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Abstract

We develop a novel, workable switching option model approach to component redesign and

replacement projects that are divisible into sequential phases. The component manufacturer

has the option to retain the current product position and abandon the project, or switch to

a redesigned product position. Additional uncertainty remains as to whether the redesigned

product can meet the newly set production efficiency criteria. Depending on the viability of

a prototype, the firm can finally decide whether or not to move to final production. Our

framework incorporates a potentially valuable option which aims to reduce the cost of the

project. It is generally applicable to fields where investments in components’ replacement have

to be correctly timed due to large costs and uncertainties about the outcome. We illustrate this

by means of a case study application in aeronautical engineering using real data, where we show

via a sensitivity analysis based on the key variables that the flexibility of component switching

offered via options during the development of the project can be significantly valuable.

Keywords: Component replacement, uncertainty, switching option, cost-effectiveness analysis

1. Introduction

Innovation and incremental improvements of the design of a product or a system are crucial

for its performance, especially for long life cycles, as in the aerospace sector. Investments in

design projects can be divided into sequential phases, giving the firm the opportunity to change

the way the project evolves. In this paper, we focus on a component switching project for a

system and investigate whether this is worth undertaking, i.e., if it can reduce the expected

costing of the replacement parts. The workability of our proposed project valuation approach
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is elucidated by a case study from aeronautics, where we explore component replacement for a

rotorcraft, that is, our system, using real data, and can appeal leading providers of maintenance,

repair, and overhaul (MRO) services for aircrafts, engines and components. Besides, the recent

years have seen a considerable annual growth rate in the MRO and auto parts remanufacturing

industries (e.g., see Vlaanderen, 2018, Shi et al., 2020).

Our research pertains to the domains of production flexibility and real options. Production

flexibility enables the manufacturer to limit the downside risk of operations by curtailing down

production while tapping on favourable upside potentials (see Chevalier-Roignant et al., 2019).

We view production flexibility as a switching option between different production positions.

Real options – a term coined by Myers (1977) – analysis (ROA) allows the quantification of the

firm’s flexibility to estimate the value of production flexibility under uncertainty (see, e.g., Dixit

and Pindyck, 1994, Smith and Nau, 1995, Trigeorgis, 2007). This is facilitated by assimilating

financial option theory to investment decisions made by firms. ROA takes into account the

uncertainty in the cost-to-completion of the project, the uncertainty in the cash flows to be

generated from the project, and the possibility of fatal events that may put an end to the effort

before completion. The use of the ROA to define the timing of the replacement of a component

helps firms evaluate and structure strategic investment opportunities under uncertainty.

A type of investment choice that fits in well with the RO logic is Research and Development

(R&D) (e.g., see Paxson, 2001) and high-technology investment decisions (see Angelis et al.,

2014), where decisions are taken under a high level of uncertainty. Some case studies inspired

by real investment decisions underline the benefits of ROA for strategic decision-making (see

Trigeorgis and Reuer, 2016) and demonstrate the range of applicability of ROA (see Anderson,

2000). With a focus on the aerospace maintenance, repair, and overhaul industry, Miller and

Park (2005) present a real-data application of their real options methodology for guiding a

multi-phased irreversible investment decision involving process design and capacity planning

decisions. In capital-intensive industries, such as in the petroleum industry (Lopes et al., 2019)

and in the development of natural resource reserves (Smith and McCardle, 1999), which are

at ease with capital budgeting decision tools, real options are evaluated in combination with

decision analysis approaches. Related to the real options literature that deals with applications

in commodity and energy industries is also the work of Secomandi and Wang (2012) who

consider network contracts for natural gas pipeline transport capacity, whereas Enders et al.

(2010) look into the interaction between the option to scale the level of natural gas production
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level and the option to scale the extraction rate. Secomandi and Seppi (2014) focus on industrial

facilities responsible for the transformation processes of commodities (conversion assets), which

can be seen as real options on the prices of the underlying commodities. Other examples can be

found in the electricity, pharmaceutical and biotech industries (e.g., see Magazzini et al., 2015

and Chambers et al., 2009), but also in operations management in manufacturing and power

generation, especially in capacity planning and the evaluation of operating flexibility (as in

Rębiasz et al., 2017 and Jiao et al., 2007). All these cases involve significant upfront investments

that often do not lead to immediate cash flows. They also tend to have well-defined stages with

major sources of uncertainty whose resolution is expected to contribute significantly to the

outcome and ultimate value of the projects (see Triantis, 2005). Flexible decision structure is

relevant in manufacturing operations management (see Huchzermeier and Cohen, 1996, Kume

and Fujiwara, 2018 and Nembhard et al., 2000) or in project scheduling, where the timing

decision to start a new product development is influenced by input-cost fluctuations (see Fisch

and Ross, 2014). There might be uncertainty about the project arrival, the processing time, or

the required resource capacity for the project, etc. When scheduling such an uncertain project,

project management might await additional future information before rescheduling (see Boute

et al., 2004).

The model framework presented in this paper is a compelling switching option application

to a redesign project. We divide into sequential stages giving the manufacturer the option to

change the evolution of the project or even abandon it during the development period based on

an evaluation of the state of the project at each stage. Whilst we focus on a redesign component

project in aeronautics as part of our illustration, this is certainly not restrictive as the proposed

approach can be adapted to other fields where investments in components’ replacement have to

be correctly timed due to large costs and uncertainties about the outcome from the introduction

of new technologies not fully exerted by the company. The model comprises three phases. The

design team may either select a product position that translates into the current technology, or

switch its product position in order to avail of upgrades in technology; Jain and Ramdas (2005)

call this the pace-keeping approach. Additional uncertainty remains as to whether a specific

firm’s prototype will meet these hurdles. The firm then needs to develop a prototype and

decide whether it meets, for example, the customers’ feedback and certain production efficiency

criteria. Depending on the viability of the prototype, the firm can finally decide whether or not

to commercialize this and launch the new product category.
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The choice between continuing with a replacement of components and abandoning the

project constitutes a potentially valuable option which is aimed to reduce the cost of the project.

To this end, we first use data comprising real replacement times and the corresponding numbers

of replaced components to estimate analytically the probability distribution of the replacement

time and the number of replacements. Based on this, we then build the cost-effectiveness like-

lihood of our switching option redesign strategy against continuation of the current component

production. We study the effect of key variables in the aforementioned phases, including number

of systems sold, fixed costs involved and probabilities of successfully passing the different phases.

Overall, we find that the number of systems sold plays a primary role in the cost discrepancy

between the original and the redesign project. In line with current market parameter values,

our model yields 90% chance of cost-effectiveness brought by redesign, which can further grow

given the projected increases in the number of systems sold in the short to medium term, as

well as stochastic dominance by first order over the current production. In addition, our model

has been able to hold out satisfactorily against adversely extremely stressed parameters, such

as phase success probabilities and fixed costs, yielding a profitable redesign project with more

than 50% chance.

The remainder of the paper is organized as follows. In Section 2, we present our switch-

ing option model approach to component replacement. Section 3 introduces our case study

application in the aeronautical industry. In Section 4, we describe the implementation of our

framework to the aforementioned case study and proceed with it using real replacement times

of components. In Section 5, we perform project valuation accompanied by an appropriate

cost-effective analysis based on the key inputs and examine the degree of stochastic dominance

between the current and redesign strategy. Section 6 concludes the paper.

1.1. Stochastic dominance in the component replacement problem

2. A switching option model for component substitution

In the aerospace industry, where the life cycle of an aircraft is very long, typically exceeding

40 years, the continuous improvement in design and the introduction of new versions of the

product are necessary to remain competitive. These are typical R&D investments that require

large initial amounts of capital, with profits only to be recovered long after. Management of the

early phases of a project, such as concept generation, preliminary design and product planning, is

of utmost importance for a successful product innovation. In addition, any corrective action and
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engineering change results in considerable cost and time increases as the project implementation

progresses. During early phase, managers and decision makers face maximum uncertainty about

the constraints and opportunities in the product life cycle.

R&D investments can be generally divided into sequential phases or staged paths, so that

the firm acquires the opportunity to change the evolution of the project during the development

period. More specifically, the design process can be modelled as an option to continue, change

path or abandon the project following an evaluation of the state of the project in each sequential

phase. Here, we study a redesign component project and propose a way of evaluating it by

dividing the total investment into sequential premiums paid to establish options that will offer

potential switching routes in the project implementation. The choice between continuing and

abandoning the project, if conditions turn out to be unfavourable, constitutes a potentially

valuable option as, by truncating poor outcomes, it is hoped to yield the expected project value

increases. Our ultimate goal is to determine whether the redesign project is indeed lucrative

for the company.

2.1. Model framework

We define the random number of replacements N0 of the current component

N0 = max
{
n:

n−1∑
i=1

τ0
i ≤ H

}
, Hl,0 ≤ τ0

i ≤ Hu,0, (1)

where H is a system’s life, {τ0
i }i is the collection of independent and identically distributed

(i.i.d.) random lengths of the component replacement periods (in number of whole hours), and

Hl,0 and Hu,0, respectively, its lower and upper bounds. More specifically, Hu,0 denotes the

component’s fatigue life limitation, i.e., the range of its capability to withstand the operating

loads without failures during the service life of the system. The use of such a maximum is

essential for safety reasons. Hl,0 > 0 is the minimum lapse of time until the first replacement

duration and this is practically nonzero to allow for inspection for defects, damages or failures.

In the following proposition, without loss of generality, we assume that τ0
i has a discrete

probability distribution taking equally spaced distinct values from Hl,0 to Hu,0 = αHl,0, where

α ∈ Z+, in consistency with current inspection cadence in practice, however this can be easily

adapted, for example, to a continuous distribution for the time, if needed, depending on the

nature of a given study.
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Proposition 1. Under general assumptions for the probability distribution of τ0
i , the probability

distribution of N0 is given by

p0 (n) =
Hu,0∑

k=Hl,0

P

(
H − k ≤

n−1∑
i=1

τ0
i < H

)
P
(
τ0

n = k
)
, (2)

where p· (n) := P (N· = n), n ∈ N· := {dH/Hu,·e , dH/Hu,·e+ 1, . . . , bH/Hl,·c}. Also,

p0 (dH/Hu,0e) =
dH/Hu,0e∏

i=1
P
(
τ0

i = Hu,0
)
, (3)

p0 (bH/Hl,0c) =
bH/Hl,0c∏

i=1
P
(
τ0

i = Hl,0
)
. (4)

Proof. From (1), we require that

p0 (n) =
Hu,0∑

k=Hl,0

P

(
n−1∑
i=1

τ0
i < H,

n∑
i=1

τ0
i ≥ H

)

=
Hu,0∑

k=Hl,0

P

(
n−1∑
i=1

τ0
i < H,

n−1∑
i=1

τ0
i + k ≥ H

)
P
(
τ0

n = k
)

from which (2)–(4) follow.

In addition, we similarly define NU and ND the random number of replacements of the re-

designed component with, respectively, a demonstrated substantial (up state) and minor (down

state) fatigue life limitation increase during the test phase:

NU = max
{
n:

n−1∑
i=1

τU
i ≤ H

}
, Hl,U ≤ τU

i ≤ Hu,U , (5)

ND = max
{
n:

n−1∑
i=1

τD
i ≤ H

}
, Hl,D ≤ τD

i ≤ Hu,D, (6)

where τU
i and τD

i are the replacement durations of the i-th component at the up and down state,

respectively. Under the assumption that the new component design will not vary (increase)

significantly from the current one, we model τU
i and τD

i as linear transformations of τ0
i , although

this is not intended to be restrictive:

τ j
i = Aj +Bjτ0

i , j ∈ {U,D}, (7)
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where Aj and Bj satisfy  Aj +BjHl,0 = Hl,j

Aj +BjHu,0 = Hu,j

with

Hl,D = Hl,U = Hl,0,

i.e., the minimum passage of time until the first possible replacement remains unchanged, and

Hu,U > Hu,D > Hu,0

reflecting the improvement brought in by the redesign while allowing for different levels of such

an improvement. This yields

Aj = Hu,0Hl,j −Hu,jHl,0
Hu,0 −Hl,0

and Bj = Hu,j −Hl,j

Hu,0 −Hl,0
.

Given (7), the probability distribution of NU and ND follows by analogy from (2).

As part of the project valuation approach, we consider first the standard base case value

without flexibility, corresponding to the continuation of the production of the current component

without any redesign. This represents the reference point for gauging the convenience of the

redesign project against to. The resulting base case cost function for N0 replacements is

CB = c+ C0 (1 +N0)NH , (8)

where c ≥ 0 reflects any initial total costs, C0 is the deterministic cost per current component

per system and NH the number of the systems. This yields an expected expenditure in the base

case

EB = c+ C0 (1 + E [N0])NH , (9)

where E [N0] follows from the probability distribution of N0 specified in Proposition 1.

The manufacturing company then considers the option to switch to a redesigned component

with enhanced characteristics and extended life limitation. It estimates that a three-phase model

will be relevant comprising detailed design, testing and verification, and final production. This

is modelled as shown on the event tree in Figure 1 and described next. An amount CD is secured

for the detailed design phase. With probability qD ≥ 0 the redesign project might be eventually
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decided to continue or be abandoned. At the end of this phase, the deterministic total cost CD is

incurred, in addition to potentially base costs should it be decided that the project will cease and

the current component is taken to production. If it is continued, then the prototype production

and testing phase commences. This might be particularly successful leading with probability

qT ≥ 0 to a component with an extended fatigue life limitation Hu,U or a less extended life

limitation Hu,D. At the end of this phase, the deterministic total cost CT associated with the

test phase is incurred, in addition to the resulting cost C1 per redesigned component per system

taken to final production. In light of the above, the probability distribution of the cost function

related to the switching option for NU or ND replacements (see equations 5–6) is summarized

as follows:

CS =


CB + CD, with probability 1− qD

CD + CT + C1 (1 +NU )NH , with probability qDqT

CD + CT + C1 (1 +ND)NH , with probability qD(1− qT )

, (10)

which yields expected expenditure

ES = CD + qDCT (11)

+NH [C0 (1 + E [N0]) (1− qD) + qDC1 (1 + E [ND] (1− qT ) + E [NU ] qT )] .

Also, the probability distribution of the number of replacements in the switching option project,

NS , is

pS (n) = p0 (n) (1− qD) + pU (n) qDqT + pD (n) qD(1− qT ),

where n ∈ (N0 ∪NU ∪ND) andNj = {dH/Hu,je , dH/Hu,je+ 1, . . . , bH/Hl,jc} for j ∈ {0, U,D}.

Proposition 2. The probability that continuing the current component production costs at least

as much as the switching option project is given by

P (CB ≥ CS) =
∑

x

[
p0

(
x− CD − c

NH
− C0

)
(1− qD)

+pU

(
x− CD − CT

NH
− C1

)
qDqT

+pD

(
x− CD − CT

NH
− C1

)
qD(1− qT )

] ∑
n≥x−c

NH
−C0

p0 (n) .

where x ∈ X and X := [(c+ C0 (1 +N0)NH + CD) ∪j (CD + CT + C1 (1 +Nj)NH)] for j ∈
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{U,D}.

Proof. We have that

P (CB ≥ CS) =
∑

x

P (CB ≥ x)P (CS = x) ,

where from (10),

P (CS = x) = P (CB + CD = x) (1− qD)

+P (CD + CT + C1 (1 +NU )NH = x) qDqT

+P (CD + CT + C1 (1 +ND)NH = x) qD(1− qT )

Then, from (8),

P (CB ≥ x) = P

(
N0 ≥

x− c
NH

− C0

)

and additionally from (10),

P (CB + CD = x) = P

(
N0 = x− CD − c

NH
− C0

)
,

P (CD + CT + C1 (1 +Nj)NH = x) = P

(
Nj = x− CD − CT

NH
− C1

)
.

In the following sections, we aim to exemplify the proposed project valuation approach by

means of a typical case of component replacement from aeronautical engineering.

3. A case study of helicopter part redesign

It is common in the aerospace industry to sell to customers, along with the aircraft, optional

services such as training for the pilots and the field operators, maintenance support, which

ranges from mere supply of replacement parts to complete maintenance support comprising also

mechanical maintenance technicians with 24-hour availability, and various levels of warranty.

Different contractual agreements are offered to customers who are encouraged to purchase, given

that the aircraft maintenance over its useful life constitutes a substantial portion of an airline’s

or, more generally, a flight operator’s operating costs that are often comparable to the aircraft

cost itself. The best-seller contract generally includes initial training for pilots and maintenance
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staff, replete coverage of aircraft maintenance and most of the repair costs until the aircraft

reaches a certain number of operative hours.

The case that will be analyzed in this paper relates to an international aerospace company

that produces and directly sells a large rotorcraft. This company adopts a commercial strategy,

common in the industry, to offer maintenance programs tailored to the customers’ needs. In

general, maintenance programs consist of all the operations needed to maintain the helicopter

fully operative, including inspections, repairs or replacement of worn components or critical

components with fatigue life limitation.

A helicopter’s flight control system is composed by hundreds of different components moving

and rotating in order to allow the pilots to properly fly and manoeuvre the helicopter. All

these components are critical parts and most of them have a limited fatigue life and their

scheduled substitution is mandatory. In the case analyzed here, the maintenance program

related to a particular helicopter model lasts for the period of warranty, i.e., until the aircraft

reaches a maximum of H = 3600 flight hours. Feedback provided by the customers and the

company’s technicians can be very helpful. In our case study, for example, such a feedback

helped identify a particular component of the system that was often found worn or damaged.

Further investigation revealed that, due to poorly estimated flight loads, the component had a

lower fatigue life than what predicted when the helicopter entered originally into service and,

therefore, that was limited to Hu,0 = 300 flight hours before being replaced. Also, the minimum

duration to replacement is set equal to the number of flight hours until the first inspection

is scheduled, i.e., Hl,0 = 5 hours; this is nonzero to allow, for example, for potential non-

conformities during inspection and installation. The replacement cost is as high as C0 = 3000

USD per unit as sub-parts of this component are provided by an external supplier.

In view of the above, the manufacturer is evaluating the option to redesign the component,

aiming to achieve an extended life limitation to Hu,U . To this end, they adopt the three-

phase model of the previous section involving detailed design, testing and verification, and final

production. Design constraints, such as the impossibility to change the component’s dimensions

to avoid jeopardizing the overall flight control system design, cannot be ignored and the redesign

of the component can lead to a minor life limitation increase Hu,D < Hu,U with Hu,D > Hu,0.

In addition, the lapse of time to the first replacement remains unaffected by the redesign, i.e.,

Hl,D = Hl,U = Hl,0 = 5.

The detailed design phase has an estimated cost of CD = 125,000 USD. This phase is
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mainly the supplier’s responsibility and the estimated chance of being approved (feasibility,

acceptability of proposal, and scheduling) by the company is qD = 85% based on prior experience

with this legacy supplier. There is a remaining 15% chance that the results of the new design

will be discarded and the current product will continue being released to the customers. This

can be modelled as an option of continuing with or abandoning the project after the detailed

design phase. If this is successful, the project can move to prototype production and testing

phase during which the feasibility of the design will be verified along with its reliability. More

specifically, the fatigue life limitation of the redesigned component will be assessed by means of

ground testing with simulated loads and flight conditions. Based on historical information, the

estimated probability that the component will be able to exhibit Hu,U = 1200 > Hu,0 = 300

hours of service life is qT = 65%, with a remaining 35% chance of component durability of

Hu,D = 900 > Hu,0 = 300 flight hours. The estimated cost for the pre-production and testing

phase is CT = 975,000 USD with an extra cost of C1 = 4550 USD per new unit when passed to

the final production phase, both in addition to the non-recurring cost already allowed for in the

design phase of the project. The second set of possibilities is purely driven by the performance

of the redesigned component in the operations during pre-production and testing and cannot

be manipulated by the management.

As said in the previous section, the event tree summarizing the entire model is shown in

Figure 1. More specifically, this represents a compound option with two investment decisions:

the first one relates to the design phase, whereas the second development decision is contingent

on the outcome of the first phase. Two different and unrelated sources of uncertainty are present

in the model: the first is economic, whereas the second is strictly technological. The different

variables in the model are also summarized for convenience in Table 1, along with their initial

values for the particular application and the relevant descriptions.

4. Data and model estimation

In the following, we present, for the purposes of our case study, the data on the actual

performance of the current component as of the close of the year 2019. These originate from

field service representatives spread on several customers’ maintenance bases, then are collected

by company’s customer support, which is responsible for monitoring the whole fleet of NH = 40

helicopters, and are finally organized and made available for internal use. In total, there are

206 components removed from helicopters already delivered to customers due to either life
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limitation or premature failure. These data are reported in Table 2 in terms of replacement times

(measured in terms of whole flight hours from installation until removal) and the corresponding

numbers of replaced components. It is worth noting that the components are visually inspected

for defects, damages or failures every 5 hours and may only be removed during such inspections.

Flight hours cannot exceed 300, that is, the fatigue life limitation of the current component.

Using the information in Table 2, we obtain the empirical distribution estimate of the

replacement time τ0, P̂
(
τ0 = k

)
for all k = Hl,0, 2Hl,0, . . . ,Hu,0 = αHl,0. This is shown in

Figure 2 with observed large probability mass concentrations every 50 hours due to increased

number of replacements associated with more detailed inspections performed then, leading

to largest peak at 300 hours when the component reaches the upper limit of its fatigue life.

The related summary statistics are presented in Table 3 with particularly reflected increased

percentiles. Then, for i.i.d. {τ0
i }i and K = Hl,0, . . . , nHu,0, we define

Q(K,n) := P

(
n∑

i=1
τ0

i ≤ K
)
,

which, by independence of the replacement times, we compute by the following convolution

Q(K,n) =
Hu,0∑

k=Hl,0

Q(K − k, n− 1)P
(
τ0

n = k
)
.

This can be performed easily on computing platforms such as Matlab using the built-in function

conv. Given P̂
(
τ0 = k

)
, we also obtain from (7) the relevant probability distributions for τU and

τD, as defined in (7), and the distributions of the corresponding cumulative sums of replacement

times. In addition, we have confirmed our computed cumulative probabilities above against the

corresponding simulated cumulative probabilities based on a random sampling procedure with

replacement from our data to simulate possible values of τ0.

Some preliminary checks are also quite informative. Figure 3 exhibits the probability dis-

tribution developed in Section 2.1 of the number of component replacements N0 in the base

case without flexibility and ongoing production of the current component as well as NS in the

component switching option model. The effect of optionality is obvious with the resulting bi-

modal distribution indicating, in the latter case, a smaller probability mass concentration at

lower number of replacements following a successfully tested and finally produced redesigned

component. A smaller probability mass concentration is observed at larger number of replace-
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ments due to potential abandonment of the redesign project with similar range to that of the

current production. The flexibility introduced by the switching option is manifested in Table 4

of the relevant summary statistics with considerably decreased mean number of replacements

and percentiles. The increased spread, asymmetry and tailedness originate by the option.

Having built and estimated our model for the time and number of component replacements in

the current and revised production project with inherent optionalities, we next aim to investigate

its cost-effectiveness for the manufacturer.

5. Analytics supporting decision making

We start our analysis by a comparison of the cost functions in Section 2.1 under the current

project and the redesigned project with our proposed switching option. We use the default

parameter values shown in Table 1. Figure 4 shows the probability distribution estimates for

CB (8) and CS (10) corresponding to each case and Table 5 the relevant summary statistics. We

observe a reduction in the mean cost and the percentiles, but more importantly in the standard

deviation, i.e., reduction in cost uncertainty brought by the option. Not surprisingly, the shape

of the probability distribution in the switching option model is rather “exotic”, by nature of the

project specification, and asymmetric with a slightly increased peakedness.

The impact of the redesign project depends on the number of systems – here, helicopters NH ;

the level of the costs CT of the investments during the pre-production and testing phase, which

are typically high and independent from the number of the systems sold; the success probabilities

qD and qT of the design and test phases respectively; and the difference between the current

component unit cost C0 and the redesigned component cost estimate C1. The non-recurring

costs raise the total costs of the redesign project before moving to final production, however the

new component is less likely to be changed again soon; in general, the fewer the replacements,

the lower the cost of the supply of the components as a response to the maintenance contracts.

Moreover, the effect of the non-recurring costs on the total expenditure reduces when they are

allotted across more systems. In fact, the latter turns out to be a primary factor driving the cost

discrepancy between the base case project and the project with incorporated switching option.

A comprehensive study of the potential driving factors is the object of the following sections.

This can be used to assess the importance and level of influence of the different variables as

well as the importance of using accurate estimates for the input parameters aiming to limit the

exposure to misspecification risk. The cost functions CB and CS are linked with the expected
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expenditures EB and ES given by (9) and (11). The probability of a more cost-effective redesign

project P (CB ≥ CS) is computed analytically as shown in Proposition 2. For the purposes of

our exercise, we set ranges of variation for the various underlying variables. For example, the

range for NH is consistent with expected fleet size increments in the near future and in the

medium term before stabilizing due to the long life cycle of the helicopter. Fixed costs, like the

aggregate CT and C1 per redesigned component, are educated estimates based on the historical

costs for the improvements undertaken during the redesign. The probabilities qD and qT are

based on historical data and prior knowledge from previous related projects.

5.1. Number of systems and design phase joint effects

Figures 5–6 are devoted to a study of the expected expenditure as a function of NH and qD.

More specifically, the grey surface in Figure 5 indicates a linearly increasing EB with NH and is

independent of qD. On other other hand, ES , given by the blue surface, is bilinear in NH and qD.

This as well as the resulting expected cost ES dropping below the base case cost EB are indeed

anticipated for a higher chance of continuation of the redesign project applicable to a larger

fleet. This is more closely seen in Figure 6 which exhibits the contour levels of the difference

of the expected costs of the two strategies. The contour curves, represented by hyperbolas,

associated with negative (positive) values indicate that the redesign strategy is characterized

by a lower (higher) expected cost. In particular, the contour curve of level 0 represents the

combinations of helicopters sold and levels of carrying-on probability with the new strategy

such that the manufacturer breaks even. On the same plot, the red spot corresponds to the

default values (NH , qD) = (40, 85%). Moreover, for unchanged NH = 40, the redesign project

generates a lower expected cost even with a qD that is as low as 67%. For a small NH , the

saving brought in by the enhancedly performing redesigned component is unable to outweigh

the fixed costs. Indeed, Figure 5 shows that, for relatively small NH , ES as a function of qD

is downward-sloping, albeit only slightly, and is always above EB. Instead, the relationship

between ES and qD is reversed becoming upward-sloping for sufficiently large NH . The contour

plot stresses that even for an absurd probability of 10% of a successful design phase, a fleet size

larger than 80 suffices for a more cost-saving redesign project.

Similar conclusions emerge from Figure 7 which exhibits the probability of a cost-effective

redesign strategy, P (CB ≥ CS), as a function of NH and qD; in addition, Figure 8 shows the

contour curves of the probability surface. As before, the likelihood of a more cost-effective
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redesign project increases with NH and qD. We focus the spotlight on three different levels

of P (CB ≥ CS): 10%, 50% and 90%, including the default combination (NH , qD) = (40, 85%)

indicated by the red mark. For NH = 40 and a very unusually low qD = 30%, the redesign cost

has a 10% chance to be lower than the base cost. With qD rising to 80%, that is, closer to its

market estimated value, the probability of a lower cost increases to 50%. For the default value

of qD = 85%, the probability of having a lower cost is as high as 90% for around 50 helicopters

sold, which is welcome news for the efficiency of our proposed model framework. The contour

plot confirms the relative importance of having a large fleet size. If qD is as small as 10%, the

redesign project becomes cost-saving with an above 50% probability when NH exceeds 70. With

NH close to 100, this probability rises to 90%. This is also seen in Figure 7 where, for relatively

small (large) NH < 30 (NH > 75), the probability of having a lower cost is near zero (one).

5.2. Number of systems and test phase joint effects

Once the project moves to the test phase, it is sensible to study also the effect of the

probability qT of a successful, significant increase of the component’s life limit. Qualitatively,

we observe a similar pattern as with qD in the design phase. Figures 9–10 examine the expected

cost and the probability of achieving a lower cost as a function of NH and qT . The expected cost

of the current base project is unvarying with qT , whereas incorporating the switching option

results in a bilinear expected cost function of both variables (with contour levels for the expected

cost differences in the form of a hyperbola, omitted from the paper in the interest of space). For

the default values (NH , qT ) = (40, 65%), the redesign project yields a slightly lower expected

cost and the probability that the cost is actually lower than that of the current production

is just above 50%. For NH = 60 and an extremely unambitious test phase with qT = 10%,

noting that the default value qT = 65% is much higher as the project does not rely on new

technologies whose potential or drawbacks are yet to be discovered, the proposed model is still

able to ensure that the redesign strategy has a lower cost with 90% chance. These numbers

confirm the predominant effect of a large fleet almost despite the qT level. This is also shown

in Figure 11 where varying NH affects the rate of increase of the cost-effectiveness likelihood

of the proposed strategy: extremely small or large NH has a flattening effect on this, whereas

gradually increasing NH in between yields an upward-sloping trend that is steepest around

NH = 40 before it starts flattening again at 90% chance. This is due to the accumulating costs

(C0 and C1 per component) with increasing NH .
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5.3. Number of systems and costing joint effects

Next, we study the combined effect of NH and the fixed cost CT incurred in the test phase.

As shown in Figure 12, the latter affects only the expected cost of the redesign project in a linear

fashion. (Similar observations are made for different fixed CD levels in the design phase.) Quite

predictably, increasing CT can have a detrimental effect on the project profitability. However,

for sufficiently large NH , the total cost remains below that of the base project for reasonably

varied CT : when NH = 40, the redesign project becomes profitable when CT is lower than 1.1

million USD, which includes the default cost value of 975,000 USD. For a larger NH , the fixed

costs are not affected and, therefore, the proposed project remains financially sustainable even

for higher CT levels: for example, for NH = 50, the project profitability is able to withstand a

CT increase to 1.3 million USD. These arguments are reflected in Figure 13, where the negative

impact of CT on P (CB ≥ CS) is made obvious, but more importantly it is shown how this

probability increases with NH and its decay rate decreases (changing curvature) with it. In

fact, controlling the cost of this phase is crucial for the profitability of the project, as its effect

on the total costs is larger than that of the other variables seen.

5.4. Number of systems and joint phase effects

Lastly, we study the joint impact of varying probabilities qD and qT of, respectively, passing

the design phase and successfully testing the new component. The base project cost is not

affected by these changes: the grey surface in Figure 14 is indeed flat. For the reference values

NH = 40, qD = 85% and qT = 65%, the redesign project is characterized by a lower expected

cost, whereas it breaks even at qT = 50%. As already mentioned, the default value qT = 65%

is sensibly much higher as the new technologies used have known potentials. Instead, a low qD

is associated with more uncertainties in the design phase, obscuring the overall cost reduction

effect.

In Figure 13, we additionally introduce the effect of varying NH . We see that increasing

NH , with qT and qD held fixed at their maximum level of 1, results in the steepest and highest

cost-effectiveness likelihood of the redesign strategy. Quite naturally, intermediate qT and qD

values have a clockwise swivelling effect; this becomes particularly interesting for small NH

as the probability P (CB ≥ CS) in that region is larger than for qT = qD = 1 due to lower

accumulated costs (C0 and C1 per component). Even more interestingly, P (CB ≥ CS) becomes

larger and flatter in the unlikely extreme case of qT = qD = 0 for even moderate NH values.
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5.5. Stochastic dominance in the component replacement problem

We complete our analysis by an application of stochastic dominance rules in our manufac-

turer’s component replacement problem. We are interested in seeing whether an unambiguous

decision between the two alternatives can be made, independently of the manufacturer’s util-

ity function. Given two uncertain positions with cumulative distribution functions F and G,

the stochastic dominance theory provides conditions for preference of F over G for any utility

function u in a function set Ui, i.e.,

EF [u (X)] ≥ EG [u (X)] , ∀u ∈ Ui and X ∈ X ,

where X is defined in Proposition 2. Depending on the function set, we can have various

stochastic dominance orders; we focus on the first three rules (i = 1, 2, 3) with most economic

meaning. U1 includes all u with u′ ≥ 0, i.e., all increasing utility functions and we say that F

dominates G in a first-order stochastic dominance (FSD) sense. Hadar and Russell (1969) and

Rothschild and Stiglitz (1970) introduced the less restrictive second-order stochastic dominance

(SSD) by considering the set U2 of increasing and concave utility functions, i.e., this includes

all u with u′ ≥ 0 and u′′ ≤ 0. Finally, Whitmore (1970) introduced the third-degree stochastic

dominance (TSD) for the class of utility functions U3, including all u with u′ ≥ 0, u′′ ≤ 0 and

u′′′ ≥ 0, such that the risk premium associated with an uncertain prospect becomes smaller for

larger wealth. (See also Levy, 1992.) The stochastic dominance rules and the associated utility

function classes are summarized as follows:

FSD: G(x) ≥ F (x), ∀x ∈ X ,

SSD:
∫ x

Xmin
G(s)ds ≥

∫ x

Xmin
F (s)ds, ∀x ∈ X ,

TSD:
∫ x

Xmin

∫ y

Xmin
G(s)dsdy ≥

∫ x

Xmin

∫ y

Xmin
F (s)dsdy, ∀x, y ∈ X , and EF [X] ≥ EG [X] .

(Note that at least one strict inequality must hold in all cases.)

The previous stochastic dominance criteria allow us to rank the two risky prospects. In

particular, we determine the fleet size threshold levels such that the switching strategy dominates

the base strategy, or vice versa, according to each of the three criteria. Figure 16 shows that if

the fleet size NH is equal to 30, the base project dominates the switching strategy by all FSD,

SSD and TSD, and vice versa if NH = 50. For our reference value NH = 40, no conclusive
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decision can be made as the (integrated) cumulative distribution functions cross each other,

hence there is no clear-cut dominant strategy. However, as mentioned at the beginning of

Section 5, considerable fleet size increments expected in the short term are very encouraging

for a manufacturer that considers changing the component production plan in the near future.

More specifically, Table 6 reports that for NH larger than 48, the switching strategy dominates

the current production position by FSD (and, therefore, SSD and TSD). For NH ≥ 45, the

switching option strategy dominates by SSD (and, therefore, TSD); for NH ≥ 43, it dominates

by TSD. The base project becomes only dominant over the proposed redesign project by FSD

in the rather implausible case of a fleet size of 33.

6. Conclusions

In this paper, we devise a model that incorporates a switching option in the evolution of

a redesigned replacement component project accounting for large costs and uncertainties in

the decisions to be made at the different sequential stages. The approach herein provides a

structured methodology including the model framework, analytical model estimation using real

data, project evaluation and cost-effectiveness analysis.

The paper focuses on a case study application of the proposed framework in aeronautics.

It is shown that the selection between project abandonment or continuation with redesigned

component replacement represents a valuable option which, given the various uncertainties,

manifestly increases the likelihood of cost-effectiveness over an unchanged production position.

We study the effect of key variables in the project evolution, including the number of systems

sold, fixed costs involved and probabilities of successfully passing the different phases. It is

found that the number of systems sold is the key driver of the cost reduction brought in by

our redesign project. Consistently with prevailing and imminent market conditions, this yields

cost-effectiveness with at least 90% chance and stochastic dominance of our proposed redesign

project over the current risky production by first order. Finally, as part of our sensitivity

analysis, this has also been able to withstand extremely stressed costs and low phase success

probabilities, having been shown cost-effective with more than 50% chance.
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Notation Description Default value
c Initial total cost ($) 0
CD Deterministic total cost ($) of preliminary design phase 125,000
CT Deterministic total cost ($) of pre-production and test phase 975,000
C0 Unit cost ($) of current component 3000
C1 Unit cost ($) of redesigned component 4550
N0 Replacements of current component Random
NU Replacements of redesigned component

(substantially increased fatigue life) Random
ND Replacements of redesigned component with

(minor fatigue life increase) Random
NH Number of systems sold 40
qD Probability of project continuation following detailed design 85%
qT Probability of success of test phase 65%
τ0 Current component replacement time Random
τU Redesigned component replacement time

(considerable fatigue life increase) Random
τD Redesigned component replacement time

(minor fatigue life increase) Random
Hl,· Flight hours until first inspection 5
Hu,0 Fatigue life limitation (hours) of current component 300
Hu,U Fatigue life limitation (hours) of redesigned component

(considerable fatigue life increase) 1200
Hu,D Fatigue life limitation (hours) of redesigned component

(minor fatigue life increase) 900

Table 1: Model variables and parameters.
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Replacement time Number of Replacement time Number of
(flight hours) components replaced (flight hours) components replaced

5 1 195 6
30 1 200 16
45 1 205 7
50 6 210 6
55 3 225 3
85 2 250 3
95 11 255 6
100 18 260 6
105 7 265 8
125 2 270 6
145 3 275 3
150 12 290 6
155 3 295 8
180 3 300 48
190 1 Total 206

Table 2: Replacement times and corresponding numbers of components replaced based on data provided for
the entire helicopters fleet. Source: Company’s customer support and feedback from technicians performing
maintenance as of close of year 2019.

Replacement time statistics
Mean 206.89
Standard deviation 84.15
10th percentile 95
25th percentile 125
Median 210
75th percentile 295
90th percentile 300

Table 3: Summary statistics of component replacement time (in hours) τ0.

Number of replacements statistics Base case N0 Redesign project NS

Mean 16.97 6.31
Standard deviation 1.74 4.66
Skewness 0.37 1.83
Kurtosis 3.16 4.88
Median 17 5
75th percentile 18 6
90th percentile 19 16
99th percentile 21 20

Table 4: Summary statistics of number of replacements distribution: base case (N0) versus redesign project
(switching option) (NS).
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Project cost statistics Base case CB Redesign project CS

Mean 2,156,907 2,125,024
Standard deviation 208,644 164,336
Skewness 0.373 0.677
Kurtosis 3.162 3.472
Median 2,160,000 2,105,395
75th percentile 2,280,000 2,242,095
90th percentile 2,400,000 2,332,240
99th percentile 2,640,000 2,587,495

Table 5: Summary statistics of project cost (USD) distribution: base case (CB) versus redesign project (switching
option) (CS).

Criteria Base �SD Switching Switching �SD Base
FSD 33 48
SSD 38 45
TSD 39 43

Table 6: Critical fleet size levels NH of stochastic dominance of switching option strategy over the base project
(Switching �SD Base), and vice versa, by first order (FSD), second order (SSD) and third order (TSD). Second
(third) column shows the maximum fleet size such that the base (switching option) project is preferred by SD.
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Abandon redesign project
CS = CD + C0(1 +N0)NH

Continue to pre-production & testing
of redesigned component
Intermediate cost CD
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fatigue life
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+C1(1 +ND)NH
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Prototype Production
& Testing

Phase 1
Detailed Design

Figure 1: Event tree.
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Figure 2: Probability distribution of replacement time.

Figure 3: Probability distributions of N0 and NS : base case and redesign project with switching option.
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Figure 4: Probability distributions of cost functions CB and CS : base case and redesign project with switching
option.

Figure 5: Joint effect of probability qD of project continuation and fleet size NH on expected expenditures EB

and ES : base case and redesign project with switching option.
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Figure 6: Contour levels of differences of expected expenditures (ES −EB) as function of probability qD of project
continuation and fleet size NH .

Figure 7: Probability of costlier current component production than redesign project with switching option with
varying probability qD of project continuation and fleet size NH .
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Figure 8: Contour levels of probability of costlier current component production with varying probability qD of
project continuation and fleet size NH .

Figure 9: Joint effect of probability qT of successful testing and fleet size NH on expected expenditures EB and
ES .
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Figure 10: Probability of costlier current component production than redesign project with switching option with
varying probability qT of successful testing and fleet size NH .

Figure 11: Probability of costlier current component production as function of probability qT of successful testing
for varying fleet size NH .
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Figure 12: Joint effect of pre-production and testing cost CT and fleet size NH on expected expenditures EB and
ES .

Figure 13: Probability of costlier current component production as function of pre-production and testing cost
CT for varying fleet size NH .
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Figure 14: Joint effect of probability qD of project continuation and probability qT of successful testing on
expected expenditures EB and ES .

Figure 15: Probability of costlier current component production as function of fleet sizeNH for varying probability
qD of project continuation and probability qT of successful testing.
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Figure 16: Analysis of stochastic dominance in the component replacement problem for varying fleet size NH and
order of stochastic dominance. A comparison between the base project (blue) and the switching option strategy
(orange).
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