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Abstract

The word ‘pattern’ frequently appears in the visualisation and visual analytics

literature, but what do we mean when we talk about patterns? We propose

a practicable definition of the concept of a pattern in a data distribution as

a combination of multiple interrelated elements of two or more data compo-

nents that can be represented and treated as a unified whole. Our theoretical

model describes how patterns are made by relationships existing between data

elements. Knowing the types of these relationships, it is possible to predict

what kinds of patterns may exist. We demonstrate how our model underpins

and refines the established fundamental principles of visualisation. The model

also suggests a range of interactive analytical operations that can support visual

analytics workflows where patterns, once discovered, are explicitly involved in

further data analysis.
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1. Introduction

1.1. Motivation

We began to feel a need in a conceptual and theoretical model for visual

analytics when we started teaching visual analytics to students of a data sci-

ence course [1]. Every year it is necessary to explain the students what visual5

analytics is, why and for what purposes they will need to use visual analytics

in their job, how to utilise visual analytics techniques in practice, what princi-

ples are important to obey, and why these principles exist. It turned out to be

not easy to explain these things clearly and convincingly to practice-oriented

and computation-minded people. In particular, when we tell the students that10

visualisation is required for observing distributions and detecting patterns, we

need to explain them the meaning of the terms “distribution” and “pattern”.

We want the students to understand that the meaning of “distribution” is not

limited to statistical distribution of values of a variable, and this requires us to

give a general definition which would cover the concepts of statistical, spatial,15

temporal, and, desirably, also other principally possible distributions. We need

to teach the students how to find patterns in distributions, and this requires

defining what a pattern is and what kinds of patterns, and why, can exist in

different types of distributions.

Although this work has been originally motivated by pedagogical needs, we20

believe that having a clear conceptual and theoretical background can also be

beneficial for visual analytics science as well as engineering. Explicitly defined

rather than intuitively understood concepts can potentially enable systematic

approaches to conducting research work and to developing new methods and

procedures. Solid theoretical foundations of visual analytics could be especially25

helpful when entering new application domains or dealing with new types of

data.

1.2. Goals and purposes

With this work, we pursue the following goals:
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• Introduce an explicit working definition of the concept of pattern in data30

(Section 4.1).

• Describe how properties of data determine the types of possible patterns

that can exist in the data (Section 4.2).

• Draw implications for the possible visual analytics approaches to discov-

ering patterns existing in data (Section 7).35

• Use the explicit definition of a pattern to explain some of the existing

principles of visualisation design (Section 7.3, 7.4).

• Describe how patterns that have been discovered can be utilised in further

data analysis (Section 6).

We expect that the proposed theoretical model will be useful for the following40

purposes:

• For data analysis practitioners: provide a ground for informed and rea-

soned anticipation of the possibly existing types of patterns in given data

and selection of techniques for finding these patterns.

• For developers of visual analytics methods and procedures: provide foun-45

dations for

– methodical design of approaches and analytical workflows involving

discovery and exploitation of different types of patterns;

– development of approaches to guiding users and supporting the ex-

ternalisation of the knowledge gained by them in the process of data50

analysis.

• For visual analytics researchers: underpin systematic development of prin-

ciples and general approaches to analysing different kinds of data.

• For students of visual analytics and/or data science: enable better under-

standing of patterns, and how they can be used in visual data analysis.55
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1.3. Main ideas

The essence of our model can be summarised in the following statements:

• A pattern consists of relationships between multiple elements of at least

two data components.

• A pattern is such a combination of relationships that allows multiple el-60

ements to be perceived and/or represented holistically as a single object,

as, for example, a cluster, a trend, or a correlation.

• The types of relationships existing between elements of data (such as or-

dering and distance relationships) determine the possible types of patterns

that can be made by these elements.65

• Pattern discovery, which involves abstraction, is a principal way to under-

stand synoptic relationships between data components.

• To discover patterns, analysts investigate distributions of elements of one

(or more) components with respect to elements of another component and

relationships between these elements.70

• Analysts can use discovered patterns in next steps of data analysis by

applying analytical operations, such as aggregating, grouping, comparing,

and others.

In the following, after reviewing the related work, we shall explain, justify, and

elaborate these statements.75

2. Related work

Here we discuss how the concept of pattern is treated in different scientific

disciplines.
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2.1. Patterns in Mathematics

Modern mathematicians tend to see mathematics as a science of patterns [2].80

It is argued that the primary subject of study in mathematics is not the indi-

vidual mathematical objects but rather the structures (patterns) in which they

are arranged [3]. Here, the term ‘pattern’ is used as a synonym for ‘structure’.

A pattern consists of one or more objects, called positions, which stand in

various relationships. Positions as such have no distinguishing features. Only85

within a pattern positions may be identified or distinguished, since the pattern

containing them provides a context for so doing. Thus, in a triangle ABC, the

points A, B, C can be differentiated when considered as triangle vertices, but

taken in isolation they are indistinguishable from each other and from other

points.90

A context provided by a pattern can be viewed as a representation system [4],

and the use of different systems of representation results in seeing different

aspects. Thus, the same thing can be seen as a table, as a composition of

table-parts, as a collection of molecules, etc., and all these views are correct.

Oliveri [4] emphasises that the aspect we perceive is not a property of an object95

itself but a relation between it and other objects.

To summarise, mathematicians define patterns as arrangements of objects in

which only relationships between the objects are important but not properties

of the objects themselves. Patterns have properties that are based on the rela-

tionships between the objects and do not apply to the objects taken separately.100

Giving different representations to the same objects allows perceiving different

patterns, which can complement each other.

Mathematicians define pattern types according to the branches of mathe-

matics [2]: arithmetic deals with patterns of numbers, mathematical logics with

patterns of reasoning, calculus with patterns of change and motion, geometry105

with shapes and symmetry, and topology with patterns of connectivity and

reachability.

In our work, we deal with patterns existing in data, i.e., made by elements

of data. Like mathematicians, we acknowledge the key role of relationships in
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forming patterns. Pattern types can be defined based on the types of relation-110

ships existing between data elements.

2.2. Patterns in Statistics

There is no explicit definition of the concept of data pattern in statistics;

nevertheless, the expressions “data patterns” or “patterns in data” are exten-

sively used in statistical literature [5, 6]. Patterns in data distributions are115

commonly described in terms of centre, spread, shape (or form), and presence

of particular features, such as gaps and outliers. Several types of patterns are

specifically defined for time series data [7], namely, trend, seasonal, cyclic, and

irregular (random) patterns. Trend patterns are further differentiated into lin-

ear, exponential, and other subtypes.120

The concept of distribution, in turn, is defined as a function that associates

each value of a variable with its probability [8]. Statistics considers various

forms of distributions [9], such as normal, uniform, bimodal, long tail, etc.

While the definition of distribution in statistics is limited to probability dis-

tribution, we give a more general definition covering also spatial distributions as125

well as other imaginable kinds of distributions. Another extension is consider-

ation of relationships between data elements and the role of these relationships

in forming data patterns. Thus, the types of patterns that can be found in time

series data are made by specific relationships (namely, ordering and distances)

between time steps and between corresponding values of a variable.130

2.3. Patterns in Geography-related Sciences

All sciences studying phenomena that occur on the Earth, including natural,

social, and economic phenomena, are concerned with analysing spatial distri-

butions and spatial patterns. A pattern in a spatial distribution is defined in

terms of the arrangement of individual entities in space and the geographic135

relationships among them [10, 11]. Geographic analysis usually involves ob-

serving and describing spatial patterns, testing whether the observed pattern

differs from a null model, such as complete randomness, and fitting empirical
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data to theoretical models for the purposes of prediction [12]. Spatial patterns

are characterised by specific metrics of concentration or dispersion, eccentricity,140

randomness, clustering, etc. [11]. An important characteristic is spatial auto-

correlation indicating how an object or feature located in space is influenced by

similar objects or features in the neighbourhood [10].

It is acknowledged that patterns that can be observed in spatial distributions

are dependent on the spatial scale of analysis [13, 14]. Thus, the kinds of145

patterns that can exist in the global distribution of a biological species are very

different from the possible kinds of patterns in a local distribution of individuals

belonging this species.

Our definitions of the concepts of distribution and pattern cover, in partic-

ular, the concepts of spatial distribution and spatial pattern. Our model can150

explain the role of spatial relationships in forming spatial patterns.

2.4. Patterns in Information Theory

In information theory [15, 16], the term ‘pattern’ may refer to any distinct

arrangement of symbols or to a combination of pixels in an image, regardless

of whether it is meaningful or interesting. In the context of an application, all155

possible data patterns collectively define a so-called alphabet, where each pattern

is a letter. In data compression, the resources used to encode different patterns

are optimised according to the probability of the patterns in the data space.

In image processing and computer vision, patterns are broadly divided into

groups, which are mathematically specified. Various algorithms were developed160

to differentiate patterns in one group from others. They make use of different

information-theoretic metrics for pattern recognition, matching, segmentation,

registration, etc. [17, 18].

Ideas and techniques from information theory have been used for character-

ising and studying pattern recognition by humans. Chen et al. [19] noticed that165

humans’ ability to identify interesting patterns when they are overlapped with

other patterns and to connect interesting patterns when they are distributed

away from each other bears some resemblance to the family of techniques called

7Jo
ur

na
l P

re
-p

ro
of



Journal Pre-proof
multiplexing in tele- and data communication. The researchers used information

theory to explain this phenomenon of visual multiplexing in visualisation. In a170

survey of a large collection of empirical studies concerning visualisation [20], the

studies were categorised according to the main independent variables: contexts

(e.g., tasks, applications), patterns (e.g., clusters and changes), and values (e.g.,

data values and statistics). It was noticed that patterns were in the focus of

about 50% of the studies. Kijmongkolchai et al. [20] also conducted an empir-175

ical study to detect and measure human’s knowledge used in reasoning about

time series patterns. They found that the human’s prior knowledge on pattern

identification brought more benefit than that on context awareness and statis-

tical estimation. The benefits were measured using the information-theoretic

metric for cost-benefit analysis [21].180

Importantly, the process of pattern perception and recognition by humans

involves abstraction. Since the information-theoretical view of a pattern does

not accommodate the notion of abstraction, it cannot support the description

of the phenomenon of pattern discovery by means of visual analytics.

2.5. Patterns in Data Mining185

Data mining is defined as an automatic or semi-automatic process of discov-

ering useful patterns in data [22]. A pattern is defined as “an expression E in

some language L describing facts in a subset FE of a set of facts F so that E

is simpler than the enumeration of all facts in FE” [23, p.7]; in other words, a

pattern is defined as a synoptic representation of multiple data items.190

Han [24] states that types of patterns can be defined according to data min-

ing functionalities, which include: characterisation and discrimination; mining

of frequent patterns, associations, and correlations; classification and regression;

cluster analysis; outlier analysis. In practice, what is usually called ‘pattern

types’ in data mining literature rather refers to the existing forms of outputs of195

data mining methods, such as decision trees, classification rules, clusters, fre-

quent item sets, frequent sub-sequences, etc. [25, 26, 22]. There is no underlying

scheme for a more systematic definition of possible pattern types.
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An important difference of our conceptual model is acknowledging that pat-

terns objectively exist in data regardless of any representation or someone’s200

awareness of their existence. By defining a pattern as a structure formed by

relationships between data elements, we provide a basis for anticipating what

kinds of patterns can exist in given data.

2.6. Patterns in Visualisation and Visual Analytics

Similarly to statistics, visualisation literature often uses the expressions “pat-205

tern(s) in data” or “data pattern(s)”, although there is no commonly adopted

explicit definition of what this term means. Thus, Munzner treats the term ‘pat-

tern’ as a synonym to ‘trend’ [27], whereas others use this term as self-evident

without explaining what they mean by it. There was an attempt to adapt the

data mining definition: a pattern was defined as a parsimonious representation210

of essential features of a behaviour in the form of a description in some language

(natural, formal, or graphical) or a mental image of the behaviour [28, p. 85].

Visual analytics can be seen as a model building activity [29] in which an

analyst creates a model, in particular, a mental model, of the analysis subject.

A model needs to be general, i.e., refer to multiple observations taken together215

rather than represent each observation separately. Collins et al. [30] argue that,

in order to generalise, analysts should be able to perceive multiple data items

together and conceptualise them jointly as a meaningful whole. Such a whole

is called a pattern. Collins et al. propose the following definition of a pattern:

“a representation of a collection of items of any kind as an integrated whole220

with specific properties that are not mere compositions of properties of the

constituent items”. This is similar to the definition given in data mining; a

pattern is also defined as a representation rather than an objectively existing

structure.

According to Bertin, understanding of data means “discovering combina-225

tional elements which are less numerous than the initial elements yet capable of

describing all the information in a simpler form” [31, p. 166]. In fact, what is

called “combinational elements” here corresponds to what is usually meant by

9Jo
ur

na
l P

re
-p

ro
of



Journal Pre-proof
a pattern in data: it is a structure formed by multiple elements, and it can be

described holistically without enumerating these elements.230

Perception of patterns from visual representations of data is extensively dis-

cussed in the Colin Ware’s book [32]. Pattern perception involves seeing multi-

ple visual elements (a.k.a. “marks”, in Bertin’s terms) as an integrated whole.

The first attempt to understand this process was undertaken by the Gestalt

School of psychology [33, 34]. Ware discusses the Gestalt “laws” of pattern235

perception and shows how they translate into principles of visualisation design.

The Gestalt laws refer to certain relationships between visual marks, such as

proximity (in the display space), similarity, smooth continuity, symmetry, and

relative size. Visible patterns can emerge due to these relationships. Acknowl-

edging that data patterns are formed by relationships between data elements240

leads to an obvious implication that visual representations can effectively and

correctly reveal patterns existing in data when the relationships between the

marks representing data elements correspond to the relationships between the

data elements.

In our theoretical model, we strive to give definitions that can underpin the245

main principles of visualisation. We attach high importance to relationships

between data elements as pattern-forming forces and to the phenomenon of ab-

straction, which is involved in perception and representation of multiple related

data elements as a unified whole.

Our use of the term ‘theoretical’ corresponds to the definition of a theory as250

“a set of interrelated constructs (concepts), definitions, and propositions that

present a systematic view of phenomena by specifying relations among variables,

with the purpose of explaining and predicting the phenomena” [35, p.11].

We do not pretend that our model can describe everything in visual analytics.

Visual analytics is concerned not only with finding patterns in data but also255

with other analytical activities, such as search for specific information (e.g.,

clues to identify a criminal) or inspection of the performance of a computer

model. Our theoretical model refers only to the process of finding patterns in

data. It is an important type of analytical activity addressed in a large part of
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the visual analytics research. We believe that this research will benefit from the260

clarification of the concept of pattern in data.

3. Distribution

We begin presenting our theoretical model with defining and explaining the

concept of distribution. We describe relationships within data components and

establish a formal notation of the introduced concepts. This provides us with265

the necessary background to define and discuss patterns.

3.1. Definition of data distribution

Among multiple existing definitions of the term “distribution”, the following

ones express the meaning relevant to our model: “the position, arrangement,

or frequency of occurrence (as of the members of a group) over an area or270

throughout a space or unit of time” [36] and “the way that something is shared

or exists over a particular area or among a particular group of people” [37].

An important part of these definitions is that something is positioned or spread

over or throughout or among something else; the latter may be, in particular,

space, time, or a group of people.275

We shall build on these definitions to generate a more specific definition of

distribution of data, or data distribution. A data distribution involves at least

two components of data. For example, in the VAST Challenge 2011 dataset [38],

the data records describing the microblog messages include the following com-

ponents: microblog users (denoted by identifiers), times when the messages were280

posted, locations from where they were posted, and message texts. Besides, the

data provided for the challenge include a map of the territory and daily weather

records specifying, in particular, the wind speed and direction. Furthermore,

since message texts consist of words, the set of the words is also a component

of the data. To solve the challenge, analysts need to consider the distributions285

of the messages and of the words over the time and space, and the distribution

of the wind parameters over the time.
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This example demonstrates that data components are usually sets consisting

of certain elements: people, messages, words, spatial locations, time moments,

particular values of wind parameters, etc. Data describe connections between290

elements of different components. Thus, each message text is connected to a

particular person, time moment, spatial location, and words that are used in

the text. Each word is connected to the messages in which it is used. Each time

moment is connected to the messages that were posted at that moment, each

spatial location is connected to the messages posted from it, and so on.295

A data distribution consists of connections between elements of two or more

structural components of data. A data component is a set of items of the

same kind, e.g., a set of entities, or attribute values, or category labels, or

references to places or times. Data components are typically represented by

fields of database records or by table columns. Data components involved in300

a distribution are not treated semantically equally. Each time when we talk

about a distribution we say that one component (or a group of components)

is distributed over another component. It means that the second component

is treated as a kind of base for the first component. Generally, the base of a

distribution must not necessarily be space, time, or a group of people, as stated305

in the definitions from the dictionaries, but it can consist of elements of any

nature (these may also be compound elements consisting of several simpler ones).

For example, we can consider the distribution of the words over the messages,

in which the base is the set of messages. When we consider the distribution

of the messages over space and time, the base consists of compound elements310

comprising spatial locations and time moments.

The concept of distribution assumes that the elements of the base are re-

garded as a kind of positions that can be occupied by elements of another com-

ponent, or as holders of elements of another component. Thus, space and time

provide positions for messages, messages can be seen as positions for words, or315

as holders of words, people can be seen as holders (i.e., owners) of the messages

they have produced, time units can be seen as holders of particular values of

wind parameters, etc.
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We shall use the term overlay of the distribution to refer to a set of elements

that are connected to positions or holders in the base: in a metaphorical sense,320

this set is laid over the base. Like the base, the overlay may consist of any

kind of elements, including compound elements. The elements of the overlay

are instances (occurrences) of elements of some data component that is distinct

from the base. This data component can be called the domain of the overlay.

Figure 1: Simple examples of distributions. Top left: a distribution of symbols over a grid

in a tic-tac-toe game. Top right: a distribution of colours over a set of apples. Bottom: a

distribution of the shapes of the moon over time.

Let us illustrate the concepts of distribution, base, and overlay by simple325

examples shown in Fig. 1. In the tic-tac-toe game, players create distributions

of crosses and noughts (X and O symbols) over a 3 × 3 grid (top left). Here,

the base is the grid; the cells are the elements of the grid, which can serve as

positions to the symbols. The overlay is the set of instances of the symbols X

and O placed in particular positions in the grid. The domain of the overlay is330

the set of symbols {X, O}.
The upper right part of Fig. 1 demonstrates a distribution of colours over

a set of apples. Here, the set of apples is the base of the distribution. The

apples are holders of different colour instances, which make the overlay of the

distribution. The domain of the overlay is the set of colours {yellow, orange,335

red, green}.
The lower part of Fig. 1 shows a distribution of the moon shapes over time.
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Here, the time is the base of the distribution, and the overlay consists of different

shapes of the moon arranged in a particular way. The illustration in Fig. 1 does

not show the full distribution. The base of the full distribution includes all340

intermediate dates between those specified in the picture and also extends to

the past and to the future beyond the period shown. The overlay of the full

distribution includes instances of all intermediate shapes between the shapes

shown in the picture. The domain of the overlay is the set of all possible unique

shapes the moon can have.345

Data distributions are analysed in order to understand relationships between

components of data, for example, the relationship between the moon shape and

the course of time. It is mostly a matter of common sense or convenience which

of the data components should be viewed as the base and which as the overlay.

Thus, it is more natural to see the time as the base for the moon shapes than350

the set of possible moon shapes as the base for different dates and times. It is

also more natural to consider the grid in the tic-tac-toe game as the base for the

X and O symbols than the other way around. As apples can be easily treated

as holders of colours, it is natural to see the set of apples as the base for the

colours and less natural to consider the set of colours as the base for the apples.355

The examples in Fig. 1 illustrate an important property of the base of a

distribution: it consists of unique elements. This means that, when a data

component is chosen as a distribution base, the base is composed of a single

occurrence, or instance, of each element of this component. The overlay is

formed by the elements from another data component that are connected to360

each element of the base. It may happen that the same element of the other

component is connected to more than one element of the base. Hence, the

overlay will contain multiple instances of the same element: multiple cross and

nought symbols, multiple instances of the same colour, re-occurrences of the

same moon shape, etc. It may also happen that two or more overlay elements365

are connected to the same element of the base, as two colours can be connected

to the same apple. The tic-tac-toe example demonstrates that some elements

of the base may have no connected elements of the overlay.
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Let us summarise our discussion in the following definition of a data distri-

bution:370

Definition 1: Let SB and SΩ be two sets, and let the elements of SB be treated

as as positions or holders of elements from SΩ. The distribution of SΩ over

SB is the set of all connections between elements of SB and elements of SΩ

that are specified in data, i.e., D(SΩ/SB) = {(eB , eΩ)|eB ∈ SB , eΩ ∈ SΩ}.
The set SB is called the base of the distribution. The set of all instances375

of elements from SΩ that occur in D(SΩ/SB) in connection with elements of

SB is called the overlay of the distribution, and the set SΩ is the domain of

the overlay. The elements of SΩ are called prototypes with respect to their

instances occurring in the overlay.

We shall use the symbol B or B(D) to denote the base of a distribution and380

the symbol Ω or Ω(D) to denote the overlay. According to Definition 1, B = SB ,

whereas Ω is not the same as SΩ. Ω may contain multiple instances of the same

element of SΩ, while some other elements of SΩ may be absent in Ω. Since each

overlay element has its prototype in the overlay domain, it can be said that

overlay elements are linked to their prototypes by instantiation relationships.385

We shall call the set of these instantiation relationships the composition of the

overlay.

Definition 2: The composition of the overlay of a data distribution is the

set of instantiation relationships between the elements of the overlay and their

prototypes in the domain of the overlay.390

Overlay composition can be described in terms of the number of instances

of each element of the overlay domain. Thus, the overlay composition in the

tic-tac-toe game (top left of Fig. 1) consists of four instances of the symbol

X and three instances of the symbol O. The overlay composition in the set of

coloured apples (top right of Fig. 1) includes five instances of the yellow colour,395

three instances of red, two instances of orange, and one instance of green. In

the distribution of the moon shapes (Fig. 1, bottom), the overlay composition

includes two instances of the “new moon” shape (i.e., dark disc) and one instance
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of each other shape.

3.2. Within-component relationships400

Within any data component, elements may be linked by relationships. There

are two major groups of relationships: qualitative and metric. Qualitative re-

lationships can be represented by logical statements (predicates) saying if a

relationship exists or not. Examples are relationships of equivalence, order-

ing, adjacency, or kinship. Metric relationships can be represented by numeric405

values. Examples are relationships of distance, similarity, or intensity of com-

munication.

Some of existing relationships may be intrinsic, belonging to the very nature

of a data component. For example, there are intrinsic relationships of order-

ing and distance between elements of a temporal component, i.e., between time410

units, and intrinsic relationships of distance between elements of a spatial com-

ponent, i.e.., spatial locations. Intrinsic relationships are usually not represented

in data explicitly, but, when needed, explicit representations can be obtained in

well-known ways. Non-intrinsic qualitative relationships, such as kinship, need

to be represented explicitly in data. Non-intrinsic metric relationships, such as415

similarity, need to be computed by appropriate methods.

Definition 3: The set of all relationships existing between elements of a data

component is called the organisation of this data component.

For example, the organisation of the set of grid cells in the tic-tac-toe game

includes qualitative relationships of adjacency, horizontal ordering, and vertical420

ordering. The set of symbols {X, O} has no relationships except identity: X=X,

O=O, X 6=O. The set of apples and the set of colours on the top right of Fig. 1

also have only identity relationships between their elements. The organisation

of the set of dates in Fig. 1, bottom, includes qualitative relationships of linear

ordering and metric relationships of distance (i.e., time difference) between the425

elements. The organisation of the set of moon shapes includes relationships of

ordering and distance between the sizes of the visible parts of the moon and
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same-different relationships between the sides (right or left) of the visible parts

in the moon disc.

Definition 3 relates to the Bertin’s concept of the level of organisation, which430

may be qualitative (nominal), ordered, or quantitative. Each level implies par-

ticular types of relationships between data elements: the qualitative level has no

ordering and no metric relationships, the ordered level has ordering relationships

but no metric relationships, and the quantitative level implies the existence of

both ordering and metric relationships. However, there may be components that435

have metric relationships but no ordering (e.g., 2D or 3D space), and there may

be components with partial ordering relationships (e.g., ancestor-descendant re-

lationships among people). Therefore, we introduce a more general definition

of organisation as a set of all existing relationships between elements. Since all

possible combinations of different types of relationships cannot be arranged into440

a single sequence of levels, we use the term “organisation” rather than “level

of organisation”. Our definition also corresponds to the term “mathematical

structure” (of data) used by Kindlmann and Scheidegger [39].

3.3. Aspects of a data distribution445

In a data distribution, the elements of the overlay get arranged according to

the organisation of the base. For example, the instances of the X and O symbols

in the tic-tac-toe game get arranged according to the relationships of adjacency,

horizontal ordering, and vertical ordering between the grid cells in which they

have been put. The colour instances in Fig. 1, top right, are arranged by the450

identity relationships between the apples holding them: two colour instances

have either a common holder or distinct holders. The instances of the moon

shapes in the lower part of Fig. 1 are arranged in a row by the ordering and

distance relationships between their temporal positions. Let us introduce a

formal definition of the overlay arrangement:455

Definition 4: Arrangement relationships between elements of the over-

lay of a data distribution are the relationships between the corresponding ele-
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ments of the base. The arrangement of the overlay of a data distribution is

the set of the arrangement relationships between the overlay elements.

In addition to arrangement relationships, overlay elements are linked by the460

relationships pertaining to the organisation of the overlay domain SΩ, i.e., by

the relationships that exist between the prototypes of the overlay elements. Let

b1 and b2 be two elements of the distribution base B, and let o1 and o2 be the

elements of the overlay Ω connected to b1 and b2, respectively. The domain-

pertinent relationships between o1 and o2 can be treated as the way in which465

the overlay varies between position or holder b1 and position or holder b2. It

is important to note that the domain-pertinent relationships between o1 and o2

are considered in connection to their positions in the base b1 and b2 and the

relationships existing between these positions, or, in other words, in connection

to the arrangement relationships between o1 and o2 (Definition 4).470

Definition 5: The variation of the overlay of a distribution with respect

to the base consists of the domain-pertinent relationships between the overlay

elements (i.e., relationships belonging to the organisation of the overlay domain)

considered in connection to the arrangement relationships between the overlay

elements.475

Generally, base elements may contain or hold multiple elements from the

overlay domain SΩ or no such elements. The variation of the overlay with

respect to the base includes relationships between any two instances of the ele-

ments of the overlay domain, either having distinct holders or the same holder.

The relationships of having distinct or same holders are a part of the overlay480

arrangement; hence, Definition 5 is applicable. To deal with cases when base

elements have no connected overlay elements, we shall assume that the overlay

domain includes a special null element denoting the absence of any other el-

ement. The null element has no relationships to the other elements except of

being not identical to any other element.485

The composition, arrangement, and variation of the overlay of a data dis-

tribution will be called the aspects of the distribution. The concept of a data
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Overlay

Base

Connections

Overlay domain relationships 
(organisation) – D3

Base relationships (organisation) – D3

Arrangement of overlay 
elements according to 
base relationships – D4

Overlay variation – D5

Overlay domain

Instantiations
Overlay composition – D2

Figure 2: A schematic illustration of the definitions of a data distribution and its aspects.

The colours distinguish the composition (purple), arrangement (blue), and variation (red) of

the overlay. The labels D2 to D5 refer to the definitions from 2 to 5.

distribution and its aspects are schematically illustrated in Fig. 2.

Let us introduce a formal notation for the aspects of a distribution, which

will help us to clarify what they are made of and how they are related to each490

other. We already use the symbol B to denote the distribution base and Ω

for the overlay. The notation CΩ will refer to the composition of the overlay

(Definition 2). The overlay composition is determined by the existing connec-

tions of overlay domain elements to base elements (Definition 1). To reflect this

dependency, we shall use the expression CΩ(B).495

The symbol Or will denote the organisation of a set (Definition 3). The

expression OrB refers to the organisation of the base and OrΩ to the organisa-

tion of the overlay, which is the same as the organisation of the overlay domain.

The symbol ArΩ will refer to the arrangement of the overlay elements according

to the organisation of the base (Definition 4). ArΩ is imposed by OrB , i.e. it500

is a function of OrB . To emphasise this dependency, we shall denote the ar-
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rangement of the overlay as ArΩ(OrB). In the tic-tac-toe example, ArΩ(OrB)

consists of the particular placements of the cross and nought symbols in the

grid cells. For the apples, ArΩ(OrB) consists of the particular colouring of

each apple, including both the unicolour and bicolour variants. For the moon505

shape, ArΩ(OrB) is the particular sequence of the instances of the moon shapes

corresponding to the sequence of the days.

The variation of the overlay, i.e., the relationships between the overlay ele-

ments within the arrangement (Definition 5) can be represented by the notation

V arΩ(ArΩ(OrB), OrΩ). This means that the variation exists within a specific510

arrangement ArΩ(OrB) and involves relationships from the overlay organisation

OrΩ. In the tic-tac-toe example, the variation is the manner in which the cell

content changes as the grid is traversed. In the example with the apples, the

variation consists of the similarities and differences between the apples in terms

of their colouring. In the example with the moon shapes, the variation is the515

manner in which the moon shape changes from day to day along the time, i.e.,

how each shape in the succession relates to the previous one.

The formal notation reflects the asymmetric roles of the base and overlay

of a distribution: while the base is considered as an independent component,

the overlay is composed and arranged according to the base. The composition520

CΩ(B) is the instantiation relationships between instances connected to the base

elements and their prototypes. The arrangement ArΩ(OrB) is the structure

made of the base-specific relationships between the positions or holders of these

instances. In turn, the variation of the overlay V arΩ(ArΩ(OrB), OrΩ) depends

on the arrangement and, through the arrangement, on the organisation of the525

base.

Using these concepts, we can formulate the general task of analysing a

distribution as follows: given a data distribution D(SΩ/SB), characterise the

composition, arrangement, and variation of the overlay, i.e., CΩ(B), ArΩ(OrB),

and V arΩ(ArΩ(OrB), OrΩ).530
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4. Patterns

4.1. Patterns in a distribution

Usually, the purpose of analysing a distribution is to understand how two or

more data components are related in general, i.e., as wholes. For example, the

distribution of the symbols over the tic-tac-toe grid in Fig. 1, top left, would535

be examined to see whether there is a linear arrangement of three instances

of the same symbol, irrespective of the specific positions of the symbols. The

distribution of the colours over a set of apples (Fig. 1, top right) could be

analysed for estimating the probabilities of finding apples of different colours

rather than for ascertaining the colour of each particular apple. The temporal540

distribution of the moon shapes (Fig. 1, bottom) would be studied to understand

how the moon shape changes over time in general, regardless of particular dates.

Data specify connections between individual elements of components. We

shall thus call these connections elementary. In contrast, relationships between

components as wholes will be called synoptic. Synoptic relationships are not545

mere compositions of elementary connections but have a higher level of general-

ity. Understanding synoptic relationships based on elementary connections re-

quires abstraction, which means that multiple elementary connections are united

and considered all together.

How can elementary connections be unified? What is the force that can glue550

them together? It is the relationships between the elements within the data

components, i.e., the relationships that belong to the internal organisation of

the components. Let us illustrate this statement using the simple examples from

Fig. 1.

On the top left, the organisation of the tic-tac-toe grid (i.e., the set of the555

spatial relationships between the cells) allows us to unite individual cells into

horizontal, vertical, and diagonal lines. Simultaneously, the equivalence rela-

tionships between the symbol instances allow us to unite multiple instances of

the same symbol in a group. The combination of the relationships between the

cells and between the symbol instances allows us to consider groups of cells with560
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equivalent symbol instances as certain shapes. In the set of the apples, there

are only identity relationships between the apples, i.e., each apple is distinct

from all others. This does not give an opportunity for unification. However,

the colour instances can be grouped according to the equivalence relationships,

and the groups can be characterised in terms of their sizes (i.e., colour frequen-565

cies) and intersections. In our example, the group of the instances of the yellow

colour intersects with the groups of the instances of the red and orange colours.

At the bottom of Fig. 1, the ordering relationships between the time steps

unite all time steps into a single time line and, simultaneously, arrange the

different moon shapes into a succession. Then, the relationships between two570

neighbouring shapes in the succession can be seen as the change from the earlier

to the later shape. If similar changes occur successively, they can be unified and

considered all together as a trend. Thus, if we characterise the moon shape in

terms of the visible fraction of the whole moon disc, we can unite the shapes of

the first two weeks into the trend of increase of the visible fraction from 0 to575

100% and the shapes of the following two weeks into the trend of decrease of

the visible fraction from 100 to 0%. It is also possible to consider the succession

of the changes in more detail, e.g., by taking into account on which side (right

or left) of the moon disc the changes happen.

In all these examples, we used relationships between elements of data com-580

ponents for unifying multiple elements and multiple elementary connections.

We described the objects resulting from the unification as shapes, groups, or

trends, without referring to the elementary connections anymore; hence, we per-

formed the operation of abstraction. According to the common understanding,

the objects that we have obtained are examples of different kinds of patterns ex-585

isting in data. Hence, a pattern in data is, generally, a combination of multiple

connections and relationships between elements of data components such that

there exists an operation of abstraction allowing to treat all these connections

and relationships together as a single object. Given the principal possibility

of considering one data component as the base of a data distribution and the590

other(s) as the overlay domain(s), we can use the previously introduced concepts
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to formulate the definition of a pattern in a data distribution:

Definition 6: A pattern in a data distribution is a subset of the rela-

tionships involved in the composition, arrangement, or variation of the overlay

over the base such that there exists an operation of abstraction allowing to treat595

this subset as a unified whole.

We emphasise that a pattern consists of relationships, not of elements.

Therefore, the same pattern (i.e., the same combination of relationships) may

occur in data multiple times so that each occurrence connects different elements.

For example, the pattern “three equal symbols next to one another” may oc-600

cur several times in one tic-tac-toe game, and it may connect either crosses or

noughts. Moreover, one and the same pattern may occur in different datasets

and even in data of different nature. Thus, the pattern “three equal symbols

next to one another” may also occur in a text or in musical notation. The

groups of elements from the base and from the overlay that are connected by a605

pattern will be called the base and the overlay of the pattern, respectively.

Definition 7: The base of a pattern is the subset of the elements from the

base of the overall distribution whose relationships and connections contribute

to the pattern. The overlay of a pattern is the subset of the elements from

the overlay of the distribution that are connected to the base of the pattern.610

We shall use the notation β and ω to refer, respectively, to the base and

overlay of a pattern; β ⊆ B, ω ⊆ Ω. Accordingly, the expressions Cω(β),

Arω(Orβ), and V arω(Arω(Orβ), Orω) denote the composition, arrangement,

and variation of the overlay of the pattern, which are different aspects of a

pattern.615

Definition 6 implies that patterns objectively exist in data. A pattern is not

a product of observation or computation, it is a combination of relationships

and connections that actually exist in data. Observation or computation can

involve an abstraction operation that brings these connections and relationships

together and represents as a unified whole. Hence, the product of observation or620

computation is a representation of a pattern rather than the pattern itself. There
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may be different forms of representation: verbal, symbolic (e.g., a formula),

schematic, etc. The pattern itself does not depend on the representation form

and on the way in which this representation has been obtained.

We shall use the term abstracted pattern to refer to a holistic representation625

of an objective pattern in any form and medium:

Definition 8: An abstracted data pattern is a representation of an objective

pattern as a unified whole regardless of the form, language, and medium of

the representation. An abstracted data pattern may represent the composition,

arrangement, and/or variation of the pattern overlay with respect to the base.630

The concept of an abstracted pattern corresponds to the definition of a pat-

tern in data mining cited in Section 2.5. The set of facts in our case consists

of all connections and relationships between elements involved in an objective

pattern. However, our definition of an abstracted pattern refers not only to

explicit expressions in some languages but also to internal representations con-635

structed in the mind of a human observing objective patterns. The definition of

an abstracted pattern is also consistent with the definition given by Collins et

al. [30]. Unlike these previous definitions, Definition 8 emphasises the existence

of an objective data pattern represented by an abstracted pattern.

The same objective pattern can be described very roughly in a short and640

simple expression or in a more refined and accurate manner using a longer

and more complex expression. The possible expressions differ in their degree

of abstraction: the more details are included, the lower the abstraction. For

example, the expression “increasing trend in the morning” has a higher degree

of abstraction than “increase by factor 1.6 in the interval from 8:00 till 10:00”.645

A synoptic relationship between two or more data components can be un-

derstood and characterised by finding objectively existing data patterns and

representing them by abstracted data patterns. This process is called pattern

discovery.
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4.2. Pattern types650

Patterns can be categorised first of all according to the data distribution

aspects whose relationships are involved in the patterns, i.e., composition, ar-

rangement, and variation. Based on this principle, we distinguish composition

patterns, arrangement patterns, and variation patterns.

Composition patterns can be abstracted into frequency distributions or prob-655

ability distributions (in the statistical sense) of the elements of the overlay do-

main. Composition patterns involve instantiation relationships between overlay

elements and their prototypes (Definition 2) and do not involve any relationships

from the organisation of the base of the data distribution. Relationship from the

organisation of the overlay domain OrΩ may be utilised in the abstraction oper-660

ation applied to a composition pattern. For example, when the overlay domain

consists of numeric values, the ordering and distance relationships between the

values are usually involved in the construction of the frequency or probability

distribution. On this basis, composition patterns can be further categorised as

normal, exponential, left- or right-skewed, long-tailed, fat-tailed, etc.665

Arrangement patterns are formed by relationships between base elements

as signified by the expression Arω(Orβ). Types of arrangement patterns can

be distinguished according to the types of relationships between the base ele-

ments. Thus, the pattern type commonly known as “spatial cluster” refers to

an arrangement of overlay elements by relationships of spatial distance between670

positions in a spatial base. A well-known example is the cholera outbreak in

London in 1854, when John Snow discovered that the deaths from cholera were

arranged into a spatial cluster around the Broad Street. Arrangement patterns

involving relationships of ordering between base elements (such as temporal or-

dering) may refer to the density of overlay elements along the order (high or low675

number of overlay elements corresponding to sub-sequences of consecutive base

elements) and existence of gaps (positions in the order without corresponding

overlay elements). When the base is time, the density of the overlay elements

is usually referred to as temporal frequency.

Variation patterns involve relationships both from the organisation of the680
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base (incorporated in the overlay arrangement) and from the organisation of

the overlay, as signified by the expression V arω(Arω(Orβ), Orω). Consequently,

possible types of variation patterns can be defined according to the types of the

relationships between the base elements and between the overlay elements. For

example, the pattern type known as “trend” involves relationships of linear685

ordering in the base, which arrange the overlay elements in a sequence, and

metric relationships between the elements of the overlay such that the relation-

ships along the sequence can be treated as changes and linked into series of

similar changes.

While there are specific terms denoting particular types of patterns, such690

as trend, peak, plateau, fluctuation, cluster, alignment, etc., the vocabulary of

the existing terms does not fully cover the variety of possible types of patterns.

It may be unfeasible (and not very useful) to enumerate and label all possible

types of patterns. It appears more reasonable to understand the roles of differ-

ent kinds of relationships existing in the base and overlay of a distribution in695

forming patterns. This will allow one to anticipate the types of patterns that

can potentially exist in a given data distribution without the need to know the

terms denoting these pattern types. Our conceptual model introduced in Sec-

tion 3 creates prerequisites for gaining such an understanding. Let us briefly

describe the effects of different relationships.700

Arrangements of overlay elements are formed by relationships existing in the

base of a distribution (OrB). The types of such relations include (but are not

limited to) the following:

• Identity : overlay elements may be arranged in terms of having distinct or

same (identical) holders.705

• Ordering :

– Linear : arrange overlay elements into a sequence.

– Cyclic (e.g., temporal): arrange overlay elements into a succession of

subsequences corresponding to consecutive cycles.
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• Distances: create an arrangement of overlay elements where one element710

can be close to or far from another. The arrangement can be characterised

in terms of the density of the overlay elements: uniform or variable, high

or low, existence of clusters and empty regions, etc.

• Neighbourhood (adjacency): arrange the overlay elements into contiguous

regions.715

• Direction (e.g., spatial): arrange subsets of overlay elements into sequences

similarly to linear ordering relationships.

Relationships existing in the domain of the overlay of a distribution (OrΩ)

are involved in the variation of the overlay over the base. The expression

V arΩ(ArΩ(OrB), OrΩ) signifies that the variation also involves arrangement re-720

lationships between the overlay elements which, in turn, are determined by the

organisation of the base. Hence, the effects of the domain-pertinent relationships

in the overlay need to be considered together with the possible arrangements of

the overlay elements according to relationships in the base, as it is done in the

following list:725

• Identity or equivalence: create groups of identical or equivalent overlay el-

ements, which can be characterised in terms of arrangement with respect

to the base, e.g., contiguous, split into parts, or dispersed. Identical over-

lay elements may re-occur in a linear or cyclic arrangement, be aligned

along some direction, have close positions in the base, etc.730

• Ordering : may (or may not) be related to arrangement with respect to the

base: increase or decrease of the element order along a sequence, regions

with lower- or higher- order elements, etc.

• Distances: realise themselves as amounts of difference or change between

positions in the base and thus create patterns of change: gradual, abrupt,735

moderate, etc.
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• Neighbourhood : may or may not be preserved in an arrangement with

respect to the base, i.e., neighbouring overlay elements may be close or

distant in the arrangement.

• Direction: may or may not be same or similar along a sequence or within740

a region, may consistently change along a sequence, etc.

Data distributions where the base or the overlay domain have distance re-

lationships between the elements may contain outliers. Distance relationships

existing in the base may be responsible for outliers in the overlay arrangement.

An outlier in an arrangement is an overlay element whose position in the base745

(i.e., the base element it is connected to) has a large distance to the positions

of all other overlay elements. For example, a spatial outlier is an overlay ele-

ment located in a spatial base far away from the bulk of the overlay elements.

Distance relationships existing in the overlay may be responsible for outliers in

the overlay variation. An outlier in a variation is an overlay element whose750

prototype in the overlay domain has a large distance to the prototypes of all

other overlay elements. For example, an outlier in a distribution of values of a

numeric attribute over any kind of base is an instance of a value that is much

higher or much lower than all other values instantiated in the overlay.

A question arises: should an outlier be treated as a pattern type? In terms of755

our conceptual model, a pattern consists of relationships, not of elements. Ac-

cordingly, a particular outlying element of an overlay is not a pattern. However,

its large distances to other elements, considered together with much smaller

distances between those other elements, is a pattern. This type of pattern can

be called outlierness, leaving the term “outlier” for applying to elements.760

4.3. Patterns in common types of data

The most common, frequently encountered types of data components include

• discrete entities, as the cross and nought symbols on the top left of Fig. 1

and apples on the top right;
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• time, as the sequence of the days in Fig. 1, bottom, or sequentially ordered765

abstract steps, as the positions of words in a text or genes in a DNA

molecule;

• space: a continuous or discrete set of locations, as the grid cells in Fig. 1,

top left;

• attributes, as the colours on the upper right of Fig. 1 and the moon shape770

characteristics (width and disc side) in the lower part of Fig. 1.

These types have different organisations, i.e., different relationships between

data elements. Sets of discrete entities, by default, have only identity rela-

tionships, i.e., same or distinct, between the elements. Time has ordering re-

lationships and may also have metric distance relationships between the ele-775

ments, i.e., how far in time one element is from another. Space has distance

and/or neighbourhood (adjacency) relationships between the elements. Two-

and three-dimensional spaces (and, more generally, multidimensional spaces)

may also have direction relationships between elements. Attributes may have

different organisations of the value sets, usually called scales of measurement:780

nominal, ordinal, interval, and ratio. These organisations differ in the presence

or absence of ordering relationships and metric relationships of distance and

ratio.

When a set of entities is a base of a distribution, it can create an arrangement

of the overlay elements in terms of being connected to same or distinct entities.785

Such an arrangement may contain patterns of co-occurrence (i.e., some elements

from the overlay base may repeatedly co-occur in connection with same entities)

or exclusion (e.g., some elements never co-occur, or some element never occurs

together with any other element).

When time is a base of the distribution, relationships of linear and cyclic790

ordering and temporal distance between time units create linear and cyclic ar-

rangements of entities or attribute values corresponding (i.e., connected) to these

time units. In a time-based arrangement of entities, there may be such patterns
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as high or low temporal frequency, temporal gaps (absence of entities for a time

period), temporal clusters (groups of temporally close entities), and regular ap-795

pearance of entities (i.e., with equal time intervals in between). For attribute

values distributed over a temporal base, patterns of value variation with respect

to the temporal arrangement are usually of interest. Patterns of temporal varia-

tion, such as trend, periodicity, peak, or plateau, result from the combination of

the time-based arrangement of the attribute values and relationships of order-800

ing and distance between the attribute values themselves. For attributes with

qualitative (categorical) values, such as labels denoting types of entities, there

may be such patterns as re-occurrence of particular value sequences or regular

re-appearance of some values.

Space as a base creates arrangements of entities and attribute values accord-805

ing to relationships of spatial distance, neighbourhood, and direction between

locations. In a space-based arrangement of entities, there may be such patterns

as spatial clusters or regions of high and low density. Space-based arrangement

of attribute values together with ordering and distance relationships between

the values themselves can form such spatial patterns as “hot” and “cold” spots,810

i.e., regions of high and low attribute values, respectively. Spatial trend patterns

involve relationships of spatial direction between spatial locations and relation-

ships of ordering and, possibly, distance, between attribute values. Examples

are increase or decrease from north to south or from centre to periphery.

What has not been discussed so far is the types of components in network,815

or graph data. In terms of our conceptual model, such data include two com-

ponents: the set of all possible pairs of nodes and the set of links connected

to some node pairs. The organisation of the set of node pairs in an undirected

graph consists of the adjacency relationships: two pairs are adjacent if they

have a common node. In a directed graph, there are relationships of adjacency820

and partial ordering: pairs (a,b) and (b,c) are adjacent, and the former pre-

cedes the latter in the order. The links can be considered as discrete entities

or as values of a binary attribute specifying whether a pair is linked or not.

In a weighted graph, the links with their weights can be treated as values of a
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numeric attribute; the value 0 can signify the absence of a link. If we consider825

the distribution of the links over the set of the node pairs, the latter will be the

distribution base, and the links will make the overlay. The composition of the

overlay is the set of actually existing links. The adjacency and ordering rela-

tionships in the base arrange the links into various structures, such as clusters,

cliques, paths, stars, trees, and cycles. Such structures are usually considered as830

possible types of patterns in a graph. The concept of variation is relevant when

there are some relationships between the links as such. In particular, when the

links are weighted, there are metric relationships of the weight difference.

A graph as a whole can be considered as a base for other data components

whose elements are connected to the nodes or links of the graph. In this case, the835

organisation of the base consists of the relationships represented by the links,

and the elements of the other components are arranged by these relationships.

4.4. Patterns in selected examples of visual data analysis

4.4.1. Cluster and calendar view

This example is based on a well-known paper by van Wijk and van Selow [40].840

The data under analysis consist of two components: time, consisting of hourly

time steps with the total length of one year, and numeric values of the power

demand of a facility for each time step. The analyst wants to understand the

variation of the power demand over time; hence, the time is the base of the

distribution, and the overlay consists of the instances of the values of the at-845

tribute “power demand” recorded in each hour. The organisation of the base

includes several kinds of ordering relationships: linear ordering and orderings

in the daily, weekly, and seasonal cycles. These relationships create a complex

arrangement of the attribute values, which is hardly possible to represent ade-

quately in a single visual display. Therefore, the variation of the attribute values850

with respect to this arrangement is hard to grasp comprehensively using purely

visual means.

The analyst tackles the problem by decomposing it. First, the analyst focuses

on the segments of the overall arrangement corresponding to the daily cycles
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Figure 3: Variation of attribute values over a temporal base with linear and cyclic ordering

relationships is hard to understand from a purely visual representation (source: [40]).

and the respective variation of the attribute values within each day. It can be855

expected that similar patterns of daily variation exist in different days, and this

expectation is supported by the visual display in Fig. 3. The analyst uses a

clustering technique to capture these similarities. The clustering puts days with

similar sequences of hourly attribute values into groups. To see the common

pattern of the daily variation in each group, the analyst aggregates the individual860

value sequences in each group into sequences of the hourly mean values. The

resulting sequences are represented in a line chart, as shown in the right part of

Fig. 4. The horizontal axis represents the linear ordering of the hourly intervals

in a day. The attribute values are represented by vertical positions of points,

and consecutive points are connected by lines. This technique represents the865

variation patterns by the shapes of the lines. It is possible to observe similarities

and differences between the daily patterns corresponding to the clusters. All
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Figure 4: Right: patterns of daily variation are captured by means of clustering. Left: a

calendar view shows the distribution of the daily patterns with respect to the weekly and

seasonal cycles (source: [40]).

but one pattern can be holistically described, e.g., as low values in the night,

steep increase in the morning, plateau during the day, and gradual decrease in

the evening. The patterns mostly differ in the level of the daytime plateau.870

The remaining pattern can be characterised as constantly low values over the

whole day. According to our theoretical model, these patterns are made by the

temporal ordering and distance relationships between the elements (hours) of

the base (time of the day) together with the quantitative difference relationships

between the elements of the overlay (attribute values). The attribute values875

are arranged into sequences by the temporal relationships. The relationships

between the values create the variation along the sequences.

In the next step, the analyst treats the set of extracted daily patterns as

a new component of the data. Each pattern is treated as a single entity. The

analyst studies the distribution of the occurrences of these entities over the880

time. Now, the daily cycle relationships, which are are incorporated in the

daily patterns, do not participate in arranging the overlay elements, i.e., the
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daily patterns. To consider the arrangement and variation of the daily patterns

by the weekly and seasonal cyclic relationships, the analyst creates a calendar

display shown on the left of Fig. 4. The elements of the base, i. e., the days885

of the year in this case, are visually represented by square marks organised

according to the weeks and months. The pattern occurrences are represented

by different colours. The display effectively enables perceptual unification of

closely located marks painted in the same colour, and also unification of the

marks arranged in the rows, the columns, and the monthly blocks. The analyst890

observes repeated weekly patterns, in which the Saturdays and Sundays are

painted in blue and the other days have a different colour. A seasonal pattern

is also noticeable, with the green colour occurring in colder months of the year

and magenta in the summer. There are multiple disruptions of the seasonal

green-magenta pattern by intrusions of other colours, mostly dark brown and895

orange. These disruptions correspond to the differences in the midday value

levels between the patterns.

In this example, visual discovery of variation patterns is supported by dis-

plays in which the relationships between the base elements (OrB) and the cor-

responding arrangements of the overlay elements (ArΩ(OrB)) are represented900

using one or two dimensions of the display space. The variations of the overlay

elements (V arω(Arω(Orβ), Orω)) are represented using either the remaining

display dimension (as in the daily time series display on the right of Fig. 4) or,

in Bertin’s terms, a retinal visual variable, namely, the colours in the calendar

display.905

4.4.2. VAST Challenge 2011 (Mini Challenge 1)

The challenge requires an investigation of the circumstances of an epidemic

outbreak in a fictive city Vastopolis [38]. The data are geographically referenced

microblog messages (further called tweets), some of which include keywords

indicating disease symptoms, such as fever, chills, aches and pains, etc. The910

time span of the data is three weeks from April 30 to May 20, 2011. An analyst

needs to find out when and where the outbreak started and how it developed.
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Here, the data include the following components: set of tweets, set of people,

set of keywords, time, and space. The analyst first selects a subset of the rele-

vant tweets, i.e., those whose texts contain occurrences of keywords indicating915

the disease symptoms. To find out when the outbreak started, the analyst in-

vestigates the distribution of the relevant tweets over time, specifically, how the

tweets are arranged along the time period under study. For this purpose, the

analyst uses a time histogram (Fig. 5), in which the heights of chronologically

ordered bars represent the numbers of the tweets that were posted in each day.920

As expected, the outbreak start is signified by a pattern of sharp increase of the

tweet numbers. This happened in the last three days of the studied period.

Figure 5: The histogram of the tweet posting times reveals a sharp increase of the frequency

of tweets mentioning disease symptoms in the last three days of the time span of the data.

The analyst focuses on these three days, i.e., selects the data from this

time interval for the further analysis. To analyse only the new disease cases,

the analyst discards the secondary tweets posted by the same individuals after925

posting their first messages mentioning the disease symptoms. The analyst uses

map displays to investigate the spatial distribution of the selected tweets in

the three days of the outbreak (Fig. 6). The maps show the arrangements of

the tweets according to the spatial distance and direction relationships between

the locations in the spatial base. On the first day of the outbreak, a dense930

spatial cluster of tweets appeared in the city centre, with some extension in the

eastern direction. On the second day, the cluster in the centre remains but does

not extend to the east anymore. Additionally, two dense clusters, or a single

cluster divided in two parts by a river, appeared in the south-western part of the
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city. On the third day, the south-western cluster almost vanished, as the spatial935

density of the tweets notably decreased, whereas the central cluster preserved.

The different behaviours of the clusters over time suggest that they may

differ by other characteristics. To reveal the differences of the message contents

between the clusters, the analyst studies the respective compositions of the key-

words using word cloud displays, in which word frequencies are represented by940

font sizes (Fig. 7). Observing the differences between the frequency distribution

patterns, the analyst concludes that there were two different kinds of illness: a

flu-like disease in the centre and stomach disorders on the southwest. The lat-

ter appeared one day later than the former. However, the shapes and relative

spatial arrangement of the clusters suggest that the two diseases might have a945

common origin somewhere at a motorway bridge crossing the river.

The analyst extracts the subset of messages posted in the vicinity of the

bridge on the day before the outbreak start, examines the keyword composition,

and finds indications of a truck crash, fire, and spilling of the truck cargo in the

river. The analyst also looks at additional data concerning the weather and950

the river flow direction. The analyst concludes that the smoke from the fire

contaminated the air, which was transmitted by the wind eastwards and caused

the flu-like symptoms, whereas the spilled substance contaminated the water in

the river and caused the stomach disorders downstream along the river.

The analyst compares the spatial distributions of the primary and secondary955

disease-related tweets on the third day (Fig. 8) and observes multiple compact

dense clusters of secondary tweets. Using the background map, the analyst finds

out that most of the clusters are located at hospitals. The analyst examines the

keyword composition of the tweets in these clusters and finds out that the most

frequent keywords from the tweets posted at the hospitals correspond to the960

most frequent keywords that occurred in the primary tweets posted in central-

eastern area. The analyst selects the subset of people who came to hospitals,

studies the trajectories made of their previous tweet locations, and determines

that at least 95% of them had visited the central-eastern area after the truck

accident and before coming to hospitals. This indicates that people with serious965
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Figure 6: The spatial distribution of the primary outbreak-related tweets posted on three

consecutive days.
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Figure 7: The text cloud displays represent the keyword compositions for the central cluster

of tweets (top) and for the cluster on the southwest (bottom).

Figure 8: The spatial distributions of the primary and secondary outbreak-related tweets (red

and blue dots, respectively) on the third day of the outbreak.

medical conditions, most probably, had been infected while being in the central-

eastern area rather than anywhere else.

This example focuses on analysis of data distributions regarding overlay

composition CΩ(B) or arrangement ArΩ(OrB). The arrangement with respect

to time was visualised in a time histogram, where one display dimension was970

utilised to represent the temporal ordering and distance relationships. The ar-

rangements with respect to space were visualised in maps, so that the spatial

relationships existing in the physical space were represented by the spatial rela-

tionships between positions in the display space. The arrangement with respect
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to the composition of the space and time (i.e., the spatio-temporal distribu-975

tion of the tweets in three days of the outbreak) was examined by decomposing

the complex spatio-temporal base into slices along the temporal dimension, i.e.,

consecutive days, and considering the spatial arrangement in each slice.

4.5. Handling distributions with more than two data components

The previous discussions mostly referred to distributions involving two data980

components. Relationships between more than two components can be handled

in two complementary ways: decomposition, i.e., considering the relationships

for each pair of components, and integration, i.e., considering the Cartesian

product of two or more components as a single component. The latter approach

is recommendable when the components have similar organisation, i.e. same985

types of relationships between the elements. Thus, it is quite common to in-

tegrate multiple numeric attributes into an abstract multidimensional space,

which can be considered as a single component. It is also common to treat the

physical space and time as an integrated domain called space-time continuum.

The rationale for the recommendation is that the elements of the integrated990

set will be linked by relationships derived from the relationships existing in the

original sets. Thus, distances between elements of a Cartesian product can be

derived from distances within the original sets, and directions in the integrated

set may be defined as compositions of ordering relationships from the original

sets. If the organisation of the original sets are incompatible, i.e., have no rela-995

tionship types in common, it is harder to derive meaningful relationships in the

integrated set.

Section 4.4 contains examples of decomposition applied when the base of a

distribution is composed of several components (namely, space and time in the

epidemic outbreak example) or has a complex organisation, such as the nested1000

cyclic orderings in the power demand example. In these cases, the distribution

base was decomposed into slices, or segments. In the space-time case, the spatio-

temporal base was decomposed into spatial slices corresponding to time steps

(days). In the case with the temporal cycles, the base was divided into one-day
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segments. The analysts considered the parts of the distribution corresponding1005

to the slices or segments and discovered patterns in these distributions. In

the epidemic outbreak case, the analyst constructed a mental representation

of the whole distribution from the discovered patterns by determining their

relationships. In the power demand analysis, there were too many segments

and respective patterns to deal with; therefore, the analyst used a computational1010

method (clustering) to group the patterns by similarity and represent them by

the average patterns of the groups.

5. Relationships between patterns

A data distribution may contain more than one pattern. Relationships be-

tween two or more patterns existing in the same distribution can be described1015

in terms of the relationships between their bases and between the overlays. Ob-

viously, the compositions of the bases and of the overlays, i.e., the sets of the

elements they consist of, can be linked by general between-set relationships,

such as inclusion and intersection. Besides, when there are specific organisation

relationships, such as ordering and distances, between the elements within the1020

base and/or within the overlay, these relationships can also link patterns. Thus,

regarding the bases, patterns may be arranged in a particular order within the

base, or lie at a certain distance from each other, or be adjacent, etc. For exam-

ple, in Fig. 1, bottom, the trend pattern of the increase of the visible fraction

of the moon is followed by the decreasing trend. In Fig. 6, there are spatial1025

distance and direction relationships between the bases of the spatial clusters.

Regarding the overlays, patterns may be similar or different in terms of

the composition, arrangement and/or variation of the overlay elements. Thus,

in Fig. 7, we see different patterns of the word composition in two subsets of

texts. As mentioned in Section 4.4.2, the word composition pattern in the1030

central cluster of tweets was similar to the pattern in the secondary tweets

concentrated at the hospitals. In Fig. 4, right, the patterns of daily variation

consist of very similar changes and differ only in the highest attribute values.
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Patterns involving sequential arrangement of the overlay element may also be

opposite in terms of their variation, as, for example the increasing trend pattern1035

in the morning and decreasing trend in the evening.

Relationships that exist between patterns unite simpler patterns into more

complex patterns. Thus, the trend patterns of the changes of the moon shape

make together a sequential pattern consisting of the increasing trend following

by the decreasing trend. On a longer time period, there exists a pattern of1040

periodic repetition of the same sequential pattern, i.e., it consists of multiple

similar sequential patterns following one another. Similarly, the daily variation

patterns in Fig. 4, right, are composed of shorter patterns of the night low

values, morning sharp increase, daytime plateau, and evening gradual decrease.

The calendar display on the left of Fig. 4 demonstrates how the daily patterns1045

are organised into weekly and seasonal patterns.

These examples are consistent with the statement of Resnik [3] who said

that the premier relationships among patterns are structural similarity and

structural containment. Let us discuss these and other possible relationships in

terms of our definitions.1050

5.1. Similarity

Definition 9: Two or more objective patterns are similar if they can be repre-

sented by the same abstracted pattern.

For example, each curve in the plot in Fig. 4, right, is an abstracted pattern

representing multiple objective patterns of daily variation of the power demand.1055

The concept of pattern similarity does not imply that patterns need to be

in the same distribution, or in distributions with a common base or a common

overlay, or involve occurrences of the same elements. It is only essential that

patterns involve the same relationships. For example, the daily patterns of the

variation of the power demand in Fig. 4 may be similar to the daily patterns1060

of the variation of the amount of traffic in a city, or the number of employees

present at their working places, etc.
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In Fig. 8, there are multiple patterns of spatial arrangement that can be

represented by the same abstracted pattern “dense compact spatial cluster”;

hence, all these patterns are similar.1065

As we discussed, abstracted patterns representing the same objective pattern

may differ in the degree of abstraction. This means that the similarity between

objective patterns may be dependent on the degree of abstraction in representing

them. Thus, all curves in Fig. 4, right, except the blue one, can be considered

similar because they can be represented by a common abstracted pattern “low1070

values in the night followed by sharp increase in the morning, then plateau with

small fluctuations during the daytime, followed by a gradual decrease to the

night low values”. However, if the rates of the morning increase and evening

decrease are taken into account, the curves are different.

5.2. Containment1075

Definition 10: An objective pattern X includes, or contains, an objective

pattern Y , denoted Y ⊂ X, when the base of X includes the base of Y : β(Y ) ⊂
β(X). The pattern Y is called a sub-pattern of X, and X is a super-pattern of

Y .

We have had already many examples of containment relationships. Thus,1080

the pattern of the variation of the moon shape contains the trend patterns of

the increase and decrease of the visible area of the moon. The daily variation

patterns in Fig. 4, right, contain sub-patterns of uniformly low values, rapid

growth, high plateau, and decrease. The weekly and seasonal patterns in Fig. 4,

left, contain daily sub-patterns. The south-western spatial cluster in Fig. 6,1085

centre, contains two sub-clusters separated by the river.

5.3. Repetition

In a distribution, there may be two or more similar patterns with non-

intersecting bases. In such a case, it can be said that some pattern repeatedly

occurs in the distribution, and this repetition itself is a pattern. More specifi-1090

cally:
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Definition 11: A repetition pattern is a super-pattern containing two or more

similar sub-patterns with non-overlapping bases together with relationships ex-

isting between the pattern bases.

For example, a daily variation pattern in Fig. 4, right, contains two instances1095

of a pattern of uniformly low values, one at the beginning and one at the end of

the day. On the left of Fig. 4, we see patterns of multiple repetitions of several

daily patterns, as well as multiple repetitions of weekly patterns composed of

five consecutive repetitions of one daily pattern followed by two repetitions of

another daily pattern. Figure 8 exhibits a spatial repetition pattern containing1100

multiple dense clusters of outbreak-related tweets located around hospitals.

A repetition pattern can be called regular if the organisation of the dis-

tribution base includes distance relationships between the elements, and the

distances between the bases of similar patterns are (approximately) equal. If

the base organisation also includes ordering relationships, a pattern of regular1105

repetition can be called periodic. Thus, the distribution in Fig. 4, left, contains

a pattern of periodic repetition of the weekend pattern of daily variation, which

is represented by blue colour. Besides, there are sub-patterns with periodic rep-

etition of particular weekly patterns, sometimes with small disruptions. The

variation of the moon shapes considered on a longer time period than shown in1110

Fig. 1 is also periodic.

5.4. Cross-overlay relationships

Not only patterns that exist in the same distribution can be linked by rela-

tionships but also patterns existing in two or more distributions with a common

base. More specifically, relationships can exist between the bases of the patterns,1115

and such relationships may be quite important. They may hint at correlations

or even causal relationships between phenomena or events. Potentially related

patterns may have the same or overlapping bases, or there may be a particular

relationship (such as a temporal lag) between the pattern bases.

Definition 12: Cross-overlay relationships between patterns existing in dis-1120

tributions of distinct overlays over a common base consist of relationships be-

43Jo
ur

na
l P

re
-p

ro
of



Journal Pre-proof
tween the bases of the patterns.

For example, the spatial pattern of the repeated dense clusters of outbreak-

related tweets visible in Fig. 8 is related to the pattern of the spatial distribution

of the hospitals in Vastopolis, as the base of each cluster includes the position1125

of one hospital. This relationship indicates that many infected people came to

hospitals. Other examples of cross-overlay relationships are those between the

south-western dense cluster of tweets and the river position (the spatial base of

the cluster overlaps with the spatial base of the river), between the central dense

cluster and the wind direction at the time of cluster emergence (the temporal1130

base of the cluster coincides with the temporal base of the pattern of the western

wind), and between the spatial position and time of the track crash event and the

spatial positions and times of both clusters. The latter example demonstrates

spatial and temporal shifts between the pattern bases.

6. Use of patterns in further data analysis1135

One of the benefits of having a clear definition of a pattern is the possibility

to define in a systematic way various operations that can be applied to patterns

in the course of data analysis. Consequently, designers of systems for data

analysis can implement system functions and interaction techniques supporting

these operations.1140

In accord with the model building view [29], discovered patterns are in-

tegrated in an overall model of the analysis subject, and this model is used

for description, prediction, and/or decision making. Here we do not consider

these final uses of analysis outcomes but discuss how discovered patterns can

be utilised in the further data analysis. We begin with considering specific ex-1145

amples and then use our conceptual model to define in a systematic way the

possible actions that can be applied to patterns or their constituents in the

process of analysis.
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6.1. Specific examples of pattern use

In section 4.4.1 and Section 4.4.2 we described two examples of visually1150

analysing data. Let us look how analysts in these examples used the patterns

they had discovered.

E1: In Section 4.4.1, several repeating patterns of daily variation of the

power demand discovered by means of cluster analysis (Fig. 4, right) were con-

sidered as elements of an overlay set distributed over a base consisting of the1155

days of the year. The further analysis was applied to the distribution of these

patterns over this base (Fig. 4, left). This is the most obvious example of ap-

plication of further analysis steps to discovered patterns.

Section 4.4.2 provides the following examples. E2: After seeing the pattern

of high increase of the number of disease-related tweets in the last three days,1160

the analyst focused the further analysis on these three days (Fig. 5). E3: The

analyst selected the tweets that formed the increase pattern in time and consid-

ered their distribution in space (Fig. 6). E4: After detecting two dense spatial

clusters of posted tweets (Fig. 6, centre), the analyst considered and compared

the keyword compositions of the respective messages (Fig. 7). E5: Observing1165

particular spatial relationships between the two clusters, the analyst came to the

hypothesis of a common reason and origin of both and inferred the likely place

and time of the event that might cause the appearance of these clusters. E6:

The analyst compared the shapes of the clusters and their positions in space and

time (Fig. 6, top and centre) with the spatial position and flow direction of the1170

river and with the wind direction at the time of the cluster emergence and drew

conclusions concerning the disease transmitting mechanisms. E7: Analysing the

spatial distribution of the secondary outbreak-related tweets posted on the last

day, the analyst noticed a pattern of repetition of compact dense clusters and

found out that these clusters were located around hospitals (Fig. 8). E8: Com-1175

paring the keyword compositions of the tweets posted at the hospitals, in the

central-eastern area, and in the south-western area, the analyst observed similar

frequency patterns in the two former compositions. E9: The analyst selected

the subset of people who came to the hospitals, studied the spatial relationships
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of their previous tweets to the central-eastern and south-western areas, and1180

thereby ascertained that most people had previously visited the central-eastern

area and, most probably, had been infected while being there.

These examples demonstrate the main purpose of pattern discovery in visual

analytics: patterns are involved in analytical reasoning; analysts use them to

make hypotheses and draw conclusions. This main use of discovered patterns is1185

supported by interactively performed analytical operations, such as selection,

extraction of connected elements from other data components, aggregation, and

unified representation. Our theoretical model allows us to define the set of

possible analysis operations on patterns in a systematic manner.

6.2. General analysis operations on patterns1190

According to our model, a pattern has its base β and overlay ω, which are

subsets of the base B and overlay Ω of the overall data distribution. The internal

contents of a pattern is connections and relationships between the elements of

its base and its overlay (Definition 6). The base and overlay elements may also

have other connections and relationships, external with respect to the pattern.1195

Analytical operations can be applied to the internal pattern contents or exploit

the external connections or relationships.

Operations on internal contents of individual patterns:

• Characterise pattern contents: derive (in particular, computationally)

synoptic characteristics of a pattern from the elements of its base and1200

overlay and their relationships, e.g., the number of elements in a spatial

cluster and their spatial density.

• Aggregate a pattern: represent a pattern as a single element of data (as in

E1).

• Refine a pattern: divide β or ω into subsets (e.g., the outbreak-related1205

tweets into primary and secondary), investigate and characterise the parts

of the overall data distribution including the elements of each subset and

the connected elements of the other component.
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Operations on comparing contents of several patterns:

• Compare patterns in terms of relationships they include; e.g., compare1210

daily variation patterns in E1, compare word frequency patterns in E4

and E8.

• Group patterns by similarity of their contents; e.g., create clusters of sim-

ilar daily patterns in E1.

• Represent similar patterns by a common abstracted pattern and treat each1215

pattern as an instance of this abstracted pattern (E1).

Operations using relationships of β and ω to external elements of B and

Ω:

• Determine relationships of a pattern to the rest of the distribution, e.g.,

determine the relative time of the tweet number increase pattern in E21220

and the amount of the increase with respect to the average number.

• Determine relationships between patterns in the same distribution, e.g.,

between spatial clusters of tweets (E5).

• Unite patterns into compound patterns (super-patterns), e.g., unite the

compact dense clusters of tweets posted around the hospitals (Fig. 8) and1225

use them all together, as in E8 and E9.

Operations using connections of base or overlay elements to elements

of other components:

• Extract elements of other components connected to the elements of the

pattern base or overlay, e.g., extract spatial locations of the tweets in E3,1230

words of the messages in E4 and E8, people who posted the tweets in E9.

• Characterise a pattern using elements of other components, e.g., charac-

terise spatio-temporal clusters of tweets in terms of keyword occurrences

(E4, E8).
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• Determine cross-overlay relationships of patterns in a distribution of a1235

component Ω1 over a base B to patterns or elements of the distribution

of another component Ω2 over the same base B (E6, E7).

This section emphasises that discovery of distribution patterns is a part of

an analytical workflow, in which the patterns that have been discovered are used

in various ways in reasoning and further analysis. This emphasis is specific to1240

visual analytics, whereas data mining, statistics, and other disciplines develop-

ing techniques for data analysis are primarily concerned with pattern discovery

and, possibly, interpretation but not with the further use.

7. Discussion of model implications

7.1. Summary of the model1245

The definitions and statements we have formulated earlier can be briefly

summarised as follows:

• A data pattern is a combination of relationships between connected ele-

ments of two or more data components. Elements of one of the components

make the pattern base, the remaining elements make the overlay. The re-1250

lationships between the overlay elements are considered in connection to

the base and to relationships existing between the base elements. A pat-

tern does not include its base or overlay elements; it only includes the

system of relationships between the elements.

• An objectively existing data pattern can be represented and treated as1255

a single object. Any such representation is called an abstracted pattern.

Similarity of objective patterns means the possibility to represent them

by the same abstracted pattern.

• Patterns may be linked by containment or intersection relationships be-

tween the sets of their base and/or overlay elements as well as by rela-1260

tionships made from elementary relationships between the base or overlay

elements. Patterns linked by relationships form composite patterns.
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• Once discovered, patterns can be utilised in the further data analysis

through applying interactive analytical operations to their internal con-

tents and external relationships and connections.1265

Let us now discuss the meaning of this model for the visual analytics science

and practice.

7.2. Need for pattern discovery

Understanding relationships among data components is one of major general

tasks for which visual analytics techniques are applied. A visual analytics pro-1270

cess often aims at building a model (particularly, a mental model in the analyst’s

mind) of some subject of analysis, and the model needs to represent relationships

between components (aspects) of the subject in a generalised way [29]. The re-

quirement of the generality means that multiple connections between individual

elements of data need to be unified.1275

As we have explained in this paper, unification of multiple elementary con-

nections is possible owing to relationships that exist between elements within

data components. These relationships unite multiple elements and elementary

connections into structures that can be considered and represented holistically.

Such structures are usually called patterns. Hence, general relationships between1280

components of data and/or analysis subject can be understood and modelled

by discovering patterns in data distributions. Therefore, pattern discovery can

be regarded as a fundamental operation in visual analytics processes.

There are two approaches to pattern discovery: computational and visual.

Computational pattern discovery is done by specially designed algorithms. This1285

requires precise specification of patterns to seek, i.e., what relationships must

exist between elements. Besides, parameter tuning is often needed, such as set-

ting the minimal number of elements in a pattern, maximal distance or differ-

ence between elements, minimal frequency, etc. An algorithm will find patterns

matching the given specification and nothing else. Hence, in the context of the1290

general task of gaining an overall understanding of the relationships between

data components, pattern discovery algorithms do not do the full job, as they

49Jo
ur

na
l P

re
-p

ro
of



Journal Pre-proof
will not find potentially relevant patterns beyond the specifications received.

Still, when particular types of patterns are expected to exist in the data, it

makes sense to employ algorithms designed to detect patterns of these types.1295

The possible pattern types can be predicted based on the types of the relation-

ships existing within the data components, as discussed in Section 4.2.

Visual pattern discovery relies on the human capability to see patterns in

visual representations of information. The use of this capability does not require

an exact specification of what to look for, and a human observer can detect1300

patterns of various types. However, the visual representation must fulfil the

following requirements:

• Since patterns are formed by relationships between data elements, the

visualisation must faithfully show the existing relationships.

• The visualisation must not provoke seeing non-existent relationships, to1305

preclude generation of false patterns.

• Since patterns need to be considered and represented holistically, the vi-

sualisation should facilitate perceptual unification of multiple elements.

These requirements logically follow from the conceptual model introduced in

the previous section. At the same time, they are consistent with the established1310

principles of the visualisation introduced by Bertin and further developed by

other researchers.

7.3. Principle of correspondence

The first two requirements to visual representation can be seen as two sides

of a single principle of correspondence: relationships that can be perceived by a1315

human observer from a visual display must correspond to relationships actually

existing in data. This statement is consistent with the Bertin’s formulation of

the principle of the correspondence between the organisation level of a data com-

ponent and the perceptual properties of the visual variable that should be used

for representing this component [31]. Mackinlay [41] referred to this principle1320
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using the term “expressiveness” (of a visual variable). Based on our concep-

tual model, the principle of correspondence can be explained by the necessity

to make relationships involved in objectively existing patterns perceivable by

a human so that the relationships between values of a visual variable can be

intuitively translated into relationships between the data elements represented.1325

Talking about organisation of a data component, Bertin considered only

ordering and metric (quantitative) relationships. We have discussed in Sec-

tion 4.2 how other types of relationships, such as equivalence, spatial direction,

neighbourhood, cyclic ordering, can also be important. Besides, there may be

application-specific relationships, e.g., hierarchical relationships or links in a1330

network. Hence, the Bertin’s concept of organisation level is insufficient for

describing the variety of possible organisations. The existing assortment of vi-

sual variables is also insufficient for representing all types of relationships that

may exist within data components. Thus, there is no visual variable that could

represent a cyclic or a hierarchical organisation. Such organisations are usually1335

represented using other means, such as particular layouts of visual marks. For

example, a cyclic organisation can be represented by a radial, spiral, or matrix

layout. In node-link diagrams, relationships are represented by special linear

marks connecting nodes. The treemap technique [42] uses a nested layout for

representing hierarchical relationships.1340

Bertin considered various layouts (called “impositions”), including networks

and maps, in separation from the concept of set organisation, whereas a layout

is no less a means to represent relationships within a set than a visual variable.

We propose to treat these and other possible means of representing relationships

between elements equally and thus to state the fundamental principle of1345

visualisation in the following way:

Analysis-relevant relationships between data elements need to be represented

by appropriate means of visual expression, including visual variables, layout of

visual marks, special marks, spacing, etc. These means of visual expression

must support the perception of existing relationships and preclude the perception1350
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of non-existing relationships.

Spacing between display components, such as bars in a bar chart, is often

used when the visual variable ‘position’, which is perceived as continuous, repre-

sents a discrete set. This is an example of an approach to precluding perception

of non-existent relationships.1355

The principle we have formulated can be called the principle of correspon-

dence of visualisation means to relationships existing in data. This is not a new

principle; although it was not stated in this way until recently (see [43]), visual-

isation designers have been always following it by using empirically established

conventions of choosing particular visual means for representing different kinds1360

of data. The proposed explicit formulation clearly states: what visualisation

designers need to care about primarily is the relationships existing in data. By

matching the possible types of relationships, including those discussed in Sec-

tion 4.2, to the visual means capable to convey them, it is possible to transform

the tacit conventions into explicit rules of visualisation design.1365

There are other theoretical models that consider the requirement of corre-

spondence between data and visualisation from different perspectives. Kindl-

mann and Scheidegger [39] care about the correspondence between the so-called

“mathematical structure of the underlying data” (i.e., data types and organ-

isation) and the “mathematical structure in the perception of visualizations”.1370

They formulate their three principles stating that the visualisation must be in-

variant to the internal representation of the data and that changes in the data

must result in noticeable, meaningful, and unambiguous changes of the display.

One of the principles is called “The Principle of Correspondence”, but, unlike

ours, it refers to data changes rather than relationships within the data. Demi-1375

ralp et al. [44] propose a model that treats visualisation as a data embedding

that must preserve structures existing in the data. The model focuses on rela-

tionships between data items that can be represented as distances. The idea is

that distances perceived from the visualisation must correspond to the actual

distances between data items. Wattenberg and Fisher [45] focus on the kinds1380
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of relationships that organise data into groups and hierarchies. They propose

a formal model that can describe the organisation of an arbitrary grey-scale

image as, supposedly, would be perceived by an observer. A visualisation de-

signer can compare the structure reconstructed by the model with the actual

data structure and thus check if the image conveys the data structure correctly.1385

Unlike those works, our model explicitly acknowledges the pattern-forming role

of different kinds of relationships between data items and explains the funda-

mental principle of correspondence between data and visualisation by the need

to correctly convey data patterns to human observers and analysts.

7.4. Principle of unification1390

According to our model, pattern discovery involves unification of multiple

elements and abstraction, that is, integrated representation of these elements

as a single object. Consequently, visual displays of data should not only cor-

rectly represent objectively existing data patterns but also support perceptual

abstraction from multiple elements and elementary relationships to holistic rep-1395

resentations. This corresponds to the Bertin’s concepts of the overall and inter-

mediate reading levels as opposite to the elementary level involving perception

of individual elements and relationships [31]. Bertin also introduced the concept

of image as “the meaningful visual form, perceptible in the minimum instant of

vision” [31, p. 11]. A single image providing answers to questions of all three1400

levels allows us to perceive patterns as units. Visualisations with more images

require integration across images, which may hinder holistic perception.

Hence, in designing visual representations for data analysis, it is essential to

support integrated perception of multiple relationship instances. For example,

in a line chart, multiple points are connected by line segments; as a result, a1405

large number of ordering and distance relationships are integrated into a single

line that is perceived as a unit. In plots or maps where elements are represented

by dots, multiple neighbouring dots can be perceptually integrated into shapes

according to the Gestalt law of proximity [33]. This capacity of the human’s

perception is also utilised in projection displays where distances in the projec-1410
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tion space represent degrees of similarity, semantic relatedness, or other kind of

relationships whose strength can be expressed numerically [46, 47, 48].

Abstractive perception can be promoted by smoothing, e.g., using kernel

density estimation techniques [49], which, however, hide the original elements

and relationships. Tufte advocated creation of displays supporting both micro-1415

and macro-readings [50], such that multiple small visual marks can be perceived

all together. Bae and Watson [51] study the use of five cues stimulating visual

grouping, namely, proximity, colour similarity, common region, connectivity,

and alignment, separately and in combinations. They assess the strengths of

the different cues and find that complex structures can be more effectively com-1420

municated by combining two or more grouping cues.

The development of visual analytics science and technology would benefit

from a systematic survey of the existing approaches suitable for supporting

abstractive perception, and it would also be appropriate to evaluate these tech-

niques empirically.1425

7.5. Directions for empirical research

As we have mentioned, the need to support abstractive perception of patterns

calls for empirical research on how different techniques can promote such kind

of perception.

Since relationships play the key role in forming data patterns, the existing1430

means of visual representation require empirical evaluation of their capabilities

to enable perception of various types of relationships. The empirical studies

that were conducted so far mostly referred to the ability of display users to

perceive values rather than relationships. Hence, there is a need in further

studies focusing primarily on relationships.1435

Knowing the types of relationships involved in the organisation of data com-

ponents, it is possible to predict what kinds of patterns may exist, irrespective of

the existence of specific terms denoting these kinds of patterns. This possibility

can be used for testing the capabilities of a particular visualisation to convey

correctly and effectively the kinds of patterns that can exist in data with com-1440
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ponents of given types. For this purpose, one can construct an artificial dataset

with these data types that includes this or that kind of pattern as the “ground

truth”, and check if users can efficiently spot the incorporated patterns.

7.6. Practical utilisation of the theoretical model

An analyst who wants to discover patterns in a distribution can use the1445

model to

• understand which aspects of a distribution are relevant to analysis goals:

composition, arrangement, or variation (Section 3);

• understand what kinds of relationships between elements are involved in

these relevant aspects and need to be taken into account (Section 4.2);1450

• find appropriate means for representing these relationships;

• decompose a distribution over a complex base with several kinds of rela-

tionships into a combination of distributions with simpler bases;

• understand what relationships can exist between patterns and determine

these relationships (Section 5);1455

• build an analytical workflow involving appropriate operations on patterns

(Section 6).

Apart from the possible use by data analysts, the model can provide an ap-

propriate basis for practice-oriented teaching of visual analytics. It can also be

utilised in designing visual analytics systems providing guidance to users [30, 52,1460

53]. Intelligent guidance that is not limited to instructing users about system

functions may help users in pattern discovery [30, Section 5.5.1], e.g., by inform-

ing users about pattern types that can exist in their data and about visual or

computational methods that can be used for finding patterns of these types [30,

Fig.1]. An intelligent guide can also help users externalise patterns they have1465

discovered, i.e., transform mental images of these patterns into explicit repre-

sentations. To provide these kinds of user support, the guiding system needs to
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have a knowledge base enabling prediction of possible pattern types depending

on the structure and properties of user’s data [30, Section 6]. Our theoretical

model can serve as a foundation for such a knowledge base.1470

8. Conclusion

In developing our model, we have built on ideas from systems science [54]

and general mathematics [3, 4], and we also generalised and systematised our

vast practical experiences from developing visual analytics solutions for various

kinds of domains, data, and problems. The model does not include a taxon-1475

omy of pattern types, which could hardly be exhaustively itemised. It also does

not explicitly refer to data types, which can be defined in multiple ways (e.g.,

in databases, programming languages, etc.), but refers instead to fundamen-

tal properties of data components, particularly, types of relationships between

elements.1480

The model gives a working definition of a pattern in a data distribution,

which has been so far a rather vague and not practically utilisable notion in

visualisation and visual analytics. To make this definition, we have introduced

a system of supporting definitions. By drawing implications from the system

of definitions, we have theoretically explained the rationale of some of the ex-1485

isting empirically established principles of visualisation, which may be helpful

in teaching these principles. We have outlined how the proposed theoretical

model can be used in data analysis practices, but, of course, its practical utility

requires extensive testing.

The model can enlighten designers of visual analytics methods and systems1490

concerning possible approaches to supporting pattern discovery. The main idea

is to respect and make use of relationships existing in data domains and to find

either computational methods extracting combinations of relationships or visual

methods allowing human analysts to observe such combinations and perceive

them holistically. In this respect, the model suggests a need in empirical studies1495

on perception of visual displays that would specifically focus on perception of
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relationships rather than judgement of absolute values. Such studies need to

evaluate the following: (1) how easy is for a user to see particular relationships

between overlay elements and between their positions in the base; (2) whether

or not the user may see non-existing relationships; (3) how well items linked by1500

the relationships “stick together” in the user’s eyes [33].

Another merit of the given definitions is that they enabled us to describe

systematically the analytical operations that can be applied to discovered pat-

terns in the processes of data analysis and analytical reasoning. The task of

supporting such processes has primary importance for visual analytics research1505

and design of visual analytics systems. We have defined the range of possible

analytical actions that can be applied to patterns or involve patterns. This can

inform researchers focusing on supporting analytical processes and designers of

systems intended to support such processes.

As a direction for further theoretical research, we see a need in considering1510

in more detail complex bases composed of heterogeneous components, such as

space × time, entities × time, entities× space × time, etc. The organisations

of such bases are very complicated. It would be appropriate to consider what

kinds of objective patterns are possible for overlays with different properties.

This discussion gives us a ground to believe that our work makes a valuable1515

contribution to the visual analytics research and can inform and motivate further

theoretical researches.
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