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A�������:We propose a perturbative approach to determine the time-dependent Dyson

map and the metric operator associated with time-dependent non-Hermitian Hamilto-

nians. We apply the method to a pair of explicitly time-dependent two dimensional

harmonic oscillators that are weakly coupled to each other in a PT-symmetric fashion

and to the strongly coupled explicitly time-dependent negative quartic anharmonic oscil-

lator potential. We demonstrate that once the perturbative Ansatz is set up the coupled

differential equations resulting order by order may be solved recursively in a construc-

tive manner, thus bypassing the need for making any guess for the Dyson map or the

metric operator. Exploring the ambiguities in the solutions of the order by order dif-

ferential equations naturally leads to a whole set of inequivalent solutions for the Dyson

maps and metric operators implying different physical behaviour as demonstrated for the

expectation values of the time-dependent energy operator.

1. Introduction

The key ingredient for a physical interpretation of PT -symmetric/pseudo Hermitian Hamil-
tonian systems requires a well defined positive definite metric operator ρ. Only when this

operator is explicitly known one is in a position to define a positive definite inner prod-

uct, calculate observables together with their expectation values and thus root the non-

Hermitian theory in a well defined Hilbert space [1, 2, 3, 4]. In the absence of an explicit

time-dependence in the non-Hermitian Hamiltonian H �= H† the metric operator ρ can be

determined from the time-independent quasi-Hermiticity relation H†ρ = ρH; in principle

that is. The metric operator can be factorised as ρ = η†η, where η is often referred to

as the Dyson map. The adjoint action of this operator maps the non-Hermitian Hamil-

tonian to a Hermitian counterpart h = h† by mean of the time-independent Dyson equation

ηHη−1 = h.

For many known models the metric, and therefore the Dyson map, have been con-

structed in an explicitly analytically closed form, see for instance [5, 6, 7, 8, 9]. However,
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in general these “solvable models” remain an exception and one often needs to employ a

perturbative approach in order to gain some insight into the theory. Even for the classic

example of a non-Hermitian system with a real eigenvalue spectrum, complex cubic oscil-

lator potential V = ix3, the metric operator is only known in a perturbative form [10, 11].

This approach has turned out to be very successful and there are even examples for which

an initially perturbative approach has led to an exact solution with the perturbation series

terminating at a certain order, see e.g. [5] for the unstable quartic anharmonic oscillator

potential V = −x4.

When an explicit time-dependence is introduced into the Hamiltonians h(t) = h(t)†

and H(t) �= H(t)†, one needs to solve the two time-dependent Schrödinger equations

i�∂tφ(t) = h(t)φ(t) and i�∂tψ(t) = H(t)ψ(t). Assuming that the two associated wave

functions are related as φ(t) = η(t)ψ(t), one easily derives [12, 13, 14, 15, 16, 17, 18] that

the corresponding time-dependent Dyson equation (TDDE) and time-dependent quasi-

Hermiticity relation (TDQH) acquire the forms

h(t) = η(t)H(t)η−1(t) + i�∂tη(t)η−1(t), H†(t) = ρ(t)H(t)ρ−1(t) + i�∂tρ(t)ρ−1(t), (1.1)

respectively. The novelty in the conceptual interpretation of these equations is the fact

that the non-Hermitian Hamiltonian H(t), defined as the operator that satisfies the time-

dependent Schrödinger equations, ceases to be an observable corresponding to the energy

as it is no longer pseudo Hermitian, i.e. related to a Hermitian operator by means of

a similarity transformation. Instead, the time-dependent observable energy operator was

identified as

H̃(t) := η−1(t)h(t)η(t) = H(t) + i�η−1(t)∂tη(t). (1.2)

Evidently, to solve the two equations (1.1) for η(t) and ρ(t) is more complicated than

solving those for the time-independent case, due to the presence of the additional time

derivative terms. Nonetheless, for several concrete examples exact solutions to these equa-

tions have been constructed [17, 19, 20, 21, 22, 23, 24]. An alternative new approach, that

utilizes the Lewis Riesenfeld method of invariants [25], has recently been developed [26, 27].

The advantage of this approach is that once the invariants are constructed it becomes much

simpler to solve for the time-dependent Dyson map as there is no additional time derivative

term in the relevant equations. All these approaches rely on certain inspired guesses for a

suitable Ansatz of the metric or the Dyson map. In contrast, the powerful feature of the

time-independent perturbative approach mentioned above is that it is entirely construc-

tive and may be solved order by order. So far no such perturbative approach has been

developed or applied in the time-dependent scenario. The main purpose of this paper is to

develop such an approach and explore its viability to find solutions to the equations (1.1)

for η(t) and ρ(t). In particular, we seek to answer the question of whether it is possible to

apply such an approach recursively order by order in a constructive fashion.

Besides the proposed technical advance we expect any new solution to reveal or confirm

some newly observed physical phenomena. In [28] the remarkable and unexpected feature

was found that the region in parameter space, usually referred to as the spontaneously PT -
broken regime, becomes physical when transgressing from the time-independent to the time-

dependent scenario. This regime is characterised by a PT -symmetric Hamitonian for which
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the corresponding wavefunctions are PT -symmetrically broken. As a consequence the

energy eigenvalues occur in complex conjugate pairs in the time-independent case. However,

in the time-dependent case the expectation values for the energy operator H̃(t) have been

found to be real for some models in that regime and the two regimes are distinguished

by qualitatively quite different types of behaviour. Besides the energy also other physical

quantities display unusual physical behaviour, such as for instance the entropy [29, 30, 31].

So far all explicit solutions constructed thereafter have confirmed these charcteristics, but

up to now a generic argument that explains the occurrence of them is still missing. We

expect that even solutions to the metric operator that are only known perturbatively to

some finite order will provide insight into these features.

Our manuscript is organized as follows: In order to set the scene and to establish our

notations we briefly recall in section 2 the perturbative approach to determine the metric

operator for time-independent non-Hermitian Hamiltonian quantum systems. We then

present our proposal for a perturbation theory for the explicitly time-dependent scenario.

In section 3 we apply the proposed method to a pair of explicitly time-dependent two

dimensional harmonic oscillators that are weakly coupled to each other in a PT-symmetric

fashion and in section 4 to the strongly coupled negative quartic anharmonic oscillator

potential with an explicit time-dependence. In section 5 we present our conclusions and

outlook.

2. Perturbative expansions for the metric and the Dyson map

2.1 Time-independent perturbation theory

We start by recalling the time-independent perturbation theory for determining the time-

independent metric and Dyson map [32, 33, 5, 12]. We start by separating the non-

Hermitian Hamiltonian into its real and imaginary part as

H = h0 + iǫh1, with h†0 = h0, h
†
1 = h1, (2.1)

where a real parameter ǫ ≪ 1 has been extracted from the imaginary part. Assuming

here for simplicity that the Dyson map is Hermitian and of the form η = eq/2, the metric

operator just becomes ρ = η†η = η2 = eq. Making use of the standard Baker-Campbell-

Hausdorff formula

eABe−A = B + [A,B] +
1

2!
[A, [A,B]] +

1

3!
[A, [A, [A,B]]] + ... (2.2)

and assuming that ρ is invertible one can then write the quasi-Hermiticity relation as

H† = η2Hη−2 = H + [q,H] +
1

2!
[q, [q,H]] +

1

3!
[q, [q, [q,H]]] + ... (2.3)

Using the decomposition (2.1) for the non-Hermitian Hamiltonian H this becomes

i[q, h0] +
i

2
[q, [q, h0]] +

i

3!
[q, [q, [q, h0]]] + ... = ǫ

�
2h1 + [q, h1] +

1

2
[q, [q, h1]] + ...

�
. (2.4)

— 3 —
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Expanding q further as a power series in ǫ in the form

q =
∞�

n=1

ǫnq̌n, (2.5)

one can read off the coefficients of ǫn order by order upon substituting (2.5) into (2.4). One

finds that [h0, q2] = 0, so that with the choice q2 = 0 all even powers in (2.5) vanish. The

first three nonvanishing equations are

[h0, q̌1] = 2ih1, (2.6)

[h0, q̌3] =
i

6
[q̌1, [q̌1, h1]], (2.7)

[h0, q̌5] =
i

6

�
[q̌1, [q̌3, h1]] + [q̌3, [q̌1, h1]]−

1

60
[q̌1, [q̌1, [q̌1, [q̌1, h1]]]]

�
. (2.8)

Crucially, these equations provide a constructive scheme and can be solved recursively order

by order for q̌1, q̌2, . . . At each order one may add a term to q̌i that commutes with h0,

which, however, does not change the resulting Hermitian Hamiltonian h. One may even

find a closed formula for the expression of h involving Euler’s number [12]. The metric

operator is well-known not to be unique. This feature is inherited in the time-dependent

setting as will be demonstrated below.

2.2 Time-dependent perturbation theory

We shall now propose a similar procedure as in the time-independent case, however, we

solve the time-dependent quasi-Hermiticity relation in (1.1) for ρ(t) rather than the time-

dependent Dyson equation for η(t). We separate the Hamiltonian as

H(t) = h0(t) + iǫh1(t), with h0(t) = h†0(t), h1(t) = h†1(t), (2.9)

with ǫ≪ 1 being a time-independent expansion parameter. By comparing with the time-

independent case let us now motivate our Ansatz for the perturbative version of the time-

dependent Dyson map. First we note that the operators q̌n in (2.5) might consist of a sum

of operators with different amounts of terms at each order. Thus they may be expanded

further at each order in terms of operators q̃
(n)
i as q̌n → 2

�Nn
i=1 γ̃

(n)
i (t)q̃

(n)
i with real co-

efficient functions that become now time-dependent γ
(n)
i (t). The factor 2 is introduced

for convenience and will be usefull below. The upper limit of the sum Nn takes into ac-

count that we may need different amounts of operators at each order in ǫ. Then with the

introduction of time, the operator q in (2.5) is replaced by

q(t) = 2
∞�

n=1

Nn�

i=1

ǫnγ̃
(n)
i (t)q̃

(n)
i . (2.10)

This version is highly unsuitable for the time-dependent case as we have to compute ∂tη(t)

or ∂tρ(t) in equations (1.1). In general this calculation is complicated for expressions of the

form eÃ(t)+B̃(t)+C̃(t)+... with non-vanishing commutators [Ã(t), B̃(t)], [Ã(t), C̃(t)] , ... We

— 4 —
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therefore factorize the exponential with a sum in its argument into a product of exponentials

eA(t)eB(t)eC(t) . . .. The explicit relations between the operators Ã, B̃, C̃,. . . and the A, B,

C,. . . are usually very complicated, see for instance equations (6) and (7) in reference [17].

Assuming now in addition that at each order the operators q̃
(n)
i belong to the same closed

algebra with generators qi, for i = 1, . . . , j, we can simply convert (2.10) into

q(t) = 2

j�

i=1

k�

n=1

ǫnγ
(n)
i (t)qi, (2.11)

where we also swapped the two sums and terminated the second sum at some finite limit

k. We can now factorize the Dyson map as

η(t) = eq(t)/2 =

j�

i=1

exp

�
k�

n=1

ǫnγ
(n)
i (t)qi

�

=

j�

i=1

k�

n=1

exp
�
ǫnγ

(n)
i (t)qi

	
. (2.12)

The product in (2.12) is understood to be ordered

j
i=1 ai = a1a2 . . . aj . The precise

relations between the γ
(n)
i (t) and the γ̃

(n)
i (t) are left unspecified, but these would only be

relevant if one takes the expression in (2.10) as a starting point. Instead one may simply

view the factorized Ansatz (2.12) as more fundamental. The limits j, k and the generators qi
may be pre-selected leaving the time-dependent coefficient functions γ

(n)
i (t) as the unknown

quantities that need to be determined. Taking the generators to be Hermitian qi = q†i , the

metric acquires the form

ρ(t) = η(t)†η(t) =
1�

i=j

�
1�

n=k

exp
�
ǫnγ

(n)
i qi

	� j�

i=1

�
k�

n=1

exp
�
ǫnγ

(n)
i qi

	�

, (2.13)

where

1
i=j denotes the reverse ordered product, that is


1
i=j ai = ajaj−1 . . . a1. For k = 1

the relevant terms in the metric are therefore identified to be

ρ(1)(t) =




1�

i=j

exp
�
ǫγ
(1)
i qi
	



�
j�

i=1

exp
�
ǫγ
(1)
i qi
	�

. (2.14)

Upon substituting this expression into the time-dependent quasi-Hermiticity relation in

(1.1), and expanding up to first order in ǫ we obtain the first order differential equation

ih1 +

j�

i=1

�
γ
(1)
i [qi, h0] + iγ̇

(1)
i qi
	

= 0. (2.15)

We observe from this equation that we can multiply the Dyson map by a factor involving a

time-independent phase that commutes with the Hermitian part of the Hamiltonian. This

is analogous to time-independent first order equation (2.6), which can be retrieved from

(2.15) by setting the time-derivative terms to zero with j = 1 and γ
(1)
1 = 1/2.

To second order the relevant metric results to

ρ(2)(t) =
1�

i=j

�
1�

l=2

exp(ǫlγ
(l)
i qi)

�
j�

i=1

�
2�

l=1

exp(ǫlγ
(l)
i qi)

�

, (2.16)

— 5 —
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where this time we have only kept terms up to order ǫ2 in the argument of the exponential

function. We substitute this into the time-dependent quasi-Hermiticity relation in (1.1),

and only keep terms that are proportional to ǫ2, obtaining

2

j�

i=1

�
γ
(2)
i [qi, h0] + iγ

(1)
i [q1i , h1] +

1

2!
(γ
(1)
i )2[qi, [qi, h0]] + iγ̇

(2)
i qi

�

+

j�

i=1



2

j�

r=1, �=i

�
γ
(1)
i γ(1)r [qr, [qi, h0]] + iγ̇

(1)
i γ(1)r [qr, qi]

	
+ (γ

(1)
i )2[qi, [qi, h0]]



 = 0. (2.17)

The equations resulting from higher order in ǫ can be derived in a similar fashion. Similar

to the time-independent case, these equations can be solved recursively order by order.

In contrast, we find here that the even ordered equations are also important, as will be

demonstrated below.

Some remarks are in order with regards to the Ansatz made for the perturbative series.

First of all we assumed here that η(t) is Hermitian in (2.13), which is not necessary and in

fact implies that we are missing some of the solutions as we shall see below. The second

point to notice is that we have not made any assumptions about the operators in the

exponentials, which are in turn determined by (2.15), (2.16) and the corresponding higher

order equations. Nonetheless, we made some assumptions about the form of the products

in (2.12) as explained and motivated above. We also need to make an assumption about

the limits in the product. Let us now demonstrate for a concrete example that the recursive

solutions of the order by order equations (2.15), (2.16), . . . do indeed lead to meaningful

solutions of the time-dependent quasi-Hermiticity relation in (1.1). As it clear from the

above equations, the solutions procedure for the time-dependent case is much more involved

than in the time-independent case. However, the above and especially the examples below

demonstrate that one may solve the equations recursively order by order.

3. Time-dependent coupled non-Hermitian harmonic oscillators

As a starting point to demonstrate the effectiveness of this perturbative approach we shall

consider the following pair of time-dependent harmonic oscillators with a Hermitian and a

non-Hermitian coupling term

H(t) =
a(t)

2
(p2x + x2) +

b(t)

2
(p2y + y2) + i

λ(t)

2
(xy + pxpy) +

µ(t)

2
(xpy − ypx), (3.1)

involving the time-dependent coefficient functions a(t), b(t), λ(t), µ(t) ∈ R. This non-
Hermitian Hamiltonian is symmetric with respect to two different PT -transformations,
[PT ±, H] = 0, where the antilinear maps are given by, PT ± : x → ±x, y → ∓y, px →
∓px, py → ±py, i→ −i. It generalizes a system previously studied in [26] for µ = 0, a = b

and can be re-expressed in terms of Hermitian generators, K†
i = Ki,

K1 =
1

2
(p2x + x2), K2 =

1

2
(p2y + y2), K3 =

1

2
(xy + pxpy), K4 =

1

2
(xpy − ypx), (3.2)

— 6 —
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forming a closed algebra with commutation relations

[K1,K2] = 0, [K1,K3] = iK4, [K1,K4] = −iK3,

[K2,K3] = −iK4, [K2,K4] = iK3, [K3,K4] = i(K1 −K2)/2. (3.3)

Thus we may rewrite the Hamiltonian H(t) in terms of these generators simply as

H(t) = a(t)K1 + b(t)K2 + iλ(t)K3 + µ(t)K4. (3.4)

Denoting c(t) := a(t) − b(t), we shall be considering the three different cases for H(t),

characterized as:

case 1 : c(t) = 0 and µ(t) = 0, (3.5)

case 2 : c(t) �= 0 and µ(t) = 0, (3.6)

case 3 : c(t) = 0 and µ(t) �= 0. (3.7)

The first order perturbation equation (2.15) that needs to be satisfied has many different

types of solutions for each of these cases. Therefore we shall present the different solutions

in separate sections below. We will also discuss the possibility of η† �= η captured by letting

some of the coefficient functions γ
(l)
i to be purely imaginary.

As noticed in [20, 26], an interesting feature of the explicitly time-dependent systems

is that the spontaneously broken regime of the time-independent system becomes physical.

To see whether this is also the case here we briefly discuss the time-independent version

of the Hamiltonian (3.4) with ȧ = ḃ = λ̇ = µ̇ = 0 in order to create a benchmark for the

PT -broken and PT -symmetric regions in the parameter space. Taking the Dyson map to
be of the form

η = exp(θK4), with θ = arctanh

�
−λ

c

�
, (3.8)

and acting adjointly on H leads to the Hermitian Hamiltonian

h = ηHη−1 =
1

2
(a + b) (K1 + K2) +

1

2

�
c2 − λ2(K1 −K2) + µK4, (3.9)

with eigenvalues

En,m =
1

2
(1 + n + m)(a + b) +

1

2
(n−m)

�
c2 − λ2

�

1 +
µ2

c2 − λ2
. (3.10)

We notice for the cases 1 and 3, that is when c = 0, the Dyson map is ill-defined and

also the eigenvalues are complex so that these two cases are always in the spontaneously

broken PT -regime. For case 2 we identify a PT -symmetric regime when |λ| < |c| and a
spontaneously broken regime otherwise. Let us now demonstrate that the spontaneously

broken PT -regimes can become physical when an explicit time-dependence is introduced.
We need to treat the cases 1 and 2 separately from the case 3, as we find that the

perturbative expansions for the metric have no common overlap.

— 7 —
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3.1 Metric and Dyson maps with µ(t) = 0, cases 1 and 2

We will now show how the above perturbative equations can be solved systematically

order by order in ǫ. We treat here the non-Hermitian term as a small perturbation and set

λ(t) → ǫλ(t) with ǫ ≪ 1. When succeeding in constructing a complete infinite series we

may set ǫ back to 1. Focusing at first on the cases 1 and 2 with µ(t) = 0, the first order

equation (2.15) for the Hamiltonian H(t) in (3.4) becomes

iλ(t)K3 +

j�

i=1

�
γ
(1)
i [qi, a(t)K1 + b(t)K2] + iγ̇

(1)
i qi
	

= 0. (3.11)

When compared to the corresponding time-independent equation (2.6), we notice that

besides having to satisfy the commutative structure, the coefficient functions are not just a

set of functions of the parameters in the model, but correspond now to a system of coupled

differential equations. As our algebra is four dimensional we have now the options to take

the limit in (3.11) as j ∈ {1, 2, 3, 4} with corresponding generators qi ∈ {K1,K2,K3,K4}.
Taking now at first j = 4 with q1 = K4, q2 = K3, q3 = K1 and q4 = K2, the first order

equation becomes

i
�
λ + cγ

(1)
1 + γ̇

(1)
2

	
K3 + i

�
γ̇
(1)
1 − cγ

(1)
2

	
K4 + iγ̇

(1)
3 K1 + iγ̇

(1)
4 K2 = 0. (3.12)

Thus setting the coefficients of all Ki in (3.12) to zero, we obtain two coupled first order

equations for γ
(1)
1 and γ

(1)
2 . Moreover, we conclude that γ

(1)
3 and γ

(1)
4 are time-independent.

As our goal is to find a time-dependent metric and Dyson map we set them both to zero

γ
(1)
3 = γ

(1)
4 = 0. Having now fixed j = 2 and the corresponding q1 = K4, q2 = K3, we

can simply evaluate the higher order equations obtaining the constraints by setting the

coefficient functions to zero. The first equation contains the key foundational structure for

the entire series.

We proceed now in this manner to the higher order equations.

3.1.1 Hermitian η with q1 = K4 and q2 = K3

Keeping now the choice of the qi as indicated above, we derive the differential equations to

be satisfied at each order in ǫ. The first five orders of the equations to be satisfied for the

γ
(l)
1 (t) are

ǫ1 : γ̇
(1)
1 = cγ

(1)
2 , (3.13)

ǫ2 : γ̇
(2)
1 = cγ

(2)
2 , (3.14)

ǫ3 : γ̇
(3)
1 = c

�
1

6

�
γ
(1)
2

	3
+ γ

(3)
2

�
, (3.15)

ǫ4 : γ̇
(4)
1 = c

�
1

2

�
γ
(1)
2

	2
γ
(2)
2 + γ

(4)
2

�
, (3.16)

ǫ5 : γ̇
(5)
1 = c

�
1

120

�
γ
(1)
2

	5
+

1

2
γ
(1)
2

�
γ
(2)
2

	2
+

1

2

�
γ
(1)
2

	2
γ
(3)
2 + γ

(5)
2

�
. (3.17)
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For γ2(t) we obtain the first order differential equations

ǫ1 : γ̇
(1)
2 = −cγ

(1)
1 − λ, (3.18)

ǫ2 : γ̇
(2)
2 = −cγ

(2)
1 , (3.19)

ǫ3 : γ̇
(3)
2 = c

�
1

3

�
γ
(1)
1

	3
− γ

(3)
1 − 1

2
γ
(1)
1

�
γ
(1)
2

	2�
, (3.20)

ǫ4 : γ̇
(4)
2 = c

��
γ
(1)
1

	2
γ
(2)
1 − γ

(4)
1 − 1

2
γ
(2)
1

�
γ
(1)
2

	2
− γ

(1)
1 γ

(1)
2 γ

(2)
2

�
, (3.21)

ǫ5 : γ̇
(5)
2 = c

�
γ
(1)
1

�
γ
(2)
1

	2
− 2

15

�
γ
(1)
1

	5
+
�
γ
(1)
1

	2
γ
(3)
1 − γ

(5)
1 +

1

6

�
γ
(1)
1

	3 �
γ
(1)
2

	2
(3.22)

− 1

24
γ
(1)
1

�
γ
(1)
2

	4
− 1

2
γ
(3)
1

�
γ
(1)
2

	2
− γ

(2)
1 γ

(1)
2 γ

(2)
2 − 1

2
γ
(1)
1

�
γ
(2)
2

	2
− γ

(1)
1 γ

(1)
2 γ

(3)
2

�
.

These equations reveal the underlying structure that distinguishes the different cases.

Whilst the equations look rather complex, they contain all the information that can be

used to obtain the solutions up to fifth order that can even be extrapolated to the exact

solutions.

From perturbation theory to the exact Dyson map and Hermitian Hamiltonians

We shall now demonstrate how to use these equations to obtain the Dyson map and hence

the metric. Proceeding similarly as for the first order equation (3.12), we may solve the

set of equations (3.13)-(3.17), (3.18)-(3.22) recursively order by order to obtain the explicit

expressions for the coefficient functions γ
(i)
1 (t) and γ

(i)
2 (t), i = 1, 2, . . . We will not report

these expressions here. In the next step we extrapolate from the first terms by trying

to identify a combination of standard functions whose Taylor expansion matches the first

terms in the perturbative series.

For case 1, when c(t) = 0, we notice from (3.12) that also γ̇
(1)
1 = 0 when requiring Hermitic-

ity of h. As the Hermitian part of the Hamiltonian H(t) is given by h0(t) = a(t)(K1+K2),

we now have [h0(t),Ki] so that all of the generators in this algebra commute with h0(t).

As a consequence of this we observe that all orders of the perturbation equations disappear

except for one. This is also seen by setting c = 0 in (3.13)-(3.22) so that the only relevant

equation left is

γ̇
(1)
2 (t) = −λ(t). (3.23)

Hence, we easily obtain the exact solution

γ
(1)
1 (t) = γ1(t) = k1, γ

(1)
2 (t) = γ2(t) = −

� t

λ(s)ds + k2,

with two integration constants k1, k2.

For case 2, when c(t) �= 0, all of the right hand sides of the differential equations are

proportional to c(t), except for the one for γ̇
(1)
2 (t) in (3.18). Assuming λ(t) to be a real

multiple of c(t) the equations become fully integrable and we are able to solve the equations

order by order, even leading to an exact solution. Keeping for instance terms up to fifth
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order we obtain

[γ̇1(t)]
[5] =

5�

i=1

ǫiγ̇
(i)
1 (t) = c(t)

�

ǫ sinh

�
5�

i=1

ǫiγ
(i)
2 (t)

��[5]
= c(t) {ǫ sinh [γ2(t)]}[5] , (3.24)

and

[γ̇2(t)]
[5] =

5�

i=1

ǫiγ̇
(i)
2 (t) = −λ(t)− c(t)

�

ǫ

�

cosh

�
5�

i=1

ǫiγ
(i)
2 (t)

���

tanh

�
5�

i=1

ǫiγ
(i)
1 (t)

���[5]

= −λ(t)− c(t) (ǫ cosh[γ2(t)] tanh[γ1(t)])
[5] . (3.25)

Here the superscript [5] means we only retain terms up to order 5 in ǫ. In fact, we have

verified the validity of the closed form to eleventh order, by extending and solving the sets

of equations (3.13)-(3.17) and (3.18)-(3.22).

Assuming now the expressions in (3.24) and (3.25) to be exact, we may set ǫ = 1 and

subsequently solve them for γ1(t) and γ2(t). Letting λ(t) be any real multiple of c(t), that

is

c(t) = pλ(t) where p ∈ R, (3.26)

we are able to solve the relevant equations exactly and express γ2 as a function of γ1 as

γ2(γ1) = ± arccosh

�
−1

2
sech(γ1)

�
k1 +

2

p
sinh(γ1)

��
, (3.27)

with k1 being an integration constant. Relation (3.27) is obtained by integrating γ̇2/γ̇1 =

∂γ2/∂γ1 with respect to γ1. Parameterizing γ1(t) by a new function χ(t) as

γ1 = arcsinh (χ) , (3.28)

the two differential equations for γ̇1(t) and γ̇2(t) can be converted into the linear second

order equation entirely in χ

χ̈− λ̇

λ
χ̇ + (p2 − 1)λ2χ = k1

p

2
λ2. (3.29)

We solve equation (3.29) by

χ(t) =
e−2
√
1−p2(k2− 1

2

�
t λ(s)ds)

4 (1− p2)

��
e2
√
1−p2(k2− 1

2

�
t λ(s)ds) − pk1

	2
+ (k21 − 4)

�
1− p2

��
.

(3.30)

Notice that in fact we are solving the two first order equations for γ̇1(t) and γ̇2(t), so that

there are only two integration constants and no additional linear independent solution for

the second order equation (3.29). We have to impose here |p| < 1 to ensure the reality of

χ and hence γ2, γ1.

Having obtained an exact Dyson map, we can envoke the first equation in (1.1) and

compute the Hermitian counterparts to H(t), which consists of two decoupled harmonic

oscillators in both cases 1 and 2

h(t) = f+(t)K1 + f−(t)K2. (3.31)
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For case 1 we find f±(t) = a and for case 2 we obtain

f±(t) = b +
pλ

2
∓ λ(2χ + pk1)

4(1 + χ2)
. (3.32)

We may also compute real time-dependent energy expectation values from these expressions

as will be shown below.

3.1.2 Non-Hermitian η with q1 = K4 and q2 = K1,K2

Making now the choice q1 = K4, q2 = K1,K2 the perturbative expansion yields γ̇
(l)
1 =

γ̇
(l)
2 = 0, so that the entire metric becomes time-independent. However, η does not have to

be Hermitian as assumed in the Ansatz (2.12). Thus allowing γ
(l)
i ∈ C in general, we now

modify the Ansatz to γ
(ℓ)
1 ∈ R, ℓ = 1, 2, . . ., γ

(ℓ)
2 ∈ iR, ℓ = 0, 1, 2, . . ., γ

(ℓ)
3 = γ

(ℓ)
4 = 0. The

perturbative constraints up to order ǫ3 then read

ǫ1 : γ̇
(1)
1 = λ sin

�
γ
(0)
2

	
, (3.33)

ǫ2 : γ̇
(2)
1 = λγ

(1)
2 cos

�
γ
(0)
2

	
, (3.34)

ǫ3 : γ̇
(3)
1 = λγ

(2)
2 cos

�
γ
(0)
2

	
− 1

2
λ
�
γ
(1)
2

	2
sin
�
γ
(0)
2

	
, (3.35)

and for γ2(t) we obtain

ǫ1 : γ̇
(0)
2 = c + λ

cos
�
γ
(0)
2

	

γ
(1)
1

, (3.36)

ǫ2 : γ̇
(1)
2 = − λ

γ
(1)
1

�
γ
(2)
1

γ
(1)
1

cos
�
γ
(0)
2

	
+ γ

(1)
2 sin

�
γ
(0)
2

	�

, (3.37)

ǫ3 : γ̇
(2)
2 =

λ

γ
(1)
1











�
γ
(1)
1

	2

3
+

�
γ
(2)
1

γ
(1)
1

�2
− γ

(3)
1

γ
(1)
1

− γ
(1)
2

2




 cos

�
γ
(0)
2

	
(3.38)

+

�
γ
(2)
1 γ

(1)
2

γ
(1)
1

− γ
(2)
2

�

sin
�
γ
(0)
2

	�

.

From perturbation theory to the exact Dyson map and Hermitian Hamiltonians

Once again we may solve these equations order by order for the coefficient functions γ
(ℓ)
i

and subsequently try to extrapolate the series to all orders. We find the exact constraining

equations for γ1(t) and γ2(t) by demanding the non-Hermitian terms in h(t) to vanish

γ̇1 = λ sin (γ2) , and γ̇2 = c + λ cos (γ2) coth(γ1).

We may now solve these equations separately in each case.

For case 1 with q2 = K1, we can solve for γ1 in terms of γ2 obtaining

γ1(γ2) = arcsinh [k1 sec(γ2)] , (3.39)

— 11 —



Perturbative approach for strong and weakly coupled time-dependent for NHQS

with integration constant k1. By letting

γ2 = arctan(χ), (3.40)

the equations for γ̇1 and γ̇2 are converted into the linear second order differential equation

χ̈− λ̇

λ
χ̇− λ2χ = 0. (3.41)

We observe that the auxiliary equation (3.29) reduces to equation (3.41) in the limit p→ 0

which also holds for the solution (3.30). We have two constants of integration left after

having carried out the limit.

For case 2 with q2 = K1, we set c(t) = pλ(t) as then the equations become solvable. In

this case it is more convenient to express γ2 in terms of γ1

γ2(γ1) = arccos

�
−p coth(γ1)− i

1

2
k1 csch(γ1)

�
, (3.42)

where k1 is an integration constant that we set to 0 to ensure the reality of γ2. Letting

γ1 = arccosh (χ) , (3.43)

the equations for γ̇1 and γ̇2 are converted into the linear second order differential equation

χ̈− λ̇

λ
χ̇ + (p2 − 1)λ2χ = 0. (3.44)

We note that equations (3.44) is obtained from (3.29) in the limit k1 → 0, which also holds

for the solution (3.30). As we have already chosen one of the integration constants, there

is only one left in this case, i.e. k2.

After imposing the constraints, the remaining Hermitian part of the Hamiltonian is

of the same general form as the one reported in (3.31), albeit with different forms for the

coefficient functions

f±(t) = b− λ(±1 +
�

1 + (1 + χ2)k21)

2(1 + χ2)k1
, (3.45)

in case 1 and

f±(t) = b +
pλχ

2(χ∓ 1)
, (3.46)

in case 2, respectively.

3.1.3 Further choices that lead to exact Dyson maps and Hermitian h(t)

Having made a distinction in the setup of the perturbative treatment between Hermitian

and non-Hermitian Dyson maps, there are further possible choices within these two frame-

works that all lead to exactly solvable solutions. As the procedure to find them is similar

to the previous cases we present them in a more compact form, omitting the details of the

derivations. The constraining relations arising from requiring the transformed Hamiltonian

h(t) in (1.1) to be Hermitian are presented in table 1. For completeness, we also report

the cases discussed already in more detail above.
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q1, q2 γ̇1(t) γ̇2(t)

K4,K3 c sinh(γ2) −c cosh (γ2) tanh (γ1)− λ

K3,K4 − λ cosh (γ2)− c sinh (γ2) [c cosh (γ2) + λ sinh (γ2)] tanh (γ1)

K4, iK1,2 ±λ sin(γ2) ±c± λ cos(γ2) coth(γ1)

K3, iK1,2 −λ cos(γ2) ±c + λ sin(γ2) coth(γ1)

Table 1: Coupled first order differential equation constraints on the time-dependent coefficient

functions γ1 and γ2 in the Dyson map η, for different choices of q1 and q2.

q1, q2 constraint γ1(χ) γ2(χ) constraint

K4,K3 c = 0 * * *

K4,K3 c = pλ arcsinh (χ) arccosh

�
− k1+2pχ

2
√
1+χ2

�
- k1+2pχ
2
√
1+χ2

≤ 1

K3,K4 c = 0 arccosh (χ) arcsinh
�
k1
χ

	
χ > 1

K3,K4 c = λ arccosh (χ) ln
�
k1
χ

	
χ > 1

K4, iK1,2 c = 0 arcsinh
�
k1
�

1 + χ2
	

± arctan(χ) *

K4, iK1,2 c = pλ arccosh (χ) arccos

�
− pχ√

χ2−1

�
χ > 1

K3, iK1,2 c = 0 arcsinh
�
k1
�

1 + χ2
	

± arccot(χ) *

K3, iK1,2 c = pλ arccosh (χ) arcsin

�
k1∓2pχ

2
√
χ2−1

�
χ > 1

Table 2: Parameterisation of γ1 and γ2 in terms of the auxiliary function χ with additional

constraint on c(t) for different choices of q1 and q2. The constraints in the last column result from

the parameterisation. A ∗ indicates no constraint.

All presented solutions and cases are new, except for the Hermitian case with q1 = K3,

q2 = K4, c = 0 which reproduces a solution found in [22], with the difference that the Dyson

map we are considering here are missing the two factors involving the time-independent K1

and K2 terms. We can proceed as above to solve the coupled differential equations in all

cases by expressing γ1 as a function of γ2, or vice versa, and a subsequent integration. The

parameterization of γ1,2 in terms of a new function, that we always denote as χ(t), are not

obvious and are therefore presented in table 2. We may only solve these equations upon

imposing an additional restriction on the time-dependent functions in the Hamiltonian,

which are also reported in table 2.

We still need to determine the auxiliary function. As discussed in the previous sub-

section, combining the equations for the constraints on γ1 and γ2 leads to a set of second

order auxiliary equations that we present in table 3.

Solutions to the auxiliary equations As the last step we disentangle the parame-

terisations for γ1 and γ2 by solving the auxiliary equations for χ. We have encountered

one case with no restrictions at all, three types of linear second order equations and two
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q1, q2 constraint auxiliary equation

K4, K3 c = 0 none

K4,K3

K3, iK1,2
c = pλ Aux1 : χ̈− λ̇

λ χ̇− (1− p2)λ2χ = k1
p
2λ
2

K3,4, iK1,2 c = 0 Aux2 : χ̈− λ̇
λ χ̇− λ2χ = 0

K4, iK1,2 c = pλ Aux3 : χ̈− λ̇
λ χ̇− (1− p2)λ2χ = 0

K3, K4 c = 0 Aux4 : χ̈− λ̇
λ χ̇− λ2χ = k21λ

2 1
χ3

K3, K4 c = λ Aux5 : χ̈− λ̇
λ χ̇ = k21λ

2 1
χ3

Table 3: Auxiliary equations to be satisfied by quantities in the parameterisation of the functions

γ1 and γ2 together with the additional constraint on c(t) for different choices of q1 and q2.

versions of the nonlinear Ermakov-Pinney (EP) equation [34, 35]

We already reported the solutions to the linear equations referred to as Aux1 in table

3 in (3.30), from which we obtain the solution to Aux2 in the limit p → 0 and Aux3 in

limit k1 → 0. Hence we just need to present the solutions to the EP-equations. We find

the following solutions to Aux4 and Aux5

χ(t) =

�
1 + (1 + k21) sinh2

�
k2 −

� t

λ(s)ds

��1/2
, (3.47)

χ(t) =

�

1 +

�
k2 − k1

� t

λ(s)ds

�2�1/2
, (3.48)

respectively.

Finally we turn to the resulting Hermitian Hamiltonian h(t) that is always of the

general form of two uncoupled harmonic oscillators (3.31) with different time-dependent

coefficient functions f±(t) as reported in table 4.

3.1.4 Time-dependent eigenfunctions, energies and PT -symmetry breaking
Next we present the expectation values for the time-dependent energy operator H̃(t) as

defined in equation (1.2). Since each of the Hermitian Hamiltonians constructed from any

of the similarity transformations simply consists of two uncoupled harmonic oscillators

(3.31) with different time-dependent coefficient functions, we can easily construct the total

wavefunction as a product of the wavefunctions for a harmonic oscillator with real time-

dependent mass and frequency of the form h̃(t) = f(t)/2(p2x+x2). The latter problem was

solved originally in [36]. Adapting to our notation and including a normalization constant,

found in [26], the time-dependent wavefunction is given by

φ̃n(x, t) =
eiαn(t)

�
2nn!

√
πχ(t)

exp

��
i

f(t)

χ̇(t)

χ(t)
− 1

χ2(t)

�
x2

2

�
Hn

�
x

χ(t)

�
, (3.49)

where Hn [x] denotes the n-th Hermite polynomial in x and the phase is given by

αn(t) = −
�
n +

1

2

�� t

0

f(s)

χ2(s)
ds. (3.50)
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q1, q2 constraint f±(t) η

K4, K3 c = 0 a η1
K4, K3 c = pλ b + pλ

2 ∓
λ(2χ+pk1)
4(1+χ2)

η1

K3, K4 c = 0 b± λk1
2χ2

η2
K3, K4 c = λ b + λ

2 ± λk1
2χ2 η2

K4, iK1 c = 0 b− λ(±1+
√
1+(1+χ2)k2

1
)

2(1+χ2)k1
η3

K4, iK1 c = pλ b + pλχ
2(χ∓1) η3

K4, iK2 c = 0 b +
λ(∓1+

√
1+(1+χ2)k2

1
)

2k1(1+χ2)
η4

K4, iK2 c = pλ b + pλ− pλχ
2(χ±1) η4

K3, iK1 c = 0 b +
λ
�
∓1−

√
1+k2

1
(1+χ2)

�

2k1(χ2+1)
η5

K3, iK1 c = pλ b + λ(2pχ−k1)
4(χ∓1) η5

K3, iK2 c = 0 b +
λ
�
±1−

√
1+k2

1
(1+χ2)

�

2k1(1+χ2)
η6

K3, iK2 c = pλ b− λ(2pχ+k1)
4(χ±1) η6

Table 4: Time-dependent coefficient in the Hermitian Hamiltonian h(t) = f+(t)K1 + f−(t)K2

together with the additional constraint on c(t) for different choices of q1 and q2. In the last column

we report a short notation for the Dyson maps of the particular cases that we shall use below for

convenience.

The auxiliary function χ(t) is constrained by the dissipative Ermakov-Pinney equation of

the form

χ̈− ḟ

f
χ̇ + f2χ =

f2

χ3
. (3.51)

Interestingly this is equation Aux4 in table 3 with λ → if , k21 = i. However, the solution

(3.47) to Aux4 reduces to 1 for these parameter choices. Instead, equation (3.51) is solved

by

χ(t) =

�
�

1 + c2 + c cos

�
2

� t

f(s)ds

�
, (3.52)

with integration constant c. The expectation value of K1 is given then computed to

&
φ̃n(x, t)

'''K1

'''φ̃m(x, t)
(

=

�
n +

1

2

��
1 + c2δn,m. (3.53)

Hence, the solution to the full time-dependent Schrödinger equation for the Hermitian

Hamiltonian h(t) in (3.31) is simply the product of the two wavefunctions in (3.49)

Ψn,m
h (x, y, t) = φ̃

f+
n (x, t)φ̃

f−
m (y, t), (3.54)

from which we calculate the instantaneous energy expectation values

En,m(t) =
)
Ψn,m
h (t)

''h(t)
''Ψn,m

h (t)
*

=
�

i=−,+

fi(t)

�
n +

1

2

�+
1 + c2i . (3.55)
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These expectation values are real provided f±(t), c± ∈ R. For case 1 this is simply guar-
anteed by taking the parameter and time-dependent functions to be real. For case 2 we

can not freely choose and have to respect the constraints resulting as a consequence of the

parameterization as reported in table 2. As the auxiliary function χ(t) must be real, the

additional constraint |p| < 1 results from the form of the solution (3.30), together with

k1, k2 ∈ R.

-4 -2 2 4
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2
E0,0(t)

η1

η2

η3

η4

η5
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-4 -2 2 4
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η3

η4

η5

η6

-4 -2 2 4
t

-10

-5

5

10

E2,0(t)

Figure 1: The instantaneous energy spectra (3.55) associated with the six Dyson maps for λ(t) =

sin(2t) for case 1 with c+ = c− = 1, k1 = 2. In panels (a), (c) we have a(t) = cos(t) and in panels

(a), (c) we that a(t) = t/2.

For concrete choices of the time-dependent coefficient functions we can now directly

evaluate the expressions for En,mi (t) corresponding to the Dyson maps ηi(t) explicitly by

computing the auxiliary functions χ(t) and the functions fi(t). The Dyson map η2 leads

to somewhat different behaviour. This is understood by the fact that it can only be

constructed at c = 0 and at what would be the exceptional point in the time-independent

scenario c = λ. Hence also the energies exhibit slightly different characteristics. Taking the

above mentioned constraints into account there are large regions in the parameter space

for which the all ot the energies En,mi (t) are real and hence physical. We illustrate the

behaviour of these energies for each of the Dyson maps in figues 1 and 2 for some concrete

choices.

First of all we observe from figure 1 the crucial feature that the instantaneous energy is

real and finite. Secondly we note that despite sharing the same non-Hermitian Hamiltonian,

the theories related to different Dyson maps can lead to quite different physical behaviour

in the energy. Similar to the time-independent scenario, this is the known fact that the
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Figure 2: The instantaneous energy spectra (3.55) associated with five Dyson maps for λ(t) =

sin(2t), a(t) = cos(t) for case 2 with c+ = c− = 1, k1 = 2.5, k2 = 1. We have p = −0.1, p = −0.3,

p = −0.5, p = −0.9 in panels (a), (b), (c), (d), respectively.

Hamiltonian alone does not define a unique definite physical system, but to define the

physics one also needs to specify the metric, i.e. the Dyson map. We note that some of the

energies can become degenerate, En,n1 = En,n2 , which can however split when n �= m. As

is also expected from the explicit expressions, the differences are more amplified the larger

|n−m|. In case 2, when we have non vanishing values of the parameter p these effects are
even more amplified as can be seen in figure 2. We notice a strong sensitivity with regard

to p.

The constraints resulting from the parameterization, |p| < 1, imply that we are in the

regime with spontaneously broken PT -symmetry when compared to the time-independent
case. Therefore, we observe the same phenomenon that was first noted in [20, 26], namely

that the introduction of a time-dependence into the metric will mend the spontaneously

broken PT -regime so that it becomes physically meaningful. In this case this manifests
itself by the fact that the instantaneous energy is real.

3.2 Metric and Dyson maps with µ(t) �= 0, case 3

Finally we also discuss the case 3 by including a Hermitian coupling term into the Hamil-

tonian in addition to the non-Hermitian one. This case turns out to be more complicated

to solve, but may also be tackled successfully by our perturbative method. Keeping the

expression (2.14) as our Ansatz for the perturbative expansion for the metric we obtain
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the same first order equation (2.15), but now involving

h0(t) = a(t) (K1 + K2) + µ(t)K4 and h1(t) = λ(t)K3. (3.56)

Since all generators of the algebra commute with K1+K2 the only nontrivial contribution

in the commutator of that relation results from the term involving K4 in h0. Taking now

q1 = K1, q2 = K2, q3 = K3, (3.57)

leads to the following first order equations for the time-dependent coefficient functions

γ̇
(1)
1 (t) = −1

2
µ(t)γ

(1)
3 (t), (3.58)

γ̇
(1)
2 (t) =

1

2
µ(t)γ

(1)
3 (t), (3.59)

γ̇
(1)
3 (t) = µ(t)

,
γ
(1)
1 (t)− γ

(1)
2 (t)

-
− λ(t). (3.60)

We see immediately that γ
(1)
2 (t) = −γ

(1)
1 (t), which then also simplifies equations (3.60).

Proceeding now in the same manner as in the previous cases by extrapolation to the

full series, we find that the following two equations need to be satisfied

γ̇1(t) = −1

2
sinh[γ3(t)]µ(t) and γ̇3(t) = cosh[γ3(t)] tanh[2γ1(t)]µ(t)− λ(t). (3.61)

Letting λ = pµ, we can express γ3 as a function of γ1

γ3(γ1) = ± arccosh

�
p tanh(2γ1)−

k1
2

sech(2γ1)

�
. (3.62)

Setting

γ1 =
1

2
arcsinh(χ), (3.63)

the two first order equations (3.61) are converted into the linear second order auxiliary

equation (3.29) with λ → µ. The resulting Hermitian Hamiltonian consists now not only

of two decoupled harmonic oscillators, but also contains an additional Hermitian term in

form of K4

h(t) = a(t) (K1 + K2)−
k1 + 2pχ(t)

2 [1 + χ(t)2]
µ(t)K4. (3.64)

As in the previous two cases, we may also construct a non-Hermitian solution for the

Dyson map by means of the perturbative approach. From the first order equation we

observe that also q3 = iK4 with q1 and q2 as in (3.57) leads to a solution. Extrapolating

to all orders yields now the two equations

γ̇1(t) = −1

2
sin[γ3(t)]λ(t) and γ̇3(t) = µ(t)− cos[γ3(t)] coth[2γ1(t)]λ(t). (3.65)

As before we must restrict λ(t) = pµ(t) so that we may solve for γ3 in terms of γ1

γ3(γ1) = ± arccos

�
[2− ik2 + 2 cosh (2γ1)] csch(2γ1)

2p

�
. (3.66)
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We set here k2 = 0 in order to obtain a real solution. Letting now

γ1 =
1

2
arccosh(χ), (3.67)

the two first order equations (3.65) are now converted into the linear second order auxiliary

equation (3.29) with λ → µ and k1 → 0. Similarly as the resulting Hamiltonian for the

Hermitian Dyson map the resulting Hermitian Hamiltonian contain a K4 besides the two

uncoupled harmonic oscillators

h(t) = a(t) (K1 + K2) +
µ(t)

χ(t)− 1
K4. (3.68)

The generator K4 can be identified with the standard angular momentum operator Lz and

can be eliminated from h(t) in (3.64) and (3.68) by means of a unitary transformation, see

for instance [37]. Subsequently the eigenfunctions and expectation values of the resulting

system of two uncoupled harmonic oscillators can be obtained similarly as for the cases 1

and 2 presented in detail in the previous section.

4. The unstable anharmonic quartic oscillator

In this section we discuss an example for which the previous versions of the perturbative

expressions for the metric or the Dyson map do not however lead to any solution. In fact,

as we will demonstrate one does not only have to change the Ansatz, but one also needs

to rescale the Hamiltonian in order to introduce the perturbative parameter in the right

terms and treat the non-Hermitian part as a strong rather than a weak perturbation.

Unstable anharmonic oscillators have been the testing ground for perturbative methods

for nonlinear systems for more than fifty years [38, 39, 40, 41, 42]. Only fairly recently an

exact solution for the time-independent unstable anharmonic quartic oscillator was found

by Jones and Mateo [43]. They used ideas from non-Hermitian PT -symmetric quantum
mechanics [44, 4] and applied a perturbative approach that turned out to be exact. Recently

we [24] also solved the explicitly time-dependent version of this model in an exact manner.

These exact solutions found in [24] will serve here as a benchmark for our perturbative

approach, so that we consider the same Hamiltonian, but with the time-dependent mass

term set to zero

H(z, t) = p2 − g(t)

16
z4, g ∈ R+. (4.1)

Defining H(z, t) on the contour z = −2i
√

1 + ix as proposed in [43], it is mapped into the

non-Hermitian Hamiltonian

H(x, t) = p2 − 1

2
p +

i

2
{x, p2}+ g(t)(x− i)2, (4.2)

where {·, ·} denotes as usual the anti-commutator. As mentioned using our previous ver-
sions for the perturbative Ansatz does not lead to a solvable first order equation or a

recursive system. Instead we change our Ansatz to

ρ(t) = η(t)†η(t) =
1�

i=j

�
1�

l=k

exp
�
ǫ−l(γ

(l)
i )†qi

	� j�

i=1

�
k�

l=1

exp
�
ǫ−l(γ

(l)
i )qi

	�

. (4.3)
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As we are expanding in ǫ−1 we assume here that perturbation parameter, ǫ ≫ 1, is large.

The reason for this is that in addition we also need to scale the Hamiltonian (4.2) as x→ ǫx.

Separating now into a Hermitian and non-Hermitian term, h0(t) and hp(t), respectively,

we have

h0(t) = p2 − 1

2
p + ǫ2g(t)x2 − g(t), and hp(t) = −2iǫg(t)x +

1

2
iǫ{x, p2}. (4.4)

Thus instead of adding a small non-Hermitian perturbation to the Hermitian part, we

have perturbed by a large term and also scaled up the harmonic oscillator term. Our

Hamiltonian acquires therefore the following generic form

H(t) = h1(t) + ǫ2h2(t) + iǫh3(t), (4.5)

which together with the Ansatz (4.3) leads to the new first order equation

2ih3(t) +

j�

i=1

,�
(γ
(1)
i + (γ

(1)
i )†

	
[qi, h2(t)]

-
= 0. (4.6)

From this equation we can see that if any of the time-dependent coefficient functions γ
(1)
i ’s

are purely imaginary, then their contributions vanishes at this order and if they are real

we simply acquire a factor of 2. This version of the Ansatz leads to a recursive system that

can be solved systematically order by order. In our example for the Hamiltonian (4.2) we

identify

h3(t) = hp(t) and h2(t) = g(t)x2, (4.7)

and may satisfy the lowest order equation with the choice

q1 = x, q2 = p2, q3 = p2, q4 = p, (4.8)

where for q3 and q4 we are taking their time-dependent coefficient functions to be purely

imaginary. In doing so we end up with following equations that need to be satisfied

γ
(1)
2 =

1

6g
, and γ

(0)
3 =

1

2γ
(1)
1

. (4.9)

At order ǫ0 we read off the constraining equations

γ
(2)
2 = 0 and γ

(2)
1 = −2

�
γ
(1)
1

	2
γ
(1)
3 . (4.10)

Continuing to order ǫ−1 we find the constraints

γ
(1)
1 =

ġ

6g
, γ

(3)
1 = −γ

(2)
3 ġ2

18g2
+

ġ3

72g4
+

�
γ
(1)
3

	2
ġ3

54g3
− ġg̈

72g3
, γ̇

(0)
4 +γ

(0)
4

�
g̈

ġ
− ġ

g

�
= −1

3
. (4.11)

The last equation is solved to

γ
(0)
4 =

c1g

ġ
− g log g

2ġ
. (4.12)
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At order ǫ−2 we obtain γ
(1)
3 = 0, and therefore with (4.10) we have γ

(2)
1 = 0.

At order ǫ−3 we obtain

γ
(2)
3 =

ġ2 − gg̈

4g2ġ
, (4.13)

which implies with (4.11) that γ
(3)
1 = 0. Some features hold for all remaining orders in ε.

We have γ
(i)
2 = 0 for all i ≥ 2. We also find that at every order ǫ−n, where n ≥ 2 the

differential equation

γ
(n−1)
4 ġ2

3g2
+

ġγ̇
(n−1)
4

3g
+

γ
(n−1)
4 g̈

3g
= 0, (4.14)

occurs, which is solved by

γ
(n−1)
4 =

cn−1g

ġ
(4.15)

Another equation that appears at all orders ǫ−n for n ≥ 2 is given by

γ
(n+2)
1 = −γ

(n+1)
3 ġ2

18g2
(4.16)

This is solved at all orders if we have

γ
(n+2)
1 = 0 and γ

(n+1)
3 = 0 (4.17)

for n ≥ 2. When eliminating the γs from these equations we are left with a differential

equation entirely in g given by

14ġ3

9g2
+

2ġg̈

g
−
...
g

2
= 0 (4.18)

Parameterizing g = 1
2σ
−3 this equation reduces to

σ2
...
σ = 0 (4.19)

which is easily solved by σ(t) = c1 + c2t + c3t
2.

Assembling all our results we extrapote to all orders, i.e. an exact solution. Setting

therefore ε = 1 gives the time-dependent Dyson map of the form

η(t) = exp[γ1(t)x] exp[γ2(t)p
3 + iγ3(t)p

2 + iγ4(t)p], (4.20)

with

γ1 =
ġ

6g
, γ2 =

1

6g
, γ3 =

12g3 + ġ2 − gg̈

4ġg2
, γ4 =

g

ġ

�
c1 −

log g

2

�
, (4.21)

which is in precise agreement with the Dyson map we previously found in [24].
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5. Conclusions

We have demonstrated how to set up a perturbative approach that allows to construct the

metric operator and the Dyson map in a recursive manner order by order in a perturba-

tive parameter that may be very small or very large. We found three different types of

perturbative expansions. The Ansatz (2.12) is the most natural one when the Dyson map

is assumed to be Hermitian and needs to be slightly modified when one allows η to be

non-Hermitian as shown in section 3.1.2. In both of these versions the non-Hermitian term

was treated as a small perturbation. In section 4 we demonstrated that this approach can

not be applied universally and has to be altered for some models for which one needs to

treat the non-Hermitian term and parts of the Hermitian term as large perturbations. Con-

sequently the perturbative expansion needs to be in the inverse of the large perturbative

parameter.

When compared to the time-independent scenario, all our approaches have in common

that the order-by-order equations do not just determine the commutative structure of the

qis, but computations are more involved as in addition one needs to solve coupled sets of

differential equations for the time-dependent coefficient functions. Moreover, we observed

that the key structure is already determined by the lowest order equation.

Although the main emphasis in this paper is on the perturbation theory, with regard

to the specific example studied we found many new Dyson maps for the coupled non-

Hermitian harmonic oscillator. We saw that these different maps lead to different types of

physical behaviour, as shown explicitly for the time-dependent energy expectation values.

When compared to the time-independent case, all our solutions are only valid in what

would be the spontaneously broken PT -regime, except for one example that is defined on
what would be the exceptional point. So similar to the effect observed in [20, 26], this

regime becomes physically meaningful in the time-dependent setting. However, unlike as

in some of the previously studied systems, one can not crossover to the PT -regime and is
confined to the broken phase. It remains an open issue to formulate general criteria that

characterize precisely when this possibility occurs for time-dependent systems and when

not.
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