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Summary

Multiresolution Volumetric Texture Segmentation
Constantino Carlos Reyes-Aldasoro

Thesis submitted to The University of Warwick
for the degree of Doctor of Philosophy
30 November, 2004

This thesis investigates the segmentation of data in 2D and 3D by texture analysis
using Fourier domain filtering. The field of texture analysis is a well-trodden one in 2D,
but many applications, such as Medical Imaging, Stratigraphy or Crystallography, would
benefit from 3D analysis instead of the traditional, slice-by-slice approach. With the
intention of contributing to texture analysis and segmentation in 3D, a multiresolution
volumetric texture segmentation (M-VTS) algorithm is presented.

The method extracts textural measurements from the Fourier domain of the data via
sub-band filtering using a Second Orientation Pyramid. A novel Bhattacharyya space,
based on the Bhattacharyya distance is proposed for selecting of the most discriminant
measurements and produces a compact feature space. Each dimension of the feature
space is used to form a Quad Tree. At the highest level of the tree, new positional
features are added to improve the contiguity of the classification. The classified space
is then projected to lower levels of the tree where a boundary refinement procedure is
performed with a 3D equivalent of butterfly filters.

The performance of M-VTS is tested in 2D by classifying a set of standard texture
images. The figures contain different textures that are visually stationary. M-VTS yields
lower misclassification rates than reported elsewhere ([104, 111, 124]).

The algorithm was tested in 3D with artificial isotropic data and three Magnetic
Resonance Imaging sets of human knees with satisfactory results. The regions segmented
from the knees correspond to anatomical structures that could be used as a starting
point for other measurements. By way of example, we demonstrate successful cartilage
extraction using our approach.
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Chapter 1

Introduction

1.1 Volumetric Texture Analysis

The study of Volumetric Texture is a very challenging subject. To start with, there is
not a single accepted definition of texture in two dimensions (2D). Then, the extra third
dimension that is included in texture in three dimensions (3D) increases considerably
the computational complexity. In some cases, the extension of texture analysis to three
dimensions can be easily achieved, but in others, for example those using orientation or
phase, careful consideration is needed.

Volumetric texture has received much less attention than its spatial 2D counterpart
which has seen the publication of numerous and differing approaches for texture analysis
and feature extraction (for example [8, 15, 29, 55, 56, 144, 146]), and classification and
segmentation ([14, 71, 75, 79, 147, 156]).

The considerable computational complexity that is introduced with the extra dimen-
sion is partly responsible for lack of research in volumetric texture. But also there is
an important number of applications for 2D texture analysis. Yet, there is a growing
number of problems where a study of volumetric texture is of interest. The analysis
of crystallographic texture - the organisation of grains in polycrystalline materials - is
of interest in relation with certain characteristics of ceramic materials such as ferro- or

piezoelectricity [143]. In Stratigraphy, also known as Seismic Facies Analysis [18, 125],
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the volumetric texture of the patterns of seismic waves within sedimentary rock bodies
can be used to locate potential hydrocarbon reservoirs. In Medical Imaging, the data
provided by the scanners of several acquisition techniques such as Magnetic Resonance
Imaging (MRI) [88, 128], Ultrasound [166] or Computed Tomography (CT) [65, 136]
deliver grey level data in three dimensions. Different textures in these data sets can
allow the discrimination of anatomical structures. The importance of Texture in MRI
has been the focus of researchers, such as Lerski [94] and Schad [134], and a COST
European group was established for this purpose [28].

Texture analysis has been used with mixed success in medical imaging: for detection
of micro-calcification and lesions in breast imaging [72, 137, 142], for knee segmenta-
tion [78, 100], for the delineation of cerebellar volumes [131], for quantifying contralateral
differences in epilepsy subjects [164, 165], to diagnose Alzheimer’s disease [133] and brain
atrophy [136], and to characterise spinal cord pathology in Multiple Sclerosis [106]. Most
of this reported work, however, has employed solely 2D measures, usually co-occurrence
matrices that are limited by computational cost. Furthermore, feature selection is often
performed in an empirical way with little regard to training data, which are usually
available.

The most common technique to deal with volumetric data is to slice the volume in
2D cross-sections. The individual slices can be used in a 2D texture analysis [12]. A
simple extension of the 2D slices is to use orthogonal 2D planes in the different axes,
and then proceed with a 2D technique, Gabor filters for instance [166]. However, high
frequency oriented textures could easily be missed by these filter planes. In those cases it
is important to conduct a volumetric analysis. Thus, the analysis of volumetric texture
has many potential applications and the intention of this thesis is to contribute to this

developing field.
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1.2 The Spatial and Fourier Domains

The Fourier transform [16] is a well-known mathematical operation that translates a sig-
nal from the spatial or time domain, into the Fourier or frequency domain. The Fourier
domain will be widely used through this thesis since some of the signals that appear as
texture have strong energy concentration at different frequencies and orientations. Con-
sequently, different textures can be discriminated by the amount of energy that the signal
displays in different frequency bands. This will be explained in detail in section 2.4.2.
For example, figure 1.1 (a) presents a 1D signal in the spatial domain and its transforma-
tion into the Fourier domain. It can be observed that the signal appears fairly repetitive
in the spatial domain, which translates into three main spikes in the Fourier domain.
The basis of the Fourier transform is the analysis of exponential Fourier series, that is,
the representation of a signal by the sum of the exponential signals that are orthogo-
nal to each other. The exponential function e/ forms a family of orthogonal functions
within a certain interval [rg, o + R] with the functions e/™?™?0, n = 0, 41,42, ... where
e is the complex Euler identity: e/"277P0 = cos(n2nrpg) + jsin(n27wrpg), and py will
determine the frequency of the sinusoidals. Any signal can be expressed by a series of

these functions:

f(’f‘) — fO + f16j27TTp0 + f26j47rrp0 + j:gejﬁvrrpo 4.
f_le—jZﬁ'rpo + f_Qe—j47rrpo + f_3e—j6wrpo 4.

f(r) = Z Fpeln2mreo (1.1)

n=—oo

whererg < r < ro+ R and R = ;20_:;' The constants F,,, called the Fourier coefficients of f

are defined by the inner product ({-,-)) between the original signal and the exponential:

ro+R o

[ ey

TR = —/ f(r)e=In2mreo gy (1.2)
/ eanﬂ'Tpo(ejTLQﬂ"r‘po)*d,r R 70

r

0

Fn:
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*

where (-)* represents the complex conjugate of a signal. Two important observations
follow. First, the orthogonality of the functions F;,e/"?""#0 mean that their inner product

is zero:
. . 1 [TotR . )
(Fne?™ Fred™) = E/ Fu&™ Frne?™dr =0, m #n. (1.3)
To
The inner product of a signal with itself is called the norm:

I f lla= (f, [)*/* (1.4)

and it can be used as a measure of the energy of the signal.

Second, it is important to notice that the previous analysis is limited to a certain
interval in time or space. To consider the range (—o0, +00) the period has to be evaluated
in the limit R — oco. By taking the limit (and after some manipulation) the Fourier

transform pair is reached [16]:

o) = [ " fu ()™ dp

—0o0
S .
o) = [ g ar (1.5
—0oQ
which is sometimes represented by:
F

[ < Juw (1.6)

The previous expressions can be complex and therefore two planes can be used to show
it: (real/imaginary) or (magnitude/phase). The Fourier transform can be applied to
signals of more than one dimension, in the case of a 3D signal, the corresponding Fourier

transforms are:

o o0 o0 .
f(rye,d) = / / / Folps i, §)2T 0 entad) 4 gic g
— 00 —0oQ — 00
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Spatial domain Fourier domain

(a) 1D Signal

(b) 2D Signal

(c) 3D Signal

Figure 1.1: Signals in spatial and Fourier domains: (a) 1D, (b) 2D (image) and (c) 3D
(volume). Periodic signals tend to concentrate its energy in spikes in the Fourier domain,
this is easier to visualise in 1D and 2D. (c) is a counter example, there are no visible spikes
to be seen in the Fourier domain.
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fulp, ,0) = / / / F(r, ¢, d)e72rrotentdd) g ge qd (1.7)

where (r, ¢, d) are the co-ordinates in the spatial domain and (p, k, d) are the co-ordinates
in the Fourier domain.

Figure 1.1 (b) shows one image with a textured pattern and its corresponding 2D
Fourier transform. It can be seen that some of the ingredients or characteristics of the
image are noticeable in its Fourier counterparts.

Figure 1.1 (c) presents a case of a 3D signal in the spatial and Fourier domains. The
spatial data correspond to the Magnetic Resonance Imaging (MRI) of a human knee
that has been sliced in the sagittal and axial planes. The Fourier domain is also sliced
in the 3 axes. A description of the Magnetic Resonance Imaging technology is presented
in appendix C, while a brief description of the human knee is presented in appendix D.

Analysing volumetric data in this way is harder than 2D images (and often the
analysis is performed slice-by-slice). However, the 3D Fourier transform allows us to
work with the whole volumetric set and any operation like filtering, thresholding or
convolution can be performed in 3D.

Figure 1.3 shows further examples of images with different textures. Periodicity ap-
pears as bright spots (equivalent to the spikes in 1D), orientation appears perpendicular
in opposite domains and the randomness appears as a signal that increases its intensity

towards the centre.

1.3 Sub-band Filtering

Certain characteristics of signals in the spatial domain such as periodicity are quite dis-
tinctive in the Fourier domain, as shown in figure 1.1. If the data (for example the image
in figure 1.2) contain textures that vary in orientation and frequency, then certain filter
sub-bands will contain more energy than others, and ‘roughness’ will be characterised
by more or less energy in certain bands or regions. In the example presented, the low

pass filter (which corresponds to the centre of the Fourier domain) returns a blurred
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J Band filtering
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Figure 1.2: Sub-band filtering in the Fourier domain: (a) An image (reptile skin) in the
spatial and Fourier domains, (b) A low pass filtered version of the image, (c) A band pass
version of the image.

version of the image, while a band pass filter captures other details of the texture.

The principle of sub-band filtering can equally be applied to volumetric data (sec-

tion 2.4.2).

1.4 Definition of Volumetric Texture

A single definition of texture does not exist, but most of the numerous definitions that are
present in the literature, have some common elements that emerge from the etymology
of the word. Texture comes from the Latin textura, the past participle of the verb tezere,
to weave [108]. From here, it is expected that a texture will exhibit a certain structure
created by common elements, repeated in a certain regular way, as in the threads that

form a fabric. Hawkins [58] identifies three ingredients of texture:

e some local ‘order’ is repeated over a region which is large in comparison to the
order’s size,

e the order consists on the non-random arrangement of elementary parts, and,

e the parts are roughly uniform entities having approximately the same dimensions
everywhere within the textured region.
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Table 1.1: Psycho-visual properties of Texture.

Author Properties

Ravishankar [127] | Granular, marble-like, lace-like, random, random nongran-
ular and somewhat repetitive, directional locally oriented,
repetitive.

Tamura [144] Coarseness, contrast, directionality, linelikeness, regularity,
roughness.

While these ingredients can describe some textures, as those of figure 1.3 (a), there are
some other cases that are not so uniform or deterministically arranged. For instance, the
pebbles of figure 1.3 (b) appear to be in a random placement. The term visual tezture
is some times used in an attempt to distinguish it from the tactile concept of texture.

From this visual context, image tezture is defined by Tuceryan and Jain [146] as:
e A function of the spatial variation in pixel intensities.

Gonzalez [50] relates certain properties of texture with the approaches to texture anal-
ysis:

e Statistical: smooth, coarse, grainy,. ..

e Structural: arrangement of feature primitives (sometimes called teztons) ac-

cording to certain rules,
e Spectral: global periodicity based on the Fourier spectrum.

Some of these properties are visually meaningful and are helpful to describe textures.
In fact, studies have analysed texture from a psycho-visual slant [127, 144] and have
identified the properties presented in table 1.1.

It is important to notice that these properties are different from the features or
measurements (although some other works refer to the properties as features of the
data) that can be extracted from the textured regions.

Two more ingredients of texture should be mentioned:

e Texture is inherently scale dependent [14, 67, 139]. The texture of a brick wall
would change completely is we get close enough to observe the texture of a single
brick.
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e The texture of an element (pixel or voxel) is implicitly related to its neighbours.
It is not possible to describe the texture of a single element, as it will always
depend on the neighbours to create the texture. This can be exploited through:
Fourier methods, which extract frequency components according to the relation
of elements; a Markovian approach in which the attention is restricted to a small
neighbourhood; or a co-occurrence matrix where occurrence of the grey levels of
neighbouring elements is recorded.

All the properties and ingredients that were previously mentioned about texture, or
more specifically, visual, or 2D texture, can be applied to volumetric texture.

In this thesis, Volumetric Texture is considered as the texture that can be found
in volumetric data (this is sometimes called solid tezture [12]). Figure 1.4 shows four
examples of volumetric data with some textured regions. Volumetric Texture is different
from 3D Texture, Volumetric Texturing or Texture Correlation.

3D Texture [20, 31, 32, 95, 99] refers to the observed 2D texture of a 3D object
that is being viewed from a particular angle and whose lighting conditions can alter the
shadings that create the visual texture. This analysis is particularly important when
the direction of view or lighting can vary from the training process to the classification
of the images. Our volumetric study is considered as volume-based (or image-based for
2D); that is, we consider no change in the observation conditions. In Computer Graphics
the rendering of repetitive geometries and reflectance into voxels is called Volumetric
Texturing [110]. A different application of texture in Magnetic Resonance is the one
described by the term Tezture Correlation proposed by Bay [3] and now widely used
[4, 49, 107, 119] which refers to a method that measures the strain on trabecular bone

under loading conditions by comparing loaded and unloaded digital images of the same

specimen.

Throughout this work we will consider that volumetric data, VD, will have dimen-
sions for rows, columns and slices IV, X N. X Ny and is quantised to N, grey levels. Let
L, ={1,2,...,r,...,N;}, L. = {1,2,...,¢,...,N.} and Lg = {1,2,...,d,..., Ny} be
the spatial domains of the data (for an image L,, L. would be horizontal and vertical),

and G = {1,2,...,9,... Ny} the set of grey tones. The volumetric data VD can be
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(a) Non-random arrangement of elementary parts, parts are roughly uniform

Sunflowers Pebbles in Fourier domain

(c) Regular parts are not identifiable, nor there is a non-random arrangement

F
—

Bone in a T2 MRI Wool Wool in Fourier domain

(d) Dominant orientation present, regular parts may or may not be identifiable

N
~

Wood in Fourier domain

Figure 1.3: Ingredients that can be identified in spatial textures. Examples in spatial and

Fourier domains.
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Figure 1.4: Volumetric texture examples: (a) A cube divided into two regions with Gaussian
noise, (b) A cube divided into two regions with oriented patterns of different frequencies
and orientations, (c) A sample of muscle from MRI, (d) A sample of bone from MRI.

represented then as a function that assigns a grey tone to each triplet of co-ordinates:
L. XL.XLyiyVD:L,xL.XxLg— G (1.8)
An image then is a special case of volumetric data when L; = {1}, that is [56]:

L.xL;T:L.xL.—G (1.9)

1.5 Multiple Resolution in Texture

Multiresolution methods have been widely used in image analysis problems for some

time now. The fundamental aspect is the expansion of the image into a set of images
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at different scales or resolutions. Images at lower spatial resolutions are created by a
recursive process of filtering and sub-sampling. The use of multiresolution techniques has
been motivated by different reasons: reducing the computational complexity of the task;
enabling the application of filters with increasing larger support; optimisation problems
when the solution at a coarse scale can be used to initialise the solution at the next
finer resolution. The reduction of image size results in a decreased complexity, opening
up solutions to otherwise difficult problems. Filtering at various scales or channels
can extract different measurements or features of an image, as done with Gabor or
Lognormal filters [71, 81] of various sizes and orientations or the Second Orientation
Pyramid tessellation [162] (section 2.4.2).

Another implication of multiresolution techniques is a trade-off between spatial res-
olution or positional accuracy, and measurement uncertainty or the measurement class
membership. Multiresolution pyramids [17] or trees [132, 140, 162] can be constructed
by a weighted average of neighbouring elements, from lower, fine levels up to a coarse
higher level where each node is considered as the parent of several child nodes. At the
higher levels these trees have, on one hand, reduced uncertainty in the measurement
values (grey level for instance) but inherently lower spatial resolution. Appendix B
describes the construction of pyramids and trees that will be used through this thesis.

Figure 1.5 (a) shows an example of a tree of an image with two noisy regions with
normal distributions that have an overlapping grey scale. At the image level, the two
regions are not distinguishable in the histogram (b), but at lower spatial resolutions of
a tree, the smoothing makes the classes separate from each other, as the histograms
in (c,d) show. (The use of the histograms at different resolutions is sometimes called
multiresolution histograms [53], a term that could be confusing since it is the images and
not the histograms themselves which are in a multiresolution space.)

Uncertainty in image processing was recognised and discussed by Granlund and Wil-
son [158] and motivated the use of pyramidal representations for segmentation [162] and

later, for similar reasons, the development of joint spatial spatial-frequency representa-
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tions such as the Multiresolution Fourier Transform (MFT), which is an over-complete,
Fourier Wavelet basis [157]. In this work, we have adapted the feature estimation ideas
from [162] into a new classification framework based on the work of Schroeter and Bi-
gun [135].

Levels 1 2 3 4

Grey el

Figure 1.5: A tree to reduce the uncertainty in the distribution, the coarsest image contains
two regions with Gaussian noise (u; = 25,01 = 5, u2 = 29,02 = 5). (a) Quad Tree of 4 levels
placed side by side. (b) Histogram at lowest level (level 1). (c) Histogram at level 2. (d)
Histogram at level 3.

While a tree is effective in reducing the uncertainty in the distribution at the ex-
pense of the spatial resolution, it should be noted that it is useful for the discrimination
of two classes only if the mean values of the measurements differ. If the distributions
possess similar mean values, then, as the higher levels are constructed, the two regions
and their distributions will merge into one. This is illustrated in figure 1.6 where two
visually distinctive regions are not separable from the histogram. It is therefore very
important to select the correct measurement before constructing a multiresolution tree.

In the previous example if a different measurement were extracted from a local window;

variance for instance, the classification would be improved.
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Figure 1.6: A tree to reduce the uncertainty in the distribution. When the distributions have
similar mean values, the regions tend to merge into one (u; = 25,01 = 2, us = 25.5,09 = 5).
(a) Quad Tree of 4 levels placed side by side. (b) Histogram at lowest level (level 1). (c)

Histogram at level 2. (d) Histogram at level 3.

1.6 Classification of the Space

The classification or labelling problem is that of assigning every element of the data,
or the measurements extracted from the data, into one of several possible classes [54].
For medical data the classes can represent a unique anatomical structure such as a
bone, cartilage or muscle. The classifying process corresponds to a partitioning of the
space of the measurements into regions. For example, figure 1.7 presents two different
populations in a two-measurement space and the possible partitioning into two classes
with different classification schemes. The classifiers used were: thresholding that result
in a straight boundary; and LVQ1, which adapts better to the original distribution.
The choice of a classification algorithm can therefore be important. When the original

classes of the populations are known then the accuracy of the classification scheme can
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(a) (b) (c)
Figure 1.7: A classification problem. Two different populations are distributed over a two
measurement space, (a) represents the ground truth. The populations are classified with
two different strategies, first with thresholding which results in a straight boundary (b), and
with LVQ1 a more sophisticated classifier which results in a piecewise linear boundary (c).
The colours in (b,c) represent the classes into which the elements have been assigned; (c)
is closer to the ground truth.
be measured, but this is not generally the case, sometimes only estimates of the accuracy
can be achieved.

There is a vast amount of literature concerned with these problems [6, 11, 36, 54].

In chapter 3 we will analyse some of the techniques that may be of use for texture
classification. Two important aspects related to the classification process are: the effect
of the Local Energy Function (LEF) and the context or positional information of the

elements and not only their measurement values. This will be treated in sections 3.2

and 5.5.1 respectively.

1.7 Objectives of the Thesis

This thesis intends to contribute to the relatively new problem of volumetric texture
analysis and classification by proposing a multiresolution volumetric texture segmen-
tation (M-VTS) methodology. The main goal is to provide a method that receives
volumetric data (we have concentrated on MRI) and returns a series of classes with
homogeneous characteristics, like anatomical structures, based on textural properties.

To achieve this objective, several problems must be solved.

1. A set of measurements that can extract textural features in 3D is required. An
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effective measurement space needs to be generated.

2. The number of measurements that can be extracted from the data can be con-
siderable, and when working in three dimensions, it will be even greater. The
reduction of dimensions of the measurement space will not only reduce the com-
putational complexity but may also achieve better results through selection of the

best features.

3. The measurement space needs to be classified. We require a suitable classifier that
discriminates classes properly and in a reasonable time. In the MRI data, classes

will be ascribed to anatomical features.

4. The measurements extracted and the classification algorithm need to be compared
against other existing techniques. The benchmark comparison is essential for all

the steps of the classification process.

5. Multiresolution techniques have been proposed in other applications and it is pos-
sible that texture segmentation will benefit from multiresolution algorithms. This

proposition will be investigated.

1.8 Contributions of the Thesis
The original contributions of this thesis are:

1. A survey of the volumetric texture extraction methods is presented; some advan-

tages and disadvantages of the techniques are highlighted.

2. We propose an extension of the Second Order Pyramid (SOP) (based on Spann
and Wilson [162]), a 2D Method, into 3D.

3. For validation, the measurements proposed are compared against other texture ex-
traction techniques and different aspects of classification algorithms are analysed.

It is found that the SOP measurements are equivalent to others.
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. Based on the Bhattacharyya distance, a novel Bhattacharyya Space [128] is pro-

posed as a methodology to select the most discriminant features of the measure-

ment space.

. A multiresolution classification algorithm (based on [135, 162]) is extended from 2D

to 3D. Some extensions of the algorithm from 2D to 3D are required; in particular
the use of boundary smoothing filters. The use of a Markov Random Field (MRF)
approach is compared with pyramidal butterfly filters, the latter providing superior

results.

. Context is included in the classifier to improve the results. A contiguity enhanc-

ing strategy is proposed through the use of new features (Positional Contiguity

Enhancing features) that are added to the feature space.

A series of 2D and 3D data sets are classified and compared with other method-
ologies and the proposed algorithm is shown to give excellent results. Three MRIs
of human knees are classified. For validation and reproducibility, the data sets
generated and the code is made available on the web page:

http://www.dcs.warwick.ac.uk/~creyes/m-vts.

. As an application of the methodology, it is shown how a segmentation of an

anatomical structure through the proposed algorithm can be used for the extrac-

tion of other structures like the cartilage.

1.9 Outline of the Thesis

An overview of the thesis is represented graphically in figure 1.8. In chapter 2, a liter-

ature review of the related work on volumetric texture, or spatial techniques that can

be extended to 3D is presented. Next, chapter 3 discusses classifiers with emphasis in

the Local Energy Function. Feature selection is investigated in chapter 4. A new Bhat-

tacharyya space is proposed as a way to select the most discriminant features. Chapter 5

describes a multiresolution segmentation algorithm and an extension of butterfly filters
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is proposed as a hierarchical methodology for the refinement of the boundaries. Also, a
new set of positional features that added to a feature space can yield better contiguity
is also proposed. Chapter 6 compares the results of the proposed methodology with
others present in the literature for 2D data. Also, volumetric data sets are presented
and classified with a special emphasis given to human knee MRIs. The MRI knees are
first classified into anatomical regions and the results are used to segment the cartilage.

Finally, chapter 7 presents conclusions and proposals for further work.

Texture Measurement | Feature &3 '\sﬂelélr?]m%fn Classified
Extraction Selection Algorithm bata
Feature <
7
Spacg b N ~ f

Classifier

Figure 1.8: Graphical outline of the thesis. Textured data sets, both in 2D and 3D, are
processed in three main steps: measurement extraction, feature selection and multiresolution
segmentation.
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Chapter 2

Texture Analysis: the

Measurement Space

In this chapter, a review of texture measurement extraction methods will be presented.
A special emphasis will be placed on the use of these techniques in 3D. Some of the
techniques have been widely used in 2D but not in 3D, and some others have already
been extended. We will analyse and compare them in order to select the most adequate
measurement for the data used in this thesis. We conclude that sub-band filtering with
SOP in the Fourier domain is the most appropriate measurement for its simplicity and
power. For visualisation purposes, two data sets will be presented: an artificial set with
two oriented patterns (figure 2.1) and one volumetric set of a human knee MRI set
(figure 1.1 (c)). These sets along with several other 2D and 3D will be classified and the
performance compared with different techniques in chapter 6.

All the measurements extracted from the data, either 2D or 3D will form a multi-
variate space, regardless of the method used. The space will have as many dimensions
or variables as measurements extracted. Of course, numerous measurements can be ex-
tracted from the data, but a higher number of measurements does not always imply a
better space for classification purposes. In some cases, having more measurements can

yield lower classification accuracy and in others a single measurement can provide the



2.1. SPATIAL DOMAIN MEASUREMENTS 20

Figure 2.1: Artificial data set with two oriented patterns of [64 x 32 x 64] elements each,
with different frequency and orientation: (a) Data in the spatial domain, (b) in the Fourier
domain.

discrimination of a certain class. Therefore the selection of a proper set of measure-
ments is a difficult task. In this chapter we will concentrate on the generation of the
measurements and in chapter 4, feature selection and extraction will be investigated. In
terminology of Hand [54], we will call the first set of all dimensions the measurement

space and the reduced set the feature space.

2.1 Spatial Domain Measurements

The spatial domain methods operate directly with the values of the pixels or voxels of

the data:
VD(z) = TVD(A)], N C (L x Lex Lg), e (LY xLY xLy) (2.1)

where T is an operator defined over a neighbourhood .4 (relative to the element x that
belongs to the region (L;" x Ly x Ly")). The result of any particular operator 7 will

become one dimension of the multivariate measurement space S:
St =VyD' (2.2)

and the measurement space will contain as many dimensions i as the operations per-

formed on the data.



2.1. SPATIAL DOMAIN MEASUREMENTS 21

(a) (b)
Figure 2.2: Mapping functions of the grey level: (a) Grey levels remain unchanged, (b)

Thresholding between values g; and gj,.

2.1.1 Single Element Mappings

The simplest case arises when the neighbourhood .4 is restricted to a single element
z. T then becomes a mapping 7' : G — G on the grey level of the element: § = T'[g]
and is sometimes called a mapping function [50]. Figure 2.2 shows two cases of these
mappings; the first involves no change of the grey level, while the second case thresholds
the grey levels between certain arbitrary low and high values g;, gp.

This technique is simple and popular and is known as grey level thresholding, which
can be based either on global (all the image or volume) or local information. In each
scheme, single or multiple thresholds for the grey levels can be assigned. The philos-
ophy is that pixels with a grey level below a threshold belong to one region and the
remaining pixels to another region. In any case the idea is to partition into regions,
object/background, or object,/objecty/ . ..background. Thresholding methods rely on
the assumption that the objects to segment are distinct in their grey levels and use
the histogram information, thus ignoring spatial arrangement of pixels. Although in
many cases good results can be obtained, in MRI, the intensities of certain structures
are often not uniform, sometimes due to inhomogeneities of the magnets, and therefore
simple thresholding can divide a single structure into different regions. Another matter
to consider is the noise intrinsic to the images that can lead to a misclassification. In
many cases the optimal selection of the threshold is not a trivial matter.

The histogram [163] of an image measures the relative occurrence of elements at
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certain grey levels. The histogram is defined as:

_ #{z e (L, x L, x Lg) : VD(z) = g}
o) = #{L, x Lcdx La} ’

geG (2.3)

where # denotes the number of elements in the set. This approach involves only the
first-order measurements of a pixel [27] since the surrounding pixels (or voxels) are not
considered to obtain higher order measurements. Figure 2.3 presents the two data sets
and their corresponding histograms. The histogram of the human knee (b) is quite dense
and although two local minima or valleys can be identified around the values of 300 and
900, using these thresholds may not be enough for segmenting the anatomical structures
of the image. It can be observed that the lower grey levels, those below the threshold of
300 correspond mainly to background, which is highly noisy. The pixels with intensities
between 301 and 900 roughly correspond to the region of muscle, but include parts of
the skin, and the borders of other structures like bones and tissue. Many of the pixels
in this grey level region correspond to transitions from one region to another. (The
muscles of the thigh; Semimembranosus and Biceps Femoris in the hamstring region, do
not appear as uniform as those in the calf; the Gastrocnemius, and Soleus.) The third
class of pixels with intensities between 901-2787 roughly correspond to bones — femur,
tibia and patella — and some tissue — Infrapatellar Fat Pad, and Suprapatellar Bursa.
These tissues consist of fat and serous material, which have similar grey levels as the
bones. The most important problem is that bone and tissue share the same range of grey
levels in this MRI and using just thresholding it would not be possible to distinguish
successfully between them.

Some other important observations about the image need to be made. Some anatom-
ical structures like tendons, ligaments and menisci appear dark in the T1 MRI images,
and therefore will be considered as background. In the upper right hand side of the
image, there is a discontinuity of the shape of the leg, and the very top of the image

is a solid region of pixels with intensity levels lower than 300. Although these regions
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Figure 2.3: Two images (one slice of the data sets) and their histograms: (a, b) Human
Knee MRI, and (c, d) Oriented textures.

are not background, the inhomogeneity of the magnetic field with which the image was
acquired causes the effect of background. This problem will not be addressed in this
work.

The histogram of the oriented textures (figure 2.3 (d)) is not as dense and smooth
as the one corresponding to the human knee and it spreads through the whole grey level
region without showing any valleys or hills that could point out that a thresholding
could help in discrimination the textures involved.

Figure 2.4 shows the result of thresholding over the data sets previously presented.
The human knee was thresholded at the ¢ = 1500 and the oriented data at g = 5.9.
For the knee some structure of the leg is visible (like the Tibia and Fibula in the lower
part) but this thresholding is far from useful. For the oriented data both regions contain

pixels above the threshold.



2.1. SPATIAL DOMAIN MEASUREMENTS 24

(c)

Figure 2.4: Thresholding effect on 3D sets: (a) Oriented textures thresholded at g = 5.9,
(b) Human knee thresholded at g = 1500.

2.1.2 Neighbourhood Filters

When T comprises a neighbourhood bigger than a single element, several important
measurements arise. When a convolution with kernels is performed, this can be con-
sidered as a filtering operation, which is described below. If the relative position is not
taken into account, the most common measurements that can be extracted are statis-
tical moments. These moments can describe the distributions of the sample, that is
the elements of the neighbourhood, and in some cases these can help to distinguish
different textures. Yet, since they do not take into account the particular position of
any pixel, two very different textures could have the same distribution and therefore the
same moments. Even with this limitation, some researchers use these measurements as
descriptors for texture. Acha [1] performed burn diagnosis to distinguish healthy skin
from burn wounds. Their textural measurements were a set of parameters; mean, stan-
dard deviation, and skewness, of the colour components of their images. Their feature
selection invariably selected the mean values of lightness, hue, and chroma, so perhaps
the discrimination power resides in the amplitude levels more than the texture of the
images. Kapur [78] studied 3D medical data in a model-based analysis where a spatial
relationship, measuring distance and orientation, between bone and cartilage is modelled

from a set of manually segmented images and is later used in model-based segmentation.
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Lorigo [100] performed segmentation of the bone in MRI using active contours. Both
used local variance as a measure of texture.
For a neighbourhood related to the element z = (r, ¢, d) a neighbourhood can be seen

as a subset ./ of the data with the domains L;" x Ly x L (of size N;*', N, N3")

related to the data in the following relations:

LY cL, LY ={rr+1,....,r+ N/}, 1<r<N, - N, (2.4)
L) cL. LY ={cc+1,....c+ N}, 1<c<N.—N, (2.5)
Ly cLy Ly ={d,d+1,...,d+ N7}, 1<d < N;— N7, (2.6)

(r,e,d) € (L x LY x L) (2.7)

The first four moments of the distribution; mean u, standard deviation o, skewness s

and kurtosis ku, are obtained by:

1
HyDp = W Z VD(T', C, d) (28)
T T L L <Ly

1 2
oyp = + NN NN Z (VD(Ta ¢, d) - HVD) (29)
NN NG — 1 Ly xLg¥ xLy"

3
SyD 1 Z (VD(T, Cy d) — MVD) (210)

T NSNANY 1 o
rooe Td LY xLg¥ xLy"

kuyp = ! 3 (sznc”ﬂ'_uvp)4 (2.11)

N/ NAY NS —1 o
rote T Ly xLg¥ xLy"

Figure 2.5 shows the results of calculating the four moments over a neighbourhood of
size 16 x 16 in a sliding way (overlapping) for the two previous data sets. It is important
to mention that for higher moments the accuracy of the estimation will depend on the
number of points. With only 256 points, the estimation is not very accurate.

For the knee data, it is interesting to observe that the higher values of the standard
deviation correspond to the transition regions, roughly close to the edges of bones tissue

and skin. The lower values correspond to more homogeneous regions, and account for
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Figure 2.5: Four moments for one slice of the examples: (a) Mean, (b) Standard Deviation,
(c) Skewness, (d) Kurtosis.
more than 92% of the total elements.

While for the knee data, some of the results can be of interest, for the oriented
textures the moments resemble a blurred version of the original image. From here we
can observe that if these moments are of interest it will imply that a significant difference

on the grey levels is present.

2.1.3 Convolutional Filters

The most important characteristic of the measurements that were presented in the
previous section was that the relative position of the elements inside the neighbourhood
is not considered. In contrast to this, there are many methods in the literature that use
a template to perform an operation among the elements inside a neighbourhood. If the
template is not isotropic then the relative position is taken into account. The template
or filter is used as a sliding window over the data to extract the desired measurements.
The operators respond differently to vertical, horizontal, or diagonal edges, corners, lines
or isolated points.

The templates or filters will be arrays of different size: 2 x 2, 3 x 3, etc. To use these
filters in 3D is just necessary to extend one extra dimension and have filters of sizes:

2x2x2,3x3x3,etc. The design and filtering effect will depend on the coefficients
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assigned to each element of the template: z1, 29, 23, ... that will interact with the voxels
T1,T9,T3,... of the data. If the coefficients of these filters are related to the values of
the data through an equation R = z1x1 + 2023 + 2323, ..., this is considered as a linear
filter. Other operations such as the median, mazimum, minimum, etc. are possible. In
those cases the filter is considered as a non-linear filter. The simplest case of these filters
would be when all the elements z; have equal values and the effect of the convolution is
an averaging of neighbouring elements. A very common set of filters is the one proposed
by Laws [93] that emerge from the combination of three basic vectors: [1 2 1] used for
averaging, [—1 0 1] used for edges and [-1 2 — 1] used for detecting spots. The outer
product of two of these vectors can create many masks used for filtering.

These filters can easily be extended into 3D by using 3 vectors and have been used
to analyse muscle fibre structures from confocal microscopic images by Lang [92]. The
problem of Laws mask remains in the selection of the vectors; a great number of com-
binations can be generated in 3D and not all of them would be useful.

Differential filters are of particular importance for texture analysis. Applying a
gradient operator V to the data will result in a vector:

ovD, o0VD,., 0oVD .

VVD = ==+ it s d (2.12)

where 7, ¢, d represent unitary vectors in the direction of each dimension. In practice

the partial derivatives are obtained by the difference of elements, and while a simple

template like - would perform the difference of neighbouring pixels in

-1

1 0 -1 1 2 1
each direction, 3 x 3 operators like Sobel: s (o] 2|0 o] o]orPrewitt:
1|0 -1 1| -2 | a1

1 0 -1 1 1 1
1lo|-1].] 0o o] o| are commonly used. Roberts operator
10| 1 I S T |

1] o o |1
o|-1]l-1]o

is used

to obtain differences in the diagonals. The differences between elements will visually

sharpen the data; contrary to the smoothing that is created by averaging.
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The use of the magnitude of the gradient (MG)

o= (%) (22) 4 (22)) o9

has been reported by Bernasconi [5] as a texture measurement to analyse the transition

between grey matter (GM) and white matter (WM) in brain MRIs. A blurred transition
between GM and WM, (lower magnitude values) could be linked to Focal cortical dys-
plasia (FCD), a neuronal disorder. Bernasconi proposes a ratio map of GM thickness
multiplied by the relative intensity of voxel values with respect to a histogram-based
threshold that divides GM and WM and then divide this product by the grey level
intensity gradient. Their results enhance the visual detection of lesions.

In seismic applications, Randen [125] used the gradient to detect two attributes of
texture: dip and azimuth. Instead of the magnitude, they are interested in the direc-
tion, which in turn poses the problem of unwrapping in presence of noise; a non-trivial
problem. They first obtain the gradient of the data and then calculate a local covariance
matrix whose eigenvalues are said to describe dip and azimuth. These measures are said
to be adequate for seismic data where parallel planes run along the data, but when other
seismic objects are present, like faults, other processing is required.

The Zucker-Hummel filter [167]:

1 1 1 00 0 =1 =1 =1
V3 V2 V3 V3 V2 V3
1 1 —1 -1
V2 1 V2 000 V2 1 V2 (2.14)
4 1 1 00 0 =1 =1 =1
V3 V2 V3 V3 V2 V3

has also been used as a gradient operator ([85, 86, 88, 89, 136]). Once the filter is con-
volved in each of the axis, either the magnitude or the orientation of the gradient at each
voxel can be used to calculate three-dimensional histograms. If orientation is considered,
the values are grouped into bins of solid angles. These histograms can be visualised with

an extended Gaussian image (3D orientation indicatrix) [88]. The histograms and the
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metrics that can be extracted from them - anisotropy coefficient, integral anisotropy
measure or local mean curvature - can reveal important characteristics of the original
data, like the anisotropy, which can be linked to different brain conditions. The mea-
sure of anisotropy in brains has shown that there is some indication of higher degree of
anisotropy in brains with brain atrophy than in normal brains [136].

This filter is also used as a step of the 3D co-occurrence matrix proposed by Kovalev

and Petrou [87, 88] and will be further discussed in section 2.3.2.

2.2 Wavelets

Wavelet decomposition and Wavelet Packet are two common techniques used to extract
measurements from textured data [19, 40, 42, 91, 121, 147] since they provide a tractable
way of decomposing images (or volumes) into different frequency components sub-bands
at different scales.

Wayvelet analysis is based on mathematical functions, the Wauvelets, which present
certain advantages over Fourier analysis when discontinuities appear in the data, since
the analysing or mother Wavelet 1) is a localised function limited in space (or time) and
does not assume a function that stretches infinitely as the sinusoidals of the Fourier
analysis. The Wavelets or small waves should decay to zero at +oo (in practice they
decay very fast) so in order to cover the space of interest (which can be the real line R)

they need to be shifted along R. This could be done with integral shifts:

Y(r—k), keZ, (2.15)

where Z = {...,—1,0,1,...} is the set of integers. To consider different frequencies, the
Wavelet needs to be dilated, one way of doing it is with a binary dilation in integral

powers of 2:

v@2r—k), k€. (2.16)
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The signal (2! — k) is obtained from the mother Wavelet 4(r) by a binary dilation 27

and a dyadic translation k/2!. The function Py, is defined as:
bra(r) = 2424 (2% - k) . kileZ. (2.17)

The scaled and translated Wavelets need to be orthogonal to each other in the same

way that sines and cosines are orthogonal, i.e.:

<¢k,l(7')7"/}m,n(r)> =0, for (k’l) 7é (man) (2'18)

k,l,m,n € Z.

Next, for the basis to be orthonormal, the functions need to have unit length, if ¢/ has

unit length, then all of the functions 9 ; will also have unit length:

| Pri(r) ll2=1. (2.19)

Then, any function f can be written as:

f(r)= Z Cr Wk (), (2.20)

k,=—00

where ¢;; are called the Wavelet coefficients, analogous to the notion of the Fourier

coefficients and are given by the inner product of the function and the Wavelet:

wa =S = [ (. (2.21)

The Wavelet transform of a function f(r) is defined as [22]:

T(a,b) = ﬁ /_ Z £y (T — b) dr. (2.22)

The Wavelets must satisfy certain conditions, of which perhaps the most important
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one is the admissibility condition which states that:

————dp < 0. 2.23
o o] (2.23)

/°° |9 (p)”

where 1, (p) is the Fourier transform of the mother Wavelet 1(r). This condition implies

that the function has zero mean:

/_00 p(r)dr =0, (2.24)

which implies that the Fourier transform of the Wavelet 1) vanishes at zero frequency ®.

From a signal processing point of view, it may be useful to think of the coefficients
and the Wavelets as filters, in other words, we are dealing with band pass filters, not low
pass filters. To cover the low pass regions, Mallat [103] introduced a scaling function,
which does not satisfy the previous admissibility condition (and therefore it is not a
Wavelet) but covers the low pass regions. In fact this function should integrate to 1. So,
by a combination of a Wavelet and a scaling function it is possible to split the spectrum
of a signal into a low pass region and a high pass region. This combination of filters is
sometimes called a quadrature mirror filter pair [51]. The decomposition can continue
by splitting the low pass region into another low pass and a band pass. This process is
represented in figure 2.6. To prevent the dimensions of the decomposition expanding at
every step, a down-sampling step is performed in order to keep the dimensions constant.
In many cases the down-sampling presents no degradation of the signals but it may not
always be the case. If the down-sampling step is eliminated, the decomposition will
provide an over-complete representation called Wavelet Frames [147].

It is important to remember that e/* = cos(x)+jsin(z) is the only function necessary
to generate the orthogonal space in Fourier analysis. While through the use of Wavelets,
it is possible to extract information that can be obscured by the sinusoidals, there

is a large number of Wavelets to choose from: Haar, Daubechies, Symlets, Coiflets,

!This condition prevents a Gabor filter (section 2.4.1) from being a Wavelet since it is possible that
a Gabor filter will have a value different from zero at the origin of the Fourier domain.
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Figure 2.6: (a) Wavelet decomposition by successively splitting the spectrum. (b) Schematic
representation of the decomposition.
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Figure 2.7: Wavelet packet decomposition. Both high pass and low pass are further split.

Biorthogonal, Meyer, etc., and some of them have variations according to the moments
of the function. The nature of the data and the application can determine which family
to use, but even with this knowledge, it is not always clear how to select a certain family
of Wavelets.

The decomposition does not have to be restricted to the low pass region of course.
When the high pass region (or band pass) is decomposed, an adaptive Wavelet decom-
position or Wauvelet packet is used. Figure 2.7 shows a schematic representation of a
Wavelet packet.

The previous description of the Wavelet decomposition was based on a 1D function

f(r). When dealing with more than one dimension, the extension is usually performed
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Figure 2.8: A schematic representation of a 3D Wavelet decomposition.

(a)

Figure 2.9: Two levels of a 2D Wavelet decomposition of one slice of the human knee MRI,
(a) Level 1, (b) Level 2.
by separable Wavelet and scaling functions applied in each dimension. In 2D, 4 options
are obtained in one level of decomposition: LL, LH, HL, HH, that is low pass in
both dimensions (LL), one low pass and one high pass in opposite dimensions (LH,
HL) and high pass in both dimensions (HH). Figure 2.8 represents schematically a
3D separable Wavelet decomposition, eight different combinations of the filters (LLL,
LLH, LHL, LHH, HLL, HLH, HHL, HHH) can be achieved in the first level of a
3D decomposition.

Figure 2.9 presents the first two levels of a 2D Wavelet decomposition (Coiflet 1
used) of one slice of the human knee MRI.

Unser [147] has analysed texture with Wavelets and concludes that Wavelet trans-
form is an attractive tool for characterising textures due to its properties of multires-

olution and orthogonality. He mentions that having more than one level led to better
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results than a single resolution analysis.

Jafari [69] studied Wavelets in 2D and 3D for the study of temporal lobe epilepsy
(TLE) and concluded that the extracted features are linearly separable and the energy
features derived from the 2D Wavelet transform provide higher separability compared

with 3D Wavelet decomposition of the hippocampus.

2.3 Joint Statistics: The Co-occurrence Matrix

The co-occurrence matrix defines the joint occurrences of grey tones (or ranges of tones)
and is constructed by analysing the grey levels of neighbouring pixels. The co-occurrence
matrix is a widely used technique over 2D images and some extensions to three dimen-

sions have been proposed. We begin with a description of 2D co-occurrence.

2.3.1 2D Co-occurrence

Let the original image Z with dimensions for rows and columns N, x N, be quantised
to Ny grey levels. The co-occurrence matrix will be a symmetric Ny X Ny matrix that
will describe the number of co-occurrences of grey levels in a certain orientation and
a certain element distance. The distance can be understood as a chess-board distance
(Ds) [50]. The un-normalised co-occurrence matrix entry C M (g1, g2, Dg, @) records the
number of times that grey levels g; and gy jointly occur at a neighbouring distance Dyg,
in the orientation 6. For example, if L, = {1,2,...,N.} and L, = {1,2,..., N, } are the
horizontal and vertical co-ordinates of an image Z, and G = {1,...,g1,...,92,...,Ng}
the set of quantised grey levels, then the values of the un-normalised co-occurrence

matrix CM (g1, go) within a distance Dg = 1 and 6 = ?{T” is given by:

CM(g1,92,1,135°) = #{((r1,¢1),(r2,¢2)) € (L, X L.) X (L x L) | (2.25)

((r—re=1c1—ca=1), I(r1,c1) = g1,Z(r2, c2) = 92},
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Figure 2.10: Human knee MRI and four selected regions.

where # denotes the number of elements in the set. In other words, the matrix will be
formed counting the number of times that two pixels with values g1, go appear contiguous
in the direction down and to the right (south-east). In this way, a co-occurrence matrix
is able to measure local grey level dependence: textural coarseness and directionality.
For example, in coarse images, the grey level of the pixels change slightly with distance,
while for fine textures the levels change rapidly. From this matrix, different features
like entropy, uniformity, mazimum probability, contrast, correlation, difference moment,
inverse difference moment, correlation can be calculated [56]. It is assumed that all the
texture information is contained in this matrix.

As an example to illustrate the properties of the co-occurrence matrix, 4 training re-
gions, namely, background, muscle, bone, tissue, were selected from the MRI. Figure 2.10
shows the training samples location in the original image. For every texture, the co-
occurrence matrix was calculated for 4 different orientations 6 = {0, T, 7, 3{} and three
distances Dg = {1,2,3}. The results are presented in the figures 2.11, 2.12, 2.13, 2.14.
Here are some brief observations about the co-occurrence matrices and their distribu-

tions:
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Table 2.1: Characteristics of the co-occurrence matrix

(a) ) (© (@) (© (0

(a) High values in the main diagonal imply uniformity in the image.
That is, most transitions occur between similar levels of grey.

(b) High values outside the main diagonal imply abrupt changes in the
grey level, from very dark to very bright.

(c) High values in the upper part imply a darker image.

(d) High values in the lower part imply a brighter image.

(e) High values in the lower central region part imply an image whose
transitions occur mainly between similar grey levels and whose his-
togram is roughly of Gaussian shape.

(f) In a noise image, the transitions between different grey levels should
be balanced and it should be invariant to Dg and 6. The reverse, a
balanced matrix, does not imply a noisy image.

e Background. The distribution of the co-occurrence matrix suggests a highly
noisy nature with a skew towards the darker regions. There is a certain tendency
to be more uniform in the horizontal direction (§ = 0) at a distance of Dg =1
which is the only matrix that is significantly different from the rest of the set.

e Muscle. The co-occurrence matrix is highly concentrated in the central region,
the middle grey levels, and there is a lower spread compared with the background.
A vertical structure can be observed, this in turn gives a certain vertical and
horizontal (¢ = 0, ) uniformity, only at distance Dg = 1.

e Bone. The nature of the bone is highly noisy as it can be observed from the
matrices, but, compared with the background, there is no skew towards dark or
bright. As in the case of the muscle there is certain horizontal uniformity, but not
vertical.

e Tissue. The distribution is skewed towards the brighter levels. The tissue presents

several major structures with a 135° orientation, this makes the § = 7 matrix to

be more dispersed than the other orientations for distance Dg = 1. As the distance
increases the matrices spread towards a noisy configuration.

When observing the matrices, it is important to note which textures are invariant

to distance or angle. Some characteristics of the co-occurrence matrix are presented in

table 2.1.
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Example 1 D

3

Figure 2.12: A sample of muscle, its histogram and co-occurrence matrices.

Some of the features determine the presence of a certain degree of organisation,
but others measure the complexity of the grey level transitions, and therefore are more
difficult to identify. The textural features? as defined in [55] and [56] are presented in
tables 2.2 and 2.3.

2There are slight differences in the features presented in both texts, notice for instance that Contrast
and Correlation are sometimes equivalently displayed as:

N, N N, N, _ _
3= 300 SN0 g1 — golF(emlg, g2)), s = Sone, SNo | (1w —pem(91.92)
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Figure 2.13: A sample of bone, its histogram and co-occurrence matrices.
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Figure 2.14: A sample of tissue, its histogram and co-occurrence matrices.

Any single matrix feature or combination can be used to represent the local regional
properties but it can be difficult to predict which combination will help discriminate
regions without some experimentation.

The major disadvantage of the co-occurrence matrix is that its dimensions will de-
pend on the number of grey levels. In many cases, the grey levels are quantised to
reduce the computational cost and information is lost inevitably. Otherwise, the com-
putational burden is huge. To keep computation tractable, the grey levels are quantised,

Dy is restricted to a small neighbourhood and a limited number of angles 6 are cho-
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Figure 2.15: 15 Features of the co-occurrence matrix for 4 different angles and distance
Dg =1.

sen. An important implication of quantising the grey levels is that the sparsity of the
co-occurrence matrix is reduced.

The images are normally processed by blocks of a certain size 4 x 4, 8 x 8, 16 x 16,
etc., and they have an overlap which allows for rapid computation of the matrix [2, 24].
Even with these restrictions, the number of features can be very high and a selection
method is required. If 4 angles are selected, with 15 textural features, the space will
be of 60 features for every distance Dg; if Dg = 1,2,3, the feature space will have 180

dimensions. Figure 2.15 presents 60 features calculated on one slice of the MRI.
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Table 2.2: Textural features of the co-occurrence matrix [55] [56]:
Ng Ng
Angular Second Moment _ 9.96
g1=1g2=1
Ng—1 N, N
Element Difference M oment N N DIAED P
(Contrast) a Zo " lg1—g2|=n em(91,92) (2.27)
n=»
Ng Ng
Correlation = Lig1 2gy=1(9192)em(G1, 92) ~ Haty (2.28)
3 20y .
Ny N
Sum of Squares (Variance) P = Z Z g1 — p)%em(gi, g2) (2.29)
91= 1!}2 1
. em(91, g2)
I D M t 2.30
nverse Difference M omen Z Z Hlo-nl (2.30)
91=1g2=1
Sum Average P6 = Z 91Pz+y(91) (2.31)
g1=2
2N,
Sum Variance o= (91— 98)’Pory(g1) (2.32)
g1=2
2N,
Sum Entropy 08 =— D Paiy(g1)10g{pery(g1)} (2.33)
g91=2
Ng Ng
Entropy =3 ) em(gr,92) log{em(gr, 92)} (2.34)
g91=1g2=1
Difference Variance 10 = Var{pz—y(93)} (2.35)
Ny—1
Difference Entropy P11 = — Z Pao—y(91) log{pz—y(91)} (2.36)
g1=0
Information Measures of _ HXY-HXY1 (2.37)
Correlation p12 = mazx{HX,HY} ’
p13=(1- 672(HXY27HXY))% (2.38)
M azimal Correlation 1
Coeﬂ:icient Y14 = (Sec. Larg. Eigenvalue of Q) 2 (239)
Mazimum Probability w15 = maz{cm(g1, g2)} (2.40)
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Table 2.3: Notation used for the co-occurrence matrix and its features [55] [56]

em(g1,92) = %, (91, g2)th entry in a normalised
matrix.

N, Number of grey levels of the
quantised image.

pz(q1) = Zggzl em(gi, g2) ¢gith entry in the marginal-
probability matrix by summing
the rows.

py(g2) = Z;\i"zl em(g1, g2) goth entry in the marginal-

probability matrix by summing
the columns.

Drty(93) = E;gvigizzz%:ﬂcm(gl,gﬂ, 93=2,3,...,2N,.
Po—y(g3) = E‘;gv}gi‘gzz‘;%gjcm(ghgz), 95 =0,1,...,N, — 1.
HXY = =309, Yol s em(g1,92) log{em(g1, 92)} Entropy of em(g1, g2)
HX == 3,7, px(91) log{pa(g1)} Entropy of pq(g1)
HY = =32, py(92) log{py(g2)} Entropy of py(g2)

HXY1=-Y 00, Y0 em(gr, g2) log{ps(91)py (92)}
HXY2=— Y00, Y0 pa(91)py(92) log{pa (91)py (92)}

_ (91,93)cm(92,93)
Q(91,92) = 293 = 1?:(2?);:?9922) =

2.3.2 3D Co-occurrence

When the co-occurrence of volumetric data sets VD is to be analysed, the un-normalised

co-occurrence matrix will become a five dimensional matrix:
CM(glag%DSagad)a (241)

where d will represent the slice separation of the voxels. Alternatively, two directions:
0, ¢ could be used. The computational complexity of this technique will grow consider-
ably with this extension, the co-occurrence matrix could also be a very sparse matrix.

The sparsity of the matrix could imply that quantising could improve the complexity,
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or special techniques of sparse matrix could also be used [24].

Early use of co-occurrence matrices with 3D data was reported by Ip and Lam [68]
who partitioned the data, calculated the co-occurrence matrix and three features for
each partition and then classified the data into homogeneous regions. The homogeneity
is based on the features of the sub-partitions.

A generalised multidimensional co-occurrence matrix was presented by Kovalev and
Petrou [87]. They propose M-dimensional matrices, which measure the occurrence of
attributes or relations of the elements of the data; grey level is one attribute but others
(such as magnitude of a local gradient) are possible. Rather than using the matrices
themselves, features are extracted and used in several applications: to discriminate
between normal brains and brains with pathologies, to detect defects on textures, and
to recognise shapes. These matrices have been used in several publications: to measure
texture anisotropy [88], for the analysis of MRI brain data sets [85], to detect age and
gender effects in structural brain asymmetry [86], and the detection of schizophrenic
patients [89].

In [89] Kovalev, Petrou and Suckling use the magnitude of the gradient calculated
with the Zucker-Hummel filter over the data. The authors use 3D co-occurrence to
discriminate between schizophrenic patients and controls. The data of T1-MRIs are

filtered spatially and then the co-occurrence matrix will be a function of

CM(MG1, MGs, Ds,0,d), (2.42)

where MG is the magnitude of the gradient at a certain voxel. This method requires
an empirical threshold to discard gradient vectors with magnitudes lower than 75 units
(from a range 0-600) as a noise removal of the data. The authors reported that not
all the slices of the brain were suitable for discrimination between schizophrenics and
normal control subjects. It is the most inferior part of the brain, in particular the tissue
close to the sulci, which gives the slices whose features provide discrimination between

the populations.
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Another variation of the co-occurrence matrix is reported by Kovalev and Kruggel

[85] where the matrix will include both grey level intensity and gradient magnitude:

C’M(gl,gQ,MGl,MGg,Dg,O,d). (243)

This matrix is called by the authors IIGGAD (Intensity, Gradient, Angle, Distance)
who also consider a reduced version like IID, GGD, GAD. The traditional co-occurrence
matrix will be a particular case of the IIGGAD matrix. This matrix is used in the
discrimination of brain data sets of patients with mild cognitive disturbance. This
technique is also used to segment brain lesions but the method is not straightforward.
First, a representative descriptor of the lesion is required. For this, a VOI that contains
the lesion is required, which leads to a training set manually determined. Then, a
mapping function is used to determine the probability of a voxel being in the lesion or
not, based on the distances between the current VOI and the representative VOI of the
lesion. Again this step needs tuning. The segmentation is carried out with a sliding-
window analysing the data for each VOI. Post-processing with knowledge of the WM
area is required to discard false positives. The method segments the lesions of the WM
but there is no clinical validation of the results.

Kovalev and Kruggel [86] have also studied the brain asymmetry in 3D MRI with co-
occurrence matrices. Gradients as well as intensities are included in the matrix, which
is then used to analyse the brain asymmetry. It was found that male brains are more
asymmetric than females and that changes of asymmetry with age are less prominent.
The results reported correspond closely to other techniques and they propose the use of
texture-based methods for digital morphometry in neuroscience.

Mahmoud-Ghoneim [101] has reported using 3D co-occurrence matrices in MRI data
for evaluation of gliomas. An experienced neuroradiologist selected homogeneous vol-
umes of interest (VOI) corresponding to a particular tissue: WM, active tumour, necro-
sis, oedema, etc. Co-occurrence matrices were obtained from these VOIs and their

parameters were used in a pair-wise discrimination between the classes. The results are
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compared against 2D co-occurrence matrices, which are outperformed by the 3D ap-
proach. Herlidou has used a similar methodology for the evaluation of osteoporosis [61],
diseased skeletal muscle [62] and intracranial tumours [63]. Regions of interest (ROI)
were manually selected from the data and then measurements were extracted with dif-
ferent techniques with the objective of discriminating between the classes of the ROIs.
As with other techniques, the partitioning of the data presents a problem: if the region
or volume of interest (VOI/ROI) selected is too small, it will not capture the structure
of a texture, if it is too big, it will not be good for segmentation. It is important to
mention that the objective of this thesis is not to discriminate between two separate
volumes, but from a single region (the whole MRI set) distinguish the presence of two
or more different structures characterised by their texture.

In summary, co-occurrence matrices can be extended without much trouble into 3D
and are a good way of characterising textural properties of the data. The segmentation or
classification with these matrices presents several disadvantages: first, the computational
complexity to calculate the matrix is considerable for even small ranges of grey levels
(even with fast methods [2, 24]), many times the ranges are quantised into a lower range
with the possible loss of information. Second, the parameters on which the matrix
depends: distance, orientation and number of bins in the 3D cases can yield a huge
number of possible different matrices. If this dimensionality problem is not enough,
there is a large number of features that can be extracted from the matrix and choosing
the adequate features can depend on the data analysed and the specific analysis to be

performed.

2.4 Frequency Filtering

In this section we will discuss some filters that can be applied to textured data. A filter
is defined by Webster as a device or material for suppressing or minimising waves or
oscillations of certain frequencies (as of electricity, light, or sound) [108]. In the context

of images or volumes, these filters can be understood as a technique that will modify the
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frequential content of the data. As mentioned before, textures can vary in their spectral
distribution in the frequency domain, and therefore a set of sub-band filters can help in
their discrimination.

The classification process goes beyond the filtering stage, and according to Randen
[124] the process consists of the following steps: filtering, non-linearity, smoothing,
normalising non-linearity and classification. The first step corresponds to the output of
the filters, then, a local energy function (LEF) is obtained with the non-linearity and the
smoothing. The normalising is an optional step before feeding everything to a classifier.
Figure 2.16 demonstrates some of these steps. In this section we will concentrate on
the filter responses and for all of them we will use the magnitude as the non-linearity.
The smoothing step is quite an important part of the classification as it may influence
considerably the results. Section 3.2 will discuss in more detail the impact of the size of
the LEF in the classification.

The spatial and frequency domains are related through the use of the Fourier trans-
form, such that a filter F' in the spatial domain (that is the mask or template) will be

used through a convolution with the data:

VD = F VD (2.44)

where VD is the filtered data. From the convolution theorem [50] the same effect can

be obtained in the frequency domain:

VD, = F,VD,, (2.45)

where the VD,, = Z[VD], VD, = Z[VD], and F, = ZF[F] are the corresponding
Fourier transforms. The filters in the Fourier domain are named after the frequencies
that are to be allowed to pass through them: low pass, band pass and high pass filters.
Figure 2.17 shows the filter impulse response and the resulting filtered human knee for

low pass, high pass and band pass filters.
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Figure 2.16: A filtering measurement extraction process.

The filters just presented have a very simple formulation and combinations through
different frequencies will form a filter bank, which is an array of band pass filters that span
the whole frequency domain spectrum. The idea behind the bank is to select and isolate
individual frequency components. Besides the frequency, in 2D and 3D there is another
important element of the filters, the orientation. The filters previously presented vary
only in their frequency but remain isotropic with respect to the orientation of the filter;
these filters are considered ring filters for the shape of the magnitude in the frequency
domain. In contrast, the wedge filters will span the whole frequencies but only in certain
orientations. Figure 2.18 presents some examples of these filters. Of course, the filters

can be combined to concentrate only on a certain frequency and a certain orientation,
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Figure 2.17: Frequency filtering of the Human knee MR: Top Row (a) Low pass filter, (b)
High pass filter, (c) Band pass filter. Bottom Row (d,e,f) Corresponding filtered images.

(a) (b) (c)

Figure 2.18: Different frequency filters: (a) Ring filter, (b) Wedge filter (c) Lognormal filter
[155].
so called sub-band filtering. Many varieties of sub-band filtering schemes exist, perhaps

the most common is Gabor filters which will be described in the next section.

2.4.1 Sub-band Filtering with Gabor Filters

The multichannel filtering approach to texture is inspired by the human visual system
that can segment textures preattentively [102]. Experiments in psychophysical and
neurophysiological data have led us to think that the human visual system performs
some local spatial-frequency analysis on the retinal image by a bank of tuned band

pass filters [38]. In the context of communication systems, Gabor [46] presented the
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concept of local frequency, which has been used in computer vision by many researchers
in the form of a multichannel filter bank [15, 71, 81, 122]. One of the advantages of this
approach is the use of simple statistics of grey values of the filtered images as features
or measurements of the textures.

Jain and Farrokhnia [71] present the Gabor filter as an even-symmetric function
whose impulse response is the product of a Gaussian function ¥, of parameters (u,o?)

and a modulating cosine. In 3D, the function is [130]:

G 1(r? & d
F? =exp{ —= 2t at— cos(2m(rpy + cro + ddy)), (2.46)

2\o? o2 o
where py, kg, dg are the frequencies corresponding to the centre of the filter, and o2, 02, 0(21

are the constants that define the Gaussian envelope. The Fourier transform of equa-

tion 2.46 is:

1 _ 2 _ 2 5—106 2
Fg - A G.Tp{—— <(p QPO) + (K' ;‘0) + ( 20) )}
2 o5 ok o
1 +p0)?  (k4+Ko)2  (0+6)?
+ Aexps —= (o 50) + ( 5 0) + ( 20) , (2.47)

2 o lopd oy

where o, = 3071 Ok = Bmgz106 = FpoTa and A = 27o,0.04. The filter has two real-

valued lobes, of Gaussian shape that have been shifted +(pg, ko, dy) frequency units
along the frequency axes +(p, k,d) and rotated by a certain angle (0, $) with respect
to the positive p axis. Figure 2.19 (a,b) presents a 2D filter in the spatial and Fourier
domains.

The filter-bank is typically arranged in a rosette (figure 2.19 (c)) with several radial
frequencies and orientations. The rosette is designed to cover the 2D frequency plane
by overlapping filters whose centres lie in concentric circles with respect to the origin.
The orientation and bandwidths are designed such that filters with the same radial
frequency will overlap at the 50% of their amplitudes. In [71] it is recommended to

s

use four orientations § = {0, %, 7, T}, and radial frequencies at octaves. The use of

Gabor filters for the extraction of texture measurements has been widely used in 2D
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Figure 2.19: 2D even symmetric Gabor filters in: (a) Spatial domain, (b) Fourier domain.
(c) A filter bank arranged in a rosette, 5 frequencies, 4 orientations.

[10, 15, 37, 38, 71, 124, 154].

As an example, the oriented pattern data of figure 2.1 is filtered with a 3D Gabor
filter. Figure 2.20 (a) shows the envelope of the filter in the Fourier domain, this filter
was multiplied with the data in the Fourier domain and one slice of the result in the
spatial domain is presented in figure 2.20 (c). The presence of two classes appears clearly.
By thresholding at the midpoint between the grey levels of the filtered data, two classes
can be roughly segmented 2.20 (d,e).

The use of Gabor filters in 3D is not as common as in 2D. Zhan [166] approximates the
complete set of 3D Gabor features with two banks of 2D filters located at the orthogonal
coronal and axial planes. In their application of Ultrasound prostate images, they claim
that this approximation is sufficient to characterise the texture of the prostate. This
approach is clearly limited since it is only analysing 2 planes of a whole 3D volume. If the
texture were of high frequencies that do not lie in either plane, then the characterisation
would fail.

Other cases of 3D Gabor filters have been reported by Bigun [9] who describes the
design of 3D filters for image sequences, Fernandez [42] who combines wavelets and
Gabor filters for segmentation of 3D seismic sections and Rousseau [130] who applied
the filters to clinical ultrasound volumes of carotid. For the design of a filter bank in
3D the radial frequencies are also taken in octaves and the orientation of azimuth and

elevation can be both restricted to 4 angles: (6, ¢) = {0, %, %, 3*} which yield a total of



2.4. FREQUENCY FILTERING 50

Figure 2.20: (a) An even symmetric 3D Gabor in the Fourier domain, (b) One slice of the
Oriented pattern data and (c) its filtered version with the filter from (a). (c.d) Two classes
obtained from thresholding the filtered data.

(a) (b) (c) (d)

Figure 2.21: Comparison of 2D and 1D Gabor filters. An even symmetric 2D Gabor in: (a)
spatial domain, and (b) Fourier domain. A 1D Gabor filter in: (c) spatial domain, and (d)
Fourier domain.
13 orientations.

In some cases, 1D Gabor filters have been used over data of more than one dimension
([90, 126]). The essence of the Gabor filter remains, in the sense that a cosine modulates a
Gaussian function, but the filters change notoriously. Consider the following comparison
between 1D and 2D filters presented in figure 2.21. The 2D filter is localised in frequency
while the 1D filter spans through the Fourier domain in one dimension allowing a range

of radial frequencies and orientations to be covered by the filter.
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(a) (b) ()

Figure 2.22: 2D and 3D Second Orientation Pyramid (SOP) tessellation. Solid lines indicate
the filters added at the present order while dotted lines indicate filters added in higher orders,
as the central region is sub-divided. (a) 2D order 1, (b) 2D order 2, (c) 2D order 3, and (d)
3D order 1.

2.4.2 Sub-band Filtering with Second Orientation Pyramid

Wilson and Spann [161] proposed a set of operations that subdivide the frequency do-
main of an image into smaller regions by the use of two operators quadrature and centre-
surround. By the combination of these operations, it is possible to construct different
tessellations of the space, one of which is the Second Order Pyramid (SOP) (figure 2.22).
In this work, a band-limited filter based on truncated Gaussians (figure 2.23) has been
used to approximate the finite prolate spheroidal sequences (FPSS). The filters are real,
band-limited functions which cover the Fourier half-plane. Since the Fourier transform
is symmetric, it is possible to use only half-plane or half-volume and still keep the
frequency information. A description of the sub-band filtering with SOP process will
follow.

Any given volume VD whose centred Fourier transform is VD, = .#[VD]| can be
subdivided into a set of i regions LL x Lx Ly: Lt = {r,r+1,...,7+N!}, 1 <r < N,—N¢,
Lt ={c,c+1,...,c+N¢}, 1 < e < N.—N¢, Ly = {d,d+1,...,d+ N}, 1 <d < Ny— N,

that follow the conditions:

LiCLy Y N/=N,, LiCL, Y,;Ni=N,, LjCLg Y Nj=Ng, (248)
i 7

(Li x Lix L) N(LL x Lix L) = {$}, i# 3.

In 2D, the SOP tessellation involves a set of 7 filters, one for the low pass region and

six for the high pass (figure 2.22 (a)). In 3D, the tessellation will consist of 28 filters for
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(a) (b)
Figure 2.23: Band-limited 2D Gaussian filter (a) Frequency domain F¢, (b) Magnitude of
spatial domain |F?|.
the high pass region and one for the low pass (figure 2.22 (d)). The i-th filter F in the
Fourier domain (F! = Z[F')) is related to the i-th subdivision of the frequency domain

as:

Li x Lt x LY, = Y,(u', %Y

L. x L. x Lg; FY - Vi € SOP (2.49)

(Li x Lt x Li)® = 0
where ¢, describes a Gaussian function, with parameters p’, the centre of the region i,
and ¥ is the co-variance matrix that will provide a cut-off of 0.5 at the limit of the band
(for 2D figure 2.23). In 3D, the filters will again be formed by truncated 3D Gaussians
in an octave-wise tessellation that resembles a regular Oct-tree configuration. In the
case of MRI data, these filters can be applied directly to the K-space. (The image that
is presented as an MRI is actually the inverse Fourier transform of signals detected in
the MRI process, thus the K-space looks like the Fourier transform of the image that is

being filtered.)

The measurement space S in its frequency and spatial domains will be defined as:

S, (p, k,0) = Fi(p,k,8) VDy(p, 5,8) V(p,k,8) € (Ly x Le X Lg), (2.50)

St =|F S]] (2.51)

The same methodology for the first order of the SOP can be extended to the next
orders. At every step, one of the filters will contain the low pass (i.e. the centre) of
the region analysed, VD,, for the first order, and the six (2D) or 28 (3D) remaining will

subdivide the high pass bands of the surround of the region.
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For simplicity we only detail the co-ordinate systems in 2D:

N, 3N, N, 3N,
Centre:F1: Li:{TT_FI’---,TT}aLi:{ZC_F]-,--WTC}’
N, N, N,
Surround : F2_7: L§’4’5’6 = {1a"'7_T}7L%7 = {IT + 1,---77T}a
N, N, N,
LA ={l,...,FhLle={+1....5}
3N, 3N,

N,
L2={=S+1,... A LST={=<41... N,
[ { 2 + ? ? 4 }’ Cc { 4 + ? ? }
For a pyramid of order 2, the region to be subdivided will be the central region (of order
1) described by (LL(1) x L.(1)) which will become (L,(2) x L.(2)) with dimensions

N,(2) = NT;I),N0(2) = NCZ(U, (or in general N, (o+1) = N“%(o), for any order o). It

is assumed that N,(1) = 2%, N.(1) = 2°, Ny(1) = 2¢ so that the results of the divisions
are always integer values. The horizontal and vertical frequency domains are expressed
by: Lp(2) = {2 41, 3800y 1 2) = {28 1 g, 3¥Dy and the next filters
can be calculated recursively: L8(1) = LL(2), L8(1) = LL(2), L)(1) = L2(2), etc. To
visualise the SOP on a textured image, an example is presented in figure 2.24.

Figure 2.25 (b) shows the corresponding measurement space S for the first two orders
of the SOP: S27 14, The effect of the filtering should be clear now, as some regions
(corresponding to a particular texture) are highlighted by some filters and blocked by
others. S2 is a low pass filter and keeps a blurred resemblance to the original image.
The background is highlighted in the high frequency filters, as should be expected of a
noisy nature. Bone is also highlighted in S*°.

It should be mentioned that we have worked with the magnitude of the inverse
Fourier transform. The phase information ([13, 23, 82]) has not been thoroughly studied,
partly because of the problem of unwrapping in the presence of noise, but it deserves
more attention in the future. The phase unwrapping in the presence of noise is a
difficult problem since the errors that are introduced by noise accumulate as the phase
is unwrapped. If the K-space is available, it should be used and this problem would be

avoided since the K-space is real space.



2.5. LOCAL BINARY PATTERNS AND TEXTURE SPECTRA 54

Figure 2.24: A graphic example of the sub-band filtering. The top row corresponds to the
spatial domain and the bottom row to the Fourier domain. A textured image is filtered
with a sub-band filter with a particular frequency and orientation by a product in the Fourier
domain, which is equivalent to a convolution in the spatial domain. The filtered image
becomes one measurement of the space S, S2 in this case.

2.5 Local Binary Patterns and Texture Spectra

Wang and He [59, 150] and Ojala [111] have proposed two similar methods that try to
explore the relations between neighbouring pixels. These methods concentrate in the
relative intensity relations between the pixels in a small neighbourhood and not in their
absolute intensity values or the spatial relationship of the whole data. The underneath
assumption is that texture is not properly described by the Fourier spectrum [150] and
traditional low pass / band pass / high pass filters.

To overcome the problem of characterising texture, Wang and He proposed a texture
filter based in the relationship of the pixels of a 3 x 3 neighbourhood. A Texture Unit
(TU) is first calculated by differentiating the grey level of a central pixel 2y with the
grey level of its 8 neighbours z;. The difference is measured as 0 if the neighbour, x;
has a lower grey level, 1 if they are equal and 2 if the neighbour has a bigger grey level.

It is possible to quantise G by introducing a small positive value A. Thus the TU is
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(b)

Figure 2.25: (a) One slice of a human knee MRI and (b) Measurements 2 to 14 of the
textured image. (Note how different textures are highlighted in different measurements. In
each set, the measurement S’ is placed in the position corresponding to the filter £ in the

frequency domain).

defined as:
E, | Es | Er 0 if ¢ <(go—A)
TU =| E, Ee |= {Ew...,Es}, Ei=1 1 if (go—A)<gi <(g0o+A)
Es | By | Es 2 if g;>(go+A)

After the TU has been obtained, a texture unit number (Npy) is obtained by weighting

each element of the TU vector:

8
Nry =Y E;x 37!, Npy € {0,1,...,6560} (2.52)

=1

The sum of all N7y elements for a given image will span from 0 to 6560 (3% = 6561) and
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Figure 2.26: The texture spectrum and its corresponding filtered image of (a,b) Oriented
data, (c,d) Human knee MRI.

it is called the tezture spectrum, which is a histogram of the filtered image. Since there
is no unique way of labelling and ordering the texture units, the results of a texture

spectrum are difficult to compare. For example, two slices of our example data were

1127 243
processed with the following configuration: | 3 729 | with A = 0. Figure 2.26
9| 81| 2187

shows the spectra and the filtered images.

The first striking observation of the texture spectrum comes in the filtered images.
The oriented data seem to be filtered by an edge detection filter, the human knee also
shows this characteristic around the edges of the bones and the skin. He and Wang
claim that the filtering effect of the texture spectrum enhances subjectively the textural
perception. This may well be an edge enhancement, which for certain textures could be
an advantage; as an example they cite lithological units in a geological study. However,
not every texture would benefit from this filtering. Another serious disadvantage is
that this filtering is presented as a pre-processing step for a co-occurrence analysis. Co-
occurrence by itself can provide many features, if this Texture spectrum filter is added

as a pre-processing step, a huge amount of combinations are possible, just the labelling
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Figure 2.27: Filtered versions of the oriented data with different labellings (a,b) Filtered
data, (c,d) arrangements of E;.
to obtain the Npry could alter significantly the results. Figure 2.27 shows the result of
using a different order for the Npy.

To the best of our knowledge, this technique has not been extended to 3D yet. To
do so, a neighbourhood of size 3 x 3 x 3 should be used as a TU, and then the Npy of
326 = 2.5 x 10'? combinations would appear. The texture spectrum would not be very
dense with that many possible texture units. In our opinion, this would not be a good
method in 3D.

Ojala [111] presented a variation of the previous algorithm, which they call Local
Binary Pattern (LBP). They limit the pixel difference to two options: g; > g9, ¢; <
go, and instead of 3% = 6561 there are only 28 = 256 possible texture units, which
simplifies considerably the spectrum. If this method is to be extended into 3D the
texture units would drop to 220 = 67,108,864, perhaps still too large. Two main
advantages of texture spectrum and LBP is that there is no need of quantising the
feature space and there is a certain immunity to low frequency artefacts such as those
presented by inhomogeneities of the MRI process. In the same paper, another measure
is presented; the grey level difference method (DIFFX DIFFY) where a histogram of the
absolute grey-level differences between neighbouring pixels is computed in vertical and
horizontal directions. This measure is a variation of a co-occurrence matrix but instead

of registering the pairs of grey levels, the method registers the absolute differences. The
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distance is restricted to 1 and the directions are restricted to 2. They report that the
results of this method are better than other texture measures, such as Laws masks or
Gaussian Markov Random Fields.

In a more recent paper, Ojala [112] presents another variation to the LBP by con-
sidering the sign of the difference of the grey-level differences histograms. Under the
new consideration, LBP is a particular case of the new operator called pg. This op-
erator is considered as a probability distribution of grey levels, when p(go, g1) denotes
the co-occurrence probabilities, they use p(go, g1 — go) as a joint distribution. Then, a
strong assumption is taken in the form of the independence of the distribution which
they manipulate to p(go,91 — go) = p(90)p(g1 — go). The authors present an error graph,
which does not fall to zero, yet they consider this average error to be small and therefore
independence to be a reasonable assumption. This comparison was made for only 16
grey levels, it would be very interesting to report for 256 or 4096 grey levels.

Besides the texture measurement extraction with the signed grey-level differences, a
discrimination process is presented. The authors present their segmentation results on
the images arranged by Randen [124] which allows comparison of their method, but they
do not present a comparison for the measurements separated from their segmentation
method, which could influence considerably. This method quantises the difference space
to reduce the dimensionality, then uses a sampling disk to obtain a sample histogram,
uses a small number of bins, lower than their own reliability criterion, and also uses
a local adjustment of the grey scales for certain images. With all these particular
adjustments their results outperform those reported by Randen, we will compare the

method presented in this thesis against LBP and pg in chapter 6, table 6.2.

2.6 The Trace Transform

The Trace Transform proposed by Kadyrov and Petrou [74, 116] is a generalised version
of the Radon transform and has seen recent applications in texture classification [75, 141].

As some other transforms, the Trace transform measures certain image characteristics
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Figure 2.28: The Trace transform parameters.

in a space that is non-intuitive. One of the main advantages of the Trace transform is
its invariance to Affine transformations, that is, translation, rotation and scaling.

The basis of the transformation is to scan an image with a series of lines or traces
defined by two parameters: an orientation ¢ and a radius p, relative to an origin O
shown in figure 2.28. The Trace transform calculates a functional 7, over the line ¢
defined by (¢, p); with the functional, the variable ¢ is eliminated. If the integral is used
as the functional, we will be calculating the Radon transform, but one is not restricted
to the integral as a functional. Some of the functionals proposed in [75] are shown in
table 2.4, but many other options are possible. The Trace transform results in a 2D
function of the variables (¢, p). As an example, figure 2.29 show the Trace transform of
one slice of the oriented data with three different functionals.

With the use of two more functionals over each of the variables, a single number called
the triple feature can be obtained: ®[P[7;[Z]]]. These features are called diametrical
functional P, and the circus functional ®. Again there are many options for each of
the functionals, (table 2.4). The combinations of different functionals can easily lead to
thousand of features. The relevance of the features has to be evaluated in a training
phase and then a set of weighted features can be used to form a similarity measure
between images. In [75] it is reported that the Trace transform is much more powerful
than the co-occurrence matrix to distinguish between pairs of Brodatz textures.

In order to extend this method into 3D, the trace along the data will be defined by

three parameters, (¢, p) and another angle of orientation, say 6, so the Trace transform
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Table 2.4: Some functionals for Trace (7;), diametrical P and circus ®.

7, P 3
1 Zéio t; mazx(t;) Efial [tiv1 — ti]?
2 Zfio it; min(t;) Zf\gol [tit1 — ti
3| VIt Yot VIt
4 max (t;) %—’%’O% Zi\;o ti
50 2Nt — il SN it maz(t;)
6| i It —til? N Livo(ti = 1)? maz(t;) — min(t;)
7| SN tia+tiq | esothat Y50 ¢ = YN #; | i so that t; = maz(t;)
—tit1 — tito]

Radius p

Radius p

Radius p

Angle () (deglfges)

(c)
Figure 2.29: Three examples of the Trace transform of the Oriented Pattern: (a) Functional
1, (b) Functional 4 and (c) Functional 5.
would produce a 3D set. This can be reduced again by a series of functionals into

a single value without complications, but the computational complexity is increased

considerably.

Still, one important observation remains, the Trace transform shows to be power-
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Figure 2.30: A multitextured Image.

ful in characterising a textured region into a series of triple features, and then uses
these to distinguish from other textures. Used in this way, as a global technique it has
been reported to have applications on detection of Alzheimer’s disease [133]. As it was
mentioned before, the objective of the thesis is to partition a region rather than discrim-
inating between two separate sets. When tracing over an image with several textures
(as figure 2.30 for example), the line ¢t would be passing through different regions and

thus capturing the characteristics of different textures.

2.7 Summary

The fact that texture is not properly defined and that textured images or volumes can
vary widely has led to a great number of texture extraction methods. We concentrated
on techniques that can be used in 3D and thus only relevant techniques for measurement
extraction were presented in this chapter.

Spatial domain methods such as local mean and standard deviation can be used for
their simplicity, and for some applications this can be good enough to extract textural
differences between regions. Also, these methods can be used as a pre-processing step
for other extraction techniques.

Although easy to implement, co-occurrence measures are outperformed by filtering
techniques, the computational complexity is high and can have prohibitive costs when
extended to 3D. Another strong drawback of co-occurrence is that the range of grey

levels can increase the computational complexity of the technique. In most cases, the
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number of grey levels is quantised to a small number, this can be done either directly
on the data or in the measurements that are extracted, but inevitably they result in a
loss of information. When the range of grey levels exceeds the typical 0 — 255 that is
used in images, this issue is even more critical. The range of grey levels in MRI can
easily be 0 — 4095. Some of the extensions proposed for 3D have been used as global
techniques, that is, that the features are obtained from a whole region of interest. This
is a different approach to what this thesis is trying to achieve, that is, from a single
region, discriminate two or more different textures.

Wavelets are a popular and powerful technique for feature extraction. By the use of
separable functions a 3D volume can be easily decomposed. A disadvantage of Wavelet
techniques is that there is not an easy way to select a Wavelet family, which can lead
to many different options and therefore a great number of measurements. When classi-
fication is performed, having a larger number of measurements does not imply a better
classification result, nor does it ease the computational complexity. Pichler [118] notes
that the main problem in Wavelet analysis is determining the decomposition level that
yields the best results. He also reports that since the channel parameters cannot be
freely selected, the Wavelet transform is sub-optimal for feature extraction purposes.

The extraction of textural measurements with Gabor filters is a powerful and versa-
tile method that has been widely used. While the rosette configuration is good for many
textures in some cases will not be able to distinguish some textures. Also, the origin of
the filters in the Fourier domain has to be set to zero to avoid that the filters react to
regions with constant intensity [71]. Another disadvantage of the Gabor filters is their
non-orthogonality due to their overlapping nature that leads to redundant features in
different channels [96].

Pichler compared Wavelets and Gabor filters and overall Gabor filtering had better
results than Wavelets but with a higher computational effort. In another comparison of
Wavelets and Gabor filters, Chang [19] mentions that Wavelets are more natural and

effective for textures with dominant middle frequency channels and Gabor is suitable
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for images with energy in the low frequency region.

A technique that escapes the problem of the range of grey levels is the Texture
Spectrum and Local Binary Pattern (LBP) [57, 111] by taking the sign of the difference
between grey level values of neighbouring pixels and weighting the orientation by a power
of 2. Both LBP and signed grey level differences provide good segmentation results in
2D but the extension to 3D will imply having a very large number of combinations. The
possibility of different labellings of the elements in a neighbourhood can lead to many
different measurements.

The Trace transform provides a way of characterising textures with invariance to
rotation, translation and scaling, that enables this relatively new technique to discrim-
inate between pairs of texture with success over co-occurrence matrices. In this thesis,
the purpose is not to achieve discrimination between separate regions, but to partition
one region that contains more than one texture.

We conjecture that the sub-band filtering with a SOP tessellation is a powerful
technique to extract measurements of textured data. It is easy to program and extend
to 3D, and exploits the computational advantages of working in the Fourier domain
through a fast Fourier transform. Along with Wavelets and Gabor filters, this method is
not restricted to the analysis of spatial interactions over relatively small neighbourhoods.
Contrary to Gabor filters, the SOP tessellation is non-overlapping and the zero frequency
values do not have to be set to zero. The number of measurements is not as large as
Texture Spectrum, or Trace transform, yet it extracts properly noisy regions such as the
background of the MRI data, which are not easily highlighted by Wavelet filtering.

A comparison between Wavelets and sub-band filtering in figures 2.9 and 2.25 shows
that the low pass filtering of both techniques seems to give similar results; it is the
high frequencies that highlight some differences. The background of the image, which

is mainly noise, is clearly separated in the SOP filtering process in the §%3:6:7

measure-
ments, but not so in the Wavelet decomposition. This may well be due to the selected

Wavelet family or the fact that the SOP filter uses more bands.
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In order to assess the selection of SOP sub-band filtering as a measurement for
texture extraction, it will have to be tested against other extraction techniques and the
results need to be compared. This will be done in section 3.1 against a set of 9 images
with different textures. These images were proposed by Randen [124] and are used as a
benchmark for texture methods. The results of the LBP will not be compared here since
the measurements and the classification method have to be separated. A comparison

against the results of [112], [104] as well as those of [124] will be presented in chapter 6.
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Chapter 3

Classification of the Measurement

Space

This chapter will examine the classification of the multivariate space that is formed by
the measurements extracted from the data with a Second Orientation Pyramid sub-band
filtering. Since classification is in itself a broad area of research, we will concentrate here
in the evaluation of several important aspects that can affect the classification results.
First of all, it is important to evaluate the discrimination power of the measurements
extracted with the sub-band filtering. To do this, it is necessary to have a set of textured
images to be used as a test set. To the best of our knowledge, no volumetric test data
sets are available, so the best option is to use a 2D set. In [124] Randen proposed a set of
images with different natural textures that were captured under different illumination
conditions and with different equipment, but were selected to be visually stationary.
Each texture has been globally histogram equalised and they have the same mean value
so that spread the same range of grey levels. (Several publications related to texture
segmentation present regions that could be easily discriminated by a simple grey level
thresholding, thus they are not exploiting textural properties but rather intensity dif-
ferences). These images, which are fairly hard to classify even by eye, are becoming a

benchmark for assessing different segmentation algorithms, [98, 104, 111].
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The nine texture images segmented in this work correspond to figure 11 in [124] and
are presented in figure 3.1. Figures (a) to (e) consist of 5 different textures in images
with size 256 x 256 pixels, (f) and (g) have 16 textures and are 512 x 512 pixels, (h) and
(i) have 10 textures and 640 x 256 pixels.

After the measurements have been assessed in their ability to provide class separa-
tion, the classification process needs to be examined. Four aspects will be analysed in
this chapter: normalising the measurement space; the use of a local energy function and
different classification techniques; and their computational complezrity. It is important
that these steps are analysed separately in order to assess them individually, otherwise

a bad measurement could be obscured by a sophisticated classification technique.

3.1 Classification

The classification problem is that of assigning every element of the data, or the mea-
surements extracted from the data, into one of several possible classes [54].

Let us consider the measurement space to be classified as a set S to be partitioned
into subsets (sometimes called clusters). Partitioning is considered as a mapping oper-
ator A : S — {1,2,..., N;}, where the clusters or classes are A~!(1), A~1(2), etc., and
these are unknown. Then, for every element x € S, A\, will be an estimator for A where,
for every class, there is a point {a1, ag,...} € S such that these points define hyper-
planes perpendicular to the chords connecting them, and split the space into regions
{R1, Ra,...}. These regions define the mapping function A, : S — {1,2..., Ny} by
Ao(z) =1ifx € Ry, Aa(z) = 2 if x € Ry, etc. This partitioning minimises the Euclidean

distance from the elements of the space to the points a, expressed by [35]:

plavas, )= Y min [S@) o (31)
2€(LrXLeXxLy) =950k

This process is represented in figure 3.2.

The measure of closeness of the estimator A, to A defines a misclassification error by
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Figure 3.2: Classification of elements in a set S: (a) points a;,a2 and hyperplane, (b)

Elements that will be misclassified by the hyperplane.

€[Aa] = P(Aa(z) # A(z)) for an arbitrary point z € S in the space:

_ #{z € (Ly X Le x Lyg) : A(S(z)) # Xa(S(2))}
€[Aa] = #{L, i Lo x L} (3.2)

If the values of the points a; are known, or there is a way of estimating these from
training data (it is important that the training and test sets are disjoint), the classifi-
cation procedure will be a supervised methodology, otherwise it will be an unsupervised
methodology. For this thesis, the points in the measurement space a; were obtained
by filtering separate training data with the SOP. Once the measurement space S was
calculated for every training image, the average was used as an estimate of the mean of
the class: ay.

It is important to observe that if one measurement is several orders of magnitude
greater than others (as it may be the case between low pass and high pass measurements),
the result will be dominated by the former. It may help thus to normalise or scale the
measurements in order for the measurements to be comparable. This whitening of the
distributions presents another problem that is exemplified in figure 3.3. By scaling
the measurements, the elements can change their distribution and different structures
can appear. A common normalising technique is to divide by the standard deviation

to equalise the variance of the measurements. This transformation implies that both
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Figure 3.3: The scaling of the measurements can yield different structures.

Table 3.1: Comparative misclassification results (%) of the natural textures (figure 3.1)
with and without normalising the measurement space.

| Misclassification (%) | Figures | |
a b [¢ d e f g h i | Average
Normalised 14.2 | 34.6 | 28.1 | 32.7 | 23.2 | 42.2 | 59.9 | 39.8 | 50.4 36.1
Un-normalised 17.7 | 34.9 | 28.5 | 33.0 | 27.4 | 45.6 | 61.3 | 35.0 | 51.1 37.2

measurements are equally important, which may not always be the case.

In order to determine the effect of scaling in the classification of images of figure 3.1,
they were sub-band filtered with the SOP, and the corresponding measurement spaces
were classified. The results are presented in table 3.1. It is very interesting to notice
that for all but one of the images the scaling proved helpful in the classification. It is
only figure 3.1 (h) for which the normalising gives a higher misclassification.

The results obtained will be compared with those presented by Randen [124]. In
order to maintain a consistent method, we will normalise the measurement space for all
the images. Table 3.2 compares the results of the SOP sub-band filtering with different
measurement extraction techniques. From the 10 techniques compared, only 3 had a
higher misclassification rate than the SOP; among these ones were the popular Gabor
banks, and co-occurrence matrices. Seven other techniques had, on average, a lower
misclassification rate.

While analysing the results presented in table 3.2, it is important to remember two

things. First, if the elements of the space were assigned to a class at random, the
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Table 3.2: Comparative misclassification results (%) of the natural textures (figure 3.1)
(Table 3 in [124]) and SOP sub-band filtering without local energy function (LEF). Best
results are in bold.

| Misclassification (%) | Figures | |
Measurement a b c d e f g h i | Average
Laws 9.7 25.7 32.4 27.3 25.7 48.3 54.3 41.9 37.8 33.68
Ring/Wedge 14.6 35.5 28.9 35.5 22.4 43.8 67.8 44.5 48.3 37.92
Dyadic Gabor 10.7 34.8 22.6 25.2 24.6 60.1 58.2 | 32.3 47.9 35.16
Gabor Banks 8.2 34.0 25.8 36.9 28.4 54.8 71.5 39.7 54.8 39.34
DCT 13.2 27.0 25.5 37.8 22.6 40.9 49.0 38.2 33.0 31.91
Daubechies 4 8.7 22.8 25.0 23.4 21.8 38.2 45.2 40.9 30.1 28.46
f16b 8.7 | 18.9 23.3 184 | 17.2 | 36.4 | 41.7 39.8 28.5 25.88
Co-occurrence 9.9 27.0 26.1 51.1 35.7 49.6 55.4 35.3 49.1 37.69
AR 19.6 19.4 | 23.0 23.9 34.0 58.0 46.4 56.7 | 28.7 34.41
Average 11.5 27.2 25.9 31.1 24.7 47.8 54.4 41.0 39.8 33.71

| sop | 142 ] 346 ] 281 [ 327 | 232 | 422 59.9 | 39.8 | 504 [ 36.17 |

probability of correct classification would be: one in five, one in 16 or one in 10, that
is a misclassification of 80% for images (a,b,c,d,e), 93.75% for images (f,g) and 90%
for images (h,i). Second, it is very important to notice that while the measurements
presented by Randen have been filtered with a local energy function, the SOP has not

been smoothed. We will now analyse the use of a local energy function.

3.2 Impact of the local energy function (LEF) in the clas-

sification

The choice of a local energy function (LEF) has been separated from the measurement
extraction in order to assess the power of the measurements on its own. Nevertheless,
the LEF can influence considerably the classification process. The simplest, and perhaps
most common way to use a LEF is to smooth the space with a convolution of a kernel,
either Gaussian or uniform.

Another way of averaging the values of neighbours is through the construction of a
pyramid or tree. These methods have the advantage of reducing the dimensions of the
space at higher levels. Yet another averaging can be performed in which an anisotropic

operator, namely butterfly filters. This option can be used to improve the classification,
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Table 3.3: Comparative misclassification results (%) of SOP sub-band filtering with Lo-
cal Energy Function (LEF) of different sizes and best of table 3.2. Where SOP results
outperform Randen’s results they are in bold.

| Misclassification (%) | Figures | |
Size of LEF 1la | 11b | 11c | 11d | 11le | 11f| 11g | 11h | 11i | Average
No LEF 142 | 346 | 281 | 327 | 232 | 422 | 59.9 | 39.8 | 504 36.1
5% 5 114 | 334 | 253 | 279 | 210 | 392 | 56.7 | 363 | 465 33.1
9% 9 93| 326 | 22.4 | 234 | 186 | 35.5 | 52.9 | 31.8 | 425 29.9
13 x 13 9.0 | 31.7 | 20.6 | 207 | 17.2 | 32.7 | 495 | 27.9 | 395 27.6
17 x 17 93 | 304 | 19.5 | 196 | 16.6 | 31.0 | 472 | 26.1 | 37.7 26.4
21 x 21 96 | 29.4 [ 19.0 | 192 | 16.3 | 29.8 | 46.0 | 25.3 | 366 25.7

| Best of Table 3.2 | 82 18.9] 230 [ 18.4 | 172 364 | 41.7 | 323 | 28.7 | |

especially near the borders between textures. We will analyse these cases in the following
chapters.

As it was mentioned in section 2.4, the smoothing of the filter responses can influence
considerably the results of classification process. Previous research shows that a Gaus-
sian smoothing [15, 71, 123, 124] is better than uniform, yet the issue of the size of the
smoothing filter is quite important. We considered Gaussian functions ¥, of different
sizes (N, N;¥ ,N¥) =3x3x1,5 x5x1,7x7x1,...,37 x 37 x 1. These Gaussian
functions were used to smooth each of the 35 filter responses corresponding to S of order

5:

St =81x9, (3.3)

Table 3.3 presents some of the results of classifying after using a LEF to smooth
the measurement space. To provide a comparison, the best results of the table 3.2 were
included. It is quite clear that the use of a LEF improves drastically the classification
for all the images. With the use of the LEF on the spaces S of images (c,e,f;h), the
classification results outperform those of the texture extraction techniques presented by
Randen, and the average can be as good as the best result. Thus, these results confirm
that sub-band filtering with a SOP filtering can extract textural measurements that are

as good as those presented by Randen.
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Figure 3.4: Misclassification rates with different sizes of the LEF.

Figure 3.5: Classification with different sizes of the Gaussian LEF for smoothing. Top row:
(@) 3x 3, (b) 9x9, (c) 17 x 17, (d) 27 x 27. Bottom row: corresponding correctly classified
pixels (e,f,g,h) (correct labelled in white)

The effect of the LEF on the misclassification of image (a) reveals an important
aspect of the smoothing of S. As the size of the LEF grows, the misclassification
reaches a minimum level and then increases. This shows that the size cannot be increased
indefinitely. Figure 3.4 shows the misclassification for figure 3.1 (f) with LEF of different
sizes. As the size of the LEF increases, the misclassification decreases until a minimum
level for a LEF of size 27 x 27, and then the misclassification begins to increase. This
is due to the blurring of the boundaries between adjoining textures that can be seen in
figure 3.5. This problem can be reduced with butterfly filters which will be presented in

section 5.3.
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Figure 3.6: Four cases of spaces in two dimensions with two classes and different distribu-
tions: (@) Well separated, (b) Overlapping, (c) Non-linearly separable, (d) Concentric.

3.3 Different classification techniques

The results obtained so far are encouraging in the sense that the misclassification ob-
tained for the images is comparable to those reported by Randen, but there is a big
underlying assumption that needs to be examined, that is: the classification of the space
by hyperplanes defined by an estimation of the mean value (sometimes called prototype)
of each class, assumes that the classes are linearly separable. This may not always be the
case. So far we have not observed whether the classes follow a certain distribution. In
some cases, the distribution of the data can dictate the choice of classification techniques
or parameters. Some examples of different distributions are presented in figure 3.6: (a)
shows the ideal case where classes are well separated and easily partitioned (and with
low misclassification) with a linear plane; (b) shows a more realistic situation in which
the classes are overlapping; (c,d) present a rather particular situations, where the classes
do not overlap, but a linear partition would fail.

To see how dense the measurement space is, a sample of elements from S* from
figure 3.1 (f) is presented in figure 3.7. In (a), the estimates of the means, ay, for the 16
classes can be seen, and in (b), the same estimates are immersed in some of the elements
of the unclassified measurement space S»%*. The density of the space does not allow
a simple recognition of the shapes of the classes. Furthermore, these represent only 3
measurements out of many more that belong to the space. It is therefore necessary to

evaluate other classification techniques that can provide better results in cases where a
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Figure 3.7: Visualising the measurement space: (a) The estimate of the mean d; of 16
classes of image 3.1 (f), for 3 measurements, and (b) The estimates immersed in the
unclassified measurement space 5234,
single linear thresholding may not be the optimal choice.

There are many techniques for classification in the literature. In this thesis we will

evaluate the performance of just two of them and determine whether these algorithms

can improve the classification results.

3.3.1 K-Nearest Neighbours

Since we are using a set of training data in a supervised classification, it can be intuitively
appealing to use not just one value as an estimate of the mean; a;, but a group of points
{a11,a12...,a21,0a22,...,,a31,a32, ...} associated to the classes. The set of neighbours
would determine the class of the elements to be labelled in the space by searching for
the neighbour that is closest to the element, and assigning the class associated to this
neighbour. By having more than one element per class, the boundaries that will separate
the regions will not be linear, but piece-wise linear (figure 3.8). While the classification
can be improved, the computational complexity increases as the number of selected

neighbours grows.

Several implementation issues are related with this K Nearest Neighbours (kNN)

classifier:
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Figure 3.8: Classification with several neighbours associated to each class.

e The distance measure to be employed: we used a Euclidean distance after a nor-
malisation of the measurement space.

e The number of neighbours selected (Nixyy) is important as it increases consid-
erably the computational complexity. For our experiments we used 9 and 16
neighbours per class.

e The selection of the neighbours themselves. We used a simple (and perhaps naive)
approach of selecting at random a series of neighbours from the measurement space
of the training data. (The next section will improve on this selection process).

Table 3.4 compares the classification of the kNN classification (kNN 9, kNN 16) with

the previous classification schemes, which only use a single estimate of the mean value
(Gx). While the use of 16 neighbours improves the results over 9 neighbours, as perhaps
expected, all these results are much higher that those previously obtained. These results
indicate that the neighbours selected at random fail to capture the shapes of the classes,
and, the boundaries defined by the estimate of the mean provide a better classification.
One of the possible causes of this result is that the neighbours selected at random could
be far away from the estimated mean, and then an overlap of the classes could lead
to a higher misclassification. Figure 3.9 (a) shows 9 randomly selected neighbours for
each class of the training data for figure 3.1 (f). These neighbours do not resemble the

estimates presented previously.
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Figure 3.9: Nine elements per class to be used as neighbours for classification: (a) Randomly

selected, (b) Trained as self-organising feature maps (SOM).

Table 3.4: Comparative misclassification results (%) of the natural textures (figure 3.1)
with different classification techniques. Best results are in bold.

| Misclassification (%) | Figures |
Classifier a b c d e f g h i | Average
ak 14.2 34.6 | 28.1 32.7 | 23.2 | 42.2 59.9 | 39.8 | 50.4 36.1
kNN 9 23.0 42.1 47.8 52.1 36.8 57.6 75.0 49.4 65.2 49.9
kNN 16 21.9 40.2 43.9 51.3 34.2 55.9 74.1 49.0 62.2 48.1
LvVQ 9 14.7 34.9 29.0 34.4 23.0 42.3 59.4 47.6 62.2 38.6
LvVQ 16 14.5 | 33.1 | 28.1 | 32.6 23.5 42.4 | 59.3 47.2 62.2 38.0

3.3.2 Learning Vector Quantisation (LVQ)

The higher misclassification obtained previously with the kNN method may be due to

the random selection of the neighbours from the training data, as the elements selected

might be outliers. It is thus important to improve the neighbour choice.

Learning Vector Quantisation (LVQ) [84] is a classification method where the small-

est distance from an unclassified element (or vector) of the space to a set of reference

vectors is sought to assign a class. This is different from kNN in that the reference

vectors undergo a learning stage that approximates the distribution of the classes. This

procedure of organising is a particular case of Kohonen’s [84] Self-Organising Feature

Maps (SOM).

The SOM consists of a series of nodes, m; € S, i = {1,2,..., Nyyn}, sometimes
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called reference vectors or neurons. These neurons will act competitively upon a given
input, z € S and have lateral interconnections to other neurons - different topologies
of the interconnections like grid or hexagonal, are possible. The training is performed
with a series of codebook vectors, each of them will be associated with a class. The self-
organising algorithm proposed by Kohonen follows two basic steps: (a) matching and
finding a winner node, m,, determined by the minimum Euclidean distance ||z — m,
from the reference vectors to the input vector x, and (b) the update of the position of
winning neuron. The update will look to decrease the distance metric. If the input

signal is used in a sequential form it generates a time process, mathematically:

my(t+1) = my(t) + a(t)(z(t) — my(t)), (3.4)

mi(t+1) = m(t), fori#w

where a(t) is a monotonically decreasing scalar gain factor. It is possible to extend the

updating of the neurons not just to the winner node, but to a neighbourhood around it:

mi(t+1) = mi(t) + a(t)(z(t) — m(t)), for i € A, (3.5)

mi(t+1) = my(t), for i ¢ Ay,

where 4, represents a neighbourhood around the winner neuron which again should be
shrinking with time.

For the classification of our images, a number of elements (500) were selected at
random from the measurement spaces S of the training data and used as the input
signal for the SOMs to adapt topologically to the classes. Two sizes of SOM were used,
3 x 3 and 4 x 4, in order to maintain the same number of neurons as neighbours in
the previous section. Figure 3.9 (b) shows the trained neurons corresponding to the 16
SOMs (one for each class) for image 3.1 (f). The trained SOMs appear more compact
and closer to the mean estimates than the randomly selected neighbours. It is expected

that the LVQ will outperform kNN.
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The classification results of this method are presented in table 3.4. Several observa-
tions can be made: first, the classification of the kNN method is easily outperformed;
second, an increase in the number of neurons improves the classification results; third,
the results of the LVQ method are not much better than for the linear partitioning
method with just one point per class.

This may come as a surprise, but Randen also reported using thresholding in some
cases. It still can be the case that the trained SOM overlap in the space. Unfortunately,
this is hard to visualise for a 35-dimension measurement space. There are several op-
timised methods that prevent the overlapping, or that penalise certain updating of the
neurons, but are beyond the scope of this thesis since the linear partitioning provides
a good classification results and relatively low computational cost. Table 3.5 presents
the classification times as an indication of the computational complexity. It can be seen
that as more neighbours are included in the classification the complexity increases. For
the LVQ, the training stage further increases the classification time. The notable time
difference between LVQ 9 and LVQ 16 is due to the training; for the case of 9 reference
vectors the training was restricted to 100 epochs and for the 16 vectors 1000 epochs
were used.

The size of the image is another aspect to be considered in complexity issues. Fig-
ure 3.10 shows the comparison between using 1, 9 and 16 points for classification in
images of size 162, 322, 642, 1282, 2562 and 5122 pixels. For small images the increased
complexity is negligible, but if the image is 512 x 512 the difference could be prohibitively

expensive.

3.3.3 Unsupervised methods

All the classification techniques previously presented are supervised methods, and while
the presence of training data can easily justify using it to improve classification, it is
not always possible to have these data sets available. In such cases, an unsupervised

(or clustering) technique is necessary. There are many algorithms that perform the
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Figure 3.10: Time comparison of classification to one point (mean) or several points (neigh-
bours).

Table 3.5: Comparative time (s) results of the natural textures (figure 3.1) with different
classification techniques.

| Time (s) | Figures |
Classifier a b c d e f g h i
ag 1.7 1.8 1.7 1.7 1.7 21.9 21.6 6.7 6.7
kNN 9 10.7 9.4 11.3 10.7 10.9 221.6 223.0 134.9 134.1
kNN 16 18.7 23.1 20.1 16.6 17.5 365.7 387.7 203.3 216.6
LvQ 9 121.5 144.6 129.7 109.1 106.8 525.8 524.3 324.8 323.7
LvVQ 16 986.4 | 1008.8 | 1169.5 | 1029.8 | 1111.3 | 3815.5 | 3922.1 | 2380.7 | 2455.0
Pixels 256 X 256 X 256X 256 X 256 X 512x 512x 640x 640x
256 256 256 256 256 512 512 256 256

clustering in two basic categories [70]: hierarchical and partitional (or agglomerative
and divisive [44]).

The agglomerative clustering imposes a hierarchical structure on the data as it forms
clusters sequentially. The process begins with all the elements of the data being an
individual cluster. At every step, the two most similar clusters are merged into one and
the process continues until all elements belong to one single cluster. A hierarchical tree
or dendogram that specifies which clusters are linked, and at what stage, is generated as
the clusters are linked. The process can stop when a desired number of classes is reached.
With these methods there is no need for training data and the linking of the elements
can be done without the need of other information than the desired number of classes.
The measure of similarity can yield different ways of grouping the elements, the two

most common measures used are: single linking where the minimum distance between
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Table 3.6: Results for unsupervised classification with LBG algorithm.

Figures a b c d e f g h i | Average
Misclassification (%) | 63.8 | 57.7 | 62.1 | 58.7 | 60.8 78.6 81.3 | 75.5 | T4.1 68.0
Time (s) 11.0 | 12.0 | 12.6 | 12.0 | 11.6 | 120.4 | 145.9 | 54.8 | 55.2

the elements of the clusters is considered as the closest or most similar, and complete
linking where the maximum distance between the elements of the clusters is used. Single
linking generates loosely connected clusters, while complete linking generates compact
clusters. As it was mentioned before, the distribution of the data can determine which
method is most convenient [77].

The main disadvantage of these agglomerative clusters is the need of calculating
the similarity between all the clusters, and in every step it is necessary to recalculate
the measures for the elements that have been a merged. There are methods designed
for large data sets [168] but the computational burden can still be huge. Even after a
feature selection and dimensionality reduction that will be done in the next chapters
the complexity is too high.

Partitional methods start with one single cluster and proceed to subdivide it several
times until a desired number of clusters is reached. Some of these methods allow an
element movement from cluster to cluster. Most of these methods will try to maximise a
criterion (such as the square error). A common algorithm is the Linde-Buzo-Gray (LBG)
[97] that starts with a single cluster and the average of its elements as a codevector.
This codevector is split into two new codevectors, all the elements of the data look
for the nearest of the codevectors and form a cluster accordingly. The squared error
distortion measure is calculated and the value of each codevector is updated to reduce
this distortion to a pre-established level. Once the level is reached, each codevector is
split and the process continues until the desired number of clusters is reached.

Table 3.6 presents the results of classifying with the LBG algorithm. While the
classification times are comparable to the kNN, the misclassification obtained is far

worse than all the other methods.
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3.4 Summary

We have analysed some important aspects related to the classification of textured data.

We can state them as:

e The measurement space generated by sub-band filtering with a SOP provides
features that are equivalent to those present in the literature, in particular the
ones assessed by Randen. Even without the use of a LEF to smooth the space, the
SOP filtering outperforms the two popular methods of co-occurrence and Gabor
filter banks.

e The use of LEFs for smoothing the measurement space prior to classification is
of great help to the classification process. The size of the LEF should be chosen
carefully, for a function that is too big can leak from one region to another and
cause errors in the boundaries.

e The normalising of the space (by the standard deviation) improves the results in
most of the analysed images, but it is not a general rule.

o Where there is training data available or it is possible to generate training samples,
it is convenient to use the data and proceed with a supervised classification.

e The representation of a class by a single point in space is debatable, but for the
data analysed, it was found to be acceptable. Zupan [168] and Randen [124]
reported similar conclusions in this respect.

e If the data sets are of a high dimensionality (as it will be in the volumetric examples
in chapter 6), it is better to use a simple thresholding that gives relatively good
results at a fraction of the time of other methods. LVQ is a powerful method, but
the computational complexity does not justify its use in our case.
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Chapter 4

The Feature Space

In this chapter, a novel feature selection methodology based on the Bhattacharyya Space
[128] is introduced. In the previous chapter, processing of the textured data produced
a series of measurements that belong to a Measurement Space (following the notation
of [54], it can also be called the Feature Space or Pattern Representation [80]). This
space will consist of a number of dimensions, either the results of filters, features of
the co-occurrence matrix or Wavelets, and not all the dimensions will contribute to the
discrimination of the different textures that compose the original data. As an example
of the importance of the measurement selection in order to improve the performance
of a classifier in a posterior stage, four training classes of the human knee MRI have
been manually segmented (figure 2.10) and each class has been sub-band filtered in
3D with an SOP of order 2 (the measurement space will consist of 58 dimensions).
Figure 4.1 shows the scatter plot of three bad and three good measurements manually
selected. While the classes in figure 4.1 (a) overlap completely, in figure 4.1 (b) they
are fairly well separated: the small cluster right-most corresponds to the background,
the middle cluster corresponds to the muscle and the two clusters that partly overlap,
describe bone (horizontally spreading over measurement 5) and tissue (vertical over
measurement 39). It becomes clear the necessity of selecting appropriate measurements

from the space. Besides the discrimination power that some measurements have, there
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Figure 4.1: Scatter plots of three features S' from human knee MRI (3D, order 2) (a)
bad discriminating features 522447 (b) good discriminating features S°3°51. Note that each
feature corresponds to a filtered version of the data, therefore the axis values correspond to
the grey levels of each feature.

is also a complexity issue related to the number of measurements selected.

Another advantage of selecting a subset of the space is that it can provide a better
understanding of the underlying process that generated the data [52]. The selection of
a particular orientation of the co-occurrence matrix can describe best a certain texture,

or a filter can determine the frequency characteristics of the data.

4.1 Feature Selection and Extraction

The feature selection and extraction problem (as defined by Kittler [80]):

is concerned with the mathematical tools for reducing the dimensional-
ity of pattern representation. Pattern descriptors constituting the lower-
dimensionality representation are referred to as features because of their
fundamental role in characterising the distinguishing properties of pattern
classes.
Therefore we face a problem of selecting a subset that will reduce the complexity
and improve the performance of the classification. The reduced subset can be obtained
in two different ways: feature selection or feature extraction. In feature selection, a set of

the original measurements is discarded and the ones that are selected, which will be the

most useful ones, will constitute the Feature Space. In contrast, the combination of a
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series of measurements in a linear or non-linear mapping to a new reduced dimensionality
is called feature extraction.

For feature selection the best way to obtain a reduced set in feature selection would
be to test for every combination of measurements. For N; measurements, there would
be O(2":) different solutions, which yields computations impractical even for a small
number of measurements. Branching techniques [80] can also obtain optimal solutions
but they are still computationally intensive. It is necessary then to settle for sub-optimal
solutions that will not analyse the whole space of combinations exhaustively. Most cases
will belong to one of two groups: forward section or backward elimination (which are both
particular cases of the Plus | - take away r algorithm). In forward selection, a search
begins with an empty set; features are then included in the classifier one at a time. In
backward elimination the starting state is the full set of features, and measurements are
discarded one by one (figure 4.2). The process of selection or elimination continues up
to a certain state where an evaluation criterion is satisfied and a final subset is reached.
If each of the elements of the subset is included sequentially at a classifier, then we
expect to improve the classification with every element, and if we would continue with
any other element there would be degradation in the results.

The alternative to feature selection - feature extraction - will use all of the mea-
surement space and map it to a lower dimensional space, where the new features will
contain useful information through a projection that will ignore redundant and irrele-
vant information. Perhaps the most common feature extraction method is the Principal
Components Analysis (PCA) where the new features are uncorrelated and these are the
projections into new axes that maximise the variances of the data. As well as mak-
ing each feature linearly independent, PCA allows the ranking of features according to
the size of the variance in each principal axis from which a ‘subspace’ of features can
be presented to a classifier. However, while this eigenspace method is very effective in
many cases, it requires the computation of all the features for given data. In some of

the applications presented in this thesis, the measurement space can be generated only
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for a set of training samples, from which an adequate feature space can be determined.
Then, only the required features are obtained for the whole data set therefore speeding
the process.

One of the most common methods [34] of forward selection is the wrapper approach
[83]. This approach uses the error rate of the classifier itself as the criterion to evaluate
the features selected, it proposes a greedy selection, either as hill climbing, or best first
as search algorithms and treats the measurements as a search space organisation, a rep-
resentation where each state represents a measurement subset. For N; measurements,
there are N; bits in each state indicating the presence (1) or absence (0) of the measure-
ment. The state {0,0,...,0}, the empty set will be the initial state for forward selection,
and {1,1,...,1} will describe the whole measurement space (initial state for backward
elimination). Figure 4.2 shows a 4 measurement state space for forward and backward
processes. Each of the links will represent a single measurement added (continuous line)
or deleted (dashed line).

The process of wrapper selection with a hill climbing search follows the sequence:

1. Start with an empty set of features v < {0,0,...,0}.

2. Expand v: generate new states by adding a single feature from v. In the example
of figure 4.2 (a) the children of v are {1,0,0,0}, {0,1,0,0}, {0,0,1,0}, {0,0,0,1}.

3. Apply the evaluation function A (that is, the classifier) to each child w of v.
4. Let v' = the child with the best evaluation A(w).

5. If [A(v')] < €[A(v)] then v + v' and go to 2, else finish with v as a final subset.

The previous algorithm is in its most basic form and it can easily be varied, e.g.
different ways of expanding v rather than just considering every child can be used. It
is important to bear in mind two issues: one is that hill climbing can lead to local
sub-optimal solution, and the other is that the strength of the algorithm, the use of the
classifier in the selection process instead of other evaluation functions, is at the same
time its weakness, since the classification process can be slow.

One way to avoid the evaluation of each child of the current state will be proposed

below. The Bhattacharyya Space is presented as a method that provides a ranking for
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Figure 4.2: State space for sequential processes. Each node is connected to nodes that
have one measurement added or deleted: (a) Forward selection, (b) Backward elimination .

the measurements based on the discrimination of a set of training data. This ranking

process provides a single route to evaluate and therefore, the number of classifications,

which will still be done for every feature to be added to the classifier, is significantly

reduced. Since this method is a pre-processing step, and is done over a training data (of

small dimensions compared to the whole data set), a heuristic solution to avoid being

trapped at a sub-optimal solution is also proposed.
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4.2 The Bhattacharyya distance

In order to obtain a quantitative measure of how separable two classes are, a distance
measure is required. With the assumption of underlying distributions a probabilistic
distance can be easily extracted from some parameters of the data. Kailath [76] com-
pared the Bhattacharyya distance and the Divergence (Kullback-Leibler), and observed
that Bhattacharyya yields better results in some cases while in other cases they are
equivalent. In a recent study [7], a number of measures: Bhattacharyya, Euclidean,
Kullback-Leibler, Fisher, have been studied for image discrimination and concluded
that the Bhattacharyya distance is the most effective texture discrimination for sub-
band filtering schemes.

In its simplest formulation, the Bhattacharyya distance between two classes can be

calculated [27] from the variance and mean of each class in the following way:

1. (1,08 o 1 (g — pgy)?
Dp(ki, ko) =-In| = (=2 + 32 +2 - | =2 4.1
ki) 4“(4(0,%2*0,%1” T .

where: Dp(k1,k2) is the Bhattacharyya distance between ki — th and ko — th classes,
ok, is the variance of the k1 — th class, u, is the mean of the k; — th class, and ki, ko
are two different training classes.

For the multidimensional distance, the variances are replaced by co-variance matri-

ces and the means become vectors [45]:

1 L5k + k)| 1 _
DB(klakZ) =-In (‘2(1—2 + _(:u'k1 - :u'kQ)T(Elﬂ + Ekz) 1(:“’k1 - Nkz) (42)

2 V |Zk2||2k1| 4

where (-)7 is the transpose of the matrix.

The Mahalanobis distance used in Fisher Linear Discriminant Analysis (LDA) is a
particular case of the Bhattacharyya, when the variances of the two classes are equal;
this would eliminate the first term of the distance. This term depends solely on the
variances of the distribution. If the variances are equal this term will be zero, and it

will grow as the variances differ. The second term, on the other hand, will be zero if
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Figure 4.3: The Bhattacharyya distance: (a) Different means with similar variances (b)
Similar means, different variances, (c) Distribution of the distance relative to u;,01 when
p2 =0 and oy = 1.

the means are equal and is inversely proportional to the variances. Figure 4.3 (a,b)
represents these two cases and (c) shows the distribution of the distance in terms of
11,01 when po =0 and o9 = 1.

The assumption of normality can be a critical issue if there is no knowledge of the
distributions. Nevertheless, the discrimination power can still be exploited. As an ex-
ample, Dp(ky,ky) was calculated for the four training classes (background, muscle, bone
and tissue) of the human knee MRI (figures 2.10- 2.14) where some of the histograms
present a certain degree of normality, but notably the tissue class does not. The re-
sults are presented in table 4.1. It should be noted the small Bhattacharyya distance
between the tissue and the bone classes. These two classes have low discrimination

power. The measurement space will be searched for some features that will have a large
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W o || Background | Muscle | Bone | Tissue
Background 91 | 49 0 4.36 | 12.51 | 11.70
Muscle 696 | 140 4.36 0 3.25 3.26
Bone 1605 | 212 12.51 3.25 0 | 0.0064
Tissue 1650 | 227 11.70 3.26 | 0.0064 0

Table 4.1: Mean and variance values for four classes of a human knee MRI, and Bhat-
tacharyya distance for each pair of classes; the higher the distance, the more separable the
classes are.

discrimination power between these two classes.

4.3 The Bhattacharyya Space

We define the Bhattacharyya Space as the space of Bhattacharyya distances of all possible
pairs of classes for all dimensions of the measurement space. For measurement space S
generated with a 2D SOP filtering of order o, where the data consist of Nj classes, each
class pair (p) between classes k1, ko at measurement ¢ will have a Bhattacharyya distance
D B(S,il, S,iZ), and that will produce a Bhattacharyya space of dimensions N, = (]\g’“) and
N; =70 : N, x N; (2D). The domains of the Bhattacharyya space are L; = {1,2,... 70}
and L, = {(1,2),(1,3),... (ki,k2),... (N — 1, Ng)} where o is the order of the SOP.
In the volumetric case, L, remains the same (since it depends on the classes only),
N; =290 and L; = {1,2,...290}.

The Bhattacharyya space, BSrp(i,p), is defined as:
Ly x L3 BS;p(i,p) : Ly x Ly = Dp(S,. St,) (4.3)

The Bhattacharyya space is a bivariate state whose marginal distributions are:

Ny Np
BSi(i) = _ BSip(i,p) =Y _ Dp(Sk,,S8%,), i=1,...,N; (4.4)
p=1 p=1
N; N; ) )
BSp(p) =>  BSipli,p) =Y _Ds(S;,,S,), p=1,...,N, (4.5)
=1 =1

Both marginals can reveal important information about the feature selection process.
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The marginal over the class pairs, BSy(7) sums the Bhattacharyya distance of every pair
of a certain feature and thus will indicate how discriminant a certain sub-band SOP
filter is over the whole combination of class pairs. On the other hand, BSp(p) sums
the Bhattacharyya distance for a particular pair of classes over the whole measurement
space. This is particularly revealing in when classifying for many different classes, since
a particular pair can have a low discrimination potential.

To visualise the previous distribution, the Bhattacharyya space and its two marginal
distributions were obtained for the natural texture image with 16 classes (figure 3.1
(f)). Figure 4.4 (a) shows the Measurement space S of order 2, and (b) presents the
Bhattacharyya space. Figure 4.5 presents the corresponding marginals. These graphs
present very interesting information towards the selection of the features for classifica-
tion. In 4.5(a) a certain periodicity can be found (over the measurement space dimen-
sion): BS11421,28 haye the lowest values (this is clearer in the marginal BS;(i)). The
measurements 1, 7, 14, 21, and 28 correspond to low pass filters of the Second Orien-
tation Pyramid. Since the textures had been previously histogram equalised, the high
pass features provided a better discrimination than the low pass features. The most
discriminant features for the training data presented are §'%1815-

The marginal BSp(p) can be useful to identify certain pairs of textures which are dif-
ficult to segment. The index of p corresponds to the pairs L, = {(1,2),(1,3),..., (k1, k2),
coey (N — 1, Ng) }

4.4 Order Statistics for Feature Ranking

The selection process of the most discriminant features that is proposed here uses the
marginal of the Bhattacharyya space BSy(i) that indicates which sub-band filtered fea-

ture is the most discriminant. The marginal (for 2D) is a set:

BS;(3) = {BS1(1), BS;(2), ... BSi(70)}, (4.6)
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Figure 4.4: (a) The Measurement space S of order 2 for the 16-class image (b) The
Bhattacharyya space BS;p for a measurement space S of order 5.

which can be sorted in increasing order and its order statistic will be:
BS(1)(3) = {BS(1)(1), BS(1)(2),... BS(1y(70)},  ™*(BSr(i)) = BS;y(1)  (4.7)

BS(1y(1) £ BS(1)(2) £ ... < BSpy(70),  "*(BS1(i)) = BS(1)(70)

BS(i) = BS(p)(5)-
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Figure 4.5: Marginals of the Bhattacharyya space of figure 4.4: (a) BS;(i), the index
measurement space corresponds to space S, (b) BSp(p), The index of class pairs correspond
to the pairs L, = {(1,2),(1,3),...(k1,k2),... (N — 1,Ng)} .
The domain L; = {...,j,...} provides a particular route for the state space search. In
other words, a re-ordering of the elements of Measurement space S is performed before
being sequentially introduced to the classifier. The dimensions of the set remain the
same as those of the measurement space: N; = N;.

Figure 4.6 exemplifies this route for a 4 measurement state space. It is important to
mention two aspects of this selection process: the Bhattacharyya space is constructed on

training data and the individual Bhattacharyya distances are calculated between pairs
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Figure 4.6: State Space for sequential selection following the route determined from the

Bhattacharyya space .

of classes. Therefore, there is no guarantee that the feature selected will improve the

classification of the whole data space, the features selected can be redundant to each

other or can improve the classification for a pair of classes but not the final classification.
The conjecture to be tested is that the classification can be improved in a sequential

selection defined by the Bhattacharyya space order statistics. To test this, the natural

textures image was classified with several sequential selection strategies:

e Following the unsorted order of the measurement space: S',52,5% etc.

e Following the marginal BS;(i) of the Bhattacharyya space (figure 4.5 (a)) in de-
creasing order: §'9,5'8 Sl etc

e Following the marginal BS;(7) (figure 4.5 (a)) in increasing order: 28,521 S5 etc
The converse conjecture: the reverse order should provide the worst path for the
classification.

A couple of random permutations.

The sequential misclassification results of the previous strategies are presented in
figure 4.7.

Although the Bhattacharyya space appears to provide the best route for classifi-
cation, there are some features that when included increase the misclassification. A
heuristic method is proposed to overcome this problem. If the whole state space is tra-

versed up to the state {1,1,...,1}, a misclassification graph will show the particular
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Figure 4.7: Misclassification error for the sequential inclusion of features to the classifier for
the 16-class natural textures image (figure 3.1 (f)).

effect that each feature has on the misclassification (positive/negative). From the graph
shown in figure 4.7, it can be seen that most of the features contribute positively to the
classification with the exception of BS(1y(14, 30), and the last five features BSy)(31—35)
leave the classification unchanged. These features can be removed from the classification

procedure:
ST ew if MS',8%...,87) > A(SY,8%,...,87) (4.8)

In the previous example, the set of features to be included in the classifier will be:
Ly = L; \ {14,30 — 35}. Ly is the domain of the Feature Space Sg; a reduced and

ordered version of the measurement space S:
SleSrcS, N;<N;. (4.9)

The dimensions of the Feature space are L, X L, x Lq X Ly.

Another solution that is provided by the order statistics of the Bhattacharyya space
marginal is the option to select a predetermined number of features as the reduced set
or sub-space used for classification. This can be particularly useful in cases where it

can be computationally expensive just to obtain the whole measurement space. Then,



4.5. SUMMARY 95

Table 4.2: Feature Selection through the Bhattacharyya Space.

Generate a set of training data samples for each class to be segmented.

2 | Filter the data with the SOP and obtain a measurement space S for each
class.

3 | Calculate the Bhattacharyya distance for each pair (p) for each measure-
ment (i) and arrange them into the Bhattacharyya space BS;p(i,p).
Obtain the marginal BS(i), and its order statistics BS(p(j).

5 | The measurements (filters from the SOP) will be submitted to a classifier in
a wrapper approach in the order of the order statistic. This can continue up
to the state {1,1,...,1} or just the first n measurements can be selected
as a subset when obtaining the measurements of the whole data can be
expensive.

6 | Once {1,1,...,1} has been reached, discard S’ that do not improve the
classification.

based on the training data, just a few measurements are generated based on the first n

features provided by the Bhattacharyya space.

4.5 Summary

In this chapter we have presented a feature selection method through the use of a novel
Bhattacharyya Space that is obtained through the Bhattacharyya distance of pairs of
training classes. This method allows the selection of the most discriminant features of
a measurement space S through one of the marginals of the space. It can also be used
for detecting which pairs of classes would be particularly hard to discriminate over all
the space and in some cases, the individual use of one point of the space can be also
of interest. The use of the Bhattacharyya Space implies that the number of classes is
previously known, thus it is not presented as a method to determine the presence or
absence of a number of clusters (one or more) in a certain space. If this is required, other
methods like the Two-point correlation function or the distance histogram proposed by
Fatemi-Ghomi [40] could be used.

The proposed Feature Selection methodology is summarised in the table 4.2.
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Chapter 5

Multiresolution Classification

In the previous chapters several steps of a texture classification process have been pre-
sented. First, a sub-band filtering with a Second Orientation Pyramid (SOP), which
provided textural measurements comparable to those present in the literature was de-
scribed. Then, a feature selection method that allowed the selection of the most discrim-
inant measurements was proposed. Some classification algorithms were tested and while
the results obtained so far are encouraging, multiresolution techniques might further
improve our results.

This chapter presents a multiresolution algorithm which we call Multiresolution-
Volumetric Tezture Segmentation (M-VTS) and compares its final results against three
other sophisticated techniques: Local Binary Pattern (LBP) and the pg methods pre-
sented by Ojala [112], and Wavelet features with the Watershed transformation presented
by Malpica [104]. All methods (table 6.2) easily outperform Randen’s original results.

The multiresolution procedure will consist of three main stages which are annotated

as follows:

/" The process of climbing the levels or stages of a pyramid or tree.

e A decision or analysis at the highest level is performed, in the proposed method
the space is classified.

¢ The process of descending from the highest level down to the original resolution.

The basic idea of the method is to reduce number of elements of the data, by climbing
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a tree ([135, 162]), in order to reduce the uncertainty at the expense of spatial resolution.
This climbing stage represents the decrease in dimensions of the data by means of
averaging a set of neighbours on one level (which are called children elements or nodes)
up to a parent element on the upper level. The decrease of elements should decrease the
uncertainty in the elements values since they are tending to a mean. In contrast, the
spatial position increases its uncertainty at every stage [162].

Classification is performed at the highest level of the tree and then propagated down-
wards; therefore it is crucial to obtain a good initial result before it is propagated to lower
levels. A set of features that enhance the contiguity of the classification are presented
in section 5.5.1. The classification is enhanced by these Positional Contiguity Enhanc-
ing (PCE) features, even without the new features, the multiresolution process reduces
the misclassification considerably. In most of the cases, the PCE features improve the
results.

Every parent node will inherit conditions (like the class it belongs to) to its children.
Interaction of the neighbours can reduce the uncertainty in spatial position that is inher-
ited from the parent node. This process is known as spatial restoration and boundary
refining, which is repeated at every stage until the bottom of the tree or pyramid is
reached. We tested two methods for the refining of the boundaries: volumetric pyrami-
dal butterfly filters, were proposed as an extension to 3D of the 2D butterfly filters of
Schroeter [135], these techniques outperform a Markov Random Field approach.

While the construction of a multiresolution tree of the data represents a considerable
number of operations, it can actually simplify the whole process since some computation-
ally intensive decisions (such as classification) can be performed at a lower resolution.
Then, the spatial restoration can imply a lower number of operations since the areas
classified will tend to be bigger and less speckled than if classified at a lower level. The

main issues to be addressed when using a multiresolution technique are:

" Averaging procedure: size of neighbourhood, weighting values, etc. Two common
methods are the Gaussian Pyramid [17] and the Quad/Oct Tree (QT) [47, 132,
140]. In our implementation we used the QT
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/" Height of the tree. Although the construction is simple and the properties of
the multiresolution are easy to perceive, there is no single way of determining the
height of the tree. Schroeter and Bigun, who proposed a multiresolution algorithm
in [135], left open the challenge of computing the optimal number of levels. We
observed the variance of the space and the misclassification as indicators of the
adequate height of a QT

e (lassification. It may be possible to use a different classifier at the top level of the
tree. Unsupervised schemes could be used since the number of elements is reduced
and the uncertainty is decreased.

N\ Spatial restoration. Once the data have been classified at the highest level, spatial
restoration can be performed. This will typically mean the elimination of isolated
elements (those with no neighbours in their own class), but it can be extended
into eliminating isolated areas or regions, that is, small number of elements that
share class but whose neighbours are in a different class. The question is then how
small is small? In our implementation we restrict ourselves to isolated elements
to avoid the arbitrary decision of the size.

¢ Boundary refinement. The boundary elements will be defined as any element with
a neighbour in a class different to its own class. The refinement of the boundaries
is closely related to the spatial restoration and can be successfully performed with
butterfly filters.

5.1 Climbing the Tree *

The measurement space S that was obtained from the textured data through the SOP
sub-band filters will constitute the lowest level of the tree. For each measurement S* of
the space, a Quad Tree in 2D and an Oct Tree in 3D (QT will be used for both cases)
will be constructed. To climb a level in the QT', a REDUCE operation (Appendix B

details this operation for the construction of trees and pyramids) has to be performed:

(8¢ = REDUCE(S")* ! (5.1)

where L is the level of the tree. Accordingly, (G)* will correspond to the range of grey
levels of the tree level L.
Every REDUCE step averages four (in 2D) or eight (in 3D) contiguous elements

to produce a single element in the upper level. Once a desired level is reached, the
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(a) (b) (©)

Figure 5.1: A pyramid to reduce the uncertainty of a filtered texture image: (a) QT con-
structed into a pyramid, (b) Level 6 of the pyramid, (c) Histogram at level 6.

classification is performed.

Throughout this chapter we will illustrate the multiresolution procedure with the
16-texture image of figure 3.1 (f). At the sixth level of the tree (S%)%, each element is
the average grey level from 32 x 32 neighbouring pixels at level 1. Figure 5.1 shows this
process for S2: (a) shows the first 5 levels of the QT, (b) zooms into the sixth level
of the tree (S2)® and its corresponding histogram is shown in (c). Even at this high
level of the tree, the structure of the original image is preserved and some individual
classes are distinguishable to the eye, in particular the one in the top-central position.
The corresponding histogram shows how this texture could be discriminated on the grey
level value itself because of its brightness, but the 15 remaining textures are mixed into
one single (rough) bell-shaped distribution.

Two solutions will be proposed for determining the height of the tree: one will
observe the variance and the other will use a classifier. First we will use a wrapper ap-
proach (chapter 4) which includes the classifier in the process and therefore determines
the misclassification at every decision branch. Its main disadvantages are: the compu-
tational complexity and the requirement of a mask to determine the misclassification,
yet, it provides a powerful methodology. We tried both supervised classification (ay)
and unsupervised classification (LBG) and the results are presented in figure 5.2.

The sequential approach to the classification shows the individual participation of
the measurements toward the final classification in the figure, the ribbons of figure 5.2

describe the contribution of each measurement in every level of the QT towards the
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Misclassification

Figure 5.2: Misclassification performed at every level of a Quad Tree, for every measurement
of the SOP filtering Space: (a) Supervised Classification, (b) Unsupervised Classification.
misclassification. In the supervised case (figure 5.2 (a)), two important observations
can be made: first, most measurements contribute to improve the classification results;
second, the classification improves as the QT level is increased up to the fifth level, from
there the misclassification increases. If the classification is performed unsupervised,
that is, no training data, but the number of classes is supplied, (figure 5.2 (b)) a similar
trend is noticed in the classification and the QT level; the classification improves up to
the sixth level and then it decreases. In the unsupervised case not every measurement
contributes to the classification.

An alternative approach to establishing the height of the tree without the use of a
classifier is through the variance of the spaces S* (figure 5.3). The variance of the central
measurements (corresponding to the low pass filter) of five levels of the measurement
space §: 81,88, 815 622 . was calculated for 8 levels of the QT. Two trends can
be noticed. First, the higher the measurement from the SOP, the lower the variance.
This should be expected since the filter is a low pass filter each time with a smaller
bandwidth. Second, for the higher £ values, the variance remains nearly constant for
a number of levels of the QT', (which corresponds to the level of the SOP) and then it
decreases and tends to a single value. A good choice of the height of the QT would be

the same level of the SOP or at most one level higher.
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Figure 5.3: Variance of the central SOP filters (low pass) measurements at every level of
a QT. Notice how the variances tends to remain constant for the higher levels of the SOP
filter at the lower levels of the QT (see text).

Figure 5.4: Inheritance of properties to children elements (a) Class inheritance (b) Boundary
Inheritance.

5.2 Descending the Tree \,

Once the height £ of the tree has been decided, the tree (S)* is constructed for every
measurement of the space. At the highest level, the new reduced space can be classified,
and the resulting classification has to be propagated downwards to regain full spatial
resolution at the lowest level of the tree. The propagation implies that every parent
inherits: (a) its class value to 4/8 children and, (b) the condition of being or not in a
boundary (figure 5.4).

The descent from the highest level of the QT requires spatial restoration and bound-
ary refinement at every level; otherwise the result at the original level would look exactly
the same as the highest level [135]. For this purpose, two conditions of the elements

with respect to their neighbours are defined: boundary element and isolated element.
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e An element will be considered as a boundary element when at least one of its
neighbours (8 in 2D and 26 in 3D) belongs to a different class.

e An element will be considered as isolated when no contiguous neighbour belongs
to its class assignment.

It is possible to define isolated regions as groups of elements of one class that are sur-
rounded by elements of different classes. Since the number of elements that define how
small the region is has to be arbitrary, we preferred not to use isolated regions in the
spatial restoration process.

The first step in the spatial restoration process is to enhance the spatial contiguity
of the elements by erasing isolated pixels. In this case, the mode class of the neighbours
is assigned to the pixels. After this refinement, boundaries are re-estimated. The refine-

ment of the boundaries is performed with the butterfly filters described in section 5.3.

5.3 Butterfly filters

In previous sections it was shown how smoothing can greatly improve the classifica-
tion results, yet smoothing itself introduces some classification problems. When spatial
neighbouring elements are averaged (either with Gaussian or uniform isotropic LEFs)
there will be an error introduced, especially at the boundaries between classes. When
the problem of classification consists only of 2 classes this error is not great. But when
more than 2 classes are to be identified, the smoothing procedure can turn elements in
the boundaries into a different class than that associated with both sides of the bound-
ary. This problem is depicted graphically in figure 5.5, and is present in the results of
figure 3.5, where, as the size of the LEF increases, a region of misclassification between
regions grows bigger.

Yet, the effect of the local energy function can greatly improve the results by eliminat-
ing the variation of neighbouring elements. The problem then is to smooth selectively:
in regions that are far away of the class boundaries an isotropic smoothing could be
adequate, but near to the boundaries, careful treatment of the data is needed. This in

turn poses the problem of determining class boundaries within the data. If the results of
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Feature a

Class 1

Spatial Position
Figure 5.5: Classification errors due to averaging of neighbouring elements.

the filtering process have not been smoothed, then the classification results can be very
noisy and isolated elements can be very common (even with a 3 x 3 Gaussian LEF as
it is shown in figure 3.5 (a) a very speckled result is obtained). Determining boundaries
at this level would be considerably difficult.

A compromise has to be reached between the smoothing and the class boundaries.
The use of butterfly filters in a multiresolution classification can successfully smooth
close to boundaries reducing the class mix. A solution to this problem is to apply a
multiresolution procedure of smoothing several levels with a QT and applying these
filters in the descent to the lowest resolution.

Butterfly filters (BF') [135] are orientation-adaptive filters, that consist of two sepa-
rate sets or wings with a pivot element between them. It is the pivot element z = (r, ¢, d)
which can be modified as a result of the filtering. Each of the wings will have a roughly
triangular or pyramidal shape, which resembles a butterfly (figure 5.6 (a)) and they can
be regarded as two separate sets of anisotropic cliques, arranged in a steerable orien-
tation. We propose the extension of these BF filters into 3D, and two possible shapes
can be used: pyramidal or conic (figure 5.6 (b,c)), for ease of implementation we used
pyramidal. The boundary determined by the classification process will define the ori-
entation of the filter in order to place each of the wings of the butterfly at the sides
of the boundary. The pivot element z at which the filter is centred, is not included in

the wings. The elements covered by each of the wings will be included in the filtering
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Figure 5.6: (a) 2D Butterfly filter, (b) Pyramidal volumetric butterfly filters, (c) Conic
volumetric butterfly filters. Orientation of ¢ and 6 indicated in (c).
process while the values of the elements along the boundary (which presumably have
greater uncertainty) are not included in the smoothing process.

The BF will consist of two sides, which we call left wing [w and right wing rw, each
of which will comprise N,, elements:

lw = {lwy,lw,, ... lwy,
s by v lw,rw € S. (5.2)

rw = {rwy,rws,...,rwnN,}

For each wing, a weighted average of the values of the elements in each dimension is

calculated:
N No B No
Stw(T) = Z S5* (lwg)wg, Spw(T) = Z S*(rwg)wq- (5.3)
g=1 g=1

In the case that all the elements of the wing [w/rw are to be included with equal
weight, the weighting function will simply be w, = N%,,’ Vq. Once the average values of
the butterfly wings glw, S, have been calculated, the actual pivot element z = (r, ¢, d)

value (which was not included in the wings) is weighted averaged with them:

Se_w = (l—a)S(x) + Oéglw, (5.4)

Se rw = (1—-a)S(zx) + aSrw, (5.5)

The weighted combination is controlled by a parameter « (figure 5.7) which is a scalar
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Figure 5.7: Scalar gain o.

gain measure that depends on the dissimilarity of the distribution of the elements within

the two butterflies:

o= ﬁ D= ‘\‘/g% (5.6)
w T Orw

where o2 /02, is the variance of the elements in each butterfly wing. Equation 5.6
replaces the experimental relation previously used [135, 162]. (The value of 5 was ob-
tained after numerous simulations, similar results were obtained for values of 4 to 6.)
The parameter « acts as a weighting factor derived from the closeness to a boundary
or the distance between the distributions covered by the two sides of the butterfly fil-
ter, and provides a balance between the current position of the element and a new one
calculated from its neighbours. It is interesting to note that this balancing procedure
is quite similar to the update rule of the Kohonen SOM [84]. The distance measure
between the updated pivot element and the prototype values of each class will deter-
mine to which class it will be reassigned. Figure 5.8 shows the process graphically. At
the classification stage, the new positions S~’$_lw, S replace the original position of

element z. Instead of looking for a class based on A\,(S(z)), the new values Ay (S; 1) /
)\a(gx_m) will determine the class according to the closer distance to the prototypes of
the classes. When dealing with volumes and not images, the boundaries between classes
are not single lines but planes, and therefore the orientation of the butterflies requires

two parameters 6 and ¢. If the analysis is restricted to 2D, a complex number field can

be used to simplify and improve speed [8]. In our implementation, we quantised the
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Figure 5.8: A feature space view of boundary refinement process with butterfly filters.
(a) A boundary element z with other elements. (b) z and the two sets of neighbouring
elements that are comprised by the butterfly wings, all other elements are not relevant at
this moment. (c) The weighted average of each wing. (d) Parameter o balances between
the element = and the average of the wings. (e) New positions are compared with the
prototypes (1,2.. .. k) of the classes, the class that corresponds to the minimum distance is
then assigned to z.
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orientations to four in each case: 6,¢ = {0

The effect of butterfly filters bears resemblance to Anisotropic Diffusion presented
by Perona and Malik [115] where images are smoothed at different scale-spaces, thus
removing high frequency noise, while preserving the boundaries of structures of interest.
Anisotropic diffusion can enhance edges and be used in multiscale image segmentation.

It remains as further work to compare the results of anisotropic diffusion with the

butterfly filters.

5.4 Supervised Single Resolution vs. Unsupervised Mul-

tiresolution

One of the advantages of the multiresolution algorithms is that at the highest level of
the QT, the reduction of the number of elements allows the use of some algorithms that
would be too expensive at a lower level. We will now analyse the use of unsupervised
classification.

If classification was to be attempted with (S?)% (figure 5.1 (b)) with this single
feature of the space and no previous knowledge of the different textures, the 16 classes

would be distributed along the grey level axis. Figure 5.9 shows the classification into 16
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Figure 5.9: Classification of figure 5.1 (b): (a) Classes as levels of grey, (b) Individual
Classes.

classes with an agglomerative hierarchical clustering with complete linking [54] (identical
results were obtained with the LBG algorithm [97]). The results of the classification are
far from impressive; some classes, like 1, 3 or 7, are scattered all around the image.

Of course that the classification does not have to be performed with only one of the
measurements. When all the measurements are included into the classifier the results
improve significantly. Figure 5.10 (a) shows the final results: propagated downwards
through the tree, spatially restored and butterfly filtered of the multiresolution classifi-
cation. The single resolution classification is presented in (b) for comparison purposes.

The first striking difference is the smoother appearance of the multiresolution classi-
fication. The speckled appearance of the single resolution (without LEF) is not present
in the multiresolution where the classes appear smooth. A second important difference
is revealed if we look at the elements that have been correctly classified (c,d). While the
single resolution classification can have a certain number of correctly classified pixels
in all the classes, the multiresolution classification is more clear-cut: either it classifies
the region correctly or it is totally misclassified. A third important difference appears
in the class boundaries; the multiresolution procedure has very sharp boundaries. This
property is given by the butterfly filters; this will become clearer when Markov Random
Fields are compared with this technique.

While the misclassification is similar; 42.2% with the supervised single resolution

against 45.5% of the unsupervised multiresolution, it is important to remember that
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Figure 5.10: Classification of a 16-class natural texture image. (a) Unsupervised multireso-
lution, misclassification = 45.5% (Schroeter and Bigun), (b) d; Supervised, misclassification
= 42.2%. (c), (d) Correctly classified pixels for (a) and (b) (correct labelled in white).

the unsupervised single resolution misclassification of this image was 78.6% (table 3.6).

Multiresolution processing considerably improves the results. We will now present an

improvement to the method.

5.5 Positional Contiguity Enhancing Features

The inadequacy of the unsupervised classification previously presented is partly due to
the lack of feature context. In this section we introduce a simple modification, which
attempts to address this problem and include the spatial position of the elements into
the classifier. This modification is the insertion of extra dimensions that correspond to
rows and columns for an image and rows, columns and slices for a volume as it was
suggested by Jain and Farrokhnia [71]. This procedure is similar to a region growing
process without the need of seeds for the regions. We describe the process below.

The grey level histogram for the volumetric data VD at any level £, is defined [163]
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as:

_ #{z € (Ly x Lc x Lg) : VD(x)
N #{L, x L, x Lq}

hg) =% ycq

where # denotes the number of elements in the set. This histogram can be consid-
ered as a marginal function of a higher dimensional space. The univariate distribution

represented by the histogram will relate to a function f(g):

N, N, Ng

h(g) = falg) = DD f(R,C,D,(G)) (5.7)
1 1 1

where f(R,C, D, (G)*) is a joint density of (G)*, the grey level space at the level £ of
the Quad Tree, and a series of uniformly distributed spaces R,C, D, which we will call
Row and Column and Slice co-ordinate. The dimensions of the data to classify, two for
images and three for volumetric data, will determine the number of features. The new

features — called Positional Contiguity Enhancing (PCE) features — are defined by:

Ly xLexLg; R: Ly x LexLg— Ly 7+ LixLexLg: Lt ={1...N,}
Ly XxLexLg; C:Ly xLex Lg—Le ¢ Lp x LL x Ly : Lt = {1...N.}

Ly X LeXx Lg; D: Ly x Lex Lg— Lg  d~ Ly x Le x Ly : L = {1... Ny} (5.8)

These new features look like a vertically shaded image for C and a horizontally shaded
image for R. To illustrate the additional features figure 5.11 shows the scatter plot of
the distribution f(C, (G)*) with its corresponding marginals. If the data are normalised
as suggested in section 3.1, then the values of the PCEs are adjusted to spread the same

range of values as the measurement space.

5.5.1 Clustering with the PCE features

The measurement space S extracted by the SOP from the original data, and reduced by

a Quad Tree up to a level £ will provide the data (S)* that we will proceed to cluster
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Figure 5.11: Joint density (scatter plot) and marginal densities of the grey levels of figure 5.1
(b) ((S?)%) and column co-ordinate feature space C.
into homogeneous groups. If we include the PCE features to the space, the Euclidean
distance Dy(z1,72) = ||S(z1) — S(x2)||]2 between two elements (z1,z2) € (S)* will

become:

D2($1,$2) = ((rwl - T£C2)2 + (C$1 - cw2)2 + (d$1 - dw2)2 + (D2($1,$2))2)

=

(5.9)

where the positional values of the elements are (7s,, ¢z, ,dz, ), (Tzys Czoys day)-

Figure 5.12 shows the classification, unsupervised agglomerative clustering with com-
plete linking, of (S2)® plus R,C. While the clusters may not be as compact in the
measurement space, the spatial classification results into 16 contiguous classes without
any isolated pixels. Figure 5.13 shows the scatter plot of R,C,(G)* with the corre-
sponding classifications, with and without the new features, and figure 5.14 presents the
corresponding marginals.

To visualise the effect of the PCEs the following example is presented. A 2D, 2-
measurement test set of 64 x 64 elements was generated with random noise with mean
grey level of 100 and standard deviation of 10. Classification was performed with 2, 4
and 8 classes with and without PCEs. The results are presented in figure 5.15. As it

could be expected, when the PCEs were not introduced into the classifier, the elements
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Figure 5.12: (a) Classification of (S?)¢ with the new features R,C into 16 classes. (b)
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Figure 5.13: Clustering of grey levels of figure 5.1 (a) without the new features R,C (b)
with the new features R,C.

were joined into compact clusters in the measurement domain with very low contiguity
in the image domain (a-f). In contrast, contiguous results (g-1) were obtained with PCEs

while the clusters are not compact at all.

5.6 Comparison to Markov Random Fields Models

The operation performed with the butterfly filters bears a resemblance to Markov Ran-
dom Fields (MRF) models [21, 29, 48] in two ways: the neighbour to neighbour inter-
action of standard MRF [14] and the interaction of parent and children nodes in the
Multiresolution Markov Random Fields (MMRF) models [159]. If we consider any given
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Figure 5.14: Clustering of grey levels of figure 5.1: (a) Marginal of figure 5.13 (a) over C,
(b) Marginal of figure 5.13 (b) over C.

voxel x = (r,¢,d) € (L, X L, x Lg), whose grey level is g, and that it is assigned to class
k, K, =k, the a posteriori probability model [114] p(K|g) (or p(K|S(z)) for the whole

measurement space) is given by Bayes’ rule:

p(Klg) o< p(g|K)p(K) (5.10)

where p(K) is the a priori density of the region process and p(g|K) is the conditional
density of the observed data. The Markov process implies the existence of a neighbour-
hood .4, of z whose elements are the only elements of the data that present an influence
to z:

P(Ks|Kq, ¥V q # 7) = p(K2|Ky,q € Nz) (5.11)

For images, 4-connected or 8-connected neighbourhoods are common, that is, the 4
nearest pixels or 8 including the diagonals. For volumes, 6 or 28 neighbours need to
be considered (Figure 5.16) (a,b). The density of K can be described by a Gibbs

distribution:

p(K) = %ewp{—ZVC(K)} (5.12)
C
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Figure 5.15: The effect of classifying noise with and without PCEs. Image domain and
scatter plot of noise (x = 100, o = 10): (a-f) Classification assuming 2, 4 and 8 classes and
no PCEs, (g-1) Classification assuming 2,4 and 8 classes and with PCEs.
where Z is a normalising constant and C' is a series of cliques, a set of points neighbours
to each other. V¢ are the clique potentials that depend only on the elements that belong
to that clique: for two-point cliques, the potentials could be:
-6 if K=K, andz,q€eC
Vo(K) = ro ’ (5.13)
B if Ke #Ky and z,q € C
With 8 positive, neighbours are more likely to belong to the same class than to different

classes. If 8 = 0, then the classes are equiprobable and the process reduces to a k-means
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Figure 5.16: Multiresolution Markov structures: (a) 6 voxel neighbourhood (b) 28 voxel
neighbourhood, (c) An Oct-tree with three levels: grandparent £+ 1, parent £, child £ —1.
clustering [114]. When the analysed field is extended to a multiresolution field, a voxel
will be conditioned by an extra term: the quad-tree parent [159, 160] that belongs to
a parent set. (Three levels of an Oct-tree structure are shown in figure 5.16 (c)). The

parent node of an element z at level L is:
r c d
so the conditional probability is conditioned jointly on the .47 and Py ¢
P(Ko|Kygq € M| Pog) (5.15)

Essentially, the local MRF neighbourhood scans the classes that surround the element
being analysed and uses them to change the probability of belonging to a certain class,
while the butterfly filters use the grey levels of the surrounding elements to anisotropi-

cally smooth the value of a feature. Both steps are used in the latter classifying stage.

The final results of this chapter are presented in figure 5.17. The classification of
the 16-texture image of figure 3.1 (f) was supervised with the use of training data to
obtain the estimates of the means (prototypes) for each class a; and with PCE features

in the level 6 of the QT'. Figure 5.17 (a) used a MMRF approach towards the boundary
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Figure 5.17: Supervised classification of a 16-class natural texture image with PCE features:
(a) MMRF approach, misclassification = 26.5%, (b) M-VTS, misclassification = 16.5%.
(c). (d) Correctly classified pixels for (a) and (b) (correct labelled in white).

refinement and (b) used the butterfly filters (M-VTS), the respective misclassification
results were 26.5% and 16.5%. Both cases outperform the single resolution supervised
and multiresolution unsupervised. In the M-VTS the borders between classes are much
sharper than the MMRF approach; this is due to the anisotropy of the butterflies.

Again, the classes in both methods are very smooth, and some of the regions have been

completely misclassified.

5.7 Summary

This chapter presented a multiresolution algorithm that can improve the results of clas-
sification of textured data. In our implementation we selected a Quad Tree as a method
for data reduction by the combination of neighbouring elements (considered as siblings)
to form a parent element. It is expected that Gaussian pyramids provide similar results.

The height of the tree is important for the algorithm; we presented two ways of selecting
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Table 5.1: Comparative misclassification (%) with different algorithms for the image 3.1

(f)-

Single resolution Multiresolution £=5
Algorithm ‘ Misc. || Algorithm Misc.
Unsupervised 78.6 || Unsupervised 45.5
Supervised, No LEF 42.2 || Supervised: MMRF with PCE | 26.5
Supervised, LEF 9 x 9 35.5 || Supervised: M-VTS no PCE 18.6
Supervised, LEF 27 x 27 | 28.7 || Supervised: M-VTS with PCE | 16.5

an adequate height: one through the variance of some of the measurements (low pass)
and the other with the use of a classifier. The latter one gives a clear idea of the optimal
height of the trees. In our experiments, we used 5 levels.

The use of multiresolution allows the use of unsupervised classification techniques
since the number of elements and uncertainty in the element values are reduced. Still,
if training data sets are available, supervised classification provides better results both
for single and multiresolution.

We experimented with a new set of Positional Contiguity Enhancing (PCE) features
that improve the classification results. The strength of PCE features for classification
relies on the fact that PCE will encourage contiguous regions in the data, either images
or volumes, instead of clustering compact regions in the feature domain. An important
distinction to be made is that the PCEs are independent of the algorithm used, they
are included as part of the classification space. This augmentation of the space has the
disadvantage of the increased computational complexity as mentioned by Matas [105],
but since this addition will come in a reduced space at the highest level of the tree,
it is not that expensive. Moreover, adding 3 dimensions to a space of 28 or 35 is not
too costly. It can be expected that the PCE features will be most helpful when classes
are distributed in regular compact regions, similar to the ones showed in the previous
figures (and as most examples in the literature).

It is also possible to modify the classification algorithms. One option is that presented

by Theiler and Gisler [145] who include a weighting factor that balances the ratio of
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contiguity and compactness for the clusters. Another solution is that of Matas and
Kittler [105] who use global and local statistics computed from the image together
with pixel connectivity information to provide a simultaneous feature space-image space
clustering. It remains as further work to test these and other algorithms.

Finally, boundary refinement was compared between a MRF approach and butterfly
filters (BF). BF's are steerable anisotropic structures that try to capture under each of its
wings elements belonging to different classes. The orientation of the filters is determined
by the boundary condition of the elements of the space which is propagated downwards
from the top level of the tree. When the butterfly is extended to 3D, it can take a conic
or pyramidal shape, we chose pyramidal for ease of implementation with satisfactory
results. The BFs outperform the Markovian approach. Table 5.1 presents a summary

of the results for the image of 3.1 (f).
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Chapter 6

Results and Discussion

In this chapter a series of experiments with the M-VTS algorithm will be presented.
The set of 9 images from Randen [124] will be compared with co-occurrence, due to
its popularity, the best of Randen’s results, LBP and pg from [112], and the water-
shed transformation [104]. These experiments are necessary to compare M-VTS against
different classification algorithms and feature extraction techniques.

Then, volumetric experiments are presented with two sets of artificial data and three
MRIs of human knees. As an application of the segmentations that can be obtained,

the cartilages of two of the MRIs were extracted.

6.1 2D Natural Textures

Table 6.1 presents characteristics of the 9 images composed of different natural tex-
tures, as well as the classification details for each of them. The measurements were
selected from the SOP sub-band filtering (without LEF) through the Bhattacharyya
space. Then, for each selected feature, a QT of 5 levels was constructed and the classifi-
cation was performed at the highest level with and without the PCE features. Butterfly
filters were used to refine the boundaries on the descent of the QT. To evaluate the
performance of the proposed method (M-VTS), a comparison was made against the best

results of Randen, the results of Ojala [112] who used Local Binary Patterns (LBP) and
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Table 6.1: Characteristics of the images and their classification details

Figure Size Classes Source Number of Features selected
No PCEs with PCEs
a 256 x 256 5 Brodatz 21 21
b 256 x 256 5 MIT 35 28
c 256 x 256 5 MIT 28 28
d 256 x 256 5 MIT 14 28
e 256 x 256 5 MeasTex 14 21
f 512 x 512 16 Brodatz 28 28
g 512 x 512 16 MIT 21 21
h 256 x 640 10 Brodatz 21 21
i 256 x 640 10 MIT 28 21

Table 6.2: Comparative misclassification (%) results of Malpica [104], Randen [124], Ojala
[112] and M-VTS (Bold is the best for each image).

Method Figures

a b c d e f g h i | Average
Co-occurrence 9.9 | 27.0 | 26.1 | 51.1 | 35.7 | 49.6 | 55.4 | 35.3 | 49.1 37.69
Best in Randen 7.2 18.9 | 20.6 | 16.8 | 17.2 34.7 41.7 | 32.3 27.8 24.13
ps (Ojala) 7.4 12.8 | 15.9 | 184 | 16.6 27.7 33.3 | 17.6 18.2 18.66
LBP (Ojala) 6.0 18.0 | 12.1 9.7 | 114 17.0 20.7 | 22.7 19.4 15.22
Watershed (Malpica) 7.1 | 10.7 | 12.4 | 11.6 | 14.9 20.0 | 18.6 | 12.0 15.3 13.62
M-VTS (No PCEs) 3.1 14.8 8.6 7.3 5.4 18.6 32.0 | 14.7 20.2 13.86
M-VTS (with PCEs) 3.2 14.2 7.9 9.0 4.7 | 16.5 29.4 8.8 | 12.9 11.86

multidimensional distributions of signed grey-level differences (ps), and those reported
by Malpica [104] who used a multichannel watershed-based algorithm with Wavelet fea-
tures. The results of Randen’s co-occurrence are included in the comparison since they
are widely used.

The final classification results are presented in table 6.2 and the following observa-

tions can be made.

e It should be noted that co-occurrence can easily be outperformed, it is the worst
classification individually and overall.

e The best results presented by Randen were outperformed by all the other methods.
Again this was to be expected, since the classification schemes were far more
complex than those used by Randen.

e The methods proposed by Ojala outperform those of Randen and have good re-
sults, in some cases they are better than Malpica’s, but in general they can be
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outperformed.

e The multichannel watershed-based algorithm (Malpica [104]) presents very good
results, in two cases (b, g) it has the lowest misclassification.

e The M-VTS Multiresolution algorithm proposed in this thesis presents very good
results even without the use of PCE features. But it is the use of these features
that gives the best overall results to M-VTS. Without the PCEs, Malpica has a
better classification. With the PCEs, M-VTS has the lowest misclassification.

e The use of PCEs does not always improve the results. In 7 of the 9 cases
(b,c,e,f,g,h,i) the results improved with the use of the PCEs but for cases (a,d) the
results did not improve, for (a) it was marginal but for (d) it was considerable.
Still, the result is better than all the other methods.

As an indication of the computational complexity of the algorithm presented, we
measured the computation time of the programs running with Matlab version 6.5 R13
running on a Linux platform based on a Pentium 4 CPU 2.80 GHz. The time for the
16-class segmentation of figures 3.1(f), was 2.7s for single resolution and 56.3s for M-
VTS. No systematic attempt to make the code more efficient was made. The figures
corresponding to the classification results are presented below. Figure 3.1 presents the 9
original images. Figure 6.1 shows the boundaries on top of the original images, figure 6.2
shows the results as classified regions, and figure 6.3 shows the pixels that are correctly
classified. These latter results are considered by the author to be the most revealing
since showing only the labelled classes or only the boundaries on top of the original

images can be misleading.
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(h)

Figure 6.2: Classification of the images in figure 3.1. Classes are presented as different
levels of grey.
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Figure 6.3: Classification of the images in figure 3.1. Pixels that are correctly classified
appear in white.
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Figure 6.4: Volumetric test data (a) One measurement of the two bivariate Gaussian distri-
butions with similar means and variances (b) Two oriented patterns with different frequency
and orientation.

6.2 3D Artificial Textures

Unlike the 2D texture literature, that has many examples and test images available,
up to the best of the author’s knowledge, there is not a database available in 3D.
We propose the following sets as a benchmark to compare different algorithms and
measurement extraction techniques. First, a volumetric set that represents a simple
measurement space of 2 dimensions each with Gaussian distributions with the following

characteristics:

Class Dimensions St S?
A 32x16%x32 p1=25,00 =2 po=206,00=4
B 32x16x32 pu=27,00=7 po=28,00="7
The two classes together form a 32 x 32 x 32 x 2 space. Figure 6.4 (a) shows
one measurement of the space and figure 6.5 shows a scatter plot of the data and the
corresponding masks. The measurement space was classified unsupervised with the
number of classes provided but not the estimates of the means. First it was classified
in a single resolution (LBG) and then using M-VTS (QT level £ = 3), both with and
without PCEs. The classification results for the unsupervised case are presented in
figure 6.6 as clouds of points for each class. Figures (a, b) show classes 1 and 2 for LBG
without PCEs and (c, d) show classes 1 and 2 for M-VTS (with PCEs). Results are
presented in table 6.3.
It is clear that for the single resolution many elements have been incorrectly classified

and each class spans the whole volume. For M-VTS there are some incorrectly classified
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feature 2

(a) (b) (c)
Figure 6.5: Gaussian volumetric test data: (a) A scatter plot of the data of figure 6.4 (a).
(b,c) Masks for each class.
voxels close to the boundary, but the general shape of the original data is preserved. For
this experiment the use of PCEs can improve the results in both classification algorithms,
and the use of multilevel classification can improve the classification as well.

It is very important to notice that the original shape and size of the data are of huge
importance for the multilevel procedure. At the third level of the QT', the sets have been
reduced in dimensions to [8 x 8 x 8] elements for the Gaussian data and [16 x 16 x 16]
for the oriented data. If the original shape of the classes were in a pyramidal shape,
instead of a cubic or parallelepiped, then, while reducing over the QT', the classes will
mix among them. By selecting the shape of the regions of the classes, one can control
the classification results. This was not the case for the natural textures presented in
section 6.1, nor will it be for the human knees MRI data of section 6.3.

The second set is a 64 x 64 x 64 volume with two oriented patterns of 64 x 32 x 64
elements each, with different frequency and orientation. Figure 6.4 (b) shows this set.
The measurement space was extracted and two measurements were manually selected:
S1 and S3, and classification was again performed unsupervised with and without PCEs
for single and multiresolution. Results are presented in table 6.3.

Figures 6.7 (a, b) present the two classes segmented with M-VTS. Again, some voxels
near the boundary are misclassified, but the shape (c) is well preserved. The computa-
tional complexity was considerably increased in 3D, for the first set the respective times
for LBG and M-VTS were 0.1s and 14.9s and for the second set 0.4s and 54.0s. No

systematic attempt to make the code more efficient was made.
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(a) (b) () (d)

Figure 6.6: Classification results for Gaussian data: (a) LBG Class 1, (b) LBG Class 2, (c)
M-VTS Class 1, (d) M-VTS Class 2.

(a) (c)

Figure 6.7: Classification of the oriented data with M-VTS:(a) Class 1 (b) Class 2 and (c)
Both classes.

It should be noted that while multiresolution improves the results in both cases, the
result of single resolution and PCEs outperforms M-VTS without PCEs. This may be
due to the arbitrary selection of the features from the measurement space; perhaps other
features could improve the results.

This example was presented to compare single and multiresolution in a volumetric

space, the feature selection was performed manually.

Table 6.3: Misclassification Results (%) for LBG and M-VTS for the two 3D test sets.

Algorithm Gaussian Data Oriented Data
Without PCEs | With PCEs || Without PCEs | With PCEs

LBG 37.0 14.1 22.3 4.6

M-VTS 3 6.6 4.7 6.2 3.0
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6.3 3D Magnetic Resonance Textures

A final set of experiments was conducted with several volumetric MRI sets of human
knees acquired under different protocols: one set with Spin Echo and two sets with
SPGR. In the three cases each slice had dimensions of 512 x 512 pixels. Some of the
main characteristics of the sets are presented in table 6.4. One sample slice from the set
is presented in figure 6.8 and the corresponding (2D) measurements extracted with the
SOP sub-band filtering are presented in figure 6.9.

A few observations about the images should be made. The increased Tr time of
the Case 1 results in a bright appearance of the bone and tissue (which are hard to
distinguish by the grey level). Cases 2 and 3 have a shorter 7r and a fat-suppressed
SPGR sequence where the bone and background (hard to distinguish) appear dark and
the muscle and cartilage appear bright. These last images are useful when the cartilage of
the joint is of importance. In the following subsections a heuristic technique to segment

the cartilage based on the bone extracted by the texture segmentation will be presented.

Table 6.4: Characteristics of the MRI knee sets.

Case | Rows | Cols | Slices Slice Pix size | Tr Te | Acquisition
thickness (mm) | (mm) | (ms) | (ms) | Protocol

1 512 512 87 14 0.2539 | 1650 | 22 Spin Echo
0.2539

2 512 | 512 64 1.5 0.2344 60 7 3D SPGR
0.2344

3 512 | 512 60 1.5 0.1953 60 3.2 | 3D SPGR
0.1953

6.3.1 MRI Supervised classification

For the first data set, Case 1, the following classification approach was followed. Four
training regions of size 32 x 32 x 32 elements were manually selected for the classes of
background, muscle, bone and tissue. These training regions are small relative to the

size of the data set, and they remained as part of the data to classify. Each training
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(b)

Figure 6.8: One sample slice from the knee sets: (a) Case 1, (b) Case 2, (c) Case 3. Data
sets b,c provided by Dr. Simon Warfield from Brigham and Women’s Hospital.

sample was filtered with the SOP sub-band filtering scheme, and the results were used
to construct the Bhattacharyya space (figure 6.10(a)).

S§22:54 which correspond to the low

It can be immediately noticed that two bands:
pass bands, dominate the discrimination while the distance of the pair bone-tissue is
practically zero compared with the rest of the space. If the marginals were calculated
directly, the low pass would dominate and the discrimination of the bone and tissue
classes, which are difficult to segment, (table 4.1 in chapter 4), would be easily merged.
Figure 6.10 (b) zooms into the Bhattacharyya space of the bone-tissue pair. Here we

512:5:8:38,.. hrovide discrimination between bone and tissue,

can see that some features:
and the low pass bands helps discriminate the rest of the classes.

The sequential forward classification was performed with the low pass feature, S°¢,
and the first 6 features from the ordered statistics B.S7 of the bone-tissue Bhattacharyya
space which correspond to: §12:5:8:39951

This selection of features reduced significantly the computational burden since only
these features were filtered. The final misclassification obtained was 8.1% with 7 fea-
tures. Figure 6.10 (c) presents the improvement in the classification as the features are
introduced to the classifier.

The previous classification of the data was a full volumetric analysis, with a single

resolution supervised classification. The next step was to compare these results with

two other different techniques: a per-slice segmentation, and M-VTS classification (with
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Table 6.5: Misclassification results (%) for 2D and 3D single resolution and M-VTS for
Case 1 of the MRI sets.

Technique Misclassification (%)
2D Single resolution 8.6
3D Single resolution 8.1
3D M-VTS 6.0

PCEs, £=3). The results obtained are presented in table 6.5. While the results from the
2D and 3D single resolution are close, the use of multiresolution improves the results
by more than 2%. The classification with a multiresolution algorithm improves the
results and produces a much smoother region classification. Some of the errors are due
in part to magnetic inhomogeneity artefacts across the image which were not handled
explicitly. It should be noted that the classification results, although not anatomically
perfect, illustrate the utility of the use of texture features in MRI classification. Two

slices in sagittal plane with their respective classifications are presented in figure 6.11.

Finally, a volume rendering of the segmented bone is presented in figure 6.12. Four
anatomical structures present in the MRI data set are clearly identifiable: patella, fibula,

femur and tibia.

6.3.2 MRI Unsupervised classification

Manual selection of training data in MRI data sets can be a slow and difficult process,
and it has the disadvantage of training and testing on the same data, even if the training
samples are small compared with the size of the data. The following section presents
the results for unsupervised segmentation for the SPGR MRI data sets. The sets were
classified and the bone was segmented with the objective of using this as an initial
condition for extracting the cartilage of the knee.

The first set to be classified in unsupervised scheme was Case 2. No training data
were used, but the classification is not fully unsupervised since the number of classes

desired, four, was provided by the user and the sub-bands of the SOP were selected
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()

Figure 6.9: SOP Measurements for the sample slices: (a) Case 1, (b) Case 2, (c) Case 3.
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Figure 6.10: Human knee MRI (a) Bhattacharyya space BS (3D, order 2), (b) Bhattacharyya
space (BS¢(bone, tissue)) (c) Sequential misclassification results.
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Figure 6.11: Human knee MRI and its classification: (a,d) Sagittal slices 36 and 56 (b.e)
3D single resolution classification (c,f) M-VTS classification

manually. The SOP measurement space of Case 2 is shown in figure 6.9 (b). Besides the
low pass, the sub-bands that appear to give good discrimination of the classes are §%3:6>7
which correspond to the higher frequencies. For the volumetric classification, three
analogous bands were selected, namely S$'%9 plus the low pass $%2. The corresponding
positions are shown in figure 6.13. More features could have been selected but the
complexity would have increased.

The performance of the classification schemes was measured on the ability to cor-
rectly classify the bone since this class alone will be used to segment the cartilage later
on in this chapter. The correct classification was measured by how much bone was
classified correctly inside the bone mask (5 € b), and how much bone was classified
outside the bone mask (b € (b)¢) and their complements ((b)¢ € b, (b)° € (b)¢). The
knee was classified with LBG and M-VTS at level 3. One slice of the classified results
is presented in figure 6.14 and the classification results are presented in table 6.6. As

expected, M-VTS presents smoother results and an increase in the correct classification

of the bone b € b, yet it fails to reduce the classification of bone outside the region for
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Figure 6.12: Volume rendering of the segmented bone of Case 1 (misclassification 8.1%).

X

4

22

——————

Figure 6.13: A graphical representation of the features selected for the unsupervised classi-
fication
bone b € (b)°.

Before proceeding to extract the cartilage from the knees, a heuristic approach that
improves the results is proposed for the knee of Case 3. First, one slice of the set (slice
45) was selected and the 2D SOP sub-band measurement space was obtained (Figure 6.9
(c)). From this measurement space, two filtered measurements were selected for their
discrimination S3® which correspond to the low pass of the data and a high pass filter.

It can be observed that measurements S%%7 could be equally good for the discrimination
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()

Figure 6.14: Case 2: Unsupervised classification of human knee SPGR weighted MRI. (a)
Sagittal slice 45, (b) LBG single resolution classification, (c) Mask for the bone, (d) M-VTS
Classification.

Figure 6.15: (a) Sagittal slice 45 of Case 2. (b) Corresponding classification which will be
used to obtain a set of means.
as S3, since they filter out the muscle and the tissue.

The feature space for this slice was classified with M-VTS at level 6, using PCEs and
an agglomerative clustering algorithm at the highest level. This gave very good visual
results (figure 6.15). The next step was to generate the 3D measurement space S. As
for the previous example, the features S1%%22? were manually selected to match those
that were selected from the 2D space. S'° correspond to the high frequency spaces

while S%2 corresponds to the low pass.
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Table 6.6: Classification (%) of Bone (b) according to the mask for bone (b) with k-means,
and M-VTS. For Case 3, supervised and unsupervised classification was performed.

Knee Set | Algorithm | beb|be®e | (B)eb] (B) e (®)]
Case 2 LBG 67.2 21.0 32.8 79.0
M-VTS 89.5 21.6 10.5 78.4
Case 3 LBG 42.2 22.9 57.8 77.1
i 64.0 | 11.0 36.0 89.0
M-VTS (UnSup) | 75.8 | 3.5 24.2 96.5
M-VTS (Sup) 880 | 7.1 12.0 92.9

With the classes that were segmented from the 2D data, a mask was formed, then
with one slice of the 3D features, a set of means estimates were obtained, and then
these values were used to classify the data in a supervised scheme. The 3D data set was
classified in single and multiresolution, both supervised and unsupervised. One slice of
the classified results is presented in figure 6.16 and the classification results are presented
in table 6.6.

In the two schemes, LBG and M-VTS, the use of the estimate of the means improved
the classification, in both cases increasing b € b. In single resolution (b)¢ € (b)¢ also
decreased, but not so in M-VTS, this could be due to an incorrect classification at the
top level that is propagated downwards. This disadvantage can be seen in the region
of the patella and infrapatellar pad: a section bigger than the actual bone is classified
as bone (figure 6.16 (f)). Also upper part of the patella is misclassified: while the ay
still detects as bone some of the pixels in this region, the M-VTS method classifies the
upper part as background.

Figure 6.17 presents two different views of a cloud of points of the bone class where
the misclassification of the patella is visible. The upper part of the patella is classified
as background and the lower part extends more than it should do into the infrapatellar
pad. In figure 6.17(a), this can be better observed as a hole in the upper part and some

scattered points in the lower part.
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Figure 6.16: Case 3: Human knee SPGR weighted MRI. (a) Sagittal slice 40, and its mask
(d). Single resolution: (b) Unsupervised, (e) Supervised. M-VTS: (c) Unsupervised, (f)
Supervised.

6.3.3 Segmentation of the cartilage

Segmentation of articular cartilage of human knees has become a very important field
[25, 39, 100, 138, 149, 152], and MRI has played an important role since it is a non-
invasive method and generally cheaper than arthroscopy which has been the gold stan-
dard for diagnosing and monitoring cartilage damage and repair [148]. The interest in
cartilage measurement is related to osteoarthritis which results in the thinning of the
cartilage. The possibility of in vivo observation of the progression of osteoarthritis, and
the evaluation of pharmacological treatments has developed further the interest in carti-
lage segmentation from MRI. Besides the thickness of the cartilage, there is also interest
in analysing the surface topography of the cartilage, its contact areas, curvature charac-
teristics and biomechanics [25]. For these reasons, MRI sequences have been developed
to highlight articular cartilage [64, 120]. Fat-suppressed Gradient echo pulse sequences
(SPGR) have been particularly good for cartilage segmentation [25, 149]. Once the

sequences to highlight the cartilage have been developed, semi-automated methods for
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(a) (b)

Figure 6.17: Two different angles of the segmented bone b (as clouds of points) from Case
3 MRI of the human knee
the segmentation need to be developed to make the tool clinically valuable [149].

A common technique in the cartilage segmentation is the use of deformable models
[138], yet these techniques normally require user intervention as a manual initialisation
or seeding of the model [113] or a delineation of cartilage borders [25]. In Pakin’s [113]
method, besides the initial seeding, the boundaries are manually marked to prevent mis-
classification and also, prior to clustering, a detection of presence or absence of cartilage
in a region is required. In Cohen’s [25] method, a set of points is digitised manually
along each articular contour curve; this process could be completed in two hours. Other
methods require the use of 3D volumetric digital atlases [152] or templates that have

been generated by hand segmented cartilages [26, 151].

In this section we propose a simple technique to extract the cartilage without the
use of deformable models or seeding techniques. The user has to determine a Region
of Interest and a grey level threshold and the bone extracted from the previous chapter
is used as a starting point. In order to segment the cartilage out of the MRI sets, two

heuristics were used: cartilage appears bright in the MRIs, and cartilage resides in the
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Figure 6.18: Histograms of Case 2 and Case 3 MRIs.

region between bones, which translated into two rules: threshold the sets above a certain
grey level, and discard what is not close to the region of contact between bones. The

methodology to extract the cartilage followed these steps:

1. Extract the border of the bone segmented by the M-VTS.
2. Dilate this border by a number of pixels to each side (5 voxels in our case).
3. Use this region as a mask and eliminate the elements outside.

4. Threshold the region (grey level ¢ = 550 for Case 2, and g = 280 for Case 3
figure 6.18).

5. Eliminate isolated elements.

After the previous methodology was used, another heuristic rule was employed since
there were some voxels classified as cartilage outside the area of interest, mainly due to
the cartilage between fibula and tibia that was not of interest at this moment. A Region
of interest (ROI) was defined and then the elements that resided outside a cube were
discarded. Figure 6.19 presents the segmentation of the cartilage for the knee of Case
2: (a) presents the whole thresholded MRI set, (b) presents the thresholded ROI, and
(c) presents the segmented cartilage. Although the shape of the cartilage appears in
(a), far too many voxels (that correspond to the muscle) are present. When the ROI is
used (b), this improves but still many voxels obscure the shape of the cartilage. When
the bone is used as a starting point, the characteristic shape of a saddle is revealed (c).

Some elements still appear misclassified but the overall shape is now clear.
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Figure 6.19: Extraction of the cartilage of Case 2, results as clouds of points. (a) Data
thresholded at g = 550 (b) The region of interest segmented at g = 550, (c) The cartilage
extracted with the heuristic method.

(a)
Figure 6.20: Cartilage of Case 2. (a) Slice 15 of the set with the cartilage in white, (b)

Slice 46 of the set with the cartilage in white. (c) Rendering of the cartilage segmented
from Case 2 and one slice of the MRI Set.

Figure 6.20 presents the results obtained imposed over the original MRI, first in two
2D images, and then a 3D rendering of the cartilage over one slice. These figures allow
a visual interpretation of the results. Some false positives can be seen in the area of
the muscle (right of the bone in 6.20 (a) and left in 6.20 (b)) but the general shape is
visually close to that of the cartilage.

The same procedure was followed with the knee of Case 3 and the results are pre-
sented below. The results were visually better; this may be due to the fact that Case 3
was classified in a supervised scheme with the means extracted from one slice classifica-
tion. Figure 6.21 presents the segmented cartilage for three slices of the set in different
view: sagittal slice 18, axial slice 212 and coronal slice 130. Figure 6.21 (a) presents the
segmented cartilage. Some false positives appear as small dots in the image. The tibial

cartilage also appears a bit ragged but the general shape is correct, notice for instance
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Cartilage Extracted Data thresholded Cartilage over knee

Sagittal Slice 18

Axial Slice 212

Coronal Slice 130

(a)

Figure 6.21: Sagittal, coronal and axial view of the cartilage extracted from knee Case 3.
The first column (a) shows the cartilage in the three planes, Second Column (b) shows the
data thresholded at the same level used to extract the cartilage g = 280, the third column
(c) shows the cartilage over the corresponding slice.
the separation of the patellar cartilage from the femoral cartilage. As a comparison,
figure 6.21 (b) presents the thresholded data of the same slices. Figure 6.21 (c) presents
the cartilage over the original image.

Finally, 6.22 presents the rendering of the segmented cartilage in two different view
angles and with a slice of the original MRI set. In this result, it is clear that the general
shape of the cartilage; tibial, femoral and patellar is correctly segmented and the few

incorrectly classified voxels could be easily erased from the set.

A simple methodology to extract articulate cartilage has been presented. The
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() (d)

Figure 6.22: Rendering of the cartilage segmented from Case 3. (a,b) The cartilage from
two different view angles, (c,d) The Cartilage and one slice of the MRI Set.

methodology requires the knowledge of the bone which has been extracted in the pre-
vious sections, and the intervention of the user in determining a thresholding level and
a ROI. It should be noted that the ROI is basically a cube and not a sophisticated
anatomical template. The threshold can be determined from the histogram with rela-
tive ease. What is important in this methodology is an adequate segmentation of the
bone, since it is used as a starting point to the cartilage extraction. From the results

obtained, it can be concluded that the classification based on the texture features and
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the M-VTS algorithm is a good way of labelling the bone. This cartilage segmentation
technique can be used to measure the thickness of the cartilage, the surface topography,

its contact areas or the curvature characteristics.

6.4 Summary

In section 6.1 we compared the use of SOP measurements and M-VTS against other
texture extraction algorithms and classification techniques present in the literature, the
proposed methodology outperforms them. The multiresolution nature of the algorithm
is very powerful and gives the biggest improvement in the results, but it is the use of
PCEs that gives the lowest average misclassification.

In two cases the use of PCEs does not improve the results. One possible explanation
for this effect is an incorrect selection of the mean estimates when the new features are
added to the space S.

In section 6.2, M-VTS algorithm was tested on 3D sets with artificial textures. The
results were satisfactory as the objective was to test the method in simple cases before
the MRI sets were classified. For the oriented data the features were selected manually
through visual examination. In the future a proper method for feature selection in
unsupervised cases should be used. The individual histograms of the S* could help but
it may not be a conclusive test, as it will be explained. Figures 6.23 (a,b) show one slice
of S3; the two measurements that were used for the classification. If we now look at the
histograms of all the first level of the QT (figure 6.24), immediately one measurement
strikes out as stretching more than others, this corresponds to S'®, one slice is presented
in figure 6.23 (c). Perhaps it would be much better for the classification. Yet the
histogram does not tell the full story. If we compare those for §° and S (figure 6.24
(b)), their distributions look similar but the corresponding slice of S'? (figure 6.23 (d))
shows a feature that would not be very good for classification purposes.

In section 6.3 the most important data sets of the thesis were classified: three human

knee MRIs. The results that were obtained with the M-VTS allow the distinction of
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(a)

Filggure 6.23: One slice of the S for the oriented texture data: (a) S*, (b) S3, (c) S'%, (d)
S,
classes that would be hard to distinguish through a grey level comparison; that is bone
and tissue in Case 1 and bone and background in Cases 2 and 3. Therefore we can
conclude that the M-VTS is capturing some textural properties of the regions and used
them to discriminate between the different structures of the human knee. The results
presented are not anatomically perfect and would require clinical validation to determine
how well classified they are but this would imply a particular problem to solve. For the
segmentation of the cartilage from two of the knees, the segmented bone was good
enough to provide a starting region.

On a personal communication, Dr Simon Warfield expressed that the cartilages
looked wisually satisfactory. Still, the segmented cartilage would require validation if
it were to be used clinically. The use of arthroscopy [33] or other techniques is beyond

the scope of this work.



6.4. SUMMARY 144

(]
[&]
C
o
5
[&]
[&]
o
()
>
s
()
e
(a)

0.1

8 0.08
c
o

3 0.06 |7
(&)
o

[} P>

2 0.04
s
()

 0.02}

01 02 03 04 05 06 07 08
(b) Gray scale

Figure 6.24: (a) Histograms of the measurements of S, (b) Histograms of $1:3:18:19,
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Chapter 7

Conclusions

7.1 Summary

A multiresolution algorithm based on Fourier domain filtering was presented for the
classification of volumetric textures.

Textural measurements from the Fourier domain were extracted from 2D and 3D
data through sub-band filtering with a Second Orientation Pyramid tessellation. Some
of the measurements can be selected to form a new feature space; the selection is based
on their discrimination powers obtained from a novel Bhattacharyya Space. A multires-
olution procedure can improve the classification of these feature spaces: Quad Trees
were formed with the features as the lowest level of each tree. Once the classification
is performed in the highest level of the tree, the class and boundary conditions of the
elements are propagated downwards. A border refining methodology with butterfly fil-
ters is performed. This refining technique outperforms an MRF approach. A further
improvement is provided by the addition of dimensions to the space at the highest level
of the tree.

The algorithm presented was tested with benchmark images in 2D and with 3D data;
artificial textures and MRI sets of human knees. The results in 2D outperform several

algorithms in the literature and the results in 3D are also satisfactory.
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7.2

Major contributions of this work

e A review of the existing methodologies for texture analysis in 3D was presented,

other 2D techniques were analysed and their extension to 3D considered. The
formulation of the problem to solve may favour one technique or other, in our case
the intention was to analyse a data set and segment regions that can represent

uniform structures, either textures or anatomical features.

With the previous problem in mind, the proposed extension to 3D of a sub-band
filtering with Second Orientation Pyramid provided textural measurements that

compared with others present in the literature.

To solve the problem of feature selection, a novel Bhattacharyya Space was pro-
posed as a technique to measure the discrimination power of pairs of classes. The
calculation of the marginals of this space allows us to select the most discrimi-
nant sub-bands for a sequential classification, as well as the texture pairs that are
easy/difficult to classify throughout the whole measurement space. This Bhat-
tacharyya Space is independent of the filtering and could equally be used to select
features from Wavelets, Gabor filters, Laws masks or any other texture measure-

ments.

The new positional contiguity enhancing features are a simple, %

yet useful technique to improve considerably the results of the I

multiresolution algorithm. These features exploit the fact textures |

extend spatially in 2D and 3D so they will increase the contiguity
in the spatial domain at the expense of the compactness in the

feature domain. Since the new contiguity features are added only

at the highest level of the Quad Tree, the extra computational
expense is low. These features are independent of the classification method used.
It must be mentioned that the features work better when the regions to classify

are compact. Images that have regular shapes, like the top one on the right, would
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benefit more than the one on the bottom due to the nature of the features.

7.3 Major conclusions from this work

We can conclude that:

e Sub-band filtering in the Fourier domain with a Second Orientation Pyramid is a
good way of extracting textural features from data. It is simple to calculate both
in 2D or 3D and fast with the use of FFF'T. When compared with other features it
was as good as other techniques such as co-occurrence or Gabor filters. Wavelets,
Wavelet packets and Wavelet Frames can also provide good texture measures. For
our experiments, sub-band filtering was adequate but for other experiments these

techniques should also be considered.

e The use of local energy functions can enhance considerably the classification re-
sults, the size of the function plays a critical part though. It is important to
distinguish the effect of the LEF from the features used, as a bad measurement

could be obscured by the use of the LEF or a sophisticated algorithm.

e Multiresolution algorithms are very powerful and they can enhance the results of
texture segmentation, but the classification at the highest level is critical since
these classes will form the basis of classifications at lower levels. If these classes

are incorrect, the final classification can perform worse than a single resolution

method.
e Not all images are the same. Some cases in the literature apply ;;:;'i
e
algorithms for classification or texture extraction techniques to 44 {:iisz.‘.j
co SR
.‘.‘. ...
images that have not been histogram equalised, like the example ?gggﬁ

on the right. It is therefore important to use a common set of test sets to be
able to compare methods. For the 2D case Randen’s database can be used, for 3D

we publish the data sets used in this thesis, the corresponding addresses are:
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http://www.ux.his.no/~tranden/

http://www.dcs.warwick.ac.uk/~creyes/m-vts

e Pyramidal butterfly filters can improve classification and have better results than

MRF because they are anisotropic and steerable.

7.4 Suggestions for further research

Regarding the work presented in this thesis several remarks can be made:

e We have segmented anatomical structures from MRIs and measured the perfor-
mance of M-VTS by comparing against hand-segmented masks. These masks,
contrary to those used in the 2D experiments are subjective and would vary de-
pending on the person that performed the segmentation. If M-VTS were to be
used in medical applications, extensive clinical validation must be done. If MRI

data were used, the effects of inhomogeneities have to be addressed.

e In this thesis we chose the Second Orientation Pyramid to tessel-
late the Fourier domain. It proved to be a good way of extracting . B |
textural measurements for the data that we analysed. Nevertheless :: j:_ _:_ _:_ ji
other tessellations could be necessary for other textures. One par- I I I
ticular extension could be to use the spirit of the Wavelet Packet |:: ::I
and further decompose the high pass filters into four subsections ::_:_ :_ :_ _i

as it is shown in the figure on the right.

e So far all the measurements of the Fourier domain were extracted using the mag-
nitude of the inverse Fourier transform. The phase is an unexplored territory that
could provide information in other cases. The main problem is the unwrapping in

the presence of noise, which is not a trivial problem.

e We have relied in the number of classes or clusters present in the data for the
unsupervised cases. If the number of classes to segment is not known, the analysis

will change. A possible way of detecting the presence of clusters in the data can be
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done with the techniques presented by Fatemi-Ghomi [40]: the distance histogram

and the two-point correlation function.

e During the classification process, the representation of the classes does not have
to be restricted to either the estimate of the mean or the trained SOM. It could be
possible to use a combination of the two. With the use the Bhattacharyya Space,
the most distinctive pairs of classes could be selected and then use SOM for those

ones, and dy for the other cases.

e PCEs have been used as a binary case, either used or not. They could be used in
a continuous manner with a variable 0 < o < 1 that determines the contribution
of the PCE to the system. In some cases this could present an improvement in

the final classification.

e The cartilage segmented in chapter 6 could provide a starting point for more
complex techniques. Instead of manually selecting a series of points, the segmented

structure could be used.

Finally, in the area of texture analysis an important contribution would be a defini-
tion of texture that would be accepted by the vision community, clinicians, geologists,
engineers, etc. This author, together with many other researchers would be happy to

see a definitive description of texture.
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Appendix B

Quad Trees and (Gaussian

Pyramids

The use of multiresolution techniques in Image Processing can be achieved by the use of
structures that relate a set of representations of the data at different resolutions. Two of
the most common multiresolution techniques are the Quad/Oct Tree and the Gaussian
Pyramid.

The concept of a tree is closely related with the field of data structures [47, 132]
where a tree is a structure that contains nodes hierarchically arranged from a root node
to the leaf nodes via some internal nodes (analogous to the branching structure of a real,
upside down tree, since in most cases the trees are represented with the root above and
the leaves down). Root and internal nodes can have one or more child nodes and can
form sub-trees. An example of a tree with 4 levels and 4 children per node is shown in
figure B.1.

The term Quad Tree (QT') [47] refers to a tree where each node is split along all d
dimensions, leading to 2¢ children, since it was originally designed for images, that is,
data in 2 dimensions, each node will have 4 children that will be arranged in a rectangle
and the nodes will correspond to the NW, NE, SE, SW positions in analogy with cardinal

orientation. The term Oct Tree refers to a similar structure of data in 3 dimensions.
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Figure B.1: The structure of a Quad Tree with 4 levels.

In our own particular case, the quad/oct trees will follow these properties:

e The dimensions of the data are N, = 2%, N, = 2°, N, = 2¢,
e Each element of the data will constitute a leaf node,
e Every sub-tree will have equal depth, that is, reaching to the original data itself,

e The parent node will be obtained by the arithmetic mean of the values of the
children. This operation implies a low pass filtering effect for every upper level,

e The root node will describe the global mean of the data

e The dimensions of an upper level will be half of the previous one.

A Gaussian Pyramid (gp) is similar to the tree, it will also be a structure of different
levels, each corresponding to a low pass version of the data. The difference resides in the
filtering performed by a convolution with a Gaussian filter kernel rather than a uniform

kernel.

Figure B.2: Parent-child structure of a Gaussian Pyramid.

The following description of a gp has been restricted to images for simplicity and

follow [17]. Let the original image Z have dimensions for rows and columns N, x N,.
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Let L. = {1,2,...,N.} and L, = {1,2,..., N, } be the horizontal and vertical spatial
domains, and G = {1,2,..., Ny} the set of grey tones.

Let the original image Z be considered as the bottom level of the gp. The next level,
(gp)? is obtained through a low pass filter, or reduction of gp. For every level (£), the

superior will be obtained then:

(9p)* = REDUCE ((gp)* ™) (B.1)

Each node (i,7) of the higher level is a weighted average of the values of the lower

level within a 5 x 5 window w(m,n):

Z Z w(m,n)(gp)*~1(2i + m,2j + n) (B.2)

m=—2n=—2
The weights assigned to the nodes within the window are determined by a generating

kernel defined by the following constraints:

m=—2
w(i) = w(—1) (B.3)
which are satisfied when:
w(0) =a
o(—1) = (1) = =
i) =a(l) =5
W(—2) = B(2) = i - g (B.4)

When a = 0.4, the kernel has a Gaussian-like shape. The effect of the filtering will

reduce by half the number of nodes in the image.
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Figure B.3: Gaussian Pyramid constructed from a MRI of a Human Knee. Images contain
512x512, 256x256, 128x128, 64x64 and 32x32 pixels.

The reverse of the function REDUCE is EXPAND which interpolates new node

values between given values. Let (gp)“™ be the result of expanding n times (gp)*:

(gp)*" = EXPAND ((gp)“"™ ") (B.5)

Each node (i,7) of the higher level is a weighted average of the values of the lower
level within a 5 x 5 window w(m, n):
1—m j—n

)G ) =4 3 3 wlm,n)(gp) (I (5.6)

m=—2n=-—2

Figure B.3 show a Gaussian pyramid constructed from a MRI of a human knee.

The Laplacian pyramid is derived from the Gaussian pyramid and provides an in-
teresting description of the data with a filter effect that can be used to obtain edges
through a zero-crossing detection. The Laplacian pyramid is a sequence of images
LPy,LP;,LPs,...,LPy each being the difference between two levels of the Gaussian

Pyramid:

LP, = (gp)* — EXPAND ((gp)*™) = (gp)* — (gp)~ (B.7)
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Figure B.4: Three different levels of a Laplacian Pyramid constructed from a MRI slice of
a human knee.

As mentioned before, the Gaussian pyramid presents a low pass filtering effect over
the images. Each successive stage of the pyramid is constructed by reducing a previous
step. At each pixel, a weighted average of the neighbouring pixels is calculated. By
sub-sampling, every successive stage of the pyramid is composed of less pixels. The
inverse procedure of expansion generates an image with the same number of pixels as
the previous stage of the Gaussian pyramid with a blurred effect. The difference of two
images reduced and expanded up to a different stage of the pyramid corresponds to a
certain level of the Laplacian pyramid, which has an overall impression of a band pass
filter (see figure B.4). The Laplacian pyramid histogram has a Gaussian distribution
centred in zero. Therefore, zerocrossings of the image can be obtained and represent

edges of some features.
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Appendix C

MRI and Imaging Technologies

Magnetic Resonance Imaging (MRI) is one of the several techniques used for imaging the
Human Body. These techniques focus on obtaining images of different structures of the
human body with good accuracy, without the direct surgical intervention. Historically,
the first imaging technique is the X-rays, discovered more than a century ago by Rontgen.
In X-rays or radiographies as they are commonly known, a film records the attenuation
presented by different tissues of the body at the exposure to electromagnetic radiation
of very high frequency. The resulting image presents shadows of the structures along
the path of the rays.

Since the discovery of X-rays, many different techniques to obtain images from the
human body have been developed relying on the use of electromagnetic radiation; mi-
crowaves, gamma rays or infrared, as well as sound waves, magnetic fields, sub-atomic
particles, or electron beams. Table 1 presents some imaging technologies commonly used
today [109].

Magnetic Resonance Imaging is a powerful method of non-invasive imaging of the
interior or a living body for medical diagnostic and other purposes [60]. The underlying
principle of MRI is that the nuclei of certain atoms have the property of spin and absorb
radio waves of a strictly defined frequency when placed in a magnetic field. The atom

of hydrogen presents the magnetic resonance effect, and is abundant in the human body
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Technique

‘ Description

Film-screen X-ray

Standard X- ray technique.

Digital X-ray

Digital version of X-ray technique.

Ultrasound Forms image by reflection of Megahertz frequency
sound waves.

Magnetic Resonance | Forms images using radio emissions from nuclear

Imaging spins.

Scintillation Senses gamma-ray emission of radio active pharma-
ceuticals.

Thermography Seeks from infrared signature.

Electrical impedance | Maps impedance with low-voltage signal.

imaging

Optical imaging

Measures scattered near-infrared light.

Electrical potential mea-
surements

Measures potentials at array of detectors on skin.

Positron Emission Tomog-

Forms images using emission from annihilation of

raphy positrons from radioactive pharmaceuticals.
Novel ultrasound Compound imaging, 3-D and Doppler imaging.
Elastography Uses sound or MRI to infer mechanical properties of

tissue.

Magnetic Resonance Spec-
troscopy

Analyses tissue’s chemical makeup using radio emis-
sions from nuclear spins.

Thermoaccoustic Com-

puted Tomography

Generates short sound pulses using RF pulses and
constructs 3-D images from them.

Microwave imaging

Uses scattered microwaves.

Hall-effect imaging

Picks up vibrations of charged particles exposed to a
magnetic field.

Magneto-mammography

Senses magnetic contrast agents collected in tu-
mours.

Source: IEEE Spectrum [109]

Table C.1: Imaging Technologies commonly used for breast cancer screening and diagnosis.

in molecules of water. Most MRI is focused on hydrogen, which constitutes around 63%
of the human body [43]. However, other atoms not so abundant in the body, such as
phosphorus or sodium can be used to form images.

When atoms are placed in a magnetic field B, the nuclei align with or against the
field (figure C.1 (a,b)). Then, a second field, periodic at a certain precession frequency
The nuclei

of the atoms, forces them to oscillate around the fixed magnetic field (c).

have absorbed energy, and oscillate at a frequency proportional to the intensity of the
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d)

Figure C.1: Nuclear Magnetic Resonance. (a) Nuclei in natural equilibrium (b) Nuclei
aligned with external magnetic field (c) Oscillation of nuclei due to periodic magnetic field
(d) Resonance around direction of field (e) Relaxation process and release of energy (f)
Parallel and perpendicular components of the magnetic field. Adapted from [129]

magnetic field (d). This energy is then released (e) over a certain period of time in the
process of relaxation towards the original state of the atom. The time of relaxation is
specific for the nature of the nuclei. During the return to their state of equilibrium, the
nuclei release the energy in form of waves. RF coils are placed around the body that
is being imaged, and register both the energy and the time of release and from these
data, the image is reconstructed [60]. The relaxation of the atoms to their initial state is
governed by two physical nuclear processes related to the components of the orientation,
one parallel to the magnetic field that takes a time T1, and one perpendicular to the
field in time T2 (f). These two parameters related with time, in addition to the number
of protons that have aligned and are releasing energy contained in a tissue, determine
the intensity of the magnetic resonance image intensity. The contrast of the image will
depend on the relation of these three parameters. If the number of the protons is the
only parameter considered, a Proton density (PD) image is obtained.

The resulting image for the MRI process looks like an internal slice or cut of the

body. It is similar to the output of a Computed Tomography (CT) image, but there
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Advantages

Non-ionising radiation. No known physiological side effects.
High soft-tissue contrast. Differences between normal and abnormal tissues.
Any arbitrary slice of organ can be imaged.

Visualisation of areas deep within bony structures; vertebral canal, skull and
cerebrospinal fluid.
Natural sources of contrast.

Good for angiography, imaging blood flow without catheters or contrast agents.

3D imaging through computer manipulation of successive slices.

Disadvantages

High cost of equipment.
Claustrophobia of patients.
Long imaging time.

Strong magnetic field; unsuitable for patients with metal implants especially pace
makers.

Images distorted by surgical clamps, wire or surgical stitches.

Unable to image calcium; tissue calcification can not be detected.

Acoustic noise; high levels of noise during scanning.
Source: Hennel [60]

Table C.2: Magnetic Resonance; advantages and disadvantages

are substantial differences between them. CT uses X-rays, which are absorbed by the
bones, therefore, some regions surrounded by bone are better imaged by MRI than CT.
Feeney [41] considers that MRI is the best imaging technique for detecting tumours
within the brain stem since bone does not obstruct the imaging. Table 2 presents some
advantages and disadvantages of MRI. MRI is a vast field; Webb [153] dedicates one
chapter for MRI, Hennel [60] is a good introduction and Hornak [66] is a very complete
on-line reference. La Recherche [129] has an introductory explanation of magnetism.
The Whole Brain Atlas [73] is an on-line atlas with T1, T2 and Proton Density (PD)
images of a human brain, Medcyclopedia [117] is a good general reference as well.
Through this thesis, it is assumed that texture is present in magnetic resonance im-
ages and in particular in their energy distribution in the Fourier domain. This assump-
tion implies that is different regions could be segmented by their Fourier distribution.
Figure C.2 presents the Fourier transform of the four selected regions of figure 2.10 that

correspond to background, muscle, bone and tissue. It can be seen that the Fourier
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Spin Echo

Standard pulse sequence used in MR imaging. It uses 90 radiofrequency pulses
to excite the magnetisation and 180 pulses to refocus the spins to generate signal
echoes. It exists in many forms which consist in the preparation phase - of a
90 radiofrequency pulse which flips the longitudinal magnetisation Mz into the
xy-plane, whereby the transverse magnetisation Mxy starts to precess with the
Larmor frequency. This preparation phase is then followed in the acquisition
phase by a train of refocusing 180 pulses which serve to generate repetitive signal
echoes (hence the name spin-echo). The 180 pulses occur at times: TE + iTE, i
= 0,1,...,n, and the signal echoes at iTE.

SPGR

short SPoiled GRASS; GE brand name for a spoiled gradient echo pulse se-
quence. The Gradient-echo pulse sequence, is one of the most frequently used
pulse sequences in current day MR imaging often abbreviated GRE sequence. The
preparation module of the pulse sequence consists of an excitation pulse which is
termed the alpha pulse. It tilts the magnetisation by a flip angle a which is typi-
cally between 0 and 90. In the special case where a = 90 the sequence is identical
to the so-called partial saturation or saturation recovery pulse sequence. The flip
angle can also be slowly increased during data acquisition. Then, the data are
not acquired in a steady state, where z-magnetisation recovery and destruction
by ad-pulses are balanced, but rather such that the z-magnetisation is ‘used up’
during imaging by tilting a little more of the remaining z-magnetisation into the
xy-plane for each acquired imaging line. The readout- or acquisition module oc-
curs during a free induction decay FID , during which the read gradient is turned
on such that localisation of the signal in the readout direction is possible. To
accomplish this, the data are sampled during a gradient-echo , which is achieved
by properly dephasing the spins before they are rephased by an equal but oppo-
site gradient to generate the echo when the areas under the negative and positive
gradients are equal.

Source: Medcyclopaedia [117]

Table C.3: Two Magnetic Resonance Protocols




161

(a) (b) () (d)

Figure C.2: Fourier transform of the four selected regions from the human knee MRI of
figure 2.10: (a) background, (b) muscle, (c) bone and (d) tissue.

domains are quite different. Also, the different measurements S* that are obtained by
sub-band filtering in the Fourier domain (figure 2.25) show that different structures are

highlighted by different filters.
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Appendix D

The Human Knee Joint

The knee joint (figure D.1) is the most complicated joint in the human body [30], and
it is inherently unstable. This condition leads to several injuries and problems like
torn meniscus, tendon rupture, and patellar or cruciate ligaments problems, among
many others. The knee articulation joins the femur, which has large medial and lateral
condyles, with the tibia that has small and shallow condyles. The condyles of the tibia
are deepened by crescent shaped rims of fibrocartilage, also called menisci. The knee
joint is surrounded by a fibrous capsule that encloses articulations between tibia, femur,
fibula and the patella, a thin bone in front of the knee. The joint is strengthened by
several ligaments. At the sides, fibular and tibial collateral ligaments prevent side-to-
side movements and add strength while the leg is straight. In the front, the strength is
given by the tendon of quadriceps femoris and the patella. In the back, oblique popliteal
ligament prevent over extension. In the inner part, the cruciate ligaments, anterior and
posterior, limit the rotation and the forward and backward motion of the tibia.

The knee joint has two natural movements of roll back and forth or the ordinary
flexion - extension. This movement, in which the femoral condyles roll over the menisci
starts with the muscles of thigh and calf touching at approximately 40°, up to 165°,
almost full extent of the leg. From 165° to 180° with the foot firmly upon the ground,

the rolling ceases and the femur rotates medially and glides backward in a locking mech-
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Figure D.1: A simplified view of a knee joint: anterior and posterior view of leg in extension

and anterior view of the leg in flexion.

anism when the flexion - extension of the leg is accomplished.
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