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Abstract

Financial markets are an important feature of modern economies, where trading
decisions can be critical because of their significant impact on social and economic life.
Various models and techniques have been applied to describe and predict financial time
series in order to develop effective tools in financial prediction. In particular, neural
networks have recently gained significant research interest in financial markets as well
as in other domains. As financial time series data show a high degree of non-linearity,
neural networks represent an attractive approach in this area.

This thesis introduces a novel neural network model, the FL-SMIA model, as well
as several variations and extensions, namely the FL-SMIA*, D-FL-SMIA, MD-FL-
SMIA, MD-FL-SMIA-2, M-FL-SMIA, and FL-SMIA-RBM. The FL-SMIA model is a
model that uses the principles of the Functional Link Neural Network (FLNN) and
the Self-organising Multilayer Neural Network using the Immune Algorithm (SMIA).
The FL-SMIA model combines the higher-order inputs , i.e. the products of raw input
features, with the self-organising hidden layer (SMIA) that dynamically grows and
adapts to the input vectors.

Based on the promising results of the FL-SMIA network in initial experiments,
variations and extensions have been developed using deeper architectures (D-FL-
SMIA), mixed input representations (M-FL-SMIA), a combination of deep and mixed
architectures (MD-FL-SMIA), and of the FL-SMIA with the Restricted Boltzmann
Machine in the FL-SMIA-RBM. The proposed models have also been compared with
other neural network architectures: FLNN, the Multilayer perceptron (MLP), and
SMIA.

All networks have been evaluated for one day and five days ahead prediction
using financial and statistical metrics, focusing on the Relative Profit (RP) and
Annualised Volatility (AV). Data-sets of three different types have been used: exchange
rates (USD/UKP, USD/EUR, JPY/USD), stock price indices (NASDAQ, DJIA), and
commodity prices (OIL and GOLD).

In terms of average RP results for the one day ahead prediction, the FL-SMIA
was slightly worse than the best model (FLNN) but FL-SMIA model reduced the



x

investment risk by producing the lowest average AV value. We have also observed
notable differences between data types.

For the five days ahead prediction, the M-FL-SMIA model has the highest average
RP and the lowest average AV results. Correlation analysis on the residuals has shown
differences in behaviour between FLNN model and FL-SMIA model, encouraging
further extensions and variations.

Overall, the FL-SMIA model and its extensions will be useful for time series
prediction because of their competitive performance and different behaviour to standard
neural networks.
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Chapter 1

Introduction

1.1 Financial Prediction
Over the last 20 years, the problem of predicting financial time-series has attracted
much interest from both commercial and academic communities, which resulted in
a wide range of investigations. Predictive models are contributing to the decisions
on economic policies by governments and investments by multinational companies
which rely on computer modelling and forecasts [10, 94, 156]. Financial time series
are highly non-linear and complex [95] because of many of the risk factors, such as
political events, weather conditions, and dynamics of the financial market themselves,
which are affecting the stock prices and exchange rates [22]. Artificial Neural Networks
(ANNs) as non-linear models have long been seen as promising and have been used
extensively in financial time series prediction [59, 154, 12, 110], but they suffer from
some problems, particularly over-fitting on smaller data-sets [90, 137]. In 1987, Giles
[53] introduced the Higher Order Neural Network, which led to [117] introducing
the Functional Link Neural Network (FLNN). The FLNN was presented to reduce
the over-fitting problem by removing the hidden layer from the standard Multilayer
Perceptron (MLP) architecture to help reduce the model complexity. Instead, the
FLNN uses products of input units to enable the network to perform non-linearly
separable classification tasks.

Another approach to improve the MLP model that based on alternative learning
methods using to prototypes or clustering, such as Adaptive Resonance Theory [20,
57, 17], or algorithms inspired by immune systems [31] such as the Self-organised
Multilayer neural network using the Immune Algorithm (SMIA) [101], where the
internal representations expand depending on the training data.
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1.2 Artificial Neural Networks for Financial Pre-
diction

Artificial Neural Networks (ANNs) have been used extensively for financial prediction
because of their adaptability and applicability as non-linear models [137, 74, 10]. Neural
network models are capable of learning any non-linear function, as they have been
proven to be universal function approximators [72]. The abilities of neural networks in
learning complex problems in highly non-linear data have been demonstrated by many
applications of neural networks. Neural networks often perform better than traditional
statistical methods in financial prediction domain [35].

Many studies in financial prediction have shown good results of neural networks
when predicting time series data in different fields and they have generated much
interest [95, 141, 142, 154]. The main concern of researchers in the domain of financial
prediction with using neural networks is to improve the speed and accuracy of the
prediction [141, 40, 52].

When neural networks are employed, two important aspects must be considered:

1. Architecture Selection: this point refers to the number of input units, as well
as the number of units in the hidden and output layers, and if feedback loops are
presented or not.

2. Learning Algorithm: different learning algorithms are used to enable the
network to achieve the task for which it is being used.

In financial forecasting, many studies tested statistical models and artificial neural
networks using various financial time series [152, 64, 154, 35, 75, 116, 36, 81]. They
all found that neural network models outperform the traditional statistical models.
Furthermore, in a survey on 45 articles published between 1993 and 2004, which
analysed the results of forecasting applications when using neural networks in exchange
rates [50], most of these studies use gradient descent with the back-propagation learning
method. However, since those years many methods have been employed to improve
the classical back-propagation algorithm in finding optimised techniques.

1.3 Aims and Objectives
This research focuses on improving the prediction of artificial neural networks by
using different self-organising models in addition to the back-propagation algorithm in
artificial neural networks.
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1.3.1 Aims

The two main aims of this research are the following:

1) Propose novel neural network models for financial prediction.

2) Evaluate all models on different types of financial time series.

1.3.2 Objectives

The specific objectives are:

For aim 1) Propose novel neural network models for financial prediction the
objectives are the development and implementation of the following:

a) FL-SMIA model: Integration of the principle of the Functional Link Neural
Network (FLNN) with the Self-organising Multilayer Neural Network using
the Immune Algorithm (SMIA).

b) FL-SMIA* model: Variant of the FL-SMIA network by using a different
method to update the connection weights from input units to hidden units.

c) Extensions of the FL-SMIA network using various neural network techniques:

1. D-FL-SMIA model: developing the FL-SMIA network to a deeper
learning network using a number of standard hidden layers.

2. M-FL-SMIA model: a mixed model that combines the FL-SMIA model
and the direct input representations of the FLNN network.

3. MD-FL-SMIA model: combination model of the mixed architecture of
FL-SMIA of input representations and deeper learning using a number
of standard hidden layers.

d) FL-SMIA-RBM: this model includes two hidden layers using two unsuper-
vised learning methods. The first layer uses the immune algorithm used with
the FL-SMIA model, while the second layer uses the Restricted Boltzmann
Machine (RBM) method.

For aim 2) Evaluate all proposed models on different types of financial time series
the objectives are to perform the following:

a) Evaluate on three types of financial data including exchange rates (USD/UKP,
USD/EUR, JPY/USD), stock price indices (NASDAQ, DJIA), and com-
modity prices (OIL and GOLD), as well as improved objectives.
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b) Evaluate on financial (RP, AV, MDD) and statistical (MSE, SNR, CDC,
MAE) metrics.

c) Evaluate for different time horizons.

d) Perform correlation analysis and significance tests.

1.4 Methodology
We use the research paradigm of experimental research using predictive models on
historical data. The methodology of this research is based on proposing a number of
predictive models using historical data in order to predict future values for financial
data-sets.

We make assumptions about similarity between past and future. This is not easy
to justify, since financial data is highly non-stationary, but since we are working with
some success on long time series, there seems to be some reason to believe that it is
possible. It is known that financial data are highly non-stationary, and thus financial
prediction is considered a challenging task. Therefore, in this research, two methods
have been used in order to reduce the non-stationary of the data, as well as using a
exploring different learning methods to address the problem.

1.5 Structure of the Thesis
The rest of this thesis has been structured as follows:

Chapter 2 presents the literature review of the neural network models and algorithms.
Chapter 3 explains the experimental design and the processing of the data-sets. The
proposed FL-SMIA model architecture and learning method are detailed in chapter 4.
Chapter 5 includes the experimental results of the proposed model (FL-SMIA) and
the comparison with popular models such as FLNN, MLP, and others. In chapter 6,
extensions of the FL-SMIA to deeper and mixed models are explained (D-FL-SMIA,
MD-FL-SMIA, and M-FL-SMIA). The last proposed model (the FL-SMIA-RBM model)
is explained in chapter 7. Chapter 8 contains the experimental results for all models
used in this research, as well as the comparison results between the models. In chapter
9, additional evaluation metrics and tests have been presented and discussed. Chapter
10 provides the results of the proposed models (FL-SMIA and M-FL-SMIA) and
currents popular models (MLP and FLNN) using an alternative method for more
realistic evaluation of financial prediction. Furthermore, comparisons between the
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models and additional tests are presented and discussed. Finally, chapter 11 presents
the conclusions and directions for future work.





Chapter 2

Literature Review

In this chapter, an introduction of the general time series and financial time series
have been presented. Also, the aims of analysing the time series have been explained.
In addition to that, the definition of financial time series and prediction have been
represented in order to show the difficulties of making the prediction in the financial
market. Moreover, a literature review of the artificial neural networks and different
models of neural network models are represented.

2.1 Neural Networks and Applications
Over the past two decades, significant researchin the field of Artificial Neural Networks
(ANN) has led to improvements in applications related to most domains in our life
[148, 113, 99, 39, 108]. In general, Artificial Neural Networks are considered as powerful
machine learning tools that are used for many tasks including prediction, classification,
and clustering [123, 5, 45]. A large number of ANN applications have been proposed,
which are aiming to produce more accurate results in financial prediction as well as for
other domains. In the financial markets, ANNs are considered a valuable forecasting
tool because of their ability to learn and generalise as well as their nonlinear behaviour
properties [105, 28, 118, 121].

Due to the inherent noise in patterns of financial series data and nonlinear compo-
nents, statistical models often lack in the prediction of financial time series compared
to the ANN models [32]. Artificial neural networks have been widely used in finance,
e.g. in forecasting exchange rates [92, 10, 103], predicting stock values [109], portfolio
management [16], credit rating and predicting bankruptcy [87] and inflation and cash
forecasting [1].
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There are many research works confirming that artificial neural networks are efficient
in forecasting financial time series data, e.g. in [140]. Another example of using ANNs
is [85], where the authors propose ANN models for recognising patterns when auditing
monthly balances in financial accounts and then tests the predictive ability of the
proposed ANN models. They used monthly balances data as a time-series, where the
target is to recognise the dynamics and the relationships between different accounts.
The test results indicate that neural networks are promising tools for recognising the
dynamics and the relationships between financial accounts.

In [104] the authors proposed an improvement of FLANN model for one-day
prediction, as well as a long term prediction using the stock price of leading stock
market indices. The weights of the proposed model have been trained using the
least mean square (LMS) and the recursive least square (RLS) algorithms in different
experiments. The authors compared the results provided by both the methods and
concluded that the application of the FLANN model for the stock market prediction
gives results which are comparable to other neural network models. Also, the authors
indicated that the RLS-based FLANN model more suitable for online prediction.

McDonald, et. al. [106], used number of financial time series for one day ahead
prediction. The researchers studied the effectiveness of using a number of machine
learning algorithms and combinations of these algorithms. The investigation results
showed that hybrid models which are consisting of a linear statistical model and a
non-linear machine learning algorithm, are effective at forecasting the future direction
of financial data.

Another approach has been proposed by Li and Sun [93]. The authors constructed
a new ensemble method of Case-based reasoning (CBR) that (principal component
CBR ensemble (PC-CBR-E)in order to improve the predictive ability of CBR in
business failure prediction (BFP) by integrating the feature selection methods in the
representation level, a hybrid of principal component analysis with its two classical
CBR algorithms at the modeling level and then it weighted majority voting at the
ensemble level. The results indicated that PC-CBR-E produced superior predictive
performance in Chinese short-term and medium-term BFP.

Basak et al. [9], proposed an ensemble of Decision Trees to improve the accuracy of
stock price prediction. The authors used Random Forests and XGBoosted trees in an
attempt to speed up the process of growing Gradient Boosted Decision Trees (GBDT).
The forecasting problem has been treated as a classification problem, where the classes
are an increase or a decrease in the price of a stock with respect to n days back.
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2.2 Time Series Analysis and Forecasting
Time series forecasting methods have been applied in various industries and trades, such
as energy, electricity, medicine, food, and other industries, in order to recognise trends
and make prediction about the future sales. Time series analysis and prediction are
generally recognised as an important task. There are many types of time series, which
have been used in research in a different domain. In general, the simplest definition for
a time series according to Chatfield [22] can be given as:

“A time series is a set of observations measured sequentially through time”.
Financial time series such as stock prices, exchange rates, and other financial

information are considered as sensitive to changes in economic, political and other
social fields [95]. However, in this work external factors are not explicitly modelled.

2.2.1 Financial Time Series and Prediction

Financial time series has attracted high interest in an economic domain, and it realised
as one of the important applications for intelligent processing. Financial time series
analysis has been defined as [137]: “Financial time series analysis is concerned with
the theory and practice of asset valuation over time”.

Depending on the activity in the market, financial time series have various time
scales (hourly, daily, monthly, seasonally, and other time scales). Examples of financial
time series can be found in stock prices, oil prices, exchange rates, and other time
series,which related to the economic domain. According to[22], “Time series forecasting
is the process of predicting future values using current value”.

Financial time series are generally viewed as inherently noisy and non-stationary,
[14], [139], and [138]. These properties of financial time series data give the reason of
why financial prediction is considered a challenging task.

The non-stationarity and noisiness and the difficulty in predicting financial time
series is generally attributed to the principle of market efficiency. It refers to the level
with which current prices reflect all relevant information about the actual value of
the underlying assets. That means if the markets are efficient then all the relevant
information is already integrated into prices, thus there is no way to “beat” the market
as there are no undervalued or overvalued securities available. In 1970, this principle
has been formulated by Eugene Fama [42]: “A market in which prices always «fully
reflect» all available information is called «efficient»”. The efficient market hypothesis
(EMH) states that capital markets are efficient and Fama concludes that the EMH
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is supported by most empirical studies. Therefore above-market returns can only be
obtained with earlier or exclusive access to relevant information.

Fama [42] discusses three forms of tests for market efficiency:

1. Weak-form tests: This form refers to predicting future returns by using past
returns. The assumption of this form indicated that in case that no investor
can earn excess returns by improving trading rules based on historical price or
return information. This assumption leads to the "random walk theory", which
states that market prices changes follow a random path up and down, without
any influence by historical price movements [38, 145, 44]. In other words, the
past movement of market prices or the stock prices cannot be used to predict its
future movement. However, excess returns are still possible using fundamental
analysis under weak-form market efficiency [97, 133].

2. Semi-strong form (Public information): This type assumes that a market
considered semi-strong efficient if no investor can earn excess returns from trading
rules which depend on any publicly available information such as historical data,
financial statements of companies, reports in the financial press, and annual
reports [79, 125]. That means using technical analysis and fundamental analysis
would not achieve good returns, the reason behind that is using these analyses
results in gained information which is already available and incorporated into
current prices. Consequently, the only information that is at least temporarily
unavailable to the market will be useful to gain an advantage in trading.

3. Strong form (Private information):

This form assumes that if no investor could use any information (publicly available
or private information) can earn excess returns [47, 29, 60]. It indicates that
market prices reflect allinformation both public and private. Fama [42] himself
admits that this assumption is not strictly valid and that there are documented
examples of excess returns achieved through monopolistic access to information.

Fama later revisited [43] these categories and included factors like interest rates and
dividend yields in the first category, which he renamed ‘tests for return predictability’.
He renamed the other two categories ‘event studies’ and ‘tests for private information’.

Not all investors and academics have followed the EMH, and pointed to the fact
that successful active traders do exist [89]. The random walk theory has been refuted
by [97, 98], who showed in their initial paper that there is some predictability in share
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price series, specifically negative and positive auto-correlation between the weekly
index and share returns, respectively.

In order to make the EMH testable, it is necessary to assign a pricing model to
risk, for which there are multiple options. Other factors such as market microstructure
or – in empirical tests – over-use of data (snooping) can lead to relevant effects that
make it seem highly unlikely that the EMH is strictly true in the sense that no price
prediction is possible.

Regardless of the extent to which the EMH is demonstrably true or false, financial
markets are adversarial in that all participants want to take advantage of all the
information they have. This makes it generally difficult for investors to achieve above
average returns, but using better analysis than competitors, e.g. by using novel neural
network models which could be still lead to an improved price prediction and thus
increased profits.

2.2.2 Statistical Models

Financial time series prediction has been traditionally addressed by statistical models
and more recently by neural networks, as detailed in the following subsection.

Financial time series have traditionally been modelled by various statistical methods
[35][37]

1. Auto Regressive (AR) Model

The auto-regressive method is based on the simple notion, that many time series
exhibit a high correlation between new values and some previous values at a
given lag. Typically, an auto-regressive (AR) model of order n consists of the
past values in the data series, which are used to forecast the next value (A. C.
Knowles, 2005). Autoregression represents another example of linear models.

The AR predictor is defined by:

ARt = Y ∗
t =

n∑
i=1

RiYt−i, (2.1)

where Yt is the actual value (input) at time t, ARt and Y ∗ respectively is the
prediction value for a next time period, Ri are regression coefficients.

2. Moving Average(MA) Model

One example of linear models is the Moving Average, which is used widely in
financial markets since it is recognised as quick, inexpensive and effective. In
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this technique, the average value for a set of previous values in the time series is
calculated. This average value is used to predict the next time period. In other
words, the average of n past values in the time series are used as the basis to
forecast the next time period [37], [35].

The moving average is calculated as following:

MAt = Y ∗
t+1 = (Yt + Yt−1 + Yt−2 + . . . + Yt−n+1)

n
(2.2)

where MAt refers to the moving average at time t, Y ∗
t+1 is the forecasting value

for the next time period and n is the number of terms in the moving average.

3. Auto Regressive Moving Average(ARMA) Model

The ARMA model is the integration between the autoregressive model and the
moving average model. This model is used for forecasting the next time for
financial time series. The equation below determines the ARMA prediction at
time t:

ARMAt = Y ∗
t+1 =

n∑
i=1

RiYt−i +
q∑

i=t−n+1
WjQt−j (2.3)

where ARMAt is the prediction for the next time period, Wj refers to weights
that are applied to Qt−j, the previous values of the residuals.

ARMA models are limited to forecasting stationary signals in time series. There-
fore, non-stationary data should be transformed into a stationary time series
before it can be predicted using an ARMA model [37].

2.3 Artificial Neural Networks (ANNs)
Artificial Neural Networks (ANNs) are devices that process information (data) in a
distributed manner inspired by neurons in the biological nervous system. According to
Haykin[63]:

“A neural network is a massively parallel distributed processor that has a natural
propensity for storing experiential knowledge and making it available for use”.

In general, the structure of neural network models consists of a number of units
(artificial neurons), connections, and transfer functions. Neural network applications
are divided into categories such as prediction, classification, data association, clustering,
pattern completion, and optimisation. Artificial neural networks are capable of solving
complex problems, which cannot be solved by traditional computing methods.
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2.3.1 Biological Neurons

Biological neurons, e.g. of the human brain, are a specific type of cell. This type of cell
has the ability to communicate with up to 200,000 of other neurons [62]. The human
mind has a superior ability to solve very complex problems because of the existence of
groups of neurons and the strength of their multiple connections.

Biologically, as shown in Figure 1 2.1, the four basic components of a simple neuron
include:

1. Dendrites: it collect signals to send it to the cell-body.

2. Cell-body: it is responsible for integrates incoming signals and generating the
leaving signal then send it to the axon.

3. Axon: it receives the signals from cell-body and passes it to the dendrites of
another cell

4. Synapses: are specialised junctions at which a neural cell communicates with a
target cell.

Fig. 2.1 The structure of biological neuron.

An overarching goal of researchers is to understand the ability of human neurons
and analyse the behaviour of these neurons in solving complex problems that have not
been solved using conventional computing methods. Although most artificial neural
networks are only loosely based on biological neural networks, the aim of understanding
the behaviour of these neurons is to produce models in the field of artificial neural
networks that are nowadays applied in many domains of our lives.

1As illustrated by Jason Roell in: https://www.jasonroell.com/2017/06/12/
from-fiction-to-reality-a-beginners-guide-to-artificial-neural-networks/

https://www.jasonroell.com/2017/06/12/from-fiction-to-reality-a-beginners-guide-to-artificial-neural-networks/
https://www.jasonroell.com/2017/06/12/from-fiction-to-reality-a-beginners-guide-to-artificial-neural-networks/
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Many types of research have proved that the researchers continuing on improving
the methods as well as the models of different neural networks to achieve a higher
degree of accuracy and reliability in finding solutions to many complex problems so as
to meet the requirements of current and future life [102, 126, 2].

2.3.2 Artificial Neurons (Neuron Model)

Artificial neural networks consist of a number of basic units, it is often called "neuron",
"node", "unit" or "processing element". The artificial neuron is designed with a structure
similar to the biological neuron in terms of functional performance. As shown in
Figure2 2.2, an artificial neuron receives several inputs (x0, x1,.̇., xn) to produces a
single output. Each input (data) are associated with different weights (w0, w1, ..., wz)

Fig. 2.2 The neuron model (Perceptron)

which are real numbers. In the first ANNs, the neuron’s output was either 0 or 1, as it
is determined by whether the weighted sum ∑

xiwj is less than or greater than some
threshold value. The threshold it is a real number as it represents a parameter of the
neuron.

The input values (xi) are multiplied with their associated weights (wj), the product
is fed into the summing unit (cell body), which sums the result values (∑xiwj). Then
the output of the summing unit is passed to a transfer function (often a sigmoid) and
turned to an output value.

2As by Andrey Karpathy in: https://http://cs231n.github.io/neural-networks-1/

https://http://cs231n.github.io/neural-networks-1/


2.3 Artificial Neural Networks (ANNs) 15

2.3.3 Transfer Functions

There are various non-linear transfer functions, which can be used in neural networks.
The idea behind using an activation function in neural networks is to roughly model the
way neurons communicate in the brain with each other each one and mathematically,
to introduce a non-linearity.

In this research, three types of transfer functions have been used:

1. The Logistic Sigmoid Function The sigmoid which is the most popular
transfer function. It is called sigmoid because of its ’S’ shaped curve as shown
in Figure 2.3. The output of the logistic sigmoid function is in the interval [0, 1].
The logistic sigmoid function is calculated as follows:

fsig(x) = 1
1 + exp(−x) (2.4)

where x is the weighted sum of the neuron inputs. The logistic sigmoid function is
often used for the hidden nodes in many neural networks such as the multi-layer
network [13],[61].

Fig. 2.3 Logistic sigmoid transfer function.

2. The Hyperbolic Tangent Function The second type of transfer function
used in this work is the hyperbolic tangent function which is another sigmoidal
function. This function is a good trade-off for neural networks, where speed is
more important than the exact shape of the transfer function [136, 34].
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The output value of the hyperbolic tangent transfer function is ranges between
-1 and +1, as shown in Figure 2.4.

Fig. 2.4 Hyperbolic tangent transfer function.

The hyperbolic tangent transfer function is calculated as follows:

fhts(x) = 2
1 + exp(−2x) − 1 (2.5)

where x is the weighted sum of neuron inputs.

It is worth to note that the hyperbolic tangent transfer function is often rec-
ommended for hidden layers to being more balanced. As shown in the figures
above, the value 0 for the hyperbolic tangent function appears for input 0 at the
greatest gradient, while for logistic sigmoid function 0 is the infimum [147].

3. The Rectified Linear Function

The third type of transfer function which have been used in this research is the
Rectified Linear function used in Rectified Linear Units (ReLU).

As shown in Figure 2.5, its a function for x greater than 0. Training of neural networks
is considered to be faster with ReLU function, so that it recommended to use with
hidden units [86]. The Rectified Linear Units transfer function is calculated as follows:

fReLU(x) = Max(0, x) (2.6)

fReLU(x) =

x forx ≥ 0
0 otherwise,

(2.7)
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Fig. 2.5 Rectified Linear Units (ReLU) function

where if the input is less or equal to 0, the output is 0. Otherwise, the output is equal
to input.

2.3.4 Neural Network Learning

In artificial neural networks there are different approaches that have been used to train
the networks such as Supervised Learning, Reinforcement Learning, and Unsupervised
Learning. The choice of learning technique depends on the goal of the research or
application. In this research Supervised and Unsupervised Learning methods have
been used. A summary of learning methods 3 is as follows:

A. Supervised Learning

In general, Neural networks are organised into layers, which are input layer, hidden
layer/layers and an output layer. The data are fed into the network through the
input layer, where the data includes inputs and target output (desired output)
associated with each input sample in order to be reproduces by the network. As
shown in figure 2.6, in Supervised Learning the network output is compared with
the target output, the difference is the error. The network then will be tuned
by learning parameters (weight connections) that reduce the error until it can
model the training data as accurate as possible.

B. Unsupervised Learning
3The two diagrams (Supervised Learning, Unsupervised Learning) are inspired by the this video

https://www.youtube.com/watch?v=edM0_C4j6R0

https://www.youtube.com/watch?v=edM0_C4j6R0


18 Literature Review

Fig. 2.6 Supervised Learning

Unsupervised Learning is a procedure that is used when there are no output
targets associated with the input samples as in figure 2.7. In this case the

Fig. 2.7 Unsupervised Learning

network receives only input data. That means there are no output targets for
comparing with the network output. The objective of using an unsupervised
learning algorithm is to build new representations of the data depending on data
patterns.

In this research two techniques of unsupervised learning have been used which
are the Immune Algorithm and the Restricted Boltzmann Machine (RBM) in
addition to the supervised learning (the back-propagation algorithm).
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2.4 Models of Neural Networks
There are different types of neural networks; the simplest structure of an artificial neural
network consists of number of units grouped in layers and the layers are connected to
each other. As the units can be connected in different ways, neural network models
have various forms of interconnection between network layers [46, 153]. The most
commonly used neural network architectures are feed forward networks (MLP, HONN)
and recurrent networks. There are also other architectures, for instance, self-organizing
feature map [63, 83].

Neural networks are typically organised into layers, which are input layer, hidden
layer/layers and an output layer, as detailed below. When there are only connections
between consecutive layers in the same direction, then the networks is called feed
forward neural networks [13, 63]. The input signals are passed to the network in
forward direction from the input layer to the hidden layer and then to the output
layer. These neural networks can include any number of neurons per layer, as well as
it can have any number of hidden layers. Although the main focus of machine learning
research has recently has been on deep, recurrent or convolutional neural networks
operating on raw data, methods for constructing features and alternative learning
algorithms have still potential for improving predictive performance. We focus here on
Functional Link Neural Networks and the Immune Algorithm.

2.4.1 The Multilayer Perceptron (MLP)

The simple perceptron refers to a unit with a transfer function and a weight adaptive
mechanism (learning) by comparing the actual output and the desired output responses
for any input or stimulus[63]. As illustrated in Figure 2.8 the Multilayer Perceptrons
(MLP) is a type of feed-forward network, which consists of a number of units grouped
in layers, which are:

1. Input layer : which sent the input signal (data) to the other layer in a forward
direction.

2. Hidden layer/ layers : these layers are located between the input layer and
output layer, which transmit the signal (data) from the input units to the output
units. Hidden layers enables the network to learn complex tasks and solve different
problems.

3. Output layer : this layer provides the output as the actual response of the
network.
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Fig. 2.8 Multilayer feed-forward neural network

In the hidden layers, each hidden unit performs two tasks: firstly, summing the weighted
inputs to the hidden unit, secondly, passing the sum through a non-linear activation
function. A bias is included in the network as an additional unit, which has a constant
value of one. A bias term is usually treated as a weight connection. Thus, the bias
term can be learned like other weight connections [40]. The operation of the MLP
network can be divided into two phases:-

A. The training phase : the MLP network is trained for its specific purpose using
training algorithms.

B. The retrieval phase : this phase generates output by using the previously
trained MLP networks.

MLP network with one hidden layer and a sufficient number of hidden units (having
the non-linear transfer function) can produce a feasible function to any desired rate of
accuracy [72], MLP networks are training using the supervised algorithm.

The output of an MLP network that uses one hidden layer is calculated as follows:

Yk = σ

 J∑
j=1

Wkjσ

(
N∑

i=1
Wjixi + Wjb

)
+ Wkb

 (2.8)

where σ is a log-sigmoid transfer function, xi represents the input value, Wji are the
weights from the input layer to the hidden layer, Wjk are the weights from the hidden
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layer to the output layer, Wjb are the bias weights for the hidden units, and Y denotes
the network output. MLP network is considered as a fully connected network since
every unit is connected to all units in the next layer.

The Back-Propagation Learning Algorithm

The back-propagation algorithm was introduced in the 1970 [56], however it was not
widely appreciated until 1986 when the famous paper was presented by David Rumelhart,
Geoffrey Hinton, and Ronald Williams [127]. That paper includes a description of
several neural networks where back-propagation works far faster than earlier approaches
to learning. Thus, that paper represented the possibility of using neural networks with
back-propagation algorithm to solve problems which had previously been insoluble.

For neural networks, supervised learning is an optimization procedure to mini-
mize the error on the data. The most commonly used optimization approach for
training neural network is the Gradient Descent, which is realized in the error back-
propagation learning algorithm. The learning iteration (epoch) of a neural network
can be summarized into two phases[40]:

1. Feed forward pass : in this phase, the input vector is applied to the processing
units of the network following the direction from the input layer to the output
layer. Thus, the actual output is produced. Consequently, all weight connections
of the network are fixed through this phase.

2. Backward propagation : during this phase, the weight connections of the
network are adjusted. Since the actual output (produced by the network) is sub-
tracted from the target output to produce the error signal, this error propagated
backward from the output layer to the input layer through the network, so that,
this algorithm called “ error back-propagation”. The reason behind adjusting
the connection weights of the network is to reduce the error between the desired
output and the actual output. On other words, is to make the actual output of
the network become closer to the target output.

2.4.2 The Functional Link Neural Network (FLNN)

The Functional Link Neural Network (FLNN) is a type of Higher Order Neural
Network (HONN) that utilizes combination of its inputs [117]. The tensor product
model is one type of FLNN where the network input is extended with products of
input features. For example, with three inputs features X1, X2, X3 the second order
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Fig. 2.9 The FLNN-tensor product model following [117].

terms X1X2, X1X3, X2X3 can be added to the input layer and also the third order
term X1X2X3 as shown in Fig. 2.9. This model utilises the joint activation between
the input units to extend the input space without adding any external information.

The FLNN model is trained with the back-propagation method. The FLNN model
contains only one connection weight matrix, which leads to faster learning for the FLNN
model compared to other neural network models such as the standard Multi-layer
Perceptron (MLP)[128]. The idea of using a single weight matrix in the FLNN model
is to decrease the number of trainable weights, while the higher-order connections
still enhance the network’s performance. As a result, the FLNN model could achieve
similar performance to the standard multilayer neural networks which are considered a
suitable model for solving complex problems [51]. The FLNN model has been used
to solve a number of problems, such as classification and regression [115], predicting
maintainability [88], identification and prediction [96], and again prediction [58, 100].

Although the architecture of FLNN is simple, the higher order-inputs and the
non-linearity leads a network with greater capacity compared to a linear models or
models using only input features directly as shown in [53] and [107]. The FLNN
architecture can suffer from combinatorial explosion, due to an exponential increase
in the number of inputs units. Therefore, only second or third order networks are
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typically used in practice [74],[142]. The output calculation of the FLNN is as follows:

Y = σ

W0 +
∑

j

WjXj +
∑
i,j

Wj,kXjXk +
∑
j,k,l

WjklXjXkXl + ˙...
 (2.9)

where σ is a non-linear transfer function, W0 is the threshold, Xj is the jth component
of input vector X, and Wjkl is trainable weight. The FLNN have been successfully
used for solving different problems, such as prediction pattern recognition, optimal
control and other[52].

The principle of the tensor model has been used in this research to add extra inputs
to the proposed network.

2.5 Over-fitting in Machine Learning
Generalisation refers to the ability of a machine learning model to perform well on new
data similar to how it performed with training data. The poor generalisation of models
is often due to over-fitting [76, 21]. Over-fitting in machine learning refers to the model
performing well on training data by learning the details, which are often noise, in the
training data, such that the performance of the model is negatively impacted on the
new data (testing data) [122]. Over-fitting normally happens because of an excessively
complex and flexible model [11]

There is a number of investigations that have studied possible methods to reduce
over-fitting to improve the generalisation ability of the neural networks. A basic
technique can be used, which is to keep as held-out dataset, or a more sophisticated
cross-validation scheme [111, 130] to avoid and measure over-fitting. A validation
data-set is a sample of training data that is held from machine during learning to
control the learning process. After a model has learned by using the training data-set,
the validation data-set is used to evaluate the performance of the model on unseen
data. This approach can be used to tune methods to reduce over-fitting such as the
regularisation [13, 77].

In [149] the researchers propose different techniques to improve the generalisation
of a neural feed-forward neural network. The authors used a self-organised hidden layer
and an immune algorithm (SONIA) to predict food quality. The prediction results
showed an improvement on generalisation of the proposed SONIA network compared
to an MLP network. Another method has been proposed in [119] the authors used
a heuristic algorithms approach to prevent the over-fitting problem, as they used an
ensemble of classifiers instead of a single classifier. The researchers showed through the
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results that synchronous minimisation of training error and the ensemble size in the
training phase could be help on reducing the amount of the over-fitting significantly.

In [135, 155, 129] the Drop-Out method has been used to address over-fitting. The
drop-out method is a regularisation technique that aims at reducing the complexity
of the model in order to prevent over-fitting. The "drop-Out" refers to dropping out
units including both input and hidden units with their connections from the network
or model, but It is not used on the output layer [129]. The drop-Out method can be
used during the training phase on supervised learning in a way that some number of
layer outputs are randomly ignored or “dropped out”. The drop-out method affects
the trained layer in such a way that making it like a layer that is using a different
number of units for connectivity to the prior layer. Using the drop-out method result
in reducing the over-fitting as well, often it improves the performance of the network
comparing to other other regularisation methods. As in [135], researchers indicated
that using the drop-out method improves the performance of neural networks on many
tasks including document classification, speech recognition, vision, and computational
biology.

2.6 Regularisation
Regularisation is one of several techniques which have been used to avoid over-fitting
in neural network training [77]. The main objective of neural network training is
to build a statistical model of the process underlying the data represented by the
weights resulting from the training process. Neural network training does not aim
to learn the accurate representation of training data itself. However, the aim is to
represent good generalisation to make successful prediction for new input data [13, 61].
Many researchers proved that using regularisation can result in an improvement of the
generalisation capability of the networks [46, 101]. In most cases, weight decay, the
simplest form of regularisation, has been used.

Regularisation is the technique of adding a penalty term Ω to the error function
which can help obtaining a smoother network mappings. It is given by:

A∗ = E + λΩ (2.10)

where E represents one of the standard error functions such as the sum-of-squares
error and the parameter λ controls the strength with which the penalty term Ω can
influence the form of the solution. The network training should minimise the total
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error function A∗. Using this method requires the derivatives of Ω with respect to the
strength weights of the network to be determined and the total error can be computed
efficiently.

In this research, one form of regularisation technique has been used, which is the
Weight decay (L2 loss) [66]. This form based on the sum of the squares of the adaptive
parameter in the network. It is calculated as:

Ω = λ

2 ∗
∑

(W 2
i ) (2.11)

The popularity of weight decay approach is due to the simplicity of using this method.
The idea is that every weight once updated is simply decayed or shrunk as follows:

W new = W old(1 − λ), 0 ⩽ λ ⩽ 1 (2.12)

In this case, there are potentially two groups of weights: the first one represents the
weights which are not needed for decreasing the error function since this weight values
are reduced gradually until they have small values, then they can even be eliminated
altogether. The second group of weights that are not decayed because they are required
to solve the problem. Thus, using weight decay can result in achieving a good balance
between the prediction error and the penalty term in equation 2.11 [139]. The final
equation of changing the connection weights is determined according to the following
equation:

∆W(i/W d) = ∆Wi − ηλWi, Where(i = 1, 2, ˙..., N) (2.13)

where ∆W(i/W d) is the new updated weights using weight decay term, η is the learning
rate, λ is the decay rate, and wi is the connection weight.

2.7 The Immune Algorithm
Artificial Immune Systems (AIS) have been inspired by the natural immune systems,
based on ideas and concepts that originated from immunology. The idea of the Immune
Algorithm is based on the behaviour of the antigens and B cells in biological immune
systems as initially discussed in [143]. In the immune system, there are recognition
balls and antigens. A recognition ball includes a B-cell, a single epitope and many
paratopes, the epitope is attached to the B-cell and paratopes are attached to the
antigen. [131]. The units that represent B cells, have features such as a certain level
of stimulation that is required for a response or a mutation of the B cells which is
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causing the response to new patterns. These features give an AIS the ability to cluster
input patterns in the training data, where the behaviour depends on the parameters in
the learning and application processes such as sensitivity to stimulation and mutation
behaviour [131]. Immune systems models have been widely applied in various fields.
Examples include computer security, function optimisation, pattern recognition, image
interpretation, process monitoring, control engineering, data mining [132].

The immune algorithm has some attractions which result in the use of this concept
on several kinds of research. An example of using the self-organisation of a neural
network model named LVQ (Learning Vector Quantization), that was introduced by
Kohonen [84] in 1986. The idea of LVQ is that the input vectors can be combined in
several fixed codebook vectors using a supervised learning algorithm in order to make
relations between these codebook vectors and pattern categories. Another approach
of using the self-organization of neural networks has been introduced by Carpenter
and Grossberg in [18] [19], where the authors presented the Adaptive Resonance
Theory (ART). ART adaptively clustering the input vectors adaptive, based on a
vigilance parameter, such that categories are produced by using an unsupervised
learning algorithm.

In 2005, Widyanto et al. [149] introduced the Self-Organised network Inspired
by the immune algorithm (SONIA) for the forecasting of sinusoidal signals and time-
temperature based quality food data. The simulation results for SONIA in the
prediction of sinusoidal signals showed a significant improvement in the approximation
error in comparison to the back-propagation network and showed an improvement in
the recognition capability for the prediction of time and temperature when using food
quality data. Later, this approach has been adapted and applied for financial data
prediction [101] and is extended with product terms inputs and other architectural
features such as creating the hidden units in this research instead of the clustering
method. furthermore, the proposed models in this research are not dealing with the
global self-organisation but are just have been used it as a local feature.



Chapter 3

Methodology and Experimental
Design

The intention of this chapter is to provide information about the financial time series
(data-sets or financial data) that have been used in this research, and the methods
of processing financial data, which has been used to make the financial data more
symmetrical and closer to a normal distribution.

The rest of this chapter includes; the learning parameters and various financial and
statistical metrics to evaluate the performance of the networks.

3.1 Research Approach
The research in this project is computational and data-driven empirical. We develop
models, i.e. hypotheses of the processes that determine the prices we are trying to
predict. We use machine learning models, specifically connectionist models combined
with the immune algorithm. These models carry a large amount of their information
in the trainable parameters and components. This research is evaluated by

3.2 Processing Pipeline
This section describes the processing pipeline that has been used in this research. The
processing can broadly be divided into three parts as outlined below:

Start with daily price data (one-dimensional).

1. Data Pre-Processing
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Fig. 3.1 The processing pipeline used in this study.

a. Apply the relative price differences over different time intervals (more details
below).

b. Normalise the data.

c. Split the data into training, validation and testing sets.

2. Model Training

a. For the SMIA models, apply the immune algorithm to train the first hidden
layer, which is named the SMIA layer (this step is independent of the back-
propagation and implemented in Python).

b. Feed the result of the SMIA layer into the next layer in the network. Apply
error back-propagation (implemented in TensorFlow). Train over a grid of
parameter values.

3. Evaluation and Model Selection

a. Over the parameters grid, calculate financial and statistical metrics.

b. Evaluate and select models based on the metrics.
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This process has been applied multiple times in several variations, to establish a
suitable set of parameter values in the grid and to add more models as they have been
developed.

3.3 Financial Data Used in This Research
As many conclusions have been confirmed that using ANN applications in finance is a
useful approach for predicting the exchange rate [151, 4, 8], stock price [6, 80, 54, 114]
and sales predictions [55, 112]. Therefore, various types of financial time series have
been introduced in this research in order to be used for financial prediction.

The financial data have been used in order to evaluate the proposed FL-SMIA
network and all other proposed models (FL-SMIA*, D-FL-SMIA, MD-FL-SMIA, MD-
FL-SMIA-2, M-FL-SMIA, and FL-SMIA-RBM), as well as for the comparison to several
other neural network architectures (MLP, FLNN, and SMIA). The time series data are
available from the Federal Reserve, Board of Governors1.

The data-sets names acronyms are shown in Table 3.1. Three types of financial
time series have been used in this research: exchange rates (USD/UKP, USD/EUR,
JPY/USD), stock price indices (NASDAQ, DJIA), and commodity prices (OIL and
GOLD). The financial data used in this research which are daily time series covering
the period from 1/07/2002 to 11/07/2017.

Table 3.1 Financial time series data-sets.

Financial data-sets Acronym Total Time periods
US dollar to UK pound exchange rate US/UK 1607 01/07/2002 - 13/11/2008

US dollar to EURO exchange rate US/EU 1607 01/07/2002 - 13/11/2008
Japanese yen to US dollar exchange rate JP/US 1607 01/07/2002 - 13/11/2008
NASDAQ composite stock opening price NQO 1606 01/07/2002 - 12/11/2008
NASDAQ composite stock closing price NQC 1606 01/07/2002 - 12/11/2008

Dow Jones Industrial average opening stock price DJO 1605 01/07/2002 - 11/11/2008
Dow Jones Industrial average closing stock price DJC 1605 01/07/2002 - 11/11/2008

OIL price OIL 2744 16/08/2006 - 11/07/2017
GOLD price GOLD 2744 14/09/2006 - 11/07/2017

More detailed information about the data that have been used in this research is
listed in Table 3.1, The statistical results on daily returns for all the data-sets are listed
in table 3.2. The statistical results include the mean, standard deviation, skew and
kurtosis.

1http://economagic.com/ecb.htm/fedstl.htm

http://economagic.com/ecb.htm/fedstl.htm
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Table 3.2 Statistics of daily returns for all the time series.

Data-sets US/UK US/EU JP/US NQO NQC DJO DJC OIL GOLD
Mean -0.00039 0.01645 -0.01189 0.01620 0.01467 0.00457 0.00443 -0.05900 0.13491
Std 0.58407 0.59206 0.64051 1.44244 1.45565 1.19771 1.21405 2.30580 4.17844
Skew -0.29462 -0.13988 -0.46352 -0.18758 0.18088 0.47989 0.49913 -0.22187 0.37782
Kurtosis 5.44871 1.27146 3.15897 6.78427 6.44277 13.05670 12.86727 3.01283 5.81020

Figures 3.2 to 3.10 provide histograms for all the data sets. The figures have been
added in this chapter to give a clear reflection of the statistical results that are shown
in table 3.2.

Fig. 3.2 The daily returns on US/UK data.



3.3 Financial Data Used in This Research 31

Fig. 3.3 The daily returns on US/EU data.

Fig. 3.4 The daily returns on JP/US data.
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Fig. 3.5 The daily returns on NQO data.

Fig. 3.6 The daily returns on NQC data.
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Fig. 3.7 The daily returns on DJO data.

Fig. 3.8 The daily returns on DJC data.
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Fig. 3.9 The daily returns on OIL data.

Fig. 3.10 The daily returns on GOLD data.
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3.4 Pre-Processing of Financial Data
Financial time series are known as highly noisy, as well as it is non-stationary. The
relative difference in the percentage of the price (RDP) has been used in this research
in order to reduce the non-stationarity for the data values and transform the data
to be nearly stationary data as in [137, 101, 30]. This transformation that we apply
to all data-sets makes the distribution of the data more symmetrical and closer to a
normal distribution.

As stated in [52] the ideal length of the moving day period should be longer than
the prediction horizon. The reason behind using the EMA15 is to retain the useful
information contained in the original data, which maybe will be removed by applying
the RDP method. Furthermore, it has been shown that using an exponential moving
average for the transformation of data ( input and output data) can enhance the
prediction performance for the neural networks models. The equation of exponential
moving average is:

EMAn(i) = α0 ∗ Pi + α1 ∗ Pi−1 + α2 ∗ Pi−2 + ˙... + αn−1 ∗ Pi−n+1

α0 + α1 + α2 + ˙... + αn−1 (3.1)

where EMAn(i) is the n-day exponential moving average of the ith day, and α is
weighting factor, and Pi is the signal value of the ith day.

The larger the value of α this will result in stronger the impact of older values
α < 1 In this research, the weighting factor of α = 0.8 has been experimentally chosen
to use with the exponential moving average equation for the input and output data
transformation.

According to [137] the calculations for all the indicators are given in Table 3.3.
The input variables consist of the EMA15 which represents the difference between a
15-day exponential moving average and the original signal, the rest of inputs include
four RDP values based on five-day periods (RDP-5, RDP-10, RDP-15, and RDP-20).
The forecast horizon is 1 day or 5 days. Therefore the output variable presented as a
relative difference of price in percent for the next day (RDP+1) or for the five days
ahead (RDP+5). As in [137], The output variable was obtained firstly by smoothing
the signal with n-day exponential moving average (EMAn(i), where n is less than 5.
Therefore, the data transformation can be a 3-day moving average of the data that
is centred around the current 5-day values (RDP-5, RDP-10, RDP-15, and RDP-20).
Then the smoothed signal presented as a relative difference in the percentage of the
price for the next day (RDP+1) or the next five days ahead prediction (RDP+5).
On the other hand, the original data series has been transformed and reduced by 20
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trading days because the statistical information of the previous 20 trading days was
used to define the input vector. The Pi is the signal value of the ith day, and h is the
prediction horizon of 1 day or 5 days.

Table 3.3 Input and Output Variables

Indicator Calculation
Input variables

EMA15 Pi − EMA15(i)
RDP-5 (Pi − P (i − 5))/P (i − 5) ∗ 100
RDP-10 (Pi − P (i − 10))/P (i − 10) ∗ 100
RDP-15 (Pi − P (i − 15))/P (i − 15) ∗ 100
RDP-20 (Pi − P (i − 20))/P (i − 20) ∗ 100

Output variable
RDP+h (P (i + h) − Pi)/Pi ∗ 100

where Pi = EMA3(i)

In this research the trading costs and the interest rates have been ignored when
forecasting the data sets. Therefore, the results for profits and other metrics and are
not directly comparable with other results that do include these components.

3.5 Scaling Data
All the time series data used in this research has been scaled for the purpose of reducing
the range differences. Therefore, all input and output variables were scaled in order to
produce a new data range which is more suitable to the transfer functions. The RDP
series has been scaled in this research by using the standard minimum and maximum
normalisation method, as follows:

Nx = (Max2 − Min2) ∗
(

x − Min1

Max1 − Min1

)
+ Min2 (3.2)

where Nx is the normalised value of data, Min1 and Max1 are the minimum and
maximum values in the one set of data, x refer to each value of the data-set values,
while Min2 and Max2 are minimum and maximum of the desired data (in this research
the desired range between (0.2, 0.8)have been used).
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3.6 Learning Parameters
Learning parameters are defined as the parameter which can be used for network
learning, these parameters can affect the performance of the network as well as it effects
on the speed of the learning. So that it is important to select appropriate learning
parameters such as the learning rate, the momentum, the initial weights values, and
the weight decay values. It is worth noticing that using an approximation initial value
for these parameters can lead to decrease the required time for the training phase [51].

In this research, the learning parameters are selected from the following ranges:

1. The range of the weights is selected as a set of random initialise weights from
the range [-0.5, 0.5].

2. The values of the momentum term are selected as 0, 0.01, 0.03, 0.1, 0.3, 0.4, 0.5,
0.6 or 1.0.

3. The learning rate values which were utilised are 0.01 0.03, 0.04, 0.1 or 0.4.

4. The decay rate parameters used in the MLP, SMIA, and FL-SMIA networks are
0.0001, 0.0005, 0.001, 0.01, or 0.1.

5. The number of hidden units used with the MLP network is 2, 4, 6, 8, 12.

The combinations of the parameters above have been explored in a grid search for
all networks learning that used in this research.

Searching different architectures introduces the potential issues of data snooping.
However, we are not making inferences here regarding the data but only regarding
the models. Therefore the application of multiple models does not constitute data
snooping.

The sequential search for additional models does lead to a potential overstatement
of differences between models. Therefore any statements about differences between
models apply only to the data-sets used here. Further generalisation could only be
applied with additional data, which is partly addressed in chapter 10.

3.7 Evaluation
In machine learning, the goal of the learning is to achieve a good performance of the
trained model on new data that comes from the same process as the training data. In
order to provide an unbiased estimate for the performance of a model, our models are
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tested using held-out test data, i.e. data that was not used in the training [7, 3]. This
hold-out evaluation method has been used throughout this research.

In the hold-out method, the time series data is commonly divided into three data-
sets (Training, Validation and Test set). Each data-set is used for a different task, as
follows:

1. Training set: a set of examples that are used to fit the parameters of the model
(e.g., the connection weights between neurons in the model) [124]. The training
set includes a pair of an input and their corresponding output (target). In the
training phase, a supervised learning algorithm (as explained in section 2.3.4)
adjusts the parameters of the model based on the outputs of the model [23].

2. Validation set: is a sample of data used to tune other parameters (e.g. the
number of hidden units in a neural network), often called hyper-parameters [146].
That means the validation set is used to find the “optimal” hyper-parameters
in a selection process, e.g. a grid search, or determine a stopping point for the
back-propagation algorithm [11].

3. Test set: is a set of data that uses to estimate the error rate after we have chosen
the final model (hyper-parameters and actual weights). The Test set data has
to be ‘unseen’ or ‘out-of-sample’ i.e. it must have not been used in the training
phase or for model selection [120].

In this research, each one of the data-sets has been divided into three sets: the
training, the validation, and the testing data with 50%, 25%, and 25%, respectively.

The weights of each model are optimised based on the MSE loss. For the training
phase, based on preliminary experiments, the number of epochs has been chosen as 80
epochs, after initial tests with 150 epochs. The epochs number has been reduced to
80 epochs because the error levels remained fairly stable after 50 or 60 epochs. Early
stopping has been used for all networks. Every network configuration in the grid search
was tested in 50 simulations, to evaluate the performance depending on the random
initialisation.

It is good to mention that different methods of optimisation have been used in this
research such as Gradient Descent with Momentum Optimiser, RMS-Prop optimiser,
and Adam optimiser. The experimental results proved that using the Gradient Descent
with Momentum optimiser in this research lead to getting the best results compared
with using other optimiser methods.
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3.7.1 Problems in Forecasting Financial Times Series

The problems and difficulties in financial prediction are mostly related to the properties
of the financial time series data. Most financial data are noisy and non-stationary.
Noisiness refers to the unavailability of accurate and complete information of financial
time series data from the past to the present day of prediction. Non-stationarity refers
to changes in the distribution of the financial time series over time [35, 10]

3.7.2 Evaluation Metrics

In this section, the financial and statistical metrics that have been used to evaluate
the performance of all neural networks used in this research will be illustrated.

Statistical metrics such as the Signal to Noise Ratio (SNR), Mean Squared Error
(MSE), and the Mean Absolute Error (MAE) have been used in order to evaluate
the performance of the neural networks. In addition, statistical metrics could provide
useful and accurate information on tracking the signals.

In financial prediction, the main objective of using a financial criterion is to evaluate
the ability of the neural network models to generate profits. Therefore, instead of
emphasising on the prediction accuracy results, the network’s performance focuses on
trading profits.

To measure the network’s financial predictability, a simple trading strategy has
been devised. The trading strategy is simply to buy if the network forecasts a positive
change and to sell if the network predicts a negative change for the next period. This
research focusing on:

A) The Relative Profit (RP): evaluate the performance of the network by measuring
the percentage of the maximal profitability that could be obtained over a given
period of time [101].2

B) The Annualised Volatility (AV): to evaluate investment risk of data sample over
one year.

The following subsections will provide an explanation of all the metrics used in this
research.

2This metric was called Annualised Return in the [101] and previous publications, but it was
deemed that Relative Profit is more descriptive, since the term is independent of time.
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3.7.3 Financial Evaluation

1. Relative Profit (RP)

The Relative Profit (RP) measure have been used in this research to estimates the
ability of neural networks on automatic trading. The RP measure the total profitability
using the strategy of buy and sell signals [35]. In other words, the RP indicates the
total profits that could be gained over a period of time by trading or investing. Relative
Profit (RP) is calculated as follows:

A) Calculate the returns (Ri):

Ri =

+|yi| if(yi)(y∗
i ) ≥ 0

−|yi| otherwise
(3.3)

where yi is the target output value ( relative difference as defined in table 3.3)
and y∗

i represent the predicted output value.

B) Find the sum of profits (cumulative return):

CR =
n∑

i=1
(Ri), (3.4)

where n is the total number of data samples.

C) Calculate the annualised profit (annualised return) and annualised maximal
possible profit:

AnnualisedProfit =
(252

n

)
∗ CR, (3.5)

AnnualisedMaxProfit =
(252

n

)
∗

n∑
i=1

abs(Ri), (3.6)

where n is the total number of the data samples, and 252 is taken as the number
of trading days per year.

D) Calculate the Relative Profit (RP), which is expressed as a percentage, the actual
profit relative to the maximal profit over all samples:

RP =
(

AnnualisedProfit

AnnualisedMaxProfit

)
∗ 100 (3.7)
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2. Annualised Volatility (AV)

In order to evaluate the investment risk possibility, the Annualised Volatility (AV)
measure has been used in this research to provide information related to the variability
of the prices. The AV measure is used to measure the variance of returns over a period
of time. The small value of volatility is preferable for financial prediction. Furthermore,
in real trading, the volatility measure provides significant information for investment
risk which makes it useful for financial analysis.

To calculate the variance of returns, firstly should the daily returns Ri be calculated
and use it to calculate the average of the returns R∗. Secondly, calculate the variance
of the returns which equal to the average of the square of the difference between the
returns and the average of the returns. Then the standard deviations (the square root
of the variance of the returns) must be calculated to produce the daily volatility.

Vd =
√√√√( 1

n − 1

)
∗

n∑
i=1

(Ri − R∗)2 (3.8)

where Vd is the daily volatility, n represents the total number of the data sample, Ri

illustrate the returns for each time period, and R∗ is the average of the returns.
After the daily volatility is calculated, then it will be easy to get the annualised

volatility over the year by calculated it as follows:-

AV =
√

252 ∗

√√√√( 1
n − 1

)
∗

n∑
i=1

(Ri − R∗)2 (3.9)

where 252 is the number of trading days in a year.

3. Maximum Draw-Down (MDD)

The Maximum Draw-Down (MDD) measure has been used to evaluate the trading
risk of financial prediction for various network’s models that have been used in this
research. This MDD measure is defined as “ The maximum loss from a peak to trough
of a portfolio’s value before a new peak is attained” 3.

Simply, MDD is an indicator measure of downside risk over a specified time period.
That means MDD only measures the size of the largest loss of a financial trading,
without consideration to the frequency of large losses.

3 as defined in https://www.investopedia.com/terms/m/maximum-drawdown-mdd.asp

https://www.investopedia.com/terms/m/maximum-drawdown-mdd.asp
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A low value of MDD indicates a less risk or small losing, which is desirable on
financial prediction. Maximum Drawdown is computed as follows:

MDD = min

(
n∑

i=1
(CRi − max(CR1, ˙..., CRt))

)
(3.10)

CR =
t∑

i=1
(Ri), t = 1, ˙..., n (3.11)

Ri =

+|yi| if(yi)(y∗
i ) ≥ 0

−|yi| otherwise
(3.12)

where n is the total number of data samples, yi is the target output value and y∗
i

represent the predicted output value.

3.7.4 Signal Processing and Statistical Evaluation Metrics

1. Mean Squared Error (MSE)

The Mean Squared Error (MSE) is the square of the error between the target output
and the forecasting output. The MSE is frequently used in the neural networks to
measure the prediction error during the training phase and testing phase. The smaller
value of the MSE refers to the lowest error of prediction. The Mean Squared Error is
calculated as in the follows:

MSE = 1
n

∗
n∑

i=1
(Yi − Y ∗

i )2 (3.13)

where n represents the total number of the data samples, Yi refers to the target output,
and Y ∗

i is the forecasting output.

2. Mean Absolute Error (MAE)

The MAE measure the mean absolute error value of the deviation between the actual
value (target output) and predicted values. In other words, the average magnitude
of the errors for a set of forecasts measures by the MAE, without considering their
direction[41]. The smaller value of the MAE, the closer predicted time series values to
the target values. MAE is computed as follows:

MAE = 1
n

∗
n∑

i=1
|Yi − Y ∗

i |2 (3.14)
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where n represents the total number of the data sample, Yi refer to the actual of data,
and Y ∗ is the forecasting signals.

3. Signal to Noise Ratio (SNR)

The signal to noise ratio measure is used to compares the amount of significant
information provides by the signal with the amount of background noise of the signal
(distraction from the signal). The signal to noise ratio is given in decibels (dB), A
higher ratio refers to a clearer reading of the signal. The SNR used in many digital
processing applications such as image processing and electronic communications. Signal
to Noise Ratio is calculated as in follows:

SSE =
n∑

i=1
(Yi − Y i∗)2 (3.15)

m = max(Yi) (3.16)

sigma = m2 ∗ n

SSE
(3.17)

SNR = 10 ∗ log10(sigma) (3.18)

where m is the max value of the target data y, n represents the total number of the
data sample.

4. Correct Directional Change (CDC)

The aim of using the CDC is to measure the ability of the network models on correctly
forecasting the subsequent actual change of a prediction variable. A large value refers
to a better predictor. Correct Directional Change computed as in follows:

CDC = 1
n

∗
n∑

i=1
di (3.19)

di =

1 if(yi − yi−1)(y∗
i − y∗

i−1) ≥ 0
0 otherwise

(3.20)

where n represents the total number of the data sample, yi is the target output value
and y∗

i represent the predicted output value.
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3.8 Implementation
Initially, the implementation was done in Matlab for the MLP, FLNN, SMIA and
FL-SMIA models.

For the extensions and the final evaluation all models have been (re-)implemented
in the Python programming language. The TensorFlow library have been used to build
for the implementation of the networks structure and the learning methods of all the
neural networks used in this research and all evaluation metrics. The SMIA algorithm
has been implemented with NumPy as a pre-processing step.

The models have been trained evaluated at City, University of London’s data centre,
on a server machine with 20 XEON cores, 128GB memory and 2 Nvidia QUADRO
M4000 GPUs, as well as a ‘white box’ with a 8 RYZEN cores, 32 GB of memory and
2 Nvidia GTX 1080 Ti GPUs. It turned out that the GPU is the main factor for
processing time.



Chapter 4

The FL-SMIA Neural Network
Model

In this chapter, a novel model, the proposed Functional Link-Self-organised Multilayer
network using the Immune Algorithm (FL-SMIA) combines aspects of Functional
Link Neural Network with the Self-organising Multilayer network using the Immune
Algorithm in the structure and the learning algorithm will be introduced.

4.1 Introduction
Multilayer networks trained using the back-propagation algorithm are considered as
powerful models for financial time series prediction. However, these models suffer
from various problems and weaknesses such as estimating the best weight values and
determine the optimal number of hidden units, as the selection of these parameters
is considered very important for developing the performance of multilayer networks.
In addition, the MLP networks are affected by learning algorithm problems such as
over-fitting [139], [52].

The over-fitting problem relates to the capability of the MLP network to update the
connections between the layers. In this way, MLP networks can memorise the training
data including useless noise. Often the training data are not uniformly distributed in
input space, such that there will be not enough training data in a region in input space
for the network to correctly approximate the function in this region. In both cases,
this will lead to a poor generalization capability.

One method among several, which has been proposed to solve the over-fitting
problem and improve the generalization capability of back-propagation neural networks,
is the hidden layer self-organised network proposed by Widyanto et al [149] based on
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the immune algorithm by Timmis [144]. Widyanto et al [149] applied their model
to the prediction of sinusoidal signal and time temperature based quality food data.
The self-organised hidden layer network inspired by the immune algorithm showed
improved experimental results in the prediction of sinusoidal signals, as well as in the
prediction of temperature based food quality data. A number of researchers had used
immune algorithms for solving several problems as in [150], [143], [131],and [101].

Artificial Immune System (AIS) has been successfully applied for several research
areas, such as data mining, computer security, time series prediction, pattern recognition,
and process control. AIS is based on the concept of the biological immune system in
which the behaviours of the body cells and the antigen are utilised [131].

4.2 Biological Immune System and Immune Algo-
rithm

The concept of the immune algorithm was initially discussed in [144]. The first self-
organisation inspired by the immune system appeared in [82], where the researchers
used one layer networks combined with the contiguity constraint method for clustering
analysis. Later, the networks has been improved by adding the back-propagation
output layer and applied for food quality prediction by [149].

Biologically, when the cell is matched with an antigen then this antigen stimulates
the cell to duplicate itself and a mutated cell to produce a diverse set of antibodies in
order to remove and fight the intruder attacking the body [131]. Thus, the immune
system can allow its components to change and learn patterns by changing the strength
of connections between individual components.

The Immune Algorithm (IA) belongs to the field of Artificial Immune Systems,
which consists of a set of computational methods inspired by the process of the
biological immune system. There are many algorithms in this field, such as clonal
selection algorithms, immune network algorithms, and negative selection algorithms.
These and many other algorithms have been used to solve machine learning problems
in several domains with different approaches, including clustering, pattern recognition,
classification and optimisation among others.

The Clonal Selection algorithm (CLONALG) is inspired by the Clonal Selection
theory of acquired immunity. Clonal Selection theory was proposed to account for
the behaviour and capabilities of antibodies in the acquired immune system [15]. The
general learning strategy of clonal selection theory involves a population of adaptive
information units (each unit representing a problem-solution or component) subjected
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to a competitive process for selection, these components ultimately improve the adapted
of the information units with the environment. Several types of CLONING have been
proposed later, such as the B-Cell Algorithm [78], the Multi-objective Immune System
Algorithm (MSIRA) [25], the Optimization Immune Algorithm (opt-IA, opt-IMMALG)
[26] and the Simple Immunological Algorithm [27].

The artificial Immune Network algorithm has been inspired from the Immune
Network theory of the acquired immune system. In 1974 an Immune Network Theory
(Idiotypic Networks) has proposed by Jerne [73]. The researcher had explained that
the immune cells are not at rest in the absence of the pathogen, instead, antibody
and immune cells recognise and respond to each other. The objective of the immune
network algorithm is to prepare a repertoire of discrete pattern detectors for a given
problem domain, in a way that the cells of better performing suppress the low-affinity
cells in the proposed model. Later the Immune Network Algorithm has been named
the Artificial Immune Network (AIN), that when it had been used for a clustering
approach by Timmis in 2000 [143].

In 1994, the negative selection algorithm was proposed by Forrest, et al.[49]. The
Negative Selection Algorithm is inspired by the self-non-self recognition behaviours
that observed in the mammalian gained immune system. Later (In 1996 ), the negative
selection algorithm has been developed as an algorithm for change detection [33].
The information processing principles of the self-non-self-discrimination process via
negative selection is achieved by building a model of changes, anomalies, or unknown
(non-normal or non-self) data by generating patterns which do not match an existing
corpus of available (self or normal) patterns. The prepared non-normal model is then
used to either monitor the existing normal data or streams of new data by seeking
matches to the non-normal patterns. An example of the Negative Selection Algorithm
is a research work that represented by S. Hofmeyr and S. Forrest in [69][70] as an
adaptive framework is the ARTificial Immune System (ARTIS).

The immune algorithm is based on the principle of the natural immune system. It
is based on the relationship between its components that consist of antigens and cell
which are called recognition balls (RB). The recognition ball in the immune system
includes a single epitope and many paratopes where the epitope is attached to the
B cell, and paratopes are attached to antigen. The B-cell here will represent several
antigens. In neural network, the self-organised layer using immune algorithm serves as a
hidden layer in the network (FL-SMIA). The input layer consist of input units represent
as antigens and the hidden units in the hidden layer are considered as recognition ball
(RB).
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The immune algorithm is used to create hidden units. The relation between the
antigens and the RB is based on the definition of local pattern relationships between
input vectors and hidden nodes. These relationships help this network to easily recognise
and define the input data’s local characteristics, which increases the network’s ability
to recognise patterns and improve the generalization ability of the network [82].

In 2009 [101] the Self-organised Multilayer neural network using the Immune
Algorithm (SMIA) is proposed as a novel application for financial time series prediction.
The simulation result for one step ahead and five steps ahead proved that the SMIA
networks produce a better percentage of annualised return than the other multilayer
networks. A simple comparison between a biological immune system and immune

(a) Biological immune system as in [149] (b) SMIA network as in [103]

Fig. 4.1 Biological immune system and immune algorithm

algorithm will shown in table 4.1 bellow:-

Table 4.1 Comparison between a biological immune system and an immune algorithm

Biological Immune System Immune Algorithm
1 Antigen Input vector
2 B-cell Hidden units
3 New antigen (not recognised) New input vector (not matching)
4 New antigen stimulates a B-cell to replicate A value not matching a hidden unit
5 A mutated B-cell will created A new hidden unit will created

4.3 The Structure of the FL-SMIA Network
The architecture of the proposed FL-SMIA network consists of the input layer, which
comprises a number of input units X1, X2, . . . , XZ , the self-organising hidden layer
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with units H1, H2, . . . , HN , and the output layer consisting of one output unit as shown
in Fig. 4.2. Here Z, and N refers to the number of units in each layer. This research

Fig. 4.2 The proposed FL-SMIA architecture (Functional Link Self-organised Multilayer
network using the Immune Algorithm).

focuses on adding second order terms to the input units. In our example below the
network has five input features X1, . . . , X5. Adding the second order term to the inputs
results in 10 additional inputs (X1X2, X1X3, X1X4, . . . , X4X5), leading to fifteen input
units in total, five with input features and ten with products of inputs features as
represented in Fig. 4.2. The FL-SMIA network uses a hidden layer which operates like
in [101] and [149]. The design of the hidden units is inspired by B cells recognising
pathogens in immune systems.

The output of the hidden units is determined using the Euclidean distance between
the input units (Xi) and the connection weights between the input units and the hidden
units (WHij). The advantage of using the Euclidean distance is to make the network
capable of exploiting local information of the input data. The output of a hidden unit
Hj is calculated as:

Hj = fhts


√√√√ Z∑

i=1
(WHij − Xi)2

 (4.1)
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where WHij represents the weight of the connection from the ith input unit to the jth

hidden unit, and fhts is the hyperbolic tangent sigmoid function.
The number of hidden units is determined from the data by learning with the

Immune Algorithm as described in the next section.
The outputs of the hidden units are aggregated in a standard layer with the network

output given by:

Y = fls

 N∑
j=1

WHjy.Hj + By

 (4.2)

where WHjy represent the strength of the connection weights between the jth hidden
unit and the output unit, By is the bias of the output unit Y , and fls is the logistic
sigmoid function.

In general, the FL-SMIA model proposes to use the immune algorithm into train the
first sets of connection weights, after that the second sets of weights use the standard
back-propagation algorithm, in order to produce the network’s output which then uses
on evaluating and selecting models based on the metrics.

Fig. 4.3 The theoretical proposed framework for FL-SMIA network.

4.4 Learning in the FL-SMIA Network
The FL-SMIA as described above has two weight matrices, the first between the input
layer and the hidden layer, the second between the hidden layer and the output layer.
The first set of weights and the structure of the hidden layer are trained using the
Immune Algorithm [149]. As indicated in figure 4.4, the immune learning algorithm
starts with representing the input vector with weights to the hidden units. If the
input vector values matches with the hidden unit, this means the input has found its
corresponding hidden unit, and then the connection weights values should be updated.
Otherwise, the input vector values are not matching with any hidden units, in this
case a new hidden unit will be created. The process is repeated until new hidden units
stop created.
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Fig. 4.4 Immune algorithm framework.

For more explanation about training the first set of weights using the Immune
Algorithm and the structure of the hidden layer, it could be summarised in the follows.
In the Immune Algorithm a hidden unit corresponds to a recognition ball (RB) in
the immune system. Each hidden unit represents one or more input vectors with the
weights of the connections from the input layer to the hidden unit The hidden unit Hj

is represented by (Pj, WHj), where Pj is the number of input vectors associated with
Hj, and WHj is the vector of weights from the input layer to Hj hidden units.

We start with one hidden unit (N = 1) and the first hidden unit is created with
P1 = 1 and WH1 = X1. The Immune Algorithm then performs the following steps to
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create and update the hidden units until all inputs of the network have found their
corresponding hidden unit.

1) For m = 1, . . . , M perform the following:

a) For j = 1, . . . , N , calculate the Euclidean distance between the m-th input
and the weight vector of the jth hidden unit:

distmj =

√√√√ Z∑
i=1

(xmi − wHji)2 (4.3)

where xmi is the ith element of input vector xm, and wHji is the ith component
of vector wHj, i.e. the weight of the connection from input m to hidden
unit j.

b) Determine the closest unit c, i.e. the unit with the shortest distance to xm:

distmc = minj(distmj) (4.4)

c) If the shortest distance distmc is below the stimulation level Sq (where Sq

is selected between 0 and 1), then the input has found its corresponding
hidden unit. In this case the weight vector wHc of the hidden unit closest
to xm will be updated as following:

wHcnew = wHc + η ∗ distmc (4.5)

where ηi ∈ (0, 1) is the learning rate for the Immune Algorithm, wHc is the
weight vector of the hidden unit closest to xm. Pc will be incremented by 1.
Otherwise, the shortest distance distmc is greater than the stimulation level
Sq. This means that no matching hidden unit was found for the input and
we create a new hidden unit (PN , WN ) with PN = 1 and WHN = Xm. Then
we update the following:

N = N + 1 (4.6)

2) Repeat from step 1 as long as new hidden units have been created.

The second weight matrix is trained using the standard back-propagation algorithm
[127] with regularisation to penalise large weights [13] in batch mode.
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In our case with a single output neuron the weight change is calculated as:

∆WHjk = −ηb
∂J

∂WHj

− λWHjk (4.7)

where WHjk is the weight of the connection from hidden units Hj to the output unit,
ηb ∈ [0, 1] is the learning rate, and J the mean squared error on the training set. The
second term on the right-hand side effects the regularisation, which is controlled by
the parameter λ. The bias is adapted in the same way but without regularisation.

The SMIA and SMIA* algorithms only create and never merge hidden neurons.
Therefore, the algorithm terminates at the latest when there one hidden neuron
is assigned to each data point. With the stimulation level that we use (0.45) we
get typically around 40 hidden neurons with FL-SMIA and somewhat fewer with
FL-SMIA*.

4.5 The FL-SMIA* Network: an Alternative Learn-
ing Method

As an alternative to the SMIA method, we introduced a second method to update
the connection weights from input units to hidden units after we found the shortest
distance distmc. In this network we assign each input vector the same importance.
This method calculates the new vector for the selected hidden unit as the average
of all input vectors assigned to the unit by replacing equation 4.5 with the following
equation:

wHcnew = wHc(PHc − 1) + xm

PHc

(4.8)

where PHc is the number of input vectors associated with the hidden unit Hc. We refer
to this second method as FL-SMIA*. By applying the Immune Algorithm in either
variant, a hidden layer representation is created that reflects the variety of vectors
in the input data, which helps avoid over- and under-fitting problems because the
hidden layer expands with the size and diversity of the training data. The units in the
hidden layer contain explicit patterns that the network uses for prediction, which can
be examined and interpreted by financial domain experts.





Chapter 5

Experimental Results of FL-SMIA
Network

This chapter includes the simulation results of the proposed network Functional Link-
Self-organised Multilayer network using the Immune Algorithm (FL-SMIA), which is
supported by the regularization technique.

As the main objective of this research is to improve the prediction ability of non-
linear networks (e.g. MLP network), therefore, the results of FL-SMIA and FL-SMIA*
networks have been compared with the results of the Multilayer Perceptrons network
(MLP), the Self-organising Multilayer network using the Immune Algorithm (SMIA).
We also evaluated the Functional Link Neural Network (FLNN) because the FLNN
network has been successfully used on financial prediction domain and we use the
concept of the FLNN inputs with the FL-SMIA network.

All the networks have been tested on all data-sets that are listed in Table 3.1 (the
financial time series data) using the metrics which have been explained previously in
section 3.7.2.

In this research, we evaluate all combinations of learning parameters in a grid search
as listed in section 3.6 on each of the nine data-sets. For each point in the grid (i.e.
each parameter combination), 50 simulations have been run with each neural network
model on each of the financial time series. Each simulation includes 80 epochs. The
results have been selected based on the best RP value that produced from each model
that was used in this research.

The results for the FLNN model have been produced using the second-order terms
(inputs and their products). The MLP model produced best predictions by using 8
hidden units for all data-sets except GOLD, where only 4 hidden units lead to the best
predictions.
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The number of hidden units that have been generated by the models (SMIA,
FL-SMIA, and FL-SMIA*) varied according to each of the data sets as listed in
Table 5.1

Table 5.1 shows that the number of hidden units which were created by the SMIA
network is between 10 and 24 hidden units. While the FL-SMIA model had generated
more hidden units numbers ranges between 40 to 86 hidden units. For the FL-SMIA*
model, the number of hidden units is from 11 to 32 hidden units.

When comparing the number of hidden units in Table 5.1, it is clear that the
FL-SMIA model has generated larger numbers of hidden units than what has been
generated by SMIA and FL-SMIA* models.

Table 5.1 The number of hidden units that have been generated by different versions
of SMIA models for different data-sets.

Network USD/UKP USD/EUR JPY/USD NQO NQC DJO DJC OIL GOLD
SMIA 12 19 24 18 21 19 19 10 11
FL-SMIA 40 59 71 43 49 47 47 86 56
FL-SMIA* 16 32 25 16 20 11 17 42 31

For the rest of this chapter, the first section of this chapter includes the results
and the comparison between the results for one day ahead prediction. In the second
section of this chapter, the results for five days ahead prediction will be presented and
compared.

5.1 One Day Ahead Prediction
In this section, the results of 50 simulations using the data-sets in Table 3.1 (the
financial time series data) are presented for comparison and analysis of networks
performance. The results of the comparison are based on the values of the profit and
the values of the investment risk that produced by each network that has been used in
this research. This means the network that has achieved a higher percentage of the
Relative Profit (RP) and a lower value of the Annualised Volatility (AV) is considered
the best model could be used on the financial prediction domain.

Table 5.2 illustrates the results of Relative Profit (RP) for all networks used in this
research for the prediction of one day ahead and the average RP for all data.

The results of Relative Profit (RP) show that the FLNN network predicted the
highest RP values than all other networks for six out of the nine data-sets. However, the
FL-SMIA, and FL-SMIA* networks outperformed the FLNN network on the prediction
of data DJC, OIL, and GOLD.
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The forecasting results for the FL-SMIA network proved that using the immune
algorithm improves the performance of this network compared with the other multilayer
networks. The FL-SMIA network results are lower but still compititive.

The comparison results for the RP average for one day ahead prediction proved
that on one hand the average of Relative Profit of FL-SMIA network is lower than
the average of Relative Profit the FLNN by 2.074. On the other hand, the proposed
network FL-SMIA produced the highest value (73.268) of average RP than all other
multilayer networks. Thus, the FL-SMIA network could be considered as an improved
model for a multilayer networks financial prediction domain.

Table 5.2 The results of the Relative Profit (RP) for all networks for one day ahead
prediction and the average RP for all data.

Network US/UK US/EU JP/US NQO NQC DJO DJC OIL GOLD Average
FLNN 81.107 80.037 79.716 72.297 68.910 72.477 69.370 77.878 76.285 75.342
MLP 72.108 73.238 74.500 68.314 66.152 67.774 64.756 78.911 76.050 71.311
SMIA 73.715 78.126 75.646 71.889 67.112 62.450 62.585 70.192 70.615 71.142
FL-SMIA 76.225 76.648 75.044 70.415 66.695 68.687 70.276 75.970 79.451 73.268
FL-SMIA* 73.111 72.807 73.569 69.369 66.396 67.959 65.618 81.201 67.949 70.887

Fig. 5.1 The best forecasting for test data for the prediction for one day ahead using
the FL-SMIA network.

Table 5.3 shows for the investment risk as measures by Annualised Volatility (AV,
lower is better). The comparison of AV results indicates that the FLNN model reduces
the trading risk by producing lower AV results than all other networks when using
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Table 5.3 The results of Annualised Volatility (AV) for all networks for one day ahead
prediction and the average AV for all data.

Network US/UK US/EU JP/US NQO NQC DJO DJC OIL GOLD Average
FLNN 4.1191 4.3898 5.3227 12.6817 12.2235 10.5783 10.7969 20.3893 32.3896 12.5434
MLP 4.3763 4.5828 5.4748 12.9159 12.3757 10.8177 11.0213 20.2407 32.4344 12.6933
SMIA 4.3328 4.4428 5.4412 12.7031 12.3184 11.0668 11.1218 16.7822 15.7535 10.4403
FL-SMIA 4.6260 4.4865 5.4590 12.7885 12.3434 10.7724 10.7459 16.6670 15.5541 10.3825
FL-SMIA* 4.3487 4.5900 5.4700 12.8467 12.3604 10.8080 10.9742 26.6794 38.4523 14.0589

the data of US/UK, US/EU, JP/US, NQO, NQC, and DJO. However, the FL-SMIA
network outperformed all other networks when predicting the AV value for DJC stock
price data. For the commodity price data (OIL, and GOLD), the FL-SMIA network
had lower AV values than all other networks.

The results for average Annualised Volatility (AV) in table 5.3 proved that FL-SMIA
model reduced the investment risk by produced the lowest average of (AV) value than
all other networks including the FLNN model.

Figure 5.1 illustrates an example of FL-SMIA network performance when using the
GOLD data. As can be seen, the target signal (data), and the forecasted signal are in
mostly closer to each other, which indicate that the FL-SMIA network has the ability
to learn the behaviour of financial data.

Table 5.4 The results for the MSE-Testing for one day ahead prediction and the average
of MSE-Testing for all data.

Network US/UK US/EU JP/US NQO NQC DJO DJC OIL GOLD Average
FLNN 0.00992 0.00841 0.01247 0.00401 0.00573 0.00505 0.00395 0.00712 0.005891 0.00695
MLP 0.00384 0.00294 0.00238 0.00215 0.00296 0.00327 0.00314 0.00420 0.004450 0.00326
SMIA 0.00382 0.00291 0.00240 0.00220 0.00320 0.00240 0.00229 0.00030 0.000071 0.00218
FL-SMIA 0.00381 0.00340 0.00260 0.00230 0.00330 0.00241 0.00230 0.00025 0.000067 0.00227
FL-SMIA* 0.00442 0.00348 0.00256 0.00210 0.00306 0.00215 0.00240 0.00221 0.002950 0.00283

As clearly seen in table 5.4, that the results for MSE-Testing phase indicated all
networks produced low values for the MSE-Testing measure when forecasting all the
data. However, the comparison of average results demonstrates that the SMIA and
FL-SMIA networks produced the lower average of MSE- Testing values than all other
networks which have been used in this research.

For the multilayer networks, the average results of MSE refer that the SMIA network
is outperforming all multi-layer networks, while the average value of MSE for FL-SMIA
network is close to the average value of MSE for SMIA network.

Furthermore, the MSE average for the FL-SMIA network (0.00227) outperformed
the FLNN network which produced the average of MSE (0.00695). It is good to notice
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Fig. 5.2 The training error and validation error for the GOLD data for one day ahead
prediction using FL-SMIA network.

that FL-SMIA network has successfully down the MSE value than what the lowest
value than all other MSE values of all networks when predicted the GOLD data.

Figure 5.2 illustrates the errors of training and validation for the FL-SMIA network
when using the GOLD data. The errors of training and validation are looking closer
to each other and they are near to zero value. consequently, the results of one day
ahead prediction proved that the proposed FL-SMIA network improved the multi-layer
network’s performance on financial prediction domain.

5.2 Five Days Ahead Prediction
This section is illustrated the experimental results for the prediction for five days ahead
using financial time series data. The main objective of this section is to appraisal the
predictive ability of the networks (FLNN, MLP, SMIA, FL-SMIA, and FL-SMIA*).
The network which acquires the higher ratio of profits is considered as the best model
for the financial prediction.

The networks have been tested using all data-sets from Table 3.1 (the financial time
series data) using the metrics which have been explained previously in the section 3.7.2.
As well as, the results of FL-SMIA network will be compared with all networks that have
been used in this research in order to investigate if the proposed networks FL-SMIA or
FL-SMIA* could outperform the other networks for five days ahead prediction.
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Table 5.5 The results of the Relative Profit (RP) for all networks for five days ahead
prediction and the average RP for all data.

Network US/UK US/EU JP/US NQO NQC DJO DJC OIL GOLD Average
FLNN 91.529 92.452 86.985 88.165 86.397 89.522 89.564 89.814 90.009 89.382
MLP 91.185 91.501 83.338 83.214 80.772 80.399 84.377 89.723 88.962 85.941
SMIA 88.403 91.927 86.237 86.566 87.257 84.469 86.468 90.892 89.595 87.979
FL-SMIA 92.021 92.495 87.492 86.626 87.341 86.625 87.454 87.629 89.497 88.575
FL-SMIA* 90.765 92.475 87.054 87.279 87.016 87.995 89.723 86.236 83.758 88.033

As could be seen through table 5.5, the average results of the Relative Profit (RP)
for five days ahead prediction for all networks that used in this research showed that
the FLNN network outperforms the proposed network (FL-SMIA) with the results
(89.382 vs 88.575) respectively. However, the FL-SMIA network attained the highest
average value of RP than all the multi-layer networks. This result proved that the
proposed network (FL-SMIA) improved the performance of multi-layer networks for
financial prediction.

Fig. 5.3 The best forecasting on test data for the prediction of five steps ahead using
FL-SMIA network.

An example of the FL-SMIA network prediction for the US/UK data has been
illustrated in Figure 5.3, the forecasted signal looks mostly followed to the target signal,
which means that the FL-SMIA network has the ability to learn the behaviour of
financial data.
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Table 5.6 The results of the Annualised Volatility (AV) for all networks for five days
ahead prediction and the average AV for all data.

Network US/UK US/EU JP/US NQO NQC DJO DJC OIL GOLD Average
FLNN 15.47144 15.56260 16.81314 35.16634 35.75308 30.72444 30.75543 61.52982 101.34412 38.12449
MLP 15.49770 15.68840 17.29550 36.42510 37.12470 32.65290 31.90650 61.59024 102.29560 38.94185
SMIA 15.85660 15.62360 16.89820 35.57702 35.47790 31.82670 31.4531 60.80959 101.72290 39.22406
FL-SMIA 15.65030 15.53630 16.71910 35.56130 35.73694 31.36340 31.23310 62.93981 101.81230 38.50584
FL-SMIA* 15.55320 15.53940 16.78210 35.38960 35.54270 31.05930 30.71120 63.74985 106.65943 38.99853

The average AV results as in table 5.6 indicated that FLNN model reduced the in-
vestment risk by produced the lowest average AV value than all other networks followed
by the average AV value of FL-SMIA model. Furthermore, comparing the average AV
results between the multi-layer networks proved that the FL-SMIA model outperforms
all other multi-layer networks by decrease the average AV value to (38.50584). In

Table 5.7 The results for the MSE-Testing for five days ahead prediction and the
average of MSE-Testing for all data.

Network US/UK US/EU JP/US NQO NQC DJO DJC OIL GOLD Average
FLNN 0.00739 0.01046 0.01358 0.00468 0.00555 0.00327 0.00375 0.00732 0.01222 0.00758
MLP 0.00264 0.00173 0.00261 0.00305 0.00385 0.00130 0.00230 0.00626 0.00594 0.00330
SMIA 0.00158 0.00264 0.00236 0.00141 0.00177 0.00136 0.00155 0.00186 0.00954 0.00268
FL-SMIA 0.00204 0.00319 0.00254 0.00150 0.00190 0.00165 0.00167 0.00279 0.00271 0.00222
FL-SMIA* 0.00220 0.00310 0.00313 0.00140 0.00199 0.00122 0.00120 0.00178 0.00227 0.00203

table 5.7, the results of the MSE-Testing and the average for all networks for the
prediction of five days ahead have been shown. Although all networks reach low error
values of MSE-Testing for all the data, the comparison between the average results
for the networks demonstrates that the proposed networks (FL-SMIA and FL-SMIA*)
have the lowest average of MSE-Testing values than all other networks which have
been used in this research.

Figure 5.4 demonstrate an example of the training and validation errors for FL-
SMIA network when using the US/UK data. The figure presents the MSE results for
the training data error and validation data error for the prediction of five days ahead.
The training error and the validation error are closer to each other and are reduce the
errors by near to zero value.

Through all the tables illustrated in this chapter which presented the performance
of all the networks that have used in this research. The average results for the one day
ahead prediction and for five days ahead prediction proved that the proposed network
(FL-SMIA) outperformed all the multi-layer networks that used in this research.

These good results considered the proposed network (FL-SMIA) as the promising
multi-layer model on financial prediction domain, as well as, these results encourages
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Fig. 5.4 The development of the MSE for the prediction of five steps ahead using
FL-SMIA network.

the continuation of this research towards improving and developing the proposed
network (FL-SMIA) in order to achieve more accurate results for financial data.

All information about average performance and the statistical significance of these
results and of the differences between architectures for all models that have been used
in this research will be included in chapter 8.



Chapter 6

Extensions 1: Deeper and Mixed
Networks: D-FL-SMIA,
MD-FL-SMIA, MD-FL-SMIA-2,
M-FL-SMIA

As the main focus of machine learning research recently has been on deep, recurrent
or convolution neural networks operating on raw data, methods for constructing
features and alternative learning algorithms have still potential for improving predictive
performance.

In this chapter, the developing of the proposed network (FL-SMIA) to deeper
learning network using the Immune Algorithm (D-FL-SMIA) will be explained. As
well as, the improved networks using the idea of mixed data (MD-FL-SMIA and
M-FL-SMIA networks) will be explained.

The proposed networks (D-FL-SMIA, MD-FL-SMIA, MD-FL-SMIA-2, and M-FL-
SMIA) aims to improve the performance of the Multilayer networks. It is good to note
that a regularization technique has been used with all proposed networks in order to
improve the generalization of the proposed network.

In this research, the number of hidden units in the standard hidden layers have
been determined based on the error results for the networks without using an algorithm
to determine the number of hidden units for each layer except the first layer (using the
Immune Algorithm to generate the hidden units with each set of data).

Experimentally, the results with the lower error for the D-FL-SMIA model have
been produced by using three standard hidden layers, each layer includes a different
number of hidden units (150, 100, and 50, respectively). Each model of (MD-FL-SMIA
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and MD-FL-SMIA-2) contains two standard hidden layers with a different number of
hidden units (100 and 50 hidden units respectively).

6.1 The D-FL-SMIA Network Structure
The structure of the proposed network (FL-SMIA) have been changed by adding three
extra hidden layers to this network, thus, the D-FL-SMIA network includes four hidden
layers: the first hidden layer which is the self-organised layer using the immune learning
algorithm (unsupervised learning algorithm), and the three extra hidden layers are the
standard hidden layers, which is used the Back Propagation Algorithm (supervised
learning algorithm).

Fig. 6.1 The proposed D-FL-SMIA architecture (Deep Functional Link Self-organised
Multilayer using the Immune Algorithm).

As shown in fig 6.1, the structure of the proposed D-FL-SMIA network consists of
the following:

1. The input layer includes a number of input units (X1, X2, ...XZ)).
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2. The self-organising hidden layer (SMIA layer) with units (H1, H2, ...HN), where
the number of hidden units in the SMIA layer depends on the type of data and
the immune algorithm.

3. Three standard hidden layers, each layer includes a different number of hidden
units (HF , HK , andHP ), where F = 150, K = 100, and P = 50, respectively, refers
to the number of hidden units in each layer.

4. The output layer includes only one output unit (Y).

Depends on layers number that described previously, the D-FL-SMIA network has five
sets of weights matrices, the first set between the input layer and the self-organised
hidden layer (SMIA layer), the second set of connection weights are between the
self-organised hidden layer and the standard hidden layer, then the third and fourth
weight matrix is between the rest of standard hidden layers, the last weight matrix is
located between the fourth hidden layer and the output layer.

The data are passed in from the input layer to the first hidden layer, the output of
the first hidden layer considered as inputs to the next hidden layer and so on, while
the output of the last hidden layer sends to the output unit (Y) which is the network
output.

6.2 The D-FL-SMIA Network Learning
As explained in chapter (4) of this thesis, the input layer receive external data (nor-
malised time series data) i.e., (S1, S2, ..., Sq), where S ∈ [0, 1], and thus Xq ∈ [0, 1].
The number of actual input units (X) equal to the number of external input data
(S). Thus, the input units are X1, X2, ...XZ , where Z represents the number of input
units to the network includes the actual inputs (X1, X2, ..., Xq) and their products
(X1X2 = Xq+1, X1X3 = Xq+2, ..., Xq−1Xq = XZ).

For the first hidden layer, the proposed network use the immune algorithm as an
unsupervised learning method using the financial data as in table 3.1. The hidden units
are designed as an implementation of the B cell recognition algorithm that inspired
from the immune system as in [149], and Mahdi et al. [101]. Each hidden unit receives
fifteen inputs, which means there are fifteen connection weights between each hidden
unit and input units.

The output of the hidden units is determined using the Euclidean distance between
the input units (Xi) and (WHij) (the connection weights between the input units and
the hidden unit) as in equation 4.1.
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The number of hidden units is determined based on the type of data and the use of
the Immune learning Algorithm (explained in chapter 4 section 4.4). Thus, the number
of hidden units for the first hidden layer will be vary depending on the data-sets. Then
the outputs of the first hidden layer transform to the second hidden layer.

The second hidden layer, which is a standard hidden layer use a number of hidden
units equal to 150 units, while the third hidden layer (standard hidden layer) used
100 hidden units, and the fourth hidden layer (standard hidden layer) with 50 units,
all standard layers are training by using the back-propagation algorithm (supervised
learning).

During the training phase, the main goal is to minimise the error between the target
values and the network output values. In order to reach this goal, the weight vectors
must be updated.

The output of each hidden layer considered as an input to the next hidden layer
and so on. The outputs of the standard hidden layers are calculated as follows:

Hk = fls

 N∑
j=1

WjkHj + Bk

 , k = 1, 2, ..., V (6.1)

where Wjk represent the connection weights from jth hidden unit to kth the hidden
units in the next hidden layer, Bk is the bias associated with the hidden units for each
hidden layer, and fls is the logistic sigmoid function.

The outputs of the last hidden layer are aggregated in a standard layer. The
network output is given by:

Y = fls

 N∑
j=1

WHjyHj + By

 (6.2)

where WHjy represent the strength of the connection weights between the jth hidden
units and the output unit, By is the bias of the output unit Y , and fls is the logistic
sigmoid function.

6.3 The MD-FL-SMIA Networks
In this section, the proposed MD-FL-SMIA network (Mixed and Deeper Functional
Link Self-organised Multilayer using the Immune Algorithm) will be presented. The
aim of proposing this version of the network is to investigate the effect of the mixture
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of raw data with trained data (using immune algorithm) on the performance of the
neural network on the field of financial prediction.

Two versions of MD-FL-SMIA network have been proposed in this research using
the method of mixed and Deep network for prediction, the two versions have similar
structures but the difference between these models is based on the dimensionality of
the inputs of the data, as it will be explained in following:

A) The first version titled the MD-FL-SMIA network, which uses inputs of Data
(inputs)= (X1, X2, ...Xq) mixed with the data which trained using immune
algorithm in the first hidden layer.

B) The second version titled MD-FL-SMIA-2 network, which uses inputs of FL-
Data (inputs + higher order inputs) = (X1, X2, ...XZ) mixed with Data
that trained by using the immune algorithm in the first hidden layer.

These two versions of networks (MD-FL-SMIA, and MD-FL-SMIA-2) have been
proposed in order to investigate the prediction performance of each network by using a
different type of mixed data.

6.3.1 The MD-FL-SMIA Network Structure

The proposed MD-FL-SMIA network as shown in figure 6.2 consists of the following:

1. Input layer: includes number of input units X1, X2, ...XZ (inputs and their
products).

2. Self-organising hidden layer: is the first hidden layer with hidden units
(H1, H2, ...HN), where the number of hidden units in this layer depends on the
data and the immune algorithm. The number of hidden units in this layer =
Data (inputs = X1, X2, ...Xq)) + hidden units created using immune learning
algorithm. (e.g. US/UK = 40 hidden units + 5 hidden units, total hidden units
= 45).

3. Hidden layer 2: is a standard hidden layer, it includes number of hidden units
(H1, H2, ...HF ), where F = 100.

4. Hidden layer 3: is a standard hidden layer, which includes (H1, H2, ...HK)
number of hidden units, where K = 50.

5. Output layer: this layer consist of only one output unit (Y).
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Fig. 6.2 The proposed MD-FL-SMIA architecture (Mixed and Deeper Functional Link
Self-organised Multilayer using the Immune Algorithm).

6.3.2 The MD-FL-SMIA-2 Network Structure

As shown in figure 6.3, the proposed MD-FL-SMIA-2 model structure includes the
following:

1. Input layer: includes number of input units X1, X2, ...XZ (inputs and their
products).

2. Self-organising hidden layer: is the first hidden layer with hidden units
(H1, H2, ...HN ). The number of hidden units in this layer = the number of hidden
units that equal to FL-Data (inputs + higher order inputs = X1, X2, ...XZ)
+ hidden units created using immune learning algorithm. (e.g. US/UK = 40
hidden units + 15 hidden units, total hidden units = 55).

3. Hidden layer 2: is a standard hidden layer, it includes number of hidden units
(H1, H2, ...HF ), where F = 100.
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4. Hidden layer 3: is a standard hidden layer, which includes (H1, H2, ...HK)
number of hidden units, where K = 50.

5. Output layer: this layer consist of only one output unit (Y).

Fig. 6.3 The proposed MD-FL-SMIA-2 architecture (Mixed and Deeper Functional
Link Self-organised Multilayer using the Immune Algorithm).

As presented in figure 6.2 and figure 6.3, the input units receive external data
(normalised time series data) i.e., (S1, S2, ..., Sq), where S ∈ [0, 1], thus Xq ∈ [0, 1].

6.4 The MD-FL-SMIA and MD-FL-SMIA-2 Net-
works Learning

The MD-FL-SMIA network and MD-FL-SMIA-2 network have four weight matrices,
the first weight matrix between the input layer and the first hidden layer (Self-organised
layer), the second weight matrix between the first hidden layer and the second hidden
layer,and so on until the weight matrix between the last hidden layer and the output
layer.
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As explained in chapter 4, the first set of weights are trained using the Immune
Algorithm [149].

The first hidden layer (SMIA layer) received the FL-Data from input layer and
trained the FL-Data using unsupervised learning method (immune algorithm). As
mentioned previously in section 4.4, that in this layer the number of hidden units is
varied as it depends on the type of the data-set and the immune learning algorithm
which is used to create the hidden units. After the FL-Data is passed to the network,
the first weight matrix between the input layer and the first layer (Self-organised layer
or SMIA layer) are trained.

Then the output of the (SMIA layer) will be transferred to the second hidden layer.
The dimensions of the second weights matrix between the first hidden layer and the
second hidden layer will be equal to the number of hidden units that generated by
(SMIA layer) + number of hidden units which are equal to the number of inputs (Data,
or FL-Data). In other words, the hidden layer 2 will receive mixed values of inputs
depending on the type of network as follows:

1) The MD-FL-SMIA Network: the second weights matrix which is trained by using
a number of weights that equal to the mix of input Data + the output of the
FL-Data which is trained using the immune algorithm.

2) The MD-FL-SMIA-2 Network: the second weights matrix which trained by using
a number of weights that equal to the mix of input FL-Data + the output of
the FL-Data which is trained using the immune algorithm.

The output of the second hidden layer will feed into the next layer (Hidden Layer
3) which consists of 50 hidden units, thus the output of the third hidden layer feed
into the output layer which uses only one output unit as shown in fig 6.2.

The output of the hidden units in the first hidden layer is determined using the
Euclidean distance between the input units (Xi) and the connection weights between
the input units and the hidden units (WHij) as in equation 4.1.

The output of a hidden unit Hj is calculated as:

Hj = fhts


√√√√ Z∑

i=1
(WHij − Xi)2

 (6.3)

where WHij represents the weight of the connection from the ith input unit to the
jth hidden unit, and fhts is the hyperbolic tangent function. The outputs of the first
hidden layer are represents as inputs to the second hidden layer The output of the
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second hidden layer (Hidden Layer 2) is calculated as:

HF = fls

 F∑
jf

WjfHj + Bf

 (6.4)

where HF denotes the output of the second hidden layer, fls is a log-sigmoid transfer
function, Hj represents the output of the first layer to the second hidden layer, Wjf is
the weights connection between the self-organised hidden layer and the hidden layer 2,
and Bf is the bias.

The network output is given by:

Y = fls

(
K∑

k=1
WHkyHk + By

)
(6.5)

where WHky represents the connection weights between the kth hidden units and the
output unit, By is the bias of the output unit Y , and fls is the logistic sigmoid function.

For the third and fourth weights matrix which are updated using the standard
back-propagation algorithm (supervised learning algorithm)[127] with regularisation to
penalise large weights [13]. In our case with a single output unit, the weights change is
calculated as:

∆WHF K = −ηb
∂J

∂WHf

− λWHF K (6.6)

where WHF k is the weight of the connection from hidden units fk to the output unit,
ηb ∈ [0, 1] is the learning rate, and J the mean squared error on the training set. The
second term on the right-hand side effects the regularisation, which is controlled by
the parameter λ. The bias is adapted in the same way but without regularisation.

6.5 The M-FL-SMIA Network
This section introduces a novel neural network architecture (M-FL-SMIA model)
inspired by immune system. The M-FL-SMIA model combines the higher-order inputs
(the products of raw input features) of the FLNN model with the Functional Link
Self-organising Multilayer Neural Network using an Immune Algorithm (FL-SMIA).

The M-FL-SMIA Network structure consists of the following two components:

1) The FLNN Network

The FLNN network is defined as a generalised linear model consisting of the
input layer which including number of the actual inputs (X1, X2, ..., Xq) and their
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products (X1X2 = Xq+1, X1X3 = Xq+2, ..., Xq−1Xq = XZ) represented a vector
of z features. w = (w1, w2, ..., wz) are the model parameters and b is the bias, Y
refers to the prediction value (the network without hidden layer). The output
calculation of the FLNN is calculated as following :

YF L = fls

W0 +
∑

j

WjXj +
∑
j,k

WjkXjXk

 (6.7)

where YF L denotes the FLNN network output, fls is a log-sigmoid transfer
function, W0 is the bias term, X represents the input values, and W is the
weights from the input layer to the output layer.

It is good to mention that, the interactions between the features add non-linearity
to the generalised linear model.

2) The FL-SMIA Network

As explained in chapter 4, that the FL-SMIA Network consists of the input layer,
one hidden layer (SMIA layer), and output layer which includes one hidden unit.

The FL-SMIA model has two weight matrices. The first matrix is trained by
using an unsupervised learning method (immune algorithm), while the second
matrix trained using supervised learning (Back-Propagation algorithm). The
output of the FL-SMIA network is given by:

Y = fls

 N∑
j=1

WHjyHj + By

 (6.8)

where WHjy represents the connection weights between the jth hidden units and
the output unit, By is the bias of the output unit Y , and fls is the logistic sigmoid
function.

6.6 Combining the Training of FLNN and FL-SMIA
(M-FL-SMIA Network)

The M-FL-SMIA Network learn using a combination of FLNN and the FL-SMIA
algorithms. These two models are combined using a weighted sum of their outputs on
the output layer.
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Fig. 6.4 The proposed M-FL-SMIA network architecture (Mixed of FLNN and FL-SMIA
networks).

As illustrated in figure 6.4, the hidden layer in M-FL-SMIA network received
the FL-Data = X1, X2, ..., XZ . where Z represents the total number of input units
(FL-Data) includes the input data and its products. The FL-Data is trained using
unsupervised learning method (immune algorithm). The output of the hidden units in
the hidden layer is calculated using the Euclidean distance between the input units
(Xi) and the connection weights between the input units and the hidden units (WHij)
as in equation 4.1. The outputs of the hidden layer then will be transfers to the output
layer.

In addition to that, the output layer received inputs of FLNN network directly from
the input layer in order to train using the back-propagate leaning algorithm. Thus,
the output unit in the output layer produces the prediction results for the data-set
using the mixed of network’s data.

The combined model’s prediction is:

Y = fls (WF LNN [Xi...Xz] + (WF L−SMIA) + B) (6.9)
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Extensions 1: Deeper and Mixed Networks: D-FL-SMIA, MD-FL-SMIA,

MD-FL-SMIA-2, M-FL-SMIA

where Y is the network output, flg is the sigmoid function, Xi...xz are the inputs and
their product transformations of the original features x, and B is the bias term, WF LNN

is the vector of all FLNN model weights and WF L−SMIA are the weights between the
SMIA layer and t, fhts the hyperbolic tangent activation function.

The prediction results for all the proposed networks will be presented and compared
with other networks in chapter 8 of this thesis.



Chapter 7

Extensions 2: FL-SMIA with a
Restricted Boltzmann Machine
(FL-SMIA-RBM)

In this chapter, a novel model based on learning using a Functional Link-Self-organised
network of the Immune Algorithm (FL-SMIA) and the Restricted Boltzmann Machines
(FL-SMIA-RBM) is proposed.

The Restricted Boltzmann Machine (RBM) is trained with an unsupervised learning
method. The FL-SMIA model also uses an unsupervised learning method (an immune
algorithm). Here, the aim is to combine the FL-SMIA and RBM in one model that uses
unsupervised learning to improve the performance of a multi-layer network, inspired by
Deep Belief Networks[67]. The Restricted Boltzmann Machine uses an unsupervised
learning method, that is used as pre-training to render learning Deep Belief Networks
more effective. The Restricted Boltzmann Machine in the proposed network (FL-SMIA-
RBM) is used to reduce the dimensions of the hidden layer of the FL-SMIA network
with the aim of improving the generalisation of the network.

7.1 The Structure of FL-SMIA-RBM Network
This section introduces the structure of the proposed FL-SMIA-RBM model. The
FL-SMIA-RBM is a multilayer neural network model which including the following:

1. The input layer consists of the raw inputs and their products, i.e. second order
inputs (15 input units in our case: 5 raw inputs and 10 second order inputs).
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2. The first hidden layer (SMIA) is the self-organised hidden layer using the immune
learning algorithm (unsupervised learning). In this layer, the number of hidden
units depends on the data-set.

3. The second hidden layer is a standard hidden layer including 10 units. Combined
with the previous hidden layer, it is trained as an RBM.

4. The output layer with only one unit. This layer is trained with the Back-
Propagation Algorithm (supervised learning).

In this model, only 10 hidden units have been used in the second hidden layer. This
number of hidden units has been determined during preliminary tests by monitoring
the reconstructions loss when using the unsupervised learning method (RBM) and the
final error results on the supervised task. Experimentally, the lowest results for the
network’s error have been produced with 10 hidden units in the second hidden layer of
the FL-SMIA-RBM model. The 10 hidden units of the second hidden layer have been
used for each of the data-sets.

Fig. 7.1 The proposed network FL-SMIA-RBM
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7.1.1 The FL-SMIA Network

As explained previously on chapter 4 and [102], the architecture of the proposed
FL-SMIA network consists of the input layer, which includes a number of input units
(X1, X2, ˙...XZ), and the self-organising hidden layer with units (H1, H2, ˙...HN ), and the
output layer consisting of one output unit. The FL-SMIA network uses a hidden layer
as in [101] and [149]. The design of the hidden units is inspired by B cells recognising
pathogens in immune systems.

The output of the hidden units is produced by using the Euclidean distance between
the input units (Xi) and the connection weights between the input units and the hidden
units (WHij) as in equation 4.1. The number of hidden units is determined from the
data by learning with the Immune Algorithm as described in chapter 4 section 4.2.
The outputs of the hidden units (SMIA layer) are represents as inputs to the second
hidden layer (Hidden layer 2).

7.1.2 The Restricted Boltzmann Machine (RBM)

The Restricted Boltzmann Machine is an unsupervised learning model that has
been introduced in [134]. RBMs have been used in several applications including
classification[89], feature learning [24], dimensionality reduction [68], and as pre-training
for representation learning in deep architectures [91]. The Restricted Boltzmann Ma-
chines (RBM) is defined as a network which has only two layers: the visible and the
hidden layer, which is often used as output for further processing.

The visible neurons are connected to the hidden neurons in a stochastic way and
without connections between each of visible neurons in the input layer or hidden
neurons in the hidden layer. In other words, in an RBM there are no direct connections
between units in the same layer, which is why it is called restricted [68, 65].

The RBM learns to extract features from the data by reconstructing the inputs.
The learning process in the RBM aims to improve the reconstruction of the data
(binary activation values in the visible layer) by adjusting the weights matrix between
the visible and hidden layer (also binary activation) in the following steps 1[68] :

1. Forward pass: in this step, the data passed via the visible inputs forward to
the hidden units as in figure 7.2, where each input is associated with individual
weight and overall bias, which result in activating or deactivate the hidden units.

1The following two diagrams are inspired by the video https://www.youtube.com/watch?
v=FsAvo0E5Pmw

https://www.youtube.com/watch?v=FsAvo0E5Pmw
https://www.youtube.com/watch?v=FsAvo0E5Pmw
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Fig. 7.2 The RBM-forward pass step

2. Backward pass (reconstruction): as shown in figure 7.3, during this step,
the activation of the hidden units will be sent to the input units, which will be
activated based on the individual weights and bias.

Fig. 7.3 The RBM-backward pass step

3. Quality assessment (step 3): in this step, the quality of the reconstruction
is assessed by comparing the reconstructed from step 2 with the original input.
We calculate and attempt to reduce the error by adjusting the weights and bias
values.

7.1.3 Learning in the RBM

In this section the explanation of RBM learning with equations will discussed according
to [71] and [66].
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An RBM is a network of two layers, the first layer includes a number of inputs or
visible units (v) as binary inputs, and the second layer with a number of hidden units
(h), every hidden unit has a binary state of 0 or 1, therefore the input and hidden units
are the random variables (v, h), the visible units are combined with biases ai and the
hidden units are associated with biases bj.

The RBM is given by the following:

F (v, h) = −
N∑
i

L∑
j

Wijvihj −
N∑
i

aivi −
L∑
j

bjhj, (7.1)

where vi is the binary state of visible unit i, hj is the binary state of hidden unit j, ai

and bj are their biases, Wij is the weight between the visible unit i and hidden unit j,
N refers to the number of visible units, and L is the number of hidden units.

The probability of the network for a possible pair of visible and hidden variables is:

p(v, h) = 1
G

∗ e−F (v,h) (7.2)

where G is the partition function for normalisation, which is given by:

G =
N∑
i

L∑
j

e−F (v,h) (7.3)

The probability of a visible vector v is determined by summing over all possible hidden
vectors:

p(v) = 1
G

L∑
j

e−F (v,h) (7.4)

In an RBM network there are no direct connections between hidden units which are
simply lead to getting a sample of data. The binary state hj, of each hidden unit j is
set to 1 with probability:

P (hj = 1|v) = fsig

(
bj +

N∑
i=1

Wijvi

)
(7.5)

where fsig is the sigmoid activation function fsig = 1/(1 + exp( − x)).
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Also as there are no direct connections between visible units in RBM, the conditional
distribution of a visible unit is defined as:

P (vi = 1|h) = fsig

ai +
L∑

j=1
Wijhj

 (7.6)

where fsig is the sigmoid transfer function,WHij represents the weight of the connection
from the ith input unit to the jth hidden unit.

The derivative of the log probability of a training vector v with respect to a weight
is:

∂ log p(v)
∂wij

= ⟨vihj⟩data − ⟨vihj⟩model (7.7)

The ⟨·⟩ indicates the expected value under the distribution in the index. For the
model case we estimate the expectation with the a single reconstruction cycle and get
a simple update rule [66]:

∆wij = λ
(
(vihj)data − (vihj)model

)
(7.8)

where λ is a learning rate. The update for the biases is analogous.
After determining the binary states of the hidden units using equation 7.5 , one

binary state for hidden units are chosen, and by setting each vi to 1 with a probability
in equation 7.6 , a restriction is produced and the updated in weights is given by:

∆wij = λ
(
(vihj)data − (vihj)recon

)
(7.9)

After the second weight matrix of the FL-SMIA-RBM model (in figure 7.1) is
updated, the values of the second hidden layer are aggregated as a standard hidden
layer Hk with the network output given by:

Y = fls

(
K∑

k=1
WkyHk + By

)
(7.10)

where fls is the sigmoid activation function, Wky represent the connection weights
between the kth hidden unit (second layer) and the output unit, Hk is the output of
the second hidden layer, and By is the bias of the output unit Y .

The prediction results and all performance details for the proposed networks FL-
SMIA-RBM will be presented and compared with other networks in chapter 8 of this
research.



Chapter 8

The Experimental Results

This chapter includes the Experimental results of the proposed model (FL-SMIA, FL-
SMIA*) and all extended networks of FL-SMIA model that have been proposed in this
research, the extended networks include the Deeper of FL-SMIA network (D-FL-SMIA),
the Mixed data networks (MD-FL-SMIA) and (MD-FL-SMIA2), the Mixed network of
FLNN with FL-SMIA (M-FL-SMIA), and the FL-SMIA and Restricted Boltzmann
Machines (FL-SMIA-RBM).

The prediction results of the proposed FL-SMIA network and the neural network
models (FLNN, MLP, SMIA, and FL-SMIA*) has been shown in chapter 5. The average
results of the RP, AV, and MSE-Testing metrics for one day ahead prediction and five
days ahead prediction proved that the proposed FL-SMIA network outperformed all
other multilayer networks. However, the FLNN network outperformed the proposed
FL-SMIA network on the average of RP measure for one day ahead prediction and on
the average values of RP, and AV for five days ahead prediction. While for the average
of MSE-Testing, the proposed FL-SMIA network outperformed all other multilayer
networks and the FLNN network for one day ahead prediction and five days ahead
prediction.

In this chapter, the results of the FL-SMIA model and all proposed models have
been compared with the results of other neural network models including the Multilayer
Perceptrons network (MLP), the Self-organising Multilayer network using the Immune
Algorithm (SMIA), and the Functional Link Neural network (FLNN). All networks in
this research have been tested using all data-sets presented in Table 3.1.
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8.1 The Prediction for One Day Ahead
The results of the prediction for one day ahead have been presented in this section
through the tables below which are starting from table 8.1 to table 8.9.

The results of 50 simulations generated from the nine sets of financial time series
using all neural network models in this research are presented. Each simulation includes
80 epoch, while each epoch use a combination of parameters in a grid search as listed in
section 3.6. The results have been selected based on the best RP value that produced
from each model used in this research

Each table includes the number of hidden units that has been used with each model
structure for each data-sets. while for the FLNN model, the second-order has been
used, which refers to the probability of inputs products. As well as, for all proposed
models the second order have used in addition to the number of hidden units that
created by the immune algorithm. In addition to the RP, AV, and MAE, the MSE
results including MSE Training results and MSE-Testing results.

The best results for all networks have been illustrated in this section with focusing
on the profit values; the network which generates a higher value of Relative Profit
(RP) and lower values of AV and MSE-Testing is considered to be the best model for
financial prediction.

The details regarding the comparison results, as well as the analysis for the prediction
results for one day ahead have been included in the following subsection 8.1.1

Table 8.1 The best one day ahead prediction result for US/UK

MSENetworks Hidden No.
or Order RP AV Training Testing MAE

FLNN 2 81.1074 4.1191 0.00966 0.00992 0.0775
MLP 8 72.1075 4.3763 0.00404 0.00384 0.0483
SMIA 12 73.7150 4.3328 0.00240 0.00382 0.0479
FL-SMIA 40 76.2248 4.6260 0.00400 0.00381 0.0471
FL-SMIA* 16 73.1111 4.3487 0.00423 0.00442 0.0504
D-FL-SMIA 40 77.1528 4.2403 0.02410 0.02504 0.1256
MD-FL-SMIA 45 73.5375 4.3431 0.03119 0.03701 0.1587
MD-FL-SMIA-2 55 74.0055 4.3302 0.02169 0.02092 0.1165
M-FL-SMIA 55 75.6951 4.2827 0.03950 0.03508 0.1512
FL-SMIA-RBM 40 59.4492 4.6794 0.00843 0.00833 0.0704
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Table 8.2 The best one day ahead prediction result for US/EU

MSENetworks Hidden No.
or Order RP AV Training Testing MAE

FLNN 2 80.0367 4.3898 0.00880 0.00841 0.0701
MLP 8 73.2384 4.5828 0.00365 0.00294 0.0405
SMIA 19 78.1255 4.4428 0.00330 0.00291 0.0388
FL-SMIA 59 76.6475 4.4865 0.00320 0.00340 0.0407
FL-SMIA* 32 72.8073 4.5900 0.00336 0.00348 0.0418
D-FL-SMIA 59 70.7636 4.6546 0.02304 0.01737 0.1015
MD-FL-SMIA 64 75.0903 4.5370 0.04052 0.03238 0.1460
MD-FL-SMIA-2 74 75.6655 4.5206 0.01026 0.01215 0.0817
M-FL-SMIA 74 75.0340 4.5386 0.02561 0.02407 0.1260
FL-SMIA-RBM 59 60.6847 4.6537 0.00775 0.00795 0.0684

Table 8.3 The best one day ahead prediction result for JP/US

MSENetworks Hidden No.
or Order RP AV Training Testing MAE

FLNN 2 79.7162 5.3227 0.00991 0.01247 0.0878
MLP 8 74.5002 5.4748 0.00174 0.00238 0.0369
SMIA 24 75.6464 5.4412 0.00172 0.00240 0.0361
FL-SMIA 71 75.0439 5.4590 0.00170 0.00260 0.0370
FL-SMIA* 25 73.5690 5.4700 0.00182 0.00256 0.0372
D-FL-SMIA 71 71.6386 5.5627 0.01227 0.01432 0.0967
MD-FL-SMIA 76 73.7225 5.5042 0.02953 0.03165 0.1408
MD-FL-SMIA-2 86 73.2885 5.5165 0.01420 0.01576 0.0985
M-FL-SMIA 86 76.6836 5.4170 0.03453 0.03633 0.1578
FL-SMIA-RBM 71 59.6911 5.8563 0.00395 0.00554 0.0565
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Table 8.4 The best one day ahead prediction result for NQO

MSENetworks Hidden No.
or Order RP AV Training Testing MAE

FLNN 2 72.2967 12.6817 0.00324 0.00401 0.0455
MLP 8 68.3140 12.9159 0.00151 0.00215 0.0309
SMIA 18 71.8887 12.7031 0.00130 0.00220 0.0298
FL-SMIA 43 70.4152 12.7885 0.00140 0.00230 0.0304
FL-SMIA* 16 69.3693 12.8467 0.00120 0.00210 0.0295
D-FL-SMIA 43 66.1349 13.0263 0.00522 0.00693 0.0626
MD-FL-SMIA 48 65.5493 13.0570 0.01948 0.03018 0.1299
MD-FL-SMIA-2 58 67.9004 12.9316 0.02164 0.01746 0.1043
M-FL-SMIA 58 71.1504 12.7488 0.04152 0.04898 0.1803
FL-SMIA-RBM 43 56.4982 13.4893 0.00270 0.00354 0.0415

Table 8.5 The best one day ahead prediction result for NQC

MSENetworks Hidden No.
or Order RP AV Training Testing MAE

FLNN 2 68.9098 12.2235 0.00494 0.00573 0.0569
MLP 8 66.1522 12.3757 0.00237 0.00296 0.0381
SMIA 21 67.1120 12.3184 0.00210 0.00320 0.0379
R-SMIA FL-SMIA 49 66.6952 12.3434 0.00212 0.00330 0.0388
FL-SMIA* 20 66.3961 12.3604 0.00214 0.00306 0.0373
D-FL-SMIA 49 65.0047 12.4586 0.01301 0.01228 0.0840
MD-FL-SMIA 54 66.3828 12.3777 0.00880 0.00798 0.0692
MD-FL-SMIA2 64 66.3654 12.3787 0.00799 0.01035 0.0790
M-FL-SMIA 64 66.6946 12.3591 0.01906 0.02178 0.1120
FL-SMIA-RBM 49 53.4892 13.0521 0.00435 0.00524 0.0541
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Table 8.6 The best one day ahead prediction result for DJO

MSENetworks Hidden No.
or Order RP AV Training Testing MAE

FLNN 2 72.4772 10.5783 0.00344 0.00505 0.0524
MLP 8 67.7744 10.8177 0.00215 0.00327 0.0409
SMIA 19 62.4502 11.0668 0.00150 0.00240 0.0332
FL-SMIA 47 68.6866 10.7724 0.00124 0.00241 0.0317
FL-SMIA* 11 67.9594 10.8080 0.00120 0.00215 0.0314
D-FL-SMIA 47 66.7245 10.8722 0.01848 0.02419 0.1257
MD-FL-SMIA 52 70.3455 10.6910 0.00397 0.00608 0.0571
MD-FL-SMIA2 62 67.1006 10.8540 0.00812 0.01126 0.0797
M-FL-SMIA 62 69.5321 10.7328 0.01925 0.02887 0.1319
FL-SMIA-RBM 47 55.2311 11.3684 0.00227 0.00349 0.0425

Table 8.7 The best one day ahead prediction result for DJC

MSENetworks Hidden No.
or Order RP AV Training Testing MAE

FLNN 2 69.3698 10.7969 0.00272 0.00395 0.0462
MLP 8 64.7555 11.0213 0.00213 0.00314 0.0403
SMIA 19 62.5851 11.1218 0.00130 0.00229 0.0323
FL-SMIA 47 70.2760 10.7459 0.00120 0.00230 0.0312
FL-SMIA* 17 65.6177 10.9742 0.00111 0.00240 0.0317
D-FL-SMIA 47 67.5880 10.8873 0.00674 0.00833 0.0703
MD-FL-SMIA 52 65.9437 10.9680 0.00688 0.01235 0.0856
MD-FL-SMIA2 62 69.7390 10.7778 0.00814 0.01099 0.0814
M-FL-SMIA 62 68.2698 10.8531 0.01116 0.01322 0.0927
FL-SMIA-RBM 47 56.3057 11.3912 0.00214 0.00332 0.0416
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Table 8.8 The best one day ahead prediction result for OIL

MSENetworks Hidden No.
or Order RP AV Training Testing MAE

FLNN 2 77.8776 20.3893 0.00633 0.00712 0.0651
MLP 8 78.9114 20.2407 0.00340 0.00420 0.0497
SMIA 10 70.1922 16.7822 0.00035 0.00030 0.0120
FL-SMIA 86 75.9697 16.6670 0.00029 0.00025 0.0103
FL-SMIA* 42 81.2012 26.6794 0.00189 0.00221 0.0366
D-FL-SMIA 86 70.0492 15.6057 0.03973 0.03811 0.1450
MD-FL-SMIA 91 73.2164 21.0230 0.00748 0.00716 0.0664
MD-FL-SMIA2 101 74.4490 20.8611 0.01330 0.01271 0.0917
M-FL-SMIA 101 77.3883 20.4586 0.03283 0.03895 0.1665
FL-SMIA-RBM 86 60.9979 22.4291 0.00302 0.00373 0.0464

Table 8.9 The best one day ahead prediction result for GOLD

MSENetworks Hidden No.
or Order RP AV Training Testing MAE

FLNN 2 76.2846 32.3896 0.00565 0.00589 0.0585
MLP 4 76.0497 32.4344 0.00418 0.00445 0.0504
SMIA 11 70.6151 15.7535 0.00011 0.00007 0.0060
FL-SMIA 56 79.4514 15.5541 0.00012 0.00006 0.0058
FL-SMIA* 31 67.9489 38.4523 0.00260 0.00295 0.0404
D-FL-SMIA 56 74.4163 20.8654 0.01011 0.01221 0.0886
MD-FL-SMIA 61 74.5336 32.7184 0.02071 0.02406 0.1215
MD-FL-SMIA2 71 73.1978 32.9620 0.01785 0.01937 0.1004
M-FL-SMIA 71 74.2437 32.7718 0.01499 0.01424 0.0961
FL-SMIA-RBM 56 61.0485 34.9100 0.00352 0.00362 0.0439
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Table 8.10 to table 8.12 including the heuristic parameters for each model on each
data set to produce the results for each model.

Table 8.10 Table of Learning rate values that have been used to predict results for one
day ahead prediction

Network US/UK US/EU JP/US NQO NQC DJO DJC OIL GOLD
FLNN 0.1 0.1 0.1 0.4 0.4 0.4 0.03 0.1 0.1
MLP 0.1 0.1 0.1 0.1 0.1 0.4 0.4 0.4 0.4
SMIA 0.4 0.4 0.1 0.4 0.01 0.4 0.4 0.1 0.4
FL-SMIA 0.4 0.1 0.03 0.1 0.1 0.1 0.1 0.1 0.1
FL-SMIA* 0.1 0.03 0.01 0.4 0.01 0.4 0.1 0.1 0.03
D-FL-SMIA 0.03 0.1 0.03 0.01 0.03 0.01 0.1 0.01 0.4
MD-FL-SMIA 0.01 0.01 0.01 0.03 0.03 0.03 0.03 0.03 0.01
MD-FL-SMIA-2 0.04 0.03 0.01 0.03 0.1 0.04 0.04 0.01 0.01
M-FL-SMIA 0.1 0.03 0.04 0.04 0.04 0.03 0.03 0.04 0.4
FL-SMIA-RBM 0.1 0.03 0.1 0.1 0.1 0.03 0.4 0.1 0.4

Table 8.11 Table of Momentum values that have been used to predict results for one
day ahead prediction

Network US/UK US/EU JP/US NQO NQC DJO DJC OIL GOLD
FLNN 0.6 0.01 0.01 0 0.01 0.4 0.4 0.4 0.4
MLP 0.1 0.03 0.01 0.01 0.01 0.01 0.01 0.4 0.3
SMIA 0.1 0.01 0.4 0 0.1 0.01 0.03 1 0.1
FL-SMIA 0.1 0.6 0.6 0.6 0.6 0.01 0.4 0.4 0.03
FL-SMIA* 0.1 0.3 0.6 0.01 0.1 0.01 0.03 0.4 0.03
D-FL-SMIA 0.01 0.1 0.01 0.4 0.1 0.01 0.4 0.01 0.01
MD-FL-SMIA 0.01 0.4 0.01 0.4 0.1 0.4 0.03 0.4 0.6
MD-FL-SMIA-2 0.01 0.6 0.03 0.1 0.03 0.01 0.6 0.6 0.6
M-FL-SMIA 0.01 0.4 0.1 0.4 0.1 0.4 0.4 0.6 0.03
FL-SMIA-RBM 0.6 0.6 0.4 0.1 0.01 0.4 0.4 0.6 0.01

Table 8.12 Table of decay rate values that have been used to predict results for one
day ahead prediction

Network US/UK US/EU JP/US NQO NQC DJO DJC OIL GOLD
FLNN 0.0001 0.01 0.001 0.01 0.01 0.0001 0.1 0.001 0.001
MLP 0.0001 0.1 0.0001 0.1 0.1 0.01 0.0001 0.01 0.0001
SMIA 0.01 0.0001 0.001 0.001 0.0001 0.0001 0.0001 0.0001 0.001
FL-SMIA 0.01 0.001 0.1 0.0001 0.0001 0.01 0.01 0.0001 0.1
FL-SMIA* 0.0001 0.0001 0.001 0.0001 0.0001 0.0001 0.0001 0.0001 0.001
D-FL-SMIA 0.0001 0.0001 0.01 0.1 0.01 0.01 0.1 0.0001 0.01
MD-FL-SMIA 0.0001 0.01 0.1 0.0001 0.1 0.001 0.0001 0.01 0.01
MD-FL-SMIA-2 0.01 0.01 0.1 0.01 0.0001 0.001 0.001 0.0001 0.0001
M-FL-SMIA 0.01 0.1 0.0005 0.0005 0.001 0.001 0.1 0.001 0.01
FL-SMIA-RBM 0.01 0.001 0.01 0.1 0.01 0.1 0.001 0.1 0.1
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Table 8.13 Training times for running a search with 10 models and 9 data-sets over
a grid with (9 × 5 × 5 × 5) parameter combinations (not all apply to all models, see
section 2.3.4), with 50 simulations of 80 epochs each.

Data FLNN MLP SMIA FL-SMIA FL-SMIA* D-FL-SMIA MD-FL-SMIA MD-FL-SMIA-2 M-FLSMIA FL-SMIA-RBM
US/UK 2:19:35 3:25:19 2:17:18 3:19:29 3:15:19 3:56:49 3:50:42 3:56:48 3:49:55 5:39:51
US/EU 2:20:14 3:29:02 2:18:13 3:20:07 3:22:17 3:59:47 3:49:42 3:54:47 3:48:56 5:28:51
JP/US 2:20:29 3:28:47 2:18:39 3:20:14 3:17:24 3:59:12 3:39:42 3:53:32 3:58:59 5:45:23
NQC 2:19:45 3:30:29 2:18:18 3:19:43 3:15:48 3:49:44 3:43:54 3:54:59 3:26:58 4:26:43
DJC 2:19:50 3:29:26 2:18:49 3:19:40 3:12:41 3:46:43 3:36:46 3:48:47 3:26:02 5:20:34
OIL 3:24:10 4:48:35 3:42:11 4:26:35 4:22:45 4:49:31 4:43:39 4:54:46 3:35:00 5:55:46
GOLD 3:23:15 4:49:20 3:52:17 4:25:28 4:20:24 4:45:38 4:38:40 4:46:48 3:31:56 5:53:45

Table 8.13 illustrated the time that took to train each model when using each
one of the data-sets for 50 simulations (each simulation runs 80 epochs), the time is
also based on the values range for all parameters which have been listed in chapter
3 section 3.6. The training time that listed in table 8.13 is approximately similar for
predicting one day and five days ahead. The FLNN model required less training time
comparing to all other models. While the FL-SMIA-RBM model needs more time than
required for training any other model.

8.1.1 The Comparison and Analysis of the Prediction Results
for One Day Ahead

This section focuses on comparing and analysing the results that have been produced
by all the networks used in this research using the financial data which has illustrated
in Table 3.1.

The comparison between the results for all the networks, as well as the analysis
results, have been listed with more details in the following:

1. Hidden units:

The prediction results that illustrated in the tables 8.1 to 8.9 indicated that the
FLNN with using only second order has outperformed all the networks for six
data-sets. The MLP network , which used a single hidden layer are produced
best prediction results for the RP by using 8 hidden units for the prediction of
all data-sets except with GOLD data as it used only 4 hidden units.

It is clearly shown in table 8.14 that the number of hidden units which created by
SMIA networks are between 10 to 24 hidden units. While the FL-SMIA model
created a number of hidden units which are from 40 to 86 hidden units. When
comparing the number of hidden units for the FL-SMIA model with the other
networks that used the immune algorithm (SMIA, and FL-SMIA*), the FL-SMIA
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Table 8.14 The number of hidden units that generated by different versions of SMIA
models for different data-sets.

Network US/UK US/EU JP/US NQO NQC DJO DJC OIL GOLD
SMIA 12 19 24 18 21 19 19 10 11
FL-SMIA 40 59 71 43 49 47 47 86 56
FL-SMIA* 16 32 25 16 20 11 17 42 31
D-FL-SMIA 40 59 71 43 49 47 47 86 56
MD-FL-SMIA 45 64 76 48 54 52 52 91 61
MD-FL-SMIA-2 55 74 86 58 64 62 62 101 71
M-FL-SMIA 55 74 86 58 64 62 62 101 71
FL-SMIA-RBM 40 59 71 43 49 47 47 86 56

network created the largest number of hidden units than the hidden units created
by SMIA and FL-SMIA* networks.

For the other networks that started from FL-SMIA ended with FL-SMIA-RBM,
each network uses one hidden layer but creates different numbers of hidden units
because of using the immune algorithm and different type of the data-set.

For the deeper FL-SMIA network (D-FL-SMIA) hidden units number, on the
first hidden layer the D-FL-SMIA network created the same number of hidden
units that created by FL-SMIA model then it used a fixed number of hidden
units for each hidden layers as explained in section 6.1.

While with the MD-FL-SMIA network, the number of hidden units increased
with five hidden units than the number that created with the FL-SMIA model for
all the data-sets due to the use of the extra hidden units equal to 5 units. after
creating the hidden units in the first hidden layer (SMIA layer). While using
the 15 hidden units with the hidden units that created in the first hidden layer
lead to raise the number of hidden units to reach the highest number of hidden
units used in this research when performing the MD-FL-SMIA2 and M-FL-SMIA
networks. The FL-SMIA-RBM network predicted using the same hidden units
number of FL-SMIA network in the first hidden layer then it reduced to 10
hidden units in the second hidden layer.

2. Relative Profit (RP)

The Relative Profit (RP) results indicated that the FLNN network predicted
highest RP values than all other networks for most data-sets. However, the
FL-SMIA and the FL-SMIA* networks outperformed the FLNN network on the
prediction of data DJC, OIL, and GOLD.
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The comparison results between the proposed networks and the MLP networks
proved that for exchange rate data-sets, the D-FL-SMIA network outperformed
the MLP network and all other multilayer networks, followed by the value (RP)
that produced by FL-SMIA network when using the US/UK exchange rate data.
Despite that the proposed FL-SMIA model outperformed the MLP network and
all the other proposed networks when used US/EU data, the prediction results of
the SMIA network still indicated highest profits than all other multilayer networks
for US/EU data. The proposed network (M-FL-SMIA) network improved the
performance of FL-SMIA and the multilayer networks, the M-FL-SMIA network
reached the highest profits than all other multilayer networks for JP/US exchange
rate.

For the prediction of stock prices data-sets, the RP results indicated that the
highest RP values are predicted by the networks which used the immune learning
algorithm. The proposed network (M-FL-SMIA) outperforms the FL-SMIA and
all other multilayer networks except the SMIA for the RP value of NQO. while
the stock prices data NQC, the SMIA network followed by the FL-SMIA model
outperforming all multilayer networks on RP values. The MD-FL-SMIA reached
the highest RP value than all multilayer networks to improve the performance of
multilayer networks when predicted the DJO. While the MD-FL-SMIA2 produced
the second highest RP value after the FL-SMIA network with the DJC data.

The rest of the data (OIL, and GOLD) have been predicted successfully to
reach the highest RP values than all other networks when using the networks
FL-SMIA*, and FL-SMIA respectively.

The FL-SMIA-RBM network which represents the last proposed version of the
FL-SMIA network predicted unexpected results for financial data, as the FL-
SMIA-RBM network produced the lowest RP values than all other networks for
all financial data-sets.

3. Annualised Volatility (AV):

The risk of investment is measured by the Annualised Volatility (AV), the desired
value is the lowest predicted AV value for financial data. As shown in tables 8.1
to 8.9, the AV results are unsteady as it depends on the data type.

For the exchange rate data, the FLNN reduced the trading risk by produced the
lowest AV values than all other networks when used the data of US/UK, US/EU,
and JP/US. The comparison between the multi-layer networks and the proposed
network illustrated that the D-FL-SMIA network outperformed the M-FL-SMIA
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and all multilayer networks by reduced the annualised volatility value when
forecasts the data of US/UK. While for US/EU data, the SMIA network followed
by the FL-SMIA model produced the lower AV values than all other multi-layer
networks. The M-FL-SMIA network decreased the AV values of the proposed
multilayer networks when predicted the JP/US data. Consequently, the results
of AV means that use the immune algorithm improves the performance of the
multi-layer network on reducing the investment risk.

Regarding the stock price data, the comparison results of annualised volatility
(AV) indicated that the FLNN network outperformed all other networks when
predicted the data of NQO, NQC, and DJO. However, the FLNN network com-
peted with immune multi-layer networks. The FL-SMIA network outperformed
all other networks when predicted the AV value for DJC stock prices data.

For the commodity prices data (OIL, and GOLD), the D-FL-SMIA, and FL-SMIA
networks predicted the lowest values of AV than all other networks with 15.6057,
and 15.5541 respectively.

4. MSE-Training:

The results of MSE for the training phase and testing phase, which listed in
tables 8.1 to 8.9, indicated that most of the networks decreased the error values
for all the data-sets. Nevertheless, the proposed FL-SMIA network and other
networks outperformed the proposed networks (D-FL-SMIA, MD-FL-SMIA,
MD-FL-SMIA2, M-FL-SMIA, and FL-SMIA-RBM) for the results of the MSE
measure.

For the MSE-Training, the comparison results between the multi-layer networks
and the FLNN network illustrated that the SMIA network outperforming the
FLNN network and all other networks when predicting the US/UK, NQC, and
GOLD data. While the FL-SMIA model reduced the error values of MSE-Training
by producing the lower MSE-Training values than all other networks when using
the US/EU, JP/US, and OIL data-sets. Furthermore, the FL-SMIA* model
outperformed all other networks with error values of the MSE-Training phase
when predicting the NQO, DJO, and DJC data-sets with producing the low
values of error (0.00121, 0.00120, 0.00111) respectively.

5. MSE-Testing:

The MSE-Testing results indicated that although the results demonstrate that
the proposed FL-SMIA network predicted the lowest error value than all other
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networks when used the US/UK, OIL, and GOLD data-sets, the MLP network
still produced the lowest error than all other networks when predicting the JP/US
and NQC data-sets. It is good to notice that in the testing phase the proposed
FL-SMIA network produced the lowest MSE-Testing value (0.000067) when
predicting the GOLD data, which considered as the lowest error value has been
predicted in this research.

The other observation is the use of the immune learning algorithm helped the
multi-layer networks to predict lower error (MSE) than the FLNN network. The
SMIA network outperformed all other networks for the MSE-Testing results when
using US/EU and DJC data-sets. Also, the results indicated that using the
FL-SMIA* network on the prediction of the NQO and DJO data-sets improved
the network performance to reducing the MSE values for the training and testing
phases. When comparing the MSE-Testing results for the proposed network
FL-SMIA with the other proposed networks (D-FL-SMIA, MD-FL-SMIA, MD-
FL-SMIA2, M-FL-SMIA, and FL-SMIA-RBM), it could be seen that in most cases
of the MSE-Testing results that the FL-SMIA network and the FL-SMIA-RBM
network outperformed all other proposed networks.

6. Mean Absolute Error (MAE):

Regarding the Mean Absolute Error (MAE) results, on one hand, the FL-SMIA
network outperformed all other networks when forecasted low MAE values
(0.0471,0.0312, 0.0103, and 0.0058) using the data of US/UK, DJC, OIL, and
GOLD respectively. On the other hand, the FL-SMIA* network produced the
lowest MAE values than all other networks when using the NQO, NQC, and
DJO data-sets. The SMIA network has also outperformed all other networks for
the results of MAE when using the exchange rate data (US/EU, and JP/US).

For the proposed networks (D-FL-SMIA, MD-FL-SMIA, MD-FL-SMIA2, M-FL-
SMIA, and FL-SMIA-RBM), Although the results proved that the FL-SMIA-
RBM network produced better results for MAE than the performance of other
proposed networks. However, the FL-SMIA-RBM network still on jostle with
the D-FL-SMIA network.

8.1.2 The Comparison of the Average Results

The average results of the Relative Profit (RP) for one day ahead prediction for all
networks are illustrated in table 8.15. The comparison between all the networks
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indicated that the RP average results of the proposed networks FL-SMIA and M-FL-
SMIA is lower than the RP average results of the FLNN network. While the comparison
results between the multi-layer networks showed that the proposed networks FL-SMIA,
and M-FL-SMIA outperformed all other multilayer networks. The proposed networks
FL-SMIA and M-FL-SMIA produced the higher values of average RP with the values
(73.268, and 72.743) respectively.

Table 8.15 The best results of Relative Profit (RP) and the average for all networks for
the prediction for one day ahead.

Network US/UK US/EU JP/US NQO NQC DJO DJC OIL GOLD Average
FLNN 81.107 80.037 79.716 72.297 68.910 72.477 69.370 77.878 76.285 75.342
MLP 72.108 73.238 74.500 68.314 66.152 67.774 64.756 78.911 76.050 71.311
SMIA 73.715 78.126 75.646 71.889 67.112 62.450 62.585 70.192 70.615 70.055
FL-SMIA 76.225 76.648 75.044 70.415 66.695 68.687 70.276 75.970 79.451 73.268
FL-SMIA* 73.111 72.807 73.569 69.369 66.396 67.959 65.618 81.201 67.949 70.887
D-FL-SMIA 77.153 70.764 71.639 66.135 65.005 66.724 67.588 70.049 74.416 69.941
MD-FL-SMIA 73.538 75.090 73.722 65.549 66.383 70.346 65.944 73.216 74.534 70.925
MD-FL-SMIA-2 74.006 75.666 73.289 67.900 66.365 67.101 69.739 74.449 73.198 71.301
M-FL-SMIA 75.695 75.034 76.684 71.150 66.695 69.532 68.270 77.388 74.244 72.743
FL-SMIA-RBM 59.449 60.685 59.691 56.498 53.489 55.231 56.306 60.998 61.049 58.155

Fig. 8.1 The forecasting for one day ahead prediction using the M-FL-SMIA network.

Figure 8.1 illustrated an example for proposed network prediction (M-FL-SMIA)
for the US-UK data, the figure also shows that in the most the forecasted signal followed
the target signal. In other words, it proves the ability of the M-FL-SMIA network to



94 The Experimental Results

learn the behaviour of financial data, M-FL-SMIA network could be considered as a
promising model on financial prediction area.

Table 8.16 The best results for the Annualised Volatility (AV) and the average for all
networks for the prediction for one day ahead.

Network US/UK US/EU JP/US NQO NQC DJO DJC OIL GOLD Average
FLNN 4.1191 4.3898 5.3227 12.6817 12.2235 10.5783 10.7969 20.3893 32.3896 12.5434
MLP 4.3763 4.5828 5.4748 12.9159 12.3757 10.8177 11.0213 20.2407 32.4344 12.6933
SMIA 4.3328 4.4428 5.4412 12.7031 12.3184 11.0668 11.1218 16.7822 15.7535 10.4403
FL-SMIA 4.6260 4.4865 5.4590 12.7885 12.3434 10.7724 10.7459 16.6670 15.5541 10.3825
FL-SMIA* 4.3487 4.5900 5.4700 12.8467 12.3604 10.8080 10.9742 26.6794 38.4523 14.0589
D-FL-SMIA 4.2403 4.6546 5.5627 13.0263 12.4586 10.8722 10.8873 15.6057 20.8654 10.9081
MD-FL-SMIA 4.3431 4.5370 5.5042 13.0570 12.3777 10.6910 10.9680 21.0230 32.7184 12.8022
MD-FL-SMIA-2 4.3302 4.5206 5.5165 12.9316 12.3787 10.8540 10.7778 20.8611 32.9620 12.7925
M-FL-SMIA 4.2827 4.5386 5.4170 12.7488 12.3591 10.7328 10.8531 20.4586 32.7718 12.6847
FL-SMIA-RBM 4.6794 4.6537 5.8563 13.4893 13.0521 11.3684 11.3912 22.4291 34.9100 13.5366

As shown in table 8.16, that for the investment risk, the results of average Annualised
Volatility (AV) proved that the FL-SMIA model reduced the investment risk by
produced the lowest AV value than all other networks including the FLNN model.

Table 8.17 The best results for the MSE-Testing and the average for all networks for
one day ahead prediction.

Network US/UK US/EU JP/US NQO NQC DJO DJC OIL GOLD Average
FLNN 0.00992 0.00841 0.01247 0.00401 0.00573 0.00505 0.00395 0.00712 0.005891 0.00695
MLP 0.00384 0.00294 0.00238 0.00215 0.00296 0.00327 0.00314 0.00420 0.004453 0.00326
SMIA 0.00382 0.00291 0.00240 0.00220 0.00320 0.00240 0.00229 0.00030 0.000071 0.00218
FL-SMIA 0.00381 0.00340 0.00260 0.00230 0.00330 0.00241 0.00230 0.00025 0.000067 0.00227
FL-SMIA* 0.00442 0.00348 0.00256 0.00210 0.00306 0.00215 0.00240 0.00221 0.002950 0.00283
D-FL-SMIA 0.02504 0.01737 0.01432 0.00693 0.01228 0.02419 0.00833 0.03811 0.012208 0.01764
MD-FL-SMIA 0.03701 0.03238 0.03165 0.03018 0.00798 0.00608 0.01235 0.00716 0.024060 0.02098
MD-FL-SMIA-2 0.02092 0.01215 0.01576 0.01746 0.01035 0.01126 0.01099 0.01271 0.019368 0.01455
M-FL-SMIA 0.03508 0.02407 0.03633 0.04898 0.02178 0.02887 0.01322 0.03895 0.014237 0.02906
FL-SMIA-RBM 0.00833 0.00795 0.00554 0.00354 0.00524 0.00349 0.00332 0.00373 0.003617 0.00497

Table 8.17 includes the average results of MSE-Testing for one day ahead prediction,
the results showed that all networks reduced the values of MSE-Testing when forecasted
all the data-sets. However, the comparison between the average results of the networks
demonstrates that the SMIA network and the proposed models (FL-SMIA and FL-
SMIA*) produced the lowest average of MSE-Testing values than all other networks
which have been used in this research including the FLNN network.

The average results of MSE-Testing proved that the SMIA network is outperforming
all networks with the value 0.00218, followed by the proposed networks FL-SMIA, and
FL-SMIA* which outperformed all other networks with the average of the MSE-Testing
results (0.00227, and 0.00283) respectively. Focusing on the average of the MSE-Testing
results it could be noticing that the proposed network FL-SMIA-RBM outperformed
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Fig. 8.2 The training error and validation error for one day ahead prediction using
M-FL-SMIA network.

the FLNN withe the average of MSE-Testing value (0.00497 vs 0.00695). Also, the
proposed network FL-SMIA-RBM produced the lowest average of the MSE-Testing
value than the proposed networks (D-FL-SMIA, MD-FL-SMIA, and MD-FL-SMIA2).

Figure 8.2 demonstrates the prediction error of the M-FL-SMIA network when
using the US-UK data. The figure shows that the training error and the validation
error are closer to each other and they are near to the zero value. All figures that
relevant to the prediction error for the networks have been included in Appendix A.

The results and figures proved clear information about the ability of the proposed
M-FL-SMIA network for financial prediction.

8.2 The Prediction for Five Days Ahead
In this section, the results for the prediction for five days ahead will be shown through
table 8.18 to 8.26.

The experimental results for five days ahead prediction using the proposed network
(FL-SMIA) and several versions of developing FL-SMIA have proved better results
than the results of one day ahead prediction.

To investigate and analyse the prediction results for all networks that proposed
in this research, the experimental results for all networks that have been used in this
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research that used all financial time series that showed in Table 3.1, will be included in
this section.

The results of 50 simulations produced by the neural network models using the nine
data-sets have been listed in this research. Each simulation includes 80 epochs, while
each epoch uses a combination of parameters in a grid search as listed in section 3.6.
The results have been selected based on the best RP values produced from each model
that has been used in this research.

Each table below including the number of hidden units that have been used with
each model structure for each data-sets. For the FLNN model, the second-order of
inputs have been used, which refers to the probability of inputs products to produce
the results. While the proposed models used the second order of inputs and the hidden
units that created by the immune algorithm. In addition to the RP, AV, and MAE,
the MSE results including MSE Training results and MSE-Testing results.

Table 8.27 to table 8.29 are including the heuristic parameters for each model on
each data set to find the best results for each model.

The details related to all results in tables 8.18 to 8.26 including the comparison
between the results and the analysis for the prediction results for five days ahead have
been illustrated in the following subsection 8.2.1

Table 8.18 The best results for five days ahead prediction US/UK

MSENetworks Hidden No.
or Order RP AV Training Testing MAE

FLNN 2 91.52893 15.47144 0.00606 0.00739 0.06512
MLP 8 91.18500 15.49770 0.00213 0.00264 0.03770
SMIA 12 88.40330 15.85660 0.00106 0.00158 0.02832
FL-SMIA 40 92.02060 15.65030 0.00091 0.00204 0.02830
FL-SMIA* 16 90.76450 15.55320 0.00100 0.00220 0.02930
D-FL-SMIA 40 90.01430 15.67080 0.01387 0.01324 0.09359
MD-FL-SMIA 45 91.47115 15.47915 0.04681 0.04281 0.17791
MD-FL-SMIA2 55 91.74532 15.44247 0.03580 0.02818 0.13846
M-FL-SMIA 55 90.80453 15.56753 0.00387 0.00514 0.05233
FL-SMIA-RBM 40 86.89928 16.06299 0.00393 0.00517 0.05231
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Table 8.19 The best results for five days ahead prediction US/EU

MSENetworks Hidden No.
or Order RP AV Training Testing MAE

FLNN 2 92.45180 15.56260 0.00870 0.01046 0.07740
MLP 8 91.50050 15.68840 0.00224 0.00173 0.03120
SMIA 19 91.92650 15.62360 0.00184 0.00264 0.03280
FL-SMIA 59 92.49530 15.53630 0.00164 0.00319 0.03420
FL-SMIA* 32 92.47520 15.53940 0.00172 0.00310 0.03370
D-FL-SMIA 59 93.34943 15.42257 0.06314 0.05695 0.19397
MD-FL-SMIA 64 91.66700 15.68291 0.03708 0.03349 0.15307
MD-FL-SMIA2 74 92.58482 15.54201 0.03861 0.03501 0.15903
M-FL-SMIA 74 93.74462 15.36008 0.04496 0.03838 0.15676
FL-SMIA-RBM 59 81.37685 17.09618 0.00662 0.00871 0.06974

Table 8.20 The best results for five days ahead prediction JP/US

MSENetworks Hidden No.
or Order RP AV Training Testing MAE

FLNN 2 86.98499 16.81314 0.01027 0.01358 0.09241
MLP 8 83.33750 17.29550 0.00199 0.00261 0.03902
SMIA 24 86.23720 16.89820 0.00153 0.00236 0.03640
FL-SMIA 71 87.49160 16.71910 0.00146 0.00254 0.03670
FL-SMIA* 25 87.05390 16.78210 0.00160 0.00313 0.03990
D-FL-SMIA 71 83.30714 17.32141 0.03381 0.03558 0.15845
MD-FL-SMIA 76 84.06701 17.21941 0.00636 0.00925 0.07435
MD-FL-SMIA2 86 85.94410 16.96078 0.02922 0.03194 0.15038
M-FL-SMIA 86 85.84617 16.97451 0.02789 0.03256 0.15153
FL-SMIA-RBM 71 77.80853 18.01588 0.09355 0.09822 0.28542

Table 8.21 The best results for five days ahead prediction NQO

MSENetworks Hidden No.
or Order RP AV Training Testing MAE

FLNN 2 88.16550 35.16634 0.00422 0.00468 0.05060
MLP 8 83.21360 36.42510 0.00296 0.00305 0.03980
SMIA 18 86.56590 35.57702 0.00077 0.00141 0.02410
FL-SMIA 43 86.62570 35.56130 0.00098 0.00150 0.02470
FL-SMIA* 16 87.27870 35.38960 0.00079 0.00140 0.02400
D-FL-SMIA 43 83.01807 36.48495 0.01106 0.01448 0.08870
MD-FL-SMIA 48 81.66096 36.81188 0.01200 0.01313 0.08704
MD-FL-SMIA2 58 83.98674 36.24646 0.00737 0.00769 0.06766
M-FL-SMIA 58 88.28911 35.13308 0.00936 0.00752 0.06721
FL-SMIA-RBM 43 70.99768 39.11082 0.00335 0.00375 0.04604
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Table 8.22 The best results for five days ahead prediction NQC

MSENetworks Hidden No.
or Order RP AV Training Testing MAE

FLNN 2 86.39704 35.75308 0.00527 0.00555 0.05542
MLP 8 80.77150 37.12470 0.00360 0.00385 0.04490
SMIA 21 87.25701 35.47790 0.00140 0.00177 0.02770
FL-SMIA 49 87.34070 35.73694 0.00119 0.00190 0.02751
FL-SMIA* 20 87.01610 35.54270 0.00115 0.00199 0.02820
D-FL-SMIA 49 85.04999 36.10657 0.02183 0.02163 0.12274
MD-FL-SMIA 54 86.30407 35.77776 0.02341 0.02320 0.12535
MD-FL-SMIA2 64 85.53857 35.97940 0.01854 0.01838 0.11259
M-FL-SMIA 64 87.56939 35.43797 0.03705 0.02956 0.14181
FL-SMIA-RBM 49 73.30163 38.83697 0.00361 0.00397 0.04556

Table 8.23 The best results for five days ahead prediction DJO

MSENetworks Hidden No.
or Order RP AV Training Testing MAE

FLNN 2 89.52173 30.72444 0.00244 0.00327 0.04085
MLP 8 80.39930 32.65290 0.00115 0.00130 0.02660
SMIA 19 84.46940 31.82670 0.00075 0.00136 0.02369
FL-SMIA 47 86.62530 31.36340 0.00065 0.00165 0.02370
FL-SMIA* 11 87.99470 31.05930 0.00069 0.00122 0.02300
D-FL-SMIA 47 88.68378 30.91655 0.00807 0.01059 0.07874
MD-FL-SMIA 52 89.46520 30.73750 0.00428 0.00533 0.05537
MD-FL-SMIA2 62 90.01112 30.61085 0.01362 0.01854 0.10823
M-FL-SMIA 62 90.76172 30.43459 0.01279 0.01682 0.10088
FL-SMIA-RBM 47 73.24815 33.97119 0.00535 0.00758 0.07005

Table 8.24 The best results for five days ahead prediction DJC

MSENetworks Hidden No.
or Order RP AV Training Testing MAE

FLNN 2 89.56439 30.75543 0.00275 0.00375 0.04438
MLP 8 84.37650 31.90650 0.00177 0.00230 0.03430
SMIA 19 86.46770 31.45310 0.00006 0.00155 0.02370
FL-SMIA 47 87.45370 31.23310 0.00066 0.00167 0.02350
FL-SMIA* 17 89.72310 30.71120 0.00064 0.00120 0.02230
D-FL-SMIA 47 90.22519 30.59969 0.02796 0.03073 0.14588
MD-FL-SMIA 52 88.10474 31.09269 0.00974 0.01435 0.09235
MD-FL-SMIA2 62 89.48640 30.77369 0.01063 0.01253 0.08979
M-FL-SMIA 62 90.63058 30.50318 0.00839 0.01295 0.08809
FL-SMIA-RBM 47 74.65478 33.80575 0.00450 0.00786 0.06611
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Table 8.25 The best results for five days ahead prediction OIL

MSENetworks Hidden No.
or Order RP AV Training Testing MAE

FLNN 2 89.81445 61.52982 0.00628 0.00732 0.06718
MLP 8 89.72291 61.59024 0.00537 0.00626 0.06206
SMIA 10 90.89164 60.80959 0.00149 0.00186 0.01099
FL-SMIA 86 87.62945 62.93981 0.00210 0.00279 0.01360
FL-SMIA* 42 86.23575 63.74985 0.00128 0.00178 0.03220
D-FL-SMIA 86 86.24819 63.79760 0.02460 0.02487 0.12466
MD-FL-SMIA 91 86.35109 63.73456 0.01710 0.02033 0.11668
MD-FL-SMIA2 101 88.62042 62.30858 0.00943 0.01034 0.08039
M-FL-SMIA 101 90.33990 61.18063 0.01440 0.01752 0.10561
FL-SMIA-RBM 86 80.49572 67.11419 0.00642 0.00745 0.06812

Table 8.26 The best results for five days ahead prediction GOLD

MSENetworks Hidden No.
or Order RP AV Training Testing MAE

FLNN 2 90.00925 101.34412 0.01062 0.01222 0.08603
MLP 8 88.96170 102.29560 0.00536 0.00594 0.05755
SMIA 11 89.59479 101.72290 0.00860 0.00954 0.07595
FL-SMIA 56 89.49655 101.81230 0.00240 0.00271 0.01334
FL-SMIA* 31 83.75752 106.65943 0.00210 0.00227 0.03100
D-FL-SMIA 56 88.80650 102.43480 0.02717 0.02973 0.13522
MD-FL-SMIA 61 89.77235 101.56104 0.01201 0.01305 0.08991
MD-FL-SMIA2 71 88.78457 102.45450 0.01850 0.02417 0.12214
M-FL-SMIA 71 89.52910 101.78271 0.03879 0.04517 0.17751
FL-SMIA-RBM 56 84.64353 106.01466 0.00873 0.00998 0.07522

Table 8.27 Table of Learning rate values that have been used to predict results for five
days ahead prediction.

Network US/UK US/EU JP/US NQO NQC DJO DJC OIL GOLD
FLNN 0.03 0.03 0.1 0.4 0.1 0.4 0.4 0.01 0.1
MLP 0.1 0.1 0.1 0.1 0.1 0.4 0.4 0.4 0.4
SMIA 0.4 0.4 0.1 0.4 0.01 0.4 0.4 0.1 0.4
FL-SMIA 0.1 0.1 0.4 0.4 0.3 0.4 0.4 0.1 0.1
FL-SMIA* 0.1 0.03 0.01 0.4 0.01 0.4 0.1 0.1 0.03
D-FL-SMIA 0.01 0.03 0.01 0.03 0.01 0.01 0.01 0.03 0.01
MD-FL-SMIA 0.01 0.01 0.1 0.01 0.01 0.1 0.1 0.03 0.01
MD-FL-SMIA-2 0.03 0.01 0.01 0.03 0.03 0.01 0.03 0.1 0.01
M-FL-SMIA 0.3 0.1 0.03 0.1 0.03 0.04 0.1 0.1 0.03
FL-SMIA-RBM 0.1 0.4 0.03 0.03 0.1 0.1 0.1 0.1 0.1
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Table 8.28 Table of momentum values that have been used to predict results for five
days ahead prediction

Network US/UK US/EU JP/US NQO NQC DJO DJC OIL GOLD
FLNN 0.6 0.4 0.1 0.1 0.1 0.4 0.01 0.4 0.6
MLP 0.1 0.03 0.01 0.01 0.01 0.01 0.01 0.4 0.3
SMIA 0.1 0.01 0.4 0 0.1 0.01 0.03 1 0.1
FL-SMIA 0.1 0.6 0.6 0.6 0.6 0.01 0.4 0.4 0.03
FL-SMIA* 0.1 0.3 0.6 0.01 0.1 0.01 0.03 0.4 0.03
D-FL-SMIA 0.1 0.01 0.03 0.4 0.03 0.01 0.4 0.01 0.04
MD-FL-SMIA 0.1 0.6 0.01 0.03 0.4 0.03 0.1 0.1 0.6
MD-FL-SMIA-2 0.1 0.4 0.03 0.1 0.03 0.03 0.01 0.01 0.6
M-FL-SMIA 0.01 0.4 0.4 0.1 0.6 0.6 0.4 0.1 0.1
FL-SMIA-RBM 0.6 0.1 0.4 0.6 0.4 0.4 0.01 0.4 0.1

Table 8.29 Table of decay rate values that have been used to predict results for five
days ahead prediction

Network US/UK US/EU JP/US NQO NQC DJO DJC OIL GOLD
FLNN 0.0001 0.0001 0.01 0.0001 0.0001 0.0001 0.001 0.0001 0.001
MLP 0.0001 0.1 0.0001 0.1 0.1 0.01 0.0001 0.01 0.0001
SMIA 0.01 0.0001 0.001 0.001 0.0001 0.0001 0.0001 0.0001 0.001
FL-SMIA 0.01 0.001 0.1 0.0001 0.0001 0.01 0.01 0.0001 0.1
FL-SMIA* 0.0001 0.0001 0.001 0.0001 0.0001 0.0001 0.0001 0.0001 0.001
D-FL-SMIA 0.001 0.0001 0.01 0.01 0.001 0.1 0.001 0.001 0.1
MD-FL-SMIA 0.0001 0.1 0.1 0.0001 0.01 0.1 0.0001 0.01 0.001
MD-FL-SMIA-2 0.01 0.0001 0.01 0.0001 0.0001 0.1 0.0005 0.1 0.01
M-FL-SMIA 0.1 0.0005 0.0005 0.0001 0.0005 0.01 0.0001 0.1 0.0005
FL-SMIA-RBM 0.001 0.001 0.001 0.01 0.1 0.001 0.0001 0.0001 0.01
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8.2.1 Comparison and Analysis of Results of Five Days Ahead
Prediction

In this section, the best prediction results for all financial time series that shown in
Table 3.1 presented in order to compare and analysis the networks performance. The
comparison between the results for all the networks, as well as the analysis results,
have been listed with more details in the following:

1. Hidden units:

The number of hidden units which created by SMIA networks for five days ahead
prediction is the same number of hidden units which created by SMIA networks
for one day ahead prediction 8.14. as also could be seen in tables 8.18 to 8.26.
en The results indicated that the FLNN network has been reached a high RP
values with a product of inputs using the same network’s order that has been
used for prediction of one day ahead to performed all the data-set, as well as the
same numbers of hidden units have been used for prediction of five days ahead
with multilayer networks (As explained in subsection 8.1.1).

2. Relative Profit (RP):

In general, the Relative Profit (RP) results proved that using the unsupervised
immune learning algorithm improves the performances of the multi-layer networks
and leads to producing the highest RP values than all other networks including
the FLNN network for all data-sets in Table 3.1 except the stock prices of GOLD.
However, the last proposed version of the FL-SMIA network (FL-SMIA-RBM)
network predicted the lowest results for all financial data comparing to all other
networks results. AS shown in tables 8.18 to 8.26, that the proposed networks
FL-SMIA and M-FL-SMIA outperformed all other networks to reach the highest
results than all other networks in financial prediction domain.

Comparing the RP results of the exchange rate data-sets for the multi-layer
networks indicated that, the all networks which used the immune algorithm
outperformed the MLP network when forecasted the US/EU data, as M-FL-
SMIA reached the highest RP value (93.74462) than all other RP values that have
been predicted in this research. For US/UK exchange rate data, the prediction RP
results improved using FL-SMIA, MD-FL-SMIA, and MD-FL-SMIA2 networks
to reach the results (92.02, 91.47, and 91.74) respectively. While when using the
JP/US data the prediction for all multilayer immune networks except D-FL-SMIA
and MD-FL-SMIA improved the performance of the MLP network.
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For the prediction of stock price data-sets, the RP results proved that all networks
which used the immune learning algorithm have improved the performance of
the MLP network. as these networks produced the highest values of RP than the
MLP network for the NQC, DJO, DJC data-sets. However, the MLP network
outperformed the proposed networks (D-FL-SMIA and MD-FL-SMIA) when
predicting the NQO data. The highest RP results for OIL data have been
predicted by the SMIA, M-FL-SMIA networks which improve the performance of
the MLP network. However, all other multilayer immune networks compete with
the MLP network. The proposed network (MD-FL-SMIA) has outperformed all
other multilayer networks when predicting the GOLD stock prices with the RP
value (89.5291).

3. Annualised Volatility (AV):

The Annualised Volatility (AV) values represent the risk of investments, the results
of AV have been listed in the tables 8.18 to 8.26. As the desirable value is the
lowest predicted AV value, the results AV for the exchange rate data, proved that
the proposed networks MD-FL-SMIA2, M-FL-SMIA, and FL-SMIA successfully
outperformed all other networks when predicted a lowest AV values when used
the data of US/UK, US/EU, and JP/US respectively. consequently, using the
proposed networks (MD-FL-SMIA2, M-FL-SMIA, and FL-SMIA) resulted in
reducing the risk of investment when predicting for five days ahead with using
exchange rate data. The comparison of AV results for the stock price data
indicated that the M-FL-SMIA network has minimised investment risk as it
produced the lowest values of AV than all other networks when predicted the
data of NQO, NQC, DJO, and DJC. While the SMIA network outperforms all
other networks when forecasted the OIL data. The AV values for the GOLD data
showed that the FLNN network produced the lowest AV values than all other
networks. This result leads to conclude that the proposed networks (M-FL-SMIA,
D-FL-SMIA, and MD-FL-SMIA) outperformed all the multi-layer networks when
predicted the AV values of DJC and GOLD data.

4. MSE-Training:

For the results of MSE-Training, as the results in tables 8.18 to 8.26 presented
that the comparison results between the multi-layer networks and the FLNN
network showed that the multi-layer networks FL-SMIA, SMIA, and FL-SMIA*
produced the lowest error values for MSE-Training than all other networks. The
proposed network FL-SMIA outperformed all other networks using the US/UK,
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US/EU, JP/US, and DJO data-sets. While the SMIA network outperformed all
other networks when predicted the NQO, and DJC data-sets. As well as, the
proposed network FL-SMIA* produced the lowest values of MSE-Training than
all other networks when using NQC, OIL, and GOLD data-sets.

Comparing the MSE-Training results between the proposed networks and the
other networks showed that in general the networks which used the immune
algorithm performed better than other multi-layer networks. However, the
proposed networks (D-FL-SMIA, MD-FL-SMIA, MD-FL-SMIA2, and M-FL-
SMIA) produced higher MSE-Training values than other networks.

5. MSE-Testing:

The MSE-Testing results indicated that the proposed network FL-SMIA* pro-
duced the lowest errors than all other networks for five data-sets including NQO,
DJO, DJC, OIL, and GOLD. While, SMIA network outperformed all networks
when predicted the US/UK, JP/UK, and NQC data. Also, the MLP network
produced the lowest MSE-Testing value than all other networks with US/EU
exchange rate data. The Comparing of the MSE-Testing results between the
proposed networks (D-FL-SMIA, MD-FL-SMIA, MD-FL-SMIA2, M-FL-SMIA,
and FL-SMIA-RBM) showed that the FL-SMIA-RBM network outperformed the
mentioned networks. However, the proposed networks (FL-SMIA, and FL-SMIA*)
produced the lowest MSE-Testing values than the FL-SMIA-RBM network.

6. Mean Absolute Error (MAE):

For the Mean Absolute Error (MAE) results, the proposed network FL-SMIA
produced the lowest values of MAE than all other networks when using the
US/UK, NQC, OIL, and GOLD data-sets. As well as, the proposed network
FL-SMIA* outperformed all other networks when forecasted lower MAE values for
NQO, DJO, and DJC data-sets. While the SMIA and MLP networks produced
the lowest results than all other networks only when using the JP/US and
US/EU data-sets respectively. The comparison results for the extended of FL-
SMIA network (D-FL-SMIA, MD-FL-SMIA, MD-FL-SMIA2, M-FL-SMIA, and
FL-SMIA-RBM), showed that the FL-SMIA-RBM network outperformed the
other networks. However, the FL-SMIA-RBM network still competes with the
FL-SMIA network.



104 The Experimental Results

8.2.2 The Comparison of the Average Results

The average results of the Relative Profit (RP) for the prediction of five days ahead
for all networks have been listed in table 8.30. The results proved that the proposed
network M-FL-SMIA outperformed all other networks includes the FLNN network
(89.724 vs 89.383). As well as, the proposed networks FL-SMIA, FL-SMIA*, MD-
FL-SMIA2, and M-FL-SMIA produced the highest values of average RP than MLP
networks. Therefore, the proposed networks FL-SMIA, FL-SMIA*, MD-FL-SMIA2,
and M-FL-SMIA could be considered as promising models in the financial prediction
domain for five days ahead prediction.

Table 8.30 The best results of the Relative Profit (RP) for the five days ahead prediction
with the average for all data-seta.

Network US/UK US/EU JP/US NQO NQC DJO DJC OIL GOLD Average
FLNN 91.529 92.452 86.985 88.165 86.397 89.522 89.564 89.814 90.009 89.382
MLP 91.185 91.501 83.338 83.214 80.772 80.399 84.377 89.723 88.962 85.941
SMIA 88.403 91.927 86.237 86.566 87.257 84.469 86.468 90.892 89.595 87.979
FL-SMIA 92.021 92.495 87.492 86.626 87.341 86.625 87.454 87.629 89.497 88.575
FL-SMIA* 90.765 92.475 87.054 87.279 87.016 87.995 89.723 86.236 83.758 88.033
D-FL-SMIA 90.014 93.349 83.307 83.018 85.050 88.684 90.225 86.248 88.807 87.634
MD-FL-SMIA 91.471 91.667 84.067 81.661 86.304 89.465 88.105 86.351 89.772 87.652
MD-FL-SMIA2 91.745 92.585 85.944 83.987 85.539 90.011 89.486 88.620 88.785 88.522
M-FL-SMIA 90.805 93.745 85.846 88.289 87.569 90.762 90.631 90.340 89.529 89.724
FL-SMIA-RBM 86.899 81.377 77.809 70.998 73.302 73.248 74.655 80.496 84.644 78.158

Fig. 8.3 The forecasting for five days ahead prediction using the M-FL-SMIA network.
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As showed in figure 8.3, the prediction of the proposed network (M-FL-SMIA)
when using the DJC stock price data, the figure illustrated that the forecasted signal
followed the target signal. However, in some points, the signals look not close to each
other. in general, the prediction results and the behaviour of the signals indicated that
the M-FL-SMIA network looks a promising model for financial prediction for five days
ahead.

Table 8.31 The best results of the Annualised Volatility (AV) for the prediction of five
days ahead with the average for all networks.

Network US/UK US/EU JP/US NQO NQC DJO DJC OIL GOLD Average
FLNN 15.47144 15.56260 16.81314 35.16634 35.75308 30.72444 30.75543 61.52982 101.34412 38.12449
MLP 15.49770 15.68840 17.29550 36.42510 37.12470 32.65290 31.90650 61.59024 102.29560 38.94185
SMIA 15.85660 15.62360 16.89820 35.57702 35.47790 31.82670 31.4531 60.80959 101.72290 39.22406
FL-SMIA 15.65030 15.53630 16.71910 35.56130 35.73694 31.36340 31.23310 62.93981 101.81230 38.50584
FL-SMIA* 15.55320 15.53940 16.78210 35.38960 35.54270 31.05930 30.71120 63.74985 106.65943 38.99853
D-FL-SMIA 15.67080 15.42257 17.32141 36.48495 36.10657 30.91655 30.59969 63.79760 102.43480 38.75055
MD-FL-SMIA 15.47915 15.68291 17.21941 36.81188 35.77776 30.73750 31.09269 63.73456 101.56104 38.67743
MD-FL-SMIA-2 15.44247 15.54201 16.96078 36.24646 35.97940 30.61085 30.77369 62.30858 102.45450 38.47986
M-FL-SMIA 15.56753 15.36008 16.97451 35.13308 35.43797 30.43459 30.50318 61.18063 101.78271 38.04159
FL-SMIA-RBM 16.06299 17.09618 18.01588 39.11082 38.83697 33.97119 33.80575 67.11419 106.01466 41.11429

Table 8.32 The best results for the MSE-Testing for the prediction of five days ahead
with the average for all networks.

Network US/UK US/EU JP/US NQO NQC DJO DJC OIL GOLD Average
FLNN 0.00739 0.01046 0.01358 0.00468 0.00555 0.00327 0.00375 0.00732 0.01222 0.00758
MLP 0.00264 0.00173 0.00261 0.00305 0.00385 0.00130 0.00230 0.00626 0.00594 0.00330
SMIA 0.00158 0.00264 0.00236 0.00141 0.00177 0.00136 0.00155 0.00186 0.00954 0.00268
FL-SMIA 0.00204 0.00319 0.00254 0.00150 0.00190 0.00165 0.00167 0.00279 0.00271 0.00222
FL-SMIA* 0.00220 0.00310 0.00313 0.00140 0.00199 0.00122 0.00120 0.00178 0.00227 0.00203
D-FL-SMIA 0.01324 0.05695 0.03558 0.01448 0.02163 0.01059 0.03073 0.02487 0.02973 0.02642
MD-FL-SMIA 0.04281 0.03349 0.00925 0.01313 0.02320 0.00533 0.01435 0.02033 0.01305 0.01944
MD-FL-SMIA-2 0.02818 0.03501 0.03194 0.00769 0.01838 0.01854 0.01253 0.01034 0.02417 0.02075
M-FL-SMIA 0.00514 0.03838 0.03256 0.00752 0.02956 0.01682 0.01295 0.01752 0.04517 0.02285
FL-SMIA-RBM 0.00517 0.00871 0.09822 0.00375 0.00397 0.00758 0.00786 0.00745 0.00998 0.01697

The average AV results showed that the M-FL-SMIA network and FLNN network
produced the lowest values than all other networks as in table 8.31. However, the
results proved that the M-FL-SMIA network produced a lower average AV value than
the FLNN network (38.04150 vs 38.12449). The average results of MSE-Testing for
five days ahead prediction have been listed in table 8.32. The results illustrated that,
although all networks have decreased the values of MSE-Testing using all the data-sets,
the average comparison between the proposed networks and the FLNN network proved
that the proposed networks FL-SMIA*, and FL-SMIA produced lower average values
of MSE-Testing the all other networks.

For the comparison between all networks that used in this research, The MSE-
Testing average results showed that the multi-layer networks which have been used
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the immune learning algorithm (SMIA, FL-SMIA, and FL-SMIA*) outperforming all
other networks with the average of values (0.00268, 0.00203, and 0.00222) respectively.
This result emphases that the using algorithm of immune learning gives the reason
behind the improvements in prediction ability of the multi-layer networks.

Fig. 8.4 The training error and validation error for five days ahead prediction using
M-FL-SMIA network.

The prediction errors for the proposed network M-FL-SMIA using the JP/US
data have been illustrated in figure 8.4 as an example of the convergence between the
training error and validation error, the figure shown that the signals are near to zero
value. All relevant figures have been listed in Appendix B.

The M-FL-SMIA network results and figures proved that the proposed network
M-FL-SMIA have been successfully predicted the financial data, as well as it improving
the prediction ability of the multi-layer networks and the proposed network FL-SMIA
network for five days ahead prediction.



Chapter 9

Additional Evaluation and
Discussion

In this chapter, the results for several metrics will be presented and discussed in order
to evaluate the prediction for all neural networks that have been used in this research.
The metrics results include the results for the Maximum Draw-Down(MDD), Correct
Directional Change (CDC), and Signal to Noise Ratio (SNR).

In addition, two statistical tests have been utilised to test the difference between
the proposed networks (FL-SMIA, FL-SMIA*, D-FL-SMIA, MD-FL-SMIA, and M-FL-
SMIA) and other networks (FLNN, MLP, and SMIA).

9.1 Maximum Draw-Down (MDD)
As explained in chapter 3 3, the MDD is an indicator measure of downside risk over a
specified time period. That means MDD only measures the size of the largest loss of
financial trading, without consideration to the frequency of large losses.

In this section, the MDD results for all data-sets and the average results for all
networks have been illustrated to measure the ability of the proposed networks in
financial prediction domain.

The desirable MDD value for the financial prediction is the lower value which
indicates less risk or less losing.
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The results of maximum Draw-Down have been listed in table 9.1, the average
results of MDD for one day ahead prediction demonstrate that the SMIA network and
FL-SMIA network outperformed all other networks as they produced lower average
MDD values than all other networks.

Table 9.1 The best results for the MDD for the one day ahead prediction with the
average for all networks.

Network US/UK US/EU JP/US NQO NQC DJO DJC OIL GOLD Average
FLNN -0.59050 -0.98186 -1.06498 -3.94011 -4.76773 -2.15584 -4.39138 -3.54513 -7.10301 -3.17117
MLP -1.14592 -1.34810 -1.37053 -4.19710 -5.31520 -2.04130 -2.07280 -3.54401 -7.43470 -3.16330
SMIA -1.14585 -0.70860 -1.05898 -3.94010 -5.30600 -2.28780 -3.27870 -4.69830 -1.55892 -2.66481
FL-SMIA -1.14582 -0.98176 -1.37050 -4.17920 -5.31100 -4.53540 -4.39550 -3.98901 -1.31332 -3.02461
FL-SMIA* -1.14591 -1.67883 -1.74721 -4.18505 -4.10674 -2.83302 -6.23950 -3.13635 -14.20200 -4.36384
D-FL-SMIA -1.14605 -1.34812 -1.37047 -4.81193 -3.36531 -2.83132 -6.82699 -2.39031 -7.94212 -3.55918
MD-FL-SMIA -1.14587 -0.88375 -0.89781 -5.80070 -3.36621 -2.83122 -2.75674 -6.13785 -6.63816 -3.38426
MD-FL-SMIA-2 -1.14586 -0.99930 -1.11824 -3.94020 -3.36701 -2.83204 -2.75676 -7.94212 -7.47440 -3.50844
M-FL-SMIA -1.14583 -1.34810 -1.49962 -4.19713 -3.36611 -2.83212 -2.75685 -4.16641 -8.41764 -3.30331
FL-SMIA-RBM -3.66902 -1.97400 -1.94909 -4.88751 -4.54845 -3.05554 -3.63258 -6.01979 -16.73931 -5.16392

In terms of measuring the results of maximum Draw-Down (MDD) for five days
ahead prediction, it can be noticed from the results in table 9.2 that the FLNN network
and the M-FL-SMIA network produced the lowest values for MDD when compared to
all other networks.

Table 9.2 The best results for the MDD for the prediction of five days ahead with the
average for all networks.

Network US/UK US/EU JP/US NQO NQC DJO DJC OIL GOLD Average
FLNN -1.33533 -2.16558 -2.72277 -6.10270 -3.90036 -3.82648 -3.69906 -7.61349 -13.24989 -4.95730
MLP -1.86650 -1.32580 -3.76240 -6.82220 -9.87550 -6.62070 -5.57790 -6.73280 -13.25989 -6.20485
SMIA -1.64940 -1.35280 -2.72280 -4.45810 -6.94850 -3.85601 -8.39410 -7.61259 -13.24990 -5.58269
FL-SMIA -2.18570 -1.35820 -2.72275 -4.10180 -6.10180 -8.27690 -8.17740 -8.46331 -13.24949 -6.07082
FL-SMIA* -1.33530 -1.35841 -2.72281 -6.10180 -7.08090 -6.62070 -3. 69905 -13.67533 -24.88985 -7.49824
D-FL-SMIA -1.42010 -1.32576 -3.76235 -6.10199 -7.08089 -4.52117 -3.69816 -17.50750 -21.56010 -7.44200
MD-FL-SMIA -1.40679 -2.09530 -2.72307 -6.10210 -4.27926 -3.82650 -4.08933 -22.27483 -21.56013 -7.59526
MD-FL-SMIA-2 -1.36718 -2.09620 -2.72249 -6.10179 -6.28381 -3.82558 -3.69915 -14.74310 -15.13290 -6.21913
M-FL-SMIA -1.66014 -1.35824 -2.72187 -5.11686 -7.08080 -3.82639 -3.07051 -8.27316 -14.24857 -5.26184
FL-SMIA-RBM -2.38445 -18.94282 -5.49508 -13.45247 -14.49167 -8.40934 -8.50935 -19.93960 -25.72228 -13.03856

9.2 Correct Directional Change (CDC)
The Correct Directional Change (CDC) has been used in this research to measure
the ability of the networks on correctly forecasting the subsequent actual change of a
prediction variable. A large value refers to a better predictor.

As higher values are preferable for the correct Directional change (CDC) measure,
it appears in table 9.3 that all networks obtained high CDC results for most data-sets.
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While the highest value of the CDC is 71.596 which has been achieved by using the
proposed network FL-SMIA on forecasting the GOLD data.

The average results for the CDC measure proved that the SMIA and FL-SMIA
networks reached the highest values than all other networks that used in this research
for the prediction for one day ahead.

Table 9.3 The best results for the CDC for the prediction of one day ahead with the
average for all networks.

Network US/UK US/EU JP/US NQO NQC DJO DJC OIL GOLD Average
FLNN 65.657 61.364 62.879 66.414 64.646 65.152 64.141 62.647 59.406 63.590
MLP 68.690 63.380 63.890 66.330 65.150 63.540 64.560 62.790 57.930 64.029
SMIA 67.680 62.880 62.370 67.850 62.120 62.780 63.790 71.430 70.591 65.721
FL-SMIA 64.890 61.870 62.630 68.101 61.110 62.530 62.780 69.580 71.596 65.010
FL-SMIA* 67.010 61.700 62.940 66.080 63.860 63.930 63.700 62.353 59.610 63.465
D-FL-SMIA 65.400 56.818 59.848 62.879 62.373 64.646 62.626 58.080 62.500 61.686
MD-FL-SMIA 63.636 59.849 64.141 63.131 60.354 65.153 64.394 62.354 58.074 62.343
MD-FL-SMIA-2 60.606 62.121 58.838 67.172 62.121 60.859 63.636 62.941 58.370 61.852
M-FL-SMIA 66.162 59.848 60.606 68.434 62.374 63.384 66.162 62.500 59.407 63.209
FL-SMIA-RBM 62.626 66.919 60.604 64.394 60.606 63.131 63.384 61.324 61.037 62.669

Table 9.4 The best results for the CDC for the prediction of five days ahead with the
average for all networks.

Network US/UK US/EU JP/US NQO NQC DJO DJC OIL GOLD Average
FLNN 66.667 65.404 64.899 62.374 57.828 65.404 62.626 63.529 58.815 63.061
MLP 68.670 65.660 62.120 60.000 59.850 62.531 63.540 64.265 58.519 62.795
SMIA 67.170 64.890 63.130 60.510 59.090 61.772 62.540 65.000 61.481 62.843
FL-SMIA 68.920 68.640 65.150 61.120 57.830 62.533 62.530 63.971 60.148 63.427
FL-SMIA* 62.370 63.380 61.360 62.530 61.870 61.774 63.290 63.120 58.990 62.076
D-FL-SMIA 63.380 63.889 58.333 63.131 60.859 61.111 62.375 55.441 60.000 60.947
MD-FL-SMIA 64.899 65.909 63.636 60.859 60.354 64.394 62.374 62.794 54.519 62.193
MD-FL-SMIA-2 64.646 60.110 55.808 62.121 60.353 62.374 62.879 63.530 60.444 61.363
M-FL-SMIA 63.889 67.677 57.828 60.354 58.333 63.131 62.121 64.559 58.963 61.873
FL-SMIA-RBM 60.606 60.101 57.576 61.111 57.576 59.596 60.354 61.618 60.296 59.870

For the five days ahead prediction, as in table 9.4 the correct directional change
(CDC) results indicates that the proposed network FL-SMIA produced the higher CDC
value ( 68.920) than all other networks when forecasting the US/UK exchange rate
data.

The average results of the CDC showed that proposed network FL-SMIA outper-
formed all other networks with the CDC value (63.427). However, FL-SMIA network
followed by FLNN network.
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9.3 Signal to Noise Ratio (SNR)
The aim of using the Signal to Noise Ratio (SNR) measure is to compare the amount
of significant information provides by the signal (data) with the amount of background
noise of the signal (distraction from the signal).

For one day ahead prediction, the SNR results which have been illustrated in
table 9.5. As the higher value of the SNR indicating a clearer reading of the signal,
the highest value of the SNR over all the data-sets have predicted by the FL-SMIA
network when used to forecast the GOLD exchange rate data with an SNR value of
37.689, which indicates a clearer reading of the signal.

The average results of SNR indicated that the highest average of SNR values than
all other networks produced by the SMIA and FL-SMIA networks which are 26.327
and 26.233 respectively.

Table 9.5 The best results for the SNR for the prediction of one day ahead with the
average for all networks.

Network US/UK US/EU JP/US NQO NQC DJO DJC OIL GOLD Average
FLNN 22.270 23.660 20.996 24.707 23.013 25.163 24.564 25.514 24.669 23.840
MLP 22.220 23.370 23.390 24.630 23.310 22.660 22.7300 24.740 24.390 23.493
SMIA 22.221 23.501 23.380 24.550 22.960 24.040 24.090 34.670 37.534 26.327
FL-SMIA 22.250 22.760 23.070 24.420 22.790 23.980 24.050 35.084 37.689 26.233
FL-SMIA* 21.630 22.652 23.100 24.540 23.160 24.480 23.840 24.269 23.570 23.471
D-FL-SMIA 19.360 19.399 18.690 22.849 20.560 16.200 21.380 13.090 21.051 19.175
MD-FL-SMIA 15.823 16.164 14.493 14.986 22.465 24.188 20.013 24.109 16.361 18.734
MD-FL-SMIA-2 19.439 22.650 18.824 18.074 21.654 20.369 20.834 20.753 16.929 19.947
M-FL-SMIA 16.816 18.679 13.945 12.572 17.749 15.160 19.593 14.393 19.349 16.473
FL-SMIA-RBM 19.918 19.435 21.789 23.160 21.857 23.229 22.702 22.680 21.697 21.829

Table 9.6 The best results for the SNR for the prediction of five days ahead with the
average for all networks.

Network US/UK US/EU JP/US NQO NQC DJO DJC OIL GOLD Average
FLNN 27.481 24.544 23.052 26.217 25.068 23.923 25.778 24.339 26.476 25.209
MLP 23.833 25.660 22.860 21.320 20.550 25.510 23.020 22.713 21.030 22.944
SMIA 26.070 23.850 23.290 24.670 23.920 25.310 24.740 21.599 25.925 24.375
FL-SMIA 24.970 23.020 22.980 24.340 23.610 24.460 24.410 27.790 28.887 24.941
FL-SMIA* 24.640 23.190 22.060 24.680 23.420 25.770 26.010 25.230 24.360 24.373
D-FL-SMIA 21.750 13.156 15.425 19.076 16.626 20.923 14.075 17.677 17.069 17.308
MD-FL-SMIA 14.621 16.857 21.396 19.689 16.434 24.463 19.397 20.172 22.738 19.529
MD-FL-SMIA-2 17.166 17.191 15.677 23.806 17.467 17.570 20.162 24.729 19.436 19.245
M-FL-SMIA 22.541 16.034 16.242 23.325 14.856 18.558 20.024 21.961 15.140 18.742
FL-SMIA-RBM 22.154 20.956 8.862 23.318 20.585 21.793 21.920 23.356 22.159 20.567

The SNR results for five days ahead the prediction have been listed in table 9.6,
the results indicated that the FL-SMIA network produced the higher value of SNR
than all networks when forecasting the GOLD data with the value of 28.887.
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For the average results, the FLNN network outperformed all other networks followed
by the FL-SMIA network (25.209 vs 24.941). While the comparison between the multi-
layer networks showed that the FL-SMIA* network competes with the networks SMIA
to reach the highest average for SNR values. The average SNR results for five days
ahead prediction also showed that the comparison between the proposed networks,
indicated that the FL-SMIA, FL-SMIA*, and FL-SMIA-RBM networks outperformed
all other proposed networks in this research.

9.4 Significance of Differences in RP Results
The Wilcoxon signed rank test have been used in this research for paired samples to
determine differences in the overall RP performance of the models overall used the
data-sets.

9.4.1 The Wilcoxon Signed Rank Test for One Day Ahead
Prediction

The Wilcoxon signed rank test for one day ahead the prediction showed that the
FL-SMIA produces significantly better RP values than D-FL-SMIA, MD-FL-SMIA-2
and FL-SMIA-RBM networks (p < 0.01 and p < 0.05). While the results of RP
produced by FLNN, MLP, SMIA, FL-SMIA*, MD-FL-SMIA, and M-FL-SMIA showed
no significant differences with the FL-SMIA results.

For the other proposed networks, the Wilcoxon test results indicated that FL-SMIA*
network produces only significantly better RP values than FL-SMIA-RBM network
but in same time FL-SMIA* network appreciably lower RP values than FLNN. The
Wilcoxon test results for the D-FL-SMIA, MD-FL-SMIA and MD-FL-SMIA-2 networks
showed significantly lower RP values than the FLNN models and the FL-SMIA model
and significantly better RP values than FL-SMIA-RBM network. While the D-FL-
SMIA, MD-FL-SMIA and MD-FL-SMIA-2 networks, the test results illustrated no
significant differences with the other networks.

For the proposed M-FL-SMIA network, the test results denoted that the M-FL-
SMIA model produces significantly better RP values than MLP and FL-SMIA-RBM
networks but significantly lower RP values than FLNN model. While no significant
differences with the other networks. The test results also illustrated that the FL-
SMIA-RBM network produces significant differences of RP values compared with all
networks.
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9.4.2 The Wilcoxon Signed Rank Test for Five Days Ahead
Prediction

For five days ahead prediction, the Wilcoxon signed rank test results proved that
the FL-SMIA network produces significantly better RP values than FL-SMIA-RBM
network (p < 0.01 and p < 0.05), While the differences of RP values between FL-SMIA
network and all other networks are not significant. The FL-SMIA* results are in the
middle of the range, only significantly better than MLP and significantly worse than
FL-SMIA network and MFL-SMIA network.

The extended of FL-SMIA networks (D-FL-SMIA, MD-FL-SMIA-2), the test results
indicated that D-FL-SMIA and MD-FL-SMIA-2 networks produces no significant
differences of RP values compared with all networks except the M-FL-SMIA model as
it produces significantly better RP values than the D-FL-SMIA and MD-FL-SMIA-2
models. While the FL-SMIA-RBM networks produces significantly lower RP values
than the D-FL-SMIA and MD-FL-SMIA-2 models.

9.5 Similarity Between Residuals
To measure the similarity between models behaviour over the data-sets, the correlation
coefficients have been applied to the residuals for each model that has been used in
this research.

9.5.1 Correlation Analysis

The correlation between the FL-SMIA network and the other proposed networks as
well as the correlation between the FL-SMIA network and the existing models (FLNN,
MLP, and SMIA) have been tested in this research in order to understand whether the
predictions are qualitatively different. To this end, the correlation coefficients have
been calculated to investigate the correlation between all the networks used in this
research.

The correlation coefficient is a measure that determines the degree to which two
variables are associated. The correlation coefficient is considered a useful measure in
the financial domain. For example, it can be used to determine an investment behaves
in relation to another fund or asset class.

The range of values for the correlation coefficient is between -1.0 and 1.0. The
correlation coefficient between two variables is calculated as follows:
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Pxy = Corr(x, y) = Cov(x, y)
σxσy

, −1 ⩽ Pxy ⩽ 1 (9.1)

where Cov(x, y) represent the co-variance between the two variables x and y, the σxσy

represent the standard deviations of x and y respectively.
A value of exactly 1.0 means there is a perfect positive relationship between the two

variables. While a value of exactly -1.0 means there is a perfect negative relationship
between the two variables. Negative correlation means that the variables move in
opposite directions; for a positive increase in one variable, there is a decrease in the
second variable [48].

The correlation coefficients between all networks architectures that have been used
in this research for prediction of the NQC data-set are shown in table 9.7. We can
see that the correlation between FL-SMIA and SMIA network is higher than between
FL-SMIA and the MLP and other proposed models. Interestingly, the correlation value
between FL-SMIA and FLNN is even lower than between FL-SMIA and the MLP
model. The FL-SMIA model, therefore, seems to provide some new characteristics that
could make it useful in an ensemble model, e.g. together with the MLP and the FLNN.

Table 9.7 also shows that the correlation between FL-SMIA model and the proposed
networks (FL-SMIA*, D-FL-SMIA, and M-FL-SMIA) is higher than that between
FL-SMIA and the other proposed models. This result can be interpreted such that
although all proposed networks use the same learning algorithm, they have different
architectures which result in lower values of correlation between the networks.

Table 9.7 The correlation coefficients for NQO (one day ahead prediction)
Network FLNN MLP SMIA FL-SMIA FL-SMIA* D-FL-SMIA MD-FL-SMIA MD-FL-SMIA-2 M-FL-SMIA FL-SMIA-RBM

FLNN 1 0.6847 0.6807 0.6671 0.4994 0.8144 0.8074 0.8932 0.8724 0.6752
MLP 0.6847 1 0.8547 0.8431 0.7262 0.7354 0.7619 0.5680 0.7664 0.6815
SMIA 0.6807 0.8547 1 0.9889 0.8203 0.6780 0.6444 0.6840 0.7255 0.6447
FL-SMIA 0.6671 0.8431 0.9889 1 0.8311 0.7042 0.6691 0.6950 0.7452 0.6599
FL-SMIA* 0.4994 0.7262 0.8203 0.8311 1 0.5741 0.5118 0.5838 0.6037 0.8179
D-FL-SMIA 0.8144 0.7354 0.6780 0.7042 0.5741 1 0.8853 0.7880 0.9316 0.6856
MD-FL-SMIA 0.8074 0.7619 0.6444 0.6691 0.5118 0.8853 1 0.7117 0.9459 0.6813
MD-FL-SMIA-2 0.8932 0.5680 0.6840 0.6950 0.5838 0.7880 0.7117 1 0.8477 0.6813
M-FL-SMIA 0.8724 0.7664 0.7255 0.7452 0.6037 0.9316 0.9459 0.8477 1 0.7408
FL-SMIA-RBM 0.6752 0.6815 0.6447 0.6599 0.8179 0.6856 0.6813 0.6813 0.7408 1

For the correlation between FL-SMIA* network and other networks, the results in
table 9.7 demonstrated that the correlation between FL-SMIA* network and the SMIA,
FL-SMIA, and FL-SMIA-RBM networks produced higher values than between FL-
SMIA* and other networks. While the correlation results of other proposed networks
showed that the the networks D-FL-SMIA, MD-FL-SMIA, MD-FL-SMIA-2, and M-
FL-SMIA have performed more similarly with FLNN model, as well as they performed
more similarly with each other than with FL-SMIA model and other networks. The
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correlation between FL-SMIA-RBM network and the proposed networks (FL-SMIA*
and M-FL-SMIA) predicted the highest results than all other networks, but it shows a
lower correlation value than all other networks.

Table 9.8 The correlation coefficients for US/EU (five days ahead prediction).
Network FLNN MLP SMIA FL-SMIA FL-SMIA* D-FL-SMIA MD-FL-SMIA MD-FL-SMIA-2 M-FL-SMIA FL-SMIA-RBM

FLNN 1 0.9461 0.9316 0.8773 0.8151 0.8560 0.8562 0.8705 0.9008 0.7415
MLP 0.9461 1 0.9143 0.8509 0.7803 0.8356 0.8342 0.8848 0.8519 0.7891
SMIA 0.9316 0.9143 1 0.9837 0.9376 0.9383 0.9609 0.9564 0.9401 0.8405
FL-SMIA 0.8773 0.8509 0.9837 1 0.9391 0.9153 0.9546 0.9619 0.9101 0.7935
FL-SMIA* 0.8151 0.7803 0.9376 0.9391 1 0.9406 0.9578 0.8985 0.9417 0.8419
D-FL-SMIA 0.8560 0.8356 0.9383 0.9153 0.9406 1 0.9568 0.9263 0.9591 0.9000
MD-FL-SMIA 0.8562 0.8342 0.9609 0.9546 0.9578 0.9568 1 0.9400 0.9509 0.8873
MD-FL-SMIA-2 0.8705 0.8848 0.9564 0.9619 0.8985 0.9263 0.9400 1 0.9067 0.8095
M-FL-SMIA 0.9008 0.8519 0.9401 0.9101 0.9417 0.9591 0.9509 0.9067 1 0.8397
FL-SMIA-RBM 0.7415 0.7891 0.8405 0.7935 0.8419 0.9000 0.8873 0.8095 0.9067 1

The correlation coefficients for five days ahead prediction between all network
architectures used in this research with the US/EU data-set are listed in table 9.8.

The results showed on one hand that the proposed FL-SMIA model performs more
similarly to SMIA (0.9837) than to FLNN, and MLP (0.8773, and 0.8509). On the
other hand, the correlations between FL-SMIA and the other proposed networks are
higher than the correlations between FL-SMIA model and the networks (FLNN, MLP
and FL-SMIA-RBM). The results indicate that some characteristics of FLNN and
SMIA components are retained in the proposed extended models.

As represented in table 9.8, in general, the correlation between all proposed networks
and other networks demonstrated that the proposed networks performed more similarly
to each other and to the SMIA network than to the FLNN and MLP networks. Also, it
is observed that the results of the correlation coefficient for five days ahead prediction
are higher than the correlation coefficient results for the prediction for one day ahead.

9.6 Discussion on the Comparison of RP Results
This section discusses the comparison results between all the networks which have been
used in this research. This section will discuss the following:

1. Discusses the effect of using the inputs and their products and the use of immune
algorithm with a multilayer network for improving the prediction ability of
the multi-layer networks in the field of financial prediction. Therefore, the
performances of the FL-SMIA network and other proposed networks have been
compared with the multilayer networks (MLP, and SMIA).

2. Summarise the performances of different architectures models which have been
used the inputs and their products in the domain of financial prediction. So that,
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the performances of the FL-SMIA network and the other proposed networks have
been compared with the performance of the FLNN model.

3. The comparison between the extended networks of FL-SMIA (FL-SMIA*, D-FL-
SMIA, MD-FL-SMIA, MD-FL-SMIA-2, M-FL-SMIA, and FL-SMIA-RBM) and
the existing networks that used in this research (FLNN, MLP, and SMIA) will
be discussed through this section.

9.6.1 Comparison Between the FL-SMIA Network and the
Multi-layer Networks

In this section, the prediction results of the FL-SMIA network compared with the
multi-layer networks (MLP, and SMIA) will be explained. The discussion will be based
on RP results which have been presented in chapters 8.

The results for one day ahead prediction indicated that the FL-SMIA network
outperformed the MLP network when produced the higher Relative Profit (RP) values
for all data-sets except the OIL data.

While FL-SMIA network outperformed the SMIA on five from nine of data-sets.
However, the FL-SMIA network competes with the SMIA network for forecasting the
US/EU, JP/US, NQO, and NQC data-sets. Overall, the FL-SMIA network predicted
the highest RP average results than the MLP, and the SMIA networks for one day
ahead prediction.

For the five days ahead prediction, on one hand, the results indicated that the
FL-SMIA network outperformed MLP network for all data-sets except the OIL data.
However, the RP average results showed that the FL-SMIA network produced the
higher RP average value (88.575) than the RP average value of the MLP network. On
the other hand, the comparison of the RP results between FL-SMIA network and the
SMIA network proved that the FL-SMIA network results for all data-sets look closer
to the results for SMIA network. However, the average results of RP showed that the
FL-SMIA network reached higher average PR than the SMIA network.

Consequently, for five days ahead prediction, the FL-SMIA network outperformed
the multi-layer networks (MLP, and SMIA) that have been used in this research.
Therefore, FL-SMIA network could be considered as a promising model for financial
prediction.
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9.6.2 Comparison Between the FL-SMIA Network and the
FLNN Network

The prediction for one day ahead, the comparison of RP results between the FL-SMIA
network and the FLNN network indicated that the FLNN network achieved higher RP
on all data-sets except the stock prices data (DJC and GOLD). Also, the average RP
of the FLNN network was higher the FL-SMIA network (75.34 vs 73.26). However,
the AV result of the FL-SMIA (and SMIA) was significantly better than that of the
FLNN (10.38 vs 12.54).

For the five days ahead prediction, the comparison for RP results between the
FL-SMIA model and the FLNN network represented that, although the FL-SMIA
model outperforms the FLNN network for all exchange rate data-sets and one of stock
prices data (NQC), the average value of RP for FLNN network is higher than the
average RP for the FL-SMIA model (89.38 vs 88.57). The average AV is value slightly
worse (higher) for FL-SMIA.

9.6.3 Discussing the Results of the FL-SMIA Network Exten-
sions

This section discusses and compares the results for the extended FL-SMIA networks,
which are FL-SMIA*, D-FL-SMIA, MD-FL-SMIA, MD-FL-SMIA-2, M-FL-SMIA, and
FL-SMIA-RBM.

For one day ahead prediction, the FL-SMIA network outperformed all the other
proposed models. However, in most cases the proposed networks produced results
similar to the FL-SMIA network except the FL-SMIA-RBM. The average RP results
showed that the FL-SMIA network reached a higher value (73.268) than all the other
proposed networks. The most common second performance to the FL-SMIA Network
is the M-FL-SMIA as it produced the second highest average AR (72.743).

While the financial prediction for five days ahead indicated an improvement for all
proposed networks (better prediction results than with one day ahead). The results
also showed that in some cases the proposed networks outperformed the FL-SMIA
Network (as discussed in chapter 8).

Consequently, the FL-SMIA Network is compared with the other proposed net-
works. In the average RP results, the results proved that the M-FL-SMIA network
outperformed the FL-SMIA Network with a higher average RP than the FL-SMIA
Network (89.724 vs 88.575). Moreover, the M-FL-SMIA network outperformed the
FLNN Network for the average RP results (89.724 vs 89.382). Also, the M-FL-SMIA
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network outperformed all other networks used in this research when comparing the
average RP results for five days ahead prediction.

The last proposed network (FL-SMIA-RBM) produced lower results of RP than all
the other proposed networks. This may be due to use two methods of unsupervised
learning. However, the unsupervised learning help on reducing the MSE-Testing results
to produced lower errors than all proposed networks except the FL-SMIA and FL-
SMIA* networks. Thus, the FL-SMIA-RBM may perform better if used with another
domain.





Chapter 10

Alternative Evaluation and Model
Selection

In this chapter, an alternative evaluation method for the neural network models has
been used. In the previous chapter, we focused on the models performing best on the
test set of moving averages of prices of exchange rate index and commodity data, as
introduced in table 3.1 and table 3.3 in chapter 3.

In this chapter we adapt the data and evaluation to focus on reflecting actual
application situation where we buy and sell tradable assets on current prices and don’t
know the future returns. The additional experiments focus on two proposed models
FL-SMIA and M-FL-SMIA, which were most promising in the previous sections, and
for comparison the FLNN and MLP have been included in this chapter.

The data-sets used in additional experiments include all the data that are listed
in table 3.1 except the opening prices (NQO and DJO). Instead, we include two
new data-sets, which are a Crude Oil WTI Futures (C-OIL) from 1/10/1999 to
29/05/20019 and SPDR 500 ETF (SPY) from 1/10/1999 to 27/04/20019, as more
tradeable alternatives to commodities and indices. The statistics of daily return
percentages ((Pt − Pt−1) × 100/Pt−1) for SPY and C-OIL data are listed in table 10.1.
Figure 10.1 shows histograms of daily returns for SPY and C-OIL. As expected, the
values of these statistics for C-OIL are in the same range as for the oil price (OIL),
and the histograms are visually similar. The SPY values and histogram are broadly
similar to the DJ and NASDAQ indices. We wanted to make use of the longer time
series available for these datasets, therefore the values for OIL here are not directly
comparable to those for C-OIL.
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Table 10.1 The statistics of daily returns for the two additional time series.

Data-sets Mean Std Skew Kurtosis
SPY -0.00934 1.19939 0.28396 10.05643
C-OIL 0.01029 2.36144 0.33737 4.11287

Fig. 10.1 Daily return histograms for SPY (left) and C-OIL (right).

10.1 Training and Evaluation
We report the results of 20 simulations to investigate the performance of the neural
network models. The reported values are for the combination of hyperparameters that
produced the best average validation result in 20 simulations a grid search as listed
in section 3.6. Each simulation includes 80 epoch of training with early stopping as
described in the previous chapters.

10.1.1 Statistical Comparisons

For comparing models across datasets, a Wilcoxon signed-rank test is used, as in the
previous chapters, as the distribution of the metrics is rarely normally distributed as
we found when testing the data. The Wilcoxon test tests for different medians between
the compared distributions. It is applied to the average values per dataset, as the
values over simulations can not be meaningfully paired for a Wilcoxon test.

In addition, we compare selected pairs of models on individual datasets using a
Mann-Whitney U test. The Mann-Whitney U test is a non-parametric test whether
a random pair of values from two samples is likely to have a greater value from one
sample. We also considered using a t-test, a parametric test which finds different
distribution means. However, Shapiro tests showed that there were few normally
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distributed samples among the simulation results. Thus there would have been very
low coverage, and it was decided not report t-test results.

10.2 One Day Ahead Prediction
In this section the mean results for one day ahead prediction have been listed in tables
10.3, 10.6 and 10.9, showing the minimum, maximum, average, and the standard
deviation for each model.

The parameters found in the grid search are listed in table 10.2. Here, LR is the
learning rate, MOM is the momentum, DR is the decay rate, and H-U refers to the
number of hidden units in the hidden layer. The FLNN, FL-SMIA, and M-FL-SMIA
are the second order models.

Table 10.2 The parameters values that have been used to predict average results for
one day ahead prediction (20 simulations)

FLNN MLP FL-SMIA M-FL-SMIAData
sets LR MOM DR LR MOM DR H-U LR MOM DR H-U LR MOM DR H-U

US/UK 0.4 0.03 0.01 0.4 0 0.1 12 0.4 0.03 0.01 40 0.03 0.4 0.0005 55
US/EU 0.4 0.01 0.0005 0.4 0 0.0005 4 0.03 0 0.001 59 0.01 0.03 0.001 74
JP/US 0.4 0 0 0.4 0 0.01 4 0.1 0.4 0.0005 71 0.1 0.4 0.001 86
NQC 0.1 0.1 0.1 0.4 0.01 0 12 0.4 0.01 0.001 49 0.1 0.03 0 64
DJC 0.1 0.01 0.0005 0.1 0.03 0.1 12 0.1 0.01 0.1 47 0.01 0.01 0.0001 62
OIL 0.1 0.03 0.1 0.4 0 0.001 12 0.4 0.03 0.1 86 0.04 0.1 0.01 101
GOLD 0.4 0 0.001 0.4 0.01 0.0001 6 0.4 0.4 0 56 0.03 0 0.1 55
SPY 0.1 0.4 0.001 0.4 0 0.01 12 0.1 0.01 0.001 45 0.4 0.03 0.1 60
C-OIL 0.4 0.03 0.0001 0.1 0.03 0.0005 8 0.1 0.4 0.0005 47 0.4 0.03 0.01 62

10.2.1 Relative Profit (RP)

The average Relative Profit it highest for the MLP model for 5 out the 9 datasets and
in the average over the datasets. The FL-SMIA has the best average RP for 2 datasets
and in most cases the lowest SD. Interestingly, although the FL-SMIA has the lower
average and SD than MLP, it has a higher maximum on five datasets and on average.
The M-FL-SMIA produces surprisingly low results, given the promising results in the
previous chapters.

The standard deviation of all models is on average higher than the values, showing
wide variation across simulations. The significance tests in table 10.4 show that the
differences between models across datasets are mostly not significant, except for the
M-FL-SMIA model versus the MLP.

For the two datasets, where the FL-SMIA model produces higher average RP
results, we used the Mann-Whitney U test (table 10.5). However, the differences are
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Table 10.3 The results for the RP over 20 simulations for one day ahead prediction.
FLNN MLP FL-SMIA M-FL-SMIAData

sets Min Max Avg Sd Min Max Avg Sd Min Max Avg Sd Min Max Avg Sd
US/UK -35.59 36.48 7.84 22.79 -24.44 47.61 18.13 21.98 -21.32 50.08 19.39 20.29 -28.46 38.60 8.56 18.69
US/EU -31.22 43.63 16.47 24.49 -35.75 50.74 17.63 25.83 -38.66 52.50 11.08 23.85 -35.06 42.64 8.76 17.77
JP/US -27.18 40.18 13.08 22.09 -25.75 36.68 11.09 17.49 -26.50 33.95 9.56 17.64 -24.70 32.17 7.30 15.52
NQC -18.55 26.04 6.96 14.34 -13.73 28.65 12.70 13.08 -19.70 28.83 9.26 12.00 -26.35 27.55 10.76 15.12
DJC -22.71 28.15 5.60 13.82 -12.41 31.08 8.96 12.20 -26.88 32.82 10.89 18.29 -10.47 24.78 7.05 10.49
OIL -38.92 40.59 17.08 20.61 -32.36 46.79 19.89 23.51 2.96 46.34 15.16 9.45 -35.14 36.35 12.82 21.76
GOLD -25.65 28.07 10.90 18.74 -15.30 31.37 11.03 15.11 -18.81 26.06 8.18 14.87 -15.28 32.14 9.78 14.66
SPY -18.88 38.00 16.77 16.43 -27.31 36.91 11.83 19.26 -14.32 38.40 10.52 11.56 -31.40 37.31 11.22 16.21
C-OIL -36.41 39.04 12.20 20.99 -11.69 34.76 16.47 14.74 -25.81 38.45 10.43 19.19 -39.21 38.81 7.95 19.78
Average -28.35 35.58 11.88 19.37 -22.08 38.29 14.19 18.13 -21.01 38.60 11.61 16.35 -27.34 34.48 9.36 16.67

Table 10.4 Wilcoxon signed rank test of models differences on average RP for one day
ahead prediction. Level of significance α = 0.05.

Comparison R+ R- Mean Difference z-value W-value result
FL-SMIA versus FLNN 18 27 -4.86 -0.5331 18 not significant at p < .05
FL-SMIA versus MLP 5 40 -6.02 -2.0732 5 not significant at p < .05
FL-SMIA versus M-FL-SMIA 39 6 2.85 -1.9548 6 not significant at p < .05
M-FL-SMIA versus FLNN 8 37 -7.11 -1.7178 8 not significant at p < .05
M-FL-SMIA versus MLP 0 45 -8.27 -2.6656 0 significant at p < .05
FLNN versus MLP 10 35 -5.75 -1.4809 10 not significant at p < .05

clearly not significant. Thus, we don’t have evidence that the SMIA models outperform
the MLP or FLNN on average on any dataset.

10.2.2 Annualised Volatility (AV)

Annualised Volatility (AV) is a measure of investment risk and low AV values are
desirable. Table 10.6 presents the AV results for each model when using all the datasets.

The results show wide variation over the datasets. The standard deviation over the
simulations is comparatively very low, as is the variation between models. The only
exception is the M-FL-SMIA on GOLD, which is dramatically lower than the other
models (9 vs 70+). Even though these values look unusual, double checking revealed
nothing suspicious. Therefore it seems that the M-FL-SMIA provides exceptionally
consistent predictions for the GLOD dataset. It seems, however, advisable to run
further experiments to confirm this results and and conclusions before using this model

Table 10.5 Mann-Whitney U Test for 20 average RP values of data-set, level of
significance α = 0.05

Comparison U-value Z-score P-value results
FL-SMIA versus MLP (US/UK) 199 0.01353 0.99202 not significant at p < .05
FL-SMIA versus MLP (DJC) 163.5 0.9738 0.33204 not significant at p < .05
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in practice. There was unfortunately not enough time to perform more in-depth
investigation of this phenomenon as part of this PhD project.

The comparison between models over the datasets showed no significant differences
in Wilcoxon tests in table 10.7. This is despite the AV value of the M-FL-SMIA
averaged over the datasets being the lowest by some margin (last row in table10.6),
but that is only because of the single results for GOLD, and the non-parametric test is
not sensitive for such a singular deviation.

The tests on individual datasets showed that the difference between the M-FL-
SMIA and the second-best model MLP is highly significant in a Mann-Whitney U test
(table 10.8). The FL-SMIA is producing significantly lower AV than MLP on DJC,
but this difference is less significant.

Table 10.6 AV results over 20 simulations for one-day ahead prediction.

FLNN MLP FL-SMIA M-FL-SMIAData
sets Min Max Avg Sd Min Max Avg Sd Min Max Avg Sd Min Max Avg Sd

US/UK 8.74 9.07 8.93 0.12 8.50 9.07 8.87 0.19 8.05 9.07 8.79 0.29 8.70 9.07 8.97 0.11
US/EU 8.53 9.00 8.79 0.15 8.36 9.00 8.76 0.21 8.50 9.00 8.83 0.17 8.55 9.00 8.90 0.13
JP/US 11.32 11.85 11.64 0.16 11.41 11.85 11.71 0.12 11.48 11.85 11.73 0.13 11.52 11.85 11.76 0.10
NQC 27.53 27.98 27.81 0.16 27.44 27.98 27.76 0.17 27.43 27.98 27.83 0.14 27.48 27.97 27.75 0.17
DJC 24.33 24.75 24.64 0.12 24.24 24.76 24.63 0.14 24.18 24.76 24.52 0.15 24.43 24.75 24.67 0.10
OIL 41.15 43.22 42.34 0.63 40.44 43.16 42.05 0.71 42.04 43.23 42.93 0.31 41.57 43.24 42.44 0.58
GOLD 71.50 73.12 72.18 0.47 71.07 73.19 72.44 0.75 71.73 73.14 72.60 0.39 8.81 9.07 9.00 0.09
SPY 20.17 21.04 20.71 0.27 20.22 21.04 20.74 0.25 20.49 21.04 20.92 0.15 20.21 21.04 20.81 0.27
C-OIL 38.20 39.94 39.28 0.59 38.57 39.95 39.40 0.48 38.25 39.96 39.43 0.50 38.18 39.96 39.44 0.51
Average 27.94 28.89 28.48 0.30 27.80 28.89 28.48 0.34 28.02 28.89 28.62 0.25 21.05 21.77 21.53 0.23

Table 10.7 Wilcoxon signed rank test of models differences on average AV for one day
ahead prediction. Level of significance α = 0.05.

Comparison R+ R- Mean Difference z-value W-value result
FL-SMIA versus FLNN 36 9 19.83 -1.5993 9 not significant at p < .05
FL-SMIA versus MLP 34 11 19.86 -1.3624 11 not significant at p < .05
FL-SMIA versus M-FL-SMIA 26 19 19.72 -0.4146 19 not significant at p < .05
M-FL-SMIA versus FLNN 33 12 12.74 -1.2439 12 not significant at p < .05
M-FL-SMIA versus MLP 35 10 12.77 -1.4809 10 not significant at p < .05
FLNN versus MLP 21.5 23.5 19.72 -0.1185 21.5 not significant at p < .05

Table 10.8 Mann-Whitney U tests for AV values over 20 simulations.

Comparison U-value Z-score P-value results
FL-SMIA versus MLP (US/UK) 173 -0.71683 0.47152 not significant at p < .05
FL-SMIA versus MLP (DJC) 119 -2.17753 0.02926 significant at p < .05.
M-FL-SMIA versus MLP (NQC) 192 -0.20288 0.84148 not significant at p < .05
M-FL-SMIA versus MLP (GOLD) 0 -5.39649 0.00001 significant at p < .05.
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10.2.3 Mean Square Error (MSE)

For the MSE, the comparison of results in table 10.9 illustrates that the MLP produces
the lowest average MSE results for five data sets and the average over the datasets. The
variation between datasets for the same model is mostly within an order of magnitude
and the variation between models is small, with the exception of the M-FL-SMIA
which produces consistently higher AV values than the other models. The standard
deviations tended to be smaller than the values, indicating some consistency in the
MSE performance.

Consequently, the Wilcoxon test for model differences over datasets shows signifi-
cance for all comparisons involving M-FL-SMIA in table 10.10.

Out of the cases where the SMIA models performed best on individual datasets,
only FL-SMIA on DJC and the M-FL-SMIA on SPY were significantly better than the
MLP.

Table 10.9 The average results for the mean MSE-Testing over 20 simulations for one
day ahead prediction

FLNN MLP FL-SMIA M-FL-SMIAData
sets Min Max Avg Sd Min Max Avg Sd Min Max Avg Sd Min Max Avg Sd

US/UK 0.0053 0.0071 0.0059 0.0005 0.0052 0.0068 0.0056 0.0004 0.0010 0.0085 0.0048 0.0028 0.0087 0.2386 0.0673 0.0696
US/EU 0.0064 0.0116 0.0078 0.0011 0.0060 0.0066 0.0061 0.0002 0.0038 0.0069 0.0056 0.0009 0.0212 0.2521 0.1378 0.0701
JP/US 0.0044 0.0194 0.0070 0.0033 0.0041 0.0051 0.0043 0.0003 0.0050 0.0099 0.0077 0.0018 0.0085 0.1849 0.0489 0.0376
NQC 0.0026 0.0064 0.0032 0.0008 0.0025 0.0032 0.0027 0.0002 0.0040 0.0378 0.0086 0.0086 0.0049 0.2134 0.0447 0.0581
DJC 0.0027 0.0647 0.0069 0.0133 0.0025 0.1386 0.0095 0.0296 0.0031 0.0098 0.0053 0.0018 0.0107 0.3083 0.1202 0.0841
OIL 0.0035 0.0073 0.0043 0.0009 0.0034 0.0056 0.0041 0.0007 0.0034 0.0034 0.0034 0.0000 0.0167 0.3123 0.0780 0.0758
GOLD 0.0021 0.0056 0.0031 0.0009 0.0019 0.0020 0.0020 0.0000 0.0029 0.0096 0.0066 0.0021 0.0068 0.2177 0.0639 0.0606
SPY 0.0013 0.0042 0.0024 0.0009 0.0012 0.0016 0.0013 0.0001 0.0018 0.0090 0.0057 0.0021 0.0011 0.0013 0.0012 0.0000
C-OIL 0.0022 0.0040 0.0027 0.0005 0.0021 0.0104 0.0026 0.0018 0.0031 0.0100 0.0070 0.0020 0.0026 0.0576 0.0092 0.0116
Average 0.0034 0.0145 0.0048 0.0025 0.0032 0.0200 0.0042 0.0037 0.0031 0.0117 0.0061 0.0024 0.00090 0.1985 0.0635 0.0519

Table 10.10 Wilcoxon signed rank test of model differences on MSE for one day ahead
prediction.

Comparison R+ R- Mean Difference z-value W-value result
FL-SMIA versus FLNN 31 14 0 -1.007 14 not significant at p < .05
FL-SMIA versus MLP 34 11 0 -1.3624 11 not significant at p < .05
FL-SMIA versus M-FL-SMIA 2 43 -0.13 -2.4286 2 significant at p < .05
M-FL-SMIA versus FLNN 44 1 0.06 -2.5471 1 significant at p < .05
M-FL-SMIA versus MLP 44 1 0.06 -2.5471 1 significant at p < .05
FLNN versus MLP 37 8 0 -1.7178 8 not significant at p < .05

10.2.4 Overall Comparison

Overall, the MLP performs best or tied on average on most datasets by RP, AV and
MES. However, the FL-SMIA has the best results for US/UK exchange rates and for
DJC across all three metrics. Although the difference betwen the FL-SMIA and MLP
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Table 10.11 Mann-Whitney U test for MSE values for one day ahead.

Comparison U-value Z-score P-value results
FL-SMIA versus MLP (US/UK) 185 0.39223 0.69654 not significant at p < .05
FL-SMIA versus MLP (US/EU) 135 -1.74473 0.08186 not significant at p < .05
FL-SMIA versus MLP (DJC) 23 4.77434 0.00001 significant at p < .05.
M-FL-SMIA versus MLP (SPY) 57 -3.85464 0.00012 significant at p < .05.

is not alwast significant, there is some evidence that the FL-SMIA offers and advantage
for these time series. Further tests would be advisable before using these models to
confirm or reject this results for practical use.

10.3 Five Days Ahead Prediction
In this section, the results for five days ahead prediction are listed and discussed.

The parameters resulting from the grid search that produced the highest RP on
average on the validation set are shown in table 10.12. Again, LR is the learning rate,
MOM is the momentum, DR is the decay rate, and H-U refers to the number of hidden
units in the hidden layer. FLNN, FL-SMIA, and M-FL-SMIA are second order models.

Table 10.12 The parameters values that have been used to predict average results for
five days ahead prediction

FLNN MLP FL-SMIA M-FL-SMIAData-sets LR MOM DR LR MOM DR H-U LR MOM DR H-U LR MOM DR H-U
US/UK 0.4 0 0 0.4 0.01 0.01 6 0.4 0.01 0.001 40 0.04 0.4 0.0005 55
US/EU 0.1 0.4 0.1 0.4 0 0.0001 8 0.03 0.4 0.001 59 0.03 0 0.0001 74
JP/US 0.1 0.4 0 0.4 0.01 0.0001 12 0.03 0.03 0.01 71 0.01 0.01 0.0005 86
NQC 0.4 0.03 0.01 0.1 0.03 0.01 12 0.01 0.01 0.01 49 0.03 0.03 0.0005 64
DJC 0.4 0.03 0.0005 0.4 0.01 0 12 0.4 0.01 0.001 47 0.01 0.4 0.001 62
OIL 0.4 0.03 0.0005 0.4 0 0.1 8 0.03 0.4 0.001 86 0.03 0.1 0.0005 101
GOLD 0.4 0.03 0.01 0.4 0 0.0005 12 0.4 0.03 0 56 0.1 0.01 0.0001 71
SPY 0.4 0.01 0.001 0.4 0 0.01 6 0.4 0.4 0.1 45 0.4 0.03 0.001 60
C-OIL 0.1 0.4 0.001 0.4 0 0.0001 6 0.4 0 0.01 47 0.1 0.1 0.0005 62

10.3.1 Relative Profit (RP)

The comparison results for the mean RP results between the proposed networks (FL-
SMIA, and M-FL-SMIA) and the existing networks (FLNN and MLP) showed that
MLP produces the highest RP across datsets, with some margin over FLNN, FL-SMIA
and M-FL-SMIA.

There is much variation betweeen simulations as shown by the SD values that are
higher than the RP values on average (RP can be negative). Variation between models
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and datasets is comparatively high with no clear trends. Accordingly, the tests in
table 10.14 show not significant differences between models.

For the two datasets where SMIA models had the highest RP values, Mann-Whitney
U tests (table 10.15) showed not significant difference to the MLP model, although
FL-SMIA on SPY produces higher RP by some margin (however, less than the SD).

Table 10.13 The average results for the mean RP over 20 simulations for five days
ahead prediction

FLNN MLP FL-SMIA M-FL-SMIAData
sets Min Max Avg Sd Min Max Avg Sd Min Max Avg Sd Min Max Avg Sd

US/UK -63.29 79.31 38.65 35.69 -36.79 77.52 30.33 37.76 -3.26 79.01 29.07 23.32 -61.46 75.39 14.88 40.59
US/EU -37.39 70.14 31.01 28.64 -47.86 72.07 26.53 40.49 -44.02 68.12 21.70 31.84 -60.04 74.43 20.54 36.40
JP/US -41.11 70.40 31.07 34.41 -56.20 70.67 33.19 38.32 -62.66 69.82 17.37 40.88 -20.77 75.05 28.96 30.58
NQC -44.89 63.33 21.67 31.80 -36.09 60.61 21.26 33.02 -55.13 62.38 15.67 32.00 -61.45 63.52 15.76 37.22
DJC -64.59 65.01 25.83 44.44 -64.87 64.55 24.62 39.34 -60.87 58.26 12.09 37.44 -35.45 61.04 21.50 26.17
OIL -67.27 71.14 23.89 45.17 -69.41 73.71 33.96 43.62 -53.37 70.60 30.55 36.17 -70.46 71.31 25.29 41.04
GOLD -55.41 73.44 22.04 45.13 -48.56 74.75 30.88 40.03 -65.45 74.38 23.77 41.03 -69.88 75.34 21.40 43.55
SPY -68.00 67.62 15.04 40.84 -53.28 65.53 24.72 35.51 -8.58 66.40 35.09 15.71 -54.51 64.28 29.17 35.92
C-OIL -61.63 57.63 10.50 34.47 -68.56 65.66 21.92 39.02 -36.52 69.92 25.63 32.51 -67.26 68.11 25.88 39.73
Average -55.96 68.67 24.41 37.84 -53.51 69.45 27.49 38.57 -43.32 68.77 23.44 32.32 -55.70 69.83 22.60 36.80

Table 10.14 Wilcoxon signed rank test for avg RP for five days ahead prediction. Level
of significance α = 0.05.

Comparison R+ R- Mean Difference z-value W-value result
FL-SMIA versus FLNN 21 24 -7.57 -0.1777 21 not significant at p < .05
FL-SMIA versus MLP 10 35 -3.09 -1.4809 10 not significant at p < .05
FL-SMIA versus M-FL-SMIA 27 18 2.9 -0.5331 18 not significant at p < .05
M-FL-SMIA versus FLNN 21 24 -7.57 -0.1777 21 not significant at p < .05
M-FL-SMIA versus MLP 10 35 -1.4809 -3.09 10 not significant at p < .05
FLNN versus MLP 12 33 -2.12 -2.2439 12 not significant at p < .05

Table 10.15 The Mann-Whitney U Test for 20 average RP values of data-sets, level of
significance α = 0.05

Comparison U-value Z-score P-value results
FL-SMIA versus MLP (SPY) 185 0.39223 0.69654 not significant at p < .05
M-FL-SMIA versus MLP (C-OIL) 175 0.66273 0.50926 not significant at p < .05

10.3.2 Annualised Volatility (AV)

The picture for AV in five days ahead prediction in table 10.16 is one of low variation
between datasets and models. Overall, MLP has the lowest AV and FL-SMIA the
highest, but within 2% difference on average.

Therefore is it not surprising that only the FL-SMIA vs MLP comparison over
datasets leads to a significant difference in the Wilcoxon tests in table 10.17. The
Mann-Whitney U tests show no significant differences in table 10.18.
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Table 10.16 The average results for the mean AV over 20 simulations for five days
ahead prediction

FLNN MLP FL-SMIA M-FL-SMIAData
sets Min Max Avg Sd Min Max Avg Sd Min Max Avg Sd Min Max Avg Sd

US/UK 19.11 23.25 21.50 1.31 19.31 23.25 21.78 1.23 20.95 23.27 22.59 0.72 20.06 23.27 22.16 1.12
US/EU 20.13 23.58 22.39 1.11 19.91 23.62 22.00 1.12 20.34 23.62 22.60 1.10 19.64 23.62 22.41 1.31
JP/US 21.53 25.23 23.66 1.35 21.49 25.23 23.35 1.25 21.59 25.20 23.79 1.27 21.75 25.23 24.03 1.18
NQC 46.14 51.86 49.80 1.79 46.65 51.85 49.71 1.83 46.32 51.66 50.10 1.63 46.11 51.85 49.56 2.27
DJC 39.99 44.87 41.92 1.47 40.01 44.54 42.51 1.55 40.64 44.99 43.23 1.38 40.62 44.97 43.70 1.30
OIL 79.36 95.14 87.17 5.65 78.07 94.77 85.80 5.31 79.62 95.14 88.30 5.98 79.27 94.06 88.08 5.48
GOLD 126.75 151.56 140.28 8.98 125.76 151.67 140.13 8.94 126.05 151.66 141.56 8.60 127.56 151.59 141.57 9.23
SPY 38.04 44.23 41.76 2.06 38.51 44.19 41.81 1.77 40.08 44.22 42.35 0.96 38.74 44.14 41.45 1.68
C-OIL 78.71 88.98 85.56 3.07 76.07 88.93 83.62 4.16 75.50 88.98 84.42 3.91 76.25 88.98 82.91 4.93
Average 52.19 60.97 57.12 2.98 51.76 60.89 56.75 3.02 52.34 60.97 57.66 2.84 52.22 60.86 57.32 3.17

Table 10.17 Wilcoxon signed rank test for avg AV for five days ahead prediction. Level
of significance α = 0.05.

Comparison R+ R- Mean Difference z-value W-value result
FL-SMIA versus FLNN 38 7 35.27 -1.8363 7 not significant at p < .05
FL-SMIA versus MLP 45 0 35.66 -2.6656 0 significant at p < .05
FL-SMIA versus M-FL-SMIA 34 11 35.25 -1.3624 11 not significant at p < .05
M-FL-SMIA versus FLNN 31 14 34.93 -1.007 14 not significant at p < .05
M-FL-SMIA versus MLP 36 9 35.32 -1.5993 9 not significant at p < .05
FLNN versus MLP 33 12 35.12 -1.2439 12 not significant at p < .05

Table 10.18 The Mann-Whitney U Test for 20 average AV values of data-sets, level of
significance α = 0.05

Comparison U-value Z-score P-value results
M-FL-SMIA versus MLP (NQC) 194 0.14878 0.88076 not significant at p < .05
M-FL-SMIA versus MLP (SPY) 173 -0.71683 0.47152 not significant at p < .05
M-FL-SMIA versus MLP (C-OIL) 187 -0.33813 0.72786 not significant at p < .05

10.3.3 Mean Square Error (MSE)

Table 10.9 shows that the MLP network produces the lowest MSE on most data-sets.
However on NQC, its MSE is much higher that that of FLNN, which therefore has the
lowest average MSE over the data-sets. The MSE of the SMIA models is around an
order or magnitude higher that that of FLNN and MLP.

Accordingly the overall comparisons show in table 10.20 that both SMIA models
are significantly worse than MLP and FL-SMIA is significantly worse than FLNN.

On individual datasets, FL-SMIA has a good MSE on SPY, which is sginficantly
lower than MLP, although the absolute difference is small (.0017 vs .0018).

10.3.4 Overall Comparison

The picture for five day ahead prediction is even less clear than that for one day ahead
prediction. The MLP model seems to perform best on RP, FLNN best on AV and
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Table 10.19 The average results for the mean MSE-Testing over 20 simulations for five
days ahead prediction

FLNN MLP FL-SMIA M-FL-SMIAData
sets Min Max Avg Sd Min Max Avg Sd Min Max Avg Sd Min Max Avg Sd

US/UK 0.0051 0.0083 0.0063 0.0009 0.0048 0.0054 0.0051 0.0002 0.0068 0.0261 0.0122 0.0047 0.0092 0.3378 0.0659 0.0957
US/EU 0.0077 0.0090 0.0081 0.0003 0.0078 0.0083 0.0079 0.0001 0.0163 0.2028 0.0879 0.0568 0.0160 0.3118 0.1029 0.0935
JP/US 0.0072 0.0203 0.0103 0.0039 0.0069 0.0076 0.0071 0.0002 0.0085 0.3210 0.1151 0.1113 0.0166 0.3084 0.1160 0.0856
NQC 0.0044 0.0072 0.0051 0.0008 0.0042 0.2692 0.0271 0.0682 0.0125 0.2660 0.0998 0.0804 0.0084 0.2510 0.0707 0.0785
DJC 0.0032 0.0057 0.0041 0.0007 0.0030 0.0036 0.0032 0.0001 0.0049 0.0481 0.0136 0.0098 0.0106 0.2993 0.1055 0.0992
OIL 0.0051 0.0141 0.0072 0.0026 0.0047 0.0057 0.0050 0.0003 0.0066 0.3063 0.0812 0.0783 0.0179 0.3248 0.1304 0.0953
GOLD 0.0052 0.0076 0.0060 0.0006 0.0052 0.0079 0.0058 0.0008 0.0072 0.2971 0.0035 0.0621 0.0089 0.3062 0.0573 0.0775
SPY 0.0018 0.0042 0.0024 0.0006 0.0017 0.0022 0.0018 0.0001 0.0017 0.0018 0.0017 0.0000 0.0022 0.0224 0.0094 0.0057
C-OIL 0.0034 0.0345 0.0057 0.0067 0.0031 0.0038 0.0033 0.0002 0.0036 0.0189 0.0079 0.0041 0.0045 0.1915 0.0367 0.0532
Average 0.0048 0.0123 0.0061 0.0019 0.0046 0.0349 0.0074 0.0078 0.0076 0.1653 0.0470 0.0453 0.0105 0.2615 0.0772 0.0760

Table 10.20 Wilcoxon signed rank test for avg MSE for five days ahead prediction.
Level of significance α = 0.05.

Comparison R+ R- Mean Difference z-value W-value result
FL-SMIA versus FLNN 41 4 0.04 -2.1917 4 not significant at p < .05
FL-SMIA versus MLP 42 3 0.04 -2.3102 3 significant at p < .05
FL-SMIA versus M-FL-SMIA 5 40 -0.06 -2.0732 5 not significant at p < .05
M-FL-SMIA versus FLNN 45 0 0.07 -2.6656 0 significant at p < .05
M-FL-SMIA versus MLP 45 0 0.07 -2.6656 0 significant at p < .05
FLNN versus MLP 36 9 0 -1.5993 9 not significant at p < .05

Table 10.21 The Mann-Whitney U Test for 20 average MSE values of data-sets, level
of significance α = 0.05

Comparison U-value Z-score P-value results
FL-SMIA versus MLP (GOLD) 165 0.93323 0.35238 not significant at p < .05
FL-SMIA versus MLP (SPY) 101 -2.66443 0.00782 significant at p < .05.

MSE, but few differences are significant, with the exception of MSE, where the SMIA
models perform markedly worse on average.

The only data-set where using a SMIA model could be of benefit is SPY, where
the RP is markedly higher than other models, MSE is lower, and AV is similar to the
best model. However, the RP difference is not significant (see row 2 in table 10.15), so
that additional experiments would be needed to confirm.

10.3.5 Training Times

The training timed for each model for five days ahead are listed in table 10.22. The
training time for one day ahead is very similar.

Overall, the training times for the SMIA models are longer, with the M-FL-SMIA
using even more time, which is as expected since it combines a SMIA with an FLNN
structure.
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Table 10.22 Training times for running a search with 4 models and 9 data-sets over
a grid with (9 × 5 × 5 × 5) parameter combinations (not all apply to all models, see
section 2.3.4), with 20 simulations of 80 epochs each.

Data
sets FLNN MLP FL-SMIA M-FL-SMIA

US/UK 1:35:19 2:15:42 2:09:20 2:30:44
US/EU 1:48:10 2:29:32 2:24:12 2:49:42
JP/US 1:46:53 2:30:14 2:25:17 2:36:58
NQC 1:28:58 2:32:47 2:19:49 2:24:38
DJC 1:45:49 2:26:20 2:10:40 2:36:12
OIL 1:52:11 2:52:31 2:47:32 2:55:56
GOLD 1:22:57 2:49:30 2:45:23 2:58:59
SPY 2:37:17 3:14:38 3:13:28 3:42:55
C-OIL 2:32:49 3:29:13 3:25:10 3:38:53

10.4 Discussion
In this chapter, an alternative method for prediction (single values), hyper-parameter
selection and evaluation (based on average performances) and data from more tradeable
assets have been used to provide as assessment of the models that is more related to
real life scenarios.

The results on the whole do not replicate the positive results for the SMIA models
that we found in the previous chapters. It seems that MLP is superior in most metrics.
Since MLP is also a simpler and less computationally expensive model, it would in
most cases be preferable for applications.

There are a few data-sets where FL-SMIA models show better results than existing
models (1 day US/UK and DJC and 5 days SPY). These differences would need to
be confirmed in further test and their benefit assessed against additional cost through
longer training, but the performance gain may be worth it.

10.5 Example of a Simple Trading Strategy
In this section, a Simple Trading Strategy will be discussed as well as, the simulation
results for four models (FLNN, MLP, FL-SMIA, and M-FL-SMIA) using three data-sets
(SPY, GOLD, and US/UK) will be listed. The example aim to explain a simple trading
strategy that used to start an investment with 100 dollars as in the following:

1. If we start with 100 dollars, at every time step, we need to calculate the expected
change by using a neural network model( e.g. FL-SMIA model)
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2. If the expected change is negative, that means a ‘sell’ signal. While if the expected
change is positive, that represents a ‘buy’ signal. Based on the expected changes
in the stock prices then we could buy or sell accordingly.

3. If we have already bought the stock and then get another buy signal, we hold the
stock and take not action. Analogously, if we have already sold the stock and get
a sell signal, we take no action.

4. At the next time step, if we hold the stock we adjust the value according to the
new price. Otherwise, we keep the money, i.e. our account remains unchanged.

Table 10.23 Simulation results (100 dollars) based on the models
FLNN MLP FL-SMIA M-FL-SMIAData-sets Profit MDD SNR CDC Profit MDD SNR CDC Profit MDD SNR CDC Profit MDD SNR CDC

SPY 103.65 -67.51 18.27 49.68 109.59 -56.21 21.02 50.00 123.61 -36.39 10.41 49.76 131.02 -33.61 20.76 51.85
GOLD 104.69 -203.52 17.38 53.63 149.23 -129.95 23.76 45.48 153.77 -119.64 24.83 58.22 132.82 -39.91 10.75 46.37
US/UK 109.40 -4.32 20.95 50.51 103.39 -5.93 20.74 54.80 101.34 -5.94 8.67 55.81 106.06 -7.02 12.16 52.78

The results in table 10.23 include the profits, Maximum Draw Down (MDD), Signal
to Nose Ratio (SNR), and Correct Directional Change (CDC) values. In general, the
results indicated that the proposed models (FL-SMIA and M-FL-SMIA produced the
highest profits for SPY and GOLD data. For MDD results, which refer to the maximal
trading loss, the M-FL-SMIA produces better results than all other networks with the
SPY and GOLD data-sets, while FLNN produced the best MDD on the US/UK data.

Although the results for other metrics of the models are varied, in some cases
it reflects useful information regarding the performance of the models. The MLP
model produces consistently good SNR results, i.e. a clearer reading of the signal.
However it is outperformed by the Fl-SMIA and FLNN models when using the GOLD
and US/UK data-sets respectively. The Correct Directional Change (CDC) results
prove that FL-SMIA outperformed the other models when using GOLD and US/UK
data-sets, while M-FL-SMIA model produced the highest CDC value than the other
models when using the SPY data.

Figures 10.5 to 10.7 illustrate the simulation results for three datasets (SPY, GOLD,
US-UK). The simulation line moves when the price forecast increases (positive signals)
and keeps horizontal, which means holding the stock, when a price reduction is forecast
(negative signal).
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for FLNN and MLP.]SPY data (orange) and trading simulation (blue) for the FLNN
model (left) and the MLP model (right).

Fig. 10.3 SPY data (orange) and trading simulation (blue) for the FL-SMIA model
(left) and the M-FL-SMIA model (right).

Fig. 10.4 GOLD data (orange) and trading simulation (blue) for the FLNN model (left)
and the MLP model (right).

Fig. 10.5 GOLD data (orange) and trading simulation (blue) for the FL-SMIA model
(left) and the M-FL-SMIA model (right).
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Fig. 10.6 US-UK data (orange) and trading simulation (blue) for the FLNN model
(left) and the MLP model (right).

Fig. 10.7 US-UK data (orange) and trading simulation (blue) for the FL-SMIA model
(left) and the M-FL-SMIA model (right).



Chapter 11

Conclusions and Future Work

In this chapter, all prediction results which have been illustrated in the previous
chapters for all networks that have been proposed in this research will be summarised
and directions for future work will listed.

In this research, the novel FL-SMIA model (Functional Link with Self-organised
Multilayer neural network using the Immune Algorithm) is proposed. Further, as
extensions of FL-SMIA network the FL-SMIA*, D-FL-SMIA, MD-FL-SMIA, MD-FL-
SMIA-2, M-FL-SMIA, and FL-SMIA-RBM have been proposed for financial prediction.

Three different types of financial data have been used in order to investigate the
ability of the proposed networks for the prediction. The data-sets including: exchange
rates (USD/UKP, USD/EUR, JPY/USD), stock price indices (NASDAQ, DJIA), and
commodity prices (OIL and GOLD) as well as more tradeable alternatives for indices
and commodities (SPY and C-OIL).

The prediction ability for all proposed networks have been tested for one day
ahead prediction and five days ahead prediction. The prediction results have also been
compared with multi-layer neural networks (MLP, and SMIA) and one model of Higher
order neural network (FLNN).

The Wilcoxon signed rank test and Mann Whitney U tests have been used to
test the significance differences between models in this research. Additionally, the
correlation coefficient was applied in order to determine the similarity between the
networks behaviour for financial prediction.

The conclusions for all results will be provided in the following sections.
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11.1 Conclusions for the Prediction for One Day
Ahead

This section discusses the results for one day ahead prediction focusing on financial
prediction results, Relative Profit (RP) and Annualised Volatility (AV).

The RP results indicated that the FLNN model outperforms all other models for
six data-sets from nine data-sets. however, the proposed models and the MLP model
still on it competes with the FLNN model to predict the highest profits. The proposed
models in some cases produce the highest RP than FLNN and MLP models such as
the prediction results when used DJC, OIL and GOLD data.

The AV results showed that the FLNN model reduces the AV values for six data-
sets, however, it is on competing with the proposed models. The proposed models
(FL-SMIA, and D-FL-SMIA) produced the lowest AV results for the rest three data-sets
(DJC, GOLD, and OIL) respectively.

As most of the results for the metrics of the models are varied, the prediction results
that have been presented in chapter 8 and 9 could be concluded based on the metrics
and the average results for the data-set as in the following:

1. Relative Profit (RP)

The prediction results showed that the proposed models which use the Immune
Algorithm and the method of the inputs and their products both contribute to
improving the networks’ performance for financial time series prediction compared
to other multi-layer networks (MLP and SMIA).

The average RP results for one day ahead prediction indicated that the FL-
SMIA network and their extensions (FL-SMIA*, D-FL-SMIA, MD-FL-SMIA,
MD-FL-SMIA-2, M-FL-SMIA, and FL-SMIA-RBM) generally outperform the
MLP network.

Consequently, the average results proved that the use of inputs and their products
with the Immune learning Algorithm improves the performance of multi-layer
networks.

2. Annualised Volatility (AV)

The average results of Annualised Volatility (AV) indicated that the FL-SMIA
network produced the lowest value of average AV of all networks. In other words,
using the proposed model (FL-SMIA) for financial prediction help in reducing
the investment risk more than all other models that used in this research.
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3. Mean Squared Error (MSE)

The average results of MSE-Testing showed that although the SMIA network
outperformed all networks by reducing the MSE-Testing when produced the
average MSE-Testing value (0.00218), the proposed networks FL-SMIA, FL-
SMIA* outperformed all other networks with the average of the MSE-Testing
(0.00227, and 0.00283) respectively. While the FLNN network produced the
average of MSE-Testing (0.00695). When focusing on the average of the MSE-
Testing results, could be noticed that the proposed network FL-SMIA-RBM
outperformed the FLNN model with the average of MSE-Testing value (0.00497
vs 0.00695). In addition, the proposed network FL-SMIA-RBM produced the
lowest average of the MSE-Testing value than the proposed networks (D-FL-SMIA,
MD-FL-SMIA, MD-FL-SMIA2, and M-FL-SMIA).

4. Mean Absolute Error (MAE)

The results of MAE indicated that the FL-SMIA network competes with the
SMIA and FL-SMIA* networks on reducing the MAE results. However, the
FL-SMIA network outperformed all networks when predicting four data-sets.

The average results of MAE show that on one hand, the FL-SMIA network
outperformed all other networks with a decrease in the average value of MAE
to (0.03033). On the other hand, the comparison results between the proposed
networks indicated that FL-SMIA, FL-SMIA*, and FL-SMIA-RBM networks
reduced the average results of MAE more than all other proposed networks.

5. Maximum Draw-Down (MDD)

The average results of Maximum Draw-Down (maximum of trading loss) showed
that the SMIA and FL-SMIA models produced lower values of average results of
MDD than all other networks. The results proved that the maximum of trading
loss could be reached by using the SMIA and FL-SMIA models for financial
prediction.

6. Correct Directional Change (CDC)

The average results of the CDC indicated that the SMIA and FL-SMIA networks
reached the highest values (65.721, and 65.010) than all other networks that used
in this research (The higher value of Correct Directional Change (CDC) is the
target).

7. Signal to Noise Ratio (SNR)
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As the higher ratio value of SNR refers to a clearer reading of the signal, the
results proved that the higher values of average SNR were produced by using the
SMIA and FL-SMIA networks( 26.327 and 26.233) respectively.

The results in chapter 10 illustrated a different picture of the proposed models
(FL-SMIA and M-FL-SMIA) than the results which have been listed in chapter 8. The
reason behind that is predicting the prices in chapter 10 instead of using the relative
difference in the percentage of the price (RDP) method for the prediction in chapter
8.

The prediction results in chapter 10 indicated that the MLP model produced the
highest average results for RP for five data-sets from nine the nine data-sets. While
the FL-SMIA model produced the highest RP average values than all other models
when used the US/UK and DJC data. Also, the FLNN model outperformed all other
models when used two data-sets (JP/US and SPY).

For the AV and MSE, the results showed that each model could reduce the AV and
MSE values for two data-sets, however, the MLP model produced better results than
the other models.

11.2 Conclusions for the Prediction for Five Days
Ahead

In this section, the prediction results for five days ahead prediction with focusing on
financial prediction results, Relative Profit (RP) and Annualised Volatility (AV) will
be discussed.

The Relative Profit (RP) results for five days ahead prediction proved that using
the immune learning algorithm help on improving the performances of the proposed
models and lead to producing the highest RP values than all other networks including
the FLNN network for all data-sets except the GOLD data. The proposed network
(M-FL-SMIA) predicted the highest RP results for five data-sets from nine comparing
to all other network results.

For the Annualised Volatility (AV), the results indicated that the proposed models
(FL-SMIA, MD-FL-SMIA-2, and M-FL-SMIA) outperformed all other networks when
reduced the AV values for the data-sets.

As most metrics results for the models are varied depend on the data type, the
prediction results for five days ahead which presented in chapter 8 and 9 could be
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concluded based on the metrics and the average results for the data-set as in the
following:

1. Relative Profit (RP)

The average RP results for five days ahead prediction proved that all the proposed
network (FL-SMIA, FL-SMIA*, D-FL-SMIA, MD-FL-SMIA, MD-FL-SMIA-
2, and M-FL-SMIA except FL-SMIA-RBM network) outperformed the MLP
network.

The FLNN, FL-SMIA and M-FL-SMIA models produced better RP results than
other networks by using the product terms (inputs and their products), while
the FL-SMIA-RBM does not outperform other networks.

2. Annualised Volatility (AV)

The average results of Annualised Volatility (AV) proved that FLNN network
and M-FL-SMIA network minimize investment risk as it produced the lowest
values of average AV than all other networks.

3. Mean Squared Error (MSE)

The MSE-Testing average results showed that the multi-layer networks which
use the immune learning algorithm (FL-SMIA*, FL-SMIA, SMIA) outperformed
all other networks with the average of values (0.00203, 0.00222, and 0.00268)
respectively. While the FLNN network produced the average of MSE-Testing
values (0.00758).

As the average results of the MSE-Testing of the proposed networks (FL-SMIA*,
FL-SMIA) and the SMIA network proved an improvement of the performance for
the multi-layer networks, this result emphases that using the immune learning
algorithm give the reason behind the improvements of prediction ability of the
multi-layer networks.

4. Mean Absolute Error (MAE)

The average results of MAE illustrated that the FL-SMIA network outperformed
all other networks with the average value of MAE equal to 0.02506.

For the other proposed networks, the average results of MAE showed that only
FL-SMIA* network compete with the FL-SMIA network.

5. Maximum Draw-Down (MDD)
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The average results of maximum Draw-Down (MDD) proved that the FLNN
network followed by the M-FL-SMIA network, produced the lower values of MDD
when compared to all other networks. However, the FL-SMIA network produced
a lower average value of MDD than the MLP network and all proposed networks
except the M-FL-SMIA network.

6. Correct Directional Change (CDC)

The conclusion of the average results of the CDC showed that the FL-SMIA
network outperformed all other networks with the CDC value (63.427).

7. Signal to Noise Ratio (SNR)

The average results for SNR proved that the FLNN network outperformed all
other networks. While the comparison between the multi-layer networks showed
that the FL-SMIA network produced a higher value of average SNR than all
the multi-layer networks. The FL-SMIA* network competes with the networks
SMIA network to reach the second highest average for SNR values between the
multi-layer networks.

The prediction results in chapter 10 showed that the FLNN model outperformed
the other models by producing the highest average results for RP for four data-sets
from the nine data-sets. Also, the MLP model outperformed all other models for three
data-sets. While each of the proposed models (FL-SMIA and M-FL-SMIA) produced
the highest RP average values than all other models only when used the SPY and
C-OIL data respectively.

For the Annualised Volatility (AV), the results showed that each model could reduce
the AV values, however, the MLP model outperformed all other models. The MLP
model produced the lowest AV average results than the other models for four data-sets.
The proposed model M-FL-SMIA also outperformed the other models by produced the
lowest average AV values for the other three data-sets.

The results for Mean Squared Error (MSE) in chapter 10 illustrated the ability of
the models to reduce the prediction error. Although the proposed models could not
reduce the MSE average values such as MLP and FLNN model, the proposed FL-SMIA
model outperformed all other models when reduced the average MSE values for GOLD
and SPY data-sets. consequently, the prediction results for five days ahead in chapter
10 showed that the MLP model performed better than the proposed models as well as
better than the FLNN model.
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11.3 Overall Conclusions
The overall prediction conclusions for all networks that have been used in this research
will be discussed in this section.

The performance of the proposed FL-SMIA model and other proposed networks
have been evaluated using nine financial data-sets. The conclusions have based on the
average results of financial prediction.

Overall, this research concluding the results for the forecasting financial data using
different methods based on the results listed in chapter 8 and chapter 10. The prediction
results in chapter 8 for one day ahead prediction concluded that the average Relative
Profit (RP) results illustrated that although the proposed FL-SMIA model improved
the prediction abilities of the multi-layer networks and outperformed the multi-layer
network (MLP), the FLNN models produced a higher value of average RP than all other
networks. Regarding the investment risk, the results of average Annualised Volatility
(AV) proved that the FL-SMIA model reduced the investment risk by produced the
lowest (AV) value than all other networks including the FLNN models. Additionally,
the average of maximum Draw-Down (MDD) results showed that the lowest values of
loses have been produced by the SMIA network followed by the FL-SMIA network.
The average results for the MSE-Testing denoted that for one day ahead prediction,
the SMIA network followed by the FL-SMIA network produced lower results than all
other networks.

Based on the results for one day ahead prediction in this research, it can be
concluded that among the multi-layer networks for financial data for one day ahead
prediction, the proposed FL-SMIA model is a good choice, as it produced higher profit
(average RP) value than all other multi-layer networks and lower loss (average AV)
value than all other networks. Although the FLNN model produced a somewhat higher
average RP value than all other networks, the FLNN model performed worse than the
FL-SMIA model with the average values of AV and MSE for one-day prediction.

Also, the SMIA network and the proposed FL-SMIA model produced lower average
values for MSE than all other networks including the FLNN model, which means that
it is a good choice for one day ahead prediction to predict a financial data to use the
SMIA network or the proposed FL-SMIA model.

The conclusions for the prediction for five days ahead is that on one hand, the
average results of RP proved that the M-FL-SMIA model outperformed all other
networks (followed by FLNN network). On the other hand, the average AV results
denoted that M-FL-SMIA and FLNN networks produced the lowest values of AV than
all other networks. While the average MDD showed that the lowest values have been
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produced by the FLNN model followed by the M-FL-SMIA model to represent the
maximum loss of trading.

It is clear from these results, that when deciding to use a network for financial
prediction for five days ahead, it is good to use the proposed M-FL-SMIA model
because in most cases the M-FL-SMIA model produced higher profits, lower losses and
less volatility than all other networks.

For the other domains, the decision on which network should be chosen depends
on the MSE results. Therefore, when using non-financial data for five days ahead
prediction, the good decision is to use the proposed FL-SMIA* network or the proposed
FL-SMIA network, as these networks have produced lower average MSE values than
all other networks.

The results in chapter 10 indicated that predicting the prices instead of using
the relative difference in the percentage of the price (RDP) method leads to produce
results which are not replicate the positive results for the FL-SMIA and other proposed
versions which have been illustrated in chapter 8. The results in chapter 10 proved
that the MLP model outperforms all other models in most cases when compared to the
proposed models. However, in some cases, the FL-SMIA produces better results for
RP, AV, and MSE than the MLP and FLNN models. The results for one day ahead
prediction showed that the FL-SMIA model outperformed all other models when used
two data-sets (US/UK and DJC).

For the five days ahead prediction, the results in chapter 10 indicated that the
FL-SMIA model could only predict better results than all models for one data set
which is the SPY. while MLP model performed better than the proposed models as
well as better than the FLNN model.

Consequently, the differences between the results in chapter 8 and chapter 10 would
require more tests and analysis to provide more information which could explain the
reasons for the instability of the results.

A general limitation of the models proposed here is that they have only be evaluated
on a single output variable. There is, however, nothing that prevents multiple output
units in our current models, so that multidimensional models are a natural extension.
The results and the needed parametrizations may, however, be different from the
one-dimensional case studied here.

Finally, the overall conclusions of this research, resulting in thinking about many
ideas related to applying the novel models (FL-SMIA and the M-FL-SMIA)in the
future, as these models could be useful for applications in finance and other domains.
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11.4 Future Research Directions
The proposed FL-SMIA model and its extensions which were presented and discussed
in this research may be used in the future in the domain of financial prediction as well
as for other neural network applications.

The proposed networks could be developed and use in further for different domains
of science. Based on the conclusions drawn from this research, the following proposals
may be worth pursuing for future work:

* Improving the FL-SMIA network by using recurrent connections in the self-
organised network and an immune learning algorithm. The use of recurrent
connections can support the network with a long memory. Also, Using the
recurrent connections with the proposed networks may improve the performance
of the proposed networks (FL-SMIA, M-FL-SMIA) for the financial prediction.

* Examining the proposed networks in order to investigate the best choice of the
network architecture by using other higher-order for the input layer such as the
third-order or utilise the functional expansion model to produce extra input units.

* The proposed networks can be used for further investigation analysing more
data-sets in order to validate the performance on different prediction domains.

* Investigating the direct optimisation of AR instead of MSE, in order to directly
optimise and balance financial performance.

* Investigating the use of a Self-organising layer after a standard hidden layer,
which would require the definition of an error signal for back-propagation from
the Self-organising layer.

* Combining the M-FL-SMIA and recurrent networks.

The future research work that proposed in this chapter may find a positive side
using extra learning methods or alternative methods lead to improving the performance
of neural network models in the financial field or on any other domain.
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One Day Ahead Prediction Figures

This appendix includes plots illustrates as examples for the forecasting, as well for
training and validation errors when using the data listed in table 3.3 (chapter 3) for
one day ahead prediction.
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Five Days Ahead Prediction
Figures

This appendix includes plots illustrates as examples for the forecasting, as well for
training and validation errors when using the data listed in table 3.3 (chapter 3) for
five days ahead prediction.
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