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Abstract

The Big Data processing ecosystem has been constantly growing in recent years. This has

been significantly reinforced by the advent of cloud computing platforms where Big Data

analytics can be offered on an as-a-service basis. The ease with which users can leverage

the capabilities of Big Data processing frameworks in the cloud has made them a popular

solution with low up-front expenditure and a flexible deployment model. In spite of their

cost benefits and flexibility of use, Big Data services in cloud platforms present us with an

array of new challenges compared to traditional web services especially in the domain of

data security and privacy. Their distributed nature makes them more dynamic with regards to

deployment and execution but at the same time it exacerbates challenges related to data and

operation security since both data and operations are shared across multiple nodes. Inevitably,

distributing data and operations on multiple nodes leads to an increase in the attack surface.

Given the need for systems that react fast and produce results as quickly as possible, more

emphasis has been placed on performance and less so on security. Having said that, as the use

of cloud computing is becoming more widespread, concerns with regards to non-functional

properties such as data security are becoming more pronounced for the users.

Runtime security monitoring is a mechanism that can be employed to alleviate some of the

issues that emerge with respect to the activity of security monitoring for Big Data analytics

services that are outsourced in the cloud. In this thesis we make the case for a monitoring

framework where monitoring events are collected and evaluated against a set of monitoring

rules that describe monitorable security properties of the system. The framework that we put

forward can be used to assess the level of security of Big Data analytics pipelines at runtime.

For our proof of concept we examine three security properties namely the service response

time, the location of execution of service operations and the integrity of the intermediate data

produced during the service execution.





Table of contents

List of figures xv

List of tables xxiii

1 Introduction 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation and Research Challenges . . . . . . . . . . . . . . . . . . . . . 1

1.3 Summary of Research Aims and Objectives . . . . . . . . . . . . . . . . . 3

1.3.1 Review the literature . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.2 Identify the monitoring framework’s components . . . . . . . . . . 4

1.3.3 Identify monitorable security properties . . . . . . . . . . . . . . . 4

1.3.4 Automate the translation of SLAs into monitoring rules . . . . . . . 5

1.3.5 Automate the deployment of the event captors . . . . . . . . . . . . 5

1.3.6 Create an integrated SLA manager platform . . . . . . . . . . . . . 5

1.4 Research Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.6 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.7 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Literature Review 11

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Security and Privacy Properties for Big Data . . . . . . . . . . . . . . . . . 12

2.2.1 Data Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 Data Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18



xii Table of contents

2.2.3 Data Integrity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.4 Data Confidentiality . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3 Monitoring Service Level Agreements . . . . . . . . . . . . . . . . . . . . 33

2.4 Metrics for Service Level Agreement . . . . . . . . . . . . . . . . . . . . . 41

2.5 Monitoring Frameworks for the Cloud . . . . . . . . . . . . . . . . . . . . 50

2.5.1 Commercial monitoring frameworks . . . . . . . . . . . . . . . . . 53

2.5.2 Open source monitoring frameworks . . . . . . . . . . . . . . . . . 57

2.6 Big Data Processing Frameworks . . . . . . . . . . . . . . . . . . . . . . . 64

2.7 Big Data Workflow Definition Tools and Frameworks . . . . . . . . . . . . 80

2.8 Gap Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

2.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3 Monitoring Framework for Big Data Security SLAs 91

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.2 Framework Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.2.1 Composite Service Definition . . . . . . . . . . . . . . . . . . . . 97

3.2.2 Security Requirements Specification . . . . . . . . . . . . . . . . . 100

3.2.3 Translation of Security Requirements into Monitoring artefacts . . . 100

3.2.4 Installation of Monitoring Rules on the monitor . . . . . . . . . . . 101

3.2.5 Definition and Installation of Event Captors on Apache Spark . . . 101

3.3 Monitoring Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

3.3.1 Monitoring Rules for Response Time . . . . . . . . . . . . . . . . 111

3.3.2 Monitoring Rules for Location of Execution . . . . . . . . . . . . . 120

3.3.3 Monitoring Rules for Data Integrity During Service Execution . . . 132

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

4 SLA Management Web Dashboard 175

4.1 Application Architecture Overview . . . . . . . . . . . . . . . . . . . . . . 175

4.2 Application Repository . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

4.3 Application REST API . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

4.4 Energy producer use-case . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

4.5 Screenshots for the energy provider use-case . . . . . . . . . . . . . . . . . 185



Table of contents xiii

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

5 Framework Evaluation 199

5.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

5.2 Quantitative Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

5.2.1 Event captor deployment overhead . . . . . . . . . . . . . . . . . . 203

5.2.2 Event captor execution overhead . . . . . . . . . . . . . . . . . . . 217

5.3 Evaluation Summary and Discussion . . . . . . . . . . . . . . . . . . . . . 246

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

6 Conclusions and Future Work 251

6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

6.2 Summary of Research Work . . . . . . . . . . . . . . . . . . . . . . . . . 251

6.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

6.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

6.5 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

References 257

Appendix A Composed Task Runner for Spark Submit Command 271

A.1 Spring Cloud Data Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

A.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

A.1.2 Application Types . . . . . . . . . . . . . . . . . . . . . . . . . . 281

A.1.3 Workflow Specification Language . . . . . . . . . . . . . . . . . . 281

A.1.4 Application for the Execution of Apache Spark Jobs . . . . . . . . 286

A.2 Apache Spark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

A.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

A.2.2 Framework Architecture . . . . . . . . . . . . . . . . . . . . . . . 293

A.2.3 Execution Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

A.2.4 Deployment Model . . . . . . . . . . . . . . . . . . . . . . . . . . 299

A.3 EVEREST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

A.3.1 Event Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

A.3.2 Framework Architecture . . . . . . . . . . . . . . . . . . . . . . . 301



xiv Table of contents

A.4 Apache Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

A.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

A.4.2 Velocity Template Language . . . . . . . . . . . . . . . . . . . . . 303

A.4.3 Velocity Template Engine . . . . . . . . . . . . . . . . . . . . . . 306

A.5 Byte Byddy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

A.5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

A.5.2 Java’s Instrumentation API . . . . . . . . . . . . . . . . . . . . . . 309

A.5.3 Runtime code instrumentation and Code Generation in Byte Buddy 311



List of figures

2.1 Lifecycle stages of data in the Cloud . . . . . . . . . . . . . . . . . . . . . 19

2.2 QoSMONaaS system architecture . . . . . . . . . . . . . . . . . . . . . . 40

2.3 Apache Hadoop architecture overview . . . . . . . . . . . . . . . . . . . . 66

2.4 Map Reduce algorithm overview . . . . . . . . . . . . . . . . . . . . . . . 67

2.5 An example of a Apache Strom topology . . . . . . . . . . . . . . . . . . . 71

2.6 Worker processes for the topology presented in figure 2.5 . . . . . . . . . . 72

2.7 Overview of stream in Apache Samza . . . . . . . . . . . . . . . . . . . . 75

2.8 An example of a Samza dataflow graph . . . . . . . . . . . . . . . . . . . 76

2.9 Overview of the task state persistence mechanism in Apache Flink . . . . . 77

2.10 Architecture of the Pinball workflow manger . . . . . . . . . . . . . . . . . 83

2.11 State diagram for job statuses in Pinball . . . . . . . . . . . . . . . . . . . 84

3.1 Big Data Pipeline Monitoring Framework Architecture . . . . . . . . . . . 93

3.2 Use Case UML diagram of the Big Data monitoring framework . . . . . . . 96

3.3 Sequence diagram of the Big Data monitoring framework . . . . . . . . . . 98

3.4 Spring Cloud DataFlow pipelines . . . . . . . . . . . . . . . . . . . . . . . 99

3.5 UML class diagram of the factory pattern for the implementation of the

different emitter types supported by the event captors . . . . . . . . . . . . 107

3.6 Visual representation of events for monitoring response time . . . . . . . . 113

3.7 List of actions supported by the event captor for response time . . . . . . . 118

3.8 Example of events that occur over time during the monitoring activity of the

location of execution of computations . . . . . . . . . . . . . . . . . . . . 124

3.9 Monitoring data integrity for transformations with narrow dependencies . . 135

3.10 Monitoring data integrity for transformations with wide dependencies . . . 138



xvi List of figures

3.11 Example of events that occur over time during the monitoring activity of data

integrity for actions and transformations with narrow dependencies . . . . 142

3.12 Example of events that occur over time during the monitoring activity of data

integrity for transformations with wide dependencies . . . . . . . . . . . . 143

3.13 Interception component for HadoopRDD . . . . . . . . . . . . . . . . . . 161

3.14 Interception component for MapPartitionsRDD . . . . . . . . . . . . . . . 162

3.15 Interception component for runJob() method in SparkContext class . . . . . 163

4.1 SLA Manager web application architecture . . . . . . . . . . . . . . . . . 176

4.2 SLA Manager database repository . . . . . . . . . . . . . . . . . . . . . . 178

4.3 Solar panel energy production use-case . . . . . . . . . . . . . . . . . . . 183

4.4 Example of a measurement from a household . . . . . . . . . . . . . . . . 184

4.5 Spring Cloud DataFlow UI - Empty list of available applications . . . . . . 185

4.6 Spring Cloud DataFlow UI - Load applications from the command line . . . 186

4.7 Spring Cloud DataFlow UI - Populated list of available applications . . . . 186

4.8 Spring Cloud DataFlow UI - Create a new composite task from a drag-n-drop

menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

4.9 Spring Cloud DataFlow UI - View of the composite task pipeline without the

edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

4.10 Spring Cloud DataFlow UI - View of the composite task pipeline with the

edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

4.11 Spring Cloud DataFlow UI - Edit the properties for the LoadAndAnonymizeDataService189

4.12 Spring Cloud DataFlow UI - Properties for the LoadAndAnonymizeDataService190

4.13 Spring Cloud DataFlow UI - Properties for the PrepareDataService . . . . 190

4.14 Spring Cloud DataFlow UI - Properties for the ComputeAverageService . . 191

4.15 Spring Cloud DataFlow UI - Type-in a name for the composite task . . . . 192

4.16 SLA Manager - Login to the SLA Manager . . . . . . . . . . . . . . . . . 192

4.17 SLA Manager - List of SLA projects of the user . . . . . . . . . . . . . . . 193

4.18 SLA Manger - View of the list of the service assets and security property pairs193

4.19 SLA Manager - View of the asset/property pairs . . . . . . . . . . . . . . . 194

4.20 SLA Manager - Type-in the parameter values for the SLO templates . . . . 195

4.21 Spring Cloud DataFlow UI - Launch the composite task . . . . . . . . . . . 195



List of figures xvii

4.22 SLA Manager - Inspect the monitoring results for the location of execution

security property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

4.23 SLA Manager - Inspect the monitoring results for the data integrity security

property for transformations with narrow dependencies . . . . . . . . . . . 197

4.24 SLA Manager - Inspect the monitoring results for the data integrity security

property for transformations with wide dependencies . . . . . . . . . . . . 197

5.1 Deployment time of data privacy event captor on the Spark master over the

number of workers for 500K data points . . . . . . . . . . . . . . . . . . . 204

5.2 Deployment time of data privacy event captor on the Spark workers over

the number of workers for 500K data points . . . . . . . . . . . . . . . . . 204

5.3 Deployment time of data privacy event captor on the Spark master over the

number of workers for 1M data points . . . . . . . . . . . . . . . . . . . . 205

5.4 Deployment time of data privacy event captor on the Spark workers over

the number of workers for 1M data points . . . . . . . . . . . . . . . . . . 205

5.5 Deployment time of data privacy event captor on the Spark master over the

number of workers for 2M data points . . . . . . . . . . . . . . . . . . . . 206

5.6 Deployment time of data privacy event captor on the Spark workers over

the number of workers for 2M data points . . . . . . . . . . . . . . . . . . 206

5.7 Overlay graph for the deployment of the data privacy event captor on the

Spark master for different data sets size . . . . . . . . . . . . . . . . . . . 207

5.8 Overlay graph for the deployment of the data privacy event captor on the

Spark workers for different data sets size . . . . . . . . . . . . . . . . . . 207

5.9 Deployment time of data integrity event captor on the Spark master over the

number of workers for 500K data points . . . . . . . . . . . . . . . . . . . 208

5.10 Deployment time of data integrity event captor on the Spark workers over

the number of workers for 500K data points . . . . . . . . . . . . . . . . . 209

5.11 Deployment time of data integrity event captor on the Spark master over the

number of workers for 1M data points . . . . . . . . . . . . . . . . . . . . 209

5.12 Deployment time of data integrity event captor on the Spark workers over

the number of workers for 1M data points . . . . . . . . . . . . . . . . . . 210



xviii List of figures

5.13 Deployment time of data integrity event captor on the Spark master over the

number of workers for 1M data points . . . . . . . . . . . . . . . . . . . . 210

5.14 Deployment time of data integrity event captor on the Spark master over the

number of workers for 2M data points . . . . . . . . . . . . . . . . . . . . 211

5.15 Overlay graph for the deployment of the data integrity event captor on the

Spark workers for different data sets sizes . . . . . . . . . . . . . . . . . . 212

5.16 Overlay graph for the deployment of the data integrity event captor on the

Spark workers for different data sets sizes . . . . . . . . . . . . . . . . . . 212

5.17 Deployment time of data availability event captor on the Spark master over

the number of workers for 500K data points . . . . . . . . . . . . . . . . . 213

5.18 Deployment time of data availability event captor on the Spark workers over

the number of workers for 500K data points . . . . . . . . . . . . . . . . . 213

5.19 Deployment time of data availability event captor on the Spark master over

the number of workers for 1M data points . . . . . . . . . . . . . . . . . . 214

5.20 Deployment time of data availability event captor on the Spark workers over

the number of workers for 1M data points . . . . . . . . . . . . . . . . . . 214

5.21 Deployment time of data availability event captor on the Spark master over

the number of workers for 2M data points . . . . . . . . . . . . . . . . . . 215

5.22 Deployment time of data availability event captor on the Spark workers over

the number of workers for 2M data points . . . . . . . . . . . . . . . . . . 215

5.23 Overlay graph for the deployment of the data availability event captor on the

Spark master for different data sets sizes . . . . . . . . . . . . . . . . . . 216

5.24 Overlay graph for the deployment of the data availability event captor on the

Spark workers for different data sets sizes . . . . . . . . . . . . . . . . . . 216

5.25 Service execution time with and without data privacy monitoring on a

cluster with 1 worker node for multiple data set sizes . . . . . . . . . . . . 217

5.26 Service execution time with and without monitoring data privacy on a

cluster with 2 worker nodes for multiple data set sizes . . . . . . . . . . . 218

5.27 Service execution time with and without data privacy monitoring on a

cluster with 3 worker nodes for multiple data set sizes . . . . . . . . . . . 218



List of figures xix

5.28 Service execution time with and without data privacy monitoring on a

cluster with 4 worker nodes for multiple data set sizes . . . . . . . . . . . 219

5.29 Service execution time with and without data privacy monitoring on a

cluster with 5 worker nodes for multiple data set sizes . . . . . . . . . . . 219

5.30 Service execution time with and without data privacy monitoring on a

cluster with 6 worker nodes for multiple data set sizes . . . . . . . . . . . 220

5.31 Service execution time with and without data privacy monitoring on a

cluster with 7 worker nodes for multiple data set sizes . . . . . . . . . . . 220

5.32 Service execution time with and without data privacy monitoring on a

cluster with 8 worker nodes for multiple data set sizes . . . . . . . . . . . 221

5.33 Overlay graph for the service execution overhead of the data privacy event

captor for different data sets on clusters with different number of workers . 222

5.34 Service execution time with and without data availability monitoring on a

cluster with 1 worker node for multiple data set sizes . . . . . . . . . . . . 223

5.35 Service execution time with and without data availability monitoring on a

cluster with 2 worker nodes for multiple data set sizes . . . . . . . . . . . . 223

5.36 Service execution time with and without data availability monitoring on a

cluster with 3 worker nodes for multiple data set sizes . . . . . . . . . . . . 224

5.37 Service execution time with and without data availability monitoring on a

cluster with 3 worker nodes for multiple data set sizes . . . . . . . . . . . . 224

5.38 Service execution time with and without data availability monitoring on a

cluster with 4 worker nodes for multiple data set sizes . . . . . . . . . . . . 225

5.39 Service execution time with and without data availability monitoring on a

cluster with 5 worker nodes for multiple data set sizes . . . . . . . . . . . . 225

5.40 Service execution time with and without data availability monitoring on a

cluster with 6 worker nodes for multiple data set sizes . . . . . . . . . . . . 226

5.41 Service execution time with and without data availability monitoring on a

cluster with 7 worker nodes for multiple data set sizes . . . . . . . . . . . . 226

5.42 Service execution time with and without data availability monitoring on a

cluster with 8 worker nodes for multiple data set sizes . . . . . . . . . . . . 227



xx List of figures

5.43 Overlay graph for the service execution overhead of the data availability

event captor for different data sets on clusters with different number of

workers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

5.44 Service execution time with and without data integrity monitoring using

MD5 on a cluster with 1 worker node for multiple data set sizes . . . . . . 229

5.45 Service execution time with and without data integrity monitoring using

MD5 on a cluster with 2 worker nodes for multiple data set sizes . . . . . 230

5.46 Service execution time with and without data integrity monitoring using

MD5 on a cluster with 3 worker nodes for multiple data set sizes . . . . . 230

5.47 Service execution time with and without data integrity monitoring using

MD5 on a cluster with 4 worker nodes for multiple data set sizes . . . . . 231

5.48 Service execution time with and without data integrity monitoring using

MD5 on a cluster with 5 worker nodes for multiple data set sizes . . . . . 231

5.49 Service execution time with and without data integrity monitoring using

MD5 on a cluster with 6 worker nodes for multiple data set sizes . . . . . 232

5.50 Service execution time with and without data integrity monitoring using

MD5 on a cluster with 7 worker nodes for multiple data set sizes . . . . . 232

5.51 Service execution time with and without data integrity monitoring using

MD5 on a cluster with 8 worker nodes for multiple data set sizes . . . . . 233

5.52 Service execution time with and without data integrity monitoring using

MD5 on a cluster with 8 worker nodes for multiple data set sizes . . . . . 233

5.53 Overlay graph of the overhead(%) over different number of workers for data

integrity monitoring using MD5 . . . . . . . . . . . . . . . . . . . . . . . 234

5.54 Service execution time with and without data integrity monitoring using

SHA-1 on a cluster with 1 worker node for multiple data set sizes . . . . . 235

5.55 Service execution time with and without data integrity monitoring using

SHA-1 on a cluster with 2 worker nodes for multiple data set sizes . . . . 235

5.56 Service execution time with and without data integrity monitoring using

SHA-1 on a cluster with 3 worker nodes for multiple data set sizes . . . . 236

5.57 Service execution time with and without data integrity monitoring using

SHA-1 on a cluster with 4 worker nodes for multiple data set sizes . . . . 236



List of figures xxi

5.58 Service execution time with and without data integrity monitoring using

SHA-1 on a cluster with 5 worker nodes for multiple data set sizes . . . . 237

5.59 Service execution time with and without data integrity monitoring using

SHA-1 on a cluster with 6 worker nodes for multiple data set sizes . . . . 237

5.60 Service execution time with and without data integrity monitoring using

SHA-1 on a cluster with 7 worker nodes for multiple data set sizes . . . . 238

5.61 Service execution time with and without data integrity monitoring using

SHA-1 on a cluster with 8 worker nodes for multiple data set sizes . . . . 238

5.62 Overlay graph of the overhead(%) over different number of workers for data

integrity monitoring using SHA-1 . . . . . . . . . . . . . . . . . . . . . . 239

5.63 Service execution time with and without data integrity monitoring using

SHA-256 on a cluster with 1 worker node for multiple data set sizes . . . . 240

5.64 Service execution time with and without data integrity monitoring using

SHA-256 on a cluster with 2 worker nodes for multiple data set sizes . . . 240

5.65 Service execution time with and without data integrity monitoring using

SHA-256 on a cluster with 3 worker nodes for multiple data set sizes . . . 241

5.66 Service execution time with and without data integrity monitoring using

SHA-256 on a cluster with 4 worker nodes for multiple data set sizes . . . 241

5.67 Service execution time with and without data integrity monitoring using

SHA-256 on a cluster with 5 worker nodes for multiple data set sizes . . . 242

5.68 Service execution time with and without data integrity monitoring using

SHA-256 on a cluster with 6 worker nodes for multiple data set sizes . . . 242

5.69 Service execution time with and without data integrity monitoring using

SHA-256 on a cluster with 7 worker nodes for multiple data set sizes . . . 243

5.70 Service execution time with and without data integrity monitoring using

SHA-256 on a cluster with 8 worker nodes for multiple data set sizes . . . 243

5.71 Overlay graph of the overhead(%) over different number of workers for data

integrity monitoring using SHA-256 . . . . . . . . . . . . . . . . . . . . . 244

5.72 Overlay graph of the overhead(%) over different number of workers for data

integrity monitoring using MD5, SHA-1 and SHA-256 . . . . . . . . . . . 245



xxii List of figures

5.73 Overlay graph of the average overhead(%) for all the security properties over

different data set sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

A.1 Pipeline of tasks executed in sequence . . . . . . . . . . . . . . . . . . . . 283

A.2 Pipeline of tasks executed in sequence . . . . . . . . . . . . . . . . . . . . 283

A.3 Pipeline of tasks with transitions for simple tasks . . . . . . . . . . . . . . 284

A.4 Pipeline of tasks with transitions before a sequence of tasks . . . . . . . . . 285

A.5 Pipeline of tasks with wildcards . . . . . . . . . . . . . . . . . . . . . . . 285

A.6 Pipeline of tasks launched in parallel . . . . . . . . . . . . . . . . . . . . . 286

A.7 Pipeline of tasks launched in parallel that are connected to a sequence of tasks286

A.8 Add a new Spring Cloud Data Flow application of type task . . . . . . . . . 287

A.9 List of all the installed Spring Cloud Data Flow applications in the application

registry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

A.10 Example of a Spring Cloud Data Flow pipeline . . . . . . . . . . . . . . . 288

A.11 RDD with its partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

A.12 Parent and child RDD with applied operation and dependencies . . . . . . . 291

A.13 map() operation - transformation with narrow dependencies . . . . . . . . . 291

A.14 groupByKey() operation - transformation with wide dependencies . . . . . . 293

A.15 count() operation - return the number of iterms on an RDD to the user . . . 294

A.16 Apache Spark overall architecture . . . . . . . . . . . . . . . . . . . . . . 294

A.17 Example of a Directed Acyclic Graph (DAG) . . . . . . . . . . . . . . . . 295

A.18 Example of a Directed Acyclic Graph (DAG) with jobs, stages, tasks, RDDs

and partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

A.19 EVEREST framework architecture [84] . . . . . . . . . . . . . . . . . . . 302

A.20 Overview of the code instrumentation process from Bute Buddy . . . . . . 309



List of tables

2.1 SLA metrics defined in the Cloud Service Level Agreement Standardisation

Guidelines report in [135] . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.2 Evaluation of commercial monitoring tools and frameworks across a set of

monitor attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.3 Evaluation of open source monitoring tools and frameworks across a set of

monitor attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.4 Types of grouping in Apache Storm . . . . . . . . . . . . . . . . . . . . . 74

2.5 Comparison of Big Data processing frameworks . . . . . . . . . . . . . . . 79

2.6 Comparison of workflow management frameworks . . . . . . . . . . . . . 86

3.1 Events collected for monitoring response time - start job event . . . . . . . 111

3.2 Events collected for monitoring response time - end job event . . . . . . . 112

3.3 Event Calculus rule for monitoring response time . . . . . . . . . . . . . . 112

3.4 Example of events for monitoring response time . . . . . . . . . . . . . . . 113

3.5 Events collected for monitoring the location of execution - compute event . 122

3.6 Example of events collected for monitoring the location of execution . . . . 122

3.7 Event calculus assumption and rule for monitoring the location of execution

of computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

3.8 Writerdd events for monitoring data integrity for transformations with narrow

dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

3.9 Read events for monitoring data integrity for transformations with narrow

dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

3.10 Example of writerdd events collected for monitoring data integrity of transformations

with narrow dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . 137



xxiv List of tables

3.11 Example of readrdd events collected for monitoring data integrity of transformations

with narrow dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

3.12 Write shuffle events for monitoring data integrity for transformations with

wide dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

3.13 Read shuffle events for monitoring data integrity for transformations with

wide dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

3.14 Event calculus assumption and rule for monitoring the runtime data integrity

for actions and transformations with narrow dependencies . . . . . . . . . 141

3.15 Event calculus assumption and rule for monitoring the runtime data integrity

for transformations with wide dependencies . . . . . . . . . . . . . . . . . 142

4.1 Operations of the SLA Manager RESful API . . . . . . . . . . . . . . . . . 182

5.1 Hardware information for the Google VM instance host machine . . . . . . 201

5.2 Average overhead for monitoring data privacy for different data set sizes and

number of worker nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

5.3 Average overhead for monitoring data availability for different data set sizes

and number of worker nodes . . . . . . . . . . . . . . . . . . . . . . . . . 227

5.4 Average overhead for monitoring data integrity using MD5 for different data

set sizes and number of worker nodes . . . . . . . . . . . . . . . . . . . . 234

5.5 Average overhead for monitoring data integrity using SHA-1 for different

data set sizes and number of worker nodes . . . . . . . . . . . . . . . . . . 239

5.6 Average overhead for monitoring data integrity using SHA-256 for different

data set sizes and number of worker nodes . . . . . . . . . . . . . . . . . . 244

5.7 Summary table of the average deployment time for the event captors on

clusters with different number of workers . . . . . . . . . . . . . . . . . . 246

5.8 Summary table of the average overhead for availability, privacy and integrity

monitoring for different data set sizes . . . . . . . . . . . . . . . . . . . . 247

A.1 Status values for Spring Cloud Data Flow tasks . . . . . . . . . . . . . . . 282

A.2 Parameters for the Apache Spark submit application registered in Spring

Cloud Data Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

A.3 Event Calculus list of predicates . . . . . . . . . . . . . . . . . . . . . . . 300



List of tables xxv

A.4 Event Calculus axioms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

A.5 Velocity template language references . . . . . . . . . . . . . . . . . . . . 304

A.6 Velocity template language directives . . . . . . . . . . . . . . . . . . . . 306

A.7 Options for manifest file of Java agents . . . . . . . . . . . . . . . . . . . . 311





Chapter 1

Introduction

1.1 Overview

In this thesis we argue that it is possible to design, implement and evaluate an end-to-end

monitoring framework that automates the monitoring activity of security properties at

runtime for Big Data analytics pipelines. The proposed framework will enable the automatic

translation of high-level security requirements for Big Data pipelines into low-level monitorable

artefacts that can be automatically deployed and monitored. The thesis presents the state

of the art in the domain of service level agreement (SLA) monitoring frameworks and uses

it to describe the architecture of the proposed framework and its constituent components.

In addition, we assess the framework’s ability to monitor real-life applications by means of

using a use-case from the domain of Internet of Things where we examine the framework’s

capacity to perform runtime monitoring of three non-fuctional properties pertaining to data

availability, data privacy and data integrity. Finally, we conduct a quantitative evaluation on

the basis of the time and computational overhead that the event capturing activity imposes on

potential monitoring targets.

1.2 Motivation and Research Challenges

The requirement for the analysis of large datasets has become a challenging problem in

recent years [73]. An ever increasing amount of data is produced both from autonomous
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agents and humans alike. This development has made Big Data processing a priority for

most businesses and organisations. IT practitioners, researchers and policy makers can tap

into new insights that they can only gain by analysing Big Data [126]. In that regard, users

are allowed to make inferences that would otherwise be impossible.

Moreover, the commoditisation of computational resources as a result of the improvements

in cloud computing, has streamlined the development and deployment of Big Data applications

[158] [20] in cloud infrastructures. Users that otherwise would not be able to afford, both

financially and in terms of human resources, the computational power of thousands of virtual

machines, now can have them provisioned as a service easily and quickly through web

dashboards. Having said that, to meet those increased requirement for Big Data processing, a

plethora of processing frameworks have been designed and developed that parallelise the

execution of operations of large datasets [155] [131] [94] [51].

Market competition and the need for the analysis of very large datasets has placed a

disproportionate emphasis on building systems that focus almost exclusively on performance

and less so in non-functional properties such as data security and privacy. However, as

Big Data processing is offered more and more as a service, it becomes imperative that

the challenges of assessing security properties system and application are becoming more

pronounced and need to be addressed from the scientific community [47] [57]. Using

Big Data services that are outsourced in the cloud mandate that they are executed in an

environment that the users can trust to be secure from data breaches that can potentially lead

to degradation of reputation or financial losses.

A significant body of literature has made an attempt to address the importance of security

for cloud deployed services [71]. The definition of service level agreements(SLAs) is a

common theme that we have been able to identify in the state of the art [26]. However, there

is no concencus in the literature with regards to standards for security SLAs for applications

executed in the cloud. Also, most of the security SLA frameworks focus on the operation and

negotion phases of the lifecycle of SLAs and do not get into the specifics of what metrics they

monitoring and how they do it. In addition, most of the security SLAs examine metrics that

relate to data storage such as access control management and encryption [140] [145] [75].

However, all the proposed frameworks address the issue of safeguarding the data and not

continuously monitoring the preservation of specific properties as the data gets processed
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or stored. They introduce techniques such as homomorphic encryption [60] or complicated

mechanism for key sharing but they do not address the challenges of runtime security

monitoring. Moreover, in the state of the art, monitoring security SLAs is only limited to

services that run on the cloud without necessarily being executed in a distributed fashion

like Big Data applications do [35] [108] [28] [29]. Typically this point is glossed over or not

mentioned at all. We argue that the nature of the execution model of the underlying service

for which security properties need to be monitored, is of paramount importance and present

us with a completely different set of security challenges. Distributed applications operate on

data that is scattered across multiple nodes. Also, operational code needs to be transmitted

over the network to get executed on different locations within a cluster. Both of those unique

features of distributed applications pose a set of research questions that according to our

literature review have not been studied in the context of runtime security monitoring.

To address some of the limitations that we have been able to identify in the literature

with respect to runtime monitoring of security properties, in this thesis we put forward a

generic monitoring framework that focuses on the runtime monitoring of security properties

for Big Data pipelines. In the proposed framework we automate the continuous evaluation

of an application’s data availability, data privacy and data integrity. We explicitly defined

manifestations of the aforementioned properties by means of using Event Calculus [91]

expressions. Key features of the system that we propose are that we firstly automate the

generation and installation of the monitoring rules on the monitoring engine from a set of

high-level security specifications and secondly we automate the deployment of the relevant

event captors that are necessary for the realisation of the monitoring process. Also, our

monitoring system can adopt to the changes in the execution environment of the service,

which makes it suitable for monitoring applications that run in the cloud.

1.3 Summary of Research Aims and Objectives

The aim of our thesis is to address the lack of end-to-end security SLA monitoring platforms

for Big Data service pipelines by describing and developing a complete framework that

deals with all the stages of the monitoring process. In the general case the monitoring

process starts with the definition of the security requirements, moves on with the generation
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of the monitoring artefacts that are necessary to realise the monitoring of the security

requirements, proceeds to collect the monitoring data and eventually evaluates whether the

security requirements has been honoured or not. To attain those objectives the following key

targets were pursued:

1.3.1 Review the literature

Our fist objective is to critically examine the the literature and review any existing approaches

that attempt to solve the same or similar problems. More specifically, we are interested in the

state of the art for SLA monitoring and Big Data processing frameworks. From our analysis

we intend to provide to the reader a clear view as to what systems exist in the domain of Big

Data service monitoring and what are the issues that are not addressed by the state of the art.

1.3.2 Identify the monitoring framework’s components

Our second objective is to identify all the components of the monitoring framework that are

necessary to realise the monitoring activity for Big Data pipelines. Having a clear view of the

individual modules that are involved will help to streamline the definition of all the necessary

information that will facilitate the automation of the monitoring activity.

1.3.3 Identify monitorable security properties

Our third objective is to identify a set of monitorable security properties that are appropriate

to be monitored for Big Data application pipelines executed in a distributed environment.

For the assessment of the proposed framework we will examine three security properties; the

first one will be the response time of a Big Data service that relates to availability, the second

one will be the location of execution of operations of a Big Data service that relates to data

privacy and the third one will be the preservation of data integrity for the intermediate data

that is produced during the execution of a Big Data service that relates to data integrity. For

the definition of the monitoring rules that correspond to the monitoring conditions for each

property we will be using Event Calculus formulae.
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1.3.4 Automate the translation of SLAs into monitoring rules

Based on the objective listed in section 1.3.3, our fourth objective will be to describe the

process and build the tools that are responsible for the automatic translation of the Service

Level Objectives(SLOs) of Service Level Agreements(SLAs) into EC-Assertion expressions.

EC-Assertion is the language specification that our monitoring engine is using to define the

monitoring rules. The translation will be conducted with the assistance of pre-compiled

templates that will describe the EC-Assertion specification for the property that will be

monitored. Certain parts of the template will be fixed whereas others will be parameterised

and input from the user will be required to enable their concrete instantiation.

1.3.5 Automate the deployment of the event captors

As soon as our objective to automate the translation to automate the instantiating of the

monitoring rules presented in section 1.3.4 has been realised, our fifth objective is to automate

the deployment of the event captors on the Big Data processing framework where the Big

Data service pipeline will be executed. The automatic deployment of the event captors will

be the final step for the end-to-end automation of the monitoring activity that commences

with the definition of a set of service level objectives and concludes with the execution of the

monitoring activity.

1.3.6 Create an integrated SLA manager platform

Finally, our sixth and final objective is to provide a comprehensive set of tools for the

interaction of the end-users with the monitoring platform that will be appropriate for technical

and non-technical users. In our proposal we will implement a web application with a graphical

user interface that we refer to as the SLA manager, that will serve two main purposes. The

first one will be to enable the collection of Service Level Objective(SLO) parameters from

the users for the creation of concrete instances of the monitoring rules from the parameterised

templates. The second one will be to allow the inspection of the monitoring results that are

produced by the EVEREST monitor. EVEREST [123] an event reasoning engine that given

a set of rules can reason about whether those rules are respected or not based on a given

set of events. The rules are expressed as a set of event calculus [91] expressions before the
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monitoring activity has commenced. The monitoring results will become available during

the Big Data pipeline execution or after it has completed.

1.4 Research Assumptions

To conduct our research and to enable the development of the tools that will allow us to

monitor security properties for Big Data pipelines, the following assumptions are to be made:

1. The events that are captured from the event captors need to be sent to the EVEREST

monitor in a specific format that the monitor can understand and extract useful

information from their payload. The events are stipulated as self-contained XML

snippets.

2. The nodes in the cluster, were the Big Data processing framework operates on, must

have their clocks synchronised as accurately as possible. This property is critical for

the correct evaluation of the monitoring events that are correlated with time constraints

in the monitoring rules. A potential solution to this issue could be achieved if the

Network Time Protocol(NTP) protocol is used and all the nodes are synchronised with

an external time server. The Network Time Protocol synchronises all participating

nodes to within a few milliseconds which is accurate enough for mose cases.

3. End-users must have a web browser to be able to access the SLA manager web

application. Also, they need to be fairly acquainted with the navigation in a web

application and must have a minimum understanding of what security properties they

wish to monitor.

1.5 Research Contributions

In our research we aim to design, implement and evaluate a monitoring framework for the

runtime monitoring of security properties for Big Data pipelines that we refer to in this thesis

as composite services which are comprised of Big Data services that we refer to in this

thesis as atomic services. Our proposal is a framework that enables the continuous runtime
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monitoring of security objectives defined as parts of an SLA that is defined from the users of

composite services.

The contributions of our work in this thesis are:

1. Designed and developed a monitoring framework for the automatic translation

of high-level security requirements into low-level monitorable artefacts that are

then automatically monitored. The monitoring artefacts refer firstly to the monitoring

rules that need to be generated and loaded on the monitor that will evaluate the

monitoring events against the rules and secondly to the event captors that will have

to be deployed alongside the Big Data services to collect the appropriate monitoring

events. In similar frameworks, the rules are not generated automatically but are

declared manually from the users, a task that can be tedious and highly technical. In

addition, the relevant event captors are not deployed automatically and require the

explicit installation of monitoring agents that collect the monitoring data. We argue that

the automatic generation of the monitoring rules from high-level security objectives and

subsequently the automatic deployment of the event captors, is significant contributions

because they do not mandate from the end-users to have any understanding of the

intricacies with regards to the Big Data service that they wish to monitor. This is

a key point that enables non-technical and less security-savvy users to leverage the

capabilities of monitoring to inspect the security of Big Data applications at runtime.

Also, our proposed system is unique because it addresses security monitoring not for

Web Services, which is a topic that is widely researched, but for Big Data pipelines that

are executed in a distributed fashion. The distributed nature of the execution model of

Big Data services, and more specifically of pipelines of services, bring in a plethora of

additional security challenges both with respect to the definition of the monitoring rules

and the deployment of the event captors. Addressing this lack of tools and frameworks

that automate the monitoring process of security for distributed applications is a key

contribution of our research.

2. Designed and develop a monitoring framework where the event capturing process

is immune to changes both in terms of how the atomic services of a composite

service are arranged and in terms of the actual code of the atomic services. The
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deployment of the event captors is performed by means of associating the monitoring

target Big Data services with Java agents that perform runtime code instrumentation

at the underlying Big Data processing framework. The dynamic nature of the Java

agent technology that we employed to build the event captors, allows our framework

to run alongside the Big Data service that it produces events for. Modifications in the

pipeline will not affect the deployment of the event captors or their ability to correctly

collect the appropriate runtime information since they instrument the underlying

code of the Big Data processing framework and not the atomic services of the Big

Data pipeline itself. Similar works have been proposed that use Java agents or code

instrumentation techniques to achieve the same objective but not it the domain of

distributed applications. As such, we regard our contribution novel because we address

this issue in the context of Big Data services. In Big Data applications, computations

are executed in parallel and across multiple nodes and therefore multiple event captors

need to be installed to capture all the relevant monitoring events.

3. Designed and developed event captors that are adaptive and elastic. The event

captors in our proposed solution can adapt to changes in the layout of the cluster or its

configuration. If additional nodes are included in the cluster the right event captors

will get installed at the newly available nodes automatically. By the same token, if

a node becomes unavailable the previously installed event captor on it will not emit

any events and will be dismissed. This feature is congruent with he nature of Big Data

services that get executed in an elastic environment such as the cloud, where scaling

up and down is a common practice. Having said that, adaptability and elasticity of the

event capturing process is of paramount importance for the uninterrupted and accurate

monitoring of security SLAs for Big Data services. Similar monitoring frameworks do

not address the lack of elasticity in the way the monitoring data is collected because

they do not refer to distributed applications. In non-distributed applications elasticity

of the event captors is not an issue because the resources that the applications use are

static and are defined when the application begins executing.
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1.6 Publications

The material of this thesis has also been the topic for a publication in an IEEE conference:

Mantzoukas K., Kloukinas C., Spanoudakis G. Monitoring Data Integrity in Big Data

Analytics Services, 2018 IEEE 11th International Conference on Cloud Computing (CLOUD),

July 2018

1.7 Thesis Outline

This thesis is composed of seven chapters including this chapter. The layout of the thesis is

the following:

– Chapter 2 presents a review of the literature in the domain of SLA monitoring and

the relevant frameworks for the definition of Big Data service pipelines and Big Data

processing frameworks. At the end of the this chapter we perform a gap analysis where

we identify a series of issues that have not been addressed in the current state of the art.

– Chapter 3 focuses on the technical background of our work and provides an overview

of the tools and frameworks that were used for the implementation of our proof

of concept of the proposed monitoring framework. More specifically, we used the

EVEREST event reasoning toolkit for the monitoring, Spring Cloud DataFlow as the

Big Data pipeline definition and execution framework, Apache Spark as the Big Data

processing framework, Apache Velocity for the definition templates for the monitoring

rules of the security properties that we examined and finally Byte Buddy for the

development of the event captors that will instrument the code for the collection of the

monitoring data.

– Chapter 4 gives a detailed account of the monitoring framework that we propose.

In this chapter we describe its architecture and how the users will interact with it.

In addition, we describe the monitoring rules in event calculus for three security

properties that we used to evaluate our proof of concept implementation. The security

properties that we examined are response time, location of execution of operations and

data integrity of the produced intermediate data. Finally, for each property we give a
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detailed description of the EC-Assertion template that will be used to create instances

of the the corresponding monitoring rule and we also go through the event captors that

will be responsible to gather the relevant monitoring data.

– Chapter 5 presents the SLA management web dashboard that enables end-users to

interact with the monitoring platform. In particular, we give an overview of the system

where we describe the data repository that it uses to persist the user’s input for the

definition of the service level objectives that require to be monitored and we also

describe the RESTful API that has been implemented to facilitate the integration of the

web application’s front-end with the repository. Finally, we describe a use-case from

the domain of Internet of Thinds(IoT) and we execute it. All the relevant screenshots

of the example use-case are also presented for a more complete view of the dashboard.

– Chapter 6 focuses on a quantitative evaluation of the proof of concept framework that

we built. Our evaluation is performed on the basis of the overhead that the monitoring

activity incurs on the Big Data pipelines that it ought to continuously monitor. Our

analysis identified two separate steps that are involved for the successful monitoring

activity namely the deployment of the event captors and the execution of the event

captors. In our evaluation we examine both of those steps with regards to the overhead

that they impose on the monitoring target. Finally, we provide a summary of the results

and discuss our findings.

– Chapter 7 is the final chapter and is a recap of the monitoring framework for security

SLAs for Big Data pipelines that we put forward. Finally, in this chapter we provide a

list with the limitations of our approach that we were able to identify and describe the

directions for future work on security SLA monitoring for Big Data services.
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Literature Review

2.1 Overview

In this chapter we will provide a comprehensive view of the state of the art in the domain of

security service level agreements in the Cloud. Our goal is to lay out the existing body of

literature and acquaint the reader with the relevant body of work on the topics of security SLA

monitoring and Big Data processing frameworks. The overarching objective of this chapter

is to establish a solid scientific foundation that will enable us to highlight the originality and

novelty introduced by this thesis.

More specifically, section 2.2 presents a review of the definition and specification of

security properties in an attempt to elucidate the composition and monitoring of SLAs by

means of using monitorable security properties. Section 2.3 reviews frameworks that have

been presented in the literature for the monitoring of SLA with an emphasis on security and

provides an account of their characteristics in each case. Section 2.4 surveys the literature in

an attempt to present the metrics that existing systems in SLAs. Moreover, in section 2.5, we

list a series of monitoring solutions that have been implemented to support the monitoring

activity in distributed application that run in the Cloud. Finally section 2.6 surveys the state of

the art with regards to Big Data processing frameworks and section 2.7 studies the available

technologies in the space of Big Data workflow definition technologies that will enable the

definition of Big Data pipelines.
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2.2 Security and Privacy Properties for Big Data

Application security and privacy has always been a subject of great importance for computer

scientists and IT practitioners [96]. It is a topic that has been studied thoroughly and more so

in the day and age of Cloud Computing [159]. In the cloud, computational resources and

software components are offered as a service to the users and therefore a significant portion

of the controls over the data and the applications is shifted from the users to the service

and infrastructure providers. Apart from its significance for users, the issue of security and

privacy has become a requirements in many parts of the world such as the countries of the

EU through the General Data Protection Regulation (GDPR) that came to effect in May 2018,

Australia through the Privacy Act of 1988 and the Australian Consumer Law(ACL), China

through the 2017 Cyber Security Law which controls the operations of network operators

and critical information infrastructure operators, Japan through the Act on the Protection

of Personal Information (APPI) which mandates that the private sector is responsible for

the protection of personal information from unauthorized usage and Russia through the

Roskomnadzor, the Russian Data Protection regulator which describes a legal framework that

requires all data stored regarding Russian citizens should be physically located with Russia.

Even though some new approaches are starting to emerge [82] [44], the most prevalent

model for the evaluation of the level of security for a system or application is performed by

means of assessing the triad of Confidentiality, Integrity and Availability (CIA) [105] [149] [98]

[72]. The focus in the CIA approach is the definition of security in the context of the

evaluation of the simultaneous presence of those three properties i.e. a system is regarded

secure if it bears all three properties at the same time. A more formal definition of the

CIA model would be: A piece of data D is secure if, and only if, all parts of D retain the

properties of confidentiality, integrity, and availability

Before we continue with our analysis we will give a high level description of each one of

the properties in order to provide a common understanding of the terminology, at least the

way it is being used in the literature.

• Confidentiality: The data is not made available or revealed to unauthorized entities

that could be individuals or processes.
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• Integrity: The data is accurate, complete and has not been modified by an unauthorized

entity.

• Availability: The data is rendered accessible upon request by an authorized entity.

In the subsections that follow, we expand on the properties mentioned above while we

also review the literature on service data privacy. Even though data privacy is not part of

the CIA (Confidentiality, Integrity, Availability) triad, it still is relevant in the context of

data security especially in the discussion about personally identifiable information(PII). Data

privacy is a rather interesting property that addresses the issue of protection of individuals

from data inferences that might result from analytics performed on a data set that can have

references to them. For completeness, in our proposal we chose to use security properties

from both domains i.e. data security and data privacy. More specifically, from the data

security domain we examined data integrity of the intermediate data that is produced when

data analytics pipelines get execute that pertains to data integrity and the time it takes for

a Big Data analytics service to make its results available that pertains to data availability.

Finally, from the data privacy domain, we address the challenges of monitoring the locations

where data can be processed. In that way we can make sure that the privacy of individuals

can be protected by allowing to be processed in a predefined set of locations.

2.2.1 Data Availability

Availability pertains to the system’s ability to make accessible its resources on demand.

More specifically, data availability pertains to the system’s ability to make accessible the

data that it will produce as a result of the system’s operation. The system has to be able to

continue operating under any circumstances even when parts of if misbehave or fail to execute

properly. This implies in order to enhance data availability systems needs to be fault tolerant

and capable to recover on the off chance of a sub-system failure. Also, data availability should

not be affected by security breaches that have occurred. This becomes more pronounced in

the Cloud where where data services are exposed to multiple users and the requirements for

data security and availability are of paramount importance. Lee et al. [78] propose the usage

of a Cloud-of-Clouds where resources are redundant across multiple Cloud providers and

can be used dynamically to meet system availability requirements. The authors propose the
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integration of the availability requirements included in Service Level Agreements (SLAs)

with a collection of Cloud providers to ensure that the SLA objectives are respected. In

the same spirit, Bowers et al. [33] introduce HAIL (High availability and integrity layers)

which is a distributed cryptographic file system implementation that can provide quantifiable

guarantees with regards to file integrity and retrivability. HAIL achieves its objective by

keeping redundant copies of the files across multiple nodes and by randomly checking

portions of the file for integrity violations and therefore can be retrieved by the user without

any loss of corruption. The authors highlight the criticality of not only making the data

available but also minimizing the possibility of it being corrupted.

Similar to HAIL, Juels et al. [74] describe a proof of retrivability scheme where Cloud

service providers can provide concise proof to its users that they can rigorously retrieve and

make available a file in its entirety. The authors make a specific case for large files where

optimizations need to be made to minimize the network overhead of computing proof of

knowledge for multiple partitions of the file.

A more theoretical analysis for the definition of service and data availability has been

conducted by Hogben and Pannetrat in [68]. In their work they underline the challenges

of defining and measuring availability in the context of a Service Level Agreement in an

unambiguous manner. The motivation for their work stems from the need for users to compare

service offers on the basis of service and data availability. They make the case that the way

availability is monitored and evaluated can make two Cloud service providers to report 0%

availability and 100% availability for the exact same service. To address this ambiguity the

paper delineates the basic criteria for the definition of service attribute definition should be

the following:

• Well-defined: Accuracy in the definition is critical for the avoidance of ambiguities.

e.g. what downtime really means, how many failures to utilize a service render a

service or its data unavailable, etc..

• Correlated to consumer utility: Availability measurements need to be mapped to

measurable business value for its users. This means that the users’ experience when

interacted with the service should reflect the measurement of availability. E.g. a service

is responsive for 1 minute during 5 minute windows will be 100% available if the time
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scope is set to 5 minutes. The same service would offer a poor experience to users that

need to make multiple service invocations within the 5 minute window intervals.

• Standardized: Service providers need to standardize the definition of the SLA

attributes to enable both users and providers to more accurately evaluate and compare

them across different providers.

• Determinate: Success criteria are as equally important as failure criteria. E.g. if a

service is unavailable due to bad network connectivity of terminal that performs the

service invocation it doesn’t mean that the service is unavailable. This example make

it obvious that there is a strict requirement for a thorough definition of setting under

which the attribute of availability is measured. In the example presented this could

be expressed as the need for the invocation the service from a specific terminal or

location.

In the same spirit, Snow and Weckman in [122] argue that availability is poorly defined

and that is the source for a misunderstanding between service availability guarantees. They

point out that Cloud service providers casually offer service availability in what is know as

the five nines i.e. 99.999% but they do not explain what that means and most importantly

they do not provide a probabilistic distribution of service availability. The point they make is

that measuring availability as a mean value does not provide enough insight to the service

user and that a probabilistic distribution of availability is a more tangible measurement. In

their work, the authors used Monte Carlo simulations to investigate availability distributions

for the five nines availability use case where they used two uncertainty variables namely

Mean Time to Fail (MTTF) and Mean Time to Recover (MTTR). They run 3000 simulations

and they were able to demonstrate that the chances of five nines availability violations are

significant and that the combination of reliability and maintainability is the most salient

determinant for the risk of such a violation.

By the same token, Lorenzoli and Spanoudakis in [81] used MTTR and MTTF as

expressions of service availability and provided two probability distribution functions that

describe the probability of violating a specific threshold. To run their experiments they used

monitoring data from the Yahoo internet page service and they gathered 5500 requests and

responses respectively. They had been able to show that the measurements for both metrics
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of availability improved when shorter prediction periods were selected which is expected

because it increases accuracy and therefore both precision and recall improve.

Addressing service and resource availability in the domain of Cloud computing, Mateo-Fornes

et al. [87] attempt to address the challenges of availability and response time in conjunction

with performance, cost and response time. In their paper the authors propose what they call

the cloud availability and response time(CART) model that is responsible for the procurement

of the required computational resources in order to guarantee the predefined response times

stipulated in SLAs, minimizing at the same time the cost incurred to the users. To predict

service response times they use queueing theory and more specifically a Poison traffic model.

They model the Cloud as a set of N virtual machines that execute b number of tasks assigned

by the users. The model that they put forward treats availability as Markov model where

time between failures of virtual machines are distributed exponentially.

A practical approach for ensuring availability specifically for big data is offered by Payfair

et al. [102]. In this work an approach for a selective partial checkpointing mechanism is

presented for the execution of queries in in-memory databases. In particular, they address the

challenges that are presented in column-oriented databases that run queries against large data

sets. Their model attempts to select the right checkpoints during the execution plant that is

produced when a query is sent for execution taking into consideration that an adversary can

bring down a node that will have the worst impact in terms of execution time. Currently their

solution is able to obtain only one checkpoint.

To guarantee data availability, services rely on the underlying software and hardware

stack. Since the Cloud is primarily built on virtual machines, virtual machine availability

is critical for the honoring of data availability guarantees stipulated in SLAs. Gonzalez et

al. in the their work in [63] study the challenges of data availability in relation to the Cloud

provider’s size, redundancy and fault tolerance with regards to virtual machines. They argue

that in practice there are two types of failures; i) single server downtime due to hardware or

software failures and ii) multiple servers downtime where several server become unavailable

or an entire rack. Also, they propose that virtual servers can be in one of the three following

states:

• Active servers: Servers that host virtual machines already running
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• Spare servers: Servers that are operational and can be used to host virtual machines

if required

• On-Repair servers: Servers that are non-operational and cannot be considered for the

allocation of virtual machines

Virtual servers move between those three states. In the paper the authors analyse the impact

of three different types of fault tolerance techniques namely vSphere fault tolerance [12],

vSphere High Availability [10] and vSphere Data Recovery [11]. Finally, the paper concludes

with the description of a policy model for the reduction of risk of violation of availability

in SLAs called SLA-budget. The SLA-budget refers to the current remaining amount

of downtime that is acceptable for a virtual machine before the provider is obliged to

reimburse the service user due to an availability breach. That is to say, that after t amount of

time availability guarantees will be violated which will result in a penalty for the provider.

SLA-budget prioritises failed virtual machines for recovery not in a FIFO approach where

the virtual machine that has waited the most gets restored but on the basis of which virtual

machine has the smallest SLA-budget i.e. will cause an availability violation the soonest.

On top of existing work, a comprehensive big data-centric analysis of application and

data availability has been conducted from Mohanty et al. in [89]. The authors place an

emphasis on the specific requirements for service availability in the domain of big data

analytics applications. They explain that the two basic pillars for high availability lies on the

properties of vertical scaling i.e. deploy applications in larger physical machines or increase

the resources of the existing virtual machines and horizontal scaling which involves the

distribution of applications on multiple physical or virtual machines based on how relevant the

data is to each other or how they can be assosiated, to achieve a higher level of parallelization.

Both properties are satisfied by the basic tenets of Cloud computing and therefore their work

is relevant to the big data applciation in the Cloud.

Finally, an interesting proposal has been made by Rawat et al. in [109] that presents a

predictive model for data availability in big data processing and more specifically for Hadoop.

The authors make a case about the importance of data availability for systems that process

large data sets and argue that in such systems the name node is the most vulnerable link in the

chain of the computation. This can have a significant impact in the terms of data availability
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since the name node is a single point of failure and it can take a long time to recover. In

the paper a predictive model is proposed for avoiding failures and enhancing fault tolerance

of the name node. A back propagation algorithm in neural networks is being used to make

predictions about the expected time of failure of the name node as the available memory

resources become less and less available for the name node to use.

2.2.2 Data Privacy

Data privacy in Cloud computing has been the topic of many scientific papers and textbooks [54]

[129]. It is a topic that, in many cases, is conflated with the notion of security which to

certain extend is justifiable given that enhanced security can lead to more robust data privacy

preservation models. However, data privacy is also strongly related to data anonymisaton

i.e. the prevention of association of a piece of information with an individual. Even though

data might not have direct references to a specific person, by means of applying data

correlation techniques, one could potentially make inferences regarding private information

that otherwise the individual might not have intended to disclose.

The notion of data privacy is perceived differently on the basis of culture, jurisdiction or

even country. To provide some context we will examine different definitions that have been

presented in resent years in the literature. According to the Organization for Economic

Cooperation and Development (OECD) [6] privacy is "any information relating to an

identified or identifiable individual (data subject)". Respectively, the definition stipulated by

the American Institute of Certified Public Accountants (AICPA) and the Canadian Institute

of Chartered Accountants (CICA) in the Generally Accepted Privacy Principles (GAPP),

privacy pertains to "the rights and obligations of individuals and organizations with respect

to the collection, use, retention, and disclosure of personal information". From the last

definition we draw the conclusion that data privacy is involved is several stages of the data

lifecycle that spans from data collection all the way to data disposal. Data privacy breaches

can occur at any of those stages and therefore the preservation of privacy ought to be address

in all of them if a holistic solution is to be applied. More specifically, the ordered sequence

of phases the data can exist in is the following [38]:



2.2 Security and Privacy Properties for Big Data 19

1. Generate - Data generation is a critical aspect of data ownership. Who owns the data

dictates who is responsible for the application of data privacy policies. This issues can

become complicated due to the fact that event though data is typically generated by the

users it can be stored in the Cloud.

2. Transfer - Data need to be transferred from user’s infrastructure to one or more Cloud

providers for storage or processing.

3. Use - Data is moved to the Cloud not only for storage but for processing as well. In such

occasions, Cloud providers provide the necessary software and hardware components

to enable the processing of the data and the extraction of business value for its users.

4. Share - Data, either with or without the consent of the data owner, can be shared with

third party entities. This needs to be conducted in a privacy-aware setting where the

data owner’s privacy is honored.

5. Store - Data is stored in the Cloud and sensitive private information can leak to

employees of the provider or untrusted third parties.

6. Archive - After the data has been processed and no further on-line processing is

required, it is typical for it to be archived for historical reasons. The software and

hardware components that will be used to archive and store the data must be set up in

a way that data security and privacy will be respected.

7. Dispose - Data, when rendered redundant and no loger need to be available - not even

for historical reasons - it is disposed of.

Fig. 2.1 Lifecycle stages of data in the Cloud
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A significant body of work was been presented in the literature with regards to data

privacy especially in recent years with the advancement of Cloud computing [127] [42] [128].

As it has been discussed in [130], the challenges of privacy and security are here to stay and

that a key feature for overcoming them relies on the clear understanding of Cloud computing

as a computing paradigm. This involves the a clear view of who manages the system, how

it is supposed to operate it and how critical is the data for the user i.e. what would be the

financial or reptutational penalty in case of privacy breaches. Furthermore, a more practical

analysis has been conducted in [150] by Xiao et al. In their work the authors argue that the

preservation of privacy is directly affected by the property of data confidentiality. Any breach

of data confidentiality, i.e. leakage of information to unauthorized entities entail leakage

of privacy as well. They also make the point that accountability is against the objective of

privacy and if accountability is enforced it can work against the preservation of privacy.

From a legal perspective, the material put forward in [103] and [70] underline the

significance of the enforcement of privacy policy laws as part of the EU’s strategy to address

the issue of data privacy from Cloud services offered within the boundaries of the EU and

identifies the relevant regulations. Additionally, in [70] the authors provide an analysis

from an information privacy perspective and make a comparison between the regulatory

frameworks of Europe and the United States on the basis of the protection that they offer

to the users’ sensitive information. They conclude their work by stressing the need for an

extension of the existing definition of what constitutes sensitive data in an attempt to increase

customer trust and a reduction in regulatory constrains that hinder the ability of Cloud users

to fully exploit the it in its full capacity. Also the importance of a set of regulations is

underlined

A similar effort towards the assessment of the privacy risks that are associated with the

migration of applications and systems in the Cloud is presented in a PhD thesis in [101].

In his analysis Wayne has created a measurement system using a set of standardised

dimensions for the evaluation of privacy risks and provided a detailed evaluation of the

existing methodologies giving an account of their inadequacies.

Given that the loss of privacy is a well-recognized issue in Cloud computing, practitioners

and researchers have made a concerted effort to put to the front defense strategies to mitigate

or prevent it. In [42] propose the use of three groups for classifying the privacy preserving
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frameworks namely information-centric security i.e. data is associated with access control

policies, trusted computing i.e. enforcement of trust by means of utilising special hardware

and software enhancements and cryptographic protocols i.e. the use of cryptography and

cryptography tools to protect data privacy.

In [61] proposes the usage of fully homomorphic encryption to facilitate the presercation

of privacy. He makes the case that by applying fully homomorphic encryption on can process

the data without requiring the decryption of data. By fully encrypting the data the location

of storage or processing of the data poses no longer and issue and privacy is preserved by

default given the level of encryption is such that cannot be violated. However, the existing

homomorphic encryption schemes due to their complexity can be inefficient when it comes

to applying them in real life settings. With that in mind and in an effort to improve the

efficiency of fully homomorphic encryption, Naehrig et al. in [92] present what they call a

somewhat homomorphic encryption scheme. In their scheme the authors make the case that

for specific applications that they draw from the medical, financial and advertising domains,

a subset of operations are sufficient for the practical use of homomorphic encryption.

Following a similar logic to homomorphic encryption schemes, data perturbation techniques

have also been used for protecting the privacy of the data. The most common approaches are

randomization [21] and condensation [19]. Data perturbation is appropriate for cases where

data containing sensitive user information need to be stored or processed in a private Cloud.

It involves the modification of the data in a way that it becomes increasingly challenging for

third parties to infer the original data while at the same time preserving certain properties of

the data objects that are critical for the integrity of the computations that are to be executed.

Data perturbation techniques are evaluated based on two metrics; loss of privacy and loss

of information. If possible, both of those metrics should be minimized for a more efficient

result. Loss of privacy refers to how hard it is to guess the original data object before the

perturbation has occurred. Loss of information refers to the amount of critical data that

will not be recoverable as soon as the perturbation has been applied. The level both of

loss of privacy and of loss of information need to be examined on a case by case basis

and is task-specific. An improved version of the randomization perturbation technique is

demonstrated in [39]. In this work, the authors present a rotational perturbation technique for

data mining algorithms that require analysis on multiple dimensions. More specifically, they
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have identified and proved that kernel methods, SVM (Support Vector Machine) classifiers

and hyperplane-based classifiers are rotation-variant and therefore rotational perturbation

can be used to modify the data.

Another relatively recent work that is more appropriate for Big Data analysis is shown

in [22]. In this paper a modified version of the DBSCAN (Density-based spatial clustering of

applications with noise) clustering algorithm for vertically partitioned data is presented where

homomorphic and asymmetric encryption are used. The variant of the original DBSCAN

algorithm relies on the transmission of information over a secure channel that is encrypted

based on homomorphic and asymmetric encryption. Homomorphic encryption protects

the data from within the system and asymmetric encryption protects the data from outside

attackers. A significant drawback of the framework proposed lies on the fact that it is only

appropriate for the DBSCAN algorithm.

The advent of Cloud computing has given rise to distributed applications that are a perfect

fit for the scalable and elastic characteristics that it has. In [141] Wang et al. presented a

framework for the preserving privacy by means of auditing for Big Data storage systems that

run in the Cloud. Their work is different because it refers to data at rest and not data during

processing. Data auditability enables users to refer to third parties to verify the integrity

of the data on demand. Third party auditors (TPA) require two things; they need to able

to efficiently audit the data on-line meaning that a local copy of the data should not be

required and secondly the auditing process should not increase the attack surface by means

of introducing new vulnerabilities to the system. To address those two challenges the authors

integrate public key based homomorphic authenticator with random masking to guarantee

that the auditor will not be able to gain any knowledge with regards to the data that is being

stored in the Cloud provider. The overarching objective is to take away the responsibility

of auditing from the user while at the same time increasing trust. The proposed publicly

auditing protocol can deal with multiple users and therefore can be applied in the Cloud

where a multi-user environment is totally expected.

By the same token, addressing the issue of privacy preservation for Big Data applications

that run on a distributed environment Roy et al. in [112] have proposed a MapReduce-based

system called Airavat. To achieve its goal, Airavat utilises mandatory access control and

differential privacy. Differential privacy refers to a methodology of ensuring that the
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output of aggregate computations does not violate the privacy of the individual inputs

In Airavat privacy policies are governed by the data provider and can be applied even from

non-expert users as well. Airavat is responsible for preventing the breaching of private

information from untrusted mappers and reducers. In this context the objective is to prevent

leakage of information refering to general or aggregate features when applying MapReduce

computations on sensitive data, The framework’s effectiveness repies on the fact that if a

MapReduce computation is differentially private, the security level of its result can be safely

reduced.

In the same spirit, in [157] Zhang et al. make the case for a privacy-aware variant of

MapReduce where the computational tasks are broken down based on the privacy policy

that the user wants to apply on the data that each one of that tasks will operate on. In many

cases, Cloud customers keen information that contain sensitive data in private Clouds or on

premises whereas data that do not contain private information is migrating in the Cloud. The

proposed modified version of the MapReduce paradigm is called sedic and is appropriate for

hybrid Cloud applications where part of the data is on a private Cloud and part of it is on a

public Cloud. Sedic takes advantage of the underlying distributed filesystem to methodically

replicate data, moving sanitized data blocks to the public cloud. In this data configuration,

map tasks are launched on the public Cloud, while data containing private information remain

in the private Cloud. To reduce the exchange of intermediate between the private and public

Clouds during the reduce phase, Sedic performs an aggragation on the resutls of the map

tasks and then submits them to the private Cloud for the final reduction phase. Given that

this execution model is the execution model of the original MapReduce framework, Sedic

supports the execution of legacy applications that has been developed with the vanilla version

of the framework.

2.2.3 Data Integrity

The preservation of data integrity is of paramount importance for the production of correct

and trustworthy results from software applications. This has been an issue of great concern

from the research community and a significant amount of effort has been directed towards the

devise of data integrity preservation frameworks. In their seminal work of runtime software

correctness Wasserman et al. [144] the authors presented a framework with checkers that use
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stored randomness. Stored randomness refers to the generation, pre-processing and storage of

random bits before application execution and the usage of specific hash functions to evaluate

the integrity of the results that are produced. The software verifiers are pre-packaged with

the application and they are in essence part of application itself. This method however suffers

from the fact that the verifiers may introduce themselves bugs that can affect the integrity

of the results produced. Under the same principle, Blum et al. [30] introduced the concept

of a correctness checker which is a program that checks the integrity of the output of a

computation. It uses this principle to devise program checkers for algorithms that can be

execute in polynomial time. It also uses cryptography and probabilistic interactive proof.

Both the work presented in [144] and [30], despite being of significant theoretical importance,

in practice they address the issue of computational integrity only for a subset of specific class

of problems and therefore they cannot be generalized for all types of algorithms.

In our review, we are mainly interested in performing an analysis on the state of the

art with regards to methodologies for protecting the data from integrity violation that can

take place in a Cloud environment. To that extend, several tools and frameworks have

been proposed for the verification of integrity when data is stored or processed in the

Cloud. An enhanced version BigTable [37], a popular NoSQL database introduced by

Google, called iBigTable [147]. iBigTable guarantees the integrity of the data by means of

using a centralized or decentralized authentication structure. The system uses two different

approaches for storing authenticated data that is later used to verify its integrity and both

of them rely on the construction of a Merkle Hash Tree (MHT) based authentication data

configuration for the root tablet, the metadata tablet and the user tables. The first approach

uses a centralised authentication structure and the second one a distributed data structure.

The authors argue that the decentralised approach is more efficient because it stores the

root hashes for every user tablet, metadata tablet and root tablet. This has two significant

advantages. Firstly, by eliminating dependencies between authenticated data structures of

tablets, updates on the tablets do no entail updates on all the root hashes but only in the one

referring to the specific tablet. Secondly, the data owner is aware of all the hash roots across

all the tablets which guarantees the freshness of hash values.

An extensive body of work has also be produced around the MapReduce paradigm which

is very popular for batch processing of large data sets. In [146] Wei et al. propose SecureMR,
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a decentralized replication-based integrity verification framework both of the data and the

computations. They put forward an integrity assurance framework to safeguard MapReduce

computations against replay and Denial of Service (DoS) type of attacks. SecureMR uses 5

additional components to verify data and computation integrity namely secure committer,

secure manager, secure verifier, secure task executor and secure scheduler. All those

additional components enhance the default version of the MapReduce framework with

features such as task duplication, secure task assignment, DoS and replay attack protection,

commitment-based consistency checking, data request authentication and result verification.

The terminology that introduced in the paper corresponds to the default components of

MapReduce prefixed with the term secure. The Secure Manager and Secure Scheduler run

on the master node and are responsible for the duplication of tasks, the secure assignment of

tasks and the consistency checking. Also, the Secure Executors run on all nodes i.e. mappers

and reducers to fight off DoS attacks. Secure Committers take the intermediate results from

the mappers and sends them to the Secure Manager for consistency checking. Finally, the

Secure Verifier verifies the integrity of the mappers’ results with the assistance of the Secure

Manager.

In the context of Big Data and around MapReduce another replication-based approach

for the evaluation of data integrity is proposed in [132]. The framework challenges the

trustworthiness of the cluster’s nodes and operates under the principle that one or more nodes

might be compromised. The proposed system breaks down the MapReduce computation

into smaller fragments. A subset of these fragments are replicated causing a reduction in the

network overhead imposed from the replicated tasks. A set of experiments demonstrate the

methods applicability and show that only a small subset of the fragments can provide a high

degree of detection rate of integrity violations. In the same spirit, Wang et al. in [142] point

out the significance of operational integrity from all the moving parts of a MapReduce cluster

and they present VIAF a verification-based integrity assurance framwrork for MapReduce. In

their work the authors state that mappers comprise the majority of the workers and therefore

provide a larger surface for malicious attacks. The system can detect integrity violation both

for non-collusive mappers i.e. mappers that are returning incorrect results and collusive

mappers i.e. mappers that return incorrect results but on a consistent basis.Frameworks like

SecureMR would not be able to detect those faulty mappers because the replicated tasks
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for the malicious mappers would return the same incorrect results. VIAF relies on a to step

process by means of integrating task replication and a non-deterministic verification where

collusive mappers can be discovered with the assistance of an external trusted verifier.

A slightly different approach is analyzed by Wang et al. in [143] where the examine

the concept of data and computational integrity for MapReduce on the assumption that

the underlying virtual machines (VMs) that run on the Cloud to underpin MapReduce

computations can not be trusted. The analysis in IntegityMR is performed at two separate

layer; the MapReduce task layer and the application layer. The authors propose a hybrid

Cloud solution where the master and the verfiers are deployed in the private Cloud whereas

the worker nodes (mappers and reducers) are deployed in one or more public Clouds. The

MapReduce task layer verification process is based in the work presented in [132] and

the evalution of integrity for the application layer the creatora of the framework use Pig

Latin, high-level language for expressing data analysis programs where Pig Latin scripts

are modified to introduce invariants to map tasks. Those invariants are checked during job

execution and the system can indirectly infer if the nodes involved in the execution of the

jobs have produced faulty results.

A holistic approach for addressing security in general has been introduced by Hussien et

al. in their work in [69] where the use public auditing for ensuring security. More specifically,

with regards to data integrity the authors propose the usage of a third party auditor (TPA)

to apply elliptic curve cryptography on the data and the application of a cryptography hash

function on the encrypted data. Encrypting the data protects it from privacy breaches as well.

Xu et al. [151] propose a two-phase verification process, one conducted by the Cloud user

and one by the arbitrator that will handle possible disputes regarding data integrity violations

between Cloud users and providers. Users check the integrity of the data on a regular basis

by applying a Message Authentication Code (MAC) technique and by producing the ϕ hash

values that represents the hash for every file. All the ϕ values are stored as nodes in Merkle

tree that has been produced from all the files uploaded by the user to the provider’s storage

infrastructure. If a violation occurs the user employs an arbitrator to resolve the dispute

between users and providers. Whoever loses the dispute has to pay the arbitrator.

In [138] the authors suggested a multi-agent based static and dynamic data integrity

verification technique that involves the intermittent evaluation of the hash values for he files
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stored in provider. Due to significant overheads imposed from evaluating data integrity for all

the data in the files and in order to minimize it, authors use parts of the file that are randomly

selected. Their framework also support the restoration of files whose data integrity has been

compromised with the assistance of a backup storage service. Similarly, in [152] Yao et al.

bring forward a framework to remotely check data integrity in Cloud storage systems with

the use of threshold encryption. Threshold cryptography refers to a cryptography scheme

that fortifies data by encrypting it and sending it to a cluster of fault-tolerant computers. Data

is encrypted with a public key while the private key is shared between the the participating

parties. In threshold encryption, decryption or signing of data requires multiple parties. The

number of those parties is determined by a predefined threshold number. All parties need

to collaborate for the successful implementation of the decryption and signature protocol.

Additionally, encryption threshold is combined with secure erasure code where data is

fragmented into pieces and stored across multiple locations minimizing storage requirements

while offering a high degree of redundancy.

An approach with the same objective is shown by Kumar et al. in [124] where a data

integrity verification protocol is described which does not involve the encryption of all the

data stored in the Cloud but only a few random bits per block. The verifier is only responsible

to safely store the cryptographic key that has been used for the encryption which makes this

verification scheme appropriate for clients with limited computational capacity. Following

the paradigm of third party auditing (TPA), Yu et al. in [154] give a description of a remote

data integrity framework where no metadata need to be acquired from the auditors in order

to verify the integrity of the data. This aspect is critical because it promotes the notion

of zero-knowledge privacy and guarantees that the third party auditors will not have any

information with regards to the data that they are checking. To attain the goal of building an

integrity auditing protocol, Liu et al. in [80] use proofs of retrivability presented in [118]

while using data deduplication to keep data storage requirements to a minimum. Their

contribution is significant for the evaluation of data integrity in the Cloud because data

deduplication is a common technique used by multiple Cloud storage services.

An improved version of Merkle Hash Tree (MHT) for the verification of integrity that

supports dynamic data in the Cloud is presented by Guo et al. in their work in [66]. The

authors use a combination of MHT and Bloom filters [32] that allows for an efficient discovery
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of items within a set. Bloom filters are more efficient in terms of space and are very effective

in running membership queries on large data sets. Bloom filters are used to verify if a piece

of data belongs to the original data set. If it does not belong to the original data set this

signifies the compromise of the integrity of the data.

2.2.4 Data Confidentiality

Keeping data confidential is a challenging problem that has been examined extensively in

the literature [156] [69] [75] [76]. More specifically in this section we give an account of

the literature with regards to the preservation of data confidentiality for Big Data during

processing and at-rest.

A plethora of proposed framework with the intention to protect the confidentiality of

Big Data from attackers has been introduced. In [106] Puthal et al. address the issue of

data confidentiality in Big Data streams of sensing data. This is particularly interesting

for sensitive data such as medial information that is gathered from medical devices. The

authors in their work propose a multilevel selective encryption (SEEN) method to protect it

from unauthorised access and modification. Those actions pertain to the preservation of data

confidentiality and integrity. The approach they propose relies on two basic concepts namely

a common shared key that is created by the data stream manager that is responsible to collect

all the streams of data and a key update process that does not interfere with the encryption

and decryption process of the data. The idea is that data is encrypted at the source it is

produced and is associated with a specific level of confidentiality based on the sensitivity of

the data. Since the data is encrypted at the source when it arrives at the data stream manager it

is already encrypted. With selective encryption method different keys are applied to achieve

different levels of confidentiality. Depending on the sensitivity level, multiple shared keys

will be applied to encrypt the data. In the general case if n levels of confidentiality is required

then n−1 keys will be necessary to encrypt and decrypt the data. In their paper the authors

examine three levels of confidentiality; strong confidentiality, partial confidentiality and no

confidentiality. Strong confidentiality refers to the reservation of confidentiality across its

complete lifecycle, partial confidentiality refers to data confidentiality until the data reaches

Big Data processing engine i.e. preservation of data confidentiality when data is transmitted
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over the network from the sensors to the main system and no confidentiality refers to the

absence of any mechanism for preventing data confidentiality breaches.

By the same token, the issue of data confidentiality is addressed by Chen and Huang

in their work presented in [40]. They examine the application of fully homomorphic

encryption [60] to protect sensitive data from unauthorised entities or malicious attacks

when it is being processing with the MapReduce framework. Their work is important

because it addresses the data confidentiality challenges in the space of Big Data processing

with MapReduce, a widely used paradigm for processing large data sets. The solution that

they propose allows MapReduce to operate on encrypted data without the need to decrypt the

data. To achieve this they have to modify the way MapReduce associates data items with the

same key. The reducers will have to be able to discover what data items have the same key to

be able to apply the reduction function. This is achieved with the addition of a module that

sits between the mappers and the reducers and is responsible for applying the homomorphic

enctyption function on the already encrypted data. This will make sure that the ciphertext for

the same keys will be the same and threfore the reducers will be able to use this property to

identify data items with the same key. The theory is the following:

Lets pick two prime numbers A, B, and make P = A∗B. Then lets pick a random positive

integer Ar and A is the symmetric secret key. The encryption function can be seen in 2.1.

C = (M+A∗Ar) mod P (2.1)

The decryption function can be seen in 2.2

M =C mod A (2.2)

In both equations M represents the message that will be processed. Now lets assume that

we have two ciphertexts c1← (m1 +A∗Ar1) mod P and c2← (m2 +A∗Ar2) mod P. The

addition of the ciphertexts can be seen in 2.3.

c1 + c2 = (m1 +m2 +A∗ (Ar1 +Ar2)) mod P (2.3)

Therefore applying the decrypt function on the added messages can be seen in 2.4
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Decrypt(c1 + c2) = m1 +m2 (2.4)

Similarly, the multiplication for ciphertexts c1 and c2 can be seen in 2.5.

c1 ∗ c2 = (m1 ∗m2 +A∗ (Ar1 ∗m1 +Ar2 ∗m2 +A∗Ar1 ∗Ar2)) mod P (2.5)

Finally, the application of the decrypt function on the multiplied ciphertexts can be seen

in 2.6.

Decrypt(c1 ∗ c2) = m1 ∗m2 (2.6)

Equations 2.4 and 2.6 meet the criteria for homomorphic encryption functions and

therefore they can be used from the MapReduce algorithm. The authors proposal is one of

the first attempts to use a homomorphic in the domain of Big Data. Their approach even

though is feasible it lacks flexibility and cannot leverage the full potential of the MapReduce

paradigm. It can perform simple operations that required the addition of values and no other

reduction function can be applied.

To address access control considerations and therefore the preservation of data confidentiality

in the domain of Big Data analysis, a comprehensive approach is presented in [133] that is

also implemented around the MapReduce paradigm. Ulusoy et al. argue that the way access

control is performed in MapReduce is not flexible enough for the processing of data from

different stakeholders and purposes. More specifically the locate 3 main issues; firstly the files

that are being processed can be and often are very large, secondly the underlying infrastructure

can potentially be used by multiple users with different levels of accessibility and intentions

and thirdly the data can come from different domains and sensitivity specifications. The

proposal they make is based on a set of fine-grained access control predicates in framework

called Vigiles. in Vigiles, users can access files only after a set of predicates that correspond

to that user has been applied on the files. All the records from all the files that the user

requires to access are sift through the access control predicates. This process determines if a

record can be accessed or not. The predicate filters can label the records as reject, grant and

modify. When the filter returns reject the record cannot be retrieved, when it returns grant

the original record can be retrieved and finally when it returns modify a modified version of
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the record is retrieved. Using such a fine-grained model for data access control is of great

importance given the fact that in many use cases, the same data can be processed by multiple

entities within an organisation and have different security permissions. A key feature of the

Vigiles implementation is that is does not modify the underlying MapReduce algorithm. This

makes it less invasive and easier to adopt in an existing MapReduce installation. Also it

has a very light footprint on the system by imposing a 1% overhead when compared to an

implementation that modifies the Hadopp source code. A solution with similar intentions

from the of the same authors, is presented in [134] were key/value policy enforcement is

imposed on a user basis. The second approach is different in that it supports the use of high

level specification language such as OCL for the generation of the low level bytecode in Java

that represent the predicates that will have to applied on the records of the files before it gets

processed from a specific user.

In addition to the work presented, Adluru et al. also highlight the need for data security

and privacy in the Hadoop ecosystem. They recognise that when processing data with Hadoop

the attack surface for data security and privacy is large due to the large number of components

that are involved i.e. NameNodes, DataNodes and BackUpNodes. To increase security the

authors propose the use of random encryption techniques. The MapReduce framework

will be responsible for applying the randomised encryption algorithms guaranteeing the

preservation of scalability. This process decreases the chances of attackers to be able to

get access on all the data even if they manage to intercept part of it. More specifically, the

authors implemented the RSA, Rijndael, AES and RC6 encryption algorithms.

In [153] Yu et al. examine the challenges fine-access control in the context of cloud

computing where data need to be sent to a cloud provider and be stored or processed. They

make the case that, in most of the existing literature the technique that is used requires that

data gets encrypted from the users and then is shipped to the provider’s infrastructure. This

process is slow and imposes an unreasonable computational burden of the users that need to

run computationally expensive jobs on their systems to encrypt the data. In they proposed

solution use a combination of attribute-based encryption, proxy re-encryption and lazy

re-encryption to allow the data owners to outsource the access control verification process

to the cloud providers without revealing to them the content of the data. Attribute-based

encryption allows the encryption of the data based on specific attributes of the user. Uses
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are associated with a tree of privileges and that is used to generate the secret key for that

user. This tree of privileges represent the access control rights of a user the data and if the

appropriate right are not present the user will not be able to access it. Proxy re-encryption

is a technique that allows a third party entity to modify en encrypted piece of data in such

a way that another entity will be able to encrypted after it had been modified. Finally, lazy

re-evaluation is an optimisation technique that does not re-encrypt a file for a user whose

access rights to the file has been revoked until the file is updated. This trade-off is done on

the basis that users can access the contents of file that they were anyway allowed to access at

some point in the past. This saves the system from having to re-encrypt files every time the

access rights on that file are revoked for a user. I the proposed framework, attribute-based

encryption is used to attain the fine-grained access control over files and proxy re-encryption

is used from the cloud storage providers to encrypt the data in a way that the data owner will

be able to decrypt.

As shown above, a significant body of literature is available for securing Big Data storage

and analysis in the MapReduce ecosystem. However, many other data processing framework

exist that have significant traction in the industry and academia such as Apache Spark.

In [119] Shah et al. illustrate how they were able to achieve the application of encryption

techniques to enforce security in an Apache Spark cluster for data-at-rest. In Apache Spark

data is stored in memory and on the disk as well. Apache Spark ties to store as much data

as possible in memory to achieve high performance but there might be cases that this is not

possible. For instance this might be the case if the data does not fit in memory or it has to be

serialised and sent over the network to participate in a shuffle. Also data can be stored on the

disk if the Spark job that has been submitted for execution requires it explicitly in the source

code. The authors propose the enforcement of security in three ways; security through secure

object serialisation, security through customised SecureRDD and security through natively

securing RDDs. Security through object serialisation applies cryptography algorithms before

and after the serialisation of an RDD. Security with the use of SecureRDD is performed by

means of a custom implementation of a special type of RDD that extends the base RDD

type where the computation of its partitions require that the data is decrypted, processed and

then encrypted again. A drawback of that approach is that to apply this technique users will

have to modify their code to accommodate the usage of the custom SecureRDD. Finally, the
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enforcement of cryptography is implemented at a low level where every time data is stored

or retrieve it is encrypted and decrypted respectively.

2.3 Monitoring Service Level Agreements

The design and implementation of monitoring tools and frameworks that facilitate the

enforcement and monitoring of SLA is a key factor for the adoption of cloud computing. As

presented in [17], being able to constantly observe the state of the software and hardware

stack in cloud ecosystems is a critical parameter of the smooth operation of cloud systems.

Also, the monitoring activity of SLAs enhances transparency and therefore can help build

a relationship of trust between the cloud users and the cloud providers. Different language

specifications for the definition of SLAs have been proposed in the literature with WSLA [49]

and WS-Agreement [9] being the most widely used for Web Services.

A report from the European Union for Network and Information Security in 2013 [18]

provides a list with the most significant threats with respect to cybersecurity and underlines

the need for the standardisation of the evaluation of security in the Cloud. One of the ways

that this can be achieved is by enabling uses to define the guarantee terms of SLAs and

then providing them with the necessary tools to continuously monitoring the service level

objectives of the SLAs. The ability to measure certain performance and security related

properties in a standardised and rigorously manner, is critical for the assessment of the

quality of service offered from Cloud providers and can set the foundations for a transparent

interaction from the involved parties. Most Cloud providers use natural language to define

the guarantee terms of SLAs. This introduces ambiguity and in some cases leaves room for

subjective interpretations of the guarantee terms both from the service users and the service

providers [4] [1] [5]. SLA monitoring attempts to solve this problem by producing traces of

evidence to support the satisfaction or violation of the guarantee terms of the signed SLAs.

The collected metrics must be trusted from both entities namely the users and the providers.

This is critical for the integrity of the monitoring activity and can prevent having one or more

of the involved parties repudiate the veracity of the monitoring results.

As presented in [117], SLA management and monitoring has been a long standing

requirements for businesses and organization when migrating to the Cloud. More specifically,
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46% of the users did not use an SLA-oriented framework to ensure service continuity,

31% adopted a bilateral protocol i.e. an ad-hoc negotiation policy and 23% engaged with

their users with a consolidated definition and monitoring protocol and more specifically

WSLA [93] and WS-Agreement [9]. This highlights the fact that SLA management is still

an unstructured process that is enforced on per provider basis. Additionally, the same paper

brings to the forth the gap in monitoring systems for SLAs which in turn is exacerbated by

the lack of adoption of SLA definition frameworks. 81% of the Cloud providers that do

have some monitoring tools in place manage themselves those tools and present to the users

only the information that they regards as important. In those cases, users cannot inspect

the Cloud resources that they utilise beyond what is provided from the monitoring tools.

Finally, performance test are regularly executed in 38% of the cases where monitoring is

used whereas the in the remaining 62% the results of service performance metrics can be

send off to the users only if they explicitly request them.

A plethora of frameworks have been proposed in recent years to address the monitoring

of SLAs. Due to the dynamic nature of cloud applications it is imperative that application

requirements can change. Such changes are difficult to be aligned with monitoring infrastructures.

As a result, monitoring languages have been developed that provide the semantics required

for the dynamic definition of the appropriate monitoring configurations taking into account

potential amendments in the systems that are being monitored. In [65] the authors introduce

Service-Centric Monitoring Language(SECMOL), a general monitoring specification language

that enables the definition of monitoring requirements for dynamic deployments of services.

Dynamic service composition and deployment is an integral part of the Cloud and therefore

monitoring of Cloud service SLAs could benefit from such an approach. SEMCOL is

comprised of two parts:

• Monitoring policies that describe how the monitoring components should be deployed,

when to check the monitoring rules, how they should be monitored and how the runtime

monitoring data should become available (push vs pull model)

• Monitoring rules express the conditions that the system must satisfy. These conditions

can be related to either performance or other dependability properties such as security



2.3 Monitoring Service Level Agreements 35

Monitoring rules are expressed with the assistance of logical conditions directly on the

runtime events the are collected during monitoring or indirectly on aggregated computations

on the original runtime events.

By the same token, an SLA management and monitoring framework has been examined

in [99]. The authors put forward a declarative rule-based approach to SLA representation

and management. They argue that providers need to have in place rigorous processes for

the management, execution and enforcement of SLAs for thousands of customers whose

requirements are potentially different. They also highlight the fact that the service level

objectives can contain complex logic and inferences might need to be drawn during SLA

enforcement and monitoring. They employ the concept of rule-based service level agreements

for the representation of user requirements. SLAs can be viewed as a compilation of logical

formalisms managed by a single logical framework called ContraLog. Monitoring and

enforcement of the SLAs is performed by making use of standard components of logic

programming namely Horn Logic, Event Calculus and Deontic Logic.

Monitoring SLAs is a topic that has become relevant in the context of outsourcing

computations from one entity to another. The first manifestation of such a model was

presented in Grid computing. In [25] the authors demonstrate how complex event processing

principles can be used to facilitate the monitoring of SLA metrics in near real-time. They

propose the use of Event Processing Language (EPL) for the definition of composite SLA

metrics that are expressed in the form of a query. Their objective is to enable firstly the

on-demand specification of service level objectives in the form of metrics, secondly to

calculate the metrics at near real-time and thirdly to enable to composition of higher level

metrics from simpler ones. The SLA Monitoring Service is built on top the GEMINI2

monitoring system. GEMINI2 offers the on-line monitoring engine that is comprised of the

CEP-based monitoring server (GEMINI2 Monitor) and local sensors (GEMINI2 Sensors) that

are installed locally on the nodes. Monitoring data is represented as events which typically

contain at least a unique resource identifier (e.g. a host name), and a set of associated metrics

such as current CPU load, total free memory, etc. The sensors collect the events localy

and publishes the to a Monitor. The Monitor has a CEP engine called Esper 1. Queries are

1 http://www.espertech.com/esper/

http://www.espertech.com/esper/
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expressed in EPL and are uploaded to the Monitor through a service. The sensors send the

events and they are subsequently processed against the queries in the CEP engine.

Remaining in the same service model of Grid computing other proposals have been

made for monitoring SLAs like the ones presented in [24] [56] and [31] as well. In [24]

the authors present a monitoring system that is mainly intended for the supervision of the

underlying hardware resources that an application is utilising. The framework uses local

SMTP agents or Ganglia 2 agents to collect metadata about the relevant resources. In [24]

Fu and Huang propose a monitoring platform that uses an improved forecast algorithm

to predict performance and therefore predict possible SLA violations that are associated

with performance. Finally, Boniface et al. in [31] showcase a framework for the dynamic

provision of services with an SLA-based approach. The authors intention is to maximise

the profits for service providers and minimise the possibility of quality of service (QoS)

violations for the users. Ultimately the framework describes how the available resources

should be distributed across services to meet the SLA QoS characteristics that are mandated

by the users.

Being proactive with regards to SLA violations is a key feature for the enforcement

of SLAs. To that end, there have been proposals in the literature to address the issue of

violation preditions with the use of historical data. In [81] Lorenzoli and Spanoudakis

have demonstrated the ability to compute the probability distribution of service availability

violations for services. As a metric of availability the used was the mean time to repair and

the mean time to failure. They have been able to identify a prediction model for several

variable that may influence the preservation of availability.

Another key area for monitoring SLA is the automation of the monitoring activity and

the ability to adopt to new SLA specifications as quickly as possible. In [114] describe a

system where the collection of the monitoring data is automated and is part of the SLA

specification. They also address the issue of collecting and monitoring not only information

on the provider’s side but also on the user’s side as well. To attain that objective they authors

propose a new SLA specification language. The gathering of the monitoring data is done

through the instrumentation of the calls between the Web Services that are involved. The

framework operates only in the context of Web Services. A similar tool has been presented

2http://ganglia.sourceforge.net/

http://ganglia.sourceforge.net/
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in [111] where interaction between Web Services are evaluated for the assessment of SLAs.

A key difference however is the ability of the system to capture performance values without

any knowledge of the implementation of the service. This makes the platform presented

generic and capable to be used in any setting where Web Services are involved.

Addressing the issue of SLA monitoring heterogeneous Web Services Comuzzi [45] et

al. introduce the concept of term monitorabiliy. In the SLA management that was designed

in EU FP7 funded project SLA@SOI, they propose the estanblishment of SLA terms based

on two requirements; firstly whether historical data is available to enable the assessment

of the SLA offers that service users are presented with and secondly whether it is possible

to assess the compatibility of the monitoring capabilities of the monitoring engine with

guarantee terms of the SLA. These two questions are critical for the successful management

and monitoring of the SLA and need to be addressed before the actual monitoring takes

place.

One of biggest challenges in the domain of SLA monitoring is the association of the

high level specification of guarantee terms into low level instructions that can facilitate

the monitoring of the terms. This issue has been addressed in [52], [41] and [85]. In [52]

introduce a framework called LoM2HiS that can assist in turning low-level resource metrics

into high-level SLA objectives. The LoM2HiS framework also can detect future violations

and can notify the appropriated components to avoid the emanating violations. With similar

objectives work is presented in [41] from Chen et al. where SLAs are decomposed into

its constituents and the translation of service level objectives into system level thresholds.

The authors also make the case that this can help users define the service level objectives

without having to rely on domain experts but they can automatically do it through the newly

introduced framework. Finally, in the same spirit, in [85] Mahbub en al. describe a workflow

for the automatic generation of SLAs into monitoring specifications that can dynamically

be applied and executed to enable the monitoring activity of SLA for Web Services. The

monitoring specification is comprised of monitoring rules that are monitored with an event

resoning engine named EVEREST [123].

Monitoring SLAs can also facilitate the ability to gain more insight with regards to what

part of the system might be responsible for the poor performance of a runtime component.

More specifically, in [148] Wetzstein et al. make the case that a violation in a key performance
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indication might have been influenced by multiple factors that it is very difficult for users to

discover with a naked eye. They propose the use of machine learning techniques to try to

build dependency trees between KPIs and low-level processes. A slightly different approach

is taken by Emeakaroha et al. in [53] who introduce an architecture called CASViD, which

stands for Cloud Application SLA Violation Detection architecture. CASViD does not use

machine learing to dicover factors that might affect violations but it does analyse the runtime

behaviour of applications and can, by means of applying a dynamic algorithm, suggest

effective measurement intervals for various workloads and applications types.

Also, another thorny issue that is especially relevant for dynamic Web Service and

constantly changing setups like the ones presented in the cloud, is the adaptation of the

monitoring activity to changes in the service deployment. In [55] Foster and Spanoudakis

address this issue by dynamically decomposing SLAs into separate components that can

dynamically be monitored by the monitoring components that have the relevant capabilities.

This flexible model can decompose the monitoring activity on the basis of the SLA terms

and allow its monitoring from multiple monitors. This allows the monitoring of SLA that

would otherwise would not be monitorable by a single monitor but can be monitored by

multiple ones. Also, this setup is very flexible and can enable the continuous monitoring of

SLAs despite the fact that SLAs terms or monitoring components might change. Similarly,

to address the issue of SLA monitoring for cloud services that can change dynamically,

Mosincat and Binder in [90] have presented a framework for the monitoring of performance

in composite Web Services. Poor performance in one of the service that compose the service

can potentially lead to SLA violations for the whole service. The author’s intention is to

automatically diagnose performance issues in composite services and take appropriate action

to address them. To achieve this objective they introduce an extension to the standard BPEL

specification to enable service monitoring and runtime adaptability. Those two ingredients

are indispensable for the automatic detection, diagnosis and reparation of the problematic

components of a composite Web Service. Both the diagnosis techniques and the reparation

strategies are highly customisable and can be used in any BPEL engine that supports the

standard BPEL specification.

In the cloud, storage of data is an operation that is widely used especially in public

clouds. For that reason, monitoring SLAs for storage service is a critical factor for their
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smooth operation and overall trust of the users towards cloud storage providers. Slota et

al. in [121] employ the usage of ontologies to apply semantic-based monitoring for storage

services. Initially they introduce a set of metrics that are appropriate for the evaluation

of storage services such as average read time rate and average write time rate. The user

SLA requirements are expressed in the form of ontologies. The ontologies are in essence

expressions of quality of service (Qos) that can be translated into metrics that can be

calculated based on the attributes of the storage resource i.e. disk arrays, local drives etc. The

semantic-based approach allows the automatic mapping of QoS requirements into concrete

methods of calculation. This design makes this approach applicable to multiple storage

providers that support storage configurations and different software and hardware stacks.

In the same scope but geared more towards the cloud infrastructures and not so much

towards cloud storage services, Cicotti et al. in [43] leverage the capability of the cloud to

offer a monitoring solutions on an as-a-service service paradigm. More specifically, they

introduce the concept of Quality of Service MONitoring as a Service (QoSMONaaS) that

can be provided to the users in a seamless manner through the cloud. In the QoSMONaaS

delivery model of SLA monitoring, each SLA is comprised of two elements; firstly the Key

Performance Indicators (KPI) that will be monitored and secondly how frequently the KPIs

will be gauged. QoSMONaaS uses the notion of quality constrains to express the evaluation

of the KPIs as predicates. The predicates are expressed with the assistance of two temporal

operators namely along and within. The along operator verifies that a quality constraint QC

is true for a specific period of time T - "QC along T" - whereas the within operator verifies

that a quality constraint QC is true at least once in a specific period of time T - "QC within

T". This configuration allows the use of temporal expression in Linear Temporal Logic

for a special version of LTL-logic that supports only the global and eventually operators.

The QoSMONaaS framework includes two components namely the QoSMonitor and the

QoSChecker. comprised of the following components. This is illustrated in figure 2.2.

The Data tier is the layer where the complex event processing of the real time data

streams are being processed and where the data regarding the SLA metadata is permanently

stored in a database. The Business Logic tier is comprised of two modules namely the

QoSMonitor and the QoSChecker.

The QoSMonitor is broken down into the 5 following components:
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Fig. 2.2 QoSMONaaS system architecture

1. Controller - coordinates the rest of the componenrs to enable the monitoring process

2. DBManager - centralised connector that stores and retrieves data from the database

3. Parser - parses the SLA and makes sure that it is syntactically sound

4. Translator - translate te SLA requirements into CEP queries to be executed from the

montior

5. Certifier - adds timestamp and digital signatures on the checks that the monitor

conducts to make them unforgeable

The QoSChecker is broken down into the 2 following components:

1. QoSDetector - it runs the monitoring algorithm

2. QoSManager - it facilitates the submission of new quality constraints to be monitored

and also sends back reports and notifications if a constraint has been breached

Due of its nature, cloud resources an be scattered across multiple cloud providers.

This property makes it possible to utilise a federated cloud to deploy user services. This

complicates the monitoring and enforcement of SLAs because multiple providers are involved.

To this end, Cascella et al. in [36] show a framework with the name Contrail can enable the
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monitoring of SLA in federated clouds. Contrail is comprised of three main components:

(i) Contrail federation, (ii) SLA manager and (iii) the Virtual Execution Platform (VEP).

The Contrail federation abstracts away the cloud resources from the providers and allows

users to interact with only a single component. Use applications are submitted in the Open

Virtualization Format (OVF) specification and their SLA requirements are expressed based

on that. Based on the requiremens in terms of SLAs, the federation component decides

what are the best options to deploy the services. The VEP is used to go ahead and perform

the deployment step. Contrail can support cloud implementations in OpenNebula 3 and

OpenStack 4.

2.4 Metrics for Service Level Agreement

In this section we present review of the body of literature with regards to the monitorable

metrics that can be included in an SLA.

A comprehensive survey with the security parameters of SLAs, has been conducted by

the European Network and Information Security Agency (ENISA) and is presented in [86].

The survey is the result of a report from 117 security officers from 17 European countries.

The report highlights the fact that security officers no longer need to apply security policies

on privately owned infrastructure but instead they need to be able to effectively manage

contracts with service and infrastructure providers in the cloud. The report highlights the

need for a clear understanding between service users and providers of what are the key

artefacts of a monitorable SLA. More specifically the SLA parameters that are required are

the following:

1. Parameter definition - what exactly is going to be measured

2. Monitoring methodology - the methodology that will be used for the real-time

monitoring activity

3. Independent testing - if possible test the SLA parameters independently i.e. from the

service users themselves or a third party

3https://opennebula.org/
4https://www.openstack.org

https://opennebula.org/
https://www.openstack.org
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4. Incident/alerting thresholds - contact the relevant party if a violation occurs. This

requires that certain threshold have been defined for the measurable SLA parameters

5. Regular reporting - report the monitoring results of the SLA parameters on a regular

basis

6. Risk profile considerations - define the incident thresholds based on the risk that

entail for the organisation

7. Penalties and enforcement - associate incidents with financial penalties and attempt

to provide incentives to providers and users to honour their contractual obligations

Sahai et al. in their work in [113] have also underlined the requirement for the specification

of a set of guarantees that will enable us to overcome the loosely-defined principle of

operation for Grid computing. We argue that Grid computing and Cloud computing have

significant similarities and as such we regards their work relevant for the definition of

guarantees that are monitorable in the Cloud SLAs. The authors propose an architecture for

specifying and monitoring guarantee terms that will be part of a service level agreement. To

achieve this they also introduce a service level agreement specification language that will

allow the definition of SLAs in an unambiguous manner. According to the autor’s proposal

the SLA is composed of the following:

1. Purpose – Why create an SLA in the first place

2. Parties – What are the parties that are involved and what is their respective roles

3. Validity Period - For how long is the SLA going to be active and monitored

4. Scope – What services are going to be included in the SLA

5. Restrictions – What need to be done for the services to be provided

6. Service-level objectives – What are the agreed levels of service that have been decided

both from the providers and the users. Services levels include a set of service indicators

such as availability, performance and reliability. All service levels will have to attain a

certain goal. Service levels are valid for a specific predefined period of time
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7. Service-level indicators – How the service level objectives are gauged

8. Penalties – Provides an unambiguous description of what will happen is an objective

has not been met. Users should be able to terminate an SLA if the desired service level

objectives have not been satisfied

9. Optional services – provides for any services that are not normally required by the

user, but might be required as an exception.

10. Exclusions – Define what should not be part of the SLA

11. Administration – provide and account of the processes created in the SLA to meet

and measure the service level objectives

Note that the in points 6 and 7 in the list above, each SLA can include a series of service

level objectives that are measured with the assistance of service level indicators. Therefore,

a service level objective can be any aspect of the service that is measurable and can be

associated with a service level indicator.

By the same token, in [100] Paschke and Schnappinger-Gerull, highlight the importance

of metrics for the definition and monitoring of useful SLAs. They argue that SLA metrics sit

in the heart of a successfull SLA and are of great importance in the performancce compliance

of the services with the user’s requirements. More specifically, in their work they have

produced a comprehensive categorisation of SLA metrics that can help organisations to put

together their SLA strategies and use the appropriate set metrics to support them. The list

that is presented is the result of the collaboration of the authors with IT service providers

from small and medium size enterprises and large organisations.

The intention to improve the experience for cloud users and to facilitate the improvement

of the use of cloud services, the European Commission has produced a technical report with

a series of standardisation guidelines for the definition of cloud service level agreements that

are presented in [135]. The guidelines are proposed to assist businesses to fully leverage

operational capacity of cloud computing within the boundaries of the European Union.

As a result of the report’s analysis four core groups of service objectives have emerged.

More specifically, the groups of metrics are Performance, Security, Data Management and
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Personal Data Protection. A complete view of all the metrics that have been associated with

each group is presented in table 2.1.

Performance Service Level Objectives

Metric Description

Availability The property of being accessible upon demand from an authorised

entity. Availability can manifest as a service property in different

ways and this needs to be clearly defined. For instance, it could be

represented as level of uptime, percentage of successful requests,

percentage of timely service provisioning requests

Response time Response time describes the time interval between a request

and a its corresponding correct response. This could be average

response time or maximum response time

Capacity Capacity refers to the maximum value for a service or system

property. For instance the number of simultaneous connections,

the number of simultaneous service users or the maximum value

for the capacity of a resource such as computational power or

memory available.

Capacity Indicators Specifies capabilities of the cloud service that might be outside

from the cloud system. Such system could be other cloud services

or other non-cloud systems such as in-house customer systems

Support The presence of an interface that allows uses to perform queries

or instantly inform service providers that an issue has occurred.

Typical metrics for the definition of supports could be the support

hours, support responsiveness and resolution time
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Reversability & termination This refers to the period of time that can take the service user to

retrieve their data. Also, termination refers to the process that the

providers have in place to describe how the termination of the

agreement will take place and for how long the backup copies of

the user data is going to be retained by them. Finally, this can

refer to the residual data retention that defines the period of time

that user related metadata is going to be retained by the provider.

Ideally, service users should have the capacity to request to have

their personal information completely removed by the service

providers whose services they have been users. This property is

commonly mentioned as the right to be forgotten

Security Service Level Objectives

Metric Description

Service Reliability Service reliability is associated with the service’s ability to

perform its function in a correct and timely fashion. In this

category of metrics cloud providers could also use the level

of redundancy of the constituent components of the service to

describe how reliable the service can be in the unlike event of a

failure of one or more of its components

Authentication &

Authorisation

The metrics for that category refer to the presence of a mechanism

for implementing an authentication process to verify the identity

of the service users. Also they refer to the system’s capacity to

grant authorisation to authenticated users to perform a specific

set of actions. Authentication and authorisation metrics can be

evaluated on the basis of the mean time it takes the provider

to revoke access to a user upon request, where are the user

credentials stored and whether third party authentication is

supported
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Cryptography Cryptography is used to protect the data be it at rest or in transit.

The evaluation of cryptography can be performed on the basis of

the strength of cryptography algorithm based on the key length

and the algorithm itself. Also the level of cryptography can be

assessed based on the how well protected are the cryptography

keys and if any specialised hardware is used to perform the

encryption of the data

Incident Management &

Reporting

Incident management and reporting refers to parameters such

as the percentage of timely incident reports, the percentage of

timely incident responses and the percentage of timely incident

resolutions

Logging & Monitoring Logging can refer to the parameters that are logged during service

execution, what log entries does service users have access to and

for how long are the logs being retained from the providers

Auditing & Security

verification

This category refers to metrics that are related to the auditing

capabilities of the provider. This could be evaluated with

regards to what processes does the provider has in place to allow

independent evaluation from a third party auditing authority

Vulnerability Management Vulnerability management is critical for the preservation of

business continuity. Vulnerability management can be assesses

on the basis of the percentage of timely vulnerability corrections,

the percentage of timely vulnerability reports and the reports of

vulnerability corrections that are produced from the providers for

the their service consumers
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Governance Governance of service alludes to the way cloud services are

directed and controlled. Governance can make references to what

is the type of change that can occur on a service (SLA change

or functional), how long does it take to the service provider to

notify the service users about the imminent changes and what is

the percentage of timely cloud service change notification. This

critical because users need to be aware of all service modifications

at all times

Data Management Service Level Objectives

Metric Description

Data Classification In the context of cloud services there exist three separate classes

of data - cloud service customer data, cloud service provider

data and cloud service derived data. The classification of data is

evaluated from users based on what policies exist in the providers

to describe how they might be using cloud service customer data,

what data is going to be created as a result of the execution of a

cloud service and what are the right that cloud customers have

upon the derived data
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Customer Data Mirroring,

Backup & Restore

This group of objectives refers to the following SLA parameters:

1. Data mirroring storage - How long does it take to mirror

the data to another medium

2. Data backup method - With what method does the

backup process is performed

3. Data backup frequency - Time between backup

operations

4. Backup retention time - For how long does the provider

keep the data before it is discarded

5. Backup generations - The number of backups that are

available when restoring data

6. Max data restoration time - Time it takes for data to be

restored from an available backup

7. Percentage of successful data restorations - The number

of successful data restorations divided by all the attempts

to restore the data

Data Lifecycle This is a reference to the data deletion type i.e. how the data is

disposed of, the percentage of timely deletions and the percentage

of tested storage retrievability. The last metric is the amount of

customer data that is retrievable after it has been deleted

Data Portability Since data might need to be migrated to antoher system data

portability is a desirable metric that needs to be included in an

SLA. It can be measured based on the data portability formats

that are available, what tools are available to the users to easily

export the data in a portable format and what is the transfers rate

if the data is to be ported
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Personal Data Protection Service Level Objectives

Metric Description

Codes of conduct,

standards and certification

mechanisms

What are the certifications and codes of conduct that the service

provider is using to operate internally and in compliant with. This

is particularly appropriate in the case of the GDPR EU directive

Purpose specification This is refers to the provisioning of a list of processing purposes

of the data that are outside the scope of what the service customer

has explicitly requested

Data minimisation This gives a concrete view of what the provider does to actively

retain as little personal user data as possible. Also, providers

will need to explicitly define the maximum time that generated

temporary data will be retained and the maximum period of time

that it takes them to delete customer data upon request from their

customers

Use, retention and

disclosure limitation

This is critical in the case of legal actions that might be taken

against the cloud customers where the authorities might require

data to be disclosed. This metric could represent the number of

customer data disclosure to law enforcement entities such as the

police - if the release of such information is permitted by law -

or the number of personal data disclosure notifications that is the

number of customer data disclosures that have been done after

the data owners have been notified within a specific period of

time

Openness, transparency

and notice

Transparency is a reference to 1 tier subcontractors that might be

involved in the provisioning of resources or other services that

the original service might be using
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Accountability This SLA metric refers to the policies that providers have in

place regarding data breaches in the case that they happen. Those

policies should describe in detail the protocol that will be applied

to hold accountable the appriate entities as soon as a breach has

taken place. Also, accountability can refer to the documentation

that should be available to customers and where all internal

procedures of the cloud provider should be described and used

to show the provider’s compliance with standardds and data

protection directives

Geographical Location Geographical location refers to the list of geographical locations

where data can be stored and also defines whether providers offer

the ability to the users to explicitly state where their data is going

to be geographically located

Intervenability Intervenablity is the capacity of the service provider to support

the customer’s requirement for the exercise of data subject rights

in a timely and efficient manner. This could be measured as the

period of time that it takes the provider to serve such requests

from its customers

Table 2.1 SLA metrics defined in the Cloud Service Level Agreement Standardisation
Guidelines report in [135]

2.5 Monitoring Frameworks for the Cloud

The need for monitoring applications and infrastructure in the cloud, is of critical importance

for users and providers alike. The monitoring process enhances the control that users

can exercise over their applications and data when deployed in cloud platforms. It also

enables providers and users to inspect certain key performance and security indicators and

provision resources accordingly. Usually the quality of service and the security properties

are expressed in the form of SLAs, with SLA monitoring being an integral part of the SLA

enforcement process that can detect violation as they happen and notify all the involved
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parties. A comprehensive list with the activities that are supported by the monitoring of cloud

applications and systems are the following:

1. Capacity and Resource planning - To guarantee performance providers need to make

a concrete plan of the resources that re required to meed user requirements [88]. Also,

capacity and resource planning is an activity that is also relevant to the cloud users

because they also need to know what resources to request from providers to satisfy the

software and hardware needs of their applications.

2. Resource Management - Given the complexity of the cloud’s hardware and software

stack, monitoring can help in acquiring a clear view of the system’s state at all

times [139]. Resource management takes place both at a physical and virtual setting.

Virtualized resources are a key ingredient that cloud computing relies heavily upon.

Virtualized resources can refer to network, storage or computational power that might

need to be modified at runtime.

3. Data Centre Management - Managing large data centres that host the software and

hardware components of the cloud is a challenging task and requires a constant view of

the state of the system. Power outages, system metrics and management of the physical

infrastructure such as ventilation and cooling systems all rely upon the continuous

collection of runtime information and monitoring to ensure the data centre’s smooth

operation.

4. SLA Management - Monitoring is critical for the enforcement of SLAs and the

evaluation of whether performance and security guarantees of the SLAs are respected [107].

Also, in the context of SLA compliance, monitoring can be auxiliary to the audit

process for the certification of SLAs and the verification of compliance with regards to

regulatory constraints.

5. Billing - Due to the cloud’s dynamic nature, billing schemes are flexible as well and

can be applied on the basis of the resources that are utilised by the users. In that

context, monitoring is very helpful in deciding how much users should be charged on

the basis of the resources that they occupy. The billing guidelines can differ based on

the provider and the type of service that the users enjoy. For Software-as-a-service
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types of applications, the number of users or the total number of users can be a billing

criterion. For the Platform-as-a-service model CPU utilisation or response time could

be used to decide about charges and for the Infrastructure-as-a-service model the

absolute number of used virtual machines could define the pricing model [115].

6. Troubleshooting - Typically troubleshooting requires some sort of root cause analysis.

This however mandates that a series of information need to be collected and monitored

to perform the root cause analysis. The information that will be collected and analysed

in most cases will come from different layers of the cloud infrastructure such as

applications metrics, network, storage etc. The monitoring activity can help providers

spot where deviations from normal behaviour can occur and then take action to

minimise the effects that they might have on the system.

7. Performance Management - Performance is a desirable feature that cloud users

require when migrating their applications in the cloud. Performance variability and

availability in general are for most applications a critical aspect that can have a

significant impact on business continuity and user experience. Switching between

cloud providers to attain high levels of availability or making sure that all the nodes

that the application is deployed on are utilised uniformly, can contribute to improved

performance. Monitoring the cloud applications and infrastructure can provide the

necessary insights to enable better performance management [116] and therefore more

performant services for the cloud users.

8. Security Management - Cloud platforms need to satisfy very strict security constraints.

As such, monitoring all user activity can help in proving that the appropriate security

requirements are met and that violations have or have not taken place. In that context

monitoring is of utmost importance because it produces the evidence as to why the

security properties have been respected or breached respectively.

Our evaluation of the existing literature and tools in the space of cloud application and

infrastructure monitoring we will use the following criteria:

1. Scalability - how well, if at all, can the monitor handle an increase in the monitoring

data that need to be collected i.e more data or probes need to be executed
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2. Elasticity - how well, if at all, can the monitor adapt to changes at runtime of the

monitoring target

3. Adaptability - how well, if at all, can the monitor adapt to workload policies that are

related to the monitoring activity. Such policies could be the frequency of probes or

how many resources the monitor can use

4. Timeliness - how well, if at all, can the monitor address the is issue of the timely

discovery of events as they happen. Usually a compromise between frequency of

probes and resource availability is found in order to address timeliness.

5. Autonomicity - how well, if at all, can the monitor manage it self and recover in case

of failures

6. Comprehensiveness - how well, if at all, can a monitor be used to monitor different

types of resources such as physical or virtual. The ease with which users can define

custom monitoring metrics pertains to comprehensiveness

7. Unobtrusiveness - how intrusive is the event capturing process on the system that is

being monitored.

2.5.1 Commercial monitoring frameworks

Most large cloud providers of the market recognise the monitoring of their cloud stack a

critical element of their business model. This is a testament to the overall importance of

monitoring both from the cloud customer and cloud provider perspective. However, most

providers fail to address the issue of fine grained monitoring metrics and expose to its users

only a subset of the metadata that the users might require and that is a key disadvantage of

proprietary solutions that are offered as-is from their respective. providers. In this section we

run a survey on commercial monitoring tools that users can use to gain insight with regards to

the runtime behaviour of their systems that are either deployed in the cloud or on-premises.
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CloudWatch

Amazon is probably the largest player in the market of cloud services. As mentioned,

Amazon’s cloud monitoring service called CloudWatch [14], does not expose many low-level

metrics but mostly information related to the virtual machines. The retention time of

monitoring information is two weeks and after that it is discarded and no longer available for

consumption from its users. An useful feature of CloudWatch is the ability to set up alarms

if certain thresholds are exceeded. The monitoring service is not part of the standard set of

services that is offered and can only be used with an additional charge.

AzureWatch

AzureWatch [13] is Microsoft’s flagship service to address the challenges of application

monitoring that are deployed in the Azure cloud platform. AzureWatch is relatively versatile

and is capable of collecting information regarding virtual machines, databases, storage and

web site applications. Its flexibility lies on the fact that it offers an API for the definition of

custom user-defined monitorable metrics.

CloudStatus

CloudStack is a proprietary paid monitoring platform that is based on Hyperic-HQ, an

open source network monitoring solution for cloud infrastructures. CloudStatus integrates

smoothly with two of the most well known cloud platforms namely Amazon Web Services

and Google App Engine. A plethora of metrics are available and several methodologies for

root cause analysis for possible issues are available out-of-the-box from the platform.

Monitis

Monitis [16] is a distributed monitoring system that installs agents on-site to collect vital

performance information. Alerts can be enabled to notify users if resources are less than

expected. It has mainly been built around Amazon’s EC2 services and exposes an open

REST API for adding new metrics.
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LogicMonitor

LogicMonitor [15] is a on-line set of tools that are specifically designed for low level

monitoring of virtual infrastructures by means of a multilayer approach. LogicMonitor’s

monitoring model is dynamic and can automatically discover new resources as they become

available. It offers integration modules for multiple hypervisor technologies such as Citrix

XenServer, VMware vSphere and ESX. A comprehensive dashboard is also available for

user consumption where all the monitoring data and results are consolidated.

Aneka

Aneka [137] is not simply a monitoring framework but a complete ecosystem for deploying

applications in virtualized environments. It exposes an API that enables the development and

deployment of .NET applications in public and private clouds. Its monitoring capabilities are

baked into the software development kit (SDK) and are part of the application itself. This

provides uses and software engineers with all the necessary tools to define very low level

metrics for their applications.

GroundWork

GroundWork is provided as service for monitoring data centres. Internally it uses an open

source monitoring project called Nagios and it can take advantage of different plugins to

connect to a variety of devices that might exist in a datacenter. It can collect data and monitor

it both for virtual resources and applications. It also integrates with multiple virtualization

technologies and cloud providers such as Amazon’s EC2 service.
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CloudWatch No Yes No Yes No No No

AzureWatch Yes No Yes No Yes No No

CloudStatus Yes Yes No Yes No No No

Monitis Yes Yes No No No Yes No

LogicMonitor Yes Yes No No No Yes No

Aneka Yes Yes No No No No No

GroundWork Yes Yes No No No Yes No

Table 2.2 Evaluation of commercial monitoring tools and frameworks across a set of monitor
attributes

In table 2.2, we present a list with all the commercial monitoring tools that we have

examined in our survey against the attributes presented in section 2.5 i.e. scalability, elasticity,

adaptability, timeliness, autonomicity, comprehensiveness and finally unobtrusiveness. As it

can be seen, all the frameworks that have been examined in some way they intervene is the

normal service or system execution to collect information and therefore they all score No to

unobtrusiveness. This also supports the idea that the monitoring activity typically imposes

some sort of overhead on the system that is being monitored in the form of additional latency,

performance degradation or extra resource utilisation. An other interesting observation is that

most of the tools examined do address at least on of the scalability, elasticity and adaptability

properties. This seems to be a common pattern that is crucial for the current state of affairs

where Cloud and distributed computing is gaining traction for SMEs and big organisations.
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2.5.2 Open source monitoring frameworks

In this section we give an account of open source tools that are used from service and

infrastructure providers to offer monitoring capabilities to their customers or that users use

independently for their applications.

Nagios

Nagios 5 is a well-known monitoring solution that has stand the test of time since its first

release that was in 1999. It is a powerful monitoring solution that enables organisations to

detect and deal with IT infrastructure problems and prevent them from disrupting business

continuity and normal system operation. Originally it was indented to be used as a standalone

solution for system administrators to allow constant monitoring. However, since the advent

of cloud computing, its basic functionality was enhanced to incorporate the monitoring of

virtual resources and storage services. Nagios is shipped with a set of predefined agents that

collect monitoring data and sends it for aggregation in a central module. The agents are open

source and their implementation is extensible to enable the development of custom agents.

Extensibility is a key feature of Nagios which has been a key factors for its wide adoption.

OpenNebula

OpenNebula 6 is set of tools geared towards the management of virtualised resources.

This characteristic makes it a suitable choice for cloud providers. In its standard version

OpenNebula incorporates monitoring capabilities that allow the close supervision of the

resources. Through a component called the Information Manager it collects information

about the physical and virtual infrastructure and can be very useful for users and system

administrators alike. Internally it uses collectd 7, is a daemon that gathers system and

application basic performance indicators at predefined time intervals and supports the storage

of the collected values in an array of different file type such as Round Robin Database (RRD).

The collection of the monitoring metrics is conducted over SSH and the collecld daemons are

responsible for executing system probes on each host that they reside. A central dashboard

5https://www.nagios.org/
6https://opennebula.org/
7https://collectd.org/

https://www.nagios.org/
https://opennebula.org/
https://collectd.org/
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presents the monitoring information in an integrated manner. OpenNebula supports Xen,

KVM and VMware hypervisors.

CloudStack ZenPack

CloudStack 8 is an Apache open source project designed to enable the deployment and

management of large networks of virtual machines, as a highly available, highly scalable,

Infrastructure as a Service (IaaS) cloud computing platform. CloudStack is suitable for all the

standard delivery models of cloud computing and can span from public clouds on behalf of

well-known cloud providers to private clouds for in-house use. CloudStack is implemented

in Java and does support multiple hypervisors such as VMWare, KVM, and XenServer.

CloudStack ZenPack 9 is an open source monitoring solution that has been developed by

Zenoss a privately owned company and can be easily added in a CloudStack installation

as an extension 10. CloudStack ZenPack can collect a plethora of metrics for CloudStack

deployments. More specifically:

1. Memory, CPU, Private Storage - Allocation

2. Public IPs - Total and used

3. Private IPs - Total and used

4. Memory - Total (with and without over-provisioning), Allocated and used

5. CPU - Total, Allocated and used

6. Primary Storage - Total, allocated and used

7. Secondary Storage - Total and used

8. Network - Read and write

ZenosPack can be used to monitor SNMP-enabled devices or it can monitor via an HTTP

API. SNMP stands for Simple Network Management Protocol and most network devices

such as routers and switches can use it to comminicate infromation about their state.
8https://cloudstack.apache.org/
9https://www.zenoss.com/product/zenpacks

10https://github.com/zenoss/ZenPacks.zenoss.CloudStack

https://cloudstack.apache.org/
https://www.zenoss.com/product/zenpacks
https://github.com/zenoss/ZenPacks.zenoss.CloudStack
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LogStash

LogStash 11 is an open source monitoring platform that operates on the server’s side. It can

consume information from multiple sources at the same time, manipulate it to fit the desirable

model and then persist it. It is a project that has been implemented by ElasticSearch, a

company that offers distributed real-time text analytics. LogStash is intented to be used with

log files and in that regard it is different that the other monitoring solutions. The operational

model of LogStash mandates that a LogStash agent runs on every monitored host and this

is called a shipper. Shippers read data from log files, the standard input, etc. and ship it by

means of AMQ to the LogStash indexer. The indexer parses the data and applies filters and

routes to move the data forward. The LogStash indexer sends the filtered data to an instance

of ElasticSearch that offers a set of tools for text analysis. From an implementation stand

point LogStash is written in JRuby 12 and uses Redis [48] as persistance layer. LogStash

has been designed with scalability in mind and can scale smoothly in thousand of nodes by

leveraging the scalability features of Redis.

PCMONS

PCMONS [50] is an abstract general-purpose monitoring architecture that is mainly for the

use in private clouds that use open source technologies. It encompasses three basic layers

that interact with each other and are the Infrastructure layer, the Integration layer and the

View layer. The Infrastructure layer consists of the basic facilities such as the hardware

and network and the available software such as the operating system and the hypervisors.

The Integration layer is providing an set of tools to facilitate the interoperability of the

user’s actions on the infrastructure layer and enable the use of heterogeneous hypervisor

technologies. Finally the View layer is the presentation layer where all the monitoring

information is shown. The view layer can include system alerts based on the collected

monitoring data or the results of the monitoring activity for a service level agreement (SLA).

PCMONS in terms of implementation, is designed in a generic fashion to avoid relying on

specific tools and technologies. The system is divided in the following modules:

1. Node Information Gatherer - collect information at a node level
11https://www.elastic.co/products/logstash
12https://www.jruby.org/

https://www.elastic.co/products/logstash
https://www.jruby.org/
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2. Cluster Data Integrator - integrate the monitoring data collected by the node information

gatherer to avoid unnecessary transfer of data

3. Monitoring Data Integrator - collect and persist the monitoring data in the database

for historical purposes. This data is propagated to the Configuration Generator

4. VM Monitor - insert specific scripts into VMs, execute them and collect monitoring

metadata about the runtime state of VMs such as CPU usage and memory

5. Configuration Generator - consult the database to create the necessary configuration

files to present it in the view layer

6. Monitoring Tool Server - receive monitoring data for the resources that are being

monitored

7. User Interface - it can be a custom dashboard where the monitoring results are

presented or Nagios

8. Database - permanent storage where the configuration files and the data from Monitoring

Data Integrator module

PCMONS is very abstract in terms of its design. The objective of its creators is to

detach it from technologies that are specific and its key feature is extensibility.

DARGOS

DARGOS is a scalable and adaptable for cloud resources that are being shared by multiple

tenants that use the same physical resources. DARGOS refers to a distributed architecture

for resource management platform. DARGOS is by design distributed and efficient and is

tailored to be used in the cloud. It also enables the definition of new metrics in an easy

and manageable way. According to the authors’ analysis, DARGOS introduces a minuscule

overhead when compared with similar monitoring tools. DARGOS incorporates two main

modules:

1. Node Monitoring Agent - Multiple node monitoring agents are installed and more

specifically one on each node.They are the software components that collect the
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metadata regarding the physical and virtual resources. Every agent is linked with

a certain zone in the cloud. Users are able to inspect monitoring information from

multiple zones.

2. Node Supervisor Engine - The node supervisor engine is responsible for gather all

the monitoring data that has been previously collected from the local agents and make

them available to the end-users or administrators via a set of visualisation tools or the

REST API for easy integration with other systems.

DARGOS has been designed based on OpenStack and therefore all virtual resources and

services that are monitored are defined on that basis.

Hyperic-HQ

Hyperic-HQ 13 a tool for performing application monitoring and performance management

for virtual, physical, and cloud infrastructures. It is open source and is implemented in Java.

It uses Java agents to collect data from an array of operating systems such as Unix, Linux

and Windows. A very useful feature of the Hyperic-HQ monitor is its ability to dynamically

discover what resources are available and allow its users to decide if they need to monitor

them or not.

Sensu

Sensu 14 is a cloud monitoring solution that as its backbone of communication uses RabbitMQ.

It is open source and can be used as-is or a custom version with additional support and

consulting can be given by Sensu, the company that maintains and continues to add features

to its codebase. Sensu offers a flexible architecture, that enables the execution of service

checks, the gathering of metrics, and the processing of events at scale. It is comprised of the

following modules:

1. Secure Transport - Sensu services use RabbitMQ as way of communication

2. Data Store - a persistent storage repository in Redis. This setup allows Sensu services

to remain stateless and store state data in Redis
13https://sourceforge.net/projects/hyperic-hq/
14https://sensu.io/

https://sourceforge.net/projects/hyperic-hq/
https://sensu.io/
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3. Check Execution Scheduler - it supports two separate check execution schedulers;

the Sensu server and the Sensu client. The server schedules and runs checks requested

by the users and publishes them in RabbitMQ and the client runs checks on the local

system only.

4. Monitoring Agent - the monitoring agents are components that run scheduled check

executions. Agents can self-register and clients can subscribe to receive the data they

they collect in a publish/subscribe model

5. Event Processor - an event processor that goes through the event data and can decide

to take action if necessary

6. RESTful API - an API that can be used to perform administrative tasks on Sensu and

also view monitoring results in a JSON format

Sensu has a focus on extensibility, elasticity and scalability.
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Nagios Yes No No No No Yes No

OpenNebula Yes No Yes No No No No

CloudStack ZenPack No No No Yes No No No

LogStash Yes Yes No Yes No No No

PCMONS Yes Yes No No No Yes No

DARGOS No No Yes No No Yes No

Hyperic-HQ Yes No No No No Yes No

Sesnsu No Yes No No No Yes No

Table 2.3 Evaluation of open source monitoring tools and frameworks across a set of monitor
attributes

In table 2.3, we present a list with all the open source monitoring tools that we have

examined in our survey against the attributes presented in section 2.5 i.e. scalability, elasticity,

adaptability, timeliness, autonomicity, comprehensiveness and finally unobtrusiveness. Similar

to our observation for the commercial monitoring solutions that we analysed, open source

tools need to collect information on the system that they monitor, therefore some level of

interference with that system is necessary. Also, all monitor seem to address scalability or

elasticity since they are all intended either for the cloud or they are themselves deployed in

the cloud.

In the last row we have included the monitoring framework that is proposed in this thesis

to demonstrate its strengths and weaknesses against similar commercial solutions. As shown,
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the Big Data security SLA monitor scores in scalability, elasticity and adaptability. That

is because the event captors of the monitor can be scaled out and deployed across multiple

nodes automatically and without any manual intervention. Also, the monitoring activity

adapts to the cluster configuration i.e. add or remove nodes and finally it is elastic since it can

adapt to the addition or removal of resources in the cluster e.g. add or remove computational

power (CPU) or memory respectively. With regards to timeliness our proposal does not

offer any guarantees on when the event will be available and this is heavily dependent on

the network infrastructure. Also there is no autonomicity since the event captors will have

to be placed manually in a location where the nodes of the cluster will be able to access

them. Also once the execution of the service has began, there is no way for the monitor to be

reconfigured so the ability for any kind of meaningful self-government is limited. Finally,

the event capturing process is intrusive since it intercept the actual code that gets executed by

means for modifying it at runtime to enable the capturing of the relevant events.

2.6 Big Data Processing Frameworks

In this section we will give an account of the most common and widely used Big Data

processing frameworks that are both used for research and business purposes. The analysis

will be conducted on the basis of 1. programming model, programming languages, 3. input

data sources, 4. ability to implement iterative algorithms, 5. ability to use machine learning

libraries and 6. type of fault- tolerance. Big Data processing framework in general can be

classified based on the way the consume the data i.e. does the framework receive the data in

one go and no additional data is added during the computation known as batch processing or

does the framework consume data on a continuous basis know as stream processing. Some

of the frameworks presented are suitable for batch processing and some are appropriate for

more real time type of data analysis.

Apache Hadoop - Apache Hadoop is an Apache project that was the first implementation

of Google’s MapReduce algorithm that allowed Google to run its PageRank algorithm

utilising commodity servers. Their seminal work has been presented in [51] and relies heavily

on a distributed file system called HDFS (Hadoop File System). Due to its importance and

because MapReduce has set the foundations of parallel processing of large data sets in the
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domain of Big Data analytics, we will give a more thorough account of the algorithm and how

it achieves the level scalability that is required for the processing of large data sets.Apache

Hadoop’s scalability is significantly influenced by the underlying file system of HDFS. HDFS

is an open source implementation of GFS (Google File System) [62] that has been designed

and implemented by Google and is internally used by it. HDFS is distributed meaning that

the data is scattered broken down into sizable chunks and stored across multiple nodes. In

this setting it possible to keep multiple copies for each chunk of data and therefore through

redundancy to achieve fault tolerance. HDFS uses a master/slave approach. The name node

is the master that holds all the metadata with respect to the locations where the chunks of files

are stored. When a client makes a request for a file in HDFS, the name node is responsible to

respond all the necessary metadata with respect to where the actual data is physically stored

in the cluster. In a typical setup of HDFS, a backup name node called a secondary name

node will be in place to take over in case the main name node fails. This is critical because

name nodes are single points of failure in a Hadoop cluster. On the other hand, the data

nodes are the node where the actual data is stored. They communicate with the name node

on predefined time interval to declare their availability. Typically, when the replication factor

of the cluster is set to more than one, the same chunk of data will be stored on multiple nodes

on the cluter. The name node will make an effort to spread the data as evenly as possible for

two reasons. Firstly, to allow all nodes to contribute equally in the cluster’s storage capacity -

we do not want nodes to be either underutilized or overutilized - and secondly in case of a

failure of a physical node the data that it hosts can be recovered from another node that is

active. A visual representation of HDFS can be seen in figure 2.3.

MapReduce is the programming model that Apache Hadoop uses to parallelize the

execution of the jobs across the cluster nodes. It is important to highlight that the storage

and processing models in Apache Hadoop are intertwined. With that we mean that data

is processed on the data noted that they reside from processes that run on the same nodes.

This allows for data locality and minimizes the transmission of data over the wire which is a

time-consuming and resourceful operation. The algorithm is based on the idea of mapping

data in a key/value set, group the values by key meaning that the values for the same key are

combined and finally a reduction function is applied on the grouped values. The reduction

function is applied on the values for every key.
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Fig. 2.3 Apache Hadoop architecture overview

Figure 2.4 showcases how the MapReduce algorithm works. Hadoop’s model is broken

down into 4 mandatory phases namely the load data phase, the map phase, the partition phase

and the reduce phase. Optionally, depending on the type of aggregate function that needs to

be computed on every key, a combine phase can also exist.

1. Load data phase - Read data from HDFS and transform the original data set into a a

set of types. Input data can be text or numeric data in tabular format.

2. Map phase - Map the tupled data previously loaded into key/value pairs.

3. Combine phase - The combine phase is optional an can be used to combine the

intermediate data on every mapper to minimize the size of data that will have to be

transferred over the network to the reducers.

4. Partition phase - In the partition phase the key/value pairs, or the combined key/value

pairs if appropriate, are partitioned based on keys. Data is grouped by key so as to be

sent to the same reducer.

5. Reduce phase - Apply a reduction function on the values of the same key and save the

results to HDFS.

Hadoop’s execution model uses two basic components namely the Job Tracker and the

Task Tracker. The Task Tracker is a software component that oversee the execution of that

the map and reduce operations when the algorithm is running. The Job Tracker is a software
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Fig. 2.4 Map Reduce algorithm overview

component that is responsible for the allocation of the necessary resources that are required to

execute the tasks managed by the task tracker. Also the Job Tracker schedules and monitors

the Task Trackers and makes sure that they perform their job uninterrupted.

Apache Spark - Apache Spark [155] was originally conceived at UC Berkley in 2009

and became a fully-fledged open source Apache project in 2010. Apache Spark’s execution
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framework is based in Resilient Distributed Datasets (RDDs). RDDs are large sets of data

that are broken down into segments called partitions and are distributed across multiple nodes

within a cluster. RDD bear two key features that make Apache Spark suitable for a multitude

of applications. The first one is that RDDs can, and in fact in many cases, can be stored in

memory during data processing. This increases the speed of processing because in-memory

processing is typically faster than loading data from disk, processing it and then storing it

again. Secondly, due to the fact that RDDs are by design immutable, if the processing of a

partition of an RDD is not successful, Apache Spark can re-run the same computation on

the original RDD and acquire the same result. Therefore, fault-tolerance in Apache Spark is

baked into the framework’s most fundamental structure which is RDDs. A key distinctive

property of Apache Spark compared to Apache Hadoop is Spark’s execution model. In Spark

every program is translated into an acyclic directed graph (DAG) of operations where firstly

data can be fed to more than one operations and secondly data can be provided as input to

the same operation multiple times. Resubmitting intermediate data into the same operation is

a property that has profound implications with regards to the applications that Apache Spark

can be used for.

Apache Spark is different from Apache Hadoop is several respects. More specifically,

Hadoop’s execution model allows for the execution of only one pair of map and reduce

functions. Spark’s execution model allows the execution of multiple operations that can be

stringed together in the form of a directed acyclic graph. Hadoop’s operations take place in

memory but the final result is stored on the disk. Contrary to that, Spark’s operations take

place in memory as well but it is possible and many cases advisable to keep the results of the

operations in memory for further processing. Keeping intermediate results in memory in most

cases result in more efficient data processing in terms of execution time. In Hadoop, at least

in the default version, only a map and reduce can be applied on the a data set. That means

that if for some algorithm requires that the produced results must be mapped and reduced

several times this is not a feature that is part of Hadoop programming model. Opposite to

that, Spark can re-feed intermediate data to operations as as many times as it is required by

the algorithm. The number of iteration can also be defined pragmatically which means that it

can be decided at runtime. This feature makes Spark appropriate for the implementing of

algorithms that require data to be processed iteratively. A prominent category of algorithms
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that maintain this property are machine learning algorithms used for the creation of training

models.

Apache Spark has been designed from the ground up and its creator intended to make

an all around programming model for Big Data processing. To achieve that goal, Spark’s

API offers a unified API that looks and feels as if one is programming against collection of

data and it is no coincidence that Spark’s API has been designed around Java’s and Scala’s

collection API. Writing code in Spark’s API on RDDs feels like coding against collections;

the important difference however is that the code is translated into a DAG that can be executed

on a distributed environment. To address the different domains of interest the exist in Big

Data processing Spark offers 5 programming interfaces where all of them are based on the

concept of RDDs. More specifically, the 5 APIs are the following:

1. Core - Basic functionality around RDDs for in-memory processing.

2. Streaming - Set of operation that allow processing of streaming data. The API provides

a set of functions that allow stream-related operations such as window operations to be

executed. Spark implements stream processing in the form of micro-batching.

3. SparkSQL - The SparkSQL allows the creation of SQL queries to interrogate the data

as if it is a database table in the traditional sense. SparkSQL comes with an SQL parser

that support the full capabilities of ANSI-SQL. This makes Spark more intuitive for

database administrator and database developers to use without the need to learn a new

API.

4. SparkMLib - SparkLib exposes a suite of machine learning algorithm implementations

in the form of library that make the usage of the most common machine learning

algorithms an easy task.

5. GraphX - GraphX is an API that offers the ability to process data represented in the

form of a graph in a distributed manner. Also, in the GraphX library a set of know

graph algorithms have been implemented such as PageRank [97].

Spark’s architecture, just like Hadoop, follows a master/slave approach. More specifically,

every execution of a Spark program will require the presence of the 3 following software

modules:
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1. Driver - The driver is a program that runs on JVM and is responsible for keeping a

reference on the Spark context object. The Spark context object is where the directed

acyclic graph of operations is stored and submitted to the worker nodes for execution.

2. Cluster Manager - The cluster manager is a program that is responsible for the

allocation of all the necessary resources across the available nodes of the cluster, to

support the execution of tasks. The cluster manager spins up the JVMs that will host

the driver and the executors on the worker nodes where the tasks will be launched

for execution. Spark is bundled with a default cluster resource manager called Spark

standalone or Master while it also supports Yarn [136] and Mesos [67] cluster resource

manager frameworks respectively.

3. Workers - The workers are standalone software components where the driver can

assign tasks for execution. Tasks are units of work that the DAG has been broken down

to based on the types of operations that the user wants to execute and are described

in a Spark program. As soon as tasks are completed, they inform the driver and the

computation moves forward until the complete set of tasks has been launched and

executed successfully.

Apache Storm - Apache Storm [131] is a project created by Nathn Marz in a company

called Backtype that was later acquired by Twitter. Storm is a distributed, scalable and

fault-tolerant data stream processing framework that can run on commodity hardware. Similar

to Hadoop and Spark, Storm uses a master/slave approach when executing tasks. The master

node is responsible for running a program called Nimbus which schedules task execution,

supervises task execution and re-executes them in case of failures. Also, the Nimbus is

responsible for distributing the code that needs to be executed from the worker nodes. Worker

nodes are responsible for running a program called a Supervisor that is actively listening for

new task assignment from the Nimblus. As soon as a new task is assigned to a Supervisor,

the Supervisor executed the code of the task and reports back to the Nimbus.

Storm’s execution model is different from the one used from Hadoop and Spark. That

is because of Storm’s intention is to address the activity of data stream processing and not

so batch or iterative data processing. Programs in Storm are represented by a topology. A

topology bearrs the same properties with the directed acyclic graph that Spark uses. In fact,
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from an implementation point of view, topologies in Storm are implemented by means of

using a DAG. So, as in Spark, a topology is a graph of computations that operation are strung

together until a final result is produced. Nodes in the topology typically represent some piece

of logic that we need to apply on the straming data and are called bolts. Data move from

one bolt to another and are represented by means of a core Storm abstraction called a stream.

A stream can be thought as an unbounded sequence of tuples. The topology can read data

from multiple data sources that are called spouts. Typically spouts are an entry point for

most topologies and can be a database, a distributed filesystem or a distributed mesaging

framework such as Apache Kafka [77]. A visual representation of a topology can be seen in

figure 2.5.

Fig. 2.5 An example of a Apache Strom topology

From an execution stand point, topologies are translated into worker processes that are

launched across the cluster. It is critical to highlight, that in order for Storm to achieve

parallelism, multiple instances need to be instantiated for all spouts and bolts. Once the

topology has been defined, the code submitter will have to provide the necessary configuration

parameters regarding the level of parallelism for each spout and bolt. Also, Storm, through

its API, provides all the semantics that are required for the proper transmission of data among

spouts and bolts. Storm uses different grouping strategies to decide how the data will flow

between the nodes of the topology.

The topology shown in figure 2.5 is an abstraction of Storm’s execution model. To gain

some more insight in figure 2.6 we illustrate how the topology will be represented during
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execution from Storm with regards to the worker processes that will have to be instantiated.

This is a contrived example where the level of parallelism is as follows: 2 Spout A processes,

1 Spout B process, 2 Bolt A processes, 3 Bolt B processes and 2 Bolt C processes.

Note that the workers will not necessarily run on the same physical engine. For instance

Bolt B worker processes can run on different nodes and from a programming stand point they

are implemented as threads running on a JVM executor. In fact Storm makes a concerted

effort to spread the worker processes as much as possible to take advantage of all the available

resources in the cluster and therefore maximize its data processing efficiency.

Fig. 2.6 Worker processes for the topology presented in figure 2.5

As it can be seen in figure 2.5 and figure 2.6 data is read from the spouts and is propagated

to bolts. Since multiple instances for each bolt can exist, Storm needs to know how to

distribute the data from spouts to bolts or from bolts to bolts. To fulfill that requirement,

Storm as part of the topology specification uses the notion of grouping. Grouping defines the
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strategy with which data will travel from between spouts and bolts. A list with all the built-in

types of groupings that are included in the default version of Storm is shown in table 2.4.

Storm’s API exposes an interface in case a custom grouping is required. One can

implement the interface and use the custom grouping in the same way that the default

grouping can be used.

Apache Samza - Apache Samza [94] is a stream processing framework that has been

created by LinkedIn and it was out souced as an open source incubator Apache project in

2013. Samza works closely with Apache Kafka [77], a distributed messaging broker, and

Yarn [136] for the dynamic allocation of resources in a distributed environment. A key

feature of Apache Samza compared to other Big Data processing frameworks is that it offers

by default filesystem persistence capabilities for the state of the tasks that run across the

nodes of the cluster. In Samza tasks as re statefull and their state is persisted on disk. This is

a critical feature because it enables the recovery of failed nodes without replaying the data

but by replaying the state. Samza models the state of a task as a stream.

In Samza streams are immutable unbounded collections of similar data items called

messages. Stream scalability in such a configuration, is attained by breaking down streams

into sub-streams called partitions. Partitions represent chucks of data into which streams are

broken down to. Also messages in partitions are order sequences based on the time that they

arrive. Messages can be uniquely identified by an offset. Offsets are unique within partitions

but not across partitions of a stream. Newly arriving messages are appended to the stream of

data and more specifically to some partition of the stream at hand. Messages are appended to

partitions based on a key that is decided by the writer of the message. This guarantees that

messages with the same key will be sent to the same partition every time. A representation

of the stream stream abstraction with its partitions can be seen in figure 2.7.

Jobs are units of work that apply a logical transformation on a collection of input streams

and produce a collection of output streams. Processing scalability is achieved by breaking

down jobs into multiple tasks that get executed in parallel. There is a one to one mapping

between stream partitions and job tasks; a task consumes data from only one partition. The

number of tasks that read data from a stream is dependant of the number of partitions of

that stream. Similar to Spark’s DAG and Storm’s topology, Samza uses a dataflow graph as

an abstraction for the composition of multi-step jobs. Jobs are independant compilations of



74 Literature Review

Grouping type Description

Shuffle Shuffle grouping sends tuples in a uniform random manner to the
target worker process.

Fields Field grouping makes it possible to group tuples based on specific
fields of the tuples. E.g. if there is an id field in the tuples that the
source tasks is reading, with the field grouping it is guaranteed that
the tuples with the same id will go the same target task.

Partial Key Partial key grouping is similar to field grouping with the additional
benefit of load balancing between two target tasks. This grouping
is appropriate when that data is skewed i.e. the values on the
fields that have been used to group the tuples are over-represented.
This will have some of the target tasks to work harder than others
resulting in the under-utilization of certain tasks.

All In all grouping tuples are sent to all target tasks in a
non-discriminatory manner.

Global In global grouping all the tuples of the source tasks are send to
only a single target task. Storm by default sends them to the task
with the lowest id.

None None grouping signifies to Storm that the user does not show a
specific interest with regards to what grouping will be applied. By
default Storm will do a shuffle grouping.

Direct Direct grouping mandates that the source task will have to
explicitly specify what task will be the recipient of the tuples
after the processing.

Local or shuffle Local or shuffle grouping prioritizes the transmission of tuples
from source tasks to tasks that are launched on the same worker
using shuffle grouping. This minimizes network traffic because
tuples do not have to be sent over the network and the efficiency of
the stream processing is increased. If no target tasks are co-hosted
with the source tasks then a shuffle grouping takes place.

Table 2.4 Types of grouping in Apache Storm
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Fig. 2.7 Overview of stream in Apache Samza

tasks and they do not affect one another. If a job crashes it will not cause other jobs to crash

as well. A key difference with Spark and Storm however, is that Samza allows the definition

of cyclic graphs. Edges in the graph are streams containing data and nodes are jobs that apply

transformations on them to meet the user’s requirements. An example of a Samza graph can

be seen in figure 2.8

Samza uses a coordinator for the management of tasks that get executed across the

cluster nodes. Also it monitors the containers where the tasks get launched and executed

while it re-executes tasks that have failed. Another useful feature of Samza is that it uses

incrementally checkpoints the offset for each partition that it has processed so far. This allow

Samza to guarantee that no message will get lost or not get processed. Additionally, another

key feature of Samza is that it uses a permanent state store for every task where is stores

meta-data about the state of the task. This storage component is co-located with the task

itself to increase efficiency and avoid unnecessary network traffic. Also, if the system has to

scale horizontally, since all the state of the tasks is persisted in the state store, tasks can be

easily migrated to other nodes in the cluster without disrupting the normal operation of the

application.

Apache Flink - Apache Flink falls into the category of distributed processing engines

for stateful computations on streams of data or static sets of data i.e. data at rest. Originally

Flink was designed to be a stream processing engine. However, over time is has evolved to
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Fig. 2.8 An example of a Samza dataflow graph

handle batch processing as well. Because of that, Flink treats all incoming data as streams

where in batch processing and it regards batch processing a special case of stream processing

where the stream is bounded. From a deployment point of view, Flink can be deployed in

Yarn [136] and Mesos [67] but is also compatible with containerized deployment models

such as Kubernetes [34].

Similar to Samza, Flink supports the persistence of state for tasks on a durable medium.

If the size of the state get beyond the size of the system’s memory Flink stored the state on

the disk. Task state is sent to the task state repository asynchronously and periodically and is

offered from the framework without any additional effort from its users. An overview of the

this concept can be seen in figure 2.9. Application state is a core concept in Flink and it is

treated as a first-class citizen. A set of high level semantics are provided with the framework’s

API that makes state management easy. More specifically a series of state primitives for

multiple data structures like atomic values, lists and maps. Also, the storage engine of the

state is configurable and can be plugged in to meet user requirements. Also, Flink through

checkpointing of state, make sure that no data is lost or unprocessed and enables it to recover

from failures.
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Fig. 2.9 Overview of the task state persistence mechanism in Apache Flink

Flink comes with a rich API that exposes a series of high level operations such as filters,

joins and aggregate functions. It also provides a machine learing API called FlinkML that

supports the definition and execution of machine learning pipelines. FlinkML API is based

on the principle that all machine learning algorithms is a collection of transformations and

predictors that are strung together. Transformations prepare the data on which the feature

extraction will be conducted by feeding it to a predictor function to eventually create a

training model.

Programs in Flink can be written in Java or Scala. The code submitted for execution goes

through the compiler and a DAG is generated as a result. Subsequently the DAG is sent to

the optimizer where modifications can take place in the way the DAG was submitted from

the user e.g. the order of execution of the operations might change to optimize performance

without affecting the correctness of the application results.
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A comparative table from the survey on Big Data processing engines that were examined

is presented in table 2.5. Our analysis is conducted on multiple criteria that we regard

important such as data format, processing mode, data sources, languages supported, cluster

manager, support for iterative algorithms, interactive mode, built-in machine learning

capabilities and fault tolerance.

Hadoop, Flink and Storm use a key/value data format which is expressive enough for

a multitude of use-cases. Spark uses key/value pairs as well but it represents it within an

RDD. Spark also since version 2.0 support Datasets and DataFrames which strong typed

RDDs for a more versatile data modelling capabilities. Samza uses messages which are

represented as Java or Scala objects. In terms of processing mode the possible modes are

batch and stream processing. Spark and Flink are the only ones that are supporting both of

the modes. Hadoop supports only batch mode while Storm and Samza operate on stream

mode only. In addition, since the code has to be executed on a distributed setting, deployment

is critical. Spark users its own standalone cluster manager while it also support YARN and

Mesos. Hadoop as of version 2.0 and Samza support YARN as well. Flink supports Mesos

and Yarn while Storm uses its own deploy interface that is part of the its command-line

tools. In the relevant table we also give an list of all the data formats that are natively

supported by each framework. Also Spark is the only one that has a read-eval-print-loop tool

to allow for interactive mode. This makes it particularly useful in testing simple cases or

producing quickly small examples to test an idea. Moreover, frameworks such as Hadoop,

Spark and Flink are bundled with built-in machine learning libraries whereas Storm and

Samza do not include them by default. More specifically, to use Hadoop’s machine learning

features one ought to use a special version of Hadoop called Mahout. Spark’s machine

learing module is called SparkML and Flink’s is called FlinkML. Finally, the frameworks

presented are examined with regards to how they achieve fault tolerance. Samza, Storm and

Fink use check-pointing while Spark has to re-compute the partitions of RDDs that have

failed to compute again. Hadoop, since follows the same principle of re-computing HDFS

partitions but will not so adverse consequences since Hadoop’s Map Reduce implementation

is comprised of only two steps and therefore having checkpoints would be of no benefit at all.

In table 2.5 we provide an summary of the Big Data analytics frameworks that we

surveyed in section 2.6. In this summary we give comparison with respect to how each one
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of the frameworks addresses the challenges of distributed data processing. More specifically

the comparison is performed on the following items.

1. Data Format - Data formats that the framework can operate on

2. Processing Mode - Whether the framework can operation on a batch, streaming or

iterative mode

3. Data Sources - Types of data sources that they support out-of-the-box

4. Languages supported - Available APIs that the users can use to programmatically

interact with them

5. Cluster Manager - Whether an additional component that is responsible for the

dynamic allocation of resources on the cluster is available

6. Supports Iterative Algorithms - Whether iterative algorithms can be executed i.e. the

ability to rerun algorithms where the output of the previous execution can feed into the

next execution cycle. This is especially relevant for machine learning algorithms.

7. Built-in machine learning - Whether the framework offers out-of-the-box capabilities

for the execution of machine learning algorithms, at least in their basic format with the

ability for some basic parameterization.

8. Fault Tolerant - Whether there exist mechanisms that fend against failures be it

software or hardware failures.

2.7 Big Data Workflow Definition Tools and Frameworks

In this section we will conduct a survey for open source Big Data workflow frameworks

that can allow the definition of dynamically executed pipelines. The paradigm of pipelining

multiple Big Data processing operations to describe more complex processes, is in alignment

with the concept of Big Data processing where in multiple use-cases it is beneficial to break

down the computations into multiple interconnected steps. Those steps can be arranged in a

specific order and can get executed in-parallel or sequentially on a per case basis. Typically,
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worklow engines provide some high level specification language and the necessary tools to

enable the definition of the the pipelines as well as the definition of flow control structures

such as "if a step is successfully executed then proceed else if it fails to successfully get

executed send an alert". These semantics provide a valuable instrument when it is required

to set up workflows that require complex execution configurations where simply executing

the individual steps in a sequence is not effective enough.

Apache Luigi - Luigi was originally crated by a company called Spotify and was

opensourced in 2012 in Apache. Apache Luigi 15 is an execution framework for Big Data

pipelines that is written as a Python package and can be installed as such with Python’s

package manager called pip. If offers the capacity for task-to-task dependencies and it uses a

central scheduling component that is responsible for the coordination of the execution of the

workflow. The scheduler exposes an HTTP REST API that makes the communication with

Luigi’s execution engine easy and intuitive.

The goal for Apache Luigi is not to build pipeline for short-lived jobs but to address the

challenges that software engineers are presented with when building long-running jobs where

failures are the norm and not the exception. In Luigi’s terminology every step of the pipeline

is a task and tasks can be arranged in a specific layout to achieve the desired objective. A

Task represents a unit of work that can conceptually be grouped and thought as a single piece

of independant work. The complexity of task is up the author of the pipeline regarding the

granularity of tasks. Having said that, a task can be a call to a database, a computation on

a single thread or a Big Data analytics service that is executed on distributed environment.

Luigi comes with several common built-in types of tasks. More specifically, tasks can be

queries to Hive tables, jobs in Hadoop, Spark, a Python program or a query to a database.

Also, custom tasks are also possible to be implemented.

To facilitate the oversight of task execution, a Luigi server is available. The server

exposes a web user interface that can help users search and filter tasks for inspection. The

web interface is very useful for the supervision of tasks and the evaluation of the level of

progress of execution of the pipeline. Task management is not possible through the interface

i.e. start or stop tasks.

15https://luigi.readthedocs.io/en/stable/index.html

https://luigi.readthedocs.io/en/stable/index.html
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As a concept, Luigi is heavily influenced by make, which is the default utility of Unix

for building large programs composed of smaller ones. The dependency graph of tasks is

written purely in Python with the assistance of Luigi’s programming interface. Every task

exposes three methods; the first one is requires() where the dependencies with other tasks

are described, the second one is output() where the location of the produced results should

be placed and finally the third one is run() where logic that the tasks will execute is defined.

Luigi’s application programming interface also exposes callback functions where logic can

be written when certain criteria have been met such as when a tasks has completed its work

successfully. Finally, tasks can have initialization parameters that might be necessary to

customize execution parameters or initialize the task of the state e.g. acquire a database

connection.

Pinball - Pinball 16 is a Python package that was originally created by Pinterest as a

workflow manager to support the execution of Extract Transform Load (ETL) pipelines and

it is installed as a Python package. The definition of job workflows i.e. of the directed acyclic

graph of jobs, is the result of the declarative of a Python dictionary of objects and snippets of

Python code that make references to those objects and the job’s logic is declared.

Pinball’s architecture is comprised of 4 modules:

1. Master - The master is a facade that offers communication with a database where

execution state of the workflow is maintained. By default MySQL is supported.

2. Scheduler - The scheduler performs calendar scheduling of executions

3. Worker - The workers execute the actual jobs. All workers need to connect to the

master as a client application.

4. Web server UI - Web interface for inspection of jobs and how they make progress in

terms of execution. The web UI collects all the execution metadata from the storage

layer that the master users as well.

An overview of Pinball’s architecture is illustrated in figure 2.10.

In Pinball a wrkflow is a graph of jobs. The jobs are represented as the nodes in the graph

whereas the dependencies between jobs are represented as the edges. Jobs can have zero or
16https://github.com/pinterest/pinball

https://github.com/pinterest/pinball
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Fig. 2.10 Architecture of the Pinball workflow manger

more inputs and outputs. In the workflow only inputs needs to be defined explicitly. Outputs

are defined by incoming dependencies in upstream jobs. For instance, consider jobs A and B

where where job B is dependent on Job A. For A we need to explicitly define its inputs but

we do not need to define its outputs. That is because, since we know that job B depends on A

we know that job’s A output is going to be job’s B input.

Jobs in Pinball can exist in three predefined states namely runnable, running and waiting.

1. Waiting - Not all of its dependencies have completed successfully and the job is waiting

until they do.

2. Runnable - All dependencies have completed successfully and the job is ready to get

executed.

3. Running - The job is actively running right now.

A visualization of the job states in the form of a state diagram can be see in figure A.1.

Apache Airflow - Airflow has been designed and implemented from Airbnb as workflow

scheduler. Like the frameworks mentioned above, Apache Airflow offers its API in Python

and one can use Python to define tasks and dependencies as well. Airflow support the

distributed execution of tasks across multiple worker nodes. It also has capabilities for
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Fig. 2.11 State diagram for job statuses in Pinball

calendar job execution scheduling while it exposes through a web user interface a dashboard

that visualizes the execution of the workflow. Also, Airflow’s UI offers management

capabilities over tasks, graphs of tasks or sub-graphs. Administrators can start a task,

execute a sub-graph of tasks or even execute a task ignoring any input dependencies. This is

particularly useful for testing purposes where the administrator needs to verify that a tasks

can run successfully in isolation without having to execute the whole pipeline.

In Airflow state execution is stored in database and has support for multitude of database

vendors such as MySQL and Prostgresql by means of using SQLAlchemy. SQLAlchemy is

an abstraction for interacting with relational databases and offers the ability to Airflow users

to pick the vendor that they wish to use. Similar to luigi, a directed acyclic graph is used to

represent the workflow to be execured. The nodes are the smallest unit of work that is called

a task. Since the graph is acyclic, Airflow will raise a red flag if a cycle is defined.

A core component in Airflow is an operator. Operators are executable components that

are declared in the workflow and are hooks for executing logic. The framework comes with a

set of embedded operators such as BashOperator to easily run a bash script, HiveOperator to

execute a Hive query, PythonOperator to execute a Python program and many more. Custom

operators can be implemented to satisfy specific user requirements is necessary.

Airflow operators are grouped into three categories based on the objective of the operator:

1. Sensor - Sensor operator is a type of operator that keeps running until a certain criteria

is met. It probes the task that gets executed periodically to verify if the criteria provided

are satisfied or not. The time interval for the probes and the timeout values for the

successful task execution are parameterized and are provided to the operator. An
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examples of such an operator is MySQLOperator that executes an SQL query on a

MySQL database.

2. Transfer - Transfer operator is a type of operator that moves data from one system

to another. An example of such operators are S3ToHiveTransfer that transfer data

from Amazon’s S3 distributed filesystem to a Hive table, HiveToMySqlTransfer that

transfers data from a Hive table to a MySQL database and many more.

Typically operators in Airflow do not exchange information during execution. This is

more of a desirable property and less of a limitation. If two operators need to exchange data

then it is suggested that the operators get merged into one. If this is not possible Airflow

supports the exchange of messages through XComs and abbreviation of cross-communication.

CCom uses key/value pairs with timestamps to share state between tasks. XCom can use

either a pull or a push model to receive or send message respectively.

Spring Cloud DataFlow - Spring Cloud DataFlow is part of the Spring 17 ecosystem

and is suitable for building data pipelines. Spring Cloud Datalow offers a toolking for piecing

together Spring Boot 18 applications to build real-time data ingestion and data processing

workflows. A more detailed account of the Spring Cloud DataFlow’s features and capabilities

can be found in section A.1.

A comparison between the workflow management frameworks that have been examined

in this section can be summarised in table 2.6. Our analysis for the workflow managers that

we surveyed is performed against the following properties:

1. Code/Domain Specific Language - Language to define the tasks

2. Web UI - Interface available to interact with the tasks and the workflow

3. State persistence - Ability for tasks to hold state

4. Task prioritization - Ability to set priority over what tasks will be executed

5. Configurable parallelism - Support for parallel execution of tasks in the workflow

6. Who starts workers - How are the workers that will execute the tasks triggered
17https://spring.io/
18https://spring.io/projects/spring-boot

https://spring.io/
https://spring.io/projects/spring-boot
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Luigi Airflow Pinball Spring Cloud

Code/Domain Specific Language Python Python Python Java, DSL

Web UI Yes(Basic) Yes Yes Yes

State persistence No Yes Yes Yes

Task prioritization Yes Yes No No

Configurable parallelism Yes Yes No Yes

Who starts workers User Scheduler/User User User

Implemented in Python Python Python Java

Task communication No XCom No RabbitMQ

Can run multiple DAGs No Yes Yes Yes

Execution management No Yes No Yes

Code shipping No Pickle 19 Pickle Maven 20

Table 2.6 Comparison of workflow management frameworks

7. Implemented in - Programming language of implementation

8. Task communication - Ability of the tasks to communicate during task execution

9. Can run multiple DAGs - Ability to support parallelism of execution across different

task workflows

10. Execution management - Capacity to perform management operations during task

execution e.g. pause or resume a task

11. Code shipping - What is the mechanism that allows the submission of the task code to

the workers for execution
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2.8 Gap Analysis

In this section we will expand on the gaps that we have been able to identify when reviewing

the literature in the context of the monitoring activity of security SLAs for Big Data services.

Ora et al. in [95] describe a solution that allows them to enforce data security and integrity

by means of using RSA partial homomorphic encryption and MD5 cryptography. The data is

partially encrypted and then uploaded in the cloud. Then an MD5 hash is calculated on the

data to verify data integrity. However, in their work the authors refer to data that is at rest i.e.

they do not enforce security during runtime but only when data is stored and not processing.

An interesting framework has been presented by Ba et al. in [23] where they describe a

framework called jMonAtt that is able to monitor the integrity of JVM-based applications

and provide attestation evidence with regards to how much users can trust that they haven’t

been tampered with. Their approach is appropriate for applications that are outsourced in

the cloud and they propose a similar solution with the one that we propose. They use code

instrumentation to collect rutime information where they evaluate the authenticity of the

code that is executed and they compute a score that reflects the framework’s confidence that

they user’s original code has not been modified. However, what they fail to address is the

integrity of the data both when processed and when stored on the disk. Their focal point is

the integrity of the code executed.

In the same vein, Bendahmane et al. in [27] present a novel system based on weighted

t-first voting method for guaranteeing the integrity of MapReduce in public cloud computing

environment. Their approach focuses identifying malicious worker nodes in an Apache

Hadoop cluster that can change the original or intermediate data that is being processed

and thus can compromise the integrity of the final outcome of the computation. However,

the author’s implementation is appropriate for MapReduce systems which is a significant

limitation since graph processing or stream processing applications can be protected for the

proposed solution. Also, their proposal does not handle attacks on the integrity of the data

from external agents but only from malicious internal nodes. Attacks on the integrity of the

data from external systems will go undetected.

19https://docs.python.org/3/library/pickle.html
20https://maven.apache.org

https://docs.python.org/3/library/pickle.html
https://maven.apache.org


88 Literature Review

An equally interesting approach has been demonstrated from Gao et al. in their work

in [59]. In their proposal the authors illustrate how the use of a reputation based algorithm

can be used to provide guarantees with regards to the integrity of the computations in a

MapReduce application. At the beginning when the computation is initialised all the worker

have a neutral score with respect to the level of trustworthiness. A custom scheduler that

operates independently schedules the same tasks to be executed on multiple nodes and

compares the results. According to the results that are produced, the framework constantly

updates the scores of trustworthiness for every node and eventually nodes that have been

compromised are located and eliminated. A key drawback of the system that is put forward is

the fact that computation need to run more than once which raises significant considerations

with regards to performance. Also, the authors do not explain how they compare the

results between worker nodes that are compromised and worker nodes that have not been

compromised. Comparing two datasets can be a laborious task. If all the data items of the

dataset need to be compared one by one will exacerbate even more the overhead imposed on

top of the duplicate execution of tasks.

A promising piece of work has been demonstrated by Shah et al. in their paper in [119].

The authors have been able to design, built and evaluate a mechanism for enforcing security

for data-at-rest that is being processed with the Apache Spark framework. Their proposal is

based on three pillars. The first one is to create a custom serialiser that will transparently

encrypt the data every time it is persisted on the disk and decrypt it evety time data is read

from the disk. The second one is to create a customised RDD called SecureRDD that extends

the basic interface of an RDD and implements its own compute() method that encrypts the

data every time the RDD is stored on the disk and it decrypts its data every time it needs to

run a computation. The third pillar of their approach is to modify Spark’s native persistence

mechanism and enforce encryption on every operation. The third approach that they present

requires that Spark’s central caching mechanism is modified. Despite the their interesting

approach and the use of Apache Spark which is a generic Big Data processing tool and thus

appropriate for many different types of Big Data applications, the authors do not address the

issue of allowing the users to be explicit with regards to what security properties they would

like to enforce on what parts of the Big Data pipeline. In all three proposal that they make the

security policy of encrypting the data is applied across all the operations. Typically a more
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nuanced approach is required to enable users to be explicit with regards to what security

properties they need to enforce and on what aspects of the Big Data application. Also, the

deployment of the components that perform the encryption need to be interweaved statically

in Spark’s source code. This must be done manually, it requires a fair understanding of

Spark’s code internals and cannot be performed dynamically.

In this section we presented several approaches that we believe that attempt to solve the

same challenges as the one that we put forward in this thesis. From our analysis, the gaps in

the literature that we view that our framework makes a contribution can be summarised in

the following list:

1. Lack of a general monitoring framework for the continuous monitoring of security

properties on a generic Big Data processing framework such as Apache Spark

2. Shortage of monitoring platforms that allow users to explicitly define what security

properties they wish to enforce or monitor on what parts of the Big Data application

3. Lack of end-to-end monitoring solutions for Big Data pipelines that facilitate the

automatic installation of the software components that will be responsible for the

enforcement or the collection of monitoring data appropriate for the security property

that the users require to enforce or monitor

2.9 Summary

In this chapter we presented relevant work that exists in the literature with regards to

application and system monitoring. More specifically we survey the literature around security

and privacy properties in particular with regards to Big Data pipelines. In our review we also

look into service level agreement(SLA) monitoring and the existing set of metrics that have

been used to measure the efficacy of the SLAs. Given that our solution is indented for the

space of Big Data, we also give an account of the state of the art for Big Data processing

frameworks and tools that can be used to define pipelines of Big Data services. Finally, this

chapter is concluded with a gap analysis based on our survey in the space of application and

system monitoring where we identify the areas where our thesis will have a contribution.





Chapter 3

Monitoring Framework for Big Data

Security SLAs

3.1 Introduction

In this chapter we provide a detailed description of our proposal for the automation of the

monitoring activity of security SLAs for Big Data pipelines. In section 3.2 we present an

overview of the architecture of the framework and its constituent components. We also give

an account of the individual modules that the proposed framework is comprised of and how

they attain their objectives. More specifically, in section 3.2.1 we describe the process of

service composition which is implemented as a pipeline of Big Data services, in section 3.2.2

we describe how the security requirements are specified, in section 3.2.3 we demonstrate

how they are then translated into the right monitoring artefacts and finally in sections 3.2.4

and 3.2.5 we show how the appropriate event captors are installed and deployed in the cluster

with the assistance of Apache Spark. Further down in the chapter in section 3.3, we give

an account of the monitoring rules that are relevant for the run-time monitoring of three

security properties that are pertinent to data availability, data privacy and data integrity

respectively. In particular, with regards to data availability we monitor response time, with

regards to data privacy we monitor the location (IP address) of execution of the operations of

a Big Data service and finally with regards to data integrity we monitor the preservation of

unchanged checksums of all the intermediate data in-between operations that is produced
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during the execution of a Big Data service. Our analysis of the monitoring rules for each

security property that we examine, is broken down into three segments; in the first segment

we describe the Event Calculus rules and assumptions for the property that we examine, then

in the second segment we describe the SLA template specification that are appropriate for

each security property and finally in the last segment we give a detailed overview of the

relevant event captor interceptor and delegator that will be used to realise the event capturing

process.

3.2 Framework Architecture

In this section we will give an account of the overall architecture of the monitoring framework

that we propose for the automatic generation, deployment and execution of the monitoring

artefacts that will enable the runtime monitoring of Big Data analytics services. The main

objective of the framework is enable the automatic generation of monitoring artefacts from a

set of high-level security requirements for pipelines of Big Data services. In this thesis, we

regard such pipelines as composite services i.e. services that are comprised of other simpler

services that we call atomic services. Composite services are comprised of one or more

atomic services that are executed on the basis of a workflow that is defined by the user. All

the module communicate via HTTP RESTFul APIs except for the event captors with the

EVEREST monitor, where the default communication with RabbitMQ takes place via the

Advanced Message Queuing Protocol (AMQP). AMQP is a binary messaging protocol that

operates over TCP. The monitoring framework is comprised of 5 core software modules that

operate in tandem to facilitate the monitoring activity. The modules are:

1. Spring Cloud DataFlow server - A tool for the definition of the composite service and

the security properties that the user requires to monitor for the service.

2. SLA Manager - A web application for the management of the monitoring artefacts

such as security properties to be monitored, what templates to be used for the generation

of the concrete monitoring rules, what are the parameters for the templates and what

are the monitoring results when the execution of the service completes.
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3. SLA Manager Integrator - A standalone software module that is responsible for the

automatic creation of an SLA monitoring project in the SLA Manager web application

when a new composite service is created from a user. The integration allows users to

add additional metadata with regards to the monitoring activity and also to view its

results at real time as they happen.

4. EVEREST Monitor - Event reasoning engine that can reason about the events given

that a set of monitoring rules have been provided in the form of EC-Assertions.

5. Apache Spark Cluster - Big Data processing engine where the execution of the Big

Data composite service takes place.

An high level view of the architecture of the Big Data composite service monitoring

framework can be viewed in figure 3.1

Fig. 3.1 Big Data Pipeline Monitoring Framework Architecture

Let’s give a more detailed description of the series of actions that are required to enable

the monitoring activity of composite services. Initially, users defines a composite service

that will be executed according the users’ requirements. A composite service is defined
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as a pipeline of atomic services with the assistance of the Spring Cloud DataFlow Web

UI. Subsequently, the atomic services of the composite service are associated with security

properties that the users need to monitor at runtime. This association takes place in the

Spring Cloud Dataflow Web UI as well and is provided by the users as a parameter of the

service. The name of the relevant parameter is securityProperty. Possible values that can

be passed to the securityProperty parameter are availability, privacy and confidentiality

that represent groups of security properties that are available for monitoring from the system.

This is critical because Spring Cloud DataFlow needs to be aware of security property that

is required to be monitored for what atomic service so as to install the appropriate event

captors when it sends the service for execution on the Big Data processing framework. As

soon as the composite service has been declared and its atomic services have been associated

with the relevant security properties, SLA Manager Integrator automatically creates a new

SLA monitoring project and stores it in the repository of SLAs in the SLA Manager. An

SLA monitoring project holds all the metadata regarding the monitoring artefacts that are

appropriate for the composite service that it refers to. The newly created project has the

same name with the workflow when it was defined in Spring Cloud DataFlow and the atomic

services that the composite service is comprised of are presented to the users. For each

atomic service, and based on the security property the has been previously associated with it,

a list of predefined implementations of the property becomes available for selection in the

format of EC-Assertion templates.

To provide some context with respect to how we use EC-Assertion templates to represent

dynamically generated monitoring rules, we will give a rundown of the location of execution

property template that is shown in A.2 in the appendix. In the template some boilerplate tags

have been omitted for brevity since they are not related to the definition of the monitoring

rules but are necessary for the correct parsing of the rules of the monitor. More specifically,

from line 61 until line 73 a definition of the security property that the template refers to is

defined. In our case it is data privacy. From line 76 until line 114 we provide the declaration

of the interface to be monitored i.e. the function to be monitored. In our implementation we

call this function writerdd and is the function that writes the results of each RDD across the

various nodes that will produce them. Note that part of the parameter list of the function is

the IP address where the operation gets executed. This piece of information is useful when
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evaluating where operation are actually computed. A more comprehensive view of the rule

for monitoring the location of operation execution can be seen in table 3.7. The initially

assumption is defined from line 126 until line 149 as an event calculus fluent. Then, from

line 154 until line 304 we define the rule that mandates that when an RDD is computed

and the writerdd function is invoked then the IP address of the node that has performed

the computation needs to be from a list of trusted IP addresses. This constraint is defined

from line 244 until line 259 and is evaluated by invoking the previously defined fluent. The

fluent, based on the predefined list of IP addresses that the user has provided, will evaluate

to true or false and the rule will evaluate to true or false respectively. Templates might

require input from the users to create concrete instances of the monitoring rules that need to

in place to support the monitoring activity for each atomic service. To achieve this in the

SLA Manager, users are prompted to define the parameters based on the type of the security

property that has to be monitored. As soon as all the requirements have been collected from

the framework, the monitoring rules are automatically generated from the templates in the

format of EC-Assertion formulae and are sent to the EVEREST monitor . Now, the monitor is

ready to accept events that relate to the execution of the atomic services and is able to reason

about the events based on the users’ security requirements. The emission of events requires

that the composite service starts getting executed. The execution is triggered from the users

when they need to initiate the process. At this point the composite service knows everything

it need to know to deploy the event captors alongside the atomic services. When the service

execution is completed and its results have been produced, users can view the monitoring

results in the SLA Manager. The results are updated dynamically as the monitoring rules

are unified as a result of the emission of the monitoring events. This dynamic presentation

of the monitoring results is particularly useful in the case of composite services for stream

processing types of services where, at least in principle, the service never completes but runs

indefinitely. In such occasions users can inspect the monitoring results while the service is

still executing.

To provide more context with regards to the use-cases that the system is able to cover,

in figure 3.2 we present a use-case UML diagram. Note that each use-case is placed in

the component responsible to implement and execute it. Also, note that the SLA Manager

Integration is represented as an actor of the system. This is because the SLA Manager
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Integrator initiates a set of automatic operations for the creating of an SLA monitoring

project from a composite service and its security requirements.

Fig. 3.2 Use Case UML diagram of the Big Data monitoring framework

To better describe the sequence of actions that are required for the runtime monitoring

of security properties from the our framework we will list all the steps in an ordered list of

steps. The list is as follows:

1. Create a composite service through the Spring Cloud DataFlow web UI

2. (a) Add an atomic service

(b) Associate the atomic service with a security property
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3. The SLA Manager Interceptor automatically creates and stores a new SLA monitoring

project in the SLA Manager

4. In the SLA Manager, navigate to the newly created SLA and provide the template

alongside its parameter values that the user chooses to use for the monitoring of each

security property

5. The SLA Manager when the provision of all the necessary metadata with regards to

what needs to be monitored, it automatically translates the user’s high level security

requirements into EC-Assertion formulae that it uploads on the EVEREST monitor

6. The user executes the Big Data pipeline i.e. the composite service through the Spring

Cloud DataFlow server which in turn uses a Spring Boot application to deploy and

execute the service on the Apache Spark cluster

7. Finally, through the SLA Manager can inspect the monitoring results for the SLA

monitoring of interest

A formal view of the aforementioned steps that are required for the appropriate usage of

the proposed framework can be viewed in figure 3.3.

3.2.1 Composite Service Definition

The big-data-as-a-service paradigm implies that a set of predefined Big Data applications are

offered to users in the form of a software components that they can use in an out-of-the-box

manner. The services are presented to the users as a list of pre-defined and pre-implemented

atomic services that they can use to fulfil their own specific functional and non-functional

requirements. To make this setup more useful, and to enable the implementation of more

complex use-cases, our solution offers the ability to combine multiple atomic services to

produce services of higher order i.e composite services. Composite services can incorporate

additional semantics with respect to how the workflow should behave in case one or more

atomic services fail to complete their execution. Failed atomic services can cause the whole

computation to grind to a halt or allow it to continue and report the failure to the user. Also,

atomic services can be combined to run sequentially or in parallel.
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Fig. 3.3 Sequence diagram of the Big Data monitoring framework

The objective for the definition of the Big Data composite service workflow is to provide

a declarative way of describing how the individual atomic service ought to be compiled to

produce the desired result for the user. The definition strategy is by design declarative and

not imperative, in an attempt to minimise the requirements for any particular knowledge

from the user’s end.

In our implementation, the declaration of the service pipeline is performed by mean of

using Spring Cloud Dataflow (SCDF). SCDF offers a a set of software tools specifically
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intended for the development of applications that are built for deployment in the cloud. These

applications demonstrate traits such as loose coupling between software modules, capacity

to take advantage of the elastic nature of the cloud and ability to run in a distributed fashion,

to name a few.

SCDF comes pre-packaged with a domain specific language, both in Java and plain text,

for the specification of composite services. The language enables the definition of the service

workflows and makes its integration with other system intuitive and with minimal effort.

The specification language is simple and declarative. It also provides rudimentary semantics

for the declaration of flow control conditionals such as what action should be taken if an

atomic services fails or if its status is changed to a custom user value. Finally, it supports the

declaration of sequential and parallel executions of the individual atomic services.

Apart from the DSL, Spring Cloud DataFlow comes bundled with a built-in web UI

where a drag-and-drop panel allows users to quickly and easily set up complex Big Data

analytics pipelines.

Fig. 3.4 Spring Cloud DataFlow pipelines

Figure 3.4 illustrates two examples of composite service pipelines. The view presented is

the one offered by the web UI of Spring Cloud DataFlow. The pipeline on the left represents
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a set of atomic services that run in sequence one after another. The pipeline on the right

represents a composite service where Service A and Service B get execute in parallel.

3.2.2 Security Requirements Specification

The security requirement specification is a two step process. Firstly, during the workflow

definition of the composite service, users need to specify what security properties need to

be monitored on what atomic services. Secondly they need to specify the templates and

parameter values that will be used from the monitoring framework to generate the monitoring

rules and then evaluate the events against them. Defining the security properties in Spring

Cloud DataFlow is a critical step because the pipeline needs to be aware of the security

requirements to be able later on, when it is asked to execute the service, to associate the

execution of each atomic service with the corresponding event captors. This enables the

framework to capture only the minimum number of events that are absolutely mandatory to

satisfy the monitoring activity of the security requirements defined. As soon as the composite

service has been defined, via the SLA Manager web application UI, users can now open up

the newly created SLA monitoring project and specify which security template is going to be

used from the framework to generate concrete instances on the monitoring rules. Our goal

for the specification of the security requirements is to be conducted by UI tools that are easy

and intuitive for not technical users to use. This objective is attained first by using the web

UI of Spring Cloud DataFlow when defining the workflow and second by using the SLA

Manager web application where, through a set of dropdown lists and UI menu items, users

can express complex security requirements for composite services without the need for a

deep understanding of how they operate internally, what is required for their implementation

and how the monitoring artefacts will have to deployed to make the monitoring activity of

the composite service possible.

3.2.3 Translation of Security Requirements into Monitoring artefacts

The translation of the security properties is a core functionality of the framework. In

essence, it takes all the input from the users and automatically generates the EC-Assertion

formulae that represent the monitoring rules that are required for the implementation of the
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monitoring activity. The monitoring rules are the product of the security property templates

that correspond to the security properties that the user requires to monitoring, populated with

the parameter values that they have provided ducring the security requirement specification

step as described in section 3.2.2 above. Monitoring rules are going to be in represented as

EC-Assertion formulae that can be used by the EVEREST monitor for the evaluation of the

events. The generation of the monitoring rules is only possible when the security properties

templates and their parameters have all been defined. Users, through the SLA Manager, have

the ability to add the secrity at their own pace and when they have completed the process

they will notify the system that the requirements specification process has been completed.

This notification signifies the automatic generation of the monitoring rules in EC-Assertion

formulae.

3.2.4 Installation of Monitoring Rules on the monitor

Once the monitoring rules have been generated, they need to be uploaded to the EVEREST

monitor. The EVEREST monitor provide an API that allows the uploading of the rules by

means of using a web service. The web service generates a unique identifier for the rule and

uses the EC-Assertion expression that describes the monitoring rule to create internally in

the monitoring all the necessary structures that will support the event evaluation activity. As

soon as the monitoring rules are uploaded everything is in place to facilitate the monitoring

of the composite service.

3.2.5 Definition and Installation of Event Captors on Apache Spark

The constituent components of event captors they are comprised of two main components,

namely the interception component i.e. what are the methods that need to be intercepted

and the delegation component i.e. what should be executed when an intercepted method

is invoked at runtime. Both conceptually and in terms of declaration, the interception

component and the delegation component go hand-in-hand. Every delegation component

needs to refer to an interceptor component. That is to say that for every event captor

in the interceptor component one needs to first define which method will be intercepted

and then, in the delegation component, give a description of what will be executed when
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the intercepted method is invoked. The combination of initially intercepting and then

delegating the intercepted code is key feature of all the event captors of the framework and is

pattern that we have used across all three properties that we examined for the runtime code

instrumentation of Spark’s source code.

Apart from the collection of the events, the event captors are also responsible for the

emission of the events to the monitor that will evaluate them. The process of event emission

in our system has been designed with flexibility in mind. The event captor ought to be

configurable with regards to the types of emission that the system should support. In our

case we implemented two types of emitter namely a socket emitter where the events are

sent over the network on an open socket and can be consumed from there and a RabbitMQ

emitter where the events are sent to a RabbitMQ messaging system. Sending events at a

socket has proven particularly useful during the development of the system for debugging

purposes whereas sending events to a RabbitMQ server allows it to be consumed by the

EVEREST monitor. From an implementation point of view, we have employed a rather

common design pattern called a Factory pattern [125]. The factory pattern is a creational

pattern that facilitates the creation of instances of classes that share the same behaviour with

a systematic and consistent way. The only piece of infortmation that is required from the

factory class is the type of inctance that it is required to instantiate. The factory method, based

on the class type, can create a new instance and completely hide any additional parameters

that might be required for the instantiation of the object. This pattern makes it very easy to

add new emitter types only by means of implementing the methods of the base emitter type

interface.

In our system for the implementation of the factory pattern we have been able to identify

3 basic operations that are required from any emitter:

1. Connect to the entity that the events will be sent

2. Sent an event in the form of a String

3. Close the connection and release any additional resources as soon as the event emission

process has completed

The corresponding Java code snippet for the base emitter class can be seen in listing 3.1.
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Listing 3.1 Base abstract class for description of the types of emitters
1 public abstract class Emitter {

2

3 public Properties properties = new Properties ();

4

5 public abstract void connect ();

6 public abstract void close();

7 public abstract void send(String event);

8 }

Note that in line 3 a global variable for properties is instantiated. This will enable the

provision of a set of properties that will be passed on to the event emitter constructor to

customise its operation. We need this feature to be available across all types of emitters and

therefore it is appropriate to include it in the base emitter class.

The concrete implementation for the socket emitter is presented in listing 3.2.

Listing 3.2 SocketEmitter class implementation
1

2 public class SocketEmitter extends Emitter {

3

4 final static Logger logger = Logger.getLogger(SocketEmitter.class);

5

6 private String host;

7 private int port;

8 private Socket socket;

9 private BufferedWriter writer;

10

11 public SocketEmitter(Properties props){

12 this.properties = props;

13 this.host = properties.getProperty("host");

14 this.port = Integer.valueOf(properties.getProperty("port"));

15 }

16

17 @Override

18 public void connect () {

19 try {

20 this.socket = new Socket(host ,port);

21 this.writer = new BufferedWriter(new OutputStreamWriter(socket.getOutputStream ()));

22 } catch (IOException ioe) {

23 logger.info(ioe);

24 }

25 }

26

27 @Override

28 public void close() {

29 try{

30 if (socket != null)

31 socket.close();

32 if (writer != null){

33 writer.flush();

34 writer.close();

35 }

36 }catch (IOException ioe){

37 logger.error(ioe);

38 }

39 }

40
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41 @Override

42 public void send(String event) {

43 try {

44 writer.write(event);

45 writer.newLine ();

46 writer.flush();

47 } catch (IOException ioe) {

48 logger.error(ioe);

49 }

50 }

51 }

In line 12 the properties variable is provided during construction. The properties that are

appropriate for the emission of event on a socket are shown in line 13 and 14 where the host

and the port number are defined respectively. In line 18 a socket is opened up on the host and

port specified. Also a buffered writer is instantiated. In line 28 all the resources that were

opened up when the emitter was connected are freed. Finally, in line 42 an event is written

on the previously opened up buffered writer and the buffers is flushed to enforce the emission

of the event.

The concrete implementation for the RabbitMQ emitter is presented in listing 3.3.

Listing 3.3 RabbitMQEmitter class implementation
1 public class RabbitMQEmitter extends Emitter {

2

3 private Connection connection;

4 private Channel channel;

5 private String channelName;

6 private String topic;

7

8 final static Logger logger = Logger.getLogger(RabbitMQEmitter.class);

9

10 RabbitMQEmitter(Properties props) {

11 this.properties = props;

12 }

13

14 @Override

15 public void connect () {

16 try {

17 ConnectionFactory factory = new ConnectionFactory ();

18 factory.setHost(properties.getProperty("host"));

19 factory.setPort(Integer.valueOf(properties.getProperty("port")));

20 factory.setUsername(properties.getProperty("username"));

21 factory.setPassword(properties.getProperty("password"));

22 this.connection = factory.newConnection ();

23 channel = this.connection.createChannel ();

24 channel.exchangeDeclare(properties.getProperty("channel"),"direct");

25 channelName = properties.getProperty("channel");

26 topic = properties.getProperty("topic");

27 } catch (IOException ioe) {

28 logger.error(ioe);

29 } catch (TimeoutException te) {

30 logger.error(te);

31 }

32 }

33
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34 @Override

35 public void close() {

36 try {

37 connection.close();

38 } catch (IOException ioe) {

39 logger.error(ioe);

40 }

41 }

42

43 @Override

44 public void send(String event) {

45 try {

46 if(! connection.isOpen ())

47 this.connect ();

48 channel.basicPublish(channelName , topic , null , event.getBytes ());

49 } catch (IOException ioe) {

50 logger.error(ioe);

51 }

52 }

53 }

From line 3 to line 6 a set of properties are defined that are mandatory for the establishment

of communication between the event captors and the RabbitMQ messaging event bus that

the EVEREST monitor is using. Also a username and password can be passed along if

the communication between the event captors and the messaging engine is username and

password protected. The communication of the event captor with the RabbitMQ server is

done with the assistance of the RabbitMQ’s standard client Java library 1.

Finally the class that connects all the emitters and allows the instantiation of the different

implementaitons of emitter is the factory class that is consistent with the factory pattern. The

factory class is presented in listing 3.4.

Listing 3.4 EventEmitterFactory class implementation
1 public class EventEmitterFactory {

2

3 private EventEmitterFactory EventEmitterFactory (){

4 return new EventEmitterFactory ();

5 }

6

7 public static Emitter getInstance(EmitterType type , Properties props){

8

9 Emitter emitter = null;

10

11 switch (type){

12 case RABBITMQ:

13 emitter = new RabbitMQEmitter(props);

14 break;

15 case SOCKET:

16 emitter = new SocketEmitter(props);

17 break;

18 case XMPP:

19 break;

1https://www.rabbitmq.com/java-client.html

https://www.rabbitmq.com/java-client.html
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20 default:

21 emitter = new RabbitMQEmitter(props);

22 }

23

24 return emitter;

25 }

Note in line 7 that the emitter factory needs to know the type of emitter type it needs

to create. The types of emitters is defined as an enumeration that is presented in listing 3.5.

Along with the emitter type a set of the right properties needs to be passed on to the emitter

factory.

Listing 3.5 Emitter type enumeration class
1 public enum EmitterType {

2 SOCKET , RABBITMQ

3 }

The use of the factory pattern for the support of different emitter has two main benefits.

Firstly, it abstracts away all the complex details that are required for the event captors to

establish the communication i.e. connect, send events and close the connection with the

entity that they will emit the events to. Secondly it keeps the code simple and tidy by means

of taking advantage of the the separation of responsibilities principle where each class is

responsible for one thing and one thing only. The factory class is responsible for the creation

of the emitters and each emitter type class is responsible for the description of how the

communication between the emitter and the receiving end of the events will be conducted.

Also, by having the concrete implementation of emitters implement the Emitter interface, the

requirements for the implementation of any new type of emitter is well-defined and bounded

by the functionality included in their common interface.

The UML class diagram for the factory pattern of event captor emitter is illustrated in

figure 3.5.

On the basis of the security properties that have been coupled with the individual atomic

services, a series of events captors will be installed to collect the monitoring events. From

an implementation point of view the event captors operate by means of instrumenting

the underlying Big Data processing framework to collect and emit contextual run-time

information to the monitor. The technology that we used for the code instrumentation is a

built-in feature of the Java Virtual Machine (JVM) called Java agents 2. A Java agent is a

2https://docs.oracle.com/javase/8/docs/api/java/lang/instrument/package-summary.html

https://docs.oracle.com/javase/8/docs/api/java/lang/instrument/package-summary.html
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Fig. 3.5 UML class diagram of the factory pattern for the implementation of the different
emitter types supported by the event captors

special type of Java class that must implement a special method called premain(). Java agents

make use of Java’s standard instrumentation API and allows for the run-time modification of

the code. When all the classes of a Java application get loaded during the instantiation from

the JVM, by default it looks up for a premain() method within the Java agent. If one exists, it

executes its body. The premain() method takes as a parameter a String and a reference to the

instrumentation object. The reference to the instrumentation object provides a programmatic

hook where the agents can inject the event capturing code.

From a programming point of view, Java’s standard instrumentation API is low level. It

gives back to the agent’s creator a handler to the Java bytecode in the form of an array of

bytes which is difficult for humans both to understand and manipulate. To bridge that gap

we make use of the Byte Buddy [2] library that offers a high level API for manipulating

Java bytecode. Byte Buddy exposes a builder API that allows the interception of native Java
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code within methods, the creation of arbitrary classes and the run-time implementation of

interfaces and abstract classes. Byte Buddy also provides a convenient tool for the authoring

of Java agents by means of abstracting away the compiled bytecode with its corresponding

Java code. As a consequence, coding the event captors with the assistance of Byte Buddy,

feels more like coding in Java and less like coding in low level bytecode JVM instructions.

By definition, Java agents get executed before the main method gets executed. This

feature enables the event captors to instrument Apache Spark’s computational methods

before they are executed from the Spark worker nodes. Java agents are applications like

any other typical Java application except for two fundamental differences. Firstly they do

not implement a main() method but a premain() method and secondly in the manifest file

under the name MANIFEST.MF of the Java application of the agent a special entry name

Premain-Class need to be set and point to the full package of the class where the premain()

method is contained. To instruct the JVM to include the Java agent into Java’s execution

workflow, one has to pass the –javaagent argument when executing the code that needs to

be instrumented. For instance, if the Java agent is named agent.jar that needs to run with a

set of optional parameters named parameters and the application code to be instrumented is

name application.jar, to run the application with the agent enabled, one should execute the

following command:

java -jar -javaagent:/path/to/agent.jar[=parameters] application.jar

Since Apache Spark is a Big Data processing framework that enables the distributed

execution of processing tasks across a computer cluster, it is critical to instrument the code that

will be executed in such a distributed setting. This is a significant difference compared to other

traditional runtime instrumentation solutions where the instrumentation of the application

code takes place on a single physical engine. This implies that the instrumentation has to be

carried out on every node that processes the data. From an execution point of view, when

running an Apache Spark program, we use the spark-submit command. This command

initiates the instantiation of multiple JVM instances across the cluster to enable the execution

of the distributed tasks that will be scheduled for execution and subsequently executes the

tasks at hand. As presented further up in this section, to include the Java agent into the

execution of an application, we need to pass the -javaagent parameter as an argument to the
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java command. However, when submitting an Apache Spark job, we do not have access to

the actual java command that gets executed. Therefore, to intercept Apache Spark’s code we

need to make use of two special configuration properties; one for the driver node and one for

the workers. That is because some of the event capturing needs to happen at the level of the

worker nodes and some of it needs to happen at the level of the node where the driver gets

executed. In Spark applications are submitted for execution through a standard utility named

spark-submit 3. The spark-submit command sets up the default Spark and invokes the main()

method of the Spark application that is submitted for execution. A complete list of all the

configuration parameters that can be set through the spark-submit command can be found

in [7].

To add the Java agent at the Spark master node we need to add the following argument to

the spark-submit command:

Listing 3.6 Configuration property to enable a Java agent at the driver node
1 --conf "spark.driver.extraJavaOptions=-javaagent :/path/to/agent.jar"

To add the Java agent at the Spark worker nodes we need to add the following argument

to the spark-submit command:

Listing 3.7 Configuration property to enable a Java agent at a worker node
1 --conf "spark.executor.extraJavaOptions=-javaagent :/path/to/agent.jar"

These parameters will be passed to the spark-submit command when the composite

service is going to be executed from the Spring Cloud DataFlow server on the Apache Spark

cluster. Note that the Spring Cloud DataFlow is only responsible for triggering the execution

of the composite service by submitting each atomic service to Spark and supervising the

execution flow of the pipeline as it has been defined by the user. The engine the performs

the actual processing is Apache Spark and that is why the Java agents that represent the

event captors need to be passed as parameters at the Spark’s executable code through the

spark-submit parameters configuration API.

For the Java agents to operate we also need to provide a set of parameter with regards

to what type of emitter the event captor will use as well as a set of other properties that the

emitter that has been specified will require. For instance the socket emitter will require a host

3https://spark.apache.org/docs/latest/submitting-applications.html

https://spark.apache.org/docs/latest/submitting-applications.html
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and a port. A complete example for submitting a Spark job where the event captor for data

integrity needs to be installed is shown in listing 3.8.

Listing 3.8 Spark-submit command example with data integrity event captors enabled
1 spark -submit \

2 --master spark ://10.207.1.102:7077 \

3 --class package.main.MyClass \

4 --deploy -mode client \

5 --conf "spark.driver.extraJavaOptions=-javaagent :/path/to/agent/DataIntegrityEventCaptors.jar

6 =emitter=socket ,host =10.207.1.103 , port =10333" \

7 --conf "spark.executor.extraJavaOptions=-javaagent :/path/to/agent/DataIntegrityEventCaptors.jar

8 =emitter=socket ,host =10.207.1.103 , port =10333" \

9 /path/to/spark -application/application.jar

Note that after the complete path of the location of the data integrity event captor under

the name DataIntegrityEventCaptors.jar, there exist an equals sign. After that a comma

separate list of properties is defined accompanied by their respective values. This list of

properties refers to the properties variable of the Emitter class shown in listing 3.1 and it

is set during the submission of the job for execution. With that, the Java agent has all the

necessary information to create the appropriate emitter and star emitting events the right

events for the evaluation of data integrity.

3.3 Monitoring Rules

In this section we give an account of the monitoring rules that are being produced and that

will be used for the evaluation of the events. Originally, users give a description of the

monitoring capabilities that they require to enable for the Big Data services of a pipeline.

The collection of all the security requirements constitute the service level objectives (SLOs)

of the SLA. In our implementation, for each security property that we examine we give a

detailed view of the Event Calculus rules and assumptions that describe what constitutes

a violation, we give a description of the SLA template that corresponds to each property

that will be used to produce the EC-Assertions used by the monitor and finally we provide

an overview of the corresponding event captors that will support the emission of the events

required to realise the monitoring activity each service level objective.
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3.3.1 Monitoring Rules for Response Time

In the context of data availability, the metric that we are using to evaluate it, is response time.

As shown in our literature review in section 2.2.1, one of the ways to gauge availability and

give users a tangible measurement of data availability is response time. Response time in

that context, is a measurement of how long it takes the system to make its results available.

Gaining access at the results of a computation on time, is a critical aspect of a service

request/response interaction and it can be the reason for poor user experience. Every atomic

service of the pipeline is treated as an Apache Spark job and is the action that signifies the

execution of the service’s operations. Having said that, the measurement of response time is

calculated as "the time that has elapsed from the moment the job starts until the moment

it has produced all its results". As explained in section A.2.1, actions trigger the execution

of transformations and instruct Apache Spark to start computing realising the transformations

that are part of the Spark program. In this context actions and jobs are used interchangeably

and refer to the same concept.

Event Calculus

The Event Calculus rule needs to describe the fact that when a job starts to get executed it

should be finished before a specific amount of time has elapsed. If the time that has elapsed

is longer than the user-defined threshold then the rule should be violated to signify a longer

response time than what the user requires. The relevant events that need to be emitted are a

start job event and an end job event alongside with their timestamps. If the delta between

the timestamp between the start and end events is longer that what the user has described,

this constitutes a violation. The detailed description of the relevant events is Event Calculus

notation is as follows:

start(appId, appName, t)

appId: Application id

appName: Application name

t: Timestamp when the start event occurred

Table 3.1 Events collected for monitoring response time - start job event
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end(appId, appName, t′)

appId: Application id

appName: Application name

t′: Timestamp when the end event occurred

Table 3.2 Events collected for monitoring response time - end job event

Rule 1

∃ t1 ≥ 0, t2 ≥ 0,
Happens(start(appId, appName, t1))→ Happens(end(appId, appName, t2)),
t2 ∈ [t1, t1 +d]

Table 3.3 Event Calculus rule for monitoring response time

For completeness the application’s unique identifier that is assigned by Apache Spark,

needs to be collected in the appId parameter as well as the application name that was given

to the job when it was submitted for execution under the parameter appName. Both appId

and appName are required because the monitor can potentially have to reason about multiple

services that can get executed as the same time and a unique identifier needs distinguish

events that refer to different service executions. Even though the appId parameter would

suffice from an implementation point of view to group events per service execution, we also

collect the application name to provide a humanly readable label to help users interpret the

monitoring results when they are presented to them in the web dashboard.

In table 3.3 below we present the Event Calculus rule in the appropriate notation to reflect

the fact that as soon as a start event has been emitted, we expect an end event to be emitted

within a predefined time d to avoid violating the service level objective. The value of d, the

time that has elapsed, will be provided from the end-user and is going to be part of the SLA

guarantee term. In our implementation we have taken into consideration the measurement

unit to match the measurement unit of the timestamp of the events that have been emitted.

This is important for the proper evaluation of the event against the rule.

Typically, to allow for a sufficient degree of granularity, event timestamps are measured

in Unix milliseconds. An example of a start and end events is shown in table 3.4.
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start(app-20181202162554-0401, AverageConsumptionCombineByKey, 1543865904)

end(app-20181202162554-0401, AverageConsumptionCombineByKey, 1543873201)

Table 3.4 Example of events for monitoring response time

In this particular example the response time i.e. the time that has elapsed from the

moment the request has been placed until the moment the results of the computation have

become available is (1543865904−1543879201) = 13297ms or 13.297sec. If, for example,

the acceptable time provided by the users is set to 1 minute, the rule has been respected and

no violation has occurred. A visual representation of how events can occur over time during

the monitoring activity of response time is events, can be seen the in figure 3.6.

Fig. 3.6 Visual representation of events for monitoring response time

SLA Template specification

The SLA template for response time will produce the EC-Assertion rule that corresponds to

the Event Calculus rule presented in table 3.3 that will later on will be loaded on Everest,

our event reasoning engine, to support the monitoring of the SLA. For the monitoring of

response time, there exist two aspects of the rule that need to be parameterizsed, namely

the response time as an arithmetic value and the unit of measurement. In our definition of



114 Monitoring Framework for Big Data Security SLAs

the SLA template we support positive integer arithmetic values and for the time units we

support seconds, minutes and hours respectively. In the SLA template for those two values

two separate placeholders will be used and they will be replaced as soon as the security

requirements have been provided by the end-users. Based on the time unit, the template

will make a calculation and will produce the correct value for the acceptable time interval

between the starting and ending time of a Spark job. An abbreviated version of the SLA

template can be seen in listing 3.9.

Listing 3.9 Abbreviated version of the SLA template for response time
1 if( $timeUnits == "SECONDS" )

2 #set($ result = $time * 1000)

3 elseif( $timeUnits == "MINUTES" )

4 #set($ result = $time * 1000 * 60)

5 elseif( $timeUnits == "HOURS" )

6 #set($ result = $time * 1000 * 60 * 24)

7 #end

8

9 Guaranteed forChecking="true" ID="availability" type="Future_Formula">

10 <quantification >

11 <quantifier >forall </quantifier >

12 <timeVariable >

13 <varName >t1</varName >

14 <varType >TimeVariable </varType >

15 </timeVariable >

16 </quantification >

17 <quantification >

18 <quantifier >existential </quantifier >

19 <timeVariable >

20 <varName >t2</varName >

21 <varType >TimeVariable </varType >

22 </timeVariable >

23 </quantification >

24 <precondition >

25 <atomicCondition conditionID="ac0">

26 <eventCondition unconstrained="true">

27 <event>

28 <eventID forMatching="true" persistent="false">

29 <varName >AVAIL1 </varName >

30 </eventID >

31 <call>

32 <interfaceId >BDASLA </interfaceId >

33 <OperationId >1</OperationId >

34 <operationName >start</operationName >

35 <inputVariable forMatching="true" persistent="false">

36 <varName >status1 </varName >

37 <varType >OpStatus </varType >

38 <value>REQ -A</value>

39 </inputVariable >

40 <inputVariable forMatching="true" persistent="false">

41 <varName >appId</varName >

42 <varType >string </varType >

43 </inputVariable >

44 <inputVariable forMatching="true" persistent="false">

45 <varName >appName </varName >

46 <varType >string </varType >

47 </inputVariable >
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48 </call>

49 <tVar>

50 <timeVar >

51 <varName >t1</varName >

52 <varType >TimeVariable </varType >

53 </timeVar >

54 </tVar>

55 <fromTime >

56 <time>

57 <varName >t1</varName >

58 <varType >TimeVariable </varType >

59 </time>

60 </fromTime >

61 <toTime >

62 <time>

63 <varName >t1</varName >

64 <varType >TimeVariable </varType >

65 </time>

66 </toTime >

67 </event>

68 </eventCondition >

69 </atomicCondition >

70 </precondition >

71 <postcondition >

72 <atomicCondition conditionID="ac1">

73 <eventCondition unconstrained="false">

74 <event>

75 <eventID forMatching="true" persistent="false">

76 <varName >AVAL2</varName >

77 </eventID >

78 <reply>

79 <interfaceId >BDASLA </interfaceId >

80 <OperationId >2</OperationId >

81 <operationName >end</operationName >

82 <outputVariable forMatching="true" persistent="false">

83 <varName >status2 </varName >

84 <varType >OpStatus </varType >

85 <value>RES -B</value>

86 </outputVariable >

87 <outputVariable forMatching="true" persistent="false">

88 <varName >appId</varName >

89 <varType >string </varType >

90 </outputVariable >

91 <outputVariable forMatching="true" persistent="false">

92 <varName >appName </varName >

93 <varType >string </varType >

94 </outputVariable >

95 </reply>

96 <tVar>

97 <timeVar >

98 <varName >t2</varName >

99 <varType >TimeVariable </varType >

100 </timeVar >

101 </tVar>

102 <fromTime >

103 <time>

104 <varName >t1</varName >

105 <varType >TimeVariable </varType >

106 </time>

107 </fromTime >

108 <toTime >

109 <time>

110 <varName >t1</varName >

111 <varType >TimeVariable </varType >
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112 </time>

113 <Expression >

114 <plus>$result </plus>

115 </Expression >

116 </toTime >

117 </event>

118 </eventCondition >

119 </atomicCondition >

120 </postcondition >

121 </Guaranteed >

Let’s examine each segment of the SLA template in greater details. From line 1 until

line 7 an Apache Velocity snippet is responsible for the conversion of the time value provided

by the user into the correct number of milliseconds based on the time unit of the events

emitted. In the segment from line 9 until line 121, the guaranteed terms are defined. In

the case of response time only one guarantee terms is required. At the beginning of the

guarantee term specification, from line 10 until line 23, the qualifiers for the time variables are

provided, namely variables t1 and t2 which in both occasions is an existential qualifier. Also

note that the variable type for both variables is TimeVariable. Further down the guarantee

term is broken down into a precondition segment, line 24 until line 70, and a postcondition

segment, from line 71 until line 120. The precondition corresponds to the left part of the

Event Calculus rule shown in table 3.3 and the postcondition corresponds to the right part of

the rule after the right arrow i.e. the implication symbol. Both in precondition we define the

input and output variables namely the appId and the appName. At runtime both variables

will contain actual values and they will be used to unify the response time event calculus rule

with events that belong in the same execution context. Finally, note how in the segment from

line 96 until line 116 the value for t2 is bound from values t1 and t1 + d. This instructs the

monitor to check if the end event has occurred within a specific amount of time since the

start event has been captured.

Event Captor Specification

The event captors for response time are tightly coupled with Apache Spark actions that

commence the computation of a job. As explained in section A.2.1, all other operations in

Apache Spark are lazily evaluated and are not executed until an action is invoked. Before

we delve into the event captor implementation details, have to give an overview of the

Apache Spark code that the event captor will intercept at runtime to support the emission of
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the start and end events respectively. Apache Spark is written, for the most part, in Scala

while some pieces of it are written is Java. Specifically, the main entry point function that

executes an action is implemented in Scala, is called runJob() and is located in a class called

SparkContext. The relevant code snippet for the runJob() function can be seen in listing 3.10.

Listing 3.10 Apache Spark Scala code for runJob() function
1

2 def runJob[T, U: ClassTag ](rdd: RDD[T], func: (TaskContext , Iterator[T]) => U): Array[U] = {

3 runJob(rdd , func , 0 until rdd.partitions.length)

4 }

As it can be seen in the body of the runJob() function, function func is applied on all

partitions. The runJob() is a base interface that all Apache Spark actions will invoke to start a

computation. For instance, when the collect() action is invoked on an RDD, all the data items

from the partitions of the RDD will be sent to the driver and will become available for further

processing or presentation to the job submitter. By the same token, when the foreach() action

is invoked, a custom user function will be applied on all the data items of the partitions of the

RDD without however sending the data to the driver. In both cases, collect() and foreach()

functions will internally invoke the runJob() base function with a set of different parameters.

Please note that our decision to intercept the base function for the execution of Spark jobs

is deliberate. By instrumenting the code of the base function we do not explicitly have to

intercept every action separately. This simplifies the implementation of the event captor,

helps us to avoid the introduction of unnecessary code and in our view is a more sensible

approach. Also, our implementation is more complete because it addresses the interception

of all possible actions that are supported by the Apache Spark API.

A list with all the actions that are supported by the response time event captor is

demonstrated in figure 3.7.

Note that our implementation supports the standard RDD Spark API where actions are

invoked on Spark’s core abstraction, namely RDDs, and the streaming API as well. Similar

to the core API, Spark’s streaming API is built on RDDs as well and is implemented using

a micro-batching approach i.e. at specific time intervals a short batch job gets executed to

collect, process and combine with the old data the newly arrived data of a stream. This feature

contributes to the generality of the event captor and can support the monitoring activity both

for batch and stream processing types of Big Data analytics applications.
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Fig. 3.7 List of actions supported by the event captor for response time

Interception Component

As explained above, the monitoring activity for response time requires the interception of

the runJob() method which is declared in class SparkContext. Therefore, with the assistance

of Byte Buddy as shown in section A.5.3, a premain() method has be implemented as part

of the Java agent that will be loaded before Spark’s code gets executed. In the body of the

premain() method, with the assistance of Byte Buddy’s AgentBuilder factory class, a new

Java agent is created and installed. The relevant code snippet for the premain() method is

shown in listing 3.11 below.

Listing 3.11 Interception component of event captor for response time
1 public static void premain(String configuration , Instrumentation instrumentation) {

2

3 new AgentBuilder.Default ()

4 .type(type -> type.getName ().equals("org.apache.spark.SparkContext"))

5 .transform ((builder , typeDescription , classLoader , module) -> {

6 return builder

7 .serialVersionUid (1L)

8 .method(method -> (method.getName ().equals("runJob") && method.getParameters ().size() == 3))

9 .intercept(MethodDelegation.withDefaultConfiguration ()

10 .withBinders(Morph.Binder.install(Morpher.class))

11 .to(SparkContextRunJobInterceptor.class));

12 })

13 .installOn(instrumentation);

14 }
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Note that in line 4 the full class name for org.apache.spark.SparkContext is defined

whereas further down in line 8 the method called ronJob that takes 3 arguments is defined as

well. The assisiation of the interception component with the delegation component is done in

line 11 and is implemented in a separate class called SparkContextRunJobInterceptor.

Delegation Component

As shown in the section 3.3.1 above, the the delegation method is implemented in the

SparkContextRunJobInterceptor class. For consistency, we use the same name for the

delegation method as the original name of the method that was intercepted. The relevant

code snippet for the delegation method is presented in listing 3.12 below.

Listing 3.12 Delegation component of event captor for response time
1 public static class SparkContextRunJobInterceptor <T, U> {

2

3 @RuntimeType

4 public static Object [] runJob(@Argument (0) RDD rdd ,

5 @Argument (1) Object f,

6 @Argument (2) Object classTag ,

7 @Morph Morpher <Object[]> m)

8 throws JAXBException ,

9 UnknownHostException ,

10 DatatypeConfigurationException {

11

12 String appId = SparkEnv$.MODULE$.get().conf().get("spark.app.id");

13 String appName = SparkEnv$.MODULE$.get().conf().get("spark.app.name");

14

15 long operationId = generateRandomLong ();

16

17 Emitter emitter = EventEmitterFactory.getInstance(type , properties);

18 emitter.connect ();

19 emitter.send(createEventXML(operationId , OperationType.ACTION ,"start", appId , appName , rdd , null));

20

21 Object [] result = m.invoke(new Object []{rdd , f, classTag });

22

23 emitter.send(createEventXML(operationId , OperationType.ACTION ,"end", appId , appName , rdd , null));

24

25 emitter.close();

26 return result;

27 }

28 }

In lines 12 and 13 the application id and name are respectively collected from the

Spark environment, a shared key/value structure where common configuration values for

the application execution are stored. Also, in line 17 an instance of an emitter object is

created from the EventEmitterFactory factory class whose type depends on the configuration

parameters passed at the event captor. In lines 19 and 23 start and stop events are emitted

respectively. Note that a special method namely createEventXML() that formats the event in
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a manner that it can be interpreted by the EVEREST monitor but is omitted here for the sake

of space. Moreover, the original method i.e. runJob() is invoked in line 21 and its output is

temporarily stored in a local variable under the name result. Finally, in line 25 the close()

method is called to close any open channel of communication that has been used for the

emission of the events whereas in line 26 the result variable that contains the output of the

invocation of the original method is returned.

3.3.2 Monitoring Rules for Location of Execution

In the context of data privacy, the metric that we are using to evaluate it, is location of

execution of the computations that make up the Big Data processing job. In our analysis of

the literature in section 2.2.2, we list that the sharing data with Cloud providers that respect

the privacy of its owner, is one of the pillars of data privacy. Execution of the computations

of a Big Data analytics service, entails that computations will be distributed across multiple

nodes in a cluster. It is very typical for Cloud storage and processing providers to use

processing engines that are physically dispersed across the globe. This enables them to

group the world into operational regions. Based on the location of the agent that makes the

request, they can use infrastructure that is physically closer to that agent and thus minimize

the latency of the response. Also, for fail-over capabilities, Cloud providers mirror their

systems and have replicas of their infrastructure at different location around the world to take

over if the infrastructure becomes unavailable in one location. This implies that computations

of Big Data services that get executed on behalf of users in the Cloud, can be computed on

computing engines that reside outside the geographical barriers that might be appropriate for

the data owner leading to a compromise of data privacy.

An additional challenge is that the transfer of data can take place internally from the

Cloud provider in an obscure manner and without the consent of the data owner. From a

performance perspective this might facilitate an improved experience for the user however

this can occur on the expense of a less stringent data privacy policy which might not be

desirable for the user. A typical requirement might mandate that sensitive information, such

as governmental data, should not be transferred for processing on a geographical region

where the legislation regarding data ownership is not the one that the data owner requires.

This is a case of particular interest especially with the enactment of the GDPR directive [46]
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where consent from the users with regards how that data will be used and where it is going to

be stored and processed is mandatory. In general description of the location of execution rule

requires that "all computations must take place on machines that the user trusts".

Event Calculus

The Event Calculus rule for the monitoring of location of execution needs to describe the

fact the partitions of all the intermediate RDDs of Big Data processing computation should

be performed on locations that are trusted by the user. Therefore the monitor should receive

events that will correlate partitions, RDDs and IP addresses to signify that a partition with a

specific id, for an RDD with a specific id has been processed on a machine with a specific IP

address. Note that partitions have an identifier in each partition that is unique per RDD, and

each RDD has a identifier that is unique across the whole computation. Therefore a reference

to the combination of a partition id and an RDD id is unique across the computation as well.

If a partition for an RDD is processed on a machine whose IP address is not trusted by the

user, then a monitoring violation must be raised by the monitor.

The way the rule is defined is by allowing users to define a whitelist of IP addresses that

they trust their data to be processed on. From an event calculus perspective this is described

as an assumption. The monitoring rule evaluates this assumption for the events that are

emitted where the partition id, the RDD id and the IP address are included and if it evaluates

to true then the computation has occurred on a machine that is trusted by the user. Conversely,

if it evaluates to false then the computations has taken place on a machine that is not in the

whitelist and therefore the rule is not respected. Similar to the the other properties, when

evnets are collected the application id appId and application name appName need to be

collected as well to allow the monitor to distinguish between multiple executions of the same

service. A description of the events in event calculus notation that the monitor will have to

evaluate can be seen in table 3.5.

Example of events intended for the monitoring of the location of execution can be seen

in table 3.6.

The event calculus assumption and rule that supports the monitoring activity for the

location of execution is presented in table 3.7 below.
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compute(appId, appName, partId, rddId, IP, t)

appId: Application id

appName: Application name

partId: Partition id

rddId: RDD id

IP: IP address of the node the computation is executed

t: Timestamp when the compute event occurred

Table 3.5 Events collected for monitoring the location of execution - compute event

compute(appId=app-20181202162554-0401, appName=LoadAndAnonymize, partId=4,
rddId=2, IP=10.207.1.104, t=1543865904)

compute(appId=app-20181202162554-0401, appName=LoadAndAnonymize, partId=2,
rddId=3, IP=10.207.1.105, t=1543867839)

Table 3.6 Example of events collected for monitoring the location of execution
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Assumption 1

∀ t ≥ 0,
Initailly( trustedIP(ip1, ip2, ip3, ...))

Rule 1

∀ t ≥ 0,
Happens(compute(appId, appName, partId, rddId, ip, t))→
HoldsAt(TrustedIP(ip), t)

Table 3.7 Event calculus assumption and rule for monitoring the location of execution of
computations

In Assumption 1 shown in table 3.7 above, a fluent under the name trustedIP is initialized

with a list of IP addresses that represent the whitelist of IP addresses that the user will provide

as part of the security requirement specification. The fluent will be evaluated to true when an

IP address that is trusted is passes as an argument. If the IP passed to the fluent is not in the

set of IPs defined by the user, the fluent will evaluate to false. In the same table in Rule 1,

when a computation takes place at some point in time t, the trustedIP fluent is checked at

that same point in time to verify that the computation has been conducted on a trusted node.

A mathematical representation of the trusyedIP fluent can be seen in the piecewise function

shown in 3.1

trustedIP(ip, t) =

TRUE, if ip = ip1 or ip = ip2 or ip = ip3 ... and t≥ 0

FALSE, otherwise
(3.1)

Note when the trustedIP fluent is initialized at time t = 0, a comma separated list of IP

addresses is provided as input to the Initially event calculus formula.

A visual representation of how events can occur over time during the monitoring activity

of the location of execution of computations, can be seen in figure 3.8.

For the sake of space only some examples of events are illustrated to convey the concept.

More specifically, at t=0 the trustedIP holds true for two specific IP addresses namely

10.207.1.102 and 10.207.1.104. As time goes on, compute events take place. At time
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Fig. 3.8 Example of events that occur over time during the monitoring activity of the location
of execution of computations

t=1543865904, partition with id 0, for RDD with id 1 is computed on the node with address

10.207.1.102. At time t=1543867271, partition with 3 for RDD with id 2 is computed on the

node with IP address 10.207.1.104. At time t=1543868032 partition with id 2 for RDD with

id 3 is computed on the node with IP address 10.207.1.105. Note that the rightmost event

shown in figure 3.8 would cause a rule violation because the trustedIP fluent does not hold

true for the IP value 10.207.1.105.

SLA Template specification

The SLA template specification for the location of execution will produce the EC-Assertion

assumption and rule that corresponds to the event calculus assumption and rule presented

in table 3.3.2. The EC-Assertion will be loaded on the Everest monitor to facilitate the

monitoring activity of the relevant SLA. To produce a concrete SLA specification from the

template, service users need to provide only one parameter under the name trustedIPs that

represents the list of IP addresses that are acceptable for the computations to occur. Within

the SLA template a relevant placeholder with the same name is used. The list of IP addresses

will be provided as a comma separated list of strings. In the SLA template the list is broken

down into the individual IPs of the list and added to the trustedIP fluent to initialize to

true from the beginning of the computation i.e. when t=0. An abbreviated version of the
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SLA template for the location of execution of the service’s computations can be seen in the

listing 3.13 below.

Listing 3.13 Abbreviated version of the SLA template for location of execution
1 <Guaranteed ID="trustedFluentID1" forChecking="false" type="future">

2 <quantification >

3 <quantifier >forall </quantifier >

4 <timeVariable >

5 <varName >t0</varName >

6 <varType >TimeVariable </varType >

7 </timeVariable >

8 </quantification >

9 <postcondition >

10 <atomicCondition conditionID="trustedFluentac1">

11 <stateCondition >

12 <initially >

13 <state name="trustedFluent">

14 <argument >

15 <variable forMatching="true" persistent="false">

16 <varName >trustedIP </varName >

17 <array>

18 <type>stringArray </type>

19 #set($count = 0)

20 #foreach( $ip in $trustedIps )

21 <value><indexValue >$count</indexValue >

22 <cellValue >$ip</cellValue >

23 </value>

24 #set($count = $count + 1)

25 #end

26 </array>

27 </variable >

28 </argument >

29 </state>

30 <timeVar >

31 <varName >t0</varName >

32 <varType >TimeVariable </varType >

33 </timeVar >

34 </initially >

35 </stateCondition >

36 </atomicCondition >

37 </postcondition >

38 </Guaranteed >

39 <Guaranteed forChecking="true" ID="PrivacyRule" type="Future_Formula">

40 <quantification >

41 <quantifier >forall </quantifier >

42 <timeVariable >

43 <varName >t1</varName >

44 <varType >TimeVariable </varType >

45 </timeVariable >

46 </quantification >

47 <precondition >

48 <atomicCondition conditionID="ac0">

49 <eventCondition unconstrained="true">

50 <event>

51 <eventID forMatching="true" persistent="false">

52 <varName >Privacy </varName >

53 </eventID >

54 <call>

55 <interfaceId >BDASLA </interfaceId >

56 <OperationId >1</OperationId >

57 <operationName >compute </operationName >

58 <inputVariable forMatching="true" persistent="false">
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59 <varName >appId</varName >

60 <varType >string </varType >

61 </inputVariable >

62 <inputVariable forMatching="true" persistent="false">

63 <varName >appName </varName >

64 <varType >string </varType >

65 </inputVariable >

66 <inputVariable forMatching="true" persistent="false">

67 <varName >rddId</varName >

68 <varType >string </varType >

69 </inputVariable >

70 <inputVariable forMatching="true" persistent="false">

71 <varName >partId </varName >

72 <varType >string </varType >

73 </inputVariable >

74 <inputVariable forMatching="true" persistent="false">

75 <varName >ip</varName >

76 <varType >string </varType >

77 </inputVariable >

78 </call>

79 <tVar>

80 <timeVar >

81 <varName >t1</varName >

82 <varType >TimeVariable </varType >

83 </timeVar >

84 </tVar>

85 <fromTime >

86 <time>

87 <varName >t1</varName >

88 <varType >TimeVariable </varType >

89 </time>

90 </fromTime >

91 <toTime >

92 <time>

93 <varName >t1</varName >

94 <varType >TimeVariable </varType >

95 </time>

96 </toTime >

97 </event>

98 </eventCondition >

99 </atomicCondition >

100 </precondition >

101 <postcondition >

102 <atomicCondition conditionID="trustedAc1">

103 <stateCondition >

104 <holdsAt >

105 <state name="trustedFluent">

106 <argument >

107 <variable forMatching="true" persistent="false">

108 <varName >trustedIP </varName >

109 <array>

110 <type>stringArray </type>

111 </array>

112 </variable >

113 </argument >

114 </state>

115 <timeVar >

116 <varName >t1</varName >

117 <varType >TimeVariable </varType >

118 </timeVar >

119 </holdsAt >

120 </stateCondition >

121 </atomicCondition >

122 <WrappedCondition >
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123 <operator >and</operator >

124 <assertionCondition >

125 <atomicCondition conditionID="wc1">

126 <relationalCondition >

127 <equal>

128 <operand1 >

129 <operationCall >

130 <name>exists </name>

131 <partner >self</partner >

132 <argument >

133 <variable forMatching="true" persistent="false">

134 <varName >trustedIP </varName >

135 <array>

136 <type>stringArray </type>

137 </array>

138 </variable >

139 </argument >

140 <argument >

141 <variable >

142 <varName >ip</varName >

143 <varType >string </varType >

144 </variable >

145 </argument >

146 </operationCall >

147 </operand1 >

148 <operand2 >

149 <constant >

150 <name>verified </name>

151 <value>true</value>

152 </constant >

153 </operand2 >

154 </equal>

155 <timeVar >

156 <varName >t1</varName >

157 <varType >TimeVariable </varType >

158 </timeVar >

159 </relationalCondition >

160 </atomicCondition >

161 </assertionCondition >

162 </WrappedCondition >

163 </postcondition >

164 </Guaranteed >

Let’s go through each segment of the SLA template and analyze it in greater detail. As it

can be seen, the segment presented in listing 3.13 contains two guarantee terms to match the

fact that two event calculus formulas are required for the monitoring activity for the location

of execution of computation.

The definition of the assumption spans from line 1 until line 38. In the this section, from

line 2 until line 8, the forall existential qualifier is declared regarding the t0 time variable

of the assumption. This is because the fluent trustedIP that is included in the Initially event

calculus formula, will be evaluated for all values of variable t0 ≥ 0 and for all the trusted

IP addresses should evaluate to true. The assumption is defined from line 9 until line 37

as a postcondition. The name of the fluent is defined as trustedIP in line 16 and is of type
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stringArray. The stringArray data type describes the fact the list of IP is passed to the SLA

as parameter and is an array of strings. Also, from line 19 until line 25, a Velocity code

snippet is responsible for the tokenization of the user’s input in a list of strings. Note that

the assumption for the Initially event calculus formula does not have a precondition. This is

because, by definition according to event calculus’ theory, Initially formulas do not require

the occurrence of an event to hold true. They do hold true from the beginning of time i.e.

when t=0.

The definition of the rule spans from line 39 until line 164 and is declared as a future

formula. As in the assumption, the existential quantifier used for the t1 variable of the rule

is the forall quantifier. That is because the rule will be evaluated for all possible values of

time variable t1 ≥ 0 that a compute event might occur. Finally, note that in the event that is

defined in the precondition of the rule, the events that will be collected will be unified on the

basis of the appId, appName, partId, rddId and ip variables.

Event Captor Specification

The event captor that will be used for the emission of the appropriate events for the location

of execution of the computations is related to the compute() method of RDDs. In Apache

Spark all the types of RDDs must implement certain methods while some others are optional.

More specifically the RDDs are dependent of 5 core properties that are the following:

1. Parent RDDs - A list of dependencies of the RDD i.e. what RDDs are required to be

computed for the current RDD to be materialized.

2. An array of partitions that comprise the current RDD

3. A compute function that when applied it computes the partitions of the RDD

4. A partitioner which is a function that describes how the keys of the data items of the

RDD should be distributed in the the RDD’s partitions (optional)

5. A list of preferred locations (locality metadata) for the partitions of the RDD (optional)

A key operation that is involved in the computation of the partitions of RDDs is listed

in point 3 in the list above. The compute() method for each type of RDD describes in
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detail how each partition for an RDD will be computed. In Spark’s execution model the

partitions of RDDs can be computed on different nodes, even for partitions are part of the

same RDD. Therefore, the event captors in order to capture the location of execution of

computations of partitions must intercept the compute() method for different types of RDDs.

From an implementation point of view an RDD in Apache Spark is represented as an abstract

class where the 5 functions mentioned above are not implemented or have a default basic

implementation. An abbreviated version of the RDD class can be seen listing 3.14 below

where the 5 methods are listed.

Listing 3.14 Apache Spark Scala code for the RDD class with basic set of methods
1 abstract class RDD[T: ClassTag ]( @transient private var _sc: SparkContext , @transient private var deps: Seq[Dependency[_]]) extends

2 Serializable with Logging {

3 def compute(split: Partition , context: TaskContext): Iterator[T]

4 protected def getPartitions: Array[Partition]

5 protected def getDependencies: Seq[Dependency[_]] = deps

6 protected def getPreferredLocations(split: Partition): Seq[String] = Nil

7 @transient val partitioner: Option[Partitioner] = None

8 }

Interception Component

All types of RDDs extend the abstract implementation of RDD class to override the default

functionality or implement their own functions if it is appropriate for the type of RDD.

Typically, all types of RDDs implement their own compute() method because otherwise there

would not be a need for a new type of RDD. Spark uses the RDD abstraction to run application

that span across multiple domains of the Big Data analytics such as batch processing, stream

processing and iterative machine learning algorithms and our event captors ought to be able to

capture the relevant events to support all types of computations from all the aforementioned

domains. To attain that objective we intercept all the compute() methods for all the classes

that extend the RDD class and therefore represent a separate type of RDD. The interception

component can be seen in listing 3.15 below.

Listing 3.15 Interception component of event captor for response time
1 public static void premain(String configuration , Instrumentation instrumentation) {

2

3 Set <String > coreRDDs = new HashSet <>(Arrays

4 .asList("org.apache.spark.rdd.BlockRDD",

5 "org.apache.spark.rdd.CartesianRDD",

6 "org.apache.spark.rdd.CheckpointRDD",

7 "org.apache.spark.rdd.CoalescedRDD",

8 "org.apache.spark.rdd.CoGroupedRDD",
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9 "org.apache.spark.rdd.EmptyRDD",

10 "org.apache.spark.rdd.HadoopRDD",

11 "org.apache.spark.rdd.HadoopRDD",

12 "org.apache.spark.rdd.JdbcRDD",

13 "org.apache.spark.rdd.MapPartitionsRDD",

14 "org.apache.spark.rdd.NewHadoopRDD",

15 "org.apache.spark.rdd.NewHadoopMapPartitionsWithSplitRDD",

16 "org.apache.spark.rdd.ParallelCollectionRDD",

17 "org.apache.spark.rdd.PartitionerAwareUnionRDD",

18 "org.apache.spark.rdd.PartitionPruningRDD",

19 "org.apache.spark.rdd.PartitionwiseSampledRDD",

20 "org.apache.spark.rdd.PipedRDD",

21 "org.apache.spark.rdd.MyCoolRDD",

22 "org.apache.spark.rdd.ShuffledRDD",

23 "org.apache.spark.rdd.SubtractedRDD",

24 "org.apache.spark.rdd.UnionRDD",

25 "org.apache.spark.rdd.ZippedPartitionsBaseRDD",

26 "org.apache.spark.rdd.ZippedWithIndexRDD"

27 ));

28

29 Set <String > graphxRDDs = new HashSet <>(Arrays

30 .asList("org.apache.spark.graphx.EdgeRDD",

31 "org.apache.spark.graphx.VertexRDD"

32 ));

33

34 Set <String > mlibRDDs = new HashSet <>(Arrays

35 .asList("org.apache.spark.mllib.rdd.RandomRDD",

36 "org.apache.spark.mllib.rdd.RandomVectorRDD"

37 ));

38

39 Set <String > sqlRDDs = new HashSet <>(Arrays

40 .asList("org.apache.spark.sql.execution.EmptyRDDWithPartitions",

41 "org.apache.spark.sql.execution.ShuffledRowRDD",

42 "org.apache.spark.sql.execution.datasources.FileScanRDD",

43 "oorg.apache.spark.sql.execution.datasources.jdbc.JDBCRDD",

44 "org.apache.spark.sql.execution.datasources.v2.DataSourceRDD",

45 "org.apache.spark.sql.execution.streaming.continuous.ContinuousDataSourceRDD",

46 "org.apache.spark.sql.execution.streaming.continuous.ContinuousWriteRDD",

47 "org.apache.spark.sql.execution.streaming.state.StateStoreRDD"

48 ));

49

50 Set <String > kafkaRDDs = new HashSet <>(Arrays

51 .asList("org.apache.spark.sql.kafka010.KafkaSourceRDD"

52 ));

53

54 Set <String > streamingKafkaRDDs = new HashSet <>(Arrays

55 .asList("org.apache.spark.streaming.kafka010.KafkaRDD"

56 ));

57

58 Set <String > streamingRDDs = new HashSet <>(Arrays

59 .asList("org.apache.spark.streaming.rdd.MapWithStateRDD"

60 ));

61

62 new AgentBuilder.Default ()

63 .type(type -> coreRDDs.contains(type.getName ())

64 || graphxRDDs.contains(type.getName ())

65 || mlibRDDs.contains(type.getName ())

66 || sqlRDDs.contains(type.getName ())

67 || kafkaRDDs.contains(type.getName ())

68 || streamingKafkaRDDs.contains(type.getName ())

69 || streamingRDDs.contains(type.getName ()))

70

71 .transform ((builder , typeDescription , classLoader , module) -> {

72 return builder
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73 .serialVersionUid (1L)

74 .method(method -> method.getName ().equals("compute"))

75 .intercept(

76 MethodDelegation

77 .withDefaultConfiguration ()

78 .withBinders(Morph.Binder.install(Morpher.class))

79 .to(new RDDComputeInterceptor(type)));

80 })

81 .installOn(instrumentation);

Note that in line 63 the names of the classes that are intercepted are the ones contained in

the sets that are declared in lines 3, 29, 34, 39, 50, 54 and 58 that are subclasses of the RDD

class. In those sets we have included all the RDD implementations included in the Apache

Spark’s API. This interception strategy will result in the interception of all the compute()

methods for all types of RDDs and therefore the event captors will successfully emit the

right events for any intermediate RDD that will be produced during a Big Data service

execution. It is important to underline that this interception startegy is possible because

the delegation method which will explain in the next section, is exactly the same for all

intercepted compute() methods. If the delegation method was different and different types of

events should be emitted then we would have to explicitly intercept every type of RDD and

associate it with a separate delegation method for every RDD type.

Delegation Component

In listing 3.15 above in line 79 the intercepted compute() method for all RDDs is delegated to

class called RDDComputeInterceptor. This class will contain a compute() method that will

realize our objective of emitting the IP address of the node that performs the computation

while at the same time it will execute the original compute() method for every type of RDD.

The code snippet of the delegation class is shown in listing 3.16 below.

Listing 3.16 Delegation component of event captor for location of execution of computation
1 public class RDDComputeInterceptor {

2

3 private EmitterType type;

4 private final Properties properties;

5

6 public RDDComputeInterceptor(EmitterType type){

7 this.type = type;

8 }

9

10 @RuntimeType

11 public Iterator compute(

12 @Argument (0) Partition partition ,

13 @Argument (1) TaskContext context ,
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14 @This RDD rdd ,

15 @Morph Morpher <Iterator > morpher) throws UnknownHostException , JAXBException , DatatypeConfigurationException {

16

17 emitIp(rdd , partition , type);

18 return morpher.invoke(partition , context);

19 }

20 }

In listing 3.16 the variable type that is passed as a parameter in line 7, is the emitter type

that allows the emission of events to multiple receiver types such as a socket, a queuing

system or any other kind of synchronous or asynchronous communication channel. The

emitIp() method in line 17 is the method that creates and sends an XML representation of the

compute event with all the necessary metadata such as a the application id, the application

name, the partition id, the RDD id and the IP address of the host machine to the monitor in a

format that the monitor can interpret it. The actual implementation of the emitIp() is omitted

for the sake of space. Finally, note that the delegation method in line 18, after it has emitted

the compute event to the monitor, it invokes the originally intercepted method which will be

the corresponding compute() method for the RDD type that has been intercepted.

3.3.3 Monitoring Rules for Data Integrity During Service Execution

The monitoring of data integrity is implemented by means of verifying whether the intermediate

data has or has not been modified in-between operations from an external agent. The only

entity that can and should be able to modify the data during service execution, is the Big

Data processing framework itself i.e. in our case Apache Spark. When a Big Data service

gets executed in Spark, due to the fact that RDDs are immutable, multiple intermediate

RDDs are produced as a result of the application of the service’s operations. If RDDs are

small enough to fit in memory they are cached and stored in it. If they do not fit in memory,

part of the data is spilled on the disk. The intermediate storage of RDDs creates an attack

surface and can expose the data to integrity violations which can be the result of malicious

attacks such as RAM scrapping [110]. Also, the integrity of the data can be violated when

the data is stored on the disk or when transferred over the network during transformations

with wide dependencies. The unwanted modification of data does not necessary imply an

attack from a malicious entity. It can happen under many different circumstances and can

be the result of a hardware or software failure as well. If the integrity of any intermediate

data is compromised, the integrity of the result of the computation is also compromised. In
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general, monitoring data integrity during service execution requiers that "the checksums

of the partitions of all intermediate RDDs remain the same in-between all the types of

operations, be it transformations or actions"

To be able to make an assessment with regards to the preservation of the integrity of all

the data that is produced as part of the computation, we compute two checksum values; one

when a dataset is produced and one when it is consumed from its subsequent operations. As

soon as the checksums are produced we compare them. If they are the same the integrity of

the data has not been compromised. If they are not the same the implication is that some

external entity other than the processing framework has modified the data in an undesirable

way.

Since an RDD is the basic abstraction we will compute checksums on a per RDD basis.

However, RDDs are comprised of partitions and therefore RDD partitions offer a logical

piece of data that we can use to calculate the checksums. A checksum is a sequence of

letters and digits that is produced as a result of a hashing algorithm that is applied on piece

of data. The data could be a file or a sequence of data items of an in-memory data structure.

Regardless of the size of the data, a checksum can be produced and with a high degree of

confidence the generation of the same checksum for the data can guarantee that the integrity

of the data has not been compromised.

There exist multiple hash function implementations that produce hash codes with different

levels of probability for collisions i.e. different level of confidence that for two different

datasets the same checksum will be produced. The most prominent implementations of

hash functions are MD5, SHA-1 and SHA-256. MD5 produces a 128-bit or 16 byte hash

value that in hexadecimal number is comprised of 32 digits. MD5 is prone to collisions and

therefore not the most appropriate solution for large datasets. SHA-1 stands for Secure Hash

Algorithms and has been designed and implemented by the National Security Agency (NSA).

It produces larger hash values in size than MD5 and are 160-bit or 20 byte long. When

represented as a hexadecimal number SHA-1 hash values are 40 digits long. SHA-256 is a

more sophisticated version of SHA-1, it has produced by NSA as well and produces hash

values that are 256-bit or 28 byte long. In hexadecimal format they are 64 digits long. From

all three algorithms the SHA-256 is the one with the least likelihood for collisions. However,
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due to its complexity, SHA-256 is the hash function that imposes the greater overhead when

computing the checksum of a dataset.

A high likelihood for collisions in hash values suggests that the evaluation of checksums

would not suffice for the discovery of data integrity violations. If a piece of data is modified

so that the checksums for both the original and the modified datasets are the same, it would

be impossible to successfully track down that a modification has occurred on the data. Also,

the modification of data will have to be such that it would alter it in a meaningful way. We

argue that this probability is very low when a sufficiently collision-free algorithm is used.

Therefore, examining the checksums of the intermediate data is a reasonable approach with

regards to the evaluation of the preservation of data integrity during data processing.

As shown in Spark’s architecture in section A.2.2, a Spark job is organized as a directed

acyclic graph where the edges are the operations and the nodes are the intermediate data

that is produced as a result of the operations applied on the data. In this setup, operations

are strung together and the output of an operation becomes the input of the next operation

until the final result is computed. Depending on the type of operation, different types of

output will be produced. As explained, in Spark the operations available are transformations

and actions. Transformations with narrow dependencies are compacted together and are

executed in memory to increase performance and computational efficiency. On the other

hand, transformation with wide dependencies need to take place in two stages; first the

mappers have to prepare the data to be sent to the reducers and then the reducers have to

read the mapped data over the network to apply the reduction function. The difference in

implementation for the two types of transformations plays a significant role in the monitoring

events that need to captured in order to realize the monitoring activity for data integrity. We

will examine each type of transformation separately. Finally, actions behave similarly to

transformations with narrow dependencies except for the fact they trigger the materialization

of RDDs that are declared prior to the action.

Monitoring transformations with narrow dependencies

In this subsection we provide the theoretical analysis for the monitoring of data integrity for

transformations with narrow dependencies. Such transformations are in-memory operations



3.3 Monitoring Rules 135

Fig. 3.9 Monitoring data integrity for transformations with narrow dependencies

and therefore violations in data integrity can occur if the heap space of the JVM is compromised.

A visual portrayal of how such transformation occur can be seen in figure 3.9.

In figure 3.9 we depict 3 RDDs namely A = {A0,A1,A2}, B = {B0,B1,B2} and C =

{C0,C1,C2} with their respective partitions. As it can be seen, when opAB() is applied on

the partitions of RDD A, the partitions of RDD B is written in memory. This denotes the

occurrence of a writerdd event. Subsequently, when opAB() has completed, opBC() is applied

on the partitions of RDD B which implies that it takes its partitions as input. These concepts

are presented in a formal manner in formulae 3.2 and 3.3.

opAB(An) = Bn, n = 0,1,2 (3.2)

opBC(Bn) =Cn, n = 0,1,2 (3.3)

As it can be seen from the formulae, the output of operation opAB(), namely partitions

Bn,n = 0,1,2, are provided as input to operation opBC(). Having said that, the monitoring

activity for data integrity would require the computation of checksums for each individual
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writerdd( appId, appName, partId, rddId, checksum, t)

appId: Application id

appName: Application name

partId: Partition id

rddId: RDD id

checksum: The checksum hash value for the partition

t: Timestamp when the writerdd event occurred

Table 3.8 Writerdd events for monitoring data integrity for transformations with narrow
dependencies

partition of RDD B so as to juxtapose it with the checksums of the partitions that opBC()

will take as an input and check whether the hash values are the same or not. If they are the

same, that implies that in-between operations opAB() and opBC() the data of the partitions of

RDD B has not been altered by anyone outside the operations themselves. The collection and

comparison of checksums for all partitions for all the intermediate RDDs that are the result

of the application of transformations with narrow dependencies, is a process that will have

to be applied exhaustively for all such transformations to guarantee that no data integrity

violations have taken place. The types of events that will have to be captured to materialize

the monitoring rule are writerdd events for the partitions i.e. when a partition for an RDD is

computed and the readrdd events when a partition reads data from its parent RDD. Similar to

the other monitoring rules, the application id and name will need to be included in the event

to distinguish between multiple executions of the same service, the partition id, the RDD id

and the actual checksum of the partition at hand. Note for the same partition first there will be

a writerdd event when the RDD is computed and then, at a later point in time, a readrdd event

for the same partition will occur when the RDD is fed an input to a subsequent operation. A

description of the writerdd and readrdd events for the monitoring of transformations with

narrow dependencies in event calculus notation can be viewed in tables 3.8 and 3.9.

Example of write and read events intended for the monitoring of data integrity during job

execution can be seen in tables 3.10 and 3.11



3.3 Monitoring Rules 137

readrdd( appId, appName, partId, rddId, checksum, t)

appId: Unique application id

appName: Unique application name

partId: Unique partition id across all the partitions of an RDD

rddId: Unique RDD id across all RDDs of a Spark job

checksum: The checksum hash value for the data of the partition

t: Timestamp when the read event occurred

Table 3.9 Read events for monitoring data integrity for transformations with narrow
dependencies

writerdd(appId=app-20181202162554-0401, appName=LoadAndAnonymize, partId=4,
rddId=2, checksum=A199B8D49D5688E2BA14FAB77CC34B14, t=1543865904)

writerdd(appId=app-20181202162554-0401, appName=LoadAndAnonymize, partId=2,
rddId=3, checksum=CC21014E074E2BAE7D6ADBBEDF98521C, t=1543867839)

Table 3.10 Example of writerdd events collected for monitoring data integrity of
transformations with narrow dependencies

readrdd(appId=app-20181202162554-0401, appName=LoadAndAnonymize, partId=4,
rddId=2, checksum=C443B8D49D5688E2BA14FAA10AC34C66, t=1543868674)

readrdd(appId=app-20181202162554-0401, appName=LoadAndAnonymize, partId=2,
rddId=3, checksum=A402014B938E2BAE7D6579BEDF985BBC, t=1543869951)

Table 3.11 Example of readrdd events collected for monitoring data integrity of
transformations with narrow dependencies

Monitoring transformations with wide dependencies

In this subsection we provide the theoretical analysis for the monitoring of data integrity for

transformations with wide dependencies. Such transformations require that the partitions

of an RDD will be grouped based on the number of the reducers that will consume it

and subsequently will be sent to the reducers over the network. In transformations with

wide dependencies, based on its size, the grouped data is serialized in memory or on the
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disk and then sent over the wire for the successful completion of the transformation. In

principle, transformations with wide dependencies leave more room for malicious attacks

compared to in-memory transformations. This is because of two reasons; firstly the data

is serialized and persisted on the disk and secondly the data is sent over the network and

is therefore susceptible to man-in-the-middle attacks as well. A visual depiction of a

transformation with wide dependencies is shown in figure 3.10. Operation opAB() is applied

on RDD A = {A0,A1,A2} and RDD B = {B0,B1} is computed. Note that RDD A has 3

partitions while RDD B has only 2. This is because partition dependency in wide dependency

transformations is not one-to-one but one-to-many. This means that the partitions of the

parent RDD (RDD A) can and in most cases will be condensed into fewer partitions in the

child RDD (RDD B).

Fig. 3.10 Monitoring data integrity for transformations with wide dependencies
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Similar to transformations with narrow dependencies, transformations with wide dependencies

need to collect write and read events not for partitions but for the intermediate data sets that

are generated during the map/reduce stage of the transformation. All transformations with

wide dependencies require data to be shuffled. Every shuffle operation within a computation

has a unique id to distinguish it from other shuffle operations during a Spark job. This id

will have to be collected in order to differentiate between write and read events that refer

to different shuffles within the same Spark job. Now, within a shuffle operation there exist

multiple mappers and reducers, each one of them having a unique id for the shuffle operation

that they refer to. Therefore, the combination of the shuffle id, the mapper id and the reducer

id can only point to a specific intermediate dataset that will be written on the mapper’s end

and will then be read on the reducer’s end. For instance, in figure 3.10, dataset A1B0 will be

written in the context of a shuffle operation from the mapper with id A1 for the reducer with

id B0 and the same dataset will be read from the reduced with id B0 that has been sent from

the mapper with id A1. The equality of checksums for those two datasets suggests that the

integrity of the data has not been breached. If the checksums are not the same, we can be

confident that some external agent has modified the data. A description of the events in event

calculus notation for monitoring data integrity for transformations with wide dependencies is

presented in tables 3.12 and 3.13.

writeshuffle( appId, appName, shuffleId, mapId, reduceId, checksum, t)

appId: Unique application id

appName: Unique application name

shuffleId: Unique shuffle id across all shuffles in a Spark job

mapId: Unique id of the mapper in the shuffle

reduceId: Unique id of the reducer in the shuffle

checksum: The checksum hash value for the data set that is written

t: Timestamp when the writerdd event occurred

Table 3.12 Write shuffle events for monitoring data integrity for transformations with wide
dependencies
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readshuffle( appId, appName, shuffleId, mapId, reduceId, checksum, t)

appId: Unique application id

appName: Unique application name

shuffleId: Unique shuffle id across all shuffles in a Spark job

mapId: Unique id of the mapper in the shuffle

reduceId: Unique id of the reducer in the shuffle

checksum: The checksum hash value for the data set that is read

t: Timestamp when the writerdd event occurred

Table 3.13 Read shuffle events for monitoring data integrity for transformations with wide
dependencies

Monitoring Data Integrity for Actions

The monitoring activity for actions has similar characteristics with the monitoring activity of

transformations with narrow dependencies. A key difference however, is that the result of

actions are not RDDs but a data structure that is returned on the driver node. Having said

that, since a new RDD is not created the collection of writerdd events is not appropriate. The

only events that will have to be captured are readrdd events when actions read the partitions

of the RDD that the action is applied on. In event calculus notation readrdd for actions are

the same as the readrdd events for transformations with narrow dependencies illustrated in

table 3.9. Also, examples of readrdd events for actions are presented in table 3.11.

Event Calculus

The Event Calculus rules and assumptions for the monitoring of data integrity during service

execution need to reflect the fact that if the checksums of the intermediate data do not remain

the same between operations a data, an integrity violation has occurred. Therefore, the events

that will be collected for the evaluation of data integrity will have to correlate the checksums

of partitions of RDDs with their respective checksums for the EVEREST monitor to be able

to evaluate them. To realise the monitoring activity of runtime data integrity, we need to

use different event calculus formulae that will correspond to the events for transformations
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with wide dependencies shown in tables 3.12 and 3.13 and transformations with narrow

dependencies and actions shown in table 3.8 and 3.9 respectively.

More specifically, the event calculus formulae for monitoring data integrity for transformations

with narrow dependencies and actions are listed in table 3.14.

Assumption 1

∀ t ≥ 0,
Initiates(writerdd( appId, appName, partId, rddId, checksum),
writeRddFluent(appId, appName, partId, rddId, checksum), t)

Rule 1

∀ t ≥ 0,
Happens(readrdd(appId, appName, partId, rddId, checksum, t))→
HoldsAt(writeRddFluent( appId, appName, partId, rddId, checksum, t))

Table 3.14 Event calculus assumption and rule for monitoring the runtime data integrity for
actions and transformations with narrow dependencies

In Assumption 1 shown in tables 3.14 and 3.15, two fluents are initialised under the

names writeRddFluent and writeShuffleFluent when writerdd and writeshuflle events occurs

respectively. The fluents in the case of transformations with narrow dependencies reflect the

fact that a partition for an RDD has been written whereas in the case of transformations with

wide dependencies they reflect the fact that the map side of a shuffle operations has written

its data. Note that in both cases the checksum of the data is calculated and included in the

fluent as a parameter as well. This is necessary for the correct initialisation of the fluent that

will allow it later on to compare the checksum value with the checksum of that data when it

is being passed as input to a subsequent transformation. In the same tables, in Rule 1 when

a read operation is performed, be it an RDD partition read or a shuffle read, the previously

instantiated fluents are evaluated. If the respective fluents are true it means that the data that

is being read has previously been written by another operation and in fact the checksum is the

same as the one that is being read and therefore the integrity of the data has been respected.
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Assumption 1

∀ t ≥ 0,
Initiate(writeshuffle(appId, appName, shuffleId, mapId, reduceId, checksum),
writeShuffleFluent(appId, appName, shuffleId, mapId, reduceId, checksum), t)

Rule 1

∀ t ≥ 0,
Happens(readhuffle(appId, appName, shuffleId, mapId, reduceId, checksum, t))→
HoldsAt(writeShuffleFluent(appId, appName, shuffleId, mapId, reduceId, checksum, t))

Table 3.15 Event calculus assumption and rule for monitoring the runtime data integrity for
transformations with wide dependencies

A visual representation of writerdd and readrdd events that occur over time during the

monitoring activity of runtime data integrity for transformations with narrow dependencies

and actions, can be seen in figure 3.11.

Fig. 3.11 Example of events that occur over time during the monitoring activity of data
integrity for actions and transformations with narrow dependencies

In this particular example we use only two events to convey the concept. More specifically,

at time t=1543865904 a writeRDDFluent fluent is set to true to represent the fact that for

the partition with partId = 3 in the RDD with rddId = 2, the value of its checksum is
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checksum = D828F32EEC06C27E07D6C2DC697513C7. As time goes on and the service

keeps executing, a readrdd event takes place on behalf of an operation further down in the

computation where the exact same partition is being read as an input. In particular, at time

t = 1543868032 another transformation reads the same partition with partId = 3 in RDD

with rddId = 2 and the corresponding readrdd event is captured. From an event calculus

perspective to check if the integrity of the data has been preserved, when the readrdd event

takes place we need to check if the corresponding fluent holds true for the given checksum.

Note that in the example presented it does hold true.

By the same token, a visual representation of writeshuffle and readshuffle events that

occur over time during the monitoring activity of runtime data integrity for transformations

with wide dependecies, can be seen in figure 3.12.

Fig. 3.12 Example of events that occur over time during the monitoring activity of data
integrity for transformations with wide dependencies

In this example, in order to illustrate the basic idea we present only two correlated

events. At time t = 1543865904 a fluent is set to true to represent the fact that for the

shuffleId with shu f f leId = 0, for the mapper with mapId = 7 that produces data that will

be consumed by the reducer with reducerId = 0 the value of the checksum of that data is

A254782EEAC87D11F21CE41045DC7299. Later, at time t = 1543865904, the grouped

data from the mappers will be read within the context of the shuffle with shu f f leId = 0 from
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the reducer with reduceId = 0 that has been produced from the mapper with mapId = 7.

This will enforce the collection of a readshuffle event. As it can be seen the checksum of the

data that is being read is checksum = A254782EEAC87D11F21CE41045DC7299, which is

exactly the same as the one stored in the fluent that was initiated earlier when the writeShuffle

event took place.

SLA Template specification

The SLA template specification for the location of execution will produce the EC-Assertion

assumption and rule that corresponds to the event calculus assumption and rule presented in

tables 3.15 and 3.15. The EC-Assertion expressions will be loaded on the Everest monitor

to support the monitoring activity of SLAs where data integrity monitoring is required.

An abbreviated version of the SLA template for the location of execution of the service’s

computations can be seen in the listing 3.17.

Listing 3.17 Abbreviated version of the SLA template for the integrity of runtime data
1 <Guaranteed forChecking="false" ID="IntAssump" type="Future_Formula">

2 <quantification >

3 <quantifier >forall </quantifier >

4 <timeVariable >

5 <varName >t1</varName >

6 <varType >TimeVariable </varType >

7 </timeVariable >

8 </quantification >

9 <precondition >

10 <atomicCondition conditionID="asac1">

11 <eventCondition unconstrained="true">

12 <event>

13 <eventID forMatching="true" persistent="false">

14 <varName >Integrity </varName >

15 </eventID >

16 <reply>

17 <interfaceId >BDASLA </interfaceId >

18 <OperationId >1</OperationId >

19 <operationName >writerdd </operationName >

20 <outputVariable forMatching="true" persistent="false">

21 <varName >appId</varName >

22 <varType >string </varType >

23 </outputVariable >

24 <outputVariable forMatching="true" persistent="false">

25 <varName >appName </varName >

26 <varType >string </varType >

27 </outputVariable >

28 <outputVariable forMatching="true" persistent="false">

29 <varName >rddId</varName >

30 <varType >string </varType >

31 </outputVariable >

32 <outputVariable forMatching="true" persistent="false">

33 <varName >partId </varName >

34 <varType >string </varType >
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35 </outputVariable >

36 <outputVariable forMatching="true" persistent="false">

37 <varName >checksum </varName >

38 <varType >string </varType >

39 </outputVariable >

40 </reply>

41 <tVar>

42 <timeVar >

43 <varName >t1</varName >

44 <varType >TimeVariable </varType >

45 </timeVar >

46 </tVar>

47 <fromTime >

48 <time>

49 <varName >t1</varName >

50 <varType >TimeVariable </varType >

51 </time>

52 </fromTime >

53 <toTime >

54 <time>

55 <varName >t1</varName >

56 <varType >TimeVariable </varType >

57 </time>

58 </toTime >

59 </event>

60 </eventCondition >

61 </atomicCondition >

62 </precondition >

63 <postcondition >

64 <atomicCondition conditionID="asac2">

65 <stateCondition >

66 <initiates >

67 <event>

68 <eventID forMatching="true" persistent="false">

69 <varName >Integrity </varName >

70 </eventID >

71 <reply>

72 <interfaceId >BDASLA </interfaceId >

73 <OperationId >1</OperationId >

74 <operationName >writerdd </operationName >

75 <outputVariable forMatching="true" persistent="false">

76 <varName >appId</varName >

77 <varType >string </varType >

78 </outputVariable >

79 <outputVariable forMatching="true" persistent="false">

80 <varName >appName </varName >

81 <varType >string </varType >

82 </outputVariable >

83 <outputVariable forMatching="true" persistent="false">

84 <varName >rddId</varName >

85 <varType >string </varType >

86 </outputVariable >

87 <outputVariable forMatching="true" persistent="false">

88 <varName >partId </varName >

89 <varType >string </varType >

90 </outputVariable >

91 <outputVariable forMatching="true" persistent="false">

92 <varName >checksum </varName >

93 <varType >string </varType >

94 </outputVariable >

95 </reply>

96 <tVar>

97 <timeVar >

98 <varName >t1</varName >
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99 <varType >TimeVariable </varType >

100 </timeVar >

101 </tVar>

102 <fromTime >

103 <time>

104 <varName >t1</varName >

105 <varType >TimeVariable </varType >

106 </time>

107 </fromTime >

108 <toTime >

109 <time>

110 <varName >t1</varName >

111 <varType >TimeVariable </varType >

112 </time>

113 </toTime >

114 </event>

115 <state name="writeRddFluent">

116 <argument >

117 <variable forMatching="true" persistent="false">

118 <varName >appId</varName >

119 <varType >string </varType >

120 </variable >

121 </argument >

122 <argument >

123 <variable forMatching="true" persistent="false">

124 <varName >appName </varName >

125 <varType >string </varType >

126 </variable >

127 </argument >

128 <argument >

129 <variable forMatching="true" persistent="false">

130 <varName >rddId</varName >

131 <varType >string </varType >

132 </variable >

133 </argument >

134 <argument >

135 <variable forMatching="true" persistent="false">

136 <varName >partId </varName >

137 <varType >string </varType >

138 </variable >

139 </argument >

140 <argument >

141 <variable forMatching="true" persistent="false">

142 <varName >checksum </varName >

143 <varType >string </varType >

144 </variable >

145 </argument >

146 </state>

147 <timeVar >

148 <varName >t1</varName >

149 <varType >TimeVariable </varType >

150 </timeVar >

151 </initiates >

152 </stateCondition >

153 </atomicCondition >

154 </postcondition >

155 </Guaranteed >

156 <Guaranteed forChecking="false" ID="ShuffleAssump" type="Future_Formula">

157 <quantification >

158 <quantifier >forall </quantifier >

159 <timeVariable >

160 <varName >t2</varName >

161 <varType >TimeVariable </varType >

162 </timeVariable >
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163 </quantification >

164 <precondition >

165 <atomicCondition conditionID="asac1">

166 <eventCondition unconstrained="true">

167 <event>

168 <eventID forMatching="true" persistent="false">

169 <varName >Integrity </varName >

170 </eventID >

171 <reply>

172 <interfaceId >BDASLA </interfaceId >

173 <OperationId >1</OperationId >

174 <operationName >writeshuffle </operationName >

175 <outputVariable forMatching="true" persistent="false">

176 <varName >status1 </varName >

177 <varType >OpStatus </varType >

178 <value>RES -B</value>

179 </outputVariable >

180 <outputVariable forMatching="true" persistent="false">

181 <varName >sender1 </varName >

182 <varType >Entity </varType >

183 <value></value>

184 </outputVariable >

185 <outputVariable forMatching="true" persistent="false">

186 <varName >receiver1 </varName >

187 <varType >Entity </varType >

188 <value></value>

189 </outputVariable >

190 <outputVariable forMatching="true" persistent="false">

191 <varName >source1 </varName >

192 <varType >Entity </varType >

193 <value></value>

194 </outputVariable >

195 <outputVariable forMatching="true" persistent="false">

196 <varName >serviceId </varName >

197 <varType >string </varType >

198 <value></value>

199 </outputVariable >

200 <outputVariable forMatching="true" persistent="false">

201 <varName >appId</varName >

202 <varType >string </varType >

203 </outputVariable >

204 <outputVariable forMatching="true" persistent="false">

205 <varName >appName </varName >

206 <varType >string </varType >

207 </outputVariable >

208 <outputVariable forMatching="true" persistent="false">

209 <varName >shuffleId </varName >

210 <varType >string </varType >

211 </outputVariable >

212 <outputVariable forMatching="true" persistent="false">

213 <varName >mapId</varName >

214 <varType >string </varType >

215 </outputVariable >

216 <outputVariable forMatching="true" persistent="false">

217 <varName >reduceId </varName >

218 <varType >string </varType >

219 </outputVariable >

220 <outputVariable forMatching="true" persistent="false">

221 <varName >checksum </varName >

222 <varType >string </varType >

223 </outputVariable >

224 </reply>

225 <tVar>

226 <timeVar >
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227 <varName >t2</varName >

228 <varType >TimeVariable </varType >

229 </timeVar >

230 </tVar>

231 <fromTime >

232 <time>

233 <varName >t2</varName >

234 <varType >TimeVariable </varType >

235 </time>

236 </fromTime >

237 <toTime >

238 <time>

239 <varName >t2</varName >

240 <varType >TimeVariable </varType >

241 </time>

242 </toTime >

243 </event>

244 </eventCondition >

245 </atomicCondition >

246 </precondition >

247 <postcondition >

248 <atomicCondition conditionID="asac2">

249 <stateCondition >

250 <initiates >

251 <event>

252 <eventID forMatching="true" persistent="false">

253 <varName >Integrity </varName >

254 </eventID >

255 <reply>

256 <interfaceId >BASLA</interfaceId >

257 <OperationId >1</OperationId > <operationName >writeshuffle </operationName >

258 <outputVariable forMatching="true" persistent="false">

259 <varName >status1 </varName >

260 <varType >OpStatus </varType >

261 <value>RES -B</value>

262 </outputVariable >

263 <outputVariable forMatching="true" persistent="false">

264 <varName >sender1 </varName >

265 <varType >Entity </varType >

266 <value></value>

267 </outputVariable >

268 <outputVariable forMatching="true" persistent="false">

269 <varName >receiver1 </varName >

270 <varType >Entity </varType >

271 <value></value>

272 </outputVariable >

273 <outputVariable forMatching="true" persistent="false">

274 <varName >source1 </varName >

275 <varType >Entity </varType >

276 <value></value>

277 </outputVariable >

278 <outputVariable forMatching="true" persistent="false">

279 <varName >serviceId </varName >

280 <varType >string </varType >

281 <value></value>

282 </outputVariable >

283 <outputVariable forMatching="true" persistent="false">

284 <varName >appId</varName >

285 <varType >string </varType >

286 </outputVariable >

287 <outputVariable forMatching="true" persistent="false">

288 <varName >appName </varName >

289 <varType >string </varType >

290 </outputVariable >
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291 <outputVariable forMatching="true" persistent="false">

292 <varName >shuffleId </varName >

293 <varType >string </varType >

294 </outputVariable >

295 <outputVariable forMatching="true" persistent="false">

296 <varName >mapId</varName >

297 <varType >string </varType >

298 </outputVariable >

299 <outputVariable forMatching="true" persistent="false">

300 <varName >reduceId </varName >

301 <varType >string </varType >

302 </outputVariable >

303 <outputVariable forMatching="true" persistent="false">

304 <varName >checksum </varName >

305 <varType >string </varType >

306 </outputVariable >

307 </reply>

308 <tVar>

309 <timeVar >

310 <varName >t2</varName >

311 <varType >TimeVariable </varType >

312 </timeVar >

313 </tVar>

314 <fromTime >

315 <time>

316 <varName >t2</varName >

317 <varType >TimeVariable </varType >

318 </time>

319 </fromTime >

320 <toTime >

321 <time>

322 <varName >t2</varName >

323 <varType >TimeVariable </varType >

324 </time>

325 </toTime >

326 </event>

327 <state name="writeShuffleFluent">

328 <argument >

329 <variable forMatching="true" persistent="false">

330 <varName >appId</varName >

331 <varType >string </varType >

332 </variable >

333 </argument >

334 <argument >

335 <variable forMatching="true" persistent="false">

336 <varName >appName </varName >

337 <varType >string </varType >

338 </variable >

339 </argument >

340 <argument >

341 <variable forMatching="true" persistent="false">

342 <varName >shuffleId </varName >

343 <varType >string </varType >

344 </variable >

345 </argument >

346 <argument >

347 <variable forMatching="true" persistent="false">

348 <varName >mapId</varName >

349 <varType >string </varType >

350 </variable >

351 </argument >

352 <argument >

353 <variable forMatching="true" persistent="false">

354 <varName >reduceId </varName >
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355 <varType >string </varType >

356 </variable >

357 </argument >

358 <argument >

359 <variable forMatching="true" persistent="false">

360 <varName >checksum </varName >

361 <varType >string </varType >

362 </variable >

363 </argument >

364 </state>

365 <timeVar >

366 <varName >t2</varName >

367 <varType >TimeVariable </varType >

368 </timeVar >

369 </initiates >

370 </stateCondition >

371 </atomicCondition >

372 </postcondition >

373 </Guaranteed >

374 <Guaranteed forChecking="true" ID="IntMonRule" type="Future_Formula">

375 <quantification >

376 <quantifier >forall </quantifier >

377 <timeVariable >

378 <varName >t1</varName >

379 <varType >TimeVariable </varType >

380 </timeVariable >

381 </quantification >

382 <precondition >

383 <atomicCondition conditionID="mrac1">

384 <eventCondition unconstrained="true">

385 <event>

386 <eventID forMatching="true" persistent="false">

387 <varName >Integrity </varName >

388 </eventID >

389 <call>

390 <interfaceId >BDASLA </interfaceId >

391 <OperationId >1</OperationId >

392 <operationName >readrdd </operationName >

393 <inputVariable forMatching="true" persistent="false">

394 <varName >status1 </varName >

395 <varType >OpStatus </varType >

396 <value>REQ -B</value>

397 </inputVariable >

398 <inputVariable forMatching="true" persistent="false">

399 <varName >sender1 </varName >

400 <varType >Entity </varType >

401 <value></value>

402 </inputVariable >

403 <inputVariable forMatching="true" persistent="false">

404 <varName >receiver1 </varName >

405 <varType >Entity </varType >

406 <value></value>

407 </inputVariable >

408 <inputVariable forMatching="true" persistent="false">

409 <varName >source1 </varName >

410 <varType >Entity </varType >

411 <value></value>

412 </inputVariable >

413 <inputVariable forMatching="true" persistent="false">

414 <varName >serviceId </varName >

415 <varType >string </varType >

416 <value></value>

417 </inputVariable >

418 <inputVariable forMatching="true" persistent="false">



3.3 Monitoring Rules 151

419 <varName >appId</varName >

420 <varType >string </varType >

421 </inputVariable >

422 <inputVariable forMatching="true" persistent="false">

423 <varName >appName </varName >

424 <varType >string </varType >

425 </inputVariable >

426 <inputVariable forMatching="true" persistent="false">

427 <varName >rddId</varName >

428 <varType >string </varType >

429 </inputVariable >

430 <inputVariable forMatching="true" persistent="false">

431 <varName >partId </varName >

432 <varType >string </varType >

433 </inputVariable >

434 <inputVariable forMatching="true" persistent="false">

435 <varName >checksum </varName >

436 <varType >string </varType >

437 </inputVariable >

438 </call>

439 <tVar>

440 <timeVar >

441 <varName >t1</varName >

442 <varType >TimeVariable </varType >

443 </timeVar >

444 </tVar>

445 <fromTime >

446 <time>

447 <varName >t1</varName >

448 <varType >TimeVariable </varType >

449 </time>

450 </fromTime >

451 <toTime >

452 <time>

453 <varName >t1</varName >

454 <varType >TimeVariable </varType >

455 </time>

456 </toTime >

457 </event>

458 </eventCondition >

459 </atomicCondition >

460 </precondition >

461 <postcondition >

462 <atomicCondition conditionID="mrpc1">

463 <stateCondition >

464 <holdsAt >

465 <state name="writeRddFluent">

466 <argument >

467 <variable forMatching="true" persistent="false">

468 <varName >appId</varName >

469 <varType >string </varType >

470 </variable >

471 </argument >

472 <argument >

473 <variable forMatching="true" persistent="false">

474 <varName >appName </varName >

475 <varType >string </varType >

476 </variable >

477 </argument >

478 <argument >

479 <variable forMatching="true" persistent="false">

480 <varName >rddId</varName >

481 <varType >string </varType >

482 </variable >
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483 </argument >

484 <argument >

485 <variable forMatching="true" persistent="false">

486 <varName >partId </varName >

487 <varType >string </varType >

488 </variable >

489 </argument >

490 <argument >

491 <variable forMatching="true" persistent="false">

492 <varName >checksum </varName >

493 <varType >string </varType >

494 </variable >

495 </argument >

496 </state>

497 <timeVar >

498 <varName >t1</varName >

499 <varType >TimeVariable </varType >

500 </timeVar >

501 </holdsAt >

502 </stateCondition >

503 </atomicCondition >

504 </postcondition >

505 </Guaranteed >

506 <Guaranteed forChecking="true" ID="shufMonRule" type="Future_Formula">

507 <quantification >

508 <quantifier >forall </quantifier >

509 <timeVariable >

510 <varName >t2</varName >

511 <varType >TimeVariable </varType >

512 </timeVariable >

513 </quantification >

514 <precondition >

515 <atomicCondition conditionID="mrac1">

516 <eventCondition unconstrained="true">

517 <event>

518 <eventID forMatching="true" persistent="false">

519 <varName >Integrity </varName >

520 </eventID >

521 <call>

522 <interfaceId >BDASLA </interfaceId >

523 <OperationId >1</OperationId >

524 <operationName >readshuffle </operationName >

525 <inputVariable forMatching="true" persistent="false">

526 <varName >status1 </varName >

527 <varType >OpStatus </varType >

528 <value>REQ -B</value>

529 </inputVariable >

530 <inputVariable forMatching="true" persistent="false">

531 <varName >sender1 </varName >

532 <varType >Entity </varType >

533 <value></value>

534 </inputVariable >

535 <inputVariable forMatching="true" persistent="false">

536 <varName >receiver1 </varName >

537 <varType >Entity </varType >

538 <value></value>

539 </inputVariable >

540 <inputVariable forMatching="true" persistent="false">

541 <varName >source1 </varName >

542 <varType >Entity </varType >

543 <value></value>

544 </inputVariable >

545 <inputVariable forMatching="true" persistent="false">

546 <varName >serviceId </varName >
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547 <varType >string </varType >

548 <value></value>

549 </inputVariable >

550 <inputVariable forMatching="true" persistent="false">

551 <varName >appId</varName >

552 <varType >string </varType >

553 </inputVariable >

554 <inputVariable forMatching="true" persistent="false">

555 <varName >appName </varName >

556 <varType >string </varType >

557 </inputVariable >

558 <inputVariable forMatching="true" persistent="false">

559 <varName >shuffleId </varName >

560 <varType >string </varType >

561 </inputVariable >

562 <inputVariable forMatching="true" persistent="false">

563 <varName >mapId</varName >

564 <varType >string </varType >

565 </inputVariable >

566 <inputVariable forMatching="true" persistent="false">

567 <varName >reduceId </varName >

568 <varType >string </varType >

569 </inputVariable >

570 <inputVariable forMatching="true" persistent="false">

571 <varName >checksum </varName >

572 <varType >string </varType >

573 </inputVariable >

574 </call>

575 <tVar>

576 <timeVar >

577 <varName >t2</varName >

578 <varType >TimeVariable </varType >

579 </timeVar >

580 </tVar>

581 <fromTime >

582 <time>

583 <varName >t2</varName >

584 <varType >TimeVariable </varType >

585 </time>

586 </fromTime >

587 <toTime >

588 <time>

589 <varName >t2</varName >

590 <varType >TimeVariable </varType >

591 </time>

592 </toTime >

593 </event>

594 </eventCondition >

595 </atomicCondition >

596 </precondition >

597 <postcondition >

598 <atomicCondition conditionID="mrpc1">

599 <stateCondition >

600 <holdsAt >

601 <state name="writeShuffleFluent">

602 <argument >

603 <variable forMatching="true" persistent="false">

604 <varName >appId</varName >

605 <varType >string </varType >

606 </variable >

607 </argument >

608 <argument >

609 <variable forMatching="true" persistent="false">

610 <varName >appName </varName >
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611 <varType >string </varType >

612 </variable >

613 </argument >

614 <argument >

615 <variable forMatching="true" persistent="false">

616 <varName >shuffleId </varName >

617 <varType >string </varType >

618 </variable >

619 </argument >

620 <argument >

621 <variable forMatching="true" persistent="false">

622 <varName >mapId</varName >

623 <varType >string </varType >

624 </variable >

625 </argument >

626 <argument >

627 <variable forMatching="true" persistent="false">

628 <varName >reduceId </varName >

629 <varType >string </varType >

630 </variable >

631 </argument >

632 <argument >

633 <variable forMatching="true" persistent="false">

634 <varName >checksum </varName >

635 <varType >string </varType >

636 </variable >

637 </argument >

638 </state>

639 <timeVar >

640 <varName >t2</varName >

641 <varType >TimeVariable </varType >

642 </timeVar >

643 </holdsAt >

644 </stateCondition >

645 </atomicCondition >

646 </postcondition >

647 </Guaranteed >

Let’s examine each segment of the SLA template and analyse it in greater detail. The

section presented in listing 3.17 contains four guarantee terms and more specifically two

assumptions and two rules. The first two assumptions refer to the assumption formulae

presented in tables 3.14 and 3.15 while the third and the fourth rule refer to the rule formulae

illustrated in the same tables respectively. In particular, from line 1 until line 155 the

initialisation of fluents under the name writeRddFluent are triggered by the occurrence of

writerdd events when partitions of RDDs are computed. Similarly, from line 156 until

line 373 the initialization of a fluents under the name writeShuffleFluent are triggered by

the occurrence of writeshuffle events when intermediate datasets are produced during the

map phase of a shuffle. Finally, the rules shown in tables 3.14 and 3.15 are declared in the

SLA template from line 374 until line 505 and from line 506 until line 647 respectively.

As it can be seen in the declaration of both rules, the precondition is the occurrence of
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readrdd and readshuffle events that triggers the evaluation of the corresponding fluents

namely writeRddFluent and writeShuffleFluent.

Event Captor Specification

The event captor for data integrity is the most complex event captor that we implemented

in comparison to the other ones. This is because the monitoring of data integrity does not

need to just collect metadata about the execution context of the transformations of a Spark

job, such as how long it takes until the job completes or the IP address that partitions of

RDDs are computed on. Instead, it requires the computation hash value on the actual data

that is being processed. At this point, we regard that there are two important questions

that we need to address. The first one why burden the event captor and not the monitor

with the responsibility of producing the checksums for the intermediate data produced

during service exexution? The reason we took that decision is because, since the event

captor instruments the actual code that operate on the data, it has immediate access on it and

therefore no other interaction is required with any other external system in order to compute

the hash values. If this was not the case and the hash values were to be computed from

the monitor, all the data would have to be sent to monitor for it to be able to produce the

checksums and then evaluate them. This would impose an unreasonable overhead on the

network resources and the monitor itself. Also this would require that the monitor is scalable

and can scale up to handle cases where the data increases in size. The second questions

that we need to address is why the level of granularity with which we produce checksums

is per partition? The argument for that choice is beacause partitions are a logical grouping

of data within an RDD that are large enough to produce meaningful results but small enough

to confine the discovery of violation within a narrow subset of the whole RDD. The other

options would be to compute checksums per RDD i.e. higher degree of granularity or per

tuple i.e. lower degree of granularity. In the first option, apart from the fact that we would

not have any reference with regards to on what subset of the data did the violation happen,

from an implementation stand point we would have to kill the parallelization of partition

computation from Spark. That is because the event captor would have to go through all the

tuples for all partitions of an RDD to produce the relevant checksum. Spark launches as

many tasks as there are partitions in an RDD and that dictates the level of parallelism for
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that transformation. If checksum were to be calculated per RDD all partitions would have

to be processed sequentially in order to produce the correct checksum. In the case of the

per tuple option, we are faced with the same problem of the over-utilization of the network

resources for the transmission of checksums of every tuple. This would place an excessive

computational load on the monitor that will have to be able to scale up as well to cope with

the ever increasing event emission as the data grows. In conclusion, we make the case that

partitions present us with a logical abstraction that is appropriate for the computation of

checksums that are also in complete alignment with Spark’s execution model. We argue

that they offer a reasonable trade-off between event capturing overhead and a degree of

granularity of the location of violation if data integrity is compromised.

A typical Spark job follows the ETL (Extract Transform Load) paradigm i.e. data is

extracted from one or more sources, then one or more transformations are applied on the

data to manipulate it in a meaningful way and eventually it is loaded on a persistence layer

such as a database or a filesystem. In our implementation, in order to satisfy this requirement

and to facilitate the monitoring activity of such jobs, the event captor for monitoring data

integrity at runtime, it intercepts the computation of 3 types of RDDs, namely HadoopRDD 4,

MapPartitionsRDD 5 and ShuffledRDD 6. These 3 types of RDDs allows us to examine a

plethora of ETL applications. This a pattern that is very common in batch processing. As

mentioned, for all 3 types of RDDs we need to intercept the compute() method to enable the

collection of checksums for each partition. All the types of RDDs extend the base RDD class

and each one of them provides an implementation for the abstract compute() method that is

declared in the RDD class. HadoopRDDs and MapPartitionsRDDs are RDD types that are

computed as a result of the application of transformations with narrow dependencies such

as map() 7 and filter() 8, whereas SuffledRDDs are RDD types that are computed as a result

4https://github.com/apache/spark/blob/2153b316bda119ede8c80ceda522027a6581031b/
core/src/main/scala/org/apache/spark/rdd/HadoopRDD.scala

5https://github.com/apache/spark/blob/2153b316bda119ede8c80ceda522027a6581031b/
core/src/main/scala/org/apache/spark/rdd/MapPartitionsRDD.scala

6https://github.com/apache/spark/blob/2153b316bda119ede8c80ceda522027a6581031b/
core/src/main/scala/org/apache/spark/rdd/ShuffledRDD.scala

7https://github.com/apache/spark/blob/2153b316bda119ede8c80ceda522027a6581031b/
core/src/main/scala/org/apache/spark/rdd/RDD.scala#L373

8https://github.com/apache/spark/blob/2153b316bda119ede8c80ceda522027a6581031b/
core/src/main/scala/org/apache/spark/rdd/RDD.scala#L390

https://github.com/apache/spark/blob/2153b316bda119ede8c80ceda522027a6581031b/core/src/main/scala/org/apache/spark/rdd/HadoopRDD.scala
https://github.com/apache/spark/blob/2153b316bda119ede8c80ceda522027a6581031b/core/src/main/scala/org/apache/spark/rdd/HadoopRDD.scala
https://github.com/apache/spark/blob/2153b316bda119ede8c80ceda522027a6581031b/core/src/main/scala/org/apache/spark/rdd/MapPartitionsRDD.scala
https://github.com/apache/spark/blob/2153b316bda119ede8c80ceda522027a6581031b/core/src/main/scala/org/apache/spark/rdd/MapPartitionsRDD.scala
https://github.com/apache/spark/blob/2153b316bda119ede8c80ceda522027a6581031b/core/src/main/scala/org/apache/spark/rdd/ShuffledRDD.scala
https://github.com/apache/spark/blob/2153b316bda119ede8c80ceda522027a6581031b/core/src/main/scala/org/apache/spark/rdd/ShuffledRDD.scala
https://github.com/apache/spark/blob/2153b316bda119ede8c80ceda522027a6581031b/core/src/main/scala/org/apache/spark/rdd/RDD.scala#L373
https://github.com/apache/spark/blob/2153b316bda119ede8c80ceda522027a6581031b/core/src/main/scala/org/apache/spark/rdd/RDD.scala#L373
https://github.com/apache/spark/blob/2153b316bda119ede8c80ceda522027a6581031b/core/src/main/scala/org/apache/spark/rdd/RDD.scala#L390
https://github.com/apache/spark/blob/2153b316bda119ede8c80ceda522027a6581031b/core/src/main/scala/org/apache/spark/rdd/RDD.scala#L390
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of the application of transformations with wide dependencies such as groupByKey() 9. The

prototype of the abstract method that all RDDs need to implement is shown in listing 3.18.

Listing 3.18 Abstract method compute()10in class RDD
1 /**

2 * :: DeveloperApi ::

3 * Implemented by subclasses to compute a given partition.

4 */

5 @DeveloperApi

6 def compute(split: Partition , context: TaskContext): Iterator[T]

Interception Component

As mentioned in the section above, our data integrity event captor will have to produce

the right events for transformations with narrow dependencies, transformations with wide

dependencies and actions. Now conceptually, transformations with narrow dependencies

and actions are the same because no data shuffling is required. In those case, computing

checksums on the partitions of the computed RDDs and sending the relevant events to the

monitor would suffice. Conversely, in the case of transformations with wide dependencies

checksums should be calculated on the grouped data on the map side of a data shuffle and on

the mapped data that is read on the reduce side. We will examine those two cases separately.

As it can be seen it listing 3.18, the compute() method has a specific interface that all

RDDs need to comply with. It takes as an input an iterator of data items and after applying a

function on the data gives as an output an iteration on the data after the application of the

function. This takes place in-memory and as explained, Apache Spark pipelines all those

applications within a single stage to take advantage of parallel execution of the functions.

Since we need to produce checksums when data is read i.e. readrdd events and when it

is written i.e. writerdd events, we ought to process the data and then iterate it again to

produce the checksums for each partition. This approach requires that the data is iterated

twice; one for the actual processing and one for the generation of the checksums. From

a performance standpoint, this is a poor solution that makes the computation twice as

slow compared to running without the event captors activated. To address this challenge

9https://github.com/apache/spark/blob/2153b316bda119ede8c80ceda522027a6581031b/
core/src/main/scala/org/apache/spark/rdd/PairRDDFunctions.scala#L641

10https://github.com/apache/spark/blob/2153b316bda119ede8c80ceda522027a6581031b/
core/src/main/scala/org/apache/spark/rdd/RDD.scala#L120

https://github.com/apache/spark/blob/2153b316bda119ede8c80ceda522027a6581031b/core/src/main/scala/org/apache/spark/rdd/PairRDDFunctions.scala#L641
https://github.com/apache/spark/blob/2153b316bda119ede8c80ceda522027a6581031b/core/src/main/scala/org/apache/spark/rdd/PairRDDFunctions.scala#L641
https://github.com/apache/spark/blob/2153b316bda119ede8c80ceda522027a6581031b/core/src/main/scala/org/apache/spark/rdd/RDD.scala#L120
https://github.com/apache/spark/blob/2153b316bda119ede8c80ceda522027a6581031b/core/src/main/scala/org/apache/spark/rdd/RDD.scala#L120
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we have implemented a custom iterator that takes care of the calculation of checksums

during the actual data processing without the need for a second iteration. The way we

achieve this is by implementing the AbstractIterator 11 interface with a concrete class named

DataIntegrityMonitorableIterator and overriding the abstract methods hasNext() 12 and

next() 13.

The code for the DataIntegrityMonitorableIterator class that is declared in the event

captor is presented in listing 3.19.

Listing 3.19 Source code for DataIntegrityMonitorableIterator class
1 public class DataIntegrityMonitorableIterator <A> extends AbstractIterator <A> {

2

3 private Iterator <A> delegate;

4 private MessageDigest md;

5 private OperationType operation;

6 private Map <String , String > parameters;

7 private Properties properties;

8 private Emitter emitter;

9

10 public DataIntegrityMonitorableIterator(

11 Iterator <A> delegate ,

12 EmitterType emitter ,

13 Properties properties ,

14 OperationType operation ,

15 Map <String , String > parameters) {

16

17 this.delegate = delegate;

18 this.operation = operation;

19 this.parameters = parameters;

20 this.properties = properties;

21

22

23 try {

24 md = MessageDigest.getInstance(properties.getProperty("algorithm"));

25 } catch (NoSuchAlgorithmException nsae) {

26 logger.error(nsae);

27 }

28

29 this.emitter = EventEmitterFactory.getInstance(emitter , properties);

30 this.emitter.connect ();

31 }

32

33 @Override

34 public boolean hasNext () {

35 if (! delegate.hasNext ()) {

36 long operationId = MonitorUtilities.generateRandomLong ();

37 parameters.put("checksum", DatatypeConverter.printHexBinary(md.digest ()));

38 emitter.send(MonitorUtilities.createEvent(operationId , properties.getProperty("eventStype"), operation , parameters));

39 emitter.close();

40 return false;

41 } else {

42 return true;

43 }

11https://www.scala-lang.org/api/2.12.3/scala/collection/AbstractIterator.html
12https://www.scala-lang.org/api/2.12.3/scala/collection/Iterator.html#hasNext:Boolean
13https://www.scala-lang.org/api/2.12.3/scala/collection/Iterator.html#next():A

https://www.scala-lang.org/api/2.12.3/scala/collection/AbstractIterator.html
https://www.scala-lang.org/api/2.12.3/scala/collection/Iterator.html#hasNext:Boolean
https://www.scala-lang.org/api/2.12.3/scala/collection/Iterator.html#next():A
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44 }

45

46 @Override

47 public A next() {

48 A item = delegate.next();

49 md.update(item.toString ().getBytes ());

50 return item;

51 }

52 }

Let us examine how the custom iterator that we have introduced actually operates. The

custom iterator is a wrapper around the default iterator that Apache Spark uses and that is

returned from the compute() method of RDDs. The default iterator is passed as an argument

to the constructor of our custom iterator under the name delegate as it can be seen in line 11.

In addition, in the constructor we pass as arguments in line 18 the operation which is the

name of the event, in line 19 the parameters which the map with key/value pairs that represent

the parameters of the event and finally in line 20 a list of properties that allows us to pass

a set of different parameters as we see fit for every type of event. Also note in line 24 a

special variable under the name md is initialized of type MessageDiggest 14. Message digests

are secure one-way hash functions that take arbitrary-sized data and output a fixed-length

hash value. In line 49 every time a data item is visited from the iterator the md variable is

updated with the current value and the checksum is changed accordignly. Finally, in line 38,

the initialized emitter is used to send to the monitor the calculated checksum. Note that the

emitter sends the event only when the hasNext() returns false i.e. the iterator has been able to

go through all the data items.

The DataIntegrityMonitorableIterator iterator acts as a basic interface for the emission

of events for all transformations with narrow dependencies and actions alike. The dynamic

definition of operations, parameters and properties enables the event captor to use it for

emitting events both during the computation of HadoopRDDs, MapPartitionsRDDs and

actions. A more thorough analysis on how each one of the uses the our custom monitoring

iterator can be found in section 3.3.3 below.

Both HadoopRDDs and MapPartitionsRDDs are produced from the application of

transformations with narrow dependencies. HadoopRDDs are RDDs that are used to load data

from an HDFS filesystem and provides a set of convenient functions to pass Hadoop-related

configuration properties when loading the data. Similarly, MapPartitionsRDDs are the RDDs

14https://docs.oracle.com/javase/8/docs/api/java/security/MessageDigest.html

https://docs.oracle.com/javase/8/docs/api/java/security/MessageDigest.html
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that are used to transform the data by means of applying transformation function on every

data item of an RDD. In both cases our event captor will intercept the Apache Spark source

code that computes the two types of RDD. Finally, with regards to actions, the event captor

will intercept the execution of the runJob() 15 method declared in the SparkContext class.

The relevant code snippet for intercepting the computations of the HadoopRDDs with

the assistance of Byte Buddy, is presented in listing 3.20.

Listing 3.20 Interception component of event captor for data integrity of HadoopRDDs
1 new AgentBuilder.Default ()

2 .type(type -> type.getName ().equals("org.apache.spark.rdd.HadoopRDD"))

3 .transform ((builder , typeDescription , classLoader , module) -> {

4 return builder

5 .serialVersionUid (1L)

6 .method(method -> method.getName ().equals("compute"))

7 .intercept(MethodDelegation

8 .withDefaultConfiguration ()

9 .withBinders(Morph.Binder.install(Morpher.class))

10 .to(new HadoopRDDComputeDelegator(type , properties)));

11 }).installOn(instrumentation);

Note that in line 10 an interceptor is assigned with the execution of the compute()

method for HadoopRDDs. This is presented in greater detail in section 3.3.3 below. Also,

visual representation of interception of the compute() method of HadoopRDD is depicted in

figure 3.13

On the left side of figure 3.13 the data is stored on a Hadoop filesystem and is broken

down into multiple input splits. The compute() method will read that data and it will produce

its result which will be preserved in memory as a HadoopRDD. When each compute()

method has completed its tasks it will emit to the monitor a writerdd event. Note, that when

the compute() method reads its input from the Hadoop filesystem a readrdd event is not

captured. This is because, according to the event calculus formulae shown in 3.14, a readrdd

event will not be unified with a writerdd since when the data was written in the Hadoop

filesystem a checksum was not calculated. This is in alignment with our original commitment

for monitoring data integrity during service execution. When data is stored on HDFS we

regard it as being static and at rest. Therefore the event captor does not need to take it into

consideration when monitoring the integrity of data at runtime.

15https://github.com/apache/spark/blob/32461d474460044669ee938e61fda1aabbe70ec2/
core/src/main/scala/org/apache/spark/SparkContext.scala#L2046

https://github.com/apache/spark/blob/32461d474460044669ee938e61fda1aabbe70ec2/core/src/main/scala/org/apache/spark/SparkContext.scala#L2046
https://github.com/apache/spark/blob/32461d474460044669ee938e61fda1aabbe70ec2/core/src/main/scala/org/apache/spark/SparkContext.scala#L2046
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Fig. 3.13 Interception component for HadoopRDD

The relevant code snippet for intercepting the computations of the MapPartitionsRDDs

with the assistance of Byte Buddy, is presented in listing 3.20.

Listing 3.21 Interception component of event captor for data integrity of MapPartitionsRDDs
1 new AgentBuilder.Default ()

2 .type(type -> type.getName ().equals("org.apache.spark.rdd.MapPartitionsRDD"))

3 .transform ((builder , typeDescription , classLoader , module) -> {

4 return builder

5 .serialVersionUid (1L)

6 .method(method -> method.getName ().equals("compute"))

7 .intercept(to(new MapPartitionsRDDComputeInterceptor(type , properties)));

8 }).installOn(instrumentation);

Note that in line 7 an interceptor is assigned with the execution of the compute() method

for MapPartitionsRDDs. This is presented in greater detail in section 3.3.3 below. Also,

a visual representation of interception of the compute() method of MapPartitionsRDD is

depicted in figure 3.14. The data is read by the compute() method and a readrdd event is

emitted whereas when the compute() method is completed and its outcome is produced a

writerdd event is send to the monitor.

Now that we have provided the interceptors for transformations with narrow dependencies

that will perform the computation of HadoopRDDs and MapartitionsRDDs, we will discuss
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Fig. 3.14 Interception component for MapPartitionsRDD

the interception of the runJob() method that is responsible for the execution of actions. The

relevant code snippet that intercepts the execution of runJob() declared in the SparkContext

class can be seen in listing 3.22.

Listing 3.22 Interception component of event captor for data integrity of actions
1 new AgentBuilder.Default ()

2 .type(type -> type.getName ().equals("org.apache.spark.SparkContext"))

3 .transform ((builder , typeDescription , classLoader , module) -> {

4 return builder

5 .serialVersionUid (1L)

6 .method(method -> (method.getName ().equals("runJob") && method.getParameters ().size() == 3))

7 .intercept(MethodDelegation

8 .withDefaultConfiguration ()

9 .withBinders(Morph.Binder.install(Morpher.class))

10 .to(new SparkContextRunJobDelegator(type , properties)));

11 }).installOn(instrumentation);

Note that in listing 3.22, in line 10 we delegate the execution of the runJob() method

to a custom implementation of the method. Having examined the event capturing process

of events for transformations with narrow dependencies and actions, the only other type of

transformations that are possible in a Spark job are transformations with wide dependencies.

These types of transformations are more complex with regards to the generation of events

because of the intermediate storage of data before the data shuffle.

A data shuffle is comprised of two stages. The first one is the map stage where the data

is segmented in a number of groups that is equal to the number of the reducers that will
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Fig. 3.15 Interception component for runJob() method in SparkContext class

apply the reduce function. The grouping is performed on the basis of some property of each

individual data item e.g. the value of a key. Apache Spark has a default implementation for

the grouping of the data that will be consumed by the reducers. To be able to calculate the

checksums for the intermediate data we need to intercept the code that performs the grouping,

and while the data is grouped to calculate the hash values for the checksums. The logic is

exactly the same like the one we used when we built the custom monitorable iterator for

transformations with narrow dependencies where we intentionally chose to avoid running the

computation twice; one for the data processing and one for the event capturing.

From an implementation point of view, all data shuffles are conducted by means of

implementing a base abstract class called ShuffleWriter. The default implementation is

described in class SortShuffleWriter 16 and it implements a sort-based shuffle. The sort shuffle

writer writes the data items in separate files, one per reducer and eventually merges them into

a single file combined with range values that define what segment of the file should be used

by what reducer. The SortShuffleWriterwrites the grouped data on the disk with the help of a

method called write() 17. In this method, with the assistance of a class called ExternalSorter,

that data is written on separate partition files and the list of the lenths of the segmens for each

reducer partition is returned. This is done by means of invoking the writePartitionedFile()

16https://github.com/apache/spark/blob/1b575ef5d1b8e3e672b2fca5c354d6678bd78bd1/
core/src/main/scala/org/apache/spark/shuffle/sort/SortShuffleWriter.scala

17https://github.com/apache/spark/blob/1b575ef5d1b8e3e672b2fca5c354d6678bd78bd1/
core/src/main/scala/org/apache/spark/shuffle/sort/SortShuffleWriter.scala#L51

https://github.com/apache/spark/blob/1b575ef5d1b8e3e672b2fca5c354d6678bd78bd1/core/src/main/scala/org/apache/spark/shuffle/sort/SortShuffleWriter.scala
https://github.com/apache/spark/blob/1b575ef5d1b8e3e672b2fca5c354d6678bd78bd1/core/src/main/scala/org/apache/spark/shuffle/sort/SortShuffleWriter.scala
https://github.com/apache/spark/blob/1b575ef5d1b8e3e672b2fca5c354d6678bd78bd1/core/src/main/scala/org/apache/spark/shuffle/sort/SortShuffleWriter.scala#L51
https://github.com/apache/spark/blob/1b575ef5d1b8e3e672b2fca5c354d6678bd78bd1/core/src/main/scala/org/apache/spark/shuffle/sort/SortShuffleWriter.scala#L51
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method in the ExternalSorter class where data is split and stored on files on the disk for each

mapper. Therefore, the location where all the data tuples are processed and the most suitable

place to calculate the checksums is when the writePartitionedFile() is invoked. The code

snippet for the interception of the writePartitionedFile() method in the SortShuffleWriter

class can be seen in listing 3.23.

Listing 3.23 Interception component of the event captor for data integrity for the

writePartitionedFile() method in class ExternalSorter
1 new AgentBuilder.Default ()

2 .type(type -> type.getName ().equals("org.apache.spark.util.collection.ExternalSorter"))

3 .transform ((builder , typeDescription , classLoader , module) -> {

4 return builder

5 .serialVersionUid (1L)

6 .method(method -> method.getName ().equals("writePartitionedFile"))

7 .intercept(MethodDelegation.to(new ExternalSorterWritePartitionedFileDelegator(type , properties)));

8 }).installOn(instrumentation);

Note that in line 7 the instrumented writePartitionedFile() method will be delegated for

execution to another method in a custom class named ExternalSorterWritePartitionedFileDelegator

that we will further explain in section 3.3.3.

This takes care of the writeshuffle events from the side of the mappers. By the same

token, the event captor has to emit readshuffle events when the reducer partitions arrive on

the reducers. To achieve this we need to intercept the code that reads the partitions on the

compute() method in the ShuffledRDD class. In this method, when Saprk is attempting to

compute the ShuffledRDD, it reads the mapped partitions as streams of input data. More

specifically, the data is read with the assistance of a helper structure called a shuffle manager.

The shuffle manager exposes a set of utilities to enable the interaction of the reducers with

the data that has been shuffled. More specifically, in the computation of the ShuffledRDD

the getReader() method is invoked on the shuffle manager and sybsequently on the read

object returned by the getReader() method, the read() method is invoked. The result that is

returned is an iterator where the data from all the mappers that are intended to be used by that

reducer is returned to it as a iterator of iterators i.e. it represents a collection of iterators one

for each mapper. This iterator is a custom type of iterator that is implemented internally in

Apache Spark and is called a ShuffleBlockFetcherIterator 18. The ShuffleBlockFetcherIterator

represents an iterator of iterators that, when read by the reducers, is flattened by means of

18https://github.com/apache/spark/blob/688b0c01fac0db80f6473181673a89f1ce1be65b/
core/src/main/scala/org/apache/spark/storage/ShuffleBlockFetcherIterator.scala

https://github.com/apache/spark/blob/688b0c01fac0db80f6473181673a89f1ce1be65b/core/src/main/scala/org/apache/spark/storage/ShuffleBlockFetcherIterator.scala
https://github.com/apache/spark/blob/688b0c01fac0db80f6473181673a89f1ce1be65b/core/src/main/scala/org/apache/spark/storage/ShuffleBlockFetcherIterator.scala
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using the default implementation of the flatMap() method of the base scala Iterator class that

the ShuffleBlockFetcherIterator class extends. At this point we will intercept the Apache

Spark’s source code to compute the checksums of the mapped data that each reducer will

receive as input from the corresponding mappers. The code snippet for the interception of

the flatMap() method in the ShuffleBlockFetcherIterator class can be seen in listing 3.24.

Listing 3.24 Interception component of event captor for data integrity when shuffled data is

read from the reducers
1 new AgentBuilder.Default ()

2 .type(type -> type.getName ().equals("org.apache.spark.storage.ShuffleBlockFetcherIterator"))

3 .transform ((builder , typeDescription , classLoader , module) -> {

4 return builder

5 .serialVersionUid (1L)

6 .method(method -> method.getName ().equals("flatMap"))

7 .intercept(MethodDelegation

8 .withDefaultConfiguration ()

9 .withBinders(Morph.Binder.install(Morpher.class))

10 .to(new ShuffleBlockFetcherIteratorFlatMapDelegator(type , properties)));

11 }).installOn(instrumentation);

Note that in line 10 the instrumented flatMap() method will be delegated for execution to

another method in a custom class named ShuffleBlockFetcherIteratorFlatMapDelegator that

we will further explain in section 3.3.3.

Finally, the last piece of code that needs to be intercepted is the Spark code that computes

the ShuffledRDD and produces its output. The code snippet for the instrumentation of the

compute() method of ShuffledRDD is presented in listing 3.25

Listing 3.25 Interception component of event captor for data integrity when shuffled data is

written from the reducers
1 new AgentBuilder.Default ()

2 .type(type -> type.getName ().equals("org.apache.spark.rdd.ShuffledRDD"))

3 .transform ((builder , typeDescription , classLoader , module) -> {

4 return builder

5 .serialVersionUid (1L)

6 .method(method -> method.getName ().equals("compute"))

7 .intercept(MethodDelegation

8 .withDefaultConfiguration ()

9 .withBinders(Morph.Binder.install(Morpher.class))

10 .to(new ShuffledRDDComputeDelegator(type , properties)));

11 }).installOn(instrumentation);

In line 10 the instrumented comptue() method will be delegated for execution to another

method in a custom class named ShuffledRDDComputeDelegator that we will further

elaborate in section 3.3.3.



166 Monitoring Framework for Big Data Security SLAs

Delegation Component

In this section we will provide a detailed account of the delegation components for all the

interceptors that we listed in section 3.3.3 above. Below we give a list with all the delegators

that are responsible for the execution of the intercepted methods in order to collect the

appropriate events that will support the monitoring process. A common property of all the

delegator classes is that upon construction they use up two parameters to instantiate new

delegator objects. The first one is the type of emitter that the delegation method will use to

emit the events and the second one a set of properties that allows the invoker to parameterize

the delegator. This pattern is universal across all delegators and offer a systematic way to

customise the event captor when it is initially loaded.

The delegator for the compute() method of the HadoopRDD for the interception component

in listing 3.20, can be seen in listing 3.26.

Listing 3.26 Delegation component for the execution of the compute() method of the

HadoopRDD class
1 public class HadoopRDDComputeDelegator {

2

3 private final EmitterType type;

4 private final Properties properties;

5

6 public HadoopRDDComputeDelegator(EmitterType type , Properties properties){

7 this.type = type;

8 this.properties = properties;

9 }

10

11 @RuntimeType

12 public <K, V> Iterator <Tuple2 <K, V>> compute(

13 @Argument (0) Partition theSplit ,

14 @Argument (1) TaskContext context ,

15 @This RDD <Tuple2 <K, V>> rdd ,

16 @Morph Morpher <InterruptibleIterator <Tuple2 <K, V>>> morpher) throws InterruptedException {

17

18

19 String applicationId = SparkEnv$.MODULE$.get().conf().get("spark.app.id");

20 String applicationName = SparkEnv$.MODULE$.get().conf().get("spark.app.name");

21

22 Map <String ,String > parameters = new LinkedHashMap <>();

23 parameters.put("appId", applicationId);

24 parameters.put("appName", applicationName);

25 parameters.put("rddId", String.valueOf(rdd.id()));

26 parameters.put("partId", String.valueOf(theSplit.index()));

27

28 return new InterruptibleIterator(context , new DataIntegrityMonitorableIterator <Tuple2 <K, V>>(

29 morpher.invoke(theSplit , context),

30 type ,

31 properties ,

32 OperationType.WRITERDD ,

33 parameters));

34 }
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35 }

Note that in line 28 the InterruptibleIterator 19 iterator that is returned, is wrapped around

our custom DataNtegrityMonitorableIterator where writerdd events are emitted when the

HadoopRDD produces its resutls when computed. The delegator for the compute() method

of the MapPartitionRDD for the interception componented shown in listing 3.21, is presented

in listing 3.27.

Listing 3.27 Delegation component for the execution of the compute() method of the

MapPartitionsRDD class
1 public class MapPartitionsRDDComputeDelegator {

2

3 private final EmitterType type;

4 private final Properties properties;

5

6 public MapPartitionsRDDComputeDelegator(EmitterType type , Properties properties){

7 this.type = type;

8 this.properties = properties;

9 }

10

11 @RuntimeType

12 public <T, U> Iterator <U> compute(

13 @Argument (0) Partition split ,

14 @Argument (1) TaskContext context ,

15 @This RDD <T> rdd , @FieldValue("f") Function3 <TaskContext , Integer , Iterator <T>, Iterator <U>> f) throws IOException {

16

17 String applicationId = SparkEnv$.MODULE$.get().conf().get("spark.app.id");

18 String applicationName = SparkEnv$.MODULE$.get().conf().get("spark.app.name");

19

20 Map <String ,String > readParams = new LinkedHashMap <>();

21 readParams.put("appId", applicationId);

22 readParams.put("appName", applicationName);

23 readParams.put("rddId", String.valueOf(rdd.firstParent(rdd.elementClassTag ()).id()));

24 readParams.put("partId", String.valueOf(split.index()));

25

26 Iterator <T> input =new DataIntegrityMonitorableIterator <T>(

27 rdd.firstParent(rdd.elementClassTag ()).iterator(split , context),

28 type ,

29 properties ,

30 OperationType.READRDD ,

31 readParams);

32

33 Map <String ,String > writeParams = new LinkedHashMap <>();

34 writeParams.put("appId", applicationId);

35 writeParams.put("appName", applicationName);

36 writeParams.put("rddId", String.valueOf(rdd.id()));

37 writeParams.put("partitionId", String.valueOf(split.index()));

38

39 return new DataIntegrityMonitorableIterator <U>(

40 f.apply(context , split.index(), input),

41 type ,

42 properties ,

43 OperationType.WRITERDD ,

44 writeParams);

19https://github.com/apache/spark/blob/master/core/src/main/scala/org/apache/spark/
InterruptibleIterator.scala

https://github.com/apache/spark/blob/master/core/src/main/scala/org/apache/spark/InterruptibleIterator.scala
https://github.com/apache/spark/blob/master/core/src/main/scala/org/apache/spark/InterruptibleIterator.scala
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45

46 }

47 }

Note that in line 26 the input of the compute() method is wrapped around our custom

DataIntegrityMonitorableIterator and a readrdd event is emitted. The input represents the

data of the first parent RDD and is the data that will be fed to the compute() method of the

current RDD. Similarly, in line 39 the output of the compute() method is wrapped around

our custom DatatIntegrityMonitorableIterator and a writerdd is emitted. The delegator for

the runJob() method of the SparkContext class for the interception componented shown in

listing 3.22, is presented in listing 3.28.

Listing 3.28 Delegation component for the execution of the runJob() method of the

SparkContext class
1 public class SparkContextRunJobDelegator implements Serializable{

2

3 private final EmitterType type;

4 private final Properties properties;

5

6 public SparkContextRunJobDelegator(EmitterType type , Properties properties){

7 this.type = type;

8 this.properties = properties;

9 }

10

11 @RuntimeType

12 public Object runJob(

13 @Argument (0) RDD rdd ,

14 @Argument (1) Function2 f,

15 @Argument (2) Object classTag ,

16 @Morph Morpher <Object > morpher ,

17 @This Object sc) throws IOException {

18

19 String applicationId = SparkEnv$.MODULE$.get().conf().get("spark.app.id");

20 String applicationName = SparkEnv$.MODULE$.get().conf().get("spark.app.name");

21

22 final class Func extends AbstractFunction2 <TaskContext , Iterator , Object > implements Serializable {

23

24 @Override

25 public Object apply(TaskContext context , Iterator it) {

26

27 Map <String ,String > parameters = new LinkedHashMap <>();

28 parameters.put("appId", applicationId);

29 parameters.put("appName", applicationName);

30 parameters.put("rddId", String.valueOf(rdd.id()));

31 parameters.put("partitionId", String.valueOf(context.getPartitionId ()));

32

33 return f.apply(context , new DataIntegrityMonitorableIterator(it, type , properties , OperationType.READRDD , parameters));

34 }

35

36 }

37 return morpher.invoke(rdd , new Func(), classTag);

38 }

39 }
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In listing 3.22, where the interception component for the runJob() is presented, the

method takes as a parameter a function under the name func that is applied on each partition

of the RDD. This function should be instrumented to emit the events for the data integrity

monitoring activity since it is the location where the input data is being read from the action

operation and therefore a readrdd event needs to be captured. The way to achieve this is

shown in the declaration in the listing 3.28 from line 22 until line 36 where a custom function

under the name Func is wrapped around the function func that is passed as an argument to

the runJob(). Note that in line 37 the original method runJob() invoked but now the wrapper

function Func with the event capturing capabilities is passed as an argument facilitating in

that way the emission of the appropriate events.

Now that we examined the delegation components for transformations with narrow

dependencies and actions, we will present the delegation components for the intercepted

code that will produce the events for the transformations with wide dependencies. The

delegator for the writePartitionedFile() method of the ExternalSorter class for the interception

componented shown in listing 3.23, is presented in listing 3.29.

Listing 3.29 Delegation component for the execution of the writePartitionedFile() method of

the ExternalSorter class
1

2 public class ExternalSorterWritePartitionedFileDelegator {

3

4 private final EmitterType type;

5 private final Properties properties;

6

7 public ExternalSorterWritePartitionedFileDelegator(EmitterType type , Properties properties){

8 this.type = type;

9 this.properties = properties;

10 }

11

12 @RuntimeType

13 public <K, V, C> long[] writePartitionedFile(

14 @Argument (0) BlockId blockId ,

15 @Argument (1) File outputFile ,

16 @This Object sorter ,

17 @FieldValue("blockManager") BlockManager blockManager ,

18 @FieldValue("fileBufferSize") Integer fileBufferSize ,

19 @FieldValue("org$apache$spark$util$collection$ExternalSorter$$context") TaskContext context ,

20 @FieldValue("org$apache$spark$util$collection$ExternalSorter$$aggregator") Option <Aggregator <K, V, C>> aggregator ,

21 @FieldValue("org$apache$spark$util$collection$ExternalSorter$$ordering") Option <Ordering <K>> ordering ,

22 @FieldValue("org$apache$spark$util$collection$ExternalSorter$$keyComparator") Comparator <K> keyComparator ,

23 @FieldValue("org$apache$spark$util$collection$ExternalSorter$$numPartitions") Integer numPartitions ,

24 @FieldValue("org$apache$spark$util$collection$ExternalSorter$$serInstance") SerializerInstance serInstance ,

25 @FieldValue("map") WritablePartitionedPairCollection <K, C> map ,

26 @FieldValue("buffer") WritablePartitionedPairCollection <K, C> buffer) throws NoSuchAlgorithmException {

27

28 String applicationId = SparkEnv$.MODULE$.get().conf().get("spark.app.id");

29 String applicationName = SparkEnv$.MODULE$.get().conf().get("spark.app.name");
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30

31 long[] lengths = new long[numPartitions ];

32 DiskBlockObjectWriter writer =

33 blockManager

34 .getDiskWriter(

35 blockId ,

36 outputFile ,

37 serInstance ,

38 fileBufferSize * 1024,

39 context.taskMetrics ().shuffleWriteMetrics ());

40

41 if((( ExternalSorter)sorter).numSpills () == 0){

42 WritablePartitionedPairCollection collection = aggregator.isDefined () ? map : buffer;

43

44 Iterator <Tuple2 <Tuple2 <Integer , K>, C>> sortedIterator =

45 collection.partitionedDestructiveSortedIterator(

46 (ordering.isDefined () aggregator.isDefined ()) ?

47 Some.apply(keyComparator) :

48 Option.empty());

49

50 MessageDigest md = MessageDigest.getInstance("SHA -256");

51

52 while(sortedIterator.hasNext ()){

53

54 Tuple2 <Tuple2 <Integer , K>, C> cur = sortedIterator.next();

55 int partitionId = cur._1()._1();

56

57 while (sortedIterator.hasNext () && cur._1()._1() == partitionId){

58 md.update(new Tuple2(cur._1()._2(), cur._2()).toString ().getBytes ());

59 writer.write(cur._1()._2(), cur._2());

60 cur = sortedIterator.next();

61 }

62

63 FileSegment segment = writer.commitAndGet ();

64 lengths[partitionId] = segment.length ();

65

66 Emitter emitter = EventEmitterFactory.getInstance(type , properties);

67 emitter.connect ();

68

69 Map <String , String > parameters = new LinkedHashMap <>();

70 parameters.put("appId", applicationId);

71 parameters.put("appName", applicationName);

72 parameters.put("shuffleId", String.valueOf ((( ShuffleBlockId)blockId).shuffleId ()));

73 parameters.put("mapId", String.valueOf ((( ShuffleBlockId)blockId).mapId()));

74 parameters.put("reduceId", String.valueOf(partitionId));

75 parameters.put("checksum", "external - " + DatatypeConverter.printHexBinary(md.digest ()));

76

77 long operationId = MonitorUtilities.generateRandomLong ();

78 emitter.send(MonitorUtilities.createEvent(operationId ,

79 properties.getProperty("eventStype"), OperationType.WRITESHUFFLE , parameters));

80 emitter.close();

81 }

82 }else {

83 Iterator <Tuple2 <Integer , Iterator <Product2 >>> partitionedIterator = (( ExternalSorter)sorter).partitionedIterator ();

84

85 while(partitionedIterator.hasNext ()){

86 Tuple2 tuple = partitionedIterator.next();

87

88 Integer id = (Integer) tuple._1();

89 Iterator <Product2 > elements = (Iterator <Product2 >)tuple._2();

90

91 if(elements.hasNext ()){

92 while(elements.hasNext ()){

93 Product2 elem = elements.next();
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94 writer.write(elem._1(), elem._2());

95 }

96

97 FileSegment segment = writer.commitAndGet ();

98 lengths[id] = segment.length ();

99 }

100 }

101 }

102

103 writer.close();

104 context.taskMetrics ().incMemoryBytesSpilled ((( ExternalSorter)sorter).memoryBytesSpilled ());

105 context.taskMetrics ().incDiskBytesSpilled ((( ExternalSorter)sorter).diskBytesSpilled ());

106 context.taskMetrics ().incPeakExecutionMemory ((( ExternalSorter)sorter).peakMemoryUsedBytes ());

107

108 return lengths;

109 }

110 }

The implementation of the delegation componet shown in listing 3.29 is built on the

image of the original writePartitionedFile() method of Apache Spark with the exception that

it provides the capacity to produce the checksums for the reducer partitions. The delegation

method, by means of using the Byte Buddy’s @FieldValue annotation, gets access on the

class variables of the ExternalSorter instance. This can be seen in lines from 17 until 26. In

line 44, the sorted iterator that holds all the data tuples of the RDD sorted by the reducer

that will consume it, is instantiated. Before the traversal of the iterator begins, in line 50 the

massage digest that will be used for the computation of the checksums of the partitions is

instantiated. Then, in line 52 the traversal of the iterator starts. If the current reducer partition

of the current tuple is the same as the partition of the previous one, the data tuples ought

to be processed by the same reducer. This clause is shown in the while loop in line 57. In

line 58 the bytes for each tuple that belongs to the same partition are fetched and the update()

method is invoked on the message digest instance to produce the correct checksum when the

traversal of the whole partition has completed. After that, in line 59, the tuple is stored on

the disk by means of using an instance of the DiskBlockObjectWriter 20 class. Conversely, if

the partition id is not the same as the partition id of the previous tuple i.e. the current tuple

needs to be processed by the next in order reducer, the while loop in line 52 no longer holds

true which means that all the tuples for the current partition have been visited and therefore

it is time to calculate its checksum. Also, in line 66 an emitter is instantiated to support the

emission of the relevant writeshuffle event to the monitor. The calculation of the checksum is

conducted in line 75 by means invoking the diget() method on the message digest instance.
20https://github.com/apache/spark/blob/master/core/src/main/scala/org/apache/spark/

storage/DiskBlockObjectWriter.scala

https://github.com/apache/spark/blob/master/core/src/main/scala/org/apache/spark/storage/DiskBlockObjectWriter.scala
https://github.com/apache/spark/blob/master/core/src/main/scala/org/apache/spark/storage/DiskBlockObjectWriter.scala
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Finally, the event is sent to the monitor with the assistance of the send() method of the emitter

in line 78.

The delegator for the flatMap() method of the ExternalSorter class for the interception

componented shown in listing 3.23, is presented in listing 3.29.

Listing 3.30 Delegation component for the execution of the writePartitionedFile() method of

the ShuffleBlockFetcherIterator class
1 public class ShuffleBlockFetcherIteratorFlatMapDelegator {

2

3 private final EmitterType type;

4 private final Properties properties;

5

6 public ShuffleBlockFetcherIteratorFlatMapDelegator(EmitterType type , Properties properties){

7 this.properties = properties;

8 this.type = type;

9 }

10

11 @RuntimeType

12 public Iterator <Tuple2 <BlockId , InputStream >> flatMap(

13 @Morph Morpher <Iterator <Tuple2 <BlockId , InputStream >>> morpher ,

14 @Argument (0) Function1 <Tuple2 , Iterator > func) {

15

16 String applicationId = SparkEnv$.MODULE$.get().conf().get("spark.app.id");

17 String applicationName = SparkEnv$.MODULE$.get().conf().get("spark.app.name");

18

19 final class Func extends AbstractFunction1 <Tuple2 <BlockId , InputStream >, Iterator <Tuple2 <BlockId , InputStream >>>

20 implements Serializable {

21 @Override

22 public Iterator <Tuple2 <BlockId , InputStream >> apply(Tuple2 <BlockId , InputStream > v1) {

23 ShuffleBlockId blockId = (ShuffleBlockId) v1._1;

24

25 Map <String , String > parameters = new LinkedHashMap <>();

26 parameters.put("appId", applicationId);

27 parameters.put("appName", applicationName);

28 parameters.put("shuffleId", String.valueOf(blockId.shuffleId ()));

29 parameters.put("mapId", String.valueOf(blockId.mapId()));

30 parameters.put("reduceId", String.valueOf(blockId.reduceId ()));

31

32 return new DataIntegrityMonitorableIterator(

33 func.apply(v1), type , properties , OperationType.READSHUFFLE , parameters);

34 }

35 }

36 return morpher.invoke(new Func());

37 }

38 }

The ShuffleBlockFetcherIterator is an iterator that holds items of data type Tuple2<BlockId,

Inputstream> i.e. pairs of block ids and input streams. The block id is modelled as of type

BlockId 21 that identifies a particular block of data stored on the disk from the mappers. The

open stream to the actual data tuples that the reducer will be consuming which corresponds to

21https://github.com/apache/spark/blob/master/core/src/main/scala/org/apache/spark/
storage/BlockId.scala

https://github.com/apache/spark/blob/master/core/src/main/scala/org/apache/spark/storage/BlockId.scala
https://github.com/apache/spark/blob/master/core/src/main/scala/org/apache/spark/storage/BlockId.scala
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the specific block, is modelled as of type InputStream 22. When the flatMap() will be invoked

for each pair, it will produce a iterator with the data to be processed by the reducer that

will be fetched from the corresponding input stream. To be able to compute the checksums

on the data that had been previously been produced by the mappers, we need to wrap it

around our DataIntegrityMonitorableIterator to enable the capturing of the right events. To

achieve this, we create a custom function under the name Func that is declared in line 19.

This function when invoked, it will invoke the original method func that it takes as an

argument and will wrap its return value around our custom DataIntegrityMonitorableIterator

iterator shown in line 32. The custom iterator is parameterised appropriately to allow it to

capture the readshuffle events and produce the checksums the same way they were produced

for transformations with narrow dependencies. In that way, we have embedded the event

capturing capabilities on the iterator and no additional step need to be taken. Similar to the

other delegation components for capturing events for the monitoring of data integrity, we

avoid iterating over the data twice. Both data processing and event capturing takes place in

one go with the help of the DataIntegrityMonitorableIterator iterator.

3.4 Summary

In this chapter we have provided a detailed overview of the architecture of the monitoring

framework that we propose for the runtime monitoring of security properties for Big Data

pipelines. The framework describes the separate steps that users need to take to enable the

monitoring activity. More precisely, the monitoring framework will enable the users to do

the following: a. define the pipeline in the form of a composite service that is composed of

multiple atomic services, b. define their security monitoring requirements and provide all the

necessary information that might be necessary to enable their monitoring, c. translate all the

security requirements into low level monitoring artefacts that the monitoring infrastructure is

able to understand and interact with, d. install the monitoring rules that are the result of the

security requirements specification and finally e. deploy the event captors where necessary to

facilitate the monitoring activity. For our analysis we were able to showcase three security

properties that can be expressed in Event Calculus and therefore monitored by the proposed

22https://docs.oracle.com/javase/8/docs/api/java/io/InputStream.html

https://docs.oracle.com/javase/8/docs/api/java/io/InputStream.html


174 Monitoring Framework for Big Data Security SLAs

framework. Concluding this chapter, we provided a detail analysis of the SLA template

specification that correspond to the security properties that we examined.



Chapter 4

SLA Management Web Dashboard

4.1 Application Architecture Overview

In the SLA Manager web application we use the Model View Controller [79] paradigm. The

View aspect of the application is implemented as a set of HTML web pages enriched with

PHP1 code to help with the invocation of the methods from the controllers. The Controller

component of MVC is implemented as a set of HTTP methods in the form of a RESTful

API in Java. Finally the Model of the MVC is represented as a collection of tables in a

MySQL 2 database. To communication between the PHP web pages and the RESTful API

is over HTTP and the communication between the API and the database is over TCP with

the assistance of the Java Database Connectivity interface. A typical flow of execution is as

follows: The user, through the web interface, triggers an action. By invoking a PHP script a

method from the RESTful API is invoked which in turn makes a JDBC call to the database

and either reads data from the model or updates it and gets back to the user. An overview of

the architecture of the application can be seen in figure 4.1.

4.2 Application Repository

The application repository is implemented as MySQL database schema where a set of tables

are used to model and store the data. In the database we persist all the metadata regarding

1https://www.php.net/manual/en/intro-whatis.php
2https://dev.mysql.com/doc/refman/5.7/en/

https://www.php.net/manual/en/intro-whatis.php
https://dev.mysql.com/doc/refman/5.7/en/
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Fig. 4.1 SLA Manager web application architecture

the SLAs and their objective as well as all the parameters that are required for the generation

of monitoring rules and the installation of the event captors that will realise the it. The tables

that have been used are the following:

1. users - This is a table where all the user metadata is stored.

2. projects- This is a table where all the metadata for an SLA project is stored.

3. compositeservices - This is a table where the composite services for all SLA projects

are stored. Composite services are associated with an SLA project.

4. atomicservices - This is a table where the atomic services for all SLA projects are

stored. Atomic services are associated with the composite service that they are part of

by means of a foreign key in the compositeservices table

5. assets - This is a table to store all the assets for an atomic service. In our implementation

each atomic service has only one asset that operation itself. This is represented as a

table under the name operations. This flexible design allows for the definition of more

assets per atomic service such as the input of the atomic service or its output.
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6. operations - This is a table where the operations of an atomic service are stored.

Operations are associated with the atomic service that they refer to by means of a

foreign key reference to the atomiservices table.

7. securityproperties - This is a table where all the available security properties are stored.

Examples of properties that we included in the database are Availability, Privacy and

Integrity.

8. slotemplates - This is a table where all the available templates for the security properties

stored in the securityproperties table are defined. A security property can be associated

with multiple slo templates which reflects the fact that a security properties can be

measured by means of running different motoring rules. For instance, availability

can be expressed as the total time of execution or the mean time to recover from a

failure. Each one of those manifestations of availability will be stored as a separate

SLO template and it is up to the user to decide which one will ber used.

9. sloparameters - This is a table where the parameters for each SLO template. A

template can have multiple parameters. In this table, apart from the name of the

parameter we also keep its data type. Our system supports a string, an enumeration and

a list data type. This is a flexible design that makes the addition of new parameters for

templates very straightforward. Also, the PHP web page that presents the parameters

to the users uses the data types to build the appropriate UI elements dynamically. For

the string data type it will present to the user an HTML textbox, for the enumeration it

will present a dropdown menu whereas for the list data type it will present a specially

designed component that allows the user to type in multiple values.

10. parametervalues - This is a table where the actual values for the SLO paramters are

stored as they have been keyed by the users when they associated a security property

with an SLO template

11. assetsecuritypropertypairs - This is table that is used to correlate an asset with a

security property

12. slos - This is a table that represents a service level objective for an asset of an atomic

service. The slo keeps are reference by means of a foreign key to the projects table
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to keep track of the project that each SLO belongs to. Eventually, the SLOs are the

artifacts on which the system will produce the monitoring results.

For a comprehensive view of the database, in figure 4.2 we present the entity relationship

diagram of the database schema that was used.

Fig. 4.2 SLA Manager database repository

4.3 Application REST API

The RESTful API that enables the communication between the PHP web application and the

application repository comprises of two main controllers namely the UserRESTController

and ProjectRESTController. For each workflow that the user defines with the help of Spring

Cloud DataFlow through the SLAManagerIntegrator component, a new SLA project with
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the same name as the workflow is created in the SLAManager web application repository.

All the actions on the project are declared and implemented in the ProjectRESTController

controller in the form of functions that can be invoked over HTTP as a set of RESTful

API calls. Similarly, in the UserRESTController is the controller where all the user related

actions are declared and implemented. A separate controller for the users has been created to

enable the correlation of workflows with different users. Users can only see and interact with

the SLA projects that they have created and own. Also, to enforce security, the invocation

of all the RESTful methods require HTTP Basic Authentication 3 i.e. a valid username and

password are required for te invocation of each method of the API. The password for each

user is stored in the application repository and is hashed using the BCrypt [104] algorithm.

This is protecting the users’ personal data while it significantly reduces the possibility for

passwords being breached. Finally,

Below we give an overview of the operations that are available for every controller

accompanied by a short description. In all the operations the data that is being exchanged is

model in the JSON 4 notation. The operations for the UserRESTController and

ProjectRESTController can be seen in table 4.1.

Operations for UserRESTController

URL {host}:{port}/slamanager/rest/api/users/login

URL Parameters None

Path Parameters None

HTTP Body Parameters None

HTTP Method GET

3https://datatracker.ietf.org/doc/rfc2617/
4https://www.json.org/

{host}:{port}/slamanager/rest/api/users/login
https://datatracker.ietf.org/doc/rfc2617/
https://www.json.org/
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Description This operation allows the validation of the user by checking the

credentials provided by the user with the credentials stored in the

database. If the credentials that are provided is valid, then they

are stored in the session of the PHP web application and they are

used for the invocation of any subsequent REST methods. The

login operation is the only operation that does not require basic

authentication because by definition it is invoked when the user

has not yet logged in.

URL {host}:{port}/slamanager/rest/api/users

URL Parameters

1. username: String - A string representation for the

username of the new user

2. password: String - A string representation for the

password of the new user

Path Parameters None

HTTP Method POST

HTTP Body Parameters None

Description Create a new user

URL {host}:{port}/slamanager/rest/api/users/{id}

URL Parameters None

Path Parameters

1. id: Integer - A unique integer identifier for each user that

is stored as a primary key in the users table

{host}:{port}/slamanager/rest/api/users
{host}:{port}/slamanager/rest/api/users/{id}
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HTTP Body Parameters None

HTTP Method GET

Description Get all the metadata for a user except for the password.

Operations for ProjectRESTController

URL {host}:{port}/slamanager/rest/api/users/{id}/projects

URL Parameters

1. id: Integer - Unique identifier of the users that owns the

new project that will be created

Path Parameters None

HTTP Body Parameters

1. name: String - A string representation for the name of the

new SLA project

HTTP Method POST

Description Create a new SLA project manually

URL {host}:{port}/slamanager/rest/api/users/{uid}/projects/scdf

URL Parameters None

{host}:{port}/slamanager/rest/api/users/{id}/projects
{host}:{port}/slamanager/rest/api/users/{uid}/projects/scdf
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HTTP Body Parameters

1. taskDefinition: String - A string representation in JSON

notation of tasks that are defined as a composite task from

which the new SLA project is going to be created. For

every task of the composite task a new atimic task is going

to be created. Also, based on the security properties that

where associated with the tasks when the workflow was

crated in Spring Cloud DataFlow, the appropriate service

level objectives will be created.

HTTP Method POST

Description Create a new SLA project from a workflow of Big Data analytics

service that has been defined in Spring Cloud DataFlow

Table 4.1 Operations of the SLA Manager RESful API

4.4 Energy producer use-case

To demonstrate our system we will use a hypothetical SME (Small Medium Enterprise) that

uses solar panels to produce energy and provide it to its subscribers. The company installs

solar panels in the households that are subscribed to its services which are linked to a small

gateway that collects information about how much energy the panels are producing and how

much energy the appliances in the house are consuming. The households use a hybrid model

for the energy provision which is a mix of electrical energy coming from the locally installed

solar panel and the standard electricity energy provider. A critical service that the energy

provider company require to incorporate is the computation of the average consumption per

household per appliance. This will reveal information with regards to how the appliances are

being used energy-wise and the company could use this information to optimise the usage of

the solar panels. Based on the computation of the average consumption of each appliance the

solar energy provider company can decide how much energy should be provided from the
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Fig. 4.3 Solar panel energy production use-case

batteries of the solar panels and how much from the ordinary network of the standard energy

provider to optimise energy consumption for the household and to reduce the overall cost for

the subscribers. A visual representation of the scenario described can be seen in figure 4.3

In our use-case we have implemented a simple example that is complex enough to

demonstrate and address the fundamental challenges that we were faced with when we

attempted to monitor certain non-functional properties for Big Data analytics service that we

described. To implement the service, we rely on a set of hypotheses with respect to how the

data is attained and what is the model that it complies with.

The first hypothesis is that at each household a gateway device is installed that sends

the measurements for every appliance to a distributed file-system – in our case HDFS.

Measurements are time stamped from the gateways that they are collected. When the service

runs it does not consider real time data, but it only relies on measurements that has been stored

in the file-system until the very moment that the execution of that services has commenced.

The second hypothesis is with regards to the data model i.e. how each measurement is

represented. A measurement collected by a gateway is composed of a set of data-points that,

depending on their position, they represent the energy consumed by a specific appliance.

For example, each data item that is transmitted from the gateways contains all the energy

consumption details for each appliance at a specific point in time.
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Fig. 4.4 Example of a measurement from a household

As it can be seen in figure 4.4, the id of the gateway and the name of the owner of

the house is collected to be able to group the data. The scenario that we will examine to

demonstrate the monitoring capabilities of the framework will require the execution of the

separate Big Data analytics services that will represent the atomic services of the pipeline or

composite service. The pipeline is comprised of the following services:

1. LoadAndAnonymizeService - Load the data from HDFS and apply a hash function to

anonymise the name and surname of the owner of the household.

2. PrepareDataService - After the data has been anonymised in step 1, flatten the

measurements per household per appliance to allow the computation of averages.

3. ComputeAverageService - After the data has been flattened in step 2, apply an

appropriate aggregate function to compute the average consumption per appliance per

household.

All the atomic services presented above will have to be executed in the order that they are

presented in the list. Each one of the services will produce data that will be fed to the next

service until the execution of the last service is completed. In our example we will monitor
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the location of execution for the LoadAndAnonymizeService, a non-functional property that

pertains to data privacy, because of the sensitive nature of the service which is to anonymise

the data. We will also monitor response time for for PrepareDataService that relates to

availability and data integrity for ComputeAverageService.

4.5 Screenshots for the energy provider use-case

Originally the service pipeline needs to be defined. This is done with the assistance of Spring

Cloud DataFlow and the first screen the user can see is presented in figure 4.5. On the left

menu by clicing on the Apps label the list of all the available applications that can be used

are presented. Initially, no applications are available to enable the composition of service

workflows.

Fig. 4.5 Spring Cloud DataFlow UI - Empty list of available applications

To add the applications that will be used in the example use-case, we take advantage of

command-line tool that is shipped with the standard version of the Spring Cloud DataFlow

called the Spring Cloud DataFlow Shell. This utility can take as a parameter a configuration

file with all the necessary parameters of the application that we need to load and make

available in the list of applications in the Spring Cloud DataFlow server. The execution of

the loading of the applications in the server is shown in figure 4.6. Note that apart from the

three services described in section 4.4, another application named composed-task-runner is
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loaded as well. This is necessary to allow the composition of composite tasks that will later

be executed from this application. The composed-task-runner 5 is an open source application

and has been built by the Spring Cloud DataFlow and is publicly available.

Fig. 4.6 Spring Cloud DataFlow UI - Load applications from the command line

As soon as the applications are loaded under the Apps section, all the available applications

will be listed as shown in figure 4.7.

Fig. 4.7 Spring Cloud DataFlow UI - Populated list of available applications

Under the Tasks section as seen in figure 4.8, all the loaded applications are available and

can be used for the composition of pipelines with them.

5https://github.com/spring-cloud-task-app-starters/composed-task-runner

https://github.com/spring-cloud-task-app-starters/composed-task-runner
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Fig. 4.8 Spring Cloud DataFlow UI - Create a new composite task from a drag-n-drop menu

Fig. 4.9 Spring Cloud DataFlow UI - View of the composite task pipeline without the edges
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The composition of the pipeline can be performed by means of dragging and dropping

the applications into the drawing area on the right of the screen. This can be better viewed in

figure 4.9 above.

Fig. 4.10 Spring Cloud DataFlow UI - View of the composite task pipeline with the edges

Now that the applications that will be used in the pipeline have been defined, we need

draw the arrows that will allow Spring Cloud DataFlow to generate the execution plan for

the pipeline. In our case the applications will be executed in a sequential order. A view of

the resulting pipeline can be seen in figure 4.10.

To associate each service with a security property that is required from the users to be

monitored, we need to select the service and tap on the gear icon on the left of the box that

the service label is contained. An example of this for the LoadAndAnonymizeService can

be seen in figure 4.11.
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Fig. 4.11 Spring Cloud DataFlow UI - Edit the properties for the
LoadAndAnonymizeDataService

A pop-up menu will prompt the user to type in the following: a label for each task which

is useful for logging, the input and the output file names that will be used from the service to

read its input and persist its processing results, and finally the security property that will be

monitored for that particular service. The UI for the insertion of the service properties for

each service can be viewed in figures 4.12, 4.13 and 4.14 respectively.
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Fig. 4.12 Spring Cloud DataFlow UI - Properties for the LoadAndAnonymizeDataService

Fig. 4.13 Spring Cloud DataFlow UI - Properties for the PrepareDataService
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Fig. 4.14 Spring Cloud DataFlow UI - Properties for the ComputeAverageService

Finally, when all the properties have been typed-in, the user presses the Create task button

and is prompted to type-in a name for the pipeline as shown in figure 4.15. This name is

going to be used later in the SLA Manager applications to create a name for the SLA. The

name of the SLA is exactly the same as the name of the pipeline with the suffix -SLA added

at the end. E.g. in our case the name of the pipeline is energyprovider and therefore the

name of the SLA is going to be energyprovider-SLA. Also note that before the pipeline is

created and saved, a view of the pipeline is presented in the domain specific language that

Spring Cloud DataFlow is using to describe composite tasks and is available for inspection

from the user.
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Fig. 4.15 Spring Cloud DataFlow UI - Type-in a name for the composite task

Now that the service pipeline has been created, the user will move on to the SLA Manager

web application to complete the instantiation of the SLA and to view the monitoring results

when the pipeline will get executed. Initially the users will have to use their credentials to

login to the SLA Manager web application as illustrated in figure 4.16.

Fig. 4.16 SLA Manager - Login to the SLA Manager

Once users are logged in they can view the list of all the SLA projects that they own.

This concept is illustrated in figure 4.17. Note that the energyprovider-SLA has been created
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on behalf of the user automatically from the SLAManagerIntegrator module presented in

the framework architecture layout shown in figure 3.2. The SLAManagerIntegrator will go

through the pipeline that was originally created in Spring Cloud DataFlow and will figure out

all the assets/atomic services that comprise it. It will then proceed to create and store those

assets in the SLA Manager repository and associate them with the security properties that

the users have selected when they created the pipeline. Each pair of an asset and a security

property is a service level objective that our monitoring framework will have to monitor and

evaluate when the pipeline gets executed.

Fig. 4.17 SLA Manager - List of SLA projects of the user

When tapping on the SLA project shown in figure 4.17, the asset/security property pairs

are presented to the user as shown in figure 4.18

Fig. 4.18 SLA Manger - View of the list of the service assets and security property pairs
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Pressing the Generate monitorable SLA button shown in figure 4.18 over the list of

SLOs will take users to the screen shown in figure 4.19 where they need to specify how

the security property that they selected will be monitored. This is done by choosing what

template is going to be used to generate the monitoring rules that will be used during the

monitoring process. This step is critical because it defines what monitoring rules will be

loaded in the EVEREST monitor and what event captors will be installed across the cluster

to facilitate the collection of the appropriate monitoring data.

Fig. 4.19 SLA Manager - View of the asset/property pairs

Hitting the Next button in the screen shown in figure 4.19 will take them to the screen

illustrated in figure 4.20 where they will type-in the parameter values for the template that

they have opted to use. Note that this UI is built dynamically by reading the data types

of the parameters from the sloparameters table in the SLA Manager database. Hitting the

Generate button will generate SLOs and will store it in the SLA Manager repository but most

importantly will use the metadata of the SLOs to generate the monitoring rules and load

them in the EVEREST monitor. Now that this step has been taken, the monitoring engine of

EVEREST is ready to accept events and evaluate them against the newly created rules.

Now that the SLOs are created and the monitor is ready, users can go the the Spring

Cloud DataFlow and execute the pipeline that can be viewed under the Tasks. The relevant
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Fig. 4.20 SLA Manager - Type-in the parameter values for the SLO templates

screen can be seen in figure 4.21. The pipeline can be executed by pressing the button of the

down arrow all the way to the right of the task of interest and then selecting the Launch task

option.

Fig. 4.21 Spring Cloud DataFlow UI - Launch the composite task
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When the execution commences events will be sent to the EVEREST monitor and will

be evaluated. The users can inspect the monitoring results for the rules that were created if

they navigate back to the SLA Manager web application.

Fig. 4.22 SLA Manager - Inspect the monitoring results for the location of execution security
property

Figure 4.22 shows a screen with the monitoring results for the location of execution

security property where all the partitions for all the RDDs that have been computed on nodes

with untrusted IP addresses are marked as red to indicate a violation. Similarly, partitions

that are computed on trusted nodes are marked as green.

In figures 4.23 and 4.24 we illustrate what the monitoring results for the data integrity

properties for the ComputeAveragesService will look like. The figures correspond to the two

instances of the monitoring rules for data integrity as presented in table 3.14 and table 3.15

in section 3.3.3, where the event calculus formulas for monitoring data integrity is presented.
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Fig. 4.23 SLA Manager - Inspect the monitoring results for the data integrity security property
for transformations with narrow dependencies

Fig. 4.24 SLA Manager - Inspect the monitoring results for the data integrity security property
for transformations with wide dependencies
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4.6 Summary

In this chapter we have presented the platform that has been built alongside the proposed

monitoring framework to allow users to interact with the monitor. The platform is delivered

as web application where the users specify the Big Data pipeline and associate its constituent

components with the security properties that they wish to monitor. The platform also allows

the consolidated view of the monitoring results in a concise way so the users can have a

comprehensive view of the SLAs that are being monitored. The presentation of the platform

is performed with the assistance of use-case from the domain of Internet of Things where

three atomic services are put together to produce the Big Data pipeline that is monitored.



Chapter 5

Framework Evaluation

In this section we will evaluate the framework that was proposed in chapter chapter 3. In

the first part of the this chapter at section 5.1, we give an overview of the environment

where the execution of our experiments took place. This can help the reader gain a better

understanding of the setup that our metrics were collected. Our evaluation of the framework

is quantitative i.e. a series of metrics were collected to objectively assess the system’s

strengths and weaknesses as accurately and objectively as possible. More specifically in our

analysis we examined the two main components of the event capturing process which are

in section 5.2.1 the deployment of the event captors and in section 5.2.2 their execution

alongside the services. Finally, at the end of this chapter in section 5.3, we discuss the

findings of our qualitative analysis and make an attempt to explain them based on our

experience during the deployment and execution of the monitoring activity. We also make

some observations that are orthogonal to the results that were gathered.

5.1 Experimental setup

In this section we lay out the software and hardware components that were used to execute the

Big Data services and then run the monitoring process. To facilitate the accurate collection

of the metrics that are required for the framework evaluation and to be able to observe the

framework’s behaviour for different cluster sizes, we used an open source operating system

virtualisation technology called Docker 1 and Docker Engine. Docker offer us the ability to
1https://www.docker.com/

https://www.docker.com/
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bundle and execute applications in a loosely isolated environment also know as a container.

Containers enable the simultaneous execution of multiple containers on the same physical

engine. In general, Containers use built-in features of the underlying operation system to

virtualize its resources and therefore are lightweight, as opposed to virtualization that happens

with the assistance of hypervisors. Containers use the host machine’s kernel by isolating its

resources such as CPU and memory addresses which makes it possible to run applications in

a completely isolated manner.

For the purpose of our experiments, we have set up a docker configuration that allows us

to spin up a Spark cluster for a different set of master and worker nodes. More specifically, we

have evaluated our proposed thesis against different cluster setups that range from one worker

to eight worker nodes. In all occasions, we also have available a master node that coordinates

the service execution. Our host machine is available from a cloud provider, namely Google

Cloud 2 where a VM instance has been rented for the intent of running our experiments.

The specification of the instance can be viewed in table 5.1. The operating system of the

host machine is Debian with version 10.6 and the kernel version is 4.19.0-12-cloud-amd64

respectively.

Architecture: x86_64

CPU op-mode(s) 32-bit, 64-bit

Byte Order: Little Endian

CPU(s): 8

On-line CPU(s) list: 0-7

Thread(s) per core: 2

Core(s) per socket: 4

Socket(s): 1

NUMA node(s): 1

Vendor ID: GenuineIntel

2https://cloud.google.com/

https://cloud.google.com/
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CPU family: 6

Model: 63

Stepping: 0

CPU MHz: 2300

BogoMIPS: 4600

Hypervisor vendor: KVM

Virtualisation type: full

L1d cache: 32K

L1i cache: 32K

L2 cache: 256K

L3 cache: 46080K

NUMA node0 CPU(s): 0-7

Table 5.1 Hardware information for the Google VM instance host machine

To be able to more accurately assess the impact the event monitoring capabilities of our

proposal on the deployment and execution of the underlying services, as part of our Docker

configuration alongside Apache Spark, we have also installed the Hadoop file system, namely

HDFS [120]. HDFS being a distributed file system allows for file replication and high

availability through file partitioning and therefore is a more accurate representation of how

Big Data services would run in a real setting.

Docker, by means of using a centralised repository, offers the capability to re-use existing

open source docker configurations and pull docker images from its open access Docker

Hub 3. For that purpose, we used the Big Data Europe Spark and Hadoop images that have

been committed to Docker Hub as part of the work delivered for the Big Data Europe 4, an

EU funded research project . In the docker hub we have been able to re-use docker images

3https://hub.docker.com/
4https://www.big-data-europe.eu/

https://hub.docker.com/
https://www.big-data-europe.eu/
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for the master node 5 and the worker nodes 6. In this configuration, a Hadoop installation,

where we store the data to be processed, is also included. A view of the docker compose file

that describes the cluster setup, can be seen in A.5 in the appendix. In the docker compose

file we provide a description of the configuration of the cluster where the master node and

the workers are defined. In each occasion, we use this docker compose file and the docker

compose utility to spin up workers as we need them. In addition, we provide all the necessary

pluming to inject the code that will intercept the service execution and will emit the relevant

events required for the evaluation of the security properties to be monitored. The data to be

processed is upload into the Hadoop cluster with a one-off operation and that is how the data

become available for processing.

5.2 Quantitative Evaluation

In the quantitative evaluation we examine the overhead in terms of additional time that the

event captors impose on the execution of the Big Data services. As explained, to use the event

captors we need to take two steps; first we need to deploy the event captors i.e. the captors

need to be sent to the appropriate nodes in a dynamic way and instrument the underlying

Apache Spark code. Second, we need to allow the event captors to execute and collect the

monitoring events and implement the monitoring activity. This two-step process mandates

that we examine the influence of the event capturing process in each one of those steps.

Initially, in we collect the execution time for each service that was described in section 4.4

in chapter 4 related to the energy producer company. Subsequently, we examine the delay

that is imposed for the deployment of the event captors. Finally, we examine how each event

captor is affecting the execution of the services for the security properties that were used in

our use-case scenario.

To make our analysis more accurate, and to avoid producing results that could be outliers

in terms of statistical significance, all the measurements that were collected have been

executed 1000 times with the same input. In addition, we used different sizes of datasets and

clusters with different numbers of workers. More specifically, we examined data sets with

5https://hub.docker.com/r/bde2020/spark-master
6https://hub.docker.com/r/bde2020/spark-worker

https://hub.docker.com/r/bde2020/spark-master
https://hub.docker.com/r/bde2020/spark-worker
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500K, 1M, 2M and 4M data points and Apache Spark cluster with one up to eight worker

nodes respectively. This allows us to have a more accurate view of the system’s performance

and to be able to generate histograms of frequency for the measurements gathered. This

approach solidifies the validity of our evaluation approach and helps us to draw a more

accurate picture of the system when it operates under real-life circumstances and not in an

isolated environment.

5.2.1 Event captor deployment overhead

The deployment of the event captors requires that the Java agents will be sent to the nodes

that will process the data and will be loaded from each individual executor as a special

type of Java application that will in turn, perform the instrumentation of the code. It is

critical to highlight that when the Java agents are loaded from the JVM, the actual code to

which the instrumented code is delegated does not get executed. In this phase the only thing

that happens is that the underlying code is changed at run-time to facilitate the monitoring

process but no code is yet executed. For all the event captors that were implemented which

correspond to a specific property, we measured the deployment time on every node of the

cluster for different data sets and different cluster sizes i.e. number of Spark workers.

Location of execution event captors

In this section we present our finding with regards to the overhead imposed to the monitoring

activity when the monitoring of the location of execution is enabled. More specifically,

we have plotted the deployment time that it takes for the data privacy event captors to be

deployed over different cluster configurations where a different number of Spark workers are

available. The experiments were conducted for 500K, 1M and 2M data points to facilitate the

evaluation of the effect of the data set size on the overall deployment time. In more detail, in

figure 5.1 and figure 5.2 we present the data for 500K data points, in figure 5.3 and figure 5.4

we present the data for 1M data points and finally in figure 5.5 and figure 5.6 we present the

data for 2M data points. Note that, for completeness, we treat collect metrics separately for

the master and the worker nodes.
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Fig. 5.1 Deployment time of data privacy event captor on the Spark master over the number
of workers for 500K data points

Fig. 5.2 Deployment time of data privacy event captor on the Spark workers over the number
of workers for 500K data points
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Fig. 5.3 Deployment time of data privacy event captor on the Spark master over the number
of workers for 1M data points

Fig. 5.4 Deployment time of data privacy event captor on the Spark workers over the number
of workers for 1M data points
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Fig. 5.5 Deployment time of data privacy event captor on the Spark master over the number
of workers for 2M data points

Fig. 5.6 Deployment time of data privacy event captor on the Spark workers over the number
of workers for 2M data points

In figures 5.7 and 5.8 below we combine all the graphs above to give an overview of the

time that it takes for the data privacy event captors to be deployed on the master and worker

nodes respectively. As it can be seen in the graphs, the deployment time of the event captors

on the master node remains relatively the same. That is somewhat expected since there only

one master node. Contrary to that, as the graphs suggest, as the number of worker increase

there is an upwards trend in the deployment time due to the fact that more event captors
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will have to be deployed and more coordination is required when a service gets executed.

Another interesting observation is that for all the different data set sizes the data follow the

same trend which implies that the size of the data do not affect the deployment time. This is

expected since the deployment of the event captors is a totally separate operation that takes

place before the data gets processed.

Fig. 5.7 Overlay graph for the deployment of the data privacy event captor on the Spark
master for different data sets size

Fig. 5.8 Overlay graph for the deployment of the data privacy event captor on the Spark
workers for different data sets size
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Data integrity event captors

In this section we present our finding with regards to the overhead imposed to the monitoring

activity when the monitoring of data integrity is enabled. More specifically, we have plotted

the deployment time that it takes for the data integrity event captors to be deployed over

different cluster configurations where a different number of Spark workers are available. The

experiments were conducted for 500K, 1M and 2M data points to facilitate the evaluation of

the effect of the data set size on the overall deployment time. In more detail, in figure 5.9

and figure 5.10 we present the data for 500K data points, in figure 5.11 and figure 5.12 we

present the data for 1M data points and finally in figure 5.13 and figure 5.14 we present the

data for 2M data points. Note that, for completeness, we treat collect metrics separately for

the master and the worker nodes.

Fig. 5.9 Deployment time of data integrity event captor on the Spark master over the number
of workers for 500K data points
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Fig. 5.10 Deployment time of data integrity event captor on the Spark workers over the
number of workers for 500K data points

Fig. 5.11 Deployment time of data integrity event captor on the Spark master over the number
of workers for 1M data points
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Fig. 5.12 Deployment time of data integrity event captor on the Spark workers over the
number of workers for 1M data points

Fig. 5.13 Deployment time of data integrity event captor on the Spark master over the number
of workers for 1M data points
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Fig. 5.14 Deployment time of data integrity event captor on the Spark master over the number
of workers for 2M data points

In figures 5.15 and 5.16 below we combine all the graphs above to give an overview of

the time that it takes for the data integrity event captors to be deployed on the master and

worker nodes respectively. As it can be seen in the graphs, the deployment time of the event

captors on the master node remains relatively the same. That is somewhat expected since

there is only one master node. Contrary to that, as the graphs suggest, as the number of

worker increase there is an upwards trend in the deployment time due to the fact that more

event captors will have to be deployed and more coordination is required when a service gets

executed. Another interesting observation is that for all the different data set sizes the data

follow the same trend which implies that the size of the data do not affect the deployment

time. This is expected since the deployment of the event captors is a totally separate operation

that takes place before the data gets processed.
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Fig. 5.15 Overlay graph for the deployment of the data integrity event captor on the Spark
workers for different data sets sizes

Fig. 5.16 Overlay graph for the deployment of the data integrity event captor on the Spark
workers for different data sets sizes

Response time event captors

In this section we present our finding with regards to the overhead imposed to the monitoring

activity when the monitoring of the location of execution is enabled. More specifically,

we have plotted the deployment time that it takes for the data privacy event captors to be

deployed over different cluster configurations where a different number of Spark workers are
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available. The experiments were conducted for 500K, 1M and 2M data points to facilitate

the evaluation of the effect of the data set size on the overall deployment time. In more detail,

in figure 5.17 and figure 5.18 we present the data for 500K data points, in figure 5.19 and

figure 5.20 we present the data for 1M data points and finally in figure 5.21 and figure 5.22

we present the data for 2M data points. Note that, for completeness, we treat collect metrics

separately for the master and the worker nodes.

Fig. 5.17 Deployment time of data availability event captor on the Spark master over the
number of workers for 500K data points

Fig. 5.18 Deployment time of data availability event captor on the Spark workers over the
number of workers for 500K data points
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Fig. 5.19 Deployment time of data availability event captor on the Spark master over the
number of workers for 1M data points

Fig. 5.20 Deployment time of data availability event captor on the Spark workers over the
number of workers for 1M data points
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Fig. 5.21 Deployment time of data availability event captor on the Spark master over the
number of workers for 2M data points

Fig. 5.22 Deployment time of data availability event captor on the Spark workers over the
number of workers for 2M data points

In figures 5.23 and 5.24 below we combine all the graphs above to give an overview

of the time that it takes for the data availability event captors to be deployed on the master

and worker nodes respectively. As it can be seen in the graphs, the deployment time of the

event captors on the master node remains relatively the same. That is somewhat expected

since there only one master node. Contrary to that, as the graphs suggest, as the number of

worker increase there is an upwards trend in the deployment time due to the fact that more
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event captors will have to be deployed and more coordination is required when a service gets

executed. Another interesting observation is that for all the different data set sizes the data

follow the same trend which implies that the size of the data do not affect the deployment

time. This is expected since the deployment of the event captors is a totally separate operation

that takes place before the data gets processed.

Fig. 5.23 Overlay graph for the deployment of the data availability event captor on the Spark
master for different data sets sizes

Fig. 5.24 Overlay graph for the deployment of the data availability event captor on the Spark
workers for different data sets sizes
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5.2.2 Event captor execution overhead

To be able to make a comparative analysis of the execution time for the services of our

use-case, for each service we need to take a baseline with regards to execution times without

the event capturing being enabled. Then, we need to take the execution times for every

service with the event capturing enabled and compare them with the baseline. In all the

experiments that we run to evaluate the overhead imposed as a result of the monitoring

activity, we have run the services 1000 times and we averaged the values that we were able to

collect. This help us to get a more realistic view of the system and eliminate possible one-off

outliers.

Execution overhead for the data privacy event captors

In the case of the data privacy, the security property that is monitored is the location of

execution of the service operations. In figures 5.25 all the way up to 5.32, we present the

overlay graphs between the execution time with no monitoring and with monitoring enabled

over different data set sizes, for multiple cluster configurations that contain from 1 up to 8

workers.

Fig. 5.25 Service execution time with and without data privacy monitoring on a cluster with
1 worker node for multiple data set sizes
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Fig. 5.26 Service execution time with and without monitoring data privacy on a cluster with
2 worker nodes for multiple data set sizes

Fig. 5.27 Service execution time with and without data privacy monitoring on a cluster with
3 worker nodes for multiple data set sizes
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Fig. 5.28 Service execution time with and without data privacy monitoring on a cluster with
4 worker nodes for multiple data set sizes

Fig. 5.29 Service execution time with and without data privacy monitoring on a cluster with
5 worker nodes for multiple data set sizes
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Fig. 5.30 Service execution time with and without data privacy monitoring on a cluster with
6 worker nodes for multiple data set sizes

Fig. 5.31 Service execution time with and without data privacy monitoring on a cluster with
7 worker nodes for multiple data set sizes
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Fig. 5.32 Service execution time with and without data privacy monitoring on a cluster with
8 worker nodes for multiple data set sizes

As it is shown in the graphs above, regardless of the cluster configuration, monitoring data

privacy will impose a penalty on the overall service execution. We present the measurements

that we have been able to collect for different data set sizes and different cluster configuration

in table 5.2.

Data size 1 2 3 4 5 6 7 8 Overhead(%)

500K 38.89% 40.00% 42.25% 37.50% 39.73% 42.25% 40.58% 40.28% 40.18%

1M 33.33% 33.33% 32.00% 29.59% 29.29% 28.71% 32.00% 29.00% 30.91%

2M 15.71% 14.29% 15.11% 15.33% 17.65% 19.55% 18.38% 16.91% 16.62%

4M 8.95% 10.53% 12.50% 11.92% 13.54% 12.24% 13.54% 11.98% 11.90%

Table 5.2 Average overhead for monitoring data privacy for different data set sizes and
number of worker nodes

The data suggests that the number of the worker nodes do not affect the overhead imposed

for the proposed data set sizes as there are minor fluctuations when running the service for

the same data set. However, the overall overhead expressed as a percentage of the total time

it would the service to run without the data privacy monitoring enabled, seems to decrease

as the data set size increases. Because of the nature of the data privacy event captors that

emit events for each data partition that is being processed, the overhead that is imposed does
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not have a linear relationship with to the size of the input data. In particular, as the service

needs to handle more data, the time it take to process each partition is longer than the time it

take the event captor to collect and emit the events related to those partitions respectively.

That being said, more data to be processed means more partitions, and since the overhead is

expressed in relation to the total time of execution without monitoring, the overhead goes

down as the size of the input data set becomes larger. A visual representation of the data

shown in the table above can be seen in figure 5.33.

Fig. 5.33 Overlay graph for the service execution overhead of the data privacy event captor
for different data sets on clusters with different number of workers

Overhead for the data availability event captors

In the case of the data availability, the security property that is monitored is the response time

of the service operations. In figures 5.34 all the way up to 5.42, we present the overlay graphs

between the execution time with no monitoring and with monitoring enabled over different

data set sizes, for multiple cluster configurations that contain from 1 up to 8 workers.
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Fig. 5.34 Service execution time with and without data availability monitoring on a cluster
with 1 worker node for multiple data set sizes

Fig. 5.35 Service execution time with and without data availability monitoring on a cluster
with 2 worker nodes for multiple data set sizes
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Fig. 5.36 Service execution time with and without data availability monitoring on a cluster
with 3 worker nodes for multiple data set sizes

Fig. 5.37 Service execution time with and without data availability monitoring on a cluster
with 3 worker nodes for multiple data set sizes
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Fig. 5.38 Service execution time with and without data availability monitoring on a cluster
with 4 worker nodes for multiple data set sizes

Fig. 5.39 Service execution time with and without data availability monitoring on a cluster
with 5 worker nodes for multiple data set sizes
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Fig. 5.40 Service execution time with and without data availability monitoring on a cluster
with 6 worker nodes for multiple data set sizes

Fig. 5.41 Service execution time with and without data availability monitoring on a cluster
with 7 worker nodes for multiple data set sizes



5.2 Quantitative Evaluation 227

Fig. 5.42 Service execution time with and without data availability monitoring on a cluster
with 8 worker nodes for multiple data set sizes

In the graphs above it is shown that monitoring data availability will impose a penalty on

the overall service execution. We present the measurements that we have been able to collect

for different data set sizes and different cluster configuration in table 5.3.

Data size 1 2 3 4 5 6 7 8 Overhead(%)

500K 5.56% 5.75% 5.56% 5.75% 5.56% 5.75% 5.56% 5.43% 5.61%

1M 5.00% 4.90% 6.00% 5.88% 5.00% 5.88% 5.05% 6.86% 5.57%

2M 5.00% 5.59% 4.90% 5.71% 4.93% 4.90% 4.67% 6.94% 5.33%

4M 5.56% 5.65% 5.65% 5.56% 4.95% 4.52% 5.00% 5.52% 5.30%

Table 5.3 Average overhead for monitoring data availability for different data set sizes and
number of worker nodes

The data suggests that the number of the worker nodes do not affect the overhead imposed

for the proposed data set sizes as there are minor fluctuations when running the service for

the same data set. Similar to that, the size of the data does not seem to affect the imposed

overhead as well which seems to remain the same across all metrics for all the data set sizes.

This is explained by the fact that nor the number of workers neither the size of the input data

are associated with what the event captor has to do in order to collect the necessary events.
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This is expected since, the captor is only concerned with the collection of the start and end

time of the service execution. The size of input data and the number of the workers should

not influence the imposed overhead of the monitoring activity and this is in line with the

measurements that have been able to collect. A visual representation of the data shown in the

table above can be seen in figure 5.43.

Fig. 5.43 Overlay graph for the service execution overhead of the data availability event
captor for different data sets on clusters with different number of workers

Overhead for data integrity event captors

In the case of the data integrity, the security property that is monitored is the integrity of the

data that the service produces during processing i.e intermediate results and the integrity of

the data that the service will eventually produce when it has completed i.e. final result. A key

characteristic of the data integrity monitoring activity is the requirement for the generation of

the checksum values for the data of the partitions of the RDDs. The JVMs that we used in

our cluster supports 3 hashing algorithms namely MD5, SHA-1, and SHA-256. Each one of

the aforementioned algorithms produce checksums with hash values that contain different

number of bits. More specifically, MD5 produces hashes with 128 bits, SHA-1 160 with

bits and SHA-256 with 256 bits. The order that they are listed above is from the weakest

to the strongest. A comprehensive analysis of the intricacies of the algorithms as well as a

comparative comparison between them is surveyed in [83]. In their analysis, the authors,

dismiss the use the MD5 algorithm as being prone to collision and not appropriate for online
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systems whereas very recently Google in one of their technical blog posts [3] has been able

to prove that the SHA-1 algorithm can produce collisions as well. In this thesis, apart from

SHA-512, we do examine both MD5 and SHA-1 out of academic interest.

In this section we present the overlay graphs between the execution time with no

monitoring and with monitoring enabled over different data set sizes, for multiple cluster

configurations that contain from 1 up to 8 workers. In figures 5.44 all the way up to 5.52

we demonstrate the graphs when the MD5 algorithms is used, in figures 5.54 all the way

up to 5.61 we demonstrate the graphs when the SHA-1 algorithms is used and finally In

figures 5.63 all the way up to 5.70 we demonstrate the graphs when the SHA-256 algorithms

is used.

Fig. 5.44 Service execution time with and without data integrity monitoring using MD5 on a
cluster with 1 worker node for multiple data set sizes
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Fig. 5.45 Service execution time with and without data integrity monitoring using MD5 on a
cluster with 2 worker nodes for multiple data set sizes

Fig. 5.46 Service execution time with and without data integrity monitoring using MD5 on a
cluster with 3 worker nodes for multiple data set sizes
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Fig. 5.47 Service execution time with and without data integrity monitoring using MD5 on a
cluster with 4 worker nodes for multiple data set sizes

Fig. 5.48 Service execution time with and without data integrity monitoring using MD5 on a
cluster with 5 worker nodes for multiple data set sizes
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Fig. 5.49 Service execution time with and without data integrity monitoring using MD5 on a
cluster with 6 worker nodes for multiple data set sizes

Fig. 5.50 Service execution time with and without data integrity monitoring using MD5 on a
cluster with 7 worker nodes for multiple data set sizes
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Fig. 5.51 Service execution time with and without data integrity monitoring using MD5 on a
cluster with 8 worker nodes for multiple data set sizes

Fig. 5.52 Service execution time with and without data integrity monitoring using MD5 on a
cluster with 8 worker nodes for multiple data set sizes

As it is shown in the graphs above, regardless of the cluster configuration, monitoring data

privacy will impose a penalty on the overall service execution. We present the measurements

that we have been able to collect for different data set sizes and different cluster configuration

for MD5 in table 5.4.
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Data size 1 2 3 4 5 6 7 8 Overhead(%)

500K 33.33% 33.33% 35.00% 33.33% 32.14% 32.14% 32.14% 32.14% 32.95%

1M 38.46% 36.36% 40.91% 38.46% 36.67% 36.67% 37.50% 34.38% 37.43%

2M 47.37% 46.88% 42.86% 43.33% 44.12% 44.12% 41.67% 44.44% 44.35%

4M 80.00% 80.95% 80.00% 80.56% 80.56% 83.33% 81.58% 81.58% 81.07%

Table 5.4 Average overhead for monitoring data integrity using MD5 for different data set
sizes and number of worker nodes

The data suggests that the number of the worker nodes do not significantly affect the

overhead imposed as a result of the monitoring activity for data integrity. However, as

expected, when the input data grows the overhead increases since more MD5 chechsums

need to be computed and emitted in the form of events in order for the monitor to reason

about them. A visual representation of the data shown in the table above can be seen in

figure 5.53.

Fig. 5.53 Overlay graph of the overhead(%) over different number of workers for data
integrity monitoring using MD5

Note from the figure 5.53 above that as the size of the data grows the total overhead

imposed increases as well.
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Fig. 5.54 Service execution time with and without data integrity monitoring using SHA-1 on
a cluster with 1 worker node for multiple data set sizes

Fig. 5.55 Service execution time with and without data integrity monitoring using SHA-1 on
a cluster with 2 worker nodes for multiple data set sizes
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Fig. 5.56 Service execution time with and without data integrity monitoring using SHA-1 on
a cluster with 3 worker nodes for multiple data set sizes

Fig. 5.57 Service execution time with and without data integrity monitoring using SHA-1 on
a cluster with 4 worker nodes for multiple data set sizes
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Fig. 5.58 Service execution time with and without data integrity monitoring using SHA-1 on
a cluster with 5 worker nodes for multiple data set sizes

Fig. 5.59 Service execution time with and without data integrity monitoring using SHA-1 on
a cluster with 6 worker nodes for multiple data set sizes
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Fig. 5.60 Service execution time with and without data integrity monitoring using SHA-1 on
a cluster with 7 worker nodes for multiple data set sizes

Fig. 5.61 Service execution time with and without data integrity monitoring using SHA-1 on
a cluster with 8 worker nodes for multiple data set sizes

As it is shown in the graphs above, regardless of the cluster configuration, monitoring data

privacy will impose a penalty on the overall service execution. We present the measurements

that we have been able to collect for different data set sizes and different cluster configuration

for SHA-1 in table 5.5.
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Data size 1 2 3 4 5 6 7 8 Overhead(%)

500K 55.56% 55.56% 55.00% 54.17% 57.14% 53.57% 53.57% 57.14% 55.21%

1M 57.69% 59.09% 59.09% 61.54% 60.00% 60.00% 59.38% 59.38% 59.52%

2M 63.16% 62.50% 64.29% 63.33% 64.71% 64.71% 63.89% 63.89% 63.81%

4M 88.00% 90.48% 90.00% 91.67% 91.67% 94.44% 92.11% 92.11% 91.31%

Table 5.5 Average overhead for monitoring data integrity using SHA-1 for different data set
sizes and number of worker nodes

Similar to the data for MD5, the data suggests that the number of the worker nodes do

not significantly affect the overhead imposed as a result of the monitoring activity for data

integrity. However, as expected, when the input data grows the overhead increases since

more SHA-1 chechsums need to be computed and emitted in the form of events in order for

the monitor to reason about them. A visual representation of the data shown in the table

above can be seen in figure 5.62.

Fig. 5.62 Overlay graph of the overhead(%) over different number of workers for data
integrity monitoring using SHA-1
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Fig. 5.63 Service execution time with and without data integrity monitoring using SHA-256
on a cluster with 1 worker node for multiple data set sizes

Fig. 5.64 Service execution time with and without data integrity monitoring using SHA-256
on a cluster with 2 worker nodes for multiple data set sizes
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Fig. 5.65 Service execution time with and without data integrity monitoring using SHA-256
on a cluster with 3 worker nodes for multiple data set sizes

Fig. 5.66 Service execution time with and without data integrity monitoring using SHA-256
on a cluster with 4 worker nodes for multiple data set sizes
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Fig. 5.67 Service execution time with and without data integrity monitoring using SHA-256
on a cluster with 5 worker nodes for multiple data set sizes

Fig. 5.68 Service execution time with and without data integrity monitoring using SHA-256
on a cluster with 6 worker nodes for multiple data set sizes
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Fig. 5.69 Service execution time with and without data integrity monitoring using SHA-256
on a cluster with 7 worker nodes for multiple data set sizes

Fig. 5.70 Service execution time with and without data integrity monitoring using SHA-256
on a cluster with 8 worker nodes for multiple data set sizes

As it is shown in the graphs above, regardless of the cluster configuration, monitoring data

privacy will impose a penalty on the overall service execution. We present the measurements

that we have been able to collect for different data set sizes and different cluster configuration

for SHA-256 in table 5.6.
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Data size 1 2 3 4 5 6 7 8 Overhead(%)

500K 77.78% 77.78% 75.00% 70.83% 75.00% 78.57% 75.00% 78.57% 76.07%

1M 84.62% 81.82% 81.82% 80.77% 80.00% 83.33% 81.25% 81.25% 81.86%

2M 94.74% 93.75% 92.86% 93.33% 91.18% 94.12% 91.67% 91.67% 92.91%

4M 108.00% 109.52% 110.00% 108.33% 108.33% 108.33% 110.53% 110.53% 109.20%

Table 5.6 Average overhead for monitoring data integrity using SHA-256 for different data
set sizes and number of worker nodes

Similar to the data for MD5 and SHA-256, the data suggests that the number of the

worker nodes do not significantly affect the overhead imposed as a result of the monitoring

activity for data integrity. However, as expected, when the input data grows the overhead

increases since more SHA-6 chechsums need to be computed and emitted in the form of

events in order for the monitor to reason about them. A visual representation of the data

shown in the table above can be seen in figure ??.

Fig. 5.71 Overlay graph of the overhead(%) over different number of workers for data
integrity monitoring using SHA-256

In this section we have examined the overhead that is applied on the big data pipelines

when data integrity is monitored. Our analysis was done across two variable namely the

size of the data and the size of the cluster i.e. the number of workers available. However,
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contrary to our analysis for data privacy and data availability, in the context of data integrity

monitoring it is worth studying the effect of the hashing algorithm that is being used in

relation to the overhead that this might cause on the service execution. For that reason we

have plotted the average overhead for each individual hashing algorithm and we present it in

figure 5.72.

Fig. 5.72 Overlay graph of the overhead(%) over different number of workers for data
integrity monitoring using MD5, SHA-1 and SHA-256

As it can be seen, MD5 inflicts the least average overhead, SHA-1 is the next closest

with SHA-256 being the one that imposes the greatest overhead. This is somewhat expected

and in agreement with what one would expect for two reasons. Firstly, MD5 is the least

complex to produce in algorithmic terms with checksums of 128 bits, SHA-1 with checksums

of 160 bits and SHA-256 with checksums of 256 bits. Secondly, due to the difference in

the size of the checksums that they produce, more data need to be emitted over the network

for the relevant events that are captured during execution which results in greater network

latency and therefore it takes longer for the monitoring activity to complete. As the hashing

algorithm that is being used becomes more complex and collision are less likely, an additional

penalty is to be paid in terms of overhead. This is a case of allowing users to strike the perfect

balance between efficiency and security by enabling them to choose the appropriate hashing

algorithm that satisfies their requirements.
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5.3 Evaluation Summary and Discussion

In this chapter we conducted a set of experiments to evaluate the efficacy of the framework

that was proposed. More specifically, metrics where collected for the deployment of the

event captors for the monitoring of data integrity, response time and location of execution

of operations. Additional to that we also collected performance metrics for the execution

time of the the services with and without the event captors. Both the experiments for the

deployment of the captors and the execution of the services were conducted 1000 times and

averages were computed to evaluate the overhead that is imposed as a result of the monitoring

activity in the average case.

For the deployment of the event captors the results that were collected are summarised in

table 5.7. The deployment of the captors involves them being loaded by the corresponding

Spark workers. All the event captors will have to be available on the worker nodes that

they will operate on, to facilitate the capturing of the events. In our setup, this is achieved

by having them available on a centralised location that the docker images will mount and

therefore make them accessible to them.

Workers Privacy Availability Integrity

1 1.4sec 1.4sec 1.4sec

2 1.46sec 1.46sec 1.46sec

3 1.63sec 1.66sec 1.66sec

4 1.7sec 1.7sec 1.7sec

5 1.86sec 1.9sec 1.9sec

6 1.96sec 1.96sec 1.96sec

7 2.23sec 2.2sec 2.2sec

8 2.5sec 2.36sec 2.36sec

Table 5.7 Summary table of the average deployment time for the event captors on clusters
with different number of workers

As it is shown in table 5.7, the time it takes the event captors to get installed on the

worker nodes, is similar, if not exactly the same, for all the event captors for the same cluster
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configuration i.e. with the same number of workers. This holds true because the deployment

of the event captors only describes what parts of the application will be intercepted and does

not act on the data itself and therefore no additional overhead is imposed. The step of the

event captor deployment is a one-off step and only happens when the Big Data analytics

pipeline is submitted for execution. In addition, it can be seen that as the number of workers

increase, it takes longer for all the event captors to be deployed. This is expected since the

event captors will have to be deployed across the additional workers.

For the execution of the services the measurements that have been collected are summarised

in table 5.8.

Data size Availability Privacy MD5 SHA-1 SHA-256

500K 5.61% 40.18% 32.95% 55.21% 76.07%

1M 5.57% 30.91% 37.43% 59.52% 81.86%

2M 5.33% 16.62% 44.35% 63.81% 92.91%

4M 5.30% 11.90% 81.07% 91.31% 109.20%

Table 5.8 Summary table of the average overhead for availability, privacy and integrity
monitoring for different data set sizes

In the table above, it can be observed that the overhead for data availability remains

relatively similar regardless of the size of the data. This is justified by the fact that the way

data availability is expressed i.e. response time, is not correlated with the size of the data or

the number of the workers. As such it remains the same across different data set sizes and

number of workers. In addition, the overhead for data privacy monitoring expressed as a

percentage of the service execution without the monitoring capabilities being enabled, goes

down as the data set size goes up. Finally, another important point that the data highlights is

that in the case of the data integrity monitoring, the overhead that is imposed increases as

we move to more complex hashing algorithms for the generation of the checksum for the

intermediate produced data. More specifically, when the MD5 hashing algorithm is used

the execution time of the service is affected the least whereas when the SHA-256 hashing

algorithm is used, service execution times pay a higher price in terms of overall execution

time. This is a direct result of the difference in the complexity of the algorithms used as
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well as of the size of the checksums that are produced and need to be sent to the EVEREST

monitor over the network. MD5 produces the shortest checksums that are 128 bits long

whereas SHA-256 produces the longest checksums that are 256 bits long. The longer the

length of the message digests that are produced, the larger the network overhead that will

be imposed for the emission of the monitoring events. Also, we need to keep in mind that

the size of the hashes has a cumulative effect with regards to the network overhead imposed

during monitoring. That is because a hash value needs to be produced and emitted for

every partition for every RDD that is involved in the execution of the service. In a real-life

application this could easily get in the order of a few thousand hashes that need to be emitted

and therefore an increase in the length of the checksums could have a significant effect on

the overall service execution time.

A visual representation of the data presented in table 5.8 is plotted in figure 5.73.

Fig. 5.73 Overlay graph of the average overhead(%) for all the security properties over
different data set sizes

As it is depicted, data integrity monitoring is more expensive security property that we

have been able to examine, with data integrity monitoring using SHA-256 as the hashing

method, being the more resource intensive property to collect events for and monitor. On the

flip side, data availability is the security property that imposed the least observable overhead

regardless of the number of workers and data set size.
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5.4 Summary

In this chapter we have presented the results of the evaluation of the monitoring framework

that we have put forward in this thesis. Our evaluation has been conducted with regards to

two different, but equally important, aspects of the monitoring activity i.e. the overhead

imposed as a result of the automatic deployment of the event captors on the nodes of the

cluster and the overhead imposed due to the event capturing activity itself. For a more

comprehensive examination of the event capturing overhead, both in terms of deployment

and service execution, we run our experiments for multiple data set size i.e. 500K, 1M, 2M

and 4M data points on multiple cluster configuration i.e. with one up to 8 worker nodes. From

our analysis, we were able to identify that the size of the data did not affect the overhead on

the deployment of the captors which is something that we expected since the deployment is

not concerned with the execution. However, as one would expect, an increase in the number

of worker nodes caused an increase in the time it takes for all the event captors to be deployed.

In addition, we were able to identify that number of worker nodes did not have a significant

effect on the service execution time. The execution time overhead of the services remained

relatively similar across different cluster configurations. Contrary to that, the size of the data

seemed to affect the time it takes for the services to execute especially in the case of data

integrity. The justification for that is that the monitoring of data integrity entails that each

data point has to be processed as part of the computation but also a checksum for it needs

to be produced. This suggests that more data points will lead to a shower service execution

which was validated by the results that we were able to collection from our experiments.





Chapter 6

Conclusions and Future Work

6.1 Overview

In the final chapter of our thesis we will present an overview of the work that has been carried

out for the design, development and evaluation of a security SLA monitoring framework for

Big Data service pipelines. Moreover, we will provide an account of the contributions that

our proposal makes in the state of the art in the domain of security SLA monitoring for Big

Data services. Finally, we will highlight some limitations that we have been able to identify

for our system and we will provide a list with future directions for the improvement and

extension of the capabilities of the monitoring framework that was put forward in this thesis.

6.2 Summary of Research Work

In this thesis, and more specifically in chapter 3, we described a novel approach for addressing

the challenges of runtime monitoring of security SLA for Big Data service pipelines. Our

approach relies heavily on two pillars; the first one is the automation of the generation of

the low-level artefacts that are necessary for the realisation of the monitoring activity from

the end-user’s high-level security requirements and the second one is the automation of the

deployment process of the event captors that collect the monitoring data.

For the assessment of our framework we examined the runtime monitoring specification

of three security property. The first one was the Big Data service response time that relates to
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availability, the second one was the location of execution of the service operations that relates

to data privacy and the third one was the integrity of the intermediate data that is produced

during execution that relates to data integrity. All the rules for the monitoring activity for the

properties that were explored were defined with the assistance of Event Calculus formulae.

Subsequently the formulae were translated into EC-Assertion expressions that the EVEREST

monitoring tool was able to interpret and reason about. The event captors were designed and

developed in the form of Java agents that enabled the code instrumentation of the Big Data

processing framework that performed the data processing, which in our case was Apache

Spark. The evaluation of the monitoring events against the monitoring rules was performed

by the EVEREST monitoring tool.

Finally, in chapter 4 we presented an integrated web platform that was used to facilitate

the interaction of the end-users with the system in a comprehensive and straightforward

manner with the assistance of a set of user interface components. The idea behind the

development of this integrated platform that provides an single interface for the definition

of the service level objectives that need to be monitored, is to provide to the end-users an

SLA monitoring platform that is completely automated and requires the minimum amount of

input from the user. Moreover, the SLA manager web application allowed us to completely

streamline the definition and execution of the security SLA monitoring activity for technical

and non-technical users alike.

6.3 Contributions

The contributions of the work presented in this thesis can be briefly summarised in the

following 3 points:

1. Designed and developed a monitoring framework for the automatic translation of

high-level security requirements into low-level monitorable artefacts that are then

automatically monitored.

2. Designed and developed a monitoring framework where the event capturing process

can handle changes both in terms of how the constituent services of the Big Data

pipeline are arranged and in terms of the actual Big Data service code itself.
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3. Designed and developed a set of event captors for the monitoring of security properties

that relate to data availability, data privacy and data integrity, that are adaptive and

elastic. Modifications in the Big Data service or the cluster that it gets executed does

not entail any modification in the event captors.

6.4 Limitations

Within the context of our research, the proposed framework has been successfully designed

and implemented. However, we have been able to identify a series of limitations that are

presented in the following list:

1. The monitoring rules can only to be expressed in event calculus and subsequently in

EC-Assertion formulae to support the evaluation of the events from the EVEREST

monitor. This also implies that the events need to be emitted in an XML format that

the monitor can understand and reason about.

2. The monitoring solution that we propose will not operate correctly on a compute cluster

where the clocks of the nodes are not synchronised. This limitation is particularly

pronounced in the case of nodes that are disparate with regards to the timezone that

they are located.

3. The SLA manager that was developed for the definition of the service level objectives,

can only be accessed via a web browser. No other interface is available for interacting

with the system. Also, the end-users of the SLA management web application ought to

have a basic understanding of the security properties that they need to monitor in order

to express them through the application’s user interface.

6.5 Future Work

We argue that the proposed framework is novel and that it makes a clear contribution in the

current literature. However, our view is that an array of improvements and additions can be

made to address a series of challenges that exist in the space of security SLA monitoring for
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Big Data analytics that have not been addressed in this thesis. A list with future directions

that can help to tackle some of those challenges are presented in the list below:

1. Create event captors for other Big Data processing frameworks apart from Apache

Spark. This is particularly important with regards to our proposal because our

framework has been designed to address pipelines of Big Data services and not just a

single Big Data service. It is very typical for use-cases to require the specification of

Big Data service pipelines that are composed of services that use different processing

engines. Implementing event captors for multiple processing frameworks will allow

the runtime security monitoring of pipelines composed of heterogeneous Big Data

services that are executed on different platforms.

2. Combine multiple properties to support the monitoring activity of more that one

properties for a single service. In our proposal we examined the monitoring of one

security property per service. It would be highly desirable to allow the users to define

multiple security properties to be monitored for the same service.

3. In the case of the data integrity, we monitor the preservation of data integrity for all

the intermediate data the is produced during service execution but we do not monitor

the integrity of the actual code that operates on the data. Since we are in the domain

of distributed applications not only the data but also the executable code needs to be

transmitted and executed across multiple nodes in the cluster and as such its integrity

can be compromised as well. A more enterprise solution that deals with the runtime

monitoring of data integrity as whole in the context of Big Data service execution,

should also involve the monitoring of the integrity of the code that gets executed across

the nodes of the cluster.

4. Allow the users to define the level of granularity that they wish to monitor the integrity

of the data. In our implementation we produce checksums for each partition and

we argue that with this approach we make a reasonable trade-off. However, a more

enterprise approach would be to enable users to take that decision. Users should be able

to choose at what level the event captors should produce the hash values. This approach

however will entail additional challenges such as the design of a monitoring engine that
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would be able to reason about an increased number of events. For instance, producing

checksums for every data tuple would incur a significant amount of computational

stress on the EVEREST monitor which would have to be re-designed to support the

increased load.

5. More security properties should be defined and monitored. Some interesting examples

would be related to availability such as the mean time to repair (MTTR) and mean time

to failure (MTTF). The aforementioned properties are particularly interesting given

the fact that Big Data processing frameworks because of their distributed execution

model are designed deliberately to address failures and have mechanisms to recover

from them.

6. The communication channel between the event captors and the monitoring engine of

EVEREST must be secure. Setting up the monitoring framework and taking all the

necessary steps to automate the deployment and execution of the monitoring process

without emitting the monitoring events in a secure manner, can severely undermine the

credibility and integrity of the monitoring results. Modifying the monitoring events

with man-in-the-middle type of attacks can allow security violation to go undetected

or raise violations that haven’t occurred.
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Appendix A

Composed Task Runner for Spark

Submit Command

Listing A.1 Apache Spark Client Task Configuration
1 package org.springframework.cloud.task.app.spark.client;

2

3 import org.apache.commons.io.FileUtils;

4 import org.apache.commons.logging.Log;

5 import org.apache.commons.logging.LogFactory;

6 import org.apache.velocity.Template;

7 import org.apache.velocity.VelocityContext;

8 import org.apache.velocity.app.VelocityEngine;

9 import org.apache.velocity.runtime.RuntimeConstants;

10 import org.apache.velocity.runtime.resource.loader.ClasspathResourceLoader;

11 import org.springframework.beans.factory.annotation.Autowired;

12 import org.springframework.boot.CommandLineRunner;

13 import org.springframework.boot.context.properties.EnableConfigurationProperties;

14 import org.springframework.cloud.task.configuration.EnableTask;

15 import org.springframework.context.annotation.Bean;

16 import org.springframework.context.annotation.Configuration;

17

18 import java.io.File;

19 import java.io.StringWriter;

20 import java.util.Properties;

21

22 @EnableTask

23 @Configuration

24 @EnableConfigurationProperties(SparkClientTaskProperties.class)

25 public class SparkClientTaskConfiguration {

26

27 private final static String TEMPLATE_PATH = "spark -submit -template.vm";

28

29 @Bean

30 public CommandLineRunner commandLineRunner () {

31 return new SparkAppClientRunner ();

32 }

33

34 private class SparkAppClientRunner implements CommandLineRunner {

35

36 private final Log logger = LogFactory.getLog(SparkAppClientRunner.class);
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37

38 @Autowired

39 private SparkClientTaskProperties config;

40

41

42 @Override

43 public void run(String ... args) throws Exception {

44

45 Properties properties = new Properties ();

46 properties.setProperty(RuntimeConstants.INPUT_ENCODING , "UTF -8");

47 properties.setProperty(RuntimeConstants.OUTPUT_ENCODING , "UTF -8");

48 properties.setProperty(RuntimeConstants.RESOURCE_LOADER , "class");

49 properties.setProperty("class.resource.loader.class", ClasspathResourceLoader.class.getName ());

50 VelocityEngine engine = new VelocityEngine(properties);

51

52 VelocityContext context = new VelocityContext ();

53 Template template = engine.getTemplate(TEMPLATE_PATH);

54 context.put("config", config);

55

56 StringWriter writer = new StringWriter ();

57 template.merge(context ,writer);

58

59 File executable = File.createTempFile("toreador -spark -submit@", ".sh");

60

61 FileUtils.writeStringToFile(executable , writer.toString ().replaceAll("\r\n", "\n"), "UTF -8");

62 Runtime.getRuntime ().exec(new String []{"chmod", "775", executable.getAbsoluteFile ().getAbsolutePath ()});

63

64 final ProcessBuilder sparkSubmitCommand = new ProcessBuilder("sh", executable.getAbsoluteFile ().getAbsolutePath ());

65 Process p = sparkSubmitCommand.start();

66

67 int submit = p.waitFor ();

68 }

69 }

70 }

Listing A.2 Snippet of the EC-Assertion template for the location of the operation execution
1

2 <?xml version="1.0" encoding="UTF -8"?>

3 <model:CertificationModel

4 xmlns:sch="http ://www.ascc.net/xml/schematron"

5 xmlns:jaxb="http :// java.sun.com/xml/ns/jaxb"

6 xmlns:xjc="http :// java.sun.com/xml/ns/jaxb/xjc"

7 xmlns:xsi="http ://www.w3.org /2001/ XMLSchema -instance">

8 <CertificationModelID >toreador:cm:id:monitoring :00001 </ CertificationModelID >

9

10 <Signature >

11 <Name >City </Name >

12 <Role >CA </Role >

13 </Signature >

14 <ToC Id="toc -toreador">

15 <CloudLayer >ToreadorPlatform </CloudLayer >

16 <ConcreteToc ></ConcreteToc >

17 <TocDescription >VIRTUALMACHINE </ TocDescription >

18 <TocURI >http://xyz.com </TocURI >

19 <ToM >

20 <providesInterface >

21 <ID>tor1 </ID>

22 <ProviderRef >Toreador </ ProviderRef >

23 <Endpoint >

24 <ID>T01 </ID>

25 <Location >localhost </Location >

26 <Protocol >SOAP </Protocol >
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27 </Endpoint >

28 <Interface >

29 <InterfaceSpec >

30 <Name >toreadorSLA </Name >

31 <Operation >

32 <interfaceId >toreadorSLA </ interfaceId >

33 <partition >id001 </partition >

34 <operationName >writerdd </ operationName >

35 <inputVariable forMatching="true" persistent="false">

36 <varName >appId </varName >

37 <varType >string </varType >

38 </inputVariable >

39 <inputVariable forMatching="true" persistent="false">

40 <varName >appName </varName >

41 <varType >string </varType >

42 </inputVariable >

43 <inputVariable forMatching="true" persistent="false">

44 <varName >rdId </varName >

45 <varType >string </varType >

46 </inputVariable >

47 <inputVariable forMatching="true" persistent="false">

48 <varName >partId </varName >

49 <varType >string </varType >

50 </inputVariable >

51 <inputVariable forMatching="true" persistent="false">

52 <varName >ip </varName >

53 <varType >string </varType >

54 </inputVariable >

55 </Operation >

56 </InterfaceSpec >

57 </Interface >

58 </providesInterface >

59 </ToM >

60 </ToC >

61 <SecurityProperty SecurityPropertyId="TOREADOR -PRIVACY -001"

62 SecurityPropertyDefinition="BCR:privacy:toreador -privacy" Vocabulary="CSA"

63 ShortName="BCR:privacy">

64 <sProperty >

65 <propertyPerformance >

66 <propertyPerformanceRow >

67 <propertyPerformanceCell name="verified">"true"

68 </propertyPerformanceCell >

69 </propertyPerformanceRow >

70 </propertyPerformance >

71 <propertyParameterList />

72 </sProperty >

73 </SecurityProperty >

74 <SecurityPropertyAssertions >

75 <Assertion ID="AS001">

76 <InterfaceDeclr >

77 <ID >001</ID>

78 <ProviderRef >city </ ProviderRef >

79 <Endpoint >

80 <ID>T01 </ID>

81 <Location >localhost </Location >

82 <Protocol >SOAP </Protocol >

83 </Endpoint >

84 <Interface >

85 <InterfaceSpec >

86 <Name >toreadorSLA </Name >

87 <Operation >

88 <interfaceId >toreadorSLA </ interfaceId >

89 <partition >id001 </partition >

90 <operationName >writerdd </ operationName >
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91 <inputVariable forMatching="true" persistent="false">

92 <varName >appId </varName >

93 <varType >string </varType >

94 </inputVariable >

95 <inputVariable forMatching="true" persistent="false">

96 <varName >appName </varName >

97 <varType >string </varType >

98 </inputVariable >

99 <inputVariable forMatching="true" persistent="false">

100 <varName >rddId </varName >

101 <varType >string </varType >

102 </inputVariable >

103 <inputVariable forMatching="true" persistent="false">

104 <varName >partId </varName >

105 <varType >string </varType >

106 </inputVariable >

107 <inputVariable forMatching="true" persistent="false">

108 <varName >ip </varName >

109 <varType >string </varType >

110 </inputVariable >

111 </Operation >

112 </InterfaceSpec >

113 </Interface >

114 </InterfaceDeclr >

115 <Guaranteed ID="trustedFluentID1" forChecking="false" type="future">

116 <quantification >

117 <quantifier >forall </quantifier >

118 <timeVariable >

119 <varName >t0 </varName >

120 <varType >TimeVariable </varType >

121 </timeVariable >

122 </quantification >

123 <postcondition >

124 <atomicCondition conditionID="trustedFluentac1">

125 <stateCondition >

126 <initially >

127 <state name="trustedFluent">

128 <argument >

129 <variable forMatching="true" persistent="false">

130 <varName >trustedIP </varName >

131 <array >

132 <type >stringArray </type >

133 #set($count = 0)

134 #foreach( $ip in $trustedIps )

135 <value >

136 <indexValue >$count </indexValue >

137 <cellValue >$ip </cellValue >

138 </value >

139 #set($count = $count + 1)

140 #end

141 </array >

142 </variable >

143 </argument >

144 </state >

145 <timeVar >

146 <varName >t0 </varName >

147 <varType >TimeVariable </varType >

148 </timeVar >

149 </initially >

150 </stateCondition >

151 </atomicCondition >

152 </postcondition >

153 </Guaranteed >

154 <Guaranteed forChecking="true" ID="PrivacyRule" type="Future_Formula">
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155 <quantification >

156 <quantifier >forall </quantifier >

157 <timeVariable >

158 <varName >t1 </varName >

159 <varType >TimeVariable </varType >

160 </timeVariable >

161 </quantification >

162 <precondition >

163 <atomicCondition conditionID="ac0">

164 <eventCondition unconstrained="true">

165 <event >

166 <eventID forMatching="true" persistent="false">

167 <varName >ToreadorPrivacy </varName >

168 </eventID >

169 <call >

170 <interfaceId >toreadorSLA </ interfaceId >

171 <OperationId >1</ OperationId >

172 <operationName >compute </ operationName >

173 <inputVariable forMatching="true" persistent="false">

174 <varName >status1 </varName >

175 <varType >OpStatus </varType >

176 <value ></value >

177 </inputVariable >

178 <inputVariable forMatching="true" persistent="false">

179 <varName >sender1 </varName >

180 <varType >Entity </varType >

181 <value ></value >

182 </inputVariable >

183 <inputVariable forMatching="true" persistent="false">

184 <varName >receiver1 </varName >

185 <varType >Entity </varType >

186 <value ></value >

187 </inputVariable >

188 <inputVariable forMatching="true" persistent="false">

189 <varName >source1 </varName >

190 <varType >Entity </varType >

191 <value ></value >

192 </inputVariable >

193 <inputVariable forMatching="true" persistent="false">

194 <varName >serviceId </varName >

195 <varType >string </varType >

196 <value ></value >

197 </inputVariable >

198 <inputVariable forMatching="true" persistent="false">

199 <varName >appId </varName >

200 <varType >string </varType >

201 </inputVariable >

202 <inputVariable forMatching="true" persistent="false">

203 <varName >appName </varName >

204 <varType >string </varType >

205 </inputVariable >

206 <inputVariable forMatching="true" persistent="false">

207 <varName >rddId </varName >

208 <varType >string </varType >

209 </inputVariable >

210 <inputVariable forMatching="true" persistent="false">

211 <varName >partId </varName >

212 <varType >string </varType >

213 </inputVariable >

214 <inputVariable forMatching="true" persistent="false">

215 <varName >ip </varName >

216 <varType >string </varType >

217 </inputVariable >

218 </call >
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219 <tVar >

220 <timeVar >

221 <varName >t1 </varName >

222 <varType >TimeVariable </varType >

223 </timeVar >

224 </tVar >

225 <fromTime >

226 <time >

227 <varName >t1 </varName >

228 <varType >TimeVariable </varType >

229 </time >

230 </fromTime >

231 <toTime >

232 <time >

233 <varName >t1 </varName >

234 <varType >TimeVariable </varType >

235 </time >

236 </toTime >

237 </event >

238 </eventCondition >

239 </atomicCondition >

240 </precondition >

241 <postcondition >

242 <atomicCondition conditionID="trustedAc1">

243 <stateCondition >

244 <holdsAt >

245 <state name="trustedFluent">

246 <argument >

247 <variable forMatching="true" persistent="false">

248 <varName >trustedIP </varName >

249 <array >

250 <type >stringArray </type >

251 </array >

252 </variable >

253 </argument >

254 </state >

255 <timeVar >

256 <varName >t1 </varName >

257 <varType >TimeVariable </varType >

258 </timeVar >

259 </holdsAt >

260 </stateCondition >

261 </atomicCondition >

262 <WrappedCondition >

263 <operator >and </operator >

264 <assertionCondition >

265 <atomicCondition conditionID="wc1">

266 <relationalCondition >

267 <equal >

268 <operand1 >

269 <operationCall >

270 <name >exists </name >

271 <partner >self </partner >

272 <argument >

273 <variable forMatching="true" persistent="false">

274 <varName >trustedIP </varName >

275 <array >

276 <type >stringArray </type >

277 </array >

278 </variable >

279 </argument >

280 <argument >

281 <variable >

282 <varName >ip </varName >
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283 <varType >string </varType >

284 </variable >

285 </argument >

286 </operationCall >

287 </operand1 >

288 <operand2 >

289 <constant >

290 <name >verified </name >

291 <value >true </value >

292 </constant >

293 </operand2 >

294 </equal >

295 <timeVar >

296 <varName >t1 </varName >

297 <varType >TimeVariable </varType >

298 </timeVar >

299 </relationalCondition >

300 </atomicCondition >

301 </assertionCondition >

302 </WrappedCondition >

303 </postcondition >

304 </Guaranteed >

305 </Assertion >

306 </SecurityPropertyAssertions >

307 </model:CertificationModel >

Listing A.3 Apache Spark Client Task Properties
1 package org.springframework.cloud.task.app.spark.client;

2

3 import javax.validation.constraints.NotNull;

4 import org.springframework.beans.factory.annotation.Value;

5 import org.springframework.boot.context.properties.ConfigurationProperties;

6

7 @ConfigurationProperties("spark")

8 public class SparkClientTaskProperties {

9

10 private String master = "local";

11

12 @Value("${spring.application.name:sparkapp -task}")

13 private String appName;

14

15 private String appClass;

16

17 private String appJar;

18

19 private String [] appArgs = new String []{};

20

21 private String resourceFiles;

22

23 private String resourceArchives;

24

25 private String executorMemory = "1024M";

26 /*

27 Security property to be monitored

28 */

29 private String securityProperty;

30

31 public String getMaster () {

32 return master;

33 }

34

35 public void setMaster(String master) {
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36 this.master = master;

37 }

38

39 public String getAppName () {

40 return appName;

41 }

42

43 public void setAppName(String appName) {

44 this.appName = appName;

45 }

46

47 @NotNull

48 public String getAppClass () {

49 return appClass;

50 }

51

52 public void setAppClass(String appClass) {

53 this.appClass = appClass;

54 }

55

56 @NotNull

57 public String getAppJar () {

58 return appJar;

59 }

60

61 public void setAppJar(String appJar) {

62 this.appJar = appJar;

63 }

64

65 public String [] getAppArgs () {

66 return appArgs;

67 }

68

69 public void setAppArgs(String [] appArgs) {

70 this.appArgs = appArgs;

71 }

72

73 public String getResourceFiles () {

74 return resourceFiles;

75 }

76

77 public void setResourceFiles(String resourceFiles) {

78 this.resourceFiles = resourceFiles;

79 }

80

81 public String getResourceArchives () {

82 return resourceArchives;

83 }

84

85 public void setResourceArchives(String resourceArchives) {

86 this.resourceArchives = resourceArchives;

87 }

88

89 public String getExecutorMemory () {

90 return executorMemory;

91 }

92

93 public void setExecutorMemory(String executorMemory) {

94 this.executorMemory = executorMemory;

95 }

96

97 public String getSecurityProperty () {

98 return securityProperty;

99 }
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100

101 public void setSecurityProperty(String securityProperty) {

102 this.securityProperty = securityProperty;

103 }

104 }

Listing A.4 Velocity template for the Apache Spark submit command
1 #set( $eventCaptor = "/home/abfc149/toreador -demo/captors/Data" + $config.getSecurityProperty () + "EverestEventCaptors.jar=

2 emitter=socket ,host =10.207.1.103 , port =10333 , eventStype=TEXT" )

3 #!/bin/bash

4 spark -submit \

5 --name $config.getAppName () \

6 --class $config.getAppClass () \

7 --master $config.getMaster () \

8 ## Load the appropriate Java agent on the driver

9 --conf "spark.driver.extraJavaOptions=-javaagent:$eventCaptor" \

10 ## Load the appropriate Java agent on every executor

11 --conf "spark.executor.extraJavaOptions=-javaagent:$eventCaptor" \

12 --deploy -mode client \

13 $config.getAppJar () \

14 #foreach($argument in $config.getAppArgs ())#if($foreach.first)$argument#end#if(! $foreach.first) $argument#end#end

Listing A.5 Docker compose file for the Spark/Hadoop cluster
1 version: '2'

2 services:

3 namenode:

4 image: bde2020/hadoop -namenode :1.1.0 - hadoop2.8-java8

5 container_name: namenode

6 volumes:

7 - ./data/namenode :/ hadoop/dfs/name

8 environment:

9 - CLUSTER_NAME=test

10 env_file:

11 - ./ hadoop.env

12 ports:

13 - 50070:50070

14 datanode:

15 image: bde2020/hadoop -datanode :1.1.0 - hadoop2.8-java8

16 depends_on:

17 - namenode

18 volumes:

19 - ./data/datanode :/ hadoop/dfs/data

20 env_file:

21 - ./ hadoop.env

22 ports:

23 - 50075:50075

24 spark -master:

25 image: bde2020/spark -master :2.1.0 - hadoop2.8-hive -java8

26 container_name: spark -master

27 ports:

28 - 8080:8080

29 - 7077:7077

30 env_file:

31 - ./ hadoop.env

32 volumes:

33 - ../ code/AnonymizeData/target/scala -2.11/ anonymizedata_2 .11 -0.1.0 - SNAPSHOT.jar:/data/bda/anonymizedata_2 .11 -0.1.0 - SNAPSHOT.jar

34 - ../ code/PrepareData/target/scala -2.11/ preparedata_2 .11 -0.1.0 - SNAPSHOT.jar:/data/bda/preparedata_2 .11 -0.1.0 - SNAPSHOT.jar

35 - ../ code/ComputeAverage/target/scala -2.11/ computeaverage_2 .11 -0.1.0 - SNAPSHOT.jar:/data/bda/computeaverage_2 .11 -0.1.0 - SNAPSHOT.jar

36 - ../ code/captors/DataPrivacyEverestEventCaptors/target/DataPrivacyEverestEventCaptors.jar:/data/captors/DataPrivacyEverestEventCaptors.jar

37 - ../ code/captors/DataIntegrityEverestEventCaptors/target/DataIntegrityEverestEventCaptors.jar:/data/captors/DataIntegrityEverestEventCaptors.jar
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38 - ../ code/captors/DataAvailabilityEverestEventCaptors/target/DataAvailabilityEverestEventCaptors.jar:/data/captors/DataAvailabilityEverestEventCaptors.jar

39 - ../ code/EventCaptor/target/EventCaptor.jar:/data/captors/EventCaptor.jar

40 spark -worker:

41 image: bde2020/spark -worker :2.1.0 - hadoop2.8-hive -java8

42 depends_on:

43 - spark -master

44 environment:

45 - SPARK_MASTER=spark://spark -master :7077

46 - SPARK_WORKER_CORES =1

47 - SPARK_WORKER_MEMORY =2g

48 env_file:

49 - ./ hadoop.env

50 volumes:

51 - ../ code/AnonymizeData/target/scala -2.11/ anonymizedata_2 .11 -0.1.0 - SNAPSHOT.jar:/data/bda/anonymizedata_2 .11 -0.1.0 - SNAPSHOT.jar

52 - ../ code/PrepareData/target/scala -2.11/ preparedata_2 .11 -0.1.0 - SNAPSHOT.jar:/data/bda/preparedata_2 .11 -0.1.0 - SNAPSHOT.jar

53 - ../ code/ComputeAverage/target/scala -2.11/ computeaverage_2 .11 -0.1.0 - SNAPSHOT.jar:/data/bda/computeaverage_2 .11 -0.1.0 - SNAPSHOT.jar

54 - ../ code/captors/DataPrivacyEverestEventCaptors/target/DataPrivacyEverestEventCaptors.jar:/data/captors/DataPrivacyEverestEventCaptors.jar

55 - ../ code/captors/DataIntegrityEverestEventCaptors/target/DataIntegrityEverestEventCaptors.jar:/data/captors/DataIntegrityEverestEventCaptors.jar

56 - ../ code/captors/DataAvailabilityEverestEventCaptors/target/DataAvailabilityEverestEventCaptors.jar:/data/captors/DataAvailabilityEverestEventCaptors.jar

A.1 Spring Cloud Data Flow

A.1.1 Overview

Spring Cloud Data Flow is a programming model that aims at the development and deployment

of cloud applications. It offers the ability to define, deploy and eventually execute composable

micro-sevices on a variety of runtimes. Spring Cloud Data Flow, facilitates the creation

and orchestration of data pipelines for a set of pre-defined use cases such as data ingestion,

real time data processing and batch processing. On top of that, it offers the ability to create

custom data processing modules to meet the requirements for custom use-cases that can not

be implemented with the built-in processing components.

From an implementation perspective, streaming and batch processing modules are Spring

Boot applications that are independent deployment units and can get executed on resource

and container management systems such as Apache YARN [136], Apache Mesos [67], and

Kubernetes [34]. In summary, Spring Cloud Data Flow offers to its users an assortment of

programming models and best practices for the development of service-based distributed

streaming and batch data workflows. Spring Cloud Data Flow comes bundled with a domain

specific language, command line shell and a RESTful API to enable the definition of service

pipelines. The diversity of communication with Spring Cloud Data Flow makes integration

with other platforms effortless and intuitive. Users can choose to use the UI directly, invoke

the shell command line client or the RESTful API.
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Spring Cloud Data Flow uses HTTP as a transport for its management dashboard. It

also supports HTTPS communication. This is an important feature that enables the secure

connection of users on the platform and also protects the transmission of data by means of

using digital certificates.

A.1.2 Application Types

A core domain module that Spring cloud Data Flow uses to describe composable microservices

is applications. Applications can be of 4 different types namely source, processor, sink or task

and can be compiled into linear pipelines that move data from a source to a sink, optionally

with one or more processors types of applications in between. Modules that can not be

modeled into as a source, processor or sink can be custom tasks which may be any process

that does not run indefinitely e.g. an Apache Spark [155] batch job.

The default configuration comes with a set of pre-built applications that can be used

out-of-the-box. However, custom applications can be added through the dashboard management

user interface (UI) or the command line client. Spring Cloud Data Flow stores applications in

an internal application registry which integrates seamlessly with maven repository managers

or Java archive files that stored on a local or remote filesytem. Once applications are installed

in the application catalogue, they can be used for the composition of service pipelines that

in Spring Cloud Data Flow vernacular are called tasks and are not to be confused with

application tasks described above.

Figure A.8 illustrates the addition of a task application in the application catalogue while

figure A.9 demonstrates how a list of available applications is presented to the user. Finally,

figure A.10 shows an example of a pipeline i.e. task that is composed from the applications

available.

A.1.3 Workflow Specification Language

To enable the definition of service pipelines, Spring Cloud Data Flow propose the usage

of a domain specific language (DSL). This specification is part of the framework itself. To

implement this feature, a special type of application namely a composed task runner is used.

The composite service pipeline is a graph that is described in a declarative manner by the
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DSL. Each node in the graph represents an instance of a task that is associated with an

application.

The composite task runner parses the graph DSL and instantiates the execution of the

pipeline. As soon as the execution commences, it monitors the progress of execution for the

individual tasks. Internally this is achieved by means of using a database table where the

execution state of every task is stored during runtime. At regular intervals the task runner

will poll the task execution status database table to inspect the state of the tasks and will act

according to what has been described in the pipeline DSL definition. If a task is successfully

completed the control of execution moves on to the next task until all the tasks of the graph

are completed. If a task fails to complete, the task runner takes action on the basis of the

sequence of tasks defined in the DSL.

The composed Task Runner is a Spring Batch [8] application that executes the task

pipeline. Nodes in the graph represent a Step. A Step is an independent unit of work and

represents a sequential stage of a batch job. Every step in the graph makes a RESTful call to

the Spring Cloud Data Flow Server and instructs it to execute the individual tasks. Part of the

DLS specification is the definition of maxWaitTime property that dictates for how long the

task runner will wait until a tasks is completed before labelling it as failed. If maxWaitTime

has elapsed, the composite task runner will throw an TimeoutException. Table A.1 shows

the values for the ExitStatus for all possible task statuses.

Status description Status value

ExitMessage is set and the task has not failed ExitMessage
ExitMessage is not set and the task has completed successfully 0
ExitMessage is not set and the task has failed 1

Table A.1 Status values for Spring Cloud Data Flow tasks

Sequences

The Composed Task Runner is able to execute tasks in a sequential order. Tasks have a

unique name when defined through the web UI or the RESTful API and therefore it can be

used to refer to tasks when defining the pipeline. The && symbol is an operator that can
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be applied between two different or identical tasks to denote the sequential execution of the

tasks. E.g. if we have tasks TaskA, TaskB and TaskC the sequential execution of the tasks

would look like this:

(TaskA) && (TaskB) && (TaskC)

Bellow in Figure A.1 we present a visual representation of the pipeline:

Fig. A.1 Pipeline of tasks executed in sequence

Parentheses are not necessary however they make a clear distinction between the tasks.

If any of the tasks will return an ExitStatus of ’FAILED’, all the subsequent tasks will not

be launched. E.g. for the Composed Task Runner (TaskA) && (TaskB) && (TaskC), if

TaskB fails, task TaskC will not be executed.

In the case where the same tasks are launched multiple times the DSL specification would

look like this:

(TaskA) && (TaskA) && (TaskA)

Bellow in Figure A.2 we present a visual representation of the pipeline where TaskA is

launched repeatedly 3 times:

Fig. A.2 Pipeline of tasks executed in sequence

Transitions

When defining a Composed Task Runner it is possible to describe the control flow in case

one or more task fail to execute successfully i.e. the ExitStatus for the task is ’FAILED’. By
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default, as described above in section A.1.3, when tasks fail to complete successfully, the

whole pipeline grinds to halt. With the assistance of transitions it is possible to allow the

execution of the pipeline to processed even if a task fails. Transition achieve this by means of

describing how the execution will continue if a specific task fails. Therefore, task execution

is dependant on the ExitStatus of its previous task. En example of a pipeline with transitions

can be seen below:

(TaskA) 'FAILED' -> (TaskB) 'COMPLETED' -> (TaskC)

In the case above TaskA will get executed initially and if it fails then TaskB will be

launched. A visual representation of the workflow shown above can be seen in figure A.3.

Fig. A.3 Pipeline of tasks with transitions for simple tasks

If TaskA completes successfully then TaskC will get executed. A transition can also

proceed the sequential execution of a set of tasks. An example is presented below:

(TaskA) 'FAILED' -> (TaskB) && (TaskC) && (TaskD)

If TaskA fails then TaskB will get executed but tasks TaskC and TaskD will not get

executed. However, if task TaskA completes successfully then TaskC and TaskD will get

executed in a sequential manner. A visual representation of the this scenario is shown in

figure A.4.
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Fig. A.4 Pipeline of tasks with transitions before a sequence of tasks

Wildcards

The DSL pipeline specification language also supports the definition of wildcards to match

more than one types of transitions. Wildcards can be a status replacement for any ExitSatus

except for ’FAILED’. An example can be seen below:

TaskA 'FAILED' -> TaskB '*'-> TaskC

If TaskA gets executed and an ExitStatus other than FAILED is returned, Sprig Cloud

Data Flow will launch TaskC. Figure A.5 illustrates the pipeline above.

Fig. A.5 Pipeline of tasks with wildcards

Splits

Splits allow for the parallel launching of tasks. For instance:
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<TaskA || TaskB || TaskC>

In the scenario shown above tasks TaskA, TaskB and TaskC will run in parallel due

to the || operator. A visual representaton of the parallel execution of tasks can be seen in

figure A.6. Note that all tasks that get launched in parallel are enclosed in a dotted rectangle.

Fig. A.6 Pipeline of tasks
launched in parallel

Fig. A.7 Pipeline of tasks launched in
parallel that are connected to a sequence
of tasks

If a split is part of a composite task then all individual tasks need to complete successfully

before the computation moves on to the subsequent tasks. An example can be seen below:

<TaskA || TaskB || TaskC> && TaskD && TaskE

TaskA, TaskB and TaskC must complete successfully for tasks TaskD and TaskE to get

launched in sequence. If any of the tasks TaskA, TaskB or TaskC fail, the execution flow

will be interrupted with tasks TaskD and TaskE being ignored.

A.1.4 Application for the Execution of Apache Spark Jobs

For the purposes of this thesis, we implemented a custom Spring Cloud Data Flow application

that is responsible for the execution of Apache Spark programs. Each Apache Spark program

is associated with a separate task. Multiple such tasks can be organised into a pipeline of

tasks with the help of the DSL described in section A.1.3.

The Spring Cloud Data Flow application is designed with the intention to be as generic as

possible. To avoid building a separate application for each Spark application, the application

is parameterised with the executable code that has to be submitted on an Apache Spark
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Fig. A.8 Add a new Spring Cloud Data Flow application of type task

Fig. A.9 List of all the installed Spring Cloud Data Flow applications in the application
registry

cluster along with the relevant execution parameters that users wants to include. One critical

parameters that needs to be highlighted is the security properties that the user requires to

be monitored for each individual task. All the required parameters are passed as execution

parameters to the Spring Cloud Data Flow application. Internally, the application uses a

velocity template to construct a bash script with the Apache Spark submit job command that
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Fig. A.10 Example of a Spring Cloud Data Flow pipeline

can be seen in listing A.4 in Appendix A. The generated bash script is subsequently executed

from a relevant task that is part of the pipeline. Spring Cloud Data Flow requires that the task

is a Spring Boot application that is presented in listing A.1 in Appendix A. The spark submit

command requires a series of parameters to submit a job successfully and can be configured

to facilitate different deployment and execution parameters 1. A list with all the possible

parameters that were used can be seen in table A.2

From an implementation standpoint, the application parameters are stored in a Java object

that is passed along to the velocity engine to get merged with the bash script template and

eventually produce the Spark submit command. The relevant code of the Java class is shown

in listing A.3 in Appendix A.

A.2 Apache Spark

Apache Spark is a fast and general-purpose Big Data processing framework. It offers a

high-level APIs in Java, Scala, Python and R, and an optimised engine for the execution

of directed acyclic graphs (DAGs). In addition, it makes available a rich set of high-level

tools such as Spark SQL for SQL and structured data processing, MLlib for the generation of

1https://spark.apache.org/docs/latest/configuration.html

https://spark.apache.org/docs/latest/configuration.html
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Parameter name Parameter value

--master URL for the master node of the Apache Spark cluster. The URL
could also represent a local Apache Spark cluster.

--app-name Name of the Apache Spark application
--app-class Java or Scala class that where the main() method exist
--app-jar Location where the executable Java archive (Jar) is stored
--app-args Arguments that are required from the application
--resource-files A comma separated list of archieve files to be included in tha

application submission
--security-property A comma separated list of security properties that the user wishes

to monitor. Based on the security properties defined all the relevant
event captors will be installed at run-time to support the monitoring
activity.

Table A.2 Parameters for the Apache Spark submit application registered in Spring Cloud
Data Flow

machine learning models, GraphX for the processing of graphs and Spark Streaming for the

real time processing on continuous streams of data.

A.2.1 Overview

To provide some context, we need to give an overview of the basic concepts that Apache

Spark uses internally when operating on large datasets. In the remainder of this section we

give a short description of a series of abstractions that are necessary to describe Apache

Spark’s architecture. We also provide examples from the API to make it easier for the reader

to understand how Apache Spark utilises each of the concepts mentioned.

Resilient Distributed Dataset (RDD)

A resilient distributed dataset, hereafter refered in this thesis as RDD, is a collection of

data objects that are distributed across multiple nodes in a cluster. There are two ways to

create RDDs; the first one is by means of parallelising an existing collection and the second

one is by loading the data from an external datasource such as a distributed file system, a

distributed database or a stream of data. In most cases RDDs are loaded from distributed

sources to leverage the parallel processing capabilities of the framework. A key feature of
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RDDs is that they are immutable. When an operation is applied on an RDD, a new RDD is

created as a result of the application of the operation. This is a pivotal feature that enables

Apache Spark to recover in the case of failures by means of applying the same operations on

the original dataset. Operations that are exposed in Apache Spark’s API are created in the

image of Scala’s collection API. In that way, Apache Spark attempts to abstract away all the

implementation details necessary for the parallel execution of operations from the engine and

provide to its users a unified high-level API that feels like programming against collections

of data that gets processed on a single node.

Partitions

RDDs are broken down into chunks of data called partitions. Each RDD can be comprised

of multiple partitions that can be located on the same physical node or a different nodes

in the cluster. The number of partitions of an RDD is a critical property of the RDD and

play a significant role in the underlying level of task parallelism during data processing. The

number of partitions of an RDD can be set programmatically or it can be left to the framework

to decide how the data of the RDD is going to split. If the responsibility of defining the

number of partitions is assigned to the framework then the data is sliced based on its size in

an attempt to produce slices that are similar in size. This enforces the execution of tasks that,

at least in theory, will take a similar amount of time to complete. Since RDDs are immutable

every time an operation is applied on an RDD there is a parent RDD and a child RDD. The

parent RDD represents the data set before the application of the operation and the child RDD

represents the data set after the application of the operation. Based on the type of operation,

the partitions of the parent and child RDDs can have two basic types of dependencies namely

narrow dependencies and wide dependencies. A visual representation of an RDD and its

partitions can be seen in figure A.11 whereas a visual representation of an operation applied

on a parent RDD that results into a child RDD can be viewed in figure A.12.

Transformations with Narrow Dependencies

Transformations with narrow dependencies are operations that when applied on a parent RDD

each partition of the RDD is going to be used at most by one partitions of the resulting child

RDD. Typically, this includes transformations that can be applied on the data independently
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Fig. A.11 RDD with its partitions

Fig. A.12 Parent and child RDD with applied operation and dependencies

and therefore can be executed in parallel. To optimize things further, Apache Spark can

pipeline in-line transformations to improve performance. Examples of such transformations

are map(), filter() and flatMap() where the partitions. A visual representation of the map()

transformation which applies a user defined function to each data item of the parent RDD

can be seen in figure A.13

Fig. A.13 map() operation - transformation with narrow dependencies

Note how the resulting child RDD has the same number of partitions with its parent RDD.

This is a result of the fact that in operations where there is a narrow dependency between
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partitions, there a one-to-one mapping between the partitions among the parent and child

RDDs.

Listing A.6 Source code for map() operation in Apache Spark
1 /**

2 * Return a new RDD by applying a function to all elements of this RDD.

3 */

4 def map[U: ClassTag ](f: T => U): RDD[U] = withScope {

5 val cleanF = sc.clean(f)

6 new MapPartitionsRDD[U, T](this , (context , pid , iter) => iter.map(cleanF))

7 }

Also note how the returned value from the map() operation is a new RDD of type

MapPartitionsRDD. Function f that is passed as an argument to the transformations is the

user defined function that will be applied on all the data items of the RDD that the map()

operation will be invoked upon.

Transformations with Wide Dependencies

Transformations with narrow dependencies are operations that when applied on a parent

RDD each partition of the RDD can potentially be used by none, one or more partitions

of the resulting child RDD. Compareted to the transformations with narrow dependencies,

transformations with wide dependencies are different in that data from multiple partitions

of the parent RDD are required to produce a single partition of the child RDD. This is very

important in terms of how transformations with wide dependencies are implemented in

practice. They require data to be shuffled in an orderly manner to support the combination

of data items from more than one partitions. Transformations with wide dependencies are

expensive in terms of computational power and network resources and therefore they must

be used wisely and only when necessary. Examples of such transformations are grouping

operations such as grouByKey() and combineByKey() where data items with the same key can

be located across multiple partitions. Grouping the data items in the reduce phase will require

that data items with the same key will have to be shuffled to the same node to complete

successfully the grouping operation. A visual representation of a transformation with wide

dependencies is shown is figure A.14

Note that the partitions of the resulting RDD will fetch data items from all partitions of

the parent RDD for the groupByKey operation to be complete i.e. include all the data items

with same key from the source RDD. Also note that the resulting RDD is comprised of fewer
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Fig. A.14 groupByKey() operation - transformation with wide dependencies

partitions compared to the original RDD. This is not mandatory but it is what happens in

most cases. When the data items of the parent RDD are combined usually the number of the

resulting data items will be fewer than the number of the parent RDD. This makes it possible

to fit them into fewer partitions.

Actions

Actions are operations that produce a result that is either returned to the user or stored in

a permanent storage location. As the name implies, actions trigger an actual computation

to take place. Transformations, be it with narrow or wide dependencies, are lazy i.e. they

are not executed until an action is invoked. When a transformation is defined Apache Spark

keeps a reference with respect to what operation should be applied and on what RDD but

it does not apply it. Actions are the types of operations that trigger the actual execution of

the transformations and enable users to make computations on RDDs. Examples of action

operations would be collect(), count() and saveAsTextFile() that return the data items of an

RDD, the number of data items of an RDD and save the data of an RDD into a text file in

tabular format respectively. A visual representation of an action can be seen in figure A.15

A.2.2 Framework Architecture

In this section we give an overview of all the components that are required to describe Apache

Spark’s architecture. Figure A.16 illustrates how the components are arranged when Apache

Spark operates on big data.
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Fig. A.15 count() operation - return the number of iterms on an RDD to the user

Fig. A.16 Apache Spark overall architecture

Spark Context

The Spark Context is the main entry point for all Apache Spark’s functionality. It provides a

series of useful operations that support the connection to a Spark cluster, and can be used

to instantiate new RDDs, accumulators and broadcast variables on that cluster. Each JVM

much be associated with one and only one Spark Context. If a new Spark Context needs to

be instantiated then all the previous ones need to be stopped. In addition, the Spark Context

is way to customize the execution parameters of a Spark program.
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Directed Acyclic Graph (DAG)

A lineage graph or a Directed Acyclic Graph is a graph that depicts the dependencies of RDDs

i.e. what are the parent RDDs for each RDD and what operations need to be executed on each

RDD for its child RDD to be produced. In this graph the vertices represent RDDs and the

edges represent the operations applied on the RDDs. It is important to highlight that an RDD

can be the product of more than one RDDs by means of applying an operation on multiple

RDDs. The DAG represents a high level view of all the operations, both transformations and

actions, but does not store any information with respect to the number of partitions, where the

data should be stored or how many tasks will be instantiated. All that information is related

to the execution plan that Apache Spark will employ to compute the DAG and will be taken

care of as soon as the execution of the DAG commences from Apache Spark’s execution

engine. A visual representation of such a graph can be viewed in figure A.17.

Fig. A.17 Example of a Directed Acyclic Graph (DAG)

Master

The master is a software component of the Apache Spark framework that acts as the resource

manager of the underlying cluster. The master is Apache Spark’s default resource manager

assigned with the responsibility of allocating the necessary resources on the cluster to

facilitate the execution of the DAG. The master will negotiate with the cluster’s nodes for

computational, network and storage resources based on the execution requirements specified
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by the user. It will attempt to acquire all the necessary resources for the completion of the

computation. If no upper limit is defined with respect to the amount of resources that the

user will need to execute the Spark program, Apache Spark will greedily allocate as many

resources as there are available.

Apart from the default resource manager that is shipped with Apache Spark, other open

source resource managers can used as well. Apache Spark supports out-of-the-box the usage

of YARN [136] and Mesos [67] for the dynamic allocation of resources.

Driver

The driver is a software component of the Apache Spark framework that is responsible for the

coordination of execution of the DAG. It is instantiated from the master and ensures that all

operations complete successfully. The driver triggers the execution of the operations of the

DAG, monitors their execution and guarantees that the operations will execute in the order that

they have been defined. If any of the operations fail, the driver is responsible for attempting

to re-submit them for execution until the maximum number of allowed re-executions has

been reached.

Worker/Executor

The workers or executors are software components that run on the nodes of the cluster

and are responsible for the actual execution of operations delineated in the DAG. From an

implementation standpoint, they are implemented as JVMs that dynamically instantiated

with the assistance of the installed resource manager and withing them Apache Spark can

spawn tasks to facilitate the execution of transformations and actions. A key thing to note is

that multiple executors can run on the same physical machine of the cluster. The number of

executors is dynamic and can vary based on the size of the data that is being processed or on

the parameters defined from the user when submitting a DAG of operations for execution to

the master. The dynamic allocation and instantiation of the executors is a pivotal feature of

Apache Spark’s dynamic execution model and is fundamental for its ability to scale not only

up but also across.
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A.2.3 Execution Model

As soon as the user code is parsed and the DAG is created, Apache Spark will prepare all the

underlying infrastructure by means of communicating with resource manager and will trigger

the generation of an execution plan that is created based on the available resources. The

execution plan involves the segmentation of the DAG into units of work that can get executed

in parallel. Breaking down the user’s code into separate chunks enable Apache Spark to

achieve the parallelization of operation execution. More specifically, the submitted code is

divided into tasks, stages and jobs. All three types of types of units of work are explained in

greater detail in the order that they get executed below.

Tasks

A task is the smallest unit of work that operates on data. More specifically, a task operates

on a partition of an RDD. Conceptually, when a transformation is applied on an RDD what

we mean is that multiple tasks that are implementations of the transformation run in parallel

on partitions of the RDD. Tasks that refer to transformations with narrow dependencies can

be pipelined together and get executed in a single step. In Apache Spark’s API there exist

two types of tasks namely ShuffleMapTask and ResultTask. Tasks of type ShuffleMapTask get

executed within a stage and produce data that is ready to be shuffled and passed along to the

next stage. Conversely, tasks of type ResultTask get executed within a stage but are instead

passed along to the driver and subsequently returned to the user.

Stages

A stage is a unit of execution that comprises of multiple tasks that each one of them can act

upon the partitions of an RDD. All the tasks within a stage run in parallel. A Spark service

can have multiple stages. The number of stages in a Spark service is defined by the number

of shuffle dependencies. The boundaries of a stage are marked by wide transformations that

require multiple partitions of an RDD to be combined.
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Jobs

A job is the most top-level unit of work of an Apache Spark program. A job is called upon an

RDD and signifies the execution of an action on the specific RDD. Jobs or actions trigger the

computation of the RDD that they are called upon which in turn will result in the computation

of all its previous RDDs. A job usually contains a set of stages that in turn contain a set of

tasks.

Elaborating further on the DAG shown in figure A.17, we give an overview of the

execution plan that is produced and can be viewed in figure A.18.

Fig. A.18 Example of a Directed Acyclic Graph (DAG) with jobs, stages, tasks, RDDs and
partitions

Both join() and groupByKey() are operations with wide dependencies and therefore

require data to be shuffled. As such, both operations denote the boundaries of a stage within

which all tasks will have to complete before the computations moves on to the next stage.

Stages are executed in the order that they are presented in the DAG. In the example presented

in figure A.18 all tasks in stage 0 and 1 are of type ShuffleMapTask because join() and

groupByKey() are transformations. Tasks in stage 2 are of type ResultTask because collect()

is an action.
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A.2.4 Deployment Model

Apache Spark programs can be deployed in two different deployment modes. The first one

is in client mode and second one is in cluster mode. In client mode the driver application

is instantiated on the machine where the spark-submit command is executed. This mode is

interactive and feedback is sent back to the Spark code submitter from the command line.

When applications are deployed in client mode it is critical for the driver to run as close the

workers as possible to facilitate their efficient communication. Alternatively, in cluster mode

the driver application is launched outside the cluster i.e. on a node that is part of the cluster

and is decided from master to where the application is submitted. Application submission

takes place by means of executing the spark-submit command which in turn makes use of

Apache Spark’s REST API for application submission. In cluster mode, by definition, the

driver is launched within the cluster and therefore is close to the workers that will execute

the tasks. To inspect the progress of execution for an application the user can visit Apache

Spark’s Web UI where runtime information can be seen both for the driver and workers.

A.3 EVEREST

EVEREST is an event reasoning toolkit that enables the evaluation of events against a set

of event calculus [91] formulae. Internally it uses a reasoning engine where the unification

of the event calculus formulae takes place, a database where the monitoring events and rule

violations get persisted and finally a publish-subscribe event bus to collect the events from

the event captors. As soon as the events become available from the event captors that have

subscribed to the event bus, they become available to EVEREST as well and it can read

them immediately. All the event calculus rules are translated into EC-Assertion expressions,

EVEREST’s event calculus specification language written in XML.

A.3.1 Event Calculus

Event calculus (EC) is a temporal first order logic that allows the association between events

by means of applying temporal constraints. It enables the representation of the events and

how they might influence the system or other events and provide a very powerful formalism
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for the representation and reasoning of the behaviour of dynamic systems. EC formulae are

expressed with the assistance of events, fluents and time. Events are action that can change

the system’s state. Fluents are variables that can be alter as time goes on. Finally time can be

thought as a representation of concrete points in time. To enable the description of a system,

EC supports the following predicates:

Additional to the predicates presented in table A.3, a series of axioms also are available

for the evaluation of fluents. These axioms are the following:

1. Axiom 1 - a fluent f is clipped i.e. it no longer holds true, if some event e happens at

some point in time t that is in-between t1 and t2 and the fluent f is terminated at that

point in time t

2. Axiom 2 - a fluent f is declipped i.e. it is initialised and holds true at some point in

time t that is in-between t1 and t2, if an event e takes place at time t and the fluent f is

initialised at that point in time t

3. Axiom 3 - a fluent f holds true at some point in time t, if it was initially true and it

wasn’t clipped between time 0 and t

4. Axiom 4 - a fluent f holds true at some point in time t2, if an event e has happened at

some point in time between t1 and t2, that initiated the fluent f at time point t1, and f

has not clipped between time points t1 and t2

Predicate Description

Happens(e,t) An event e takes place at some point in time t

Initiates(e,f,t) A fluent f holds true when an event e takes place at some
point in time t

Terminates(e,f,t) A fluent f does not hold true when an event e takes place at
some point in time t

Initially(f) A fluent f holds true from time t = 0

HoldAt(f,t) A fluent f holds true at some point in time t

Table A.3 Event Calculus list of predicates
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Axiom 1

∃ e, t,Happens(e, t,R(t1, t2))∧Terminates(e, f , t)→Clipped(t1, f , t2)

Axiom 2

∃ e, t,Happens(e, t,R(t1, t2))∧ Initiates(e, f , t)→ Declipped(t1, f , t2)

Axiom 3

Initially( f )∧¬Clipped(0, f , t)→ HoldsAt( f , t)

Axiom 4

∃ e, t1,Happens(e, t1,R(t1, t2))∧ Initiates(e, f , t1)∧¬Clipped(t1, f , t2)→ HoldsAt( f , t2)

Axiom 5

∃ e, t1,Happens(e, t1,R(t1, t2)) ∧ Terminates(e, f , t1) ∧ ¬Declipped(t1, f , t2) →
HoldsAt( f , t2)
Axiom 6

HoldsAt( f , t1)∧ (t1 < t2)∧¬Clipped(t1, f , t2)→ HoldsAt( f , t2)

Axiom 7

¬HoldsAt( f , t1)∧ (t1 < t2)∧¬Declipped(t1, f , t2)→¬HoldsAt( f , t2)

Table A.4 Event Calculus axioms

5. Axiom 5 - a fluent f does not hold at some point in time t2, if an event e happened at

some point in time between t1 and t2 that terminated the fluent f and the fluent has not

been declipped between the t1 and t2 time points

6. Axiom 6 - a fluent f holds at some point in time t2, if it held true at time point t1,

where t1 was before t2 and if fluent f was not clipped between between t1 and t2.

7. Axiom 7 - a fluent f does not hold at some point in time t2, if it did not held true at

some point in time t1 that is before t2 and if the fluent f has not been declipped at any

point in time between t1 and t2

A.3.2 Framework Architecture

Internally, EVEREST is comprised of three modules namely the monitor manager, the

monitor and the event collector. The monitoring manager is the component responsible

for initiating, coordinating and reporting the results of the monitoring process. As such, it
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Fig. A.19 EVEREST framework architecture [84]

receives the monitoring rules from the SLA Manager web application and provides the API

for obtaining monitoring results. The event collector is responsible for receiving events from

the event captors and subsequently passes them to the monitoring manager. The monitoring

manager forwards these events to the Native Type Generator (NTG) sub-component of the

monitor, which translates the events from EC-Assertion formulae to internal Java objects.

After receiving events from the manager, the monitor checks the events against the previously

loaded rules. When a violation of a monitoring rule is detected, the monitor records it in a

deviation database alongside the events that triggered the rule violation.

A visual representation of the framework’s application can be seen in figure A.19

A.4 Apache Velocity

Apache Velocity [64] is a general purpose Java-based template engine. It is used from

software engineers and IT practitioner to produce different formats of files by means of

merging templates with programmable artefacts written in Java. It can be used to automate

the generation of files in many different output formats. Instances of such files typically

include HTML web pages, SQL script files or code snippets, configuration files and XML

files. The framework supports basic control structures both for conditionals and iterations. It

also supports more custom programming structures called macros where custom user logic

can be formalised and used as Velocity components.
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A.4.1 Overview

The Apache Velocity framework is comprised of two primary components namely templates

and the context. Templates are the place where we define the general structure based on

which the generated file will be created. One can think about templates as a blueprint where

specific areas of the file have not been define. Specific sections of the template is filled in

with placeholders that will get populated with actual values during the merging phase with

the programmable artefacts. The context represents the place where all the information that

will be interpolated in the templates. This configuration is flexible and provides a systematic

way of populating sections of the template with dynamic content.

A.4.2 Velocity Template Language

Templates in Apache Velocity use a template language (VTL) to describe the parts of the

template that will be interpolated with values from the context. The purpose of the Velocity

Template Language (VTL) is to put forward an easy, simple and clean method for the

injection of dynamic content in files that are produced from templates. VTL is simple in

syntax but provides a set of powerful constructs for conditionals and loops. It uses references

to incorporate dynamic content in a template, with variables being one such type. A variable

in a template can cite a variable defined in the Java code of the context, or it can get its value

from a VTL statement in the template itself. Tables A.5 and A.6 provide a comprehensive

list of the programming structures that are part of the VTL specification. All the available

commands have been grouped into two categories namely references and directives.

References

Variables

Create a variable and assign an actual value to it. Any reference to this variable within the

template will return the value stored in it. E.g.

#set ($variable="An actual value")

Properties
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Get reference to the fields of the Java POJO. This can be used to get the value of the property

or assign to it a new value.

$obj.property

$obj refers to an instance of a Java object that is passed along as a reference from the context

to the template

Methods

Invoke a method in the Java POJO that is merged with the template. E.g.

$obj.method()

$obj refers to an instance of a Java object that is passed along as a reference from the context

to the template

Table A.5 Velocity template language references

Directives

Conditionals

#if, #elseif and #else directives provide a way to generate the content based on certain

conditions. E.g.

#if($pojo.field == "value-1")

<tag> $pojo.field </tag>

#elseif($pojo.field == "value-2")

<tag> $pojo.field </tag>

#else

<tag>No value</tag>

#end

Iterations
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Directive that enables the iteration over a collection of objects. E.g.

<tag>

#foreach($item in $items)

<value> $item </value>

#end

</tag>

Include

Statically import files in the template. E.g.

#include("file.txt","image.png","index.html")

Parse

Import a local template that uses VTL as well. The template is parsed and all the directives

defined in it are available within the scope of the current template.

#parse (myTemplate.vm)

Evaluate

Directive that allows the dynamic evaluation of a String literal or a reference to a String

that contains VTL directives. The evaluate directive will treat this String as template and

will evaluate it by replacing all its VTL elements with the appropriate values. Evaluate is a

special case of parse where the template comes in the form of a String literal and not from

the contents of a file. E.g.

#evaluate($variable)

Break

Stops any further rendering of current execution scope. This is especially useful when

running iterations there is to break out of the loop
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Stop

Stops any further rendering and execution of the template.

Macros

Directive that allows for the definition of repeatable segments of the template to avoid

repetition. Velocity macros can be parameterized to facilitate generalization. E.g.

#macro( macroName $arg0 $arg1)

<tag>

<value>$arg0</value>

<value>$arg1</value>

</tag>

#end

The code above defines a macro under the name macroName that takes two arguments. To

invoke the macro one should use it like so:

#macroName(4 8)

Table A.6 Velocity template language directives

A.4.3 Velocity Template Engine

The Apache Velocity template engine is implemented in Java and uses Java objects to make

references to template variable and to create directives. Files are being generated by means

of merging templates with Java code at runtime. The steps involved are the following:

1. Create a template engine

2. Load the template file which is a file with a .vm extension and associate it with the

template engine

3. Create Java hash map and populate it with the variables that are referenced in the

template
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4. Merge the Java hash map with the template and produce the final result i.e. the file that

emerges from the template and the relevant variables

Bellow in listings A.7 and A.8 follows code snippets for an example template and the

relevant Java code. The example demonstrates how an Apache Velocity template can be used

to dynamically produce a file.

Listing A.7 A simple example of a Velocity template
1 Hello $name!

Listing A.8 Example of Java code for the creation and usage of an Apache Velocity template

engine
1 import java.io.StringWriter;

2 import org.apache.velocity.app.VelocityEngine;

3 import org.apache.velocity.Template;

4 import org.apache.velocity.VelocityContext;

5 public class VelocityExample {

6 public static void main( String [] args ) throws Exception {

7 /* Initialze the Velocity engine */

8 VelocityEngine engine = new VelocityEngine ();

9 engine.init();

10 Template t = engine.getTemplate( "template.vm" );

11 VelocityContext context = new VelocityContext ();

12 context.put("name", "World");

13 StringWriter writer = new StringWriter ();

14 t.merge( context , writer );

15 System.out.println( writer.toString () );

16 }

In listing A.8 above in line 8 the template engine is created and in line 9 it gets initialized.

Further down in line 10 the template file is loaded and associated with the template engine.

After that, the context is created in line 11 and a variable is put in it in line 12. Then a

StringWriter object is instantiated in line 13 and the template is merged with the template

and the context to store the result in the writer in line 14, Finally, the result is printed in

line 15. The final result would be the following:

Hello World!



308 Composed Task Runner for Spark Submit Command

A.5 Byte Byddy

A.5.1 Overview

Byte Buddy is a library that allows the generation and manipulation of Java classes during the

class loading phase of a Java program. An important aspect of Byte Buddy’s instrumentation

model is that the class generation and manipulation is done without the assistance of the

compiler i.e. it does not take place at compile time but at runtime. This is a powerful

concept that can be very helpful when using the aspect oriented programming paradigm. An

additional key feature of the library is that apart from code instrumentation it also be used to

create runtime proxies by means of interface implementation. Byte Buddy is accompanied

by a comprehensive API that can be easily combined with Java agents to offers its code

instrumentation functionality.

Byte Buddy abstracts away the low level details of byte code that is produced after the

compilation of Java code. Its intention is to provide programmatic hooks where the users will

inject their code without having to fully understand the intricacies of the underlying JVM. It

is written in Java 5 but but it can be used to intercept code for later versions as well. Byte

Buddy has been designed with the intention to operate with minimum dependencies. It only

depends on a Java byte code parser called ASM which has no further dependencies itself.

An important point to highlight is that Byte Buddy can be used for the instrumentation of

code that will execute on a JVM. That implies that it can be used to intercept not only code

for Java applications but also for any application that when compiled can run on a JVM. This

is possible because Byte Buddy intercepts the code when loaded in the JVM just before it

gets executed. JVM languages that fall into that category are Scala, Groovy and Ruby. In

fact, for the purposes of our proof of concept implementation we instrument Apache Spark’s

source code that has been written in Scala.

Figure A.20 gives an overview of the code instrumentation process from Byte Buddy for

the interpretation of programs that get executed on a JVM. The generated byte code is sent to

the JVM and the instrumented code is executed from the JVM’s interpreter and Just-In-Time

(JIT) compiler.
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Fig. A.20 Overview of the code instrumentation process from Bute Buddy

A.5.2 Java’s Instrumentation API

The ability to instrument Java code has been part of the standard Java API since Java 5. The

instrumentation process is supported by Java agents that can be invoked during the execution

of byte code on a JVM. By default the JVM allow the installation java agents are passed as

options in the command that executes the program. In the case of Java programs one can

use the -javaagent parameter and pass it as an argument the location where the Java agent is

located. Java agents are Jar file that has a specific structure. They require that a manifest file

is present where the agent class is defined and they also require that in that class a method

called premain() is also available. The premain() method is invoked before the JVM loads

the classes of a Java program and is the location where the logic for the code instrumentation

needs to be placed.

Additional to that, Java agent installation can take place not only before the JMV has

started executing the code but also after the execution has started. This can be achieved by

means of dynamically attaching the Java agent to an application that is already executing on

a JVM. The dynamic attachment of a Java agent on a JVM is implementation dependant and

is not supported by all JVM implementations.
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The command-line options to install a Java agent when running a Java program is:

-javaagent:/path/to/agent.jar[=options]

Note that the Java agent itself can take as an argument a set of options that can be useful

for its internal operation. This is passes as an argument to the java command used for the

execution of a Java program.

The manifest file of the Java agent has to conform to a certain structure in order for the

JVM implementation to be able to apply it successfully during execution. Table A.7 that

follows presents a list with all the possible manifest options.

Premain-Class

This option defines the compelte name of the class where the premain() is declared and

implemented. If a Premain-Class value is not specified the JVM with abort. The value of

the Premain-Class parameter is a class name separated with dots follwing Java’s packaging

convention and not a path.

Agent-Class

This option specifies the class where the agent is should look for the agentmain() which is

responsible for the instrumentation of Java applications that have already been started. This

feature is useful only in the cases where the JVM does support the dynamic attachment of

agent to running JVMs. Sinmlar to Premain-Class, the value of the Agent-Class parameter is

a class name separated with dots and not a path.

Boot-Class-Path

This option specifies a space separated list of paths that the bootstrap class loader will have

look for additional classes to load if a class fails to get loaded during normal the class loading

phase. The paths defined in this option will be inspected one at a time and in the order that

they have been provided. From a syntax point of view, paths follow the UNIX convention

and if they start with a / then they represent an absolute path whereas if they do not start with

a / they represent a relative path.

Can-Redefine-Classes

Define whether the agent can redefine classes. This is an optional value and possible values

are true or false.
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Can-Retransform-Classes

Define whether the agent can re-transform classes. This is an optional value, possible values

are true or false and the default value is false.

Can-Set-Native-Method-Prefix

Define whether the agent can set native method prefix. This is an optional value and possible

values are true or false. This is an optional value, possible values are true or false and the

default value is false.

Table A.7 Options for manifest file of Java agents

A.5.3 Runtime code instrumentation and Code Generation in Byte Buddy

Create and install a Java agent

Byte Buddy uses the builder pattern [58] to support the creation and installation of a Java

agent on the JVM’s instrumentation implementation. More specifically it uses a class called

AgentBuilder that instantiates a default Java agent. Listing A.9 shows a snippet that will

create and install a default Java agent.

Listing A.9 Create and install a default Byte Buddy Java agent
1 new AgentBuilder.Default ().installOn(instrumentation);

The code in the listing above creates and installs a Java agent without adding any logic

with regards to code instrumentation.

Search for a class or set of classes

Byte Buddy uses element matchers to allow its users to query the pool loaded classes and

find the ones that need to be instrumented. This is important because it makes possible

the discovery of classes based on several criteria such as name, type, annotation or access

modifier. Element matchers can be regarded as predicates and can be applied for matching

multiple code artifacts such as types, methods, fields and annotations. Listing A.10 shows a

code snippet for
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Listing A.10 Use element machers to search for a class or a set of classes to instrument
1 new AgentBuilder

2 .Default ()

3 .type(type ->type.getName ().equals("name.of.class"))

4 .installOn(instrumentation);

Transform the method of a class

The transformation of a class method is a powerful concept and Byte Buddy provides to

its users an array of tools to give access to all the methods runtime metadata. It supports

the runtime access and modification of the method’s input and output and it also offers the

ability to override the method completely. Method overriding occurs in the form of method

delegation where when the original method is invoked the its execution is delegated to the

instrumented method. Listing A.11 presents a code snippet where a method is delegated to

the method of another class and listing A.12 shows the class and method that will handle the

delegation.

Listing A.11 Transform a class method by delegating its execution to another method
1 new AgentBuilder

2 .Default ()

3 .type(type ->type.getName ().equals("name.of.class"))

4 .transform ((builder , typeDescription , classLoader , module) -> {

5 return builder.method(

6 method -> method.getName ().equals("methodName")).intercept(

7 MethodDelegation.to(new DelegatedClass(type , properties)));})

8 .installOn(instrumentation);

Listing A.12 Class that contains the delegation method
1 public class DelegatedClass {

2

3 @RuntimeType

4 public Object methodName(

5 @Argument (0) Object arg1 ,

6 @Argument (1) Object arg2 ,

7 @This Object thiz ,

8 @Morph Morpher <Object > morpher) {

9 /*

10 Code of the delegation method

11 */

12 }

13 }

In listing A.11 in line 4 we define a transform method that takes as a parameter a lambda

expression which represents a class transformer i.e. in what way the code of the original

method should be modified. As it can seen in lines 6 and 7 in the same listing, the class

transformation refers to the delegation of the invocation of the original method to a method
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called methodName() that is defined within a class named DelegatedClass. Also note that

a set of annotations have been used to decorate certain aspects of the delegation method.

More specifically, the @Argument(n) annotation is a reference to the n-th argument of the

intercepted method, the @This annotation is a reference to the instance of the object of

the intercepted method and finally the @Morph annotation is a reference to the delegation

method. This gives us the ability to invoke the intercepted method with its input modified

on the basis of our code instrumentation requirements. This feature of the Byte Buddy

library has been used heavily for the implementation of our proof of concept to support the

monitoring activity and invoke the intercepted method with modified parameter values.
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