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Supplementary Information 

Appendix A: Description of the Model 

 

The basic object in the model is a normalised vector !(!) representing the belief that each 

of the four possible features (two shapes and two lines) is the correct cue. Each of the elements 

of a(t) can take values from 0 to 1. We will adopt a convention that !!,! are the relevant 

dimensions, !!,! are the irrelevant ones, and !! is the correct feature. On any given trial two 

stimuli will be presented, each made up of one line and one shape. The probability of selecting 

the stimuli made up of shape ! and line ! on trial ! of a particular block is given by,  

 ! !!" , ! =
!!! ! ! + !!! ! !

!!! ! !!
 , (S1) 

 

where !(!) is a decision consistency parameter, which decreases as !(!)  =  !!!!! !!!  where 

!! and λ are constants which we will set to !!  =  3 and ! = !
!" in the main body of the paper1. 

The factor of (! − 1) in the exponent ensures the decision consistency parameter is !! at the first 

trial of each stage (ie ! = 1.) The probability of choosing a particular stimulus is therefore given 

by a modification of Luce’s choice rule, in a similar way to Bishara et al (2010), such that the 

decision consistency, i.e. the rate at which the participant picks the stimulus they think is most 

likely to be correct, decreases throughout a particular block. This encodes the idea that a 

participant unable to solve the puzzle after a few trials is likely to give up and lose focus, and 

allows the model to fail to complete a block if the learning rate is too low. Other forms for the 

decision consistency parameter are possible, for example a gaussian form might be used to 

encode the idea of an attention ‘limit’, but this would not change the basic intuition. 
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 Note that in principle, !!, ! and even the form of ! !  could be allowed to vary, and 

model fitting could be employed to select the ‘best’ values. However we are working with 

limited amounts of data in this paper, and it is therefore important to restrain any tendency to let 

the number of free parameters multiply. 

At the start of the experiment attention is initially equally split between the two shapes 

(the first two blocks only include one feature type.) When a new block begins the initial attention 

vector is set according to the final attention vector !(!!) from the previous block. For example, if 

the current stage is a reversal, the new attention vector !� related to the previous one !, by, 

and  
!! 1 = !! !! ,      !!! 1 = !! !! , 

!!! 1 = !! !! ,      !!! 1 = !! !! . 
(S2) 

 

For the C_D, CD, ID, and ED stages, we assume the introduction of a new feature, or 

arrangement, causes some attention to be switched to the irrelevant dimension. For the C_D and 

CD stages this happens according to, 

 !!! 1 = !×!! !! + 1− ! × 1
4 , for ! = 1,2,3,4 (S3) 

  

where 0 ≤  ! ≤  1 determines how much attention remains on the original dimension. For the 

rest of this paper we set ! = .95. Very low values of !, seem hard to justify, and some limited 

investigation indicated that model performance is relatively insensitive to the exact value so long 

as it is < 1. This could be investigated more systematically in future work. 

For the ID stage, the exemplars change. Information about which, eg, white line is correct 

is therefore lost, but we assume participants retain the knowledge that the, eg, white lines are a 

diagnostic dimension. We therefore assume that attention is split over feature type, so, 
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!!! 1 = !!! 1 = !× (!! !! + !! !! )
2 + 1− ! × 1

4  

!!! 1 = !!! 1 = !× (!! !! + !! !! )
2 + 1− ! × 1

4  

(S4) 

 

This means that at the ID stage attention is mostly redistributed with a dimension.  

Finally, for the ED stages, the exemplars change again, but now the relevant dimension 

switches. We assuming that, like the ID stage, participants mostly redistribute attention within a 

dimension, but now the relevant dimension has switched. We therefore implement this as, 

 

!!! 1 = !!! 1 = !× (!! !! + !! !! )
2 + 1− ! × 1

4  

!!! 1 = !!! 1 = !× (!! !! + !! !! )
2 + 1− ! × 1

4  

(S5) 

 

The final ingredient in the model is the rule for updating attention after a choice and 

feedback. In general for positive feedback the attention vector updates according to, 

 ! ! + 1 = ! ! + !"(!) (S6) 

or 

 ! ! + 1 = ! ! + !"(!) (S7) 

 

for negative feedback. 

To specify σ we need to account for the fact that there are two possible sets of stimuli a 

participant could be presented with, since the correct relevant feature (1) could be paired with 

either of the two irrelevant features (3,4). If the correct feature is paired with (3) then, 
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!! ! = 1− ! ×!! ! + !×!! !  

!! ! = −!! !  

!! ! = 1− ! ×!! ! + !×!! !  

!! ! = −!! !  

(S8) 

 

or if the correct feature is paired with (4) then, 

 

!! ! = 1− ! ×!! ! + !×!! !  

!! ! = −!! !  

!! ! = −!! !  

!! ! = 1− ! ×!! ! + !×!! !  

(S9) 

 

Here ! is a parameter that controls how much attention is switched between dimensions, and is 

necessary because all feedback in the IEDS is ambiguous (excepting the SD and SDr stages), 

since a correct choice could have been the result of either of the two features being correct. A 

value of ! =  0 essentially means no attention switching, and we will see this gives rise to poor 

performance at the ED stage. However a value of ! =  1 is also problematic, since then attention 

is switched too readily, and this can also result in poor performance. For the SD and SDr stages 

we set ! =  0, since these stages involve only a single dimension. 

 Let us try to give a brief overview of the logic behind these feedback functions !. 

Suppose I see a trial where the choices are between feature 1 paired with feature 3, and feature 2 

paired with feature 4. If I select the first option and am correct, I learn that features 2 and 4 are 

definitely incorrect, and I also learn that either feature 1 or feature 3 is correct. In other words, 
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information gained about which features are incorrect is unambiguous, whereas information 

gained about which features are correct is ambiguous.  

 To deal with the unambiguous information we simply remove a proportion of the 

attention from the features we learn to be incorrect. This attention moves to the features we learn 

could be correct, so that attention mostly moves within a dimension (eg from feature 2 to feature 

1) but can also move across dimensions (eg from feature 2 to feature 3.) We have discussed the 

case where our choice is correct, but it is easy to see that an incorrect choice gives participants 

exactly the same information, so this does not change the feedback functions !. 

To summarise, our model is based on similar ideas to that of Bishara et al (2010) and is 

rather simple conceptually. The key object is an attention vector which determines the 

probabilities for picking each of the two stimuli. Attention is updated as a result of either positive 

or negative feedback, and also effectively changes from block to block as the rules for correct 

choices change. Given feedback, the attention associated with the two features which make up 

the selected stimuli change. Attention either increases or decreases depending on whether the 

guess was correct or an error, but there is also a tendency for attention to transfer between 

dimensions since all feedback is ambiguous. The model has three free parameters, !,!, !, and 

several which we assume are fixed but which could in principle vary given the right 

experimental manipulations (we briefly explore the effect of varying λ in the next section). 

Crucially our model is designed to be simple enough that closed form expressions for the 

probability of choosing a given stimuli on a given trial can be derived (assuming we know the 

history of stimuli seen and choices made up to that point). This means we can very efficiently fit 

this model to experimental data, which we will see in a later section. Since Eq.(S1) is essentially 

a conditional probability of the choice on trial t given information about previous choices and 
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stimuli presentations, it would be possible to write down probabilities for any sequence of 

responses, given the information about which stimuli were presented. However, for ease we 

instead fit the model using a ‘one step ahead’ approach, similar to that in Bishara et al (2010), so 

we only need to use Eq.(S1) for the fits. 

 

Appendix B: Additional Simulation Information 

In this appendix we want to provide some more information from the basic simulations of 

the model. Firstly, we explore the way attention is transferred between dimensions during the 

task for the example parameter sets used to generate Figure 1 in the main text.  In Figure S1 

panels (a,b) we see a visualisation of an example attention vector for the ‘control’ and reduced 

attention switching parameter sets. For each trial we have plotted a ‘heat map’ of the values of 

the four components of the attention vector. Lighter colours represent larger values. For example 

looking at Figure S1 panel (a) we can see for the first stage, SD, attention is initially equally split 

between the first and second component, representing the two possible shapes shown in this 

block (the SD and SDr stages feature stimuli with only a single dimension). Over the course of 

the block attention gradually shifts from the incorrect to the correct dimension, indicated by the 

progressively brighter colour for this dimension. Similar patterns can be seen in the other blocks, 

with some initial attention split changing over the course of the trials, and the correct dimension 

eventually ending up with the largest attention weight. 

In the case of reduced attention switching, Figure S1 panel (b) we clearly see how 

attention weight persists on the irrelevant dimensions through the course of the ED block, in 

other words, even after 30 trials the model is still paying attention to the irrelevant dimension. 
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(a)  Attention vector over stages and blocks for a choice 

of ! = ! = 0.5, ! = 0.4. Colour codes represent 

magnitude of each component of the attention vector. 

(b) Attention vector over stages and blocks for a choice 

of ! = ! = 0.5, ! = 0.1 . Colour codes represent 

magnitude of each component of the attention vector. 

Figure S1. The effect of changing the attention switching parameter, f , on performance for fixed ! = ! =  0.5. 

Here we are plotting the components of the attention vector ! !  at each trial. This lets us examine how rapidly 

attention is switched from incorrect to correct features at the stages progress. The parameter sets produce similar 

behaviour until the ED stage (note the different scales on the x-axis), at which point the lower value of f hurts 

attention switching, and it takes many more trials for the model to switch attention to the correct feature. However 

once this switch happens, performance at the subsequent EDr stage is very similar for the two parameter sets. 

 

 Next, we want to explore the effect of changing the decision consistency parameters, in 

particular !. This parameter can be thought of as capturing a participant’s ability to sustain focus 

on the task. Recall, this parameter controls the way attention is mapped to choice probability as 

follows; the probability of selecting the stimuli made up of shape ! and line ! on trial ! of a 

particular block is given by,  

 ! !!" , ! =
!!! ! ! + !!! ! !

!!! ! !!
 , (S100) 
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where !(!) is a decision consistency parameter, which decreases as !(!)  =  !!!!! !!! . In the 

main body of the paper we set !!  =  3 and ! = !
!", but we want to briefly explore the impact of 

changing ! on model predictions. The reason for our interest is that there is evidence that 

ADHD, which commonly co-occurs with ASD, is associated with difficulties in sustained 

attention, so it may be the case that at least a sub-group of ASD participants (i.e., those with co-

occurring ADHD) experience difficulties in sustained attention. It is therefore interesting to 

explore whether difficulties in sustaining attention, modelled through larger values of !, produce 

behaviour which looks like diminished attention switching.  

 We can see the effect of varying ! in Figure S2. Starting with good overall rates of 

learning and attention shifting (red line), varying ! produces a very characteristic pattern of 

errors, with difficulties at the ED stage but also earlier stages, particularly CDr. This does not 

appear to match any of the data sets examined in the main text, although we have not fit the 

model with ! as a free parameter to any data, and this could be explored in future work. 

 

Figure S2. Examining the effects of decrease in ability to sustain attentional. Comparing 

performance for r = p = 0.5, f =0.4, with ! = !
!" (red line) and ! = !

!" (blue line). Although 

reduced ability to sustain attention does seem to cause problems at the ED stage, it also reduces 

performance at earlier stages.  Panel descriptions are as for Figure 1. 
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Appendix C: Details of the model fits for the City Data 

Full data and code for these fits is available on the OSF https://osf.io/cg2m3/ 

The model allows us to write down an explicit probability for a participant choosing a 

particular stimulus on a given trial, given the set of choices and the past information about the 

trials and responses. We use a ‘one step ahead’ method, where we use the model to predict, for 

every trial, the probability of making the correct choice given the actual history of responses up 

to that point. This was then fit using MCMC methods in JAGS (Plummer et al, 2003). We took 

the priors for the three parameters to be uniform in the range [0, 1] and ran fits with five chains, 

50,000 samples and a burn in of 5,000 samples. Chain convergence was assessed using the Rhat 

statistic, and all chains had good convergence behaviour by this metric.  

We then extracted the mean of the posteriors for the three parameters, and used these in 

our analysis.  

 

Appendix D: Details of the model fits for the Summary Data 

Full data and code for these fits is available on the OSF. 

We used an implementation of the Approximate Bayesian Computation - Partial 

Rejection Control (ABC-PRC) algorithm introduced by Sisson et al (2007, 2009) and previously 

employed by one of us to fit models of serial recall (Poirier et al, 2019). ABC-PRC provides a 

compromise between pure rejection sampling, which is simple but inefficient, and more 
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sophisticated algorithms like ABC Differential Evolution (Turner & Sederberg, 2012), which can 

be more efficient when parameters are correlated, but which are more complex. 

ABC-PRC works by repeatedly sampling from a prior over the parameter space until it 

finds a set of parameters which generate a set of summary statistics sufficiently close to the data. 

When this happens, the algorithm stores these parameter values and moves on to the next particle 

in the generation. Once all particles in a generation have been associated with parameter sets, the 

algorithm gives each particle a weight depending on the prior, and then begins a new generation, 

sampling from the previous generation with probabilities given by the weights, and repeatedly 

perturbing around the previous parameter values until a set is found producing summary 

statistics even closer to the data. For full details, see Sisson et al. (2007; note also the errata, 

Sisson et al., 2009) 

Under ABC-PRC, the posterior estimates for the parameters are just the fraction of 

particles in the final generation with that parameter value. Posterior predicted distributions of the 

summary statistics are also easily obtained. The important parameters for ABC-PRC are the 

number of particles (set to 10,000 for all fits reported here), the details of the priors (uniform of 

0-1 in all cases), the proposal distributions, and the number of generations and tolerances for 

each generation. Setting the number of generations and the tolerances requires some trial and 

error. Lower tolerances will tend to result in a better match between model and data, but at some 

point the computational cost becomes prohibitive. Equally some of the mis-fitting between data 

and model is likely due to the presence of processes not captured by the model (eg loss of 

concentration or motivation), in which case there will be a lower limit to the tolerance which can 

be achieved. 
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Fits were performed on the Solon High Performance Computing cluster at City, 

University of London. For each particle we simulated an experiment with the same number of 

participants as reported in the relevant study. As well as the three parameters of interest, !,!, ! , 

which we assumed represent the mean for the group, we assumed each participant in the group 

had their parameters drawn from a distribution with the group mean and a variance given by an 

additional set of parameters (!! , !!) for the learning rates (!,!) and attention switching ( ! ). 

These parameters were given normal priors with means of 20 and SDs of 3. Posterior estimates 

for these parameters did not differ substantially from these priors and we conclude the model is 

not sensitive to the degree of heterogeneity in the groups. 

To assess whether the parameter estimates for different fits were reliably different from 

each other, eg whether the ASD group had a lower best fitting attention switching parameter than 

the control group, we began by computing posterior difference distributions. This was done by 

pairing the particles for the TD and ASD fit, subtracting the final values of the ASD from the 

TD, and repeating for 100 different pairings. This gives a distribution of differences between the 

best fitting values, which are shown in Figure S3-5. Full size versions of these figure can be 

found on the OSF page, https://osf.io/cg2m3/ . 

For the majority of these comparisons we can use the Savage-Dickey approximation 

(Wagenmakers et al 2010) to compute an approximate Bayes factor for the null hypothesis (the 

true difference is zero) against the alternative hypothesis. However, the Savage-Dickey 

approximation assumes the posterior is continuous around zero, which is questionable for some 

of the distributions. We therefore also compute the 95% Highest Density Intervals for the 

posterior difference, which ought to contain zero if the true difference is zero. 
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Posterior difference distributions for the learning from reward parameter 

 
Figure S3: Posterior difference distributions for the learning from reward parameter, computed between fits for all data sets examined in this paper. The differences are 

computed for the plots as the fit for the row group minus the fit for the column group. The Bayes Factors and HDIs refer to the plot in the opposite position.  
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Posterior difference distributions for the learning from punishment parameter 

 
Figure S4. Posterior difference distributions for the learning from punishment parameter, computed between fits for all data sets examined in this paper. The differences are 

computed for the plots as the fit for the row group minus the fit for the column group. The Bayes Factors and HDIs refer to the plot in the opposite position.  
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Posterior difference distributions for the attention switching parameter 

 
Figure S5. Posterior difference distributions for the attention switching parameter, computed between fits for all data sets examined in this paper. The differences 

are computed for the plots as the fit for the row group minus the fit for the column group. The Bayes Factors and HDIs refer to the plot in the opposite position. The 

possible range is [-1,1], only the central region is shown, for ease of viewing. 
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Footnotes 

1 Picking !! = 3 means that, at trial 1, if the ratio of attention for stimuli A over stimuli B is 2:1, 

the ratio of the probability of selecting A over B is around 9:1. The model is therefore quite 

sensitive early in each block to the stimuli with the larger attention. This provides a compromise 

between picking the stimuli with the higher attention, and probability matching, where the 

options would be chosen with probabilities given by the attention weights.  

Picking ! = !
!"  then means the model is probability matching by around trial 23, and by 

trial 50 if the ratio of attention for stimuli A over stimuli B is 9:1, the ratio of the probability of 

selecting A over B is around 2:1. This encodes the idea that, by the time a participant has 

answered almost 50 trials and failed to progress, it takes a very large difference in attention to 

produce a reliable response. 

It is unlikely that the model fits depend strongly on these choices. We refit the data from 

Jazbec et al (2007) with !! = 1 and, while the best fit parameters were different, the comparison 

between the SZ and TD group yielded the same conclusions.  
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