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a b s t r a c t

The word ‘pattern’ frequently appears in the visualisation and visual analytics literature, but what
do we mean when we talk about patterns? We propose a practicable definition of the concept of a
pattern in a data distribution as a combination of multiple interrelated elements of two or more data
components that can be represented and treated as a unified whole. Our theoretical model describes
how patterns are made by relationships existing between data elements. Knowing the types of these
relationships, it is possible to predict what kinds of patterns may exist. We demonstrate how our
model underpins and refines the established fundamental principles of visualisation. The model also
suggests a range of interactive analytical operations that can support visual analytics workflows where
patterns, once discovered, are explicitly involved in further data analysis.
© 2021 The Author(s). Published by Elsevier B.V. on behalf of ZhejiangUniversity and ZhejiangUniversity

Press Co. Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

1.1. Motivation

We began to feel a need in a conceptual and theoretical
odel for visual analytics when we started teaching visual an-
lytics to students of a data science course (Andrienko et al.,
020). Every year it is necessary to explain the students what
isual analytics is, why and for what purposes they will need to
se visual analytics in their job, how to utilise visual analytics
echniques in practice, what principles are important to obey,
nd why these principles exist. It turned out to be not easy to
xplain these things clearly and convincingly to practice-oriented
nd computation-minded people. In particular, when we tell the
tudents that visualisation is required for observing distributions
nd detecting patterns, we need to explain them the meaning of
he terms ‘‘distribution’’ and ‘‘pattern’’. We want the students to
nderstand that the meaning of ‘‘distribution’’ is not limited to
tatistical distribution of values of a variable, and this requires us
o give a general definition which would cover the concepts of
tatistical, spatial, temporal, and, desirably, also other principally

∗ Correspondence to: Fraunhofer Institute IAIS, Schloss Birlinghoven, Sankt
ugustin, 53757, Germany.

E-mail address: natalia.andrienko@iais.fraunhofer.de (N. Andrienko).
ttps://doi.org/10.1016/j.visinf.2020.12.002
468-502X/© 2021 The Author(s). Published by Elsevier B.V. on behalf of Zhejiang Univ
he CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
possible distributions. We need to teach the students how to
find patterns in distributions, and this requires defining what
a pattern is and what kinds of patterns, and why, can exist in
different types of distributions.

Although this work has been originally motivated by ped-
agogical needs, we believe that having a clear conceptual and
theoretical background can also be beneficial for visual analytics
science as well as engineering. Explicitly defined rather than
intuitively understood concepts can potentially enable system-
atic approaches to conducting research work and to developing
new methods and procedures. Solid theoretical foundations of
visual analytics could be especially helpful when entering new
application domains or dealing with new types of data.

1.2. Goals and purposes

With this work, we pursue the following goals:

• Introduce an explicit working definition of the concept of
pattern in data (Section 4.1).

• Describe how properties of data determine the types of
possible patterns that can exist in the data (Section 4.2).

• Draw implications for the possible visual analytics
approaches to discovering patterns existing in data (Sec-

tion 7).
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• Use the explicit definition of a pattern to explain some of
the existing principles of visualisation design (Sections 7.3,
7.4).

• Describe how patterns that have been discovered can be
utilised in further data analysis (Section 6).

e expect that the proposed theoretical model will be useful for
he following purposes:

• For data analysis practitioners: provide a ground for in-
formed and reasoned anticipation of the possibly existing
types of patterns in given data and selection of techniques
for finding these patterns.

• For developers of visual analytics methods and procedures:
provide foundations for

– methodical design of approaches and analytical work-
flows involving discovery and exploitation of different
types of patterns;

– development of approaches to guiding users and sup-
porting the externalisation of the knowledge gained by
them in the process of data analysis.

• For visual analytics researchers: underpin systematic devel-
opment of principles and general approaches to analysing
different kinds of data.

• For students of visual analytics and/or data science: enable
better understanding of patterns, and how they can be used
in visual data analysis.

.3. Main ideas

The essence of our model can be summarised in the following
tatements:

• A pattern consists of relationships between multiple ele-
ments of at least two data components.

• A pattern is such a combination of relationships that allows
multiple elements to be perceived and/or represented holis-
tically as a single object, as, for example, a cluster, a trend,
or a correlation.

• The types of relationships existing between elements of data
(such as ordering and distance relationships) determine the
possible types of patterns that can be made by these ele-
ments.

• Pattern discovery, which involves abstraction, is a princi-
pal way to understand synoptic relationships between data
components.

• To discover patterns, analysts investigate distributions of
elements of one (or more) components with respect to
elements of another component and relationships between
these elements.

• Analysts can use discovered patterns in next steps of data
analysis by applying analytical operations, such as aggregat-
ing, grouping, comparing, and others.

n the following, after reviewing the related work, we shall ex-
lain, justify, and elaborate these statements.

. Related work

Here we discuss how the concept of pattern is treated in
ifferent scientific disciplines.

.1. Patterns in mathematics

Modern mathematicians tend to see mathematics as a science
f patterns (Devlin, 1996). It is argued that the primary sub-
ect of study in mathematics is not the individual mathematical
24
bjects but rather the structures (patterns) in which they are
rranged (Resnik, 1997). Here, the term ‘pattern’ is used as a
ynonym for ‘structure’.
A pattern consists of one or more objects, called positions,

hich stand in various relationships. Positions as such have no
istinguishing features. Only within a pattern positions may be
dentified or distinguished, since the pattern containing them
rovides a context for so doing. Thus, in a triangle ABC, the points
, B, C can be differentiated when considered as triangle vertices,
ut taken in isolation they are indistinguishable from each other
nd from other points.
A context provided by a pattern can be viewed as a represen-

ation system (Oliveri, 1997), and the use of different systems of
epresentation results in seeing different aspects. Thus, the same
hing can be seen as a table, as a composition of table-parts, as
collection of molecules, etc., and all these views are correct.
liveri (Oliveri, 1997) emphasises that the aspect we perceive is
ot a property of an object itself but a relation between it and
ther objects.
To summarise, mathematicians define patterns as arrange-

ents of objects in which only relationships between the ob-
ects are important but not properties of the objects themselves.
atterns have properties that are based on the relationships be-
ween the objects and do not apply to the objects taken sepa-
ately. Giving different representations to the same objects allows
erceiving different patterns, which can complement each other.
Mathematicians define pattern types according to the branches

f mathematics (Devlin, 1996): arithmetic deals with patterns of
umbers, mathematical logics with patterns of reasoning, calcu-
us with patterns of change and motion, geometry with shapes
nd symmetry, and topology with patterns of connectivity and
eachability.

In our work, we deal with patterns existing in data, i.e., made
y elements of data. Like mathematicians, we acknowledge the
ey role of relationships in forming patterns. Pattern types can
e defined based on the types of relationships existing between
ata elements.

.2. Patterns in statistics

There is no explicit definition of the concept of data pattern in
tatistics; nevertheless, the expressions ‘‘data patterns’’ or ‘‘pat-
erns in data’’ are extensively used in statistical literature (Bruce
nd Bruce, 2017; Heumann et al., 2017). Patterns in data dis-
ributions are commonly described in terms of centre, spread,
hape (or form), and presence of particular features, such as gaps
nd outliers. Several types of patterns are specifically defined for
ime series data (Härdle et al., 2015), namely, trend, seasonal,
yclic, and irregular (random) patterns. Trend patterns are further
ifferentiated into linear, exponential, and other subtypes.
The concept of distribution, in turn, is defined as a func-

ion that associates each value of a variable with its probabil-
ty (Forbes et al., 2010). Statistics considers various forms of
istributions (Krishnamoorthy, 2006), such as normal, uniform,
imodal, long tail, etc.
While the definition of distribution in statistics is limited

o probability distribution, we give a more general definition
overing also spatial distributions as well as other imaginable
inds of distributions. Another extension is consideration of re-
ationships between data elements and the role of these relation-
hips in forming data patterns. Thus, the types of patterns that
an be found in time series data are made by specific relation-
hips (namely, ordering and distances) between time steps and
etween corresponding values of a variable.
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.3. Patterns in geography-related sciences

All sciences studying phenomena that occur on the Earth, in-
luding natural, social, and economic phenomena, are concerned
ith analysing spatial distributions and spatial patterns. A pattern

n a spatial distribution is defined in terms of the arrangement
f individual entities in space and the geographic relationships
mong them (Chou, 1995; Getis and Paelinck, 2004). Geographic
nalysis usually involves observing and describing spatial pat-
erns, testing whether the observed pattern differs from a null
odel, such as complete randomness, and fitting empirical data

o theoretical models for the purposes of prediction (Rosenberg
nd Anderson, 2016). Spatial patterns are characterised by spe-
ific metrics of concentration or dispersion, eccentricity, random-
ess, clustering, etc. Getis and Paelinck (2004). An important
haracteristic is spatial autocorrelation indicating how an object
r feature located in space is influenced by similar objects or
eatures in the neighbourhood (Chou, 1995).

It is acknowledged that patterns that can be observed in
patial distributions are dependent on the spatial scale of anal-
sis (Souris, 2019; Borregaard et al., 2009). Thus, the kinds of
atterns that can exist in the global distribution of a biological
pecies are very different from the possible kinds of patterns in a
ocal distribution of individuals belonging this species.

Our definitions of the concepts of distribution and pattern
over, in particular, the concepts of spatial distribution and spatial
attern. Our model can explain the role of spatial relationships in
orming spatial patterns.

.4. Patterns in information theory

In information theory (Shannon, 1948; Cover and Thomas,
006), the term ‘pattern’ may refer to any distinct arrangement of
ymbols or to a combination of pixels in an image, regardless of
hether it is meaningful or interesting. In the context of an ap-
lication, all possible data patterns collectively define a so-called
lphabet, where each pattern is a letter. In data compression, the
esources used to encode different patterns are optimised accord-
ng to the probability of the patterns in the data space. In image
rocessing and computer vision, patterns are broadly divided into
roups, which are mathematically specified. Various algorithms
ere developed to differentiate patterns in one group from oth-
rs. They make use of different information-theoretic metrics
or pattern recognition, matching, segmentation, registration, etc.
uiz et al. (2009), Feixas et al. (2014).
Ideas and techniques from information theory have been used

or characterising and studying pattern recognition by humans.
hen et al. (2014) noticed that humans’ ability to identify inter-
sting patterns when they are overlapped with other patterns
nd to connect interesting patterns when they are distributed
way from each other bears some resemblance to the family
f techniques called multiplexing in tele- and data communi-
ation. The researchers used information theory to explain this
henomenon of visual multiplexing in visualisation. In a survey
f a large collection of empirical studies concerning visualisa-
ion (Kijmongkolchai et al., 2017), the studies were categorised
ccording to the main independent variables: contexts (e.g., tasks,
pplications), patterns (e.g., clusters and changes), and values
e.g., data values and statistics). It was noticed that patterns were
n the focus of about 50% of the studies. Kijmongkolchai et al.
2017) also conducted an empirical study to detect and measure
uman’s knowledge used in reasoning about time series patterns.
hey found that the human’s prior knowledge on pattern iden-
ification brought more benefit than that on context awareness
nd statistical estimation. The benefits were measured using the
nformation-theoretic metric for cost–benefit analysis (Chen and

olan, 2016).

25
Importantly, the process of pattern perception and recog-
nition by humans involves abstraction. Since the information-
theoretical view of a pattern does not accommodate the notion of
abstraction, it cannot support the description of the phenomenon
of pattern discovery by means of visual analytics.

2.5. Patterns in data mining

Data mining is defined as an automatic or semi-automatic
process of discovering useful patterns in data (Witten et al., 2011).
A pattern is defined as ‘‘an expression E in some language L
describing facts in a subset FE of a set of facts F so that E is simpler
than the enumeration of all facts in FE ’’ (Fayyad et al., 1996, p. 7);
in other words, a pattern is defined as a synoptic representation
of multiple data items.

Han (2005) states that types of patterns can be defined accord-
ing to data mining functionalities, which include: characterisation
and discrimination; mining of frequent patterns, associations,
and correlations; classification and regression; cluster analysis;
outlier analysis. In practice, what is usually called ‘pattern types’
in data mining literature rather refers to the existing forms of out-
puts of data mining methods, such as decision trees, classification
rules, clusters, frequent item sets, frequent sub-sequences, etc.
(Aggarwal, 2015; Klösgen and Zytkow, 2002; Witten et al., 2011).
There is no underlying scheme for a more systematic definition
of possible pattern types.

An important difference of our conceptual model is acknowl-
edging that patterns objectively exist in data regardless of any
representation or someone’s awareness of their existence. By
defining a pattern as a structure formed by relationships between
data elements, we provide a basis for anticipating what kinds of
patterns can exist in given data.

2.6. Patterns in visualisation and visual analytics

Similarly to statistics, visualisation literature often uses the
expressions ‘‘pattern(s) in data’’ or ‘‘data pattern(s)’’, although
there is no commonly adopted explicit definition of what this
term means. Thus, Munzner treats the term ‘pattern’ as a syn-
onym to ‘trend’ (Munzner, 2014), whereas others use this term
as self-evident without explaining what they mean by it. There
was an attempt to adapt the data mining definition: a pattern
was defined as a parsimonious representation of essential fea-
tures of a behaviour in the form of a description in some lan-
guage (natural, formal, or graphical) or a mental image of the
behaviour (Andrienko and Andrienko, 2005, p. 85).

Visual analytics can be seen as a model building activity (An-
drienko et al., 2018) in which an analyst creates a model, in
particular, a mental model, of the analysis subject. A model needs
to be general, i.e., refer to multiple observations taken together
rather than represent each observation separately. Collins et al.
(2018) argue that, in order to generalise, analysts should be able
to perceive multiple data items together and conceptualise them
jointly as a meaningful whole. Such a whole is called a pattern.
Collins et al. propose the following definition of a pattern: ‘‘a
representation of a collection of items of any kind as an integrated
whole with specific properties that are not mere compositions
of properties of the constituent items’’. This is similar to the
definition given in data mining; a pattern is also defined as a
representation rather than an objectively existing structure.

According to Bertin, understanding of data means ‘‘discovering
combinational elements which are less numerous than the initial
elements yet capable of describing all the information in a simpler
form’’ (Bertin, 1983, p. 166). In fact, what is called ‘‘combinational
elements’’ here corresponds to what is usually meant by a pattern
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n data: it is a structure formed by multiple elements, and it can
e described holistically without enumerating these elements.
Perception of patterns from visual representations of data is

xtensively discussed in the Colin Ware’s book (Ware, 2004).
attern perception involves seeing multiple visual elements (a.k.a.
‘marks’’, in Bertin’s terms) as an integrated whole. The first
ttempt to understand this process was undertaken by the Gestalt
chool of psychology (Metzger, 2006; Wagemans et al., 2012).
are discusses the Gestalt ‘‘laws’’ of pattern perception and

hows how they translate into principles of visualisation de-
ign. The Gestalt laws refer to certain relationships between vi-
ual marks, such as proximity (in the display space), similarity,
mooth continuity, symmetry, and relative size. Visible patterns
an emerge due to these relationships. Acknowledging that data
atterns are formed by relationships between data elements leads
o an obvious implication that visual representations can ef-
ectively and correctly reveal patterns existing in data when
he relationships between the marks representing data elements
orrespond to the relationships between the data elements.
In our theoretical model, we strive to give definitions that

an underpin the main principles of visualisation. We attach high
mportance to relationships between data elements as pattern-
orming forces and to the phenomenon of abstraction, which
s involved in perception and representation of multiple related
ata elements as a unified whole.
Our use of the term ‘theoretical’ corresponds to the defini-

ion of a theory as ‘‘a set of interrelated constructs (concepts),
efinitions, and propositions that present a systematic view of
henomena by specifying relations among variables, with the
urpose of explaining and predicting the phenomena’’ (Kerlinger
nd Lee, 2000, p. 11).
We do not pretend that our model can describe everything in

isual analytics. Visual analytics is concerned not only with find-
ng patterns in data but also with other analytical activities, such
s search for specific information (e.g., clues to identify a crimi-
al) or inspection of the performance of a computer model. Our
heoretical model refers only to the process of finding patterns
n data. It is an important type of analytical activity addressed
n a large part of the visual analytics research. We believe that
his research will benefit from the clarification of the concept of
attern in data.

. Distribution

We begin presenting our theoretical model with defining and
xplaining the concept of distribution. We describe relationships
ithin data components and establish a formal notation of the

ntroduced concepts. This provides us with the necessary back-
round to define and discuss patterns.

3.1. Definition of data distribution

Among multiple existing definitions of the term ‘‘distribution’’,
the following ones express the meaning relevant to our model:
‘‘the position, arrangement, or frequency of occurrence (as of
the members of a group) over an area or throughout a space or
unit of time’’ (Merriam-Webster Online, 2009) and ‘‘the way that
something is shared or exists over a particular area or among a
particular group of people’’ (Hornby, 2000). An important part of
these definitions is that something is positioned or spread over
or throughout or among something else; the latter may be, in
particular, space, time, or a group of people.

We shall build on these definitions to generate a more spe-
cific definition of distribution of data, or data distribution. A data
distribution involves at least two components of data. For exam-

ple, in the VAST Challenge 2011 dataset (Grinstein et al., 2011), c

26
the data records describing the microblog messages include the
following components: microblog users (denoted by identifiers),
times when the messages were posted, locations from where they
were posted, and message texts. Besides, the data provided for
the challenge include a map of the territory and daily weather
records specifying, in particular, the wind speed and direction.
Furthermore, since message texts consist of words, the set of the
words is also a component of the data. To solve the challenge,
analysts need to consider the distributions of the messages and
of the words over the time and space, and the distribution of the
wind parameters over the time.

This example demonstrates that data components are usually
sets consisting of certain elements: people, messages, words,
spatial locations, time moments, particular values of wind param-
eters, etc. Data describe connections between elements of different
components. Thus, each message text is connected to a particular
person, time moment, spatial location, and words that are used
in the text. Each word is connected to the messages in which it is
used. Each time moment is connected to the messages that were
posted at that moment, each spatial location is connected to the
messages posted from it, and so on.

A data distribution consists of connections between elements
f two or more structural components of data. A data component
s a set of items of the same kind, e.g., a set of entities, or
ttribute values, or category labels, or references to places or
imes. Data components are typically represented by fields of
atabase records or by table columns. Data components involved
n a distribution are not treated semantically equally. Each time
hen we talk about a distribution we say that one component (or
group of components) is distributed over another component. It
eans that the second component is treated as a kind of base for

he first component. Generally, the base of a distribution must
ot necessarily be space, time, or a group of people, as stated
n the definitions from the dictionaries, but it can consist of
lements of any nature (these may also be compound elements
onsisting of several simpler ones). For example, we can consider
he distribution of the words over the messages, in which the
ase is the set of messages. When we consider the distribution of
he messages over space and time, the base consists of compound
lements comprising spatial locations and time moments.
The concept of distribution assumes that the elements of the

ase are regarded as a kind of positions that can be occupied
y elements of another component, or as holders of elements of
nother component. Thus, space and time provide positions for
essages, messages can be seen as positions for words, or as
olders of words, people can be seen as holders (i.e., owners)
f the messages they have produced, time units can be seen as
olders of particular values of wind parameters, etc.
We shall use the term overlay of the distribution to refer to a

et of elements that are connected to positions or holders in the
ase: in a metaphorical sense, this set is laid over the base. Like the
ase, the overlay may consist of any kind of elements, including
ompound elements. The elements of the overlay are instances
occurrences) of elements of some data component that is distinct
rom the base. This data component can be called the domain of
he overlay.

Let us illustrate the concepts of distribution, base, and overlay
y simple examples shown in Fig. 1. In the tic-tac-toe game,
layers create distributions of crosses and noughts (X and O
ymbols) over a 3 × 3 grid (top left). Here, the base is the grid;
he cells are the elements of the grid, which can serve as positions
o the symbols. The overlay is the set of instances of the symbols
and O placed in particular positions in the grid. The domain of

he overlay is the set of symbols {X, O}.
The upper right part of Fig. 1 demonstrates a distribution of
olours over a set of apples. Here, the set of apples is the base
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Fig. 1. Simple examples of distributions. Top left: a distribution of symbols over
a grid in a tic-tac-toe game. Top right: a distribution of colours over a set of
apples. Bottom: a distribution of the shapes of the moon over time.

of the distribution. The apples are holders of different colour
instances, which make the overlay of the distribution. The domain
of the overlay is the set of colours {yellow, orange, red, green}.

The lower part of Fig. 1 shows a distribution of the moon
hapes over time. Here, the time is the base of the distribution,
nd the overlay consists of different shapes of the moon arranged
n a particular way. The illustration in Fig. 1 does not show the
ull distribution. The base of the full distribution includes all
ntermediate dates between those specified in the picture and
lso extends to the past and to the future beyond the period
hown. The overlay of the full distribution includes instances of
ll intermediate shapes between the shapes shown in the picture.
he domain of the overlay is the set of all possible unique shapes
he moon can have.

Data distributions are analysed in order to understand rela-
ionships between components of data, for example, the rela-
ionship between the moon shape and the course of time. It is
ostly a matter of common sense or convenience which of the
ata components should be viewed as the base and which as the
verlay. Thus, it is more natural to see the time as the base for the
oon shapes than the set of possible moon shapes as the base for
ifferent dates and times. It is also more natural to consider the
rid in the tic-tac-toe game as the base for the X and O symbols
han the other way around. As apples can be easily treated as
olders of colours, it is natural to see the set of apples as the base
or the colours and less natural to consider the set of colours as
he base for the apples.

The examples in Fig. 1 illustrate an important property of
he base of a distribution: it consists of unique elements. This
means that, when a data component is chosen as a distribution
base, the base is composed of a single occurrence, or instance, of
each element of this component. The overlay is formed by the
elements from another data component that are connected to
each element of the base. It may happen that the same element
of the other component is connected to more than one element
of the base. Hence, the overlay will contain multiple instances of
the same element: multiple cross and nought symbols, multiple
instances of the same colour, re-occurrences of the same moon
shape, etc. It may also happen that two or more overlay elements
are connected to the same element of the base, as two colours can
be connected to the same apple. The tic-tac-toe example demon-
strates that some elements of the base may have no connected
elements of the overlay.

Let us summarise our discussion in the following definition of
a data distribution:

Definition 1. Let SB and SΩ be two sets, and let the elements
of SB be treated as positions or holders of elements from SΩ . The
distribution of SΩ over SB is the set of all connections between
27
elements of SB and elements of SΩ that are specified in data,
i.e., D(SΩ/SB) = {(eB, eΩ )|eB ∈ SB, eΩ

∈ SΩ
}. The set SB is called

the base of the distribution. The set of all instances of elements
from SΩ that occur in D(SΩ/SB) in connection with elements of
SB is called the overlay of the distribution, and the set SΩ is the
domain of the overlay. The elements of SΩ are called prototypes
with respect to their instances occurring in the overlay.

We shall use the symbol B or B(D) to denote the base of a
distribution and the symbol Ω or Ω(D) to denote the overlay.
According to Definition 1, B = SB, whereas Ω is not the same
as SΩ . Ω may contain multiple instances of the same element of
SΩ , while some other elements of SΩ may be absent in Ω . Since
ach overlay element has its prototype in the overlay domain,
t can be said that overlay elements are linked to their proto-
ypes by instantiation relationships. We shall call the set of these
nstantiation relationships the composition of the overlay.

efinition 2. The composition of the overlay of a data distribu-
ion is the set of instantiation relationships between the elements
f the overlay and their prototypes in the domain of the overlay.

Overlay composition can be described in terms of the number
f instances of each element of the overlay domain. Thus, the
verlay composition in the tic-tac-toe game (top left of Fig. 1)
onsists of four instances of the symbol X and three instances
f the symbol O. The overlay composition in the set of coloured
pples (top right of Fig. 1) includes five instances of the yellow
olour, three instances of red, two instances of orange, and one
nstance of green. In the distribution of the moon shapes (Fig. 1,
ottom), the overlay composition includes two instances of the
‘new moon’’ shape (i.e., dark disc) and one instance of each other
hape.

.2. Within-component relationships

Within any data component, elements may be linked by re-
ationships. There are two major groups of relationships: qual-
tative and metric. Qualitative relationships can be represented
y logical statements (predicates) saying if a relationship exists
r not. Examples are relationships of equivalence, ordering, ad-
acency, or kinship. Metric relationships can be represented by
umeric values. Examples are relationships of distance, similarity,
r intensity of communication.
Some of existing relationships may be intrinsic, belonging

o the very nature of a data component. For example, there
re intrinsic relationships of ordering and distance between el-
ments of a temporal component, i.e., between time units, and
ntrinsic relationships of distance between elements of a spa-
ial component, i.e., spatial locations. Intrinsic relationships are
sually not represented in data explicitly, but, when needed,
xplicit representations can be obtained in well-known ways.
on-intrinsic qualitative relationships, such as kinship, need to be
epresented explicitly in data. Non-intrinsic metric relationships,
uch as similarity, need to be computed by appropriate methods.

efinition 3. The set of all relationships existing between
lements of a data component is called the organisation of this
ata component.

For example, the organisation of the set of grid cells in the
ic-tac-toe game includes qualitative relationships of adjacency,
orizontal ordering, and vertical ordering. The set of symbols
X, O} has no relationships except identity: X=X, O=O, X̸=O. The
et of apples and the set of colours on the top right of Fig. 1
lso have only identity relationships between their elements.
he organisation of the set of dates in Fig. 1, bottom, includes
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ualitative relationships of linear ordering and metric relation-
hips of distance (i.e., time difference) between the elements. The
rganisation of the set of moon shapes includes relationships of
rdering and distance between the sizes of the visible parts of the
oon and same-different relationships between the sides (right
r left) of the visible parts in the moon disc.
Definition 3 relates to the Bertin’s concept of the level of

organisation, which may be qualitative (nominal), ordered, or
quantitative. Each level implies particular types of relationships
between data elements: the qualitative level has no ordering
and no metric relationships, the ordered level has ordering rela-
tionships but no metric relationships, and the quantitative level
implies the existence of both ordering and metric relationships.
However, there may be components that have metric relation-
ships but no ordering (e.g., 2D or 3D space), and there may be
components with partial ordering relationships (e.g., ancestor–
descendant relationships among people). Therefore, we introduce
a more general definition of organisation as a set of all existing
relationships between elements. Since all possible combinations
of different types of relationships cannot be arranged into a single
sequence of levels, we use the term ‘‘organisation’’ rather than
‘‘level of organisation’’. Our definition also corresponds to the
term ‘‘mathematical structure’’ (of data) used by Kindlmann and
Scheidegger (2014).

3.3. Aspects of a data distribution

In a data distribution, the elements of the overlay get ar-
anged according to the organisation of the base. For example,
he instances of the X and O symbols in the tic-tac-toe game get
rranged according to the relationships of adjacency, horizontal
rdering, and vertical ordering between the grid cells in which
hey have been put. The colour instances in Fig. 1, top right,
re arranged by the identity relationships between the apples
olding them: two colour instances have either a common holder
r distinct holders. The instances of the moon shapes in the lower
art of Fig. 1 are arranged in a row by the ordering and distance
elationships between their temporal positions. Let us introduce
formal definition of the overlay arrangement:

efinition 4. Arrangement relationships between elements of
he overlay of a data distribution are the relationships between
he corresponding elements of the base. The arrangement of
he overlay of a data distribution is the set of the arrangement
elationships between the overlay elements.

In addition to arrangement relationships, overlay elements are
inked by the relationships pertaining to the organisation of the
verlay domain SΩ , i.e., by the relationships that exist between
he prototypes of the overlay elements. Let b1 and b2 be two
lements of the distribution base B, and let o1 and o2 be the

elements of the overlay Ω connected to b1 and b2, respectively.
The domain-pertinent relationships between o1 and o2 can be
treated as the way in which the overlay varies between position
or holder b1 and position or holder b2. It is important to note
that the domain-pertinent relationships between o1 and o2 are
considered in connection to their positions in the base b1 and
b2 and the relationships existing between these positions, or,
in other words, in connection to the arrangement relationships
between o1 and o2 (Definition 4).

Definition 5. The variation of the overlay of a distribution with
respect to the base consists of the domain-pertinent relationships
between the overlay elements (i.e., relationships belonging to the
organisation of the overlay domain) considered in connection to

the arrangement relationships between the overlay elements.

28
Generally, base elements may contain or hold multiple ele-
ments from the overlay domain SΩ or no such elements. The
variation of the overlay with respect to the base includes re-
lationships between any two instances of the elements of the
overlay domain, either having distinct holders or the same holder.
The relationships of having distinct or same holders are a part
of the overlay arrangement; hence, Definition 5 is applicable. To
deal with cases when base elements have no connected overlay
elements, we shall assume that the overlay domain includes a
special null element denoting the absence of any other element.
The null element has no relationships to the other elements
except of being not identical to any other element.

The composition, arrangement, and variation of the overlay
of a data distribution will be called the aspects of the distri-
bution. The concept of a data distribution and its aspects are
schematically illustrated in Fig. 2.

Let us introduce a formal notation for the aspects of a distribu-
tion, which will help us to clarify what they are made of and how
they are related to each other. We already use the symbol B to
denote the distribution base and Ω for the overlay. The notation
CΩ will refer to the composition of the overlay (Definition 2). The
overlay composition is determined by the existing connections
of overlay domain elements to base elements (Definition 1). To
reflect this dependency, we shall use the expression CΩ (B).

The symbol Or will denote the organisation of a set (Defini-
tion 3). The expression OrB refers to the organisation of the base
and OrΩ to the organisation of the overlay, which is the same
as the organisation of the overlay domain. The symbol ArΩ will
refer to the arrangement of the overlay elements according to
the organisation of the base (Definition 4). ArΩ is imposed by
OrB, i.e. it is a function of OrB. To emphasise this dependency,
we shall denote the arrangement of the overlay as ArΩ (OrB).
In the tic-tac-toe example, ArΩ (OrB) consists of the particular
placements of the cross and nought symbols in the grid cells. For
the apples, ArΩ (OrB) consists of the particular colouring of each
apple, including both the unicolour and bicolour variants. For the
moon shape, ArΩ (OrB) is the particular sequence of the instances
of the moon shapes corresponding to the sequence of the days.

The variation of the overlay, i.e., the relationships between
the overlay elements within the arrangement (Definition 5) can
be represented by the notation VarΩ (ArΩ (OrB),OrΩ ). This means
that the variation exists within a specific arrangement ArΩ (OrB)
and involves relationships from the overlay organisation OrΩ . In
the tic-tac-toe example, the variation is the manner in which
the cell content changes as the grid is traversed. In the example
with the apples, the variation consists of the similarities and
differences between the apples in terms of their colouring. In the
example with the moon shapes, the variation is the manner in
which the moon shape changes from day to day along the time,
i.e., how each shape in the succession relates to the previous one.

The formal notation reflects the asymmetric roles of the base
and overlay of a distribution: while the base is considered as an
independent component, the overlay is composed and arranged
according to the base. The composition CΩ (B) is the instantiation
relationships between instances connected to the base elements
and their prototypes. The arrangement ArΩ (OrB) is the structure
made of the base-specific relationships between the positions or
holders of these instances. In turn, the variation of the overlay
VarΩ (ArΩ (OrB),OrΩ ) depends on the arrangement and, through
he arrangement, on the organisation of the base.

Using these concepts, we can formulate the general task of
nalysing a distribution as follows: given a data distribution
(SΩ/SB), characterise the composition, arrangement, and varia-

tion of the overlay, i.e., CΩ (B), ArΩ (OrB), and VarΩ (ArΩ (OrB),OrΩ )
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Fig. 2. A schematic illustration of the definitions of a data distribution and its aspects. The colours distinguish the composition (purple), arrangement (black), and
variation (red) of the overlay. The labels D2 to D5 refer to the definitions from 2 to 5.
4. Patterns

4.1. Patterns in a distribution

Usually, the purpose of analysing a distribution is to under-
tand how two or more data components are related in general,
.e., as wholes. For example, the distribution of the symbols over
he tic-tac-toe grid in Fig. 1, top left, would be examined to see
hether there is a linear arrangement of three instances of the
ame symbol, irrespective of the specific positions of the symbols.
he distribution of the colours over a set of apples (Fig. 1, top
ight) could be analysed for estimating the probabilities of finding
pples of different colours rather than for ascertaining the colour
f each particular apple. The temporal distribution of the moon
hapes (Fig. 1, bottom) would be studied to understand how the
oon shape changes over time in general, regardless of particular
ates.
Data specify connections between individual elements of com-

onents. We shall thus call these connections elementary. In con-
rast, relationships between components as wholes will be called
ynoptic. Synoptic relationships are not mere compositions of
lementary connections but have a higher level of generality. Un-
erstanding synoptic relationships based on elementary connec-
ions requires abstraction, which means that multiple elementary
onnections are united and considered all together.
How can elementary connections be unified? What is the force

hat can glue them together? It is the relationships between the
lements within the data components, i.e., the relationships that
elong to the internal organisation of the components. Let us
llustrate this statement using the simple examples from Fig. 1.

On the top left, the organisation of the tic-tac-toe grid (i.e., the
et of the spatial relationships between the cells) allows us to
nite individual cells into horizontal, vertical, and diagonal lines.
imultaneously, the equivalence relationships between the sym-
ol instances allow us to unite multiple instances of the same
ymbol in a group. The combination of the relationships be-
ween the cells and between the symbol instances allows us
o consider groups of cells with equivalent symbol instances as
ertain shapes. In the set of the apples, there are only identity
elationships between the apples, i.e., each apple is distinct from
ll others. This does not give an opportunity for unification.
owever, the colour instances can be grouped according to the
29
equivalence relationships, and the groups can be characterised
in terms of their sizes (i.e., colour frequencies) and intersections.
In our example, the group of the instances of the yellow colour
intersects with the groups of the instances of the red and orange
colours.

At the bottom of Fig. 1, the ordering relationships between the
time steps unite all time steps into a single time line and, simul-
taneously, arrange the different moon shapes into a succession.
Then, the relationships between two neighbouring shapes in the
succession can be seen as the change from the earlier to the later
shape. If similar changes occur successively, they can be unified
and considered all together as a trend. Thus, if we characterise the
moon shape in terms of the visible fraction of the whole moon
disc, we can unite the shapes of the first two weeks into the
trend of increase of the visible fraction from 0 to 100% and the
shapes of the following two weeks into the trend of decrease of
the visible fraction from 100 to 0%. It is also possible to consider
the succession of the changes in more detail, e.g., by taking into
account on which side (right or left) of the moon disc the changes
happen.

In all these examples, we used relationships between elements
of data components for unifying multiple elements and multiple
elementary connections. We described the objects resulting from
the unification as shapes, groups, or trends, without referring
to the elementary connections anymore; hence, we performed
the operation of abstraction. According to the common under-
standing, the objects that we have obtained are examples of
different kinds of patterns existing in data. Hence, a pattern in
data is, generally, a combination of multiple connections and
relationships between elements of data components such that
there exists an operation of abstraction allowing to treat all these
connections and relationships together as a single object. Given
the principal possibility of considering one data component as
the base of a data distribution and the other(s) as the overlay
domain(s), we can use the previously introduced concepts to
formulate the definition of a pattern in a data distribution:

Definition 6. A pattern in a data distribution is a subset of
the relationships involved in the composition, arrangement, or
variation of the overlay over the base such that there exists an
operation of abstraction allowing to treat this subset as a unified

whole.
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We emphasise that a pattern consists of relationships, not of
lements. Therefore, the same pattern (i.e., the same combination
f relationships) may occur in data multiple times so that each
ccurrence connects different elements. For example, the pattern
‘three equal symbols next to one another’’ may occur several
imes in one tic-tac-toe game, and it may connect either crosses
r noughts. Moreover, one and the same pattern may occur in
ifferent datasets and even in data of different nature. Thus, the
attern ‘‘three equal symbols next to one another’’ may also occur
n a text or in musical notation. The groups of elements from the
ase and from the overlay that are connected by a pattern will be
alled the base and the overlay of the pattern, respectively.

efinition 7. The base of a pattern is the subset of the elements
rom the base of the overall distribution whose relationships and
onnections contribute to the pattern. The overlay of a pattern
s the subset of the elements from the overlay of the distribution
hat are connected to the base of the pattern.

We shall use the notation β and ω to refer, respectively, to
he base and overlay of a pattern; β ⊆ B, ω ⊆ Ω . Accordingly,
the expressions Cω(β), Arω(Orβ ), and Varω(Arω(Orβ ),Orω) denote
the composition, arrangement, and variation of the overlay of the
pattern, which are different aspects of a pattern.

Definition 6 implies that patterns objectively exist in data. A
pattern is not a product of observation or computation, it is a
combination of relationships and connections that actually exist
in data. Observation or computation can involve an abstraction
operation that brings these connections and relationships to-
gether and represents as a unified whole. Hence, the product
of observation or computation is a representation of a pattern
rather than the pattern itself. There may be different forms of
representation: verbal, symbolic (e.g., a formula), schematic, etc.
The pattern itself does not depend on the representation form and
on the way in which this representation has been obtained.

We shall use the term abstracted pattern to refer to a holistic
representation of an objective pattern in any form and medium:

Definition 8. An abstracted data pattern is a representation
of an objective pattern as a unified whole regardless of the
form, language, and medium of the representation. An abstracted
data pattern may represent the composition, arrangement, and/or
variation of the pattern overlay with respect to the base.

The concept of an abstracted pattern corresponds to the def-
inition of a pattern in data mining cited in Section 2.5. The set
of facts in our case consists of all connections and relationships
between elements involved in an objective pattern. However, our
definition of an abstracted pattern refers not only to explicit ex-
pressions in some languages but also to internal representations
constructed in the mind of a human observing objective patterns.
The definition of an abstracted pattern is also consistent with the
definition given by Collins et al. (2018). Unlike these previous
definitions, Definition 8 emphasises the existence of an objective
data pattern represented by an abstracted pattern.

The same objective pattern can be described very roughly in
a short and simple expression or in a more refined and accurate
manner using a longer and more complex expression. The pos-
sible expressions differ in their degree of abstraction: the more
details are included, the lower the abstraction. For example, the
expression ‘‘increasing trend in the morning’’ has a higher degree
of abstraction than ‘‘increase by factor 1.6 in the interval from
8:00 till 10:00’’.

A synoptic relationship between two or more data compo-
nents can be understood and characterised by finding objectively
existing data patterns and representing them by abstracted data
patterns. This process is called pattern discovery.
30
4.2. Pattern types

Patterns can be categorised first of all according to the data
distribution aspects whose relationships are involved in the pat-
terns, i.e., composition, arrangement, and variation. Based on
this principle, we distinguish composition patterns, arrangement
patterns, and variation patterns.

Composition patterns can be abstracted into frequency distri-
butions or probability distributions (in the statistical sense) of the
elements of the overlay domain. Composition patterns involve
instantiation relationships between overlay elements and their
prototypes (Definition 2) and do not involve any relationships
from the organisation of the base of the data distribution. Rela-
tionship from the organisation of the overlay domain OrΩ may
be utilised in the abstraction operation applied to a composi-
tion pattern. For example, when the overlay domain consists
of numeric values, the ordering and distance relationships be-
tween the values are usually involved in the construction of the
frequency or probability distribution. On this basis, composition
patterns can be further categorised as normal, exponential, left-
or right-skewed, long-tailed, fat-tailed, etc.

Arrangement patterns are formed by relationships between
base elements as signified by the expression Arω(Orβ ). Types of
arrangement patterns can be distinguished according to the types
of relationships between the base elements. Thus, the pattern
type commonly known as ‘‘spatial cluster’’ refers to an arrange-
ment of overlay elements by relationships of spatial distance
between positions in a spatial base. A well-known example is the
cholera outbreak in London in 1854, when John Snow discovered
that the deaths from cholera were arranged into a spatial cluster
around the Broad Street. Arrangement patterns involving rela-
tionships of ordering between base elements (such as temporal
ordering) may refer to the density of overlay elements along the
order (high or low number of overlay elements corresponding
to sub-sequences of consecutive base elements) and existence
of gaps (positions in the order without corresponding overlay
elements). When the base is time, the density of the overlay
elements is usually referred to as temporal frequency.

Variation patterns involve relationships both from the organ-
isation of the base (incorporated in the overlay arrangement)
and from the organisation of the overlay, as signified by the
expression Varω(Arω(Orβ ),Orω). Consequently, possible types of
variation patterns can be defined according to the types of the re-
lationships between the base elements and between the overlay
elements. For example, the pattern type known as ‘‘trend’’ in-
volves relationships of linear ordering in the base, which arrange
the overlay elements in a sequence, and metric relationships
between the elements of the overlay such that the relationships
along the sequence can be treated as changes and linked into
series of similar changes.

While there are specific terms denoting particular types of pat-
terns, such as trend, peak, plateau, fluctuation, cluster, alignment,
etc., the vocabulary of the existing terms does not fully cover
the variety of possible types of patterns. It may be unfeasible
(and not very useful) to enumerate and label all possible types of
patterns. It appears more reasonable to understand the roles of
different kinds of relationships existing in the base and overlay
of a distribution in forming patterns. This will allow one to
anticipate the types of patterns that can potentially exist in a
given data distribution without the need to know the terms
denoting these pattern types. Our conceptual model introduced in
Section 3 creates prerequisites for gaining such an understanding.
Let us briefly describe the effects of different relationships.

Arrangements of overlay elements are formed by relationships
existing in the base of a distribution (OrB). The types of such
relations include (but are not limited to) the following:
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• Identity: overlay elements may be arranged in terms of
having distinct or same (identical) holders.

• Ordering:

– Linear: arrange overlay elements into a sequence.
– Cyclic (e.g., temporal): arrange overlay elements into a

succession of subsequences corresponding to consecu-
tive cycles.

• Distances: create an arrangement of overlay elements where
one element can be close to or far from another. The ar-
rangement can be characterised in terms of the density
of the overlay elements: uniform or variable, high or low,
existence of clusters and empty regions, etc.

• Neighbourhood (adjacency): arrange the overlay elements
into contiguous regions.

• Direction (e.g., spatial): arrange subsets of overlay elements
into sequences similarly to linear ordering relationships.

Relationships existing in the domain of the overlay of a dis-
ribution (OrΩ ) are involved in the variation of the overlay over
he base. The expression VarΩ (ArΩ (OrB),OrΩ ) signifies that the
ariation also involves arrangement relationships between the
verlay elements which, in turn, are determined by the organ-
sation of the base. Hence, the effects of the domain-pertinent
elationships in the overlay need to be considered together with
he possible arrangements of the overlay elements according to
elationships in the base, as it is done in the following list:

• Identity or equivalence: create groups of identical or equiva-
lent overlay elements, which can be characterised in terms
of arrangement with respect to the base, e.g., contiguous,
split into parts, or dispersed. Identical overlay elements may
re-occur in a linear or cyclic arrangement, be aligned along
some direction, have close positions in the base, etc.

• Ordering: may (or may not) be related to arrangement with
respect to the base: increase or decrease of the element
order along a sequence, regions with lower- or higher-order
elements, etc.

• Distances: realise themselves as amounts of difference or
change between positions in the base and thus create pat-
terns of change: gradual, abrupt, moderate, etc.

• Neighbourhood: may or may not be preserved in an arrange-
ment with respect to the base, i.e., neighbouring overlay
elements may be close or distant in the arrangement.

• Direction: may or may not be same or similar along a se-
quence or within a region, may consistently change along a
sequence, etc.

Data distributions where the base or the overlay domain has
istance relationships between the elements may contain outliers.
istance relationships existing in the base may be responsible for
utliers in the overlay arrangement. An outlier in an arrangement
s an overlay element whose position in the base (i.e., the base
lement it is connected to) has a large distance to the positions
f all other overlay elements. For example, a spatial outlier is an
verlay element located in a spatial base far away from the bulk
f the overlay elements. Distance relationships existing in the
verlay may be responsible for outliers in the overlay variation.
n outlier in a variation is an overlay element whose prototype in
he overlay domain has a large distance to the prototypes of all
ther overlay elements. For example, an outlier in a distribution
f values of a numeric attribute over any kind of base is an
nstance of a value that is much higher or much lower than all
ther values instantiated in the overlay.
A question arises: should an outlier be treated as a pattern

ype? In terms of our conceptual model, a pattern consists of
31
elationships, not of elements. Accordingly, a particular outlying
lement of an overlay is not a pattern. However, its large dis-
ances to other elements, considered together with much smaller
istances between those other elements, is a pattern. This type
f pattern can be called outlierness, leaving the term ‘‘outlier’’ for

applying to elements.

4.3. Patterns in common types of data

The most common, frequently encountered types of data com-
ponents include

• discrete entities, as the cross and nought symbols on the top
left of Fig. 1 and apples on the top right;

• time, as the sequence of the days in Fig. 1, bottom, or se-
quentially ordered abstract steps, as the positions of words
in a text or genes in a DNA molecule;

• space: a continuous or discrete set of locations, as the grid
cells in Fig. 1, top left;

• attributes, as the colours on the upper right of Fig. 1 and
the moon shape characteristics (width and disc side) in the
lower part of Fig. 1.

These types have different organisations, i.e., different rela-
tionships between data elements. Sets of discrete entities, by
default, have only identity relationships, i.e., same or distinct,
between the elements. Time has ordering relationships and may
also have metric distance relationships between the elements,
i.e., how far in time one element is from another. Space has dis-
tance and/or neighbourhood (adjacency) relationships between
the elements. Two- and three-dimensional spaces (and, more
generally, multidimensional spaces) may also have direction rela-
tionships between elements. Attributes may have different organ-
isations of the value sets, usually called scales of measurement:
nominal, ordinal, interval, and ratio. These organisations differ
in the presence or absence of ordering relationships and metric
relationships of distance and ratio.

When a set of entities is a base of a distribution, it can
create an arrangement of the overlay elements in terms of being
connected to same or distinct entities. Such an arrangement may
contain patterns of co-occurrence (i.e., some elements from the
overlay base may repeatedly co-occur in connection with same
entities) or exclusion (e.g., some elements never co-occur, or
some element never occurs together with any other element).

When time is a base of the distribution, relationships of linear
and cyclic ordering and temporal distance between time units
create linear and cyclic arrangements of entities or attribute
values corresponding (i.e., connected) to these time units. In a
time-based arrangement of entities, there may be such patterns
as high or low temporal frequency, temporal gaps (absence of en-
tities for a time period), temporal clusters (groups of temporally
close entities), and regular appearance of entities (i.e., with equal
time intervals in between). For attribute values distributed over
a temporal base, patterns of value variation with respect to the
temporal arrangement are usually of interest. Patterns of tempo-
ral variation, such as trend, periodicity, peak, or plateau, result
from the combination of the time-based arrangement of the at-
tribute values and relationships of ordering and distance between
the attribute values themselves. For attributes with qualitative
(categorical) values, such as labels denoting types of entities,
there may be such patterns as re-occurrence of particular value
sequences or regular re-appearance of some values.

Space as a base creates arrangements of entities and attribute
values according to relationships of spatial distance, neighbour-
hood, and direction between locations. In a space-based arrange-
ment of entities, there may be such patterns as spatial clusters
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r regions of high and low density. Space-based arrangement of
ttribute values together with ordering and distance relationships
etween the values themselves can form such spatial patterns
s ‘‘hot’’ and ‘‘cold’’ spots, i.e., regions of high and low attribute
alues, respectively. Spatial trend patterns involve relationships
f spatial direction between spatial locations and relationships of
rdering and, possibly, distance, between attribute values. Exam-
les are increase or decrease from north to south or from centre
o periphery.

What has not been discussed so far is the types of components
n network, or graph data. In terms of our conceptual model,
uch data include two components: the set of all possible pairs
f nodes and the set of links connected to some node pairs. The

organisation of the set of node pairs in an undirected graph
consists of the adjacency relationships: two pairs are adjacent
if they have a common node. In a directed graph, there are
relationships of adjacency and partial ordering: pairs (a,b) and
(b,c) are adjacent, and the former precedes the latter in the order.
The links can be considered as discrete entities or as values of a
binary attribute specifying whether a pair is linked or not. In a
weighted graph, the links with their weights can be treated as
values of a numeric attribute; the value 0 can signify the absence
of a link. If we consider the distribution of the links over the set
of the node pairs, the latter will be the distribution base, and
the links will make the overlay. The composition of the overlay
is the set of actually existing links. The adjacency and ordering
relationships in the base arrange the links into various structures,
such as clusters, cliques, paths, stars, trees, and cycles. Such
structures are usually considered as possible types of patterns in
a graph. The concept of variation is relevant when there are some
relationships between the links as such. In particular, when the
links are weighted, there are metric relationships of the weight
difference.

A graph as a whole can be considered as a base for other data
components whose elements are connected to the nodes or links
of the graph. In this case, the organisation of the base consists of
the relationships represented by the links, and the elements of
the other components are arranged by these relationships.

4.4. Patterns in selected examples of visual data analysis

4.4.1. Cluster and calendar view
This example is based on a well-known paper by van Wijk

and van Selow (1999). The data under analysis consist of two
components: time, consisting of hourly time steps with the total
length of one year, and numeric values of the power demand of
a facility for each time step. The analyst wants to understand the
variation of the power demand over time; hence, the time is the
base of the distribution, and the overlay consists of the instances
of the values of the attribute ‘‘power demand’’ recorded in each
hour. The organisation of the base includes several kinds of or-
dering relationships: linear ordering and orderings in the daily,
weekly, and seasonal cycles. These relationships create a complex
arrangement of the attribute values, which is hardly possible to
represent adequately in a single visual display. Therefore, the
variation of the attribute values with respect to this arrangement
is hard to grasp comprehensively using purely visual means.

The analyst tackles the problem by decomposing it. First, the
analyst focuses on the segments of the overall arrangement cor-
responding to the daily cycles and the respective variation of the
attribute values within each day. It can be expected that similar
patterns of daily variation exist in different days, and this expec-
tation is supported by the visual display in Fig. 3. The analyst uses
a clustering technique to capture these similarities. The clustering
puts days with similar sequences of hourly attribute values into
groups. To see the common pattern of the daily variation in
32
each group, the analyst aggregates the individual value sequences
in each group into sequences of the hourly mean values. The
resulting sequences are represented in a line chart, as shown in
the right part of Fig. 4. The horizontal axis represents the linear
ordering of the hourly intervals in a day. The attribute values are
represented by vertical positions of points, and consecutive points
are connected by lines. This technique represents the variation
patterns by the shapes of the lines. It is possible to observe simi-
larities and differences between the daily patterns corresponding
to the clusters. All but one pattern can be holistically described,
e.g., as low values in the night, steep increase in the morning,
plateau during the day, and gradual decrease in the evening.
The patterns mostly differ in the level of the daytime plateau.
The remaining pattern can be characterised as constantly low
values over the whole day. According to our theoretical model,
these patterns are made by the temporal ordering and distance
relationships between the elements (hours) of the base (time
of the day) together with the quantitative difference relation-
ships between the elements of the overlay (attribute values). The
attribute values are arranged into sequences by the temporal
relationships. The relationships between the values create the
variation along the sequences.

In the next step, the analyst treats the set of extracted daily
patterns as a new component of the data. Each pattern is treated
as a single entity. The analyst studies the distribution of the
occurrences of these entities over the time. Now, the daily cycle
relationships, which are incorporated in the daily patterns, do
not participate in arranging the overlay elements, i.e., the daily
patterns. To consider the arrangement and variation of the daily
patterns by the weekly and seasonal cyclic relationships, the
analyst creates a calendar display shown on the left of Fig. 4.
The elements of the base, i.e., the days of the year in this case,
are visually represented by square marks organised according to
the weeks and months. The pattern occurrences are represented
by different colours. The display effectively enables perceptual
unification of closely located marks painted in the same colour,
and also unification of the marks arranged in the rows, the
columns, and the monthly blocks. The analyst observes repeated
weekly patterns, in which the Saturdays and Sundays are painted
in black and the other days have a different colour. A seasonal
pattern is also noticeable, with the green colour occurring in
colder months of the year and magenta in the summer. There
are multiple disruptions of the seasonal green–magenta pattern
by intrusions of other colours, mostly dark brown and orange.
These disruptions correspond to the differences in the midday
value levels between the patterns.

In this example, visual discovery of variation patterns is sup-
ported by displays in which the relationships between the base
elements (OrB) and the corresponding arrangements of the over-
lay elements (ArΩ (OrB)) are represented using one or two dimen-
sions of the display space. The variations of the overlay elements
(Varω(Arω(Orβ ),Orω)) are represented using either the remaining
isplay dimension (as in the daily time series display on the right
f Fig. 4) or, in Bertin’s terms, a retinal visual variable, namely, the
olours in the calendar display.

.4.2. VAST Challenge 2011 (Mini Challenge 1)
The challenge requires an investigation of the circumstances

f an epidemic outbreak in a fictive city Vastopolis (Grinstein
t al., 2011). The data are geographically referenced microblog
essages (further called tweets), some of which include key-
ords indicating disease symptoms, such as fever, chills, aches
nd pains, etc. The time span of the data is three weeks from April
0 to May 20, 2011. An analyst needs to find out when and where
he outbreak started and how it developed.

Here, the data include the following components: set of tweets,
et of people, set of keywords, time, and space. The analyst first
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Fig. 3. Variation of attribute values over a temporal base with linear and cyclic ordering relationships is hard to understand from a purely visual representation.
Source: van Wijk and van Selow (1999).
Fig. 4. Right: patterns of daily variation are captured by means of clustering. Left: a calendar view shows the distribution of the daily patterns with respect to the
eekly and seasonal cycles.
ource: van Wijk and van Selow (1999).
elects a subset of the relevant tweets, i.e., those whose texts con-
ain occurrences of keywords indicating the disease symptoms.
o find out when the outbreak started, the analyst investigates
he distribution of the relevant tweets over time, specifically,
ow the tweets are arranged along the time period under study.
or this purpose, the analyst uses a time histogram (Fig. 5), in
hich the heights of chronologically ordered bars represent the
umbers of the tweets that were posted in each day. As expected,
he outbreak start is signified by a pattern of sharp increase of
he tweet numbers. This happened in the last three days of the
tudied period.
The analyst focuses on these three days, i.e., selects the data

rom this time interval for the further analysis. To analyse only
33
the new disease cases, the analyst discards the secondary tweets
posted by the same individuals after posting their first messages
mentioning the disease symptoms. The analyst uses map displays
to investigate the spatial distribution of the selected tweets in
the three days of the outbreak (Fig. 6). The maps show the
arrangements of the tweets according to the spatial distance
and direction relationships between the locations in the spatial
base. On the first day of the outbreak, a dense spatial cluster of
tweets appeared in the city centre, with some extension in the
eastern direction. On the second day, the cluster in the centre
remains but does not extend to the east anymore. Additionally,
two dense clusters, or a single cluster divided in two parts by a
river, appeared in the south-western part of the city. On the third
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Fig. 5. The histogram of the tweet posting times reveals a sharp increase of the frequency of tweets mentioning disease symptoms in the last three days of the
time span of the data.
day, the south-western cluster almost vanished, as the spatial
density of the tweets notably decreased, whereas the central
cluster preserved.

The different behaviours of the clusters over time suggest that
hey may differ by other characteristics. To reveal the differences
f the message contents between the clusters, the analyst studies
he respective compositions of the keywords using word cloud
isplays, in which word frequencies are represented by font
izes (Fig. 7). Observing the differences between the frequency
istribution patterns, the analyst concludes that there were two
ifferent kinds of illness: a flu-like disease in the centre and
tomach disorders on the southwest. The latter appeared one day
ater than the former. However, the shapes and relative spatial
rrangement of the clusters suggest that the two diseases might
ave a common origin somewhere at a motorway bridge crossing
he river.

The analyst extracts the subset of messages posted in the
icinity of the bridge on the day before the outbreak start, ex-
mines the keyword composition, and finds indications of a truck
rash, fire, and spilling of the truck cargo in the river. The analyst
lso looks at additional data concerning the weather and the river
low direction. The analyst concludes that the smoke from the
ire contaminated the air, which was transmitted by the wind
astwards and caused the flu-like symptoms, whereas the spilt
ubstance contaminated the water in the river and caused the
tomach disorders downstream along the river.
The analyst compares the spatial distributions of the primary

nd secondary disease-related tweets on the third day (Fig. 8) and
bserves multiple compact dense clusters of secondary tweets.
sing the background map, the analyst finds out that most of
he clusters are located at hospitals. The analyst examines the
eyword composition of the tweets in these clusters and finds
ut that the most frequent keywords from the tweets posted
t the hospitals correspond to the most frequent keywords that
ccurred in the primary tweets posted in central-eastern area.
he analyst selects the subset of people who came to hospi-
als, studies the trajectories made of their previous tweet loca-
ions, and determines that at least 95% of them had visited the
entral-eastern area after the truck accident and before com-
ng to hospitals. This indicates that people with serious medical
onditions, most probably, had been infected while being in the
entral-eastern area rather than anywhere else.
This example focuses on analysis of data distributions re-

arding overlay composition CΩ (B) or arrangement ArΩ (OrB).
he arrangement with respect to time was visualised in a time
istogram, where one display dimension was utilised to represent
he temporal ordering and distance relationships. The arrange-
ents with respect to space were visualised in maps, so that

he spatial relationships existing in the physical space were rep-
esented by the spatial relationships between positions in the
isplay space. The arrangement with respect to the composition
f the space and time (i.e., the spatio-temporal distribution of
he tweets in three days of the outbreak) was examined by
34
decomposing the complex spatio-temporal base into slices along
the temporal dimension, i.e., consecutive days, and considering
the spatial arrangement in each slice.

4.5. Handling distributions with more than two data components

The previous discussions mostly referred to distributions in-
volving two data components. Relationships between more than
two components can be handled in two complementary ways:
decomposition, i.e., considering the relationships for each pair
of components, and integration, i.e., considering the Cartesian
product of two or more components as a single component. The
latter approach is recommendable when the components have
similar organisation, i.e. same types of relationships between the
elements. Thus, it is quite common to integrate multiple numeric
attributes into an abstract multidimensional space, which can be
considered as a single component. It is also common to treat the
physical space and time as an integrated domain called space–
time continuum. The rationale for the recommendation is that
the elements of the integrated set will be linked by relationships
derived from the relationships existing in the original sets. Thus,
distances between elements of a Cartesian product can be de-
rived from distances within the original sets, and directions in
the integrated set may be defined as compositions of ordering
relationships from the original sets. If the organisation of the
original sets are incompatible, i.e., have no relationship types in
common, it is harder to derive meaningful relationships in the
integrated set.

Section 4.4 contains examples of decomposition applied when
the base of a distribution is composed of several components
(namely, space and time in the epidemic outbreak example) or
has a complex organisation, such as the nested cyclic orderings
in the power demand example. In these cases, the distribution
base was decomposed into slices, or segments. In the space–time
case, the spatio-temporal base was decomposed into spatial slices
corresponding to time steps (days). In the case with the temporal
cycles, the base was divided into one-day segments. The analysts
considered the parts of the distribution corresponding to the
slices or segments and discovered patterns in these distributions.
In the epidemic outbreak case, the analyst constructed a mental
representation of the whole distribution from the discovered
patterns by determining their relationships. In the power demand
analysis, there were too many segments and respective patterns
to deal with; therefore, the analyst used a computational method
(clustering) to group the patterns by similarity and represent
them by the average patterns of the groups.

5. Relationships between patterns

A data distribution may contain more than one pattern. Re-
lationships between two or more patterns existing in the same
distribution can be described in terms of the relationships be-
tween their bases and between the overlays. Obviously, the com-
positions of the bases and of the overlays, i.e., the sets of the
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Fig. 6. The spatial distribution of the primary outbreak-related tweets posted on three consecutive days.
Fig. 7. The text cloud displays represent the keyword compositions for the central cluster of tweets (top) and for the cluster on the southwest (bottom).
elements they consist of, can be linked by general between-set
relationships, such as inclusion and intersection. Besides, when
there are specific organisation relationships, such as ordering and
35
distances, between the elements within the base and/or within
the overlay, these relationships can also link patterns. Thus, re-
garding the bases, patterns may be arranged in a particular order
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Fig. 8. The spatial distributions of the primary and secondary outbreak-related tweets (red and black dots, respectively) on the third day of the outbreak.
ithin the base, or lie at a certain distance from each other, or be
djacent, etc. For example, in Fig. 1, bottom, the trend pattern of
he increase of the visible fraction of the moon is followed by the
ecreasing trend. In Fig. 6, there are spatial distance and direction
elationships between the bases of the spatial clusters.

Regarding the overlays, patterns may be similar or different
n terms of the composition, arrangement and/or variation of the
verlay elements. Thus, in Fig. 7, we see different patterns of
he word composition in two subsets of texts. As mentioned in
ection 4.4.2, the word composition pattern in the central cluster
f tweets was similar to the pattern in the secondary tweets
oncentrated at the hospitals. In Fig. 4, right, the patterns of daily
ariation consist of very similar changes and differ only in the
ighest attribute values. Patterns involving sequential arrange-
ent of the overlay element may also be opposite in terms of

heir variation, as, for example the increasing trend pattern in the
orning and decreasing trend in the evening.
Relationships that exist between patterns unite simpler pat-

erns into more complex patterns. Thus, the trend patterns of the
hanges of the moon shape make together a sequential pattern
onsisting of the increasing trend following by the decreasing
rend. On a longer time period, there exists a pattern of periodic
epetition of the same sequential pattern, i.e., it consists of mul-
iple similar sequential patterns following one another. Similarly,
he daily variation patterns in Fig. 4, right, are composed of
horter patterns of the night low values, morning sharp increase,
aytime plateau, and evening gradual decrease. The calendar
isplay on the left of Fig. 4 demonstrates how the daily patterns
re organised into weekly and seasonal patterns.
These examples are consistent with the statement of Resnik

1997) who said that the premier relationships among patterns
re structural similarity and structural containment. Let us discuss

these and other possible relationships in terms of our definitions.

5.1. Similarity

Definition 9. Two or more objective patterns are similar if they
an be represented by the same abstracted pattern.

For example, each curve in the plot in Fig. 4, right, is an
bstracted pattern representing multiple objective patterns of
aily variation of the power demand.
The concept of pattern similarity does not imply that patterns

eed to be in the same distribution, or in distributions with a
ommon base or a common overlay, or involve occurrences of the
ame elements. It is only essential that patterns involve the same
36
relationships. For example, the daily patterns of the variation of
the power demand in Fig. 4 may be similar to the daily patterns
of the variation of the amount of traffic in a city, or the number
of employees present at their working places, etc.

In Fig. 8, there are multiple patterns of spatial arrangement
that can be represented by the same abstracted pattern ‘‘dense
compact spatial cluster’’; hence, all these patterns are similar.

As we discussed, abstracted patterns representing the same
objective pattern may differ in the degree of abstraction. This
means that the similarity between objective patterns may be
dependent on the degree of abstraction in representing them.
Thus, all curves in Fig. 4, right, except the black one, can be
considered similar because they can be represented by a common
abstracted pattern ‘‘low values in the night followed by sharp
increase in the morning, then plateau with small fluctuations
during the daytime, followed by a gradual decrease to the night
low values’’. However, if the rates of the morning increase and
evening decrease are taken into account, the curves are different.

5.2. Containment

Definition 10. An objective pattern X includes, or contains, an
objective pattern Y , denoted Y ⊂ X , when the base of X includes
the base of Y : β(Y ) ⊂ β(X). The pattern Y is called a sub-pattern
of X , and X is a super-pattern of Y .

We have had already many examples of containment rela-
tionships. Thus, the pattern of the variation of the moon shape
contains the trend patterns of the increase and decrease of the
visible area of the moon. The daily variation patterns in Fig. 4,
right, contain sub-patterns of uniformly low values, rapid growth,
high plateau, and decrease. The weekly and seasonal patterns in
Fig. 4, left, contain daily sub-patterns. The south-western spatial
cluster in Fig. 6, centre, contains two sub-clusters separated by
the river.

5.3. Repetition

In a distribution, there may be two or more similar pat-
terns with non-intersecting bases. In such a case, it can be said
that some patterns repeatedly occur in the distribution, and this
repetition itself is a pattern. More specifically:

Definition 11. A repetition pattern is a super-pattern contain-
ing two or more similar sub-patterns with non-overlapping bases
together with relationships existing between the pattern bases.
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For example, a daily variation pattern in Fig. 4, right, contains
wo instances of a pattern of uniformly low values, one at the
eginning and one at the end of the day. On the left of Fig. 4, we
ee patterns of multiple repetitions of several daily patterns, as
ell as multiple repetitions of weekly patterns composed of five
onsecutive repetitions of one daily pattern followed by two rep-
titions of another daily pattern. Fig. 8 exhibits a spatial repetition
attern containing multiple dense clusters of outbreak-related
weets located around hospitals.

A repetition pattern can be called regular if the organisation
f the distribution base includes distance relationships between
he elements, and the distances between the bases of similar
atterns are (approximately) equal. If the base organisation also
ncludes ordering relationships, a pattern of regular repetition can
e called periodic. Thus, the distribution in Fig. 4, left, contains
pattern of periodic repetition of the weekend pattern of daily
ariation, which is represented by black colour. Besides, there
re sub-patterns with periodic repetition of particular weekly
atterns, sometimes with small disruptions. The variation of the
oon shapes considered on a longer time period than shown in
ig. 1 is also periodic.

.4. Cross-overlay relationships

Not only patterns that exist in the same distribution can
e linked by relationships but also patterns existing in two or
ore distributions with a common base. More specifically, re-

ationships can exist between the bases of the patterns, and
uch relationships may be quite important. They may hint at
orrelations or even causal relationships between phenomena
r events. Potentially related patterns may have the same or
verlapping bases, or there may be a particular relationship (such
s a temporal lag) between the pattern bases.

efinition 12. Cross-overlay relationships between patterns
xisting in distributions of distinct overlays over a common base
onsist of relationships between the bases of the patterns.

For example, the spatial pattern of the repeated dense clus-
ers of outbreak-related tweets visible in Fig. 8 is related to the
attern of the spatial distribution of the hospitals in Vastopolis,
s the base of each cluster includes the position of one hospital.
his relationship indicates that many infected people came to
ospitals. Other examples of cross-overlay relationships are those
etween the south-western dense cluster of tweets and the river
osition (the spatial base of the cluster overlaps with the spatial
ase of the river), between the central dense cluster and the wind
irection at the time of cluster emergence (the temporal base of
he cluster coincides with the temporal base of the pattern of
he western wind), and between the spatial position and time of
he track crash event and the spatial positions and times of both
lusters. The latter example demonstrates spatial and temporal
hifts between the pattern bases.

. Use of patterns in further data analysis

One of the benefits of having a clear definition of a pattern
s the possibility to define in a systematic way various operations
hat can be applied to patterns in the course of data analysis. Con-
equently, designers of systems for data analysis can implement
ystem functions and interaction techniques supporting these
perations.
In accord with the model building view (Andrienko et al.,

018), discovered patterns are integrated in an overall model
f the analysis subject, and this model is used for description,
rediction, and/or decision making. Here we do not consider

hese final uses of analysis outcomes but discuss how discovered
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patterns can be utilised in the further data analysis. We begin
with considering specific examples and then use our conceptual
model to define in a systematic way the possible actions that
can be applied to patterns or their constituents in the process of
analysis.

6.1. Specific examples of pattern use

In Sections 4.4.1 and 4.4.2 we described two examples of vi-
sually analysing data. Let us look how analysts in these examples
used the patterns they had discovered.

E1: In Section 4.4.1, several repeating patterns of daily varia-
ion of the power demand discovered by means of cluster analysis
Fig. 4, right) were considered as elements of an overlay set
istributed over a base consisting of the days of the year. The
urther analysis was applied to the distribution of these patterns
ver this base (Fig. 4, left). This is the most obvious example of
pplication of further analysis steps to discovered patterns.
Section 4.4.2 provides the following examples. E2: After seeing

he pattern of high increase of the number of disease-related
weets in the last three days, the analyst focused the further
nalysis on these three days (Fig. 5). E3: The analyst selected
he tweets that formed the increase pattern in time and con-
idered their distribution in space (Fig. 6). E4: After detecting
wo dense spatial clusters of posted tweets (Fig. 6, centre), the
nalyst considered and compared the keyword compositions of
he respective messages (Fig. 7). E5: Observing particular spa-
ial relationships between the two clusters, the analyst came
o the hypothesis of a common reason and origin of both and
nferred the likely place and time of the event that might cause
he appearance of these clusters. E6: The analyst compared the
hapes of the clusters and their positions in space and time
Fig. 6, top and centre) with the spatial position and flow direction
f the river and with the wind direction at the time of the
luster emergence and drew conclusions concerning the disease
ransmitting mechanisms. E7: Analysing the spatial distribution
f the secondary outbreak-related tweets posted on the last day,
he analyst noticed a pattern of repetition of compact dense
lusters and found out that these clusters were located around
ospitals (Fig. 8). E8: Comparing the keyword compositions of
he tweets posted at the hospitals, in the central-eastern area,
nd in the south-western area, the analyst observed similar fre-
uency patterns in the two former compositions. E9: The analyst
elected the subset of people who came to the hospitals, studied
he spatial relationships of their previous tweets to the central-
astern and south-western areas, and thereby ascertained that
ost people had previously visited the central-eastern area and,
ost probably, had been infected while being there.
These examples demonstrate the main purpose of pattern

iscovery in visual analytics: patterns are involved in analytical
easoning; analysts use them to make hypotheses and draw con-
lusions. This main use of discovered patterns is supported by
nteractively performed analytical operations, such as selection,
xtraction of connected elements from other data components,
ggregation, and unified representation. Our theoretical model
llows us to define the set of possible analysis operations on
atterns in a systematic manner.

.2. General analysis operations on patterns

According to our model, a pattern has its base β and overlay
, which are subsets of the base B and overlay Ω of the overall
ata distribution. The internal content of a pattern is connections
nd relationships between the elements of its base and its overlay
Definition 6). The base and overlay elements may also have other
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onnections and relationships, external with respect to the pat-
ern. Analytical operations can be applied to the internal pattern
ontents or exploit the external connections or relationships.
Operations on internal contents of individual patterns:

• Characterise pattern contents: derive (in particular, com-
putationally) synoptic characteristics of a pattern from the
elements of its base and overlay and their relationships,
e.g., the number of elements in a spatial cluster and their
spatial density.

• Aggregate a pattern: represent a pattern as a single element
of data (as in E1).

• Refine a pattern: divide β or ω into subsets (e.g., the
outbreak-related tweets into primary and secondary), in-
vestigate and characterise the parts of the overall data
distribution including the elements of each subset and the
connected elements of the other component.

Operations on comparing contents of several patterns:

• Compare patterns in terms of relationships they include;
e.g., compare daily variation patterns in E1, compare word
frequency patterns in E4 and E8.

• Group patterns by similarity of their contents; e.g., create
clusters of similar daily patterns in E1.

• Represent similar patterns by a common abstracted pattern
and treat each pattern as an instance of this abstracted
pattern (E1).

Operations using relationships of β and ω to external ele-
ments of B and Ω:

• Determine relationships of a pattern to the rest of the distribu-
tion, e.g., determine the relative time of the tweet number
increase pattern in E2 and the amount of the increase with
respect to the average number.

• Determine relationships between patterns in the same distri-
bution, e.g., between spatial clusters of tweets (E5).

• Unite patterns into compound patterns (super-patterns), e.g.,
unite the compact dense clusters of tweets posted around
the hospitals (Fig. 8) and use them all together, as in E8 and
E9.

Operations using connections of base or overlay elements to
elements of other components:

• Extract elements of other components connected to the el-
ements of the pattern base or overlay, e.g., extract spatial
locations of the tweets in E3, words of the messages in E4
and E8, people who posted the tweets in E9.

• Characterise a pattern using elements of other components,
e.g., characterise spatio-temporal clusters of tweets in terms
of keyword occurrences (E4, E8).

• Determine cross-overlay relationships of patterns in a distri-
bution of a component Ω1 over a base B to patterns or
elements of the distribution of another component Ω2 over
the same base B (E6, E7).

This section emphasises that discovery of distribution patterns
is a part of an analytical workflow, in which the patterns that
have been discovered are used in various ways in reasoning
and further analysis. This emphasis is specific to visual analytics,
whereas data mining, statistics, and other disciplines developing
techniques for data analysis are primarily concerned with pattern
discovery and, possibly, interpretation but not with the further
use.
38
7. Discussion of model implications

7.1. Summary of the model

The definitions and statements we have formulated earlier can
be briefly summarised as follows:

• A data pattern is a combination of relationships between
connected elements of two or more data components. El-
ements of one of the components make the pattern base,
the remaining elements make the overlay. The relationships
between the overlay elements are considered in connection
to the base and to relationships existing between the base
elements. A pattern does not include its base or overlay ele-
ments; it only includes the system of relationships between
the elements.

• An objectively existing data pattern can be represented and
treated as a single object. Any such representation is called
an abstracted pattern. Similarity of objective patterns means
the possibility to represent them by the same abstracted
pattern.

• Patterns may be linked by containment or intersection re-
lationships between the sets of their base and/or overlay
elements as well as by relationships made from elemen-
tary relationships between the base or overlay elements.
Patterns linked by relationships form composite patterns.

• Once discovered, patterns can be utilised in the further data
analysis through applying interactive analytical operations
to their internal contents and external relationships and
connections.

Let us now discuss the meaning of this model for the visual
analytics science and practice.

7.2. Need for pattern discovery

Understanding relationships among data components is one
of major general tasks for which visual analytics techniques are
applied. A visual analytics process often aims at building a model
(particularly, a mental model in the analyst’s mind) of some sub-
ject of analysis, and the model needs to represent relationships
between components (aspects) of the subject in a generalised
way (Andrienko et al., 2018). The requirement of the generality
means that multiple connections between individual elements of
data need to be unified.

As we have explained in this paper, unification of multiple
elementary connections is possible owing to relationships that
exist between elements within data components. These relation-
ships unite multiple elements and elementary connections into
structures that can be considered and represented holistically.
Such structures are usually called patterns. Hence, general rela-
tionships between components of data and/or analysis subject
can be understood and modelled by discovering patterns in data
distributions. Therefore, pattern discovery can be regarded as a
fundamental operation in visual analytics processes.

There are two approaches to pattern discovery: computa-
tional and visual. Computational pattern discovery is done by
specially designed algorithms. This requires precise specification
of patterns to seek, i.e., what relationships must exist between
elements. Besides, parameter tuning is often needed, such as
setting the minimal number of elements in a pattern, maximal
distance or difference between elements, minimal frequency, etc.
An algorithm will find patterns matching the given specification
and nothing else. Hence, in the context of the general task of
gaining an overall understanding of the relationships between
data components, pattern discovery algorithms do not do the full
job, as they will not find potentially relevant patterns beyond the
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pecifications received. Still, when particular types of patterns are
xpected to exist in the data, it makes sense to employ algorithms
esigned to detect patterns of these types. The possible pattern
ypes can be predicted based on the types of the relationships
xisting within the data components, as discussed in Section 4.2.
Visual pattern discovery relies on the human capability to

ee patterns in visual representations of information. The use of
his capability does not require an exact specification of what
o look for, and a human observer can detect patterns of var-
ous types. However, the visual representation must fulfil the
ollowing requirements:

• Since patterns are formed by relationships between data
elements, the visualisation must faithfully show the existing
relationships.

• The visualisation must not provoke seeing non-existent re-
lationships, to preclude generation of false patterns.

• Since patterns need to be considered and represented holis-
tically, the visualisation should facilitate perceptual unifica-
tion of multiple elements.

These requirements logically follow from the conceptual model
ntroduced in the previous section. At the same time, they are
onsistent with the established principles of the visualisation
ntroduced by Bertin and further developed by other researchers.

.3. Principle of correspondence

The first two requirements to visual representation can be
een as two sides of a single principle of correspondence: re-
ationships that can be perceived by a human observer from a
isual display must correspond to relationships actually existing
n data. This statement is consistent with the Bertin’s formulation
f the principle of the correspondence between the organisation
evel of a data component and the perceptual properties of the
isual variable that should be used for representing this compo-
ent (Bertin, 1983). Mackinlay (1986) referred to this principle
sing the term ‘‘expressiveness’’ (of a visual variable). Based on
ur conceptual model, the principle of correspondence can be
xplained by the necessity to make relationships involved in
bjectively existing patterns perceivable by a human so that the
elationships between values of a visual variable can be intu-
tively translated into relationships between the data elements
epresented.

Talking about organisation of a data component, Bertin con-
idered only ordering and metric (quantitative) relationships. We
ave discussed in Section 4.2 how other types of relationships,
uch as equivalence, spatial direction, neighbourhood, cyclic or-
ering, can also be important. Besides, there may be application-
pecific relationships, e.g., hierarchical relationships or links in
network. Hence, the Bertin’s concept of organisation level is

nsufficient for describing the variety of possible organisations.
he existing assortment of visual variables is also insufficient for
epresenting all types of relationships that may exist within data
omponents. Thus, there is no visual variable that could represent
cyclic or a hierarchical organisation. Such organisations are
sually represented using other means, such as particular layouts
f visual marks. For example, a cyclic organisation can be repre-
ented by a radial, spiral, or matrix layout. In node-link diagrams,
elationships are represented by special linear marks connecting
odes. The treemap technique (Johnson and Shneiderman, 1991)
ses a nested layout for representing hierarchical relationships.
Bertin considered various layouts (called ‘‘impositions’’), in-

luding networks and maps, in separation from the concept of set
rganisation, whereas a layout is no less a means to represent re-
ationships within a set than a visual variable. We propose to treat

hese and other possible means of representing relationships
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between elements equally and thus to state the fundamental
principle of visualisation in the following way:

Analysis-relevant relationships between data elements need to
be represented by appropriate means of visual expression, including
visual variables, layout of visual marks, special marks, spacing, etc.
These means of visual expression must support the perception of
existing relationships and preclude the perception of non-existing
relationships.

Spacing between display components, such as bars in a bar
chart, is often used when the visual variable ‘position’, which
is perceived as continuous, represents a discrete set. This is an
example of an approach to precluding perception of non-existent
relationships.

The principle we have formulated can be called the principle
of correspondence of visualisation means to relationships existing in
data. This is not a new principle; although it was not stated in this
way until recently (see (Karer et al., 2020)), visualisation design-
ers have been always following it by using empirically established
conventions of choosing particular visual means for representing
different kinds of data. The proposed explicit formulation clearly
states: what visualisation designers need to care about primarily
is the relationships existing in data. By matching the possible
types of relationships, including those discussed in Section 4.2,
to the visual means capable to convey them, it is possible to
transform the tacit conventions into explicit rules of visualisation
design.

There are other theoretical models that consider the require-
ment of correspondence between data and visualisation from
different perspectives. Kindlmann and Scheidegger (2014) care
about the correspondence between the so-called ‘‘mathematical
structure of the underlying data’’ (i.e., data types and organ-
isation) and the ‘‘mathematical structure in the perception of
visualisations’’. They formulate their three principles stating that
the visualisation must be invariant to the internal representation
of the data and that changes in the data must result in noticeable,
meaningful, and unambiguous changes of the display. One of the
principles is called ‘‘The Principle of Correspondence’’, but, unlike
ours, it refers to data changes rather than relationships within
the data. Demiralp et al. (2014) propose a model that treats
visualisation as a data embedding that must preserve structures
existing in the data. The model focuses on relationships between
data items that can be represented as distances. The idea is that
distances perceived from the visualisation must correspond to
the actual distances between data items. Wattenberg and Fisher
(2004) focus on the kinds of relationships that organise data into
groups and hierarchies. They propose a formal model that can
describe the organisation of an arbitrary grey-scale image as,
supposedly, would be perceived by an observer. A visualisation
designer can compare the structure reconstructed by the model
with the actual data structure and thus check if the image conveys
the data structure correctly. Unlike those works, our model ex-
plicitly acknowledges the pattern-forming role of different kinds
of relationships between data items and explains the fundamen-
tal principle of correspondence between data and visualisation by
the need to correctly convey data patterns to human observers
and analysts.

7.4. Principle of unification

According to our model, pattern discovery involves unification
of multiple elements and abstraction, that is, integrated represen-
tation of these elements as a single object. Consequently, visual
displays of data should not only correctly represent objectively
existing data patterns but also support perceptual abstraction
from multiple elements and elementary relationships to holistic
representations. This corresponds to the Bertin’s concepts of the
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verall and intermediate reading levels as opposite to the ele-
entary level involving perception of individual elements and

elationships (Bertin, 1983). Bertin also introduced the concept
f image as ‘‘the meaningful visual form, perceptible in the min-
mum instant of vision’’ (Bertin, 1983, p. 11). A single image
roviding answers to questions of all three levels allows us to per-
eive patterns as units. Visualisations with more images require
ntegration across images, which may hinder holistic perception.

Hence, in designing visual representations for data analysis,
t is essential to support integrated perception of multiple rela-
ionship instances. For example, in a line chart, multiple points
re connected by line segments; as a result, a large number of
rdering and distance relationships are integrated into a single
ine that is perceived as a unit. In plots or maps where ele-
ents are represented by dots, multiple neighbouring dots can
e perceptually integrated into shapes according to the Gestalt
aw of proximity (Metzger, 2006). This capacity of the human’s
erception is also utilised in projection displays where distances
n the projection space represent degrees of similarity, semantic
elatedness, or other kind of relationships whose strength can be
xpressed numerically (Wise et al., 1995; Bach et al., 2016; van
en Elzen et al., 2016).
Abstractive perception can be promoted by smoothing, e.g., us-

ng kernel density estimation techniques (Willems et al., 2009),
hich, however, hide the original elements and relationships.
ufte advocated creation of displays supporting both micro- and
acro-readings (Tufte, 1990), such that multiple small visual
arks can be perceived all together. Bae and Watson (Bae and
atson, 2014) study the use of five cues stimulating visual

rouping, namely, proximity, colour similarity, common region,
onnectivity, and alignment, separately and in combinations.
hey assess the strengths of the different cues and find that
omplex structures can be more effectively communicated by
ombining two or more grouping cues.
The development of visual analytics science and technol-

gy would benefit from a systematic survey of the existing ap-
roaches suitable for supporting abstractive perception, and it
ould also be appropriate to evaluate these techniques empir-

cally.

.5. Directions for empirical research

As we have mentioned, the need to support abstractive per-
eption of patterns calls for empirical research on how different
echniques can promote such kind of perception.

Since relationships play the key role in forming data patterns,
he existing means of visual representation require empirical
valuation of their capabilities to enable perception of various
ypes of relationships. The empirical studies that were conducted
o far mostly referred to the ability of display users to perceive
alues rather than relationships. Hence, there is a need in further
tudies focusing primarily on relationships.
Knowing the types of relationships involved in the organisa-

ion of data components, it is possible to predict what kinds of
atterns may exist, irrespective of the existence of specific terms
enoting these kinds of patterns. This possibility can be used
or testing the capabilities of a particular visualisation to convey
orrectly and effectively the kinds of patterns that can exist in
ata with components of given types. For this purpose, one can
onstruct an artificial dataset with these data types that includes
his or that kind of pattern as the ‘‘ground truth’’, and check if

sers can efficiently spot the incorporated patterns.

40
7.6. Practical utilisation of the theoretical model

An analyst who wants to discover patterns in a distribution
can use the model to

• understand which aspects of a distribution are relevant to
analysis goals: composition, arrangement, or variation (Sec-
tion 3.3);

• understand what kinds of relationships between elements
are involved in these relevant aspects and need to be taken
into account (Section 4.2);

• find appropriate means for representing these relationships;
• decompose a distribution over a complex base with several

kinds of relationships into a combination of distributions
with simpler bases;

• understand what relationships can exist between patterns
and determine these relationships (Section 5);

• build an analytical workflow involving appropriate opera-
tions on patterns (Section 6).

Apart from the possible use by data analysts, the model can
provide an appropriate basis for practice-oriented teaching of
visual analytics. It can also be utilised in designing visual analytics
systems providing guidance to users (Collins et al., 2018; Ceneda
et al., 2017, 2020). Intelligent guidance that is not limited to in-
structing users about system functions may help users in pattern
discovery (Collins et al., 2018, Section 5.5.1), e.g., by informing
users about pattern types that can exist in their data and about
visual or computational methods that can be used for finding
patterns of these types (Collins et al., 2018, Fig. 1). An intelli-
gent guide can also help users externalise patterns they have
discovered, i.e., transform mental images of these patterns into
explicit representations. To provide these kinds of user support,
the guiding system needs to have a knowledge base enabling
prediction of possible pattern types depending on the structure
and properties of user’s data (Collins et al., 2018, Section 6). Our
theoretical model can serve as a foundation for such a knowledge
base.

8. Conclusion

In developing our model, we have built on ideas from systems
science (Klir and Elias, 2002) and general mathematics (Resnik,
1997; Oliveri, 1997), and we also generalised and systematised
our vast practical experiences from developing visual analytics
solutions for various kinds of domains, data, and problems. The
model does not include a taxonomy of pattern types, which could
hardly be exhaustively itemised. It also does not explicitly refer
to data types, which can be defined in multiple ways (e.g., in
databases, programming languages, etc.), but refers instead to
fundamental properties of data components, particularly, types
of relationships between elements.

The model gives a working definition of a pattern in a data dis-
tribution, which has been so far a rather vague and not practically
utilisable notion in visualisation and visual analytics. To make
this definition, we have introduced a system of supporting defini-
tions. By drawing implications from the system of definitions, we
have theoretically explained the rationale of some of the existing
empirically established principles of visualisation, which may be
helpful in teaching these principles. We have outlined how the
proposed theoretical model can be used in data analysis practices,
but, of course, its practical utility requires extensive testing.

The model can enlighten designers of visual analytics meth-
ods and systems concerning possible approaches to supporting
pattern discovery. The main idea is to respect and make use of
relationships existing in data domains and to find either com-
putational methods extracting combinations of relationships or
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isual methods allowing human analysts to observe such combi-
ations and perceive them holistically. In this respect, the model
uggests a need in empirical studies on perception of visual dis-
lays that would specifically focus on perception of relationships
ather than judgement of absolute values. Such studies need
o evaluate the following: (1) how easy is for a user to see
articular relationships between overlay elements and between
heir positions in the base; (2) whether or not the user may
ee non-existing relationships; (3) how well items linked by the
elationships ‘‘stick together’’ in the user’s eyes (Metzger, 2006).

Another merit of the given definitions is that they enabled us
o describe systematically the analytical operations that can be
pplied to discovered patterns in the processes of data analysis
nd analytical reasoning. The task of supporting such processes
as primary importance for visual analytics research and design
f visual analytics systems. We have defined the range of possi-
le analytical actions that can be applied to patterns or involve
atterns. This can inform researchers focusing on supporting
nalytical processes and designers of systems intended to support
uch processes.
As a direction for further theoretical research, we see a need

n considering in more detail complex bases composed of het-
rogeneous components, such as space × time, entities × time,
ntities × space × time, etc. The organisations of such bases
re very complicated. It would be appropriate to consider what
inds of objective patterns are possible for overlays with different
roperties.
This discussion gives us a ground to believe that our work

akes a valuable contribution to the visual analytics research and
an inform and motivate further theoretical researches.
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