 

The same stimuli were used in the fMRI and behavioural testing, and consisted of videos 197 
of the faces and sound recordings of 12 famous individuals, including actors, comedians, 198 
TV personalities, pop stars and politicians: Alan Carr, Daniel Radcliffe, Emma Watson, 199 
Arnold Schwarzenegger, Sharon Osbourne, Graham Norton, Beyonce Knowles, Barbara 200 
Windsor, Kylie Minogue, Barack Obama, Jonathan Ross, and Cheryl Cole. These 201 
individuals were selected based on pilot studies that showed that participants (aged 202 
between 18 and 30 and living in the UK) could recognise them easily from their faces and 203 
voices. 204 

For each identity, six silent, non-speaking video clips of their moving face were obtained 205 
from videos on YouTube (Figure 1). The six clips were obtained from different original 206 
videos. In total, we obtained 72 face stimuli. Face videos were selected so that the 207 
background did not provide any cues to the identity of the person. The face videos were 208 
primarily front-facing and did not feature any speech but were otherwise unconstrained in 209 
terms of facial motion. Head movements included nodding, smiling, and rotating the head. 210 
Videos were edited so that they were three seconds long, 640 x 360 pixels, and centred 211 
on the bridge of the nose, using Final Cut Pro X (Apple, Inc.). 212 
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For purposes not related to this study, we also presented 72 voice stimuli, which 213 
consisted of recordings of the voices of the same 12 famous individuals (6 clips per 214 
identity) obtained from videos on YouTube. Speech clips were selected so that the speech 215 
content, which was different for every recording, did not reveal the identity of the speaker. 216 
Recordings were edited so that they contained three seconds of speech after removing 217 
long periods of silence using Audacity® 2.0.5 recording and editing software 218 
(RRID:SCR_007198). The recordings were converted to mono with a sampling rate of 219 
44100, low-pass filtered at 10KHz, and root-mean-square (RMS) normalised using Praat 220 
(version 5.3.80; Boersma and Weenink 2014; www.praat.org). 221 

Participants were familiarised with all stimuli via one exposure to each clip immediately 222 
before the first scanning session. 223 

MRI data acquisition and preprocessing 224 

Participants completed two MRI sessions: in each session, participants completed a 225 
structural scan, three runs of the main experiment, and functional localiser scans (for face 226 
and voice areas, but below we only describe the localiser of face-selective regions). 227 
Participants were scanned using a 3.0 Tesla Tim Trio MRI scanner (Siemens, Erlangen) 228 
with a 32-channel head coil. Scanning took place at the Combined Universities Brain 229 
Imaging Centre (CUBIC) at Royal Holloway, University of London. We acquired whole-230 
brain T1-weighted anatomical scans using magnetization-prepared rapid acquisition 231 
gradient echo (MPRAGE) [1.0 x 1.0 in-plane resolution; slice thickness, 1.0mm; 176 axial 232 
interleaved slices; PAT, Factor 2; PAT mode, GRAPPA (GeneRalized Autocalibrating 233 
Partially Parallel Acquisitions); repetition time (TR), 1900ms; echo time (TE), 3.03ms; flip 234 
angle, 11°; matrix, 256x256; field of view (FOV), 256mm]. 235 

For the functional runs, we acquired T2*-weighted functional scans using echo-planar 236 
imaging (EPI) [3.0 x 3.0 in-plane resolution; slice thickness, 3.0mm; PAT, Factor 2; PAT 237 
mode, GRAPPA; 34 sequential (descending) slices; repetition time (TR), 2000ms; echo 238 
time (TE), 30ms; flip angle, 78°; matrix, 64x64; field of view (FOV), 192mm]. Slices were 239 
positioned at an oblique angle to cover the entire brain except for the most dorsal part of 240 
the parietal cortex. Each run of the main experiment comprised 293 brain volumes, and 241 
each run of the face localizer had 227 brain volumes. 242 

Functional images were pre-processed used Statistical Parametric Mapping (SPM12; 243 
Wellcome Department of Imaging Science, London, UK; RRID:SCR_007037; 244 
http://www.fil.ion.ucl.ac.uk/spm) operating in Matlab (version R2013b; MathWorks; 245 
RRID:SCR_001622). The first three EPI images in each run served as dummy scans to 246 
allow for T1-equilibration effects and were discarded prior to pre-processing. Data from 247 
each of the two scanning sessions, which took place on different days, were first pre-248 
processed independently with the following steps for each session. Images within each 249 
brain volume were slice-time corrected using the middle slice as a reference, and were 250 
then realigned to correct for head movements using the first image as a reference. The 251 
participants’ structural image in native space was coregistered to the realigned mean 252 
functional image, and was segmented into grey matter, white matter, and cerebrospinal 253 
fluid. Functional images from the main experimental runs were not smoothed, whereas 254 
images from the localiser runs were smoothed with a 4-mm Gaussian kernel (full width at 255 
half maximum). To align the functional images from the two scanning sessions, the 256 
structural image from the first session was used as a template, and the structural image 257 
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from the second session was coregistered to this template; we then applied the resulting 258 
transformation to all the functional images from the second session. 259 

Functional localisers and definition of regions of interest 260 

Face-selective regions were defined using a dynamic face localiser that presented famous 261 
and non-famous faces, along with a control condition consisting of objects and scenes. 262 
The stimuli were silent, non-speaking videos of moving faces, and silent videos of objects 263 
and scenes, presented in an event-related design. Participants completed between one 264 
and two runs of the localiser across the two scanning sessions. The localiser presented 265 
different stimuli in each of two runs. For full details of the localiser please see Tsantani et 266 
al. (2019). 267 

Functional regions of interest (ROIs) were defined using the Group-Constrained 268 
Subject-Specific method (Fedorenko et al., 2010; Julian et al., 2012), which has the 269 
advantage of being reproducible and reducing experimenter bias by providing an objective 270 
means of defining ROI boundaries. Briefly, subject-specific ROIs were defined by 271 
intersecting subject-specific localiser contrast images with group-level masks for each ROI 272 
obtained from an independent dataset. In this study, we obtained group masks of face-273 
selective regions (right fusiform face area (rFFA), the right occipital face area (rOFA), and 274 
the right posterior superior temporal sulcus (rpSTS)) from a separate group of participants 275 
who completed the same localiser (for details see Tsantani et al., 2019). We focused on 276 
face-selective regions from the right hemisphere because they have been shown to be 277 
more consistent and larger compared to the left hemisphere (e.g. Rossion et al., 2012). 278 
Our masks are publicly available at https://doi.org/10.17633/rd.brunel.6429200.v1. 279 

Contrast images were defined for each individual participant. Face-selectivity was 280 
defined by contrasting activation to faces versus non-face stimuli using t-tests. We then 281 
intersected these subject-specific contrasts with the group masks, and extracted all 282 
significantly activated voxels at p<.001 (uncorrected) that fell within the boundaries of 283 
each mask. In cases where the resulting ROI included fewer than 30 voxels, the threshold 284 
was lowered to p <. 01 or p < .05. ROIs which included fewer than 30 voxels at the lowest 285 
threshold were not included, and this occurred for the rFFA in two participants and for the 286 
rOFA in one participant. For full details of size and location of all ROIs, please see 287 
Tsantani et al. (2019). 288 

[Please insert Figure 1 about here] 289 

Experimental Design and Statistical Analysis 290 

Main experimental fMRI runs 291 
In the main experimental runs, face stimuli were presented intermixed with voice stimuli 292 
within each run in an event-related design. The experiment was programmed using the 293 
Psychophysics Toolbox (version 3; RRID:SCR_002881; Brainard 1997; Pelli 1997) in 294 
Matlab and was displayed through a computer interface inside the scanner. Participants 295 
were instructed to fixate on a small square shape that was constantly present in the centre 296 
of the screen. From a distance of 85cm, visual stimuli subtended 20.83 x 12.27 degrees of 297 
visual angle on the 1024 x 768 pixel screen. 298 

The experiment was presented in two scanning sessions, with three runs in each 299 
session. Each run featured two unique videos of the face of each of the 12 identities, 300 
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presented twice. Each run therefore contained 48 face trials (12 identities x 2 videos x 2 301 
presentations), intermixed with 48 voice trials (96 experimental trials in total). In other 302 
words, across all three runs within a session, each of the 12 face identities appeared in 12 303 
trials, featuring six unique videos of their face. Stimuli were presented in a pseudorandom 304 
order that prohibited the succeeding repetition of the same stimulus and ensured that each 305 
identity could not be preceded or succeeded by another identity more than once within the 306 
same modality. Each trial presented a stimulus for 3000 ms and was followed by a 1000 307 
ms ITI (Figure 1). 308 

To maintain attention to stimulus identity in the scanner, participants performed an 309 
anomaly detection task in which they indicated via button press when they were presented 310 
with a famous face or voice that did not belong to one of the 12 famous individuals that 311 
they had been familiarised with prior to the experiment. Therefore, each run also included 312 
12 randomly presented task trials (six faces & six voices). Finally, each run contained 36 313 
randomly interspersed null fixation trials, resulting in a total of 144 trials in each run lasting 314 
around 10 minutes. 315 

The three experimental runs that were completed in the first scanning session were 316 
repeated in the second session with the same stimuli, but in a new pseudorandom order. 317 
The task stimuli, however, were always novel for each run. The three runs, which had 318 
different face videos, were presented in counterbalanced order across participants in both 319 
sessions. 320 

Behavioural session 321 
All participants completed a behavioural session in a laboratory, which took place on a 322 
separate day and always after the fMRI sessions had been completed. In this session, 323 
participants rated the same faces that they had been presented with in the scanner on 324 
perceived social traits and on perceived pairwise visual similarity. Participants also rated 325 
voices (the order of tasks was counterbalanced across modality), but these results are not 326 
presented here. All tasks and stimuli were presented using the Psychophysics Toolbox 327 
and Matlab. 328 
 329 

Social Trait Judgement Tasks 330 
In the social trait judgement tasks, participants were asked to make judgements about 331 

the perceived trustworthiness, dominance, attractiveness, and positive-negative valence of 332 
the face identities. There were four blocks, one for each judgement, and their order was 333 
counterbalanced across participants. Face stimuli were presented in the centre of the 334 
screen. In contrast to the fMRI runs, in which stimuli were presented for the full three 335 
seconds of their duration, here all stimuli were only presented for the first 1500 ms of their 336 
duration, to reduce testing time. 337 

All blocks followed the same trial structure (Figure 1). In each trial, a face identity was 338 
presented with three videos — these were presented successively with no gap in between 339 
them (total of 4500 ms). Participants were then asked to rate how 340 
trustworthy/dominant/attractive/negative-positive the face was, and they were asked to 341 
base their judgement on all three videos of the face. The rating scale ranged from 1 (very 342 
untrustworthy/non-dominant/unattractive/negative) to 7 (very 343 
trustworthy/dominant/attractive/positive) and participants responded using the 344 
corresponding keys on the keyboard. There was a 1000ms ITI following the response. 345 
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Each identity was presented in two trials; one trial presented three face videos 346 
randomly selected from the six available, and the other trial presented the remaining three 347 
videos. This resulted in 24 trials in each block (12 identities x 2 presentations). The videos 348 
within each trial were presented in a random order, and the trial order was also 349 
randomised. Trustworthiness was defined as ‘able to be relied on as honest and truthful’. 350 
Dominance was defined as ‘having power and influence over other people’. No definition 351 
was deemed necessary for valence or attractiveness. Participants were advised that there 352 
was no time limit to their responses and that they should follow their first judgment. The 353 
duration of each block was approximately 3 minutes. 354 

Pairwise Visual Similarity Task 355 
In the pairwise similarity task, participants rated the perceived visual similarity of pairs 356 

of face identities. Each of the 12 identities was paired with the other 11 identities creating 357 
66 identity pairs. Each identity was presented by three videos, randomly selected from the 358 
six available videos. Each identity pair was presented in two trials, counterbalancing the 359 
presentation order of each identity in the pair. There were therefore 132 trials in each task 360 
(66 identity pairs x 2 presentations). The presentation order of the pairwise similarity tasks 361 
in relation to the social trait judgement tasks was also counterbalanced across 362 
participants. 363 

Participants were instructed to rate the similarity between the visual appearance of the 364 
two face identities in each pair, focusing on the facial features. Participants were asked to 365 
rate how similar the two faces looked on a scale from 1 (very dissimilar) to 7 (very similar). 366 
Participants were advised that there was no time limit to their responses and that they 367 
should follow their first instinct. Participants were told to ignore similarities between people 368 
that were related to biographical or semantic information (e.g. if both identities were 369 
actors). Furthermore, to encourage participants to base their judgements on perceptual 370 
information, participants were advised to consider to what extent two identities could 371 
potentially be related to each other, i.e. be part of the same family, based on how they 372 
looked. 373 

In each trial, participants were first presented with the three videos of the face of one 374 
identity (Figure 1). Following a 500ms fixation screen, they were presented with the three 375 
videos of the face of the second identity. Videos for each identity were presented 376 
successively with no gap in between. Each video was presented for 1500ms and there 377 
was a 1000ms ITI following the response. The presentation order of the trials was 378 
randomised. The duration of each task was approximately 30 minutes.  379 

Brain Representational dissimilarity matrices (RDMs) 380 
Representational dissimilarity matrices (RDMs) showing the discriminability of the brain 381 
response patterns elicited by the 12 face identities (during the fMRI experimental runs) 382 
were created for each individual participant and for each ROI. 383 

First, to obtain brain responses at each voxel for each of the 12 face identities, mass 384 
univariate time-series models were computed for each participant using a high-pass filter 385 
cutoff of 128 seconds and autoregressive AR(1) modelling to account for serial correlation. 386 
Regressors modelled the BOLD response at stimulus onset and were convolved with a 387 
canonical hemodynamic response function (HRF). We defined a model for each run 388 
separately, and for every possible pair of runs within a scanning session (by concatenating 389 
the two runs), to create data partitions for cross-validation (described below). Each model 390 
contained a regressor for the face of each of the 12 identities, which incorporated the 391 
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different videos of their face (two per run) and the repetitions of those videos. The model 392 
also included regressors for each of the 12 voice identities, task trials, and the six motion 393 
parameters obtained during the image realignment preprocessing stage (included as 394 
regressors of no interest).  395 

Second, within each ROI, we extracted the beta estimates at each voxel for each of the 396 
12 face identities. This resulted in 12 vectors of beta values per ROI that described the 397 
response patterns (across voxels) elicited by the 12 face identities. 398 

Third, these vectors of beta estimates were used to compute 12x12 Face RDMs in 399 
face-selective ROIs, in which each cell showed the distance between the response 400 
patterns of two identities (Figure 2B). RDMs were computed using the linear discriminant 401 
contrast (LDC), a cross-validated distance measure (Nili et al. 2014; Walther et al. 2016), 402 
which we implemented using in-house Matlab code and the RSA toolbox (Nili et al. 2014). 403 
Two RDMs were created for each ROI, one for each scanning session. Each RDM was 404 
computed using leave-one-run-out cross-validation across the three runs, which presented 405 
different stimuli for each identity. Therefore, RDMs showed the dissimilarities between 406 
face identities, rather than specific face videos. In each cross-validation fold, concatenated 407 
data from two runs formed partition A, and data from the left-out run formed partition B. 408 
For each pair or identities (e.g. ID1 and ID2), partition A was used to obtain a linear 409 
discriminant, which was then applied to partition B to test the degree to which ID1 and ID2 410 
could be discriminated. Under the null hypothesis, LDC values are distributed around zero 411 
when two patterns cannot be discriminated. Values higher than zero indicate higher 412 
discriminability of the two response patterns (Walther et al. 2016).  413 

The discriminability of face identities in each ROI was computed by calculating the 414 
mean LDC across all cells of each participant’s RDM, and comparing the mean LDC 415 
distances against zero (Tsantani et al., 2019). 416 

Full details of this analysis are presented in Tsantani et al (2019) and the data to 417 
compute brain RDMs are available at https://doi.org/10.17633/rd.brunel.6429200.v1. Here, 418 
we used the RDMs for three face-selective regions (rFFA, rOFA, and rpSTS). All three of 419 
these regions showed significant discriminability of face identities. 420 

RDMs based on image-computable properties 421 
We computed dissimilarities between the 12 face identities based on visual descriptions of 422 
their faces obtained using the models described below. We did not use the full videos as 423 
input to these models, but instead extracted one still frame from each face video used in 424 
the experiment (typically the first frame in which the full face was visible and the image 425 
was not blurred). Thus, we obtained six different images of the face of each identity, taken 426 
from the six different videos in which the identity was presented, resulting in 72 images in 427 
total. 428 
 429 

OpenFace Model 430 
The ‘OpenFace’ model RDM was computed from low-dimensional face representations 431 

obtained from OpenFace (Amos et al., 2016; http://cmusatyalab.github.io/openface/). 432 
Briefly, OpenFace uses a deep neural network that has been pre-trained (using 500,000 433 
faces) to learn the best features or measurements that can group two pictures of the same 434 
identity together and distinguish them from a picture of a different identity. We used this 435 
pre-trained neural network to generate measurements for each of our face pictures and to 436 
compare these measurements between each pair of pictures. OpenFace first performs 437 
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face-detection, identifies pre-specified landmarks, and does an affine transformation so 438 
that the eyes, nose and mouth appear in approximately the same location. The faces are 439 
then passed on to the pre-trained neural network to generate 128 descriptor 440 
measurements for each face. To create an RDM, we used the program’s calculated 441 
distances between the measurements for each pair of faces images. A value of zero 442 
indicates that two images are identical, and values between 0 and 1 suggest that two 443 
different images likely show the same person’s face. Values higher than 1 indicate that the 444 
two images show the faces of two different people. We found that OpenFace performed 445 
well at grouping different images of the same person’s face compared to images of 446 
different people’s faces in our image set — Extended Data Figure 2-1 includes full 72x72 447 
matrices showing distances between all images, but these full matrices were not used in 448 
any analysis). To obtain a 12x12 RDM for the 12 identities, which would be comparable to 449 
the brain RDMs, we computed the mean of all cells that showed images of the same 450 
identity pair (Figure 2C). The 12x12 RDMs were used in all analyses. 451 

 452 
Gabor-Jet Model 453 
The Gabor-Jet model RDM was computed from visual descriptors of face images 454 

obtained using the Gabor-Jet model (Biederman & Kalocsai, 1997; Margalit et al., 2016; 455 
Yue et al., 2012). This model was designed to simulate response properties of cells in 456 
area V1, and has been found to correlate with psychophysical measures of facial similarity 457 
(Yue et al., 2012). In addition, Carlin and Kriegeskorte (2017) showed that the dissimilarity 458 
of response patterns to different faces in the FFA was predicted by image properties 459 
based on Gabor filters. First, we used OpenFace 2.0 (Baltrusaitis et al., 2018) to 460 
automatically detect the faces in each image, and the pictures were greyscaled. The 461 
Matlab script provided in www.geon.usc.edu/GWTgrid_simple.m was then used to create 462 
a 100 x 40 Gabor descriptor for each face. After transforming these matrices into vectors, 463 
we computed the Euclidean distance between the vectors from each pair of faces 464 
(Extended Data Figure 2-1), and then averaged the distances across all pairs of stimuli 465 
that showed the same two identities, resulting in a 12x12 RDM (Figure 2C). 466 

 467 
GIST Model (Faces only and whole Frames) 468 
The Gist model RDMs were computed from visual descriptors of pictures obtained 469 

using the GIST model (Oliva and Torralba, 2001). The GIST model estimates information 470 
about the spatial envelope of scenes and it is related to perceived dimensions of 471 
naturalness, openness, roughness, expansion, and ruggedness. Weibert et al. (2018) 472 
showed that the similarity between the representations of different faces in the FFA, OFA, 473 
and posterior STS was predicted by the similarity of the different pictures computed using 474 
the GIST descriptor model. We extracted GIST descriptors both from the full picture 475 
(whole Frames) and just from the face (Faces only - we used the same stimuli as in the 476 
Gabor-Jet model). We then used the Matlab script provided in 477 
http://people.csail.mit.edu/torralba/code/spatialenvelope to compute GIST descriptors for 478 
each picture, and computed Euclidean distances between each pair of pictures (Extended 479 
Data Figure 2-1). We finally averaged the distances across all pairs of stimuli that showed 480 
the same two identities, resulting in 12x12 RDMs (Figure 2C). 481 

 482 
Pixel Model (Faces only and whole Frames) 483 
Finally, we computed model RDMs based on pixel dissimilarity between each pair of 484 

pictures. Like for the GIST model, we computed this model both for the full picture (whole 485 
Frames) and just for the face (Faces only). We extracted pixel greyscale values for each 486 
image, computed Pearson correlations between the vectors of each pair of images, and 487 
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used correlation distance as the output measure (1- r) (Extended Data Figure 2-1). We 488 
finally averaged the distances across all pairs of stimuli that showed the same two 489 
identities, resulting in 12x12 RDMs (Figure 2C). 490 
 491 
RDMs based on Perceived properties 492 
Social Trait Models: Trustworthiness, Dominance, Attractiveness, Valence, Social Traits 493 
(All) 494 
RDMs for ratings of the 12 face identities on trustworthiness, dominance, attractiveness, 495 
and positive-negative valence were computed using Euclidean distances. For each 496 
participant and each social trait, the Euclidean distance between the ratings of each pair of 497 
identities was calculated (ratings were averaged across the two trials in which the same 498 
identity was presented), resulting in a 12x12 RDM per trait. We then averaged the 499 
matrices for the same trait across participants (Figure 2C). 500 

We also created ‘Social Traits (All)’ RDMs combining all four social traits, by calculating 501 
the Euclidean distance between all trait ratings for each pair of identities, resulting in a 502 
12x12 trait RDM per participant. We then computed the mean matrix for all social traits 503 
across participants (Figure 2C).  504 

To get estimates of the inter-subject reliability of these models, we computed the 505 
correlations between each participant’s RDM and the average RDMs across all 506 
participants (i.e. the RDMs that we used as models), and then averaged the correlations 507 
across participants. The reliabilities were r=.34 for Trustworthiness, r=.48 for Dominance, 508 
r=.67 for Attractiveness, r=.31 for Valence, and r=.48 for Social Traits (All). We also 509 
computed the average correlations between each participant’s RDM and the average 510 
RDM of all remaining participants. These reliabilities were r=.24 for Trustworthiness, r=.42 511 
for Dominance, r=.63 for Attractiveness, r=.20 for Valence, and r=.42 for Social Traits (All). 512 

Perceived Similarity Model 513 
The judgements in the Pairwise Visual Similarity Task indicated the degree of visual 514 

similarity between all possible pairs of identities. These ratings were averaged across the 515 
two trials in which each identity-pair was presented, and were reverse-coded to match the 516 
LDC and Euclidean distance measures, where a higher value indicates higher 517 
dissimilarity. The resulting values were arranged into a 12x12 face RDM for each 518 
participant and were then averaged across participants (Figure 2C). 519 

 520 
Inter-subject reliability, estimated by computing the average correlation between each 521 

participant’s RDM and the average RDMs across all participants, was r=.65. Reliability 522 
computed as the average correlation between each participant’s RDM and the average 523 
RDM of all remaining participants was r=.61. 524 

 525 
Gender Model 526 
Finally, a 12x12 RDM for gender was constructed by assigning a value of 0 to same 527 

gender identity pairs, and a value of 1 to different-gender identity pairs (Figure 2C). 528 

Correlations between all 13 models are presented in Figure 2D and Extended Data 529 
Figure 2-2. 530 

[Please insert Figure 2 about here] 531 

 532 
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Individual model analysis: RSA comparing brain RDMs to candidate model RDMs 533 
using correlation 534 
For each individual participant and each ROI, we compared the brain RDM for faces with 535 
each of the candidate model RDMs defined above using Pearson correlation (Figure 3A). 536 
We then tested whether the correlations across participants for each ROI were 537 
significantly higher than zero, using two-sided one-sample Wilcoxon signed-rank tests (Nili 538 
et al., 2014). P-values were corrected for multiple comparisons using FDR correction 539 
(q=.05) across all 13 comparisons for each ROI. We also compared the correlations 540 
across all pairs of models within each ROI, in order to test which model was the best 541 
predictor of the variance in brain RDMs in each ROI. For these pairwise comparisons, we 542 
used two-sided Wilcoxon signed-rank tests and only significant FDR corrected values (for 543 
78 comparisons) are reported. 544 

An estimate of the noise ceiling was calculated for each ROI, in order to estimate the 545 
maximum correlation that any model could have with the brain RDMs in each ROI given 546 
the existing noise in the data. We estimated the noise ceiling using the procedures 547 
described by Nili et al. (2014). The lower bound of the noise ceiling was estimated by 548 
calculating the Pearson correlation of the brain RDM for each participant with the average 549 
brain RDM across all other participants (after z-scoring the brain RDM for each 550 
participant). The upper bound of the noise ceiling was estimated by computing the 551 
Pearson correlation of the brain RDM for each participant with the average brain RDM 552 
across all participants (after z-scoring the brain RDM for each participant).  553 

Weighted model-combination analysis: Weighted representational modelling 554 
We also used weighted representational modelling (Khaligh-Razavi & Kriegeskorte, 2014; 555 
Jozwik et al., 2016; 2017) to combine individual models via reweighting and thus 556 
investigate if combinations of different model RDMs could explain more variance in 557 
representational geometries than any single model. For each combined model, we used 558 
linear non-negative least squares regression (lsqnonneg algorithm in Matlab) to estimate a 559 
weight for each component of the combined model. We fitted the weights and tested the 560 
performance of the reweighted (combined) model on non-overlapping groups of both 561 
participants and stimulus conditions within a cross-validation procedure, and used 562 
bootstrapping to estimate the distribution of the combined model’s performance (Storrs et 563 
al., 2020).  564 

We used six different combinations of component models: Image-computable 565 
properties (OpenFace, GIST, GaborJet, and Pixel), Social Traits (comprising a weighted 566 
combination of the Trustworthiness, Dominance, Attractiveness, and Valence properties), 567 
Perceived properties (Trustworthiness, Dominance, Attractiveness, Valence, Perceived 568 
Similarity, and Gender), Low-Level properties (GIST, GaborJet, and Pixel), High-Level 569 
properties (Trustworthiness, Dominance, Attractiveness, Valence, Perceived Similarity, 570 
Gender, and OpenFace), and All properties.  571 

Within each crossvalidation fold, data from eight participants for four stimulus identity 572 
conditions was assigned to serve as test data, and the remainder was used to fit the 573 
weights for each component of each of the six combined models. Because the 574 
crossvalidation was performed within a participant-resampling bootstrap procedure, the 575 
number of participant data RDMs present in each crossvalidation fold was sometimes 576 
smaller than eight (when a participant was not present in the bootstrap) or larger than 577 
eight (when a participant was sampled multiple times in the bootstrap). All data from the 578 
same participant was always assigned only to either the training or test split. A reweighting 579 



 

14 
 

target RDM was constructed by averaging the training-split participants’ RDMs for training-580 
split stimulus conditions, and weights were fitted to the components of each combined 581 
model to best predict this target RDM. The six resulting combined models, as well as the 582 
13 individual models, were then correlated separately with each of the brain RDMs from 583 
test participants for test conditions, using Pearson correlation. The noise ceiling was also 584 
computed within every cross-validation fold using the same procedure as for the main 585 
analysis. In other words, we correlated (Pearson correlation) each test participant’s RDM 586 
with the average of all other test RDMs excluding their own (for the lower bound of the 587 
noise ceiling) and with the average of all test participants’ RDMs including their own (for 588 
the upper bound of the noise ceiling). This procedure was repeated for 30 participant 589 
crossvalidation folds within 30 stimulus-condition crossvalidation folds to provide a 590 
stabilised estimate of the noise ceiling and the performance of each model (Storrs, et al., 591 
2020).  592 

The cross-validation procedure was repeated for 1,000 bootstrap resamplings of 593 
participants for each face-selective ROI. From the resulting bootstrap distribution, we 594 
computed the mean estimate of the lower bound of the noise ceiling, as well as the mean 595 
of each model’s correlation with human data for both individual models and combined 596 
models (Figure 3B). Correlations between model and brain RDMs were considered 597 
significantly higher than zero if the 95% confidence interval of the bootstrap distribution did 598 
not include zero. Bonferroni correction was applied to correct for multiple comparisons. 599 
Finally, we compared each pair of models by testing whether the distributions of the 600 
differences between each pair of models contained zero. We only report pairwise 601 
differences that were significant after Bonferroni correction. Code for this analysis was 602 
adapted from here: https://github.com/tinyrobots/reweighted_model_comparison. 603 

Data and code accessibility 604 

Data and code for main analysis are available here: 605 
https://doi.org/10.25383/city.11890509.v1  606 

 607 

Results  608 

We tested 30 participants in an fMRI experiment, in which they were presented with faces 609 
of 12 famous people (same fMRI data as in Tsantani et al., 2019), and in a separate 610 
behavioural experiment, in which participants rated the faces of the same people on 611 
perceived similarity and social traits (Figure 1). We then computed representational 612 
dissimilarity matrices (RDMs) showing the representational distances between the brain 613 
response patterns elicited by the face identities in the face-selective right FFA, OFA, and 614 
pSTS. The distance measure that we used to compute the RDMs was the linear 615 
discriminant contrast (LDC), which is a crossvalidated estimate of the Mahalanobis 616 
distance (Walther et al., 2016). The mean LDC across each RDM showed that response 617 
patterns to different face identities were discriminable in all three regions (Tsantani et al., 618 
2019). To investigate the informational content of brain representations of the face 619 
identities in each face-selective region, we used RSA (Kriegeskorte et al., 2008a; 2008b) 620 
to compare the brain RDMs with a diverse set of candidate model RDMs (Figure 2). We 621 
used candidate models based on the physical properties of the stimuli (image-computable 622 
models), including low-level stimulus properties (based on Pixel-wise, GIST (Oliva & 623 
Torralba, 2001) and Gabor-jet (Biederman & Kalocsai, 1997) dissimilarities) and higher-624 
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level image-computable descriptions obtained from a deep neural network trained to 625 
cluster faces according to identity (OpenFace; Amos et al., 2016) (see Methods). 626 
Additionally, we used candidate models based on perceived higher-level properties 627 
(perceived-property models), including Gender and participants’ ratings of the face 628 
identities on Perceived Similarity and Social traits (Trustworthiness, Dominance, 629 
Attractiveness, Valence, and Social Traits (All) — which corresponds to all traits 630 
combined) in a behavioural experiment.  631 

[Please insert Figure 3 about here] 632 

Individual model analysis 633 
In our main analysis, we computed Pearson’s correlations between RDMs in the right 634 

FFA, OFA, and pSTS, and each candidate model RDM. Correlations were computed for 635 
each individual participant, and then correlations across participants for each model were 636 
compared against zero using two-sided one-sample Wilcoxon signed-rank tests. For each 637 
ROI and each model that showed significant correlations with participants’ brain RDMs, 638 
we report below the mean correlation across participants, and the Z statistic and p-value 639 
obtained from the signed-rank test, corrected for multiple comparisons using FDR 640 
correction. Full results are presented in Figure 3A and Table 1, and individual-subject 641 
correlations are presented in Figure 4. We also compared the correlations across all pairs 642 
of models using two-sided Wilcoxon signed-rank tests.  643 

Brain RDMs in the right FFA had the highest mean correlation with the Perceived 644 
Similarity model (mean r = .11, Z = 3.69, p = .0002), followed by perceived Social Traits 645 
(All) (mean r = .10, Z = 2.71, p = .0067), the image-computable neural network OpenFace 646 
(mean r = .10, Z = 3.46, p = .0005), perceived Attractiveness (mean r = .09, Z = 2.69, p = 647 
.0072), Gender (mean r = .09, Z = 3.30, p = .0010), and Valence (mean r = .06, Z = 2.39, 648 
p = .0168) (Figure 3A). We estimated the lower bound of the noise ceiling as the mean 649 
correlation between each participant’s FFA RDM and the average of all other participants’ 650 
FFA RDMs (Nili et al., 2014). This estimates the non-noise variance in the data, and is not 651 
overfit to the present data. None of the mean correlations reached the lower bound of the 652 
noise ceiling for the FFA (r = .14) — this suggests that there could be models outside 653 
those tested here that would better explain the representational distances in FFA. Pairwise 654 
comparisons showed no significant differences between the correlations of any pairs of 655 
models (all p>.0041; no significant results after FDR correction).  656 

In contrast with the FFA, the brain RDMs in the right OFA had the highest mean 657 
correlations with low-level image-computable models. The highest mean correlation was 658 
observed with the Pixel-Faces model (mean r = .22, Z = 4.36, p < .0001) (Figure 3A), 659 
followed by the Gabor-Jet (mean r = .20, Z = 3.97, p < .0001), Pixel-Frames (mean r = .11, 660 
Z = 3.02, p = .0026), GIST-Faces (mean r = .10, Z = 2.22, p = .0267), perceived 661 
Attractiveness (mean r = .09, Z = 2.84, p = .0045), Gender (mean r = .07, Z = 2.76, p = 662 
.0058), and the OpenFace model (mean r = .07, Z = 2.95, p = .0032). None of the mean 663 
correlations reached the lower bound of the noise ceiling (r = .34). Pairwise comparisons 664 
between model correlations revealed that the Pixel-Faces model had significantly higher 665 
correlations with the OFA RDMs than all other models (all p < .0058, FDR corrected), 666 
except for the Gabor-Jet model and the GIST-Faces model. The Gabor-Jet model also 667 
had significantly higher correlations with the brain RDMs in OFA than all other models (all 668 
p < .0058, FDR corrected), except the Pixel-Faces and Pixel-Frames models. Perceived 669 
Attractiveness had significantly higher correlations with the OFA RDMs than perceived 670 
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Valence (p = .0051), and Social traits (All) was significantly higher than Trustworthiness 671 
and Valence (both p < .0018). 672 

Finally, we investigated which model best explained the variance in representational 673 
distances in the right pSTS. We found no significant correlations between any of the 674 
candidate models and the brain RDMs in this region (all p > .0333; no significant results 675 
after FDR correction) (Figure 3A). None of the models reached the lower bound of the 676 
noise ceiling (r = .13), and there were no significant differences between models (all p > 677 
.0140; no significant results after FDR correction). 678 

[Please insert Table 1 about here] 679 

[Please insert Figure 4 about here] 680 

These results show a clear distinction between the types of models that were 681 
associated with the representational geometries of face-identities in the FFA and OFA. 682 
Representational distances of face identities in the FFA were most associated with high-683 
level perceived similarity, gender, and social traits, as well as a high-level model of image-684 
computable properties (OpenFace), whereas representations in OFA were most 685 
associated with low-level image-computable properties. To test this directly, we compared 686 
the correlation profiles between the two regions. We first averaged all correlations per 687 
participant (after Fisher’s transformation) for the same type of model (all perceived-688 
property models and all image-computable models) for each ROI (FFA and OFA). In the 689 
FFA, the mean correlation with perceived-property models was .08 (SD = .095) and .03 690 
(SD =.109) with image-computable models. In the OFA, the mean correlation with 691 
perceived-property models was .05 (SD = .108) and .13 (SD =.102) with image-692 
computable models. We then conducted a 2-by-2 repeated measures ANOVA with ROI 693 
and type of model as variables. There was no main effect of ROI (F(1,27)=3.37, p=.0773) 694 
or type of model (F(1,27)=.36, p=.5519), but there was a significant interaction between 695 
the two variables (F(1,27)=23.75, p<.0001). Pairwise comparisons (using two-sided 696 
Wilcoxon signed-rank tests) showed that in the FFA, the correlations with perceived-697 
property models were significantly higher than correlations with image-computable models 698 
(Z = 2.25, p = .0242), whereas in the OFA, correlations with perceived-property models 699 
were significantly lower than correlations with image-computable models (Z = -3.17, p = 700 
.0015). We also divided the models into low-level properties (GIST, Gabor-Jet, and Pixel) 701 
and high-level properties (Trustworthiness, Dominance, Attractiveness, Valence, 702 
Perceived Similarity, Gender, and OpenFace), and computed means per participant and 703 
per ROI for each of these types of models. In the FFA, there was a mean correlation of .08 704 
(SD = .090) with high-level properties, and of .02 (SD =.157) with low-level properties. In 705 
the OFA, there was a mean correlation of .05 (SD = .102) with high-level properties, and 706 
of .16 (SD =.141) with low-level properties. A 2-by-2 repeated measures ANOVA showed 707 
a significant effect of ROI (F(1,27)=5.44, p=.0274), no significant effect of model 708 
(F(1,27)=.43, p=.5201), and a significant interaction between the two variables 709 
(F(1,27)=21.64, p<.0001). Pairwise comparisons showed that in the FFA, the correlations 710 
with high-level models were significantly higher than correlations with low-level models (Z 711 
= 2.21, p = .0272), whereas in the OFA, correlations with high-level models were 712 
significantly lower than correlations with low-level models (Z = -3.25, p = .0011). These 713 
results demonstrate the clear distinct patterns of correlations for the FFA and OFA. 714 

[Please insert Figure 5 about here] 715 
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Our image-computable models used a single image from each video clip. We re-computed 716 
all models using 72 images per clip, and averaged the features across all images of the 717 
same clip. We then computed distances between video clips in the same manner as 718 
before, and averaged distances for each pair of identities, resulting in 12x12 RDMs for 719 
each model. The results were very similar when using 72 images per clip compared to one 720 
image per clip (Figure 5A). We additionally showed that we obtained similar results to 721 
those in Figure 3A when using other similarity measures between RDMs (Spearman 722 
correlation, Kendall tau-a), demonstrating that these results are not dependent on using 723 
Pearson correlation (Figure 6). Finally, we conducted an additional control analysis using 724 
brain RDMs in the same ROIs but built from response patterns to voices of the same 725 
individuals, instead of brain responses to faces. There were no significant correlations 726 
between any of the model RDMs for faces and brain RDMs for voices after correcting for 727 
multiple comparisons in the rFFA (all p > .040), rOFA (all p > .103), or rpSTS (all p > .063) 728 
(Figure 7). Pairwise comparisons showed no significant differences between the 729 
correlations of any pairs of models (all p > .034). The estimated lower bounds of noise 730 
ceilings for the voices brain RDMs were very low for rFFA (r = -.038) and rOFA (r = -.001), 731 
and higher for rpSTS (r = .108). This control analysis demonstrates that the above results 732 
for FFA and OFA are specific to visual stimuli (faces). To conclude, we find that the 733 
structure of the model correlations is reliable and is systematically different between the 734 
FFA and OFA.    735 

[Please insert Figure 6 about here] 736 

[Please insert Figure 7 about here] 737 

Weighted model-combination analysis 738 
Although our models accounted for a large portion of the explainable variance (based 739 

on the noise ceiling) in brain representations in the right FFA and OFA, none of the mean 740 
correlations reached the lower bound of the noise ceiling. It could be that each individual 741 
model captured only a portion of the information represented in each brain region, in which 742 
case we may be able to fully explain the brain representations by combining multiple 743 
models. We thus used weighted representational modelling (Khaligh-Razavi & 744 
Kriegeskorte, 2014; Jozwik et et al., 2016; Jozwik et al., 2017) to combine sets of models 745 
into weighted combinations via crossvalidated fitting on the human data, and to investigate 746 
if these combined models resulted in better predictions of the brain dissimilarities in each 747 
brain region (see Methods). We considered six different combined models: Image-748 
computable properties (OpenFace, GIST, GaborJet, and Pixel), Social Traits (comprising 749 
a weighted combination of the Trustworthiness, Dominance, Attractiveness, and Valence 750 
properties), Perceived properties (Trustworthiness, Dominance, Attractiveness, Valence, 751 
Perceived Similarity, and Gender), Low-Level properties (GIST, GaborJet, and Pixel), 752 
High-Level properties (Trustworthiness, Dominance, Attractiveness, Valence, Perceived 753 
Similarity, Gender, and OpenFace), and All properties. 754 

We used linear non-negative least squares regression to estimate a weight for each 755 
component of each combined model. We fitted the weights and tested the performance of 756 
the reweighted (combined) model on non-overlapping groups of both participants and 757 
stimulus conditions within a cross-validation procedure, and used bootstrapping to 758 
estimate the distribution of the combined model’s performance (Storrs et al., 2020). Figure 759 
3B shows the results of this analysis. P-values were corrected for multiple comparisons 760 
using Bonferroni correction. For the FFA, the combined models for Perceived properties 761 
and High-Level properties had the highest mean correlations with the brain RDMs, and the 762 
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individual-subject correlations were significantly above zero. For the OFA, the combined 763 
model of all Low-Level properties and that of all image-computable properties had the 764 
highest mean correlations with the brain RDMs, although the individual-subject 765 
correlations were not significantly above zero after correcting for multiple comparisons. 766 
Importantly, however, none of the combined models performed better than the best of the 767 
individual models (see full results in Table 2). Instead, the models with best performance 768 
in the previous (main) analysis also showed the highest correlations in this analysis. 769 
These results suggest that the models that best explained representational distances in 770 
each face-selective region share overlapping variance, given that combining them did not 771 
improve model performance. Lastly, replicating the findings of the previous analysis using 772 
more stringent statistical methods (crossvalidation across stimuli and participants) 773 
provides further evidence of a reliable pattern of model correlations in FFA and OFA that 774 
reveals a distinction between the type of information encoded in these two regions.   775 

[Please insert Table 2 about here] 776 

Individual differences and idiosyncratic representations 777 
It is possible that there were substantial individual differences in face identity 778 

representations that limit the magnitude of the correlations between brain and model 779 
RDMs in our analyses. Brain and behavioural representations of face identities could be 780 
idiosyncratic and thus characteristic of each individual. We considered below three ways 781 
in which we could test this hypothesis.  782 

First, we considered whether there were substantial individual differences in brain 783 
RDMs. To estimate the lower-bound of the noise ceiling, we had computed inter-subject 784 
reliabilities of brain RDMs. If, however, there were substantial individual differences in the 785 
brain RDMs, we would expect that representational distances in each of the face-selective 786 
ROIs could be highly reliable within each participant but not across participants. We thus 787 
computed intra-subject reliabilities of brain RDMs by correlating the brain RDMs 788 
calculated independently from two separate testing sessions for each participant, and 789 
then averaging the correlations across participants. We note that in all other analyses in 790 
the present manuscript, the brain RDMs for each participant corresponded to the average 791 
of these two sessions. For all three face-selective ROIs, we observed intra-subject 792 
reliabilities (rFFA: r=.063; rOFA: r=.079; rpSTS: r=.094) that were on average lower than 793 
the inter-subject reliabilities (rFFA: r=.135; rOFA: r=.337; rpSTS: r=.126 — please see 794 
Table 1), suggesting that in fact, in this case, the brain RDMs were not more reliable 795 
within each individual. It is important to note, however, that there was much less data to 796 
compute intra-subject reliabilities than inter-subject reliabilities.  797 

Second, idiosyncratic brain representations could also result in higher correlations 798 
between each participant’s brain RDM and behavioural RDMs based on their own ratings, 799 
compared to the average behavioural RDMs that we used in the main analyses. We thus 800 
repeated the main analysis using each individual’s own RDMs for the rating-based 801 
perceived-property models, namely Perceived Similarity, Trustworthiness, Dominance, 802 
Attractiveness, Valence, and Social Traits (All). The results, however, did not reveal 803 
higher correlations when using these participant-specific behavioural models (Figure 5B). 804 
In contrast, correlations with the participants’ individual behavioural models were slightly 805 
lower than when using average behavioural models. 806 

A third possibility is that idiosyncratic representational geometries could result in the 807 
variance of each participant’s brain RDMs being best explained by a uniquely weighted 808 
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combination of candidate models (even if no set of weightings would perform well for all 809 
participants). However, we did not have sufficient data per participant to test this 810 
possibility here. 811 

Discussion 812 

We aimed to investigate what information is explicitly encoded in the face-selective right 813 
FFA, OFA, and pSTS. We extracted fMRI patterns elicited by famous face identities in 814 
these regions, and computed face identity RDMs which showed that face identities could 815 
be distinguished based on their elicited response patterns in all three regions. Using RSA, 816 
we compared the brain RDMs for the FFA, OFA, and pSTS with multiple model RDMs 817 
ranging from low-level image-computable properties (pixel-wise, GIST, and Gabor-jet 818 
dissimilarities), through higher-level image-computable descriptions (OpenFace deep 819 
neural network, trained to cluster faces by identity), to complex human-rated face 820 
properties (perceived visual similarity, social traits, and gender). We found that the FFA 821 
and rOFA encode face identities in a different manner, suggesting distinct representations 822 
in these two regions. The representational geometries of face identities in the FFA were 823 
most associated with high-level properties, such as perceived visual similarity, social traits, 824 
gender, and high-level image features extracted with a deep neural network (OpenFace; 825 
Amos et al., 2016). In contrast, the representational geometries of faces in the right OFA 826 
were most associated with low-level image-based properties, such as pixel similarity and 827 
features extracted with Gabor filters that simulate functioning of early visual cortex. While 828 
previous studies had shown that low-level properties of images extracted with Gabor filters 829 
were associated with representational distances of faces in right FFA (Carlin & 830 
Kriegeskorte, 2017; Weibert et al, 2018), our results suggest that representations in right 831 
FFA use more complex combinations of stimulus-based features and relate to higher-level 832 
perceived and social properties (see also Davidesco et al., 2014). These results inform 833 
existing neurocognitive models of face processing (Haxby et al., 2000; Duchaine & Yovel, 834 
2015) by shedding light on the much-debated computations of face-responsive regions, 835 
and providing new evidence to support a hierarchical organisation of these regions from 836 
the processing of low-level image-computable properties in the OFA to higher-level visual 837 
features and social information in the FFA.  838 

Our initial prediction was that by combining and reweighting different candidate models, 839 
we would be better able to explain the brain RDMs. However, we did not find evidence for 840 
this in any of our face-selective ROIs. These results suggest that, when more than one 841 
model was significantly correlated with the brain RDMs for a certain brain region, they 842 
tended to explain overlapping variance in the brain RDMs. For example, while Perceived 843 
Similarity and OpenFace both explained the representational geometries in right FFA, their 844 
combination did not explain more variance than each model individually. However, our 845 
pattern of results suggests a clear distinction between the types of models that are 846 
associated with representations in the FFA and OFA, with higher-level properties 847 
explaining more variance in the FFA, and lower-level image-based properties explaining 848 
more variance in the OFA.  849 

One crucial aspect of our study is that we used naturalistically varying video stimuli and 850 
multiple depictions for each identity. Brain RDMs were built by cross-validating the 851 
response patterns across runs featuring different videos of the face of each identity, and 852 
behavioural models were based on averages of ratings of multiple videos for each identity. 853 
Image-based models were built by calculating dissimilarities between image frames taken 854 
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from multiple videos of the face of each identity, and then computing the mean 855 
dissimilarity across different image pairs featuring the same identity pair. Behavioral 856 
studies have demonstrated that participants make more mistakes in “telling together” (i.e. 857 
grouping multiple images of the same identity, which is different process from “telling 858 
apart”, or distinguishing, between different identities) different photos of the same person 859 
when those photos were taken with different cameras, on different days, or with different 860 
lighting conditions, compared to when photos were taken on the same day and with the 861 
same camera (Bruce et al, 1999, Jenkins et al, 2011). Most previous fMRI studies, 862 
however, used very visually similar images, or even just a single image, for each identity, 863 
making it difficult to determine whether a brain region represents different face images or 864 
different face identities. Here, by having multiple videos for each person we can be more 865 
confident that we are capturing representations of specific identities rather than specific 866 
stimuli.  867 

Related to the previous point, Abudarham and Yovel (2016) have recently shown that 868 
humans are more sensitive in perceiving changes in some face features (such as lip-869 
thickness, hair, eye colour, eye shape, and eyebrow thickness) compared to others (such 870 
as mouth size, eye distance, face proportion, skin color). Changes in the former type of 871 
features (a.k.a. critical features) are perceived as changes in identity and those features 872 
tend to be invariant for different images of the same identity. Interestingly, Abudarham et 873 
al (2019) showed that the OpenFace algorithm that we used in the present study also 874 
seemed to be capturing those same critical features. Given our results in right FFA, it 875 
would be interesting to see whether representations in this region can also distinguish 876 
between the processing of the critical and non-critical face features as described by 877 
Abudarham and colleagues (2016; 2019).  878 

Grossman and colleagues (2019) have also recently shown that representations in the 879 
FFA relate to image-computable descriptors from a deep neural network. There are two 880 
main differences, however, between our results and those of Grossman et al (2019). First, 881 
Grossman et al (2019) found similar representational geometries across all face-selective 882 
ventral temporal cortex, and no differentiation between OFA and FFA. One possible 883 
reason for this difference is that the authors were only able to define OFA and FFA in the 884 
left hemisphere, whereas our face-selective regions were defined in the right hemisphere. 885 
Face-selective regions are more consistent and larger in the right hemisphere (e.g. 886 
Rossion et al, 2012). A second main difference between our results and those of 887 
Grossman et al (2019) is that the deep neural network that we used here showed high 888 
generalisation across different images of the same person. OpenFace (Amos et al., 2016) 889 
was trained specifically to group together images of the same person and distinguish 890 
images of different people, and it performed very well in doing this in our set of stimuli (see 891 
Extended Data Figure 2-1), where it showed high generalisation across very variable 892 
pictures of the same person. This was not the case with the VGG-Face network used by 893 
Grossman et al (2019). Future studies should focus on describing and comparing the 894 
image-level descriptions of different types of neural networks. 895 

Previous studies have demonstrated that face-selective regions are sensitive to the 896 
viewpoint from which faces are presented (Grill-Spector et al., 1999; Axelrod and Yovel, 897 
2012; Kietzmann et al., 2012; Ramírez et al., 2014; Dubois et al., 2015; Guntupalli et al., 898 
2017). However, there is also evidence that the FFA, OFA, anterior temporal lobe, and 899 
pSTS represent face identity across different viewpoints (Anzellotti et al., 2014; Anzellotti 900 
and Caramazza, 2017; Guntupalli et al., 2017). In our video stimuli, the faces were mostly 901 
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front-facing, but were free to vary in terms of changes in viewpoint (e.g. turning the head 902 
to the side during the video). Given that our patterns for each identity were estimated 903 
across multiple different videos of their face, it is unlikely that viewpoint alone could 904 
explain the differences between identities. Therefore, our results suggest that the FFA and 905 
OFA encode information that relate to face identity, beyond viewpoint. 906 

We note that the lower bounds on the noise ceiling in our analyses were consistently 907 
quite low, especially for FFA and pSTS. However, these values are similar to the lower 908 
bounds of the noise ceiling in other studies using RSA (e.g. Carlin & Kriegeskorte, 2017; 909 
Jozwik et al., 2016; Thornton & Mitchell, 2017; 2018). We considered whether the low 910 
correlations could reflect substantial individual differences in face identity brain 911 
representations, but our results did not support this possibility. The low noise ceilings in 912 
our study likely reflect the fact that the differences between brain-activity patterns 913 
associated with faces of different people are small compared to the differences between 914 
patterns associated with different visual categories (e.g. faces and places). Moreover, we 915 
used identity-based rather than image-based patterns (by crossvalidating across runs 916 
presenting different videos for each identity), and this is likely to have introduced additional 917 
variability to the pattern estimates. It is also possible that we needed more data per 918 
participant, and future studies should consider ways to increase the amount of explainable 919 
variance. A related issue is that the perceived-property models had inter-subject 920 
reliabilities that varied between .2 and .6 and thus correlations between these models and 921 
brain RDMs would be affected by these low reliabilities.  922 

None of the models that we considered here explained the representational geometry of 923 
responses in the face-selective right pSTS. It is likely that the pSTS as defined in the 924 
present study contains overlapping and interspersed groups of voxels that respond to 925 
faces only, voices only, or both faces and voices (Beauchamp et al., 2004) that make the 926 
overlapping representational geometry difficult to explain. On the other hand, it is possible 927 
that the pSTS represents information about people that we did not consider here, such as 928 
idiosyncratic facial movements (Yovel & O’Toole, 2016), emotional and mental states 929 
(Thornton et al., 2019), biographical knowledge (Verosky et al., 2013; Collins et al., 2016; 930 
Thornton et al., 2019), social distance or network position (Parkinson et al., 2014; 2017), 931 
or type of social interactions (Walbrin & Koldewyn, 2019). Future studies may need to 932 
explore an even richer set of social, perceptual, and stimulus-based models to better 933 
characterise responses in the pSTS (and investigate representations beyond face-934 
selective regions). 935 

A limitation of our study was the lack of diversity of our face identities in terms of race 936 
and ethnicity (ten identities were White Caucasian and two were Black), which limits the 937 
generalisability of our results to faces of different ethnicities. It was essential to our study 938 
that our set of celebrities were highly familiar to our sample of young British participants, 939 
and they were chosen based on their recognisability (of both faces and voices — please 940 
see Tsantani et al., 2019). Future work will need to incorporate more diversity in the face 941 
stimuli. This is also crucial when considering the image-computable models. In particular, 942 
OpenFace has been developed, trained, and evaluated on databases that contain large 943 
proportions of Caucasian faces when compared to other ethnicities. Future work using 944 
larger samples of identities should evaluate the biases caused by these procedures, and 945 
develop models trained on more representative and diverse databases.  946 

To conclude, our study highlights the importance of using multiple and diverse 947 
representational models to characterise how face identities are represented in different 948 
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face-selective regions. Although similar levels of identity decodability were observed in 949 
both OFA and FFA (Tsantani et al., 2019), the information explicitly encoded in these two 950 
regions is in fact distinct, suggesting that the two regions serve quite different 951 
computational roles. Future work attempting to define the computations of cortical regions 952 
that appear to serve the same function (e.g. discriminating between identities) would 953 
benefit from comparing representations in those regions with multiple and diverse 954 
candidate models to reveal the type of information that is encoded. 955 
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Tables 1197 

Table 1: Results of individual model analysis. The values in this table correspond to the results presented 1198 
in Figure 3A. For each ROI, we show the mean correlations between brain RDMs with each model, standard 1199 
error (SE), Z statistics from two-sided one-sample Wilcoxon signed-rank tests, and whether correlations 1200 
were significantly higher than zero. We also show the estimated lower and upper bounds of the noise ceiling 1201 
for each ROI. Models are ordered by effect size. 1202 

    
Pearson correlation between RDMs Noise ceiling 

  
Mean r SE Z p < .05 

(FDR 
corrected) 

[Lower bound 

Upper bound] 

rFFA           [0.135 0.262] 

  Perceived Similarity 0.109 0.023 3.689 yes   

  Social Traits (All) 0.104 0.031 2.710 yes   

  Open Face 0.101 0.023 3.461 yes   

  Attractiveness 0.090 0.033 2.687 yes   

  Gender 0.086 0.021 3.302 yes   

  Valence 0.060 0.023 2.391 yes   

  Dominance 0.058 0.030 1.640 no   

  Gabor-Jet 0.052 0.049 0.956 no   

  Trustworthiness 0.040 0.029 1.594 no   

  Pixel-Faces 0.035 0.044 0.865 no   

  Pixel-Frames 0.005 0.027 0.159 no   

  GIST-Faces -0.006 0.040 0.114 no   

  Pixel-Frames -0.018 0.041 -0.478 no   

rOFA           [0.337 0.408] 

  Pixel-Faces 0.221 0.031 4.357 yes   

  Gabor-Jet 0.204 0.037 3.968 yes   

  Pixel-Frames 0.107 0.031 3.016 yes   

  GIST-Faces 0.104 0.043 2.216 yes   

  Attractiveness 0.092 0.029 2.843 yes   

  Social Traits (All) 0.083 0.031 1.979 no   

  Gender 0.074 0.021 2.757 yes   

  OpenFace 0.067 0.020 2.952 yes   
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  Dominance 0.055 0.031 1.546 no   

  Perceived Similarity 0.039 0.026 1.416 no   

  GIST-Frames 0.025 0.034 0.746 no   

  Trustworthiness 0.011 0.025 0.400 no   

  Valence -0.016 0.031 -0.573 no   

rpSTS           [0.126 0.252] 

  GIST-Frames 0.075 0.047 1.800 no   

  Dominance 0.052 0.027 1.800 no   

  OpenFace 0.040 0.020 2.129 no   

  Social Traits (All) 0.032 0.026 1.018 no   

  Pixel-Frames 0.022 0.030 0.956 no   

  Gender 0.020 0.017 0.956 no   

  Trustworthiness 0.017 0.032 0.524 no   

  Attractiveness 0.005 0.024 0.134 no   

  Valence 0.002 0.031 0.051 no   

  Pixel-Faces -0.003 0.035 -0.113 no   

  Perceived Similarity -0.008 0.026 -0.072 no   

  Gabor-Jet -0.045 0.040 -1.100 no   

  GIST-Faces -0.048 0.036 -1.368 no   

 1203 
 1204 
 1205 
 1206 
Table 2: Results of weighted representational modelling analysis. The values in this table correspond to 1207 
the results presented in Figure 3B. Within each ROI, we show the mean correlations between brain RDMs 1208 
with each model (individual models and combined models), and whether correlations were significantly 1209 
higher than zero. We also show the estimated lower and upper bounds of the noise ceiling for each ROI, and 1210 
whether correlations were significantly below the noise ceiling. Models are ordered by effect size and 1211 
grouped first by image-computable models, then perceived-property models, and then models that combined 1212 
both types of properties. RW refers to combined and reweighted models. 1213 
  Pearson correlation between RDMs Noise ceiling 

  Mean r SE p < .05 
(Bonferroni 
corrected) 

[Lower 
bound 
Upper 
bound] 

p < .05 
(Bonferroni 
corrected) 

rFFA         [0.089 
0.286] 

  

  Open Face 0.105 0.032 yes   no 

  Gabor-Jet 0.041 0.042 no   no 
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  Pixel-Faces 0.027 0.040 no   no 

  Pixel-Frames 0.019 0.036 no   no 

  GIST-Faces 0.007 0.037 no   no 

  GIST-Frames -0.010 0.037 no   no 

  RW Image-
Computable 

0.063 0.037 no   no 

  Perceived Similarity 0.118 0.031 yes no 

  Social Traits (All) 0.102 0.035 yes   no 

  Gender 0.094 0.033 yes   no 

  Attractiveness 0.091 0.035 no   no 

  Valence 0.059 0.031 no   no 

  Trustworthiness 0.049 0.033 no   no 

  Dominance 0.048 0.034 no   no 

  RW Social Traits 0.074 0.034 no   no 

  RW Perceived 0.100 0.033 yes   no 

  RW Low-Level -0.006 0.035 no   no 

  RW High-Level 0.096 0.033 yes no 

  RW ALL 0.086 0.035 no   no 

rOFA         [0.237 
0.372] 

  

  Pixel-Faces 0.158 0.041 yes   no 

  Gabor-Jet 0.138 0.047 yes   no 

  Pixel-Frames 0.108 0.039 no   yes 

  GIST-Faces 0.087 0.047 no   no 

  OpenFace 0.066 0.041 no   yes 

  GIST-Frames 0.050 0.042 no   yes 

  RW Image 
Computable 

0.089 0.044 no   no 

  Gender 0.082 0.041 no   no 

  Attractiveness 0.075 0.039 no   yes 

  Social Traits (All) 0.067 0.040 no   yes 

  Perceived Similarity 0.055 0.039 no   yes 

  Dominance 0.039 0.038 no   yes 
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  Trustworthiness 0.031 0.040 no   yes 

  Valence -0.010 0.041 no   yes 

  RW Social Traits 0.037 0.040 no   yes 

  RW Perceived 0.033 0.040 no   yes 

  RW Low-Level 0.103 0.046 no   no 

  RW High-Level 0.019 0.040 no   yes 

  RW ALL 0.059 0.041 no   yes 

rpSTS         [0.091 
0.277] 

  

  GIST-Frames 0.051 0.040 no   no 

  OpenFace 0.034 0.030 no   no 

  Pixel-Faces 0.009 0.034 no   no 

  Pixel-Frames 0.006 0.032 no   no 

  GIST-Faces -0.031 0.034 no   no 

  Gabor-Jet -0.038 0.037 no   no 

  RW Image-
Computable 

0.013 0.036 no   no 

  Dominance 0.054 0.030 no   no 

  Social Traits (All) 0.035 0.030 no   no 

  Trustworthiness 0.026 0.033 no   no 

  Gender 0.023 0.029 no   no 

  Valence 0.005 0.033 no   no 

  Attractiveness 0.003 0.029 no   no 

  Perceived Similarity -0.003 0.032 no   no 

  RW Social Traits 0.026 0.033 no   no 

  RW Perceived 0.031 0.032 no   no 

  RW Low-Level 0.010 0.038 no   no 

  RW High-Level 0.033 0.031 no   no 

  RW ALL 0.025 0.030 no   no 

 1214 

 1215 
 1216 
 1217 
 1218 
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 1219 
Figure captions 1220 

Figure 1. Examples of face trials in the fMRI and behavioural experiments. All 1221 
experiments presented the same videos of moving, non-speaking, faces of 12 famous 1222 
people. For each famous person, we presented six naturalistically varying videos of their 1223 
face. In an event-related fMRI task, each trial presented a single face video. This task also 1224 
contained trials of the same length featuring voice clips (excluded from the present 1225 
analysis), stimuli relating to the anomaly detection task, and fixation (null events). In each 1226 
trial of the Social Trait Judgements Tasks (separate tasks for Trustworthiness, 1227 
Dominance, Attractiveness, and Valence), participants viewed three videos of the face of 1228 
the same identity and judged the intensity of the target trait (on a scale from 1 to 7). In 1229 
each trial of the Perceived Similarity Task, participants viewed three videos of one identity 1230 
followed by three videos of a different identity and rated their visual similarity (from 1 to 7). 1231 
Face videos were presented for their full duration of 3000ms in the fMRI experiment, 1232 
whereas only the first 1500ms were presented in the behavioural experiments. 1233 

 1234 

Figure 2. Brain and model representational dissimilarity matrices (RDMs). A: 1235 
Location in MNI space of the three face-selective regions localised in our 1236 
participants: OFA (occipital face area), FFA (fusiform face area), and pSTS (posterior 1237 
superior temporal sulcus; all regions in the right hemisphere). These probabilistic maps 1238 
were created for illustration purposes (in our analyses, we only used subject-specific 1239 
regions of interest (ROIs)) and show all voxels that were present in at least 20% of 1240 
participants. B: Example brain representational dissimilarity matrix (RDM) for the 1241 
right FFA. For each ROI and each participant, we computed RDMs showing the 1242 
dissimilarity of the brain response patterns between all pairs of identities. Each row and 1243 
column represent one identity, and response patterns are based on all six presented 1244 
videos of that identity. Each cell shows the linear discriminant contrast distance between 1245 
the response patterns of two identities (higher values indicate higher dissimilarity), 1246 
crossvalidated across runs presenting different videos of the face of each identity. The 1247 
matrix is symmetric around a diagonal of zeros. C: Model RDMs for image-computable 1248 
properties (blue) and perceived properties (pink). These models are in the same 1249 
format as the brain RDMs and show the dissimilarity between two identities on each 1250 
property (see Methods). Image-computable models include a neural network trained to 1251 
distinguish between face identities (OpenFace), a Gabor-Jet model, Pixel Dissimilarity 1252 
(both for faces only — Pixel-Faces, and the whole frames — Pixel-Frames), and a GIST 1253 
Descriptor model (both for faces — GIST-Faces, and the whole frames — GIST-Frames). 1254 
The RDMs computed per image (before averaging across identity) are shown in Extended 1255 
Data Figure 2-1, though those 72x72 RDMs were not used in any analysis. Perceived-1256 
property models include perceived social traits (Trustworthiness, Dominance, 1257 
Attractiveness, Valence, Social Traits (All)), Perceived Similarity, and Gender. Models 1258 
based on participant ratings were averaged across participants.  All models were built 1259 
based on multiple images (image-computable models) or videos (perceived-property 1260 
models) of the face of each identity. For visualisation purposes, all model RDMs were 1261 
scaled to a range between zero (no dissimilarity) and one (maximum dissimilarity). D: 1262 
Correlations (Pearson) between the different model RDMs. The different candidate 1263 
models were compared with each other using Pearson correlation. Extended Data Figure 1264 
2-2 shows this same matrix with added correlation values.  1265 



 

33 
 

 1266 

Figure 3. FFA and OFA show distinct representational profiles of face identity 1267 
information. A: Similarity (Pearson correlations) between brain RDMs (in FFA, OFA, 1268 
and pSTS) and each of the individual candidate models. Bars show mean correlations 1269 
across participants and error bars show standard error. Correlations with image-1270 
computable models are in blue and with perceived-property models are in pink. Horizontal 1271 
dashed lines show the lower bound of the noise ceiling. An asterisk above a bar and the 1272 
name of the model in bold indicate that correlations with that model were significantly 1273 
higher than zero. Correlations with individual models are sorted from highest to lowest. 1274 
Horizontal lines above bars show significant differences between the correlations of the 1275 
first marked column with the subsequent marked columns (FDR corrected for multiple 1276 
comparisons). Full results are Table 1, and single-subject data are shown in Figure 4. B: 1277 
Similarity (Pearson correlations) between brain RDMs (in FFA, OFA, and pSTS) and 1278 
each of the candidate models in the weighted representational modelling analysis. 1279 
Bars show mean correlations and error bars show standard error across 1,000 bootstrap 1280 
samples. Horizontal dashed lines show the lower bound of the noise ceiling, averaged 1281 
across bootstrap samples. An asterisk above a bar and the name of the model in bold 1282 
indicate that correlations with that model were significantly higher than zero. Correlations 1283 
with individual models are blocked by type of model (image-computable models followed 1284 
by perceived-property models) and sorted from highest to lowest. RW shows the 1285 
combined and reweighted models and appears in light blue for models that combine 1286 
image-computable properties, in light pink for models that combine perceived properties, 1287 
and in grey for models that combine both types of properties. None of the combined 1288 
models outperformed individual models. Full results are reported in Table 2. The results of 1289 
both analyses show that in the FFA, the models that explained most of the variance are 1290 
related to high-level properties, such as perceived properties of the stimuli and the image-1291 
computable OpenFace model of face recognition. In contrast, brain RDMs in OFA 1292 
correlated mainly with low-level image-computable properties such as pixel dissimilarity 1293 
and the Gabor-Jet model. No significant correlations were found in pSTS. 1294 

 1295 

Figure 4. Similarity between brain RDMs (in FFA, OFA, and pSTS) and each of the 1296 
candidate models, showing individual participant data. This figure shows the same 1297 
data as Figure 3A, but with added individual data. Circles show correlations for individual 1298 
participants. Coloured lines show mean (full lines) and median (dotted lines) correlations 1299 
across participants. Correlations with models based on perceived-property models are in 1300 
pink, and correlations with image-computable models are in blue. Horizontal black dotted 1301 
lines mark the zero correlation point. An asterisk above a bar and the name of the model 1302 
in bold indicate correlations that were significantly higher than zero. Correlations with 1303 
individual models are sorted from highest to lowest based on the mean correlation across 1304 
participants to match the format of Figure 3A.  1305 

 1306 

Figure 5. Control analyses with modified model RDMs. A: Similarity between brain 1307 
RDMs (in FFA, OFA, and pSTS) and each of the candidate models, using image-1308 
computable models derived from 72 images per video. Our main analysis in Figure 3A 1309 
used a single image per video to compute image-computable models. Here, we repeated 1310 
all analyses of image-computable models using 72 frames for each video. We extracted 1311 
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72 image frames for each video, and applied each model to each image. For each model, 1312 
after extracting the features of each image of each video, we averaged the values for all 1313 
images belonging to the same video. We then computed distances between videos in the 1314 
same manner as before, and averaged distances for each pair of identities. We note that 1315 
these results were very similar to the ones using just with one image per video, but some 1316 
correlations were lower. B: Similarity between brain RDMs (in FFA, OFA, and pSTS) 1317 
and each of the individual candidate models, using behavioural models based on 1318 
individual participant ratings. The analysis was the same as in Figure 3A, but instead of 1319 
using average behavioural RDMs, each participant’s brain RDM was correlated to their 1320 
own behavioural RDMs for Perceived Similarity, Trustworthiness, Dominance, 1321 
Attractiveness, Valence, and Social Traits (All). The pattern of results looked very similar 1322 
to the ones in Figure 3A, but correlations with perceived-property models were overall 1323 
lower when using each participant’s own model RDMs. 1324 

 1325 

Figure 6. Control analyses using other similarity measures between RDMs. 1326 
Similarity between brain RDMs (in FFA, OFA, and pSTS) and each of the candidate 1327 
models using Spearman correlation (A) and Kendall tau-a (B). These analyses were 1328 
identical to the analysis using Pearson correlations (Figure 3A), with the exception that 1329 
noise ceiling was computed after rank-transforming the RDMs (Nili et al., 2014). The 1330 
pattern of results was similar across all three correlation measures.  1331 

 1332 

Figure 7. Control analysis with modified brain RDMs. Similarity between brain RDMs 1333 
for voices (in FFA, OFA, and pSTS) and each of the candidate models for faces. We 1334 
computed representational dissimilarity matrices (RDMs) from response patterns to voices 1335 
in the rFFA, rOFA, and rpSTS, and compared them with our model RDMs for faces (same 1336 
models as in Figure 2). The voice stimuli belonged to the same 12 identities as the face 1337 
stimuli and were presented interspersed among the face videos in the same runs (see 1338 
Methods section). RDMs for voice identities were computed using the same procedure as 1339 
for face identities (see Methods section) and were compared to model RDMs for faces 1340 
using Pearson correlation. Correlations with individual models are sorted from highest to 1341 
lowest. None of the correlations were significantly greater than zero after correction for 1342 
multiple comparisons. Pairwise comparisons showed no significant differences between 1343 
the correlations of any pairs of models. 1344 

 1345 

Figure 2-1. Image-computable model representational dissimilarity matrices (RDMs) 1346 
per image. Model RDMs computed from dissimilarities between images for OpenFace, 1347 
Gabor-Jet, Pixel-Faces, Pixel-Frames, GIST-Faces, and GIST-Frames. Each row/column 1348 
represents a single image, and images are clustered by identity (6 images for each of the 1349 
12 identities). Each cell shows the dissimilarity between the two images in the 1350 
corresponding rows and columns, with a value of zero indicating that images are identical. 1351 
Matrices are symmetric around a diagonal of zeros. From these models, only the 1352 
OpenFace model grouped different images of the same identity as more similar compared 1353 
to images from different identities. Please note that these full RDMs were not used in any 1354 
analysis. Instead, we created 12x12 RDMs (one entry for each of the 12 identities) to be 1355 
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comparable to the brain RDMs (Figure 2C). To create the 12x12 RDMs, we computed the 1356 
mean of all cells that showed images of the same identity pair. 1357 

 1358 

Figure 2-2. Correlations (Pearson) between the different model RDMs. The different 1359 
candidate models were compared with each other using Pearson correlation. This is the 1360 
same figure as 2D, but with added correlation values for each cell. 1361 

 1362 

 1363 

 1364 

 1365 

















 

1 
 

FFA and OFA encode distinct types of face identity information 1 

— Extended data 2 
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Figure 2-1. Image-computable model representational dissimilarity matrices (RDMs) per image. Model 5 
RDMs computed from dissimilarities between images for OpenFace, Gabor-Jet, Pixel-Faces, Pixel-Frames, 6 
GIST-Faces, and GIST-Frames. Each row/column represents a single image, and images are clustered by 7 
identity (6 images for each of the 12 identities). Each cell shows the dissimilarity between the two images in 8 
the corresponding rows and columns, with a value of zero indicating that images are identical. Matrices are 9 
symmetric around a diagonal of zeros. From these models, only the OpenFace model grouped different 10 
images of the same identity as more similar compared to images from different identities. Please note that 11 
these full RDMs were not used in any analysis. Instead, we created 12x12 RDMs (one entry for each of the 12 
12 identities) to be comparable to the brain RDMs (Figure 2C). To create the 12x12 RDMs, we computed the 13 
mean of all cells that showed images of the same identity pair. 14 
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Figure 2-2. Correlations (Pearson) between the different model RDMs. The different candidate models4 
were compared with each other using Pearson correlation. This is the same figure as 2D, but with added5 
correlation values for each cell.6 
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