
              

City, University of London Institutional Repository

Citation: Mahmoud, M., Ramadan, M., Pullen, K. R., Abdelkareem, M. A., Wilberforce, T., 

Olabi, A-G. & Naher, S. (2021). A review of grout materials in geothermal energy 
applications. International Journal of Thermofluids, 10, 100070. doi: 
10.1016/j.ijft.2021.100070 

This is the accepted version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/25657/

Link to published version: https://doi.org/10.1016/j.ijft.2021.100070

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


© 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license 

https://doi.org/10.1016/j.ijft.2021.100070 

A review of grout materials in geothermal energy applications 

Montaser Mahmoud1,2, Mohamad Ramadan3,4*, Keith Pullen1, Mohammad Ali Abdelkareem5,6, 

Tabbi Wilberforce7, Abdul-Ghani Olabi5,7, Sumsun Naher1 

 
1Department of Engineering, School of Mathematics, Computer Science and Engineering, City, University of London, 

London, UK 

2Lebanese International University, PO Box 146404 Beirut, Lebanon 

3International University of Beirut, PO Box 146404 Beirut, Lebanon 

4Associate member at FCLAB, CNRS, Univ. Bourgogne Franche-Comte, Belfort cedex, France 

5Sustainable and Renewable Energy Engineering, University of Sharjah, Sharjah, UAE 

6Chemical Engineering Department, Faculty of Engineering, Minia University, Egypt 

7Mechanical Engineering and Design, Aston University, School of Engineering and Applied Science, Aston Triangle, 

Birmingham, B4 7ET, UK 

Abstract 

Ground heat exchangers are surrounded by grout material, making it one of the most important 

components in geothermal energy applications since it significantly affects the system's thermal 

performance. The current study reviews the different types of grout materials and compares their 

thermophysical properties. The most critical parameter is the grout's thermal conductivity in which it 

always presents a proportional relation with the system’s efficiency. Numerous factors are involved 

in this review to ascertain theier impact on the grouts’ performance such as flowability, shrinkage, 

moisture content, freezing, heat capacity, strength, permeability, solubility and thermal imbalance. 

The different grouts compared are bentonite, cement, sand, graphite, controlled low-strength material, 

dolomite, and phase change materials. The literature shows that phase change materials are the best 

choices of grouting since they can provide high storage capacity, stability and temperature uniformity. 

The major problem of such materials is their low thermal conductivity. Thus, it is recommended to 

use composite phase change materials to enhance their thermal conductivity and increase the 

storage/retrieval rate. 

Keywords: Geothermal energy, ground heat exchanger, grout material, grouting, borehole heat 

exchanger, backfill material. 
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Nomenclature 

Abbreviations 

BHE borehole heat exchanger 

CLSM controlled low-strength material 

EAHE earth-air heat exchanger 

GE geothermal energy 

GHE ground heat exchanger 

GPP geothermal power plant 

GSHP ground source heat pump 

HVAC heating, ventilating, and air conditioning 

MPCM microencapsulated phase change material 

PCM phase change material 

RES renewable energy source 

TES thermal energy storage 

TRT thermal response test 

1. Introduction 

The development of systems incorporating renewable energy sources (RESs) is a growing field of 

research nowadays, targeting the reduction in pollution which results from the burning of fossil 

fuels [1]. Recently, geothermal energy (GE) is considered as one of the most attracting RESs due to 

its stability compared to other sources such as wind and solar. Latter sources are characterized by 

stochastic and intermittent natures, while GE is almost independent of ambient changes (depending 

on the installation depth). This source can be used to absorb and release heat in energy-related 

systems. There are several types of GE systems such as ground source heat pump (GSHP) [2], earth-

air heat exchanger (EAHE) [3], borehole thermal energy storage (TES) [4] and geothermal power 

plant (GPP) [5]. Ground-coupled heat exchangers have helped in improving heating, ventilating, and 

air conditioning (HVAC) systems such that the GSHP and EAHE have been frequently used as air-

source heat pump alternatives. These two are classified as shallow GE systems since they are based 

on installing a ground heat exchanger (GHE). The second type of GE is the deep system which utilizes 

the heat available in the geothermal fluid and is mostly used for activating GPPs. Several conventional 

power plants were also retrofitted by adopting GPPs and especially in countries rich in GE resources. 

There are two main types of GPPs: binary [6] and flash cycles [7]. Figure 1 shows the possible 

installations of GE systems in addition to the main specifications including advantages and 
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disadvantages. GE is usually considered a low-grade source hence it is the case that another source 

of energy is required to meet the demand. With the recent focus on adopting eco-friendly systems, 

favorable sources to be integrated include either other RESs or the wasted heat from other 

processes [8, 9]. Thus, many research studies have been dedicated to improving the related 

technologies such as heat recovery [10, 11] and energy storage systems [12, 13]. One of the most 

attractive modern types of heat recovery techniques is the heat pipe which has recently become a 

topic of great interest [14, 15]. The development of such technologies requires the enhancement of 

different related parameters: heat exchanger [16, 17], heat transfer [18, 19], fluid [20, 21], flow 

rate [22, 23], channels [24, 25], thermal resistance [26, 27], and energy storage [28, 29]. 

 

Figure 1: The utilizations and characteristics of geothermal energy systems 

The major barrier facing GE systems is the capital cost and especially when using the vertical-type 

configuration and deep systems. Shallow GHEs are installed in borehole heat exchangers (BHEs) [30] 

which are composed of pipes and grout material, as shown in Figure 2. Grout material is an 

intermediate medium between the GHE and the soil [31]. It is a critical component in the BHE and 
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known as backfilled material. Grout plays a significant role in providing the appropriate heat transfer 

rate conditions to achieve the required thermal performance. Thus, the aim of selecting the suitable 

grout material is to enhance heat transfer between the ground and working fluid to increase the 

efficiency of the BHE. The thermal properties of the ground must also be investigated before 

installation which is usually done by the help of a thermal response test (TRT). 

Thermal conductivity and heat capacity are the most critical parameters affecting the performance of 

the BHE [32]. There are mainly three types of GHEs: vertical [33], horizontal [34], and coiled [35]. 

In all types, the grout's thermal conductivity is almost proportional to the BHE’s effectiveness. Sliwa 

and Rosen [36] compared the single U-tube, double U-tube, and co-axial vertical GHEs to ascertain 

the grout’s heat transfer's effect on the effective heat transfer coefficient of the BHE. The results 

showed that the grout’s thermal conductivity has almost the same influence in all cases regarding the 

effective heat transfer coefficient. 

 

Figure 2: Borehole heat exchanger; (a) side view and (b) cross-sectional view 

The current research study presents a review of the different types of grout materials involving 

cement, bentonite, sand, graphite, dolomite, controlled low-strength material (CLSM) and phase 
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change materials (PCM). These are divided into categories: conventional grouts, additives, and latest 

versions. The most important parameters affecting the performance and cost of the GE system are 

presented to find out the optimal grout material that can be used in each specific case. These include 

the amount of moisture, heat capacity, thermal conductivity, grout mix, permeability, porosity, 

mechanical strength, shrinkage, flowability and freezing effect. 

2. Grouting 

During the installation of GHE, a gap is created between the pipes and ground. Thus, a backfilled 

material is inserted to fill the space inside the BHE. The objective of this material is not only to fill 

the gaps; while it is also used to provide a convenient medium for heat transfer and avoid pipes’ 

damaging. It is usually recommended to use particles having small sizes to increase the heat capacity 

of the grout. However, it is essential to avoid affecting the thermal conductivity of the selected 

material. Clay, silt and coarse are the commonly used grout sizes. Selecting the suitable size is 

important to reduce the need for constructing long boreholes because the length of BHE depends on 

the choice of grout material. For example, as the thermal conductivity of the grout increases, the 

required length of borehole length decreases. Figure 3 presents the most common types of grout 

materials that could be used in GE applications. 
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Figure 3: Commonly used grout materials in geothermal energy systems 

2.1 Conventional grout materials 

Bentonite and cement are conventional types of grout materials used in BHEs. Table 1 presents a 

comparison between these materials in terms of thermal conductivity and thermal resistance. It can 

also be seen that these parameters are affected by the load, spacers and grout’s thickness. The 

flexibility of bentonite makes it a good sealant to be used in GE and water well systems. Common 

types of bentonite used are sodium, calcium, and potassium. It is considered as one of the best fluid 

barriers due to its low permeability preventing fluids from passing easily. In many cases, bentonite is 

mixed with other materials forming a grout mix aiming to enhance the thermal conductivity. Cement, 

water, sand, and graphite are the commonly used bentonite additives. Pahud and Matthey [37] 

compared different types of grout mixtures to conclude that sand and quartz mixture has the lowest 

thermal resistance amongst the grouts studied. The grout-based materials compared were bentonite, 

cement, and quartz. The study was performed by applying TRTs on six different boreholes in which 

the double U-pipe was used as GHE. Bentonite-based grouts were also compared by Lee et al. [38] 

to ascertain the effect of viscosity and salinity on thermal performance of the grout materials. After 

applying experimental testing, the authors deduced that the interaction between bentonite and salinity 
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can cause significant volume reductions. This was considered a crucial factor leading to an incomplete 

borehole filling, which can negatively affect the GHE’s performance. Apart from that, there are also 

some other parameters that can inhibit the complete backfilling of BHEs such as density and viscosity 

differences. 

The second type of conventional grout materials used in GE systems is cement. It could be found in 

several types; however, the commonly used cement-based grout is the Portland cement. It was 

compared with gravel by Choi and Ooka [39] such that the first grout was formed of cement and 20% 

of silica sand while the second was formed of gravel with a grain size of 8-15 mm. The results showed 

that the borehole thermal resistance was higher in the case of cement and needed more time to be 

backfilled compared to that of gravel.  The rate of heat injection was also considered as an important 

parameter in which it was varying between 45 W/m and 90 W/m. The authors reported that the heat 

injection rate has a more significant effect than the type of grout on the BHE’s thermal performance. 

This change in heat injection improved the thermal performance in case of cement and gravel by 8.7% 

and 9.8%, respectively. Borinaga-Treviño et al. [40] compared the different types of cement-based 

grout materials and aggregates to investigate the corresponding thermal conductivities, water content 

and mechanical properties. Silica sand showed the highest thermal conductivity compared to pure 

cement and other tested aggregate materials such as limestone sand, electric arc furnace slag, 

construction waste and demolition waste. The authors also studied the differences between natural 

and recycled materials considering the replacement of bentonite by cement as a grout-based material 

in the BHE. Different types of mortars and aggregates were compared in which water, cement and 

plasticizer were used as mortars while the aggregates were formed of construction/demolishing waste, 

electric arc furnace slag, silica, and limestone. 

Table 1: Comparison between the conventional grout materials; bentonite and cement 

Reference Borehole heat 

exchanger 

Effective thermal 

conductivity (W/m.K) 

Calculated thermal 

resistance (m.K/W) 

Pahud and Matthey [37] 

13 cm bentonite 

without spacers 

0.7 0.240 

13 cm bentonite with 

spacers 

0.7 0.142 
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12 cm bentonite 

without spacers 

0.7 0.150 

12 cm bentonite with 

spacers 

0.7 0.223 

Choi and Ooka [39] 

Cement (2 kW heater 

TRT) 

1.962 0.159 

Cement (4 kW heater 

TRT) 

2.076 0.155 

 

2.2 Additives 

The thermal resistance of the BHE depends on the characteristics of its components: pipes, grout 

material, and soil. The components’ performances depend significantly on each other such that any 

change in one of them may affect the other two. For example, if the ground is poor in terms of 

moisture, it is necessary to choose a grout with high thermal conductivity to enhance the heat transfer 

rate between soil and GHE. However, conventional grouts cannot offer such high thermal 

conductivities, making it essential to introduce grout mixtures. Usually, as the grout thermal 

conductivity increases, the borehole thermal resistance decreases, resulting in a better thermal 

performance. Endeavors have focused on investigating several types of grout mixtures and compared 

them to conventional materials as shown in Table 2. Aluminum shavings and sulpho-aluminate 

cement were studied by Blazquez et al. [41] to improve the thermal conductivity of sand-based grout. 

The results showed that these materials can be used as additives since they have good thermal 

conductivity and mechanical properties. It was deduced that saturated sand-aluminum shavings and 

aluminum cement-sand have the highest thermal conductivities. Among the compared materials, the 

grout mixture that corresponded to the lowest thermal conductivity was formed of bentonite and 

superplasticizer. Material shavings are usually characterized by their small sizes in which this helps 

achieving almost uniform distribution. 

Graphite is one of the most used additives that have been integrated into conventional grout materials 

to improve the thermal performance due to its stability regarding its carbon content. The graphite’s 

contribution to the thermo-physical properties of grouts was studied by Erol and François [42]. 

Graphite was better introduced as an additive and not as grout-based material because when pure 
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graphite was used the performance of the BHE decreased. Additionally, the flowability and strength 

were negatively affected in the presence of large amounts of graphite. Thus, the authors found that a 

5% of graphite would be the best percentage resulting in the highest grout enhancement. The graphite 

content was further studied by Delaleux et al. [43] to enhance the grout material's thermal 

conductivity. The study aimed to use a percentage of compressed natural graphite less 10%. The 

results showed that the overall heat transfer could be 1.5 times enhanced while using 5% of graphite 

in the mixture. This was obtained considering other important factors such as the particle’s size and 

amount of moisture in the grout. Graphite is usually found in two different forms: flake and expanded. 

Both are formed of high percentages of natural graphite in which the former and latter correspond to 

values above 94% and 99%, respectively [44]. Expanded graphite is more used as grout additive than 

the flake-type due to its high surface area and sealing properties. The expanded type is manufactured 

by passing through an oxidation reaction and expansion process reaching a ratio of 200-300. 

Additionally, the important factor that makes graphite a good additive is the insolubility in water. 

Thus, when it is used as a grout material, there is no risk of contamination even if it interacts with 

water. 

Another commonly used additive is sand, which has been frequently utilized to enhance conventional-

based grout materials' performances. Blázquez et al. [41] investigated the effect of aluminum 

shavings’ amount on sand-based grout's thermal conductivity. Below 2.5% of aluminum, the grout's 

thermal conductivity was proportional to the amount of shavings, while the relationship was inverted 

at higher percentages. The authors deduced that when using high amounts of aluminum shavings, the 

number of holes will increase, resulting in an increase in the grout’s thermal resistance. It was also 

expected that these results would change at different amounts of moisture. Kim and Oh [45] compared 

two types of cement-based grouts to ascertain the effect of additives on the thermal conductivity in 

which water and sand were used as grout additives. The addition of water showed a better 

performance compared to that of sand, while the change in sand content percentage was more 
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significant. The comparison was carried out, taking into consideration different saturation levels (see 

Table 2). 

Table 2: The effect of introducing additives into grout materials 

Reference Grout Additive 
Additive 

percentage/ratio 

Thermal 

conductivity 

(W/m.K) 

Blazquez et al. [41] Sand 
Aluminum 

shavings 

0.5% 3.270 

2% 3.752 

3.5% 3.620 

Erol and François [42] 
Homemade 

admixture 

Graphite 0% 1.5 

Natural graphite 5% 2.3 

Synthetic graphite 

150 μm 
5% 2.5 

Delaleux et al. [43] Bentonite Graphite 
- 1.5 

5% 5 

Kim and Oh [45] 

(Water/Cement ratio = 0.3) 
Cement Sand 

S/C = 0 
Saturated: 1.06 

Air-dried: 0.79 

S/C = 0.5 
Saturated: 1.62 

Air-dried: 1.28 

S/C = 1 
Saturated: 1.87 

Air-dried: 1.58 

 

2.3 Controlled low-strength material 

CLSM is a concrete mix suitable for backfilling applications such as BHEs in which it is characterized 

by low strength, good flowability, low shrinkage and high thermal conductivity [46]. Natural sand 

and marine dredged soil mixture were integrated into CLSM-based grout by Do et al. [47]. The aim 

was to reduce the grout material’s bleeding rate to decrease the geothermal system's capital cost. The 

studied mixture's thermal conductivity was suitable for BHEs such that it was varying between 

1.4 W/m.K and 1.82 W/m.K. The commonly used CLSM types are composed of fine aggregates, 

cement, fly ash, and water. Usually, sand and coal are used as fine aggregates. The heat exchange rate 

in the BHE was investigated by Do et al. [48] while comparing different CLSM mixtures with 

conventional grout materials. The composition ratio of CLSM was also varied to select the optimal 

material and study its effect on the total cost. The results showed that the incorporation of all CLSM 

types can enhance the GE system’s performance regarding the thermal properties and economical 



11 

 

aspect. Two types of GHEs were involved in the mentioned study that are the U-type and spiral-type. 

The geothermal system's total construction cost was reduced by 20.8% in a study performed by 

Kim et al. [49] while using a by-product-based CLSM with bentonite-sand mixture. Quartz-based 

mine tailings and pond ash were used as fillers and aggregates, respectively. Pond ash was introduced 

as an alternative to natural sand. The aim was to enhance the mechanical strength of CLSM. 

Quartz-based mine tailings and pond ash are usually formed of SiO2, AL2O3, Fe2O3, CaO, MgO, 

MnO, Na2O, K2O, TiO2 and P2O5. The difference between the two materials (quartz and pond ash) is 

the ratio of each chemical substance. The addition of such materials into CLSMs must be based on 

compromising between the mechanical and thermal properties because this addition may be 

accompanied by a decrease in grout's thermal conductivity. The thermal conductivity of CLSMs can 

be further enhanced by decreasing the fineness modulus as reported by Do et al. [50]. This was 

deduced while comparing the excavated soil and pond ash in CLSM mixtures. 

2.4 Dolomite 

Calcium magnesium carbonate rock is known as dolomite and can be used as a backfill material in 

boreholes to reduce the GE system’s installation capital cost. Dolomite drilling cuttings were 

investigated by Luo et al. [51] and compared with bentonite and cement mixtures. The application 

was based on a GSHP in which a TRT was carried out to study the system's heat transfer performance 

and economic feasibility. The reduction in cost using dolomite drilling cuttings was significant 

compared to that of concrete and bentonite-quartz.  The corresponding reductions were 14.87% and 

17.16%, respectively. The geological profile of the BHE studied was formed of several layers of 

dolomite drilling cuttings with a total depth of 100 m. The thickness of each layer depends on the 

characteristics of ground and grout. The shallower layer was backfilled with 2.5 m of gravel and clay 

while the deeper layers were backfilled with dolomite. As for bentonite-based grout, the optimal 

mixture ratio of dolomite to bentonite was 2 to 8 and the thermal conductivity of this mixture was 

1.96 W/m.K. The thermal conductivity was higher in case of using cement mixture in which the value 

was 2.19 W/m.K considering an optimal dolomite to cement mixture ratio of 3 to 7.  
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2.5 Phase change materials 

There are two main types of TES systems that are the sensible and latent [52]. Several types of 

sensible storage materials can be used to store/release heat such as water, rock, oil, carbonate salt, 

steel, and concrete. These materials store and release heat by increasing and decreasing their 

temperature, respectively [53, 54]. However, latent storage materials store/release energy by 

changing their phase and can be found in the form of inorganic, organic and eutectics [55, 56]. The 

most used PCM is the paraffin wax which has been introduced into several types of applications [57, 

58]. The use of PCM has increased considerably recently due to its various advantages compared to 

sensible materials [59]. The most important factors that characterize latent TES systems are the high 

heat capacity and stability. The high capacity of PCM facilitates the reduction in required TES tank 

volume. These materials almost operate at constant temperatures which can make the energy systems 

more stable, while the phase change temperature must be chosen precisely based on the system’s 

operating conditions. PCM can be used in all types of energy systems such as heating, cooling, and 

power generation. For example, it can be added as an insulation in HVAC systems [60, 61]. Also, 

PCM help in increasing the penetration of solar energy which can be done by storing the excess of 

energy to overcome the stochastic and intermittent nature of solar energy [62, 63]. PCM has an 

important role in enhancing heat recovery techniques to retrofit existing energy-related systems [64]. 

The major problem of such materials is the low thermal conductivity compared to the other storage 

materials. Thus, they are mostly used in long-term storage applications. Many studies have been 

dedicated to improving the thermal performance of PCM. It was found that several types of materials 

could be introduced to increase the heat transfer rate such as water, copper, metal foam and expanded 

graphite. 

In shallow GE systems, thermal pollution is one of the most critical problems that may occur. This 

could be found in the form of heat accumulation and thermal depletion in the case of cooling and 

heating, respectively [65]. Thus, PCM can be incorporated as grout materials to increase the capacity 

and reduce the effect of high peak loads (see Table 3 and Figure 4). Even under normal conditions, 
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the addition of PCM can reduce the total volume of installation and, hence, decrease the capital cost. 

This encourages to use horizontal and shallow GHEs instead of vertical and deep systems. Another 

factor that helps to reduce the volume of installation is the low soil thermal interference radius which 

can decrease the required space between the GHE’s pipes. The soil thermal interference radius can 

be reduced by 13% using PCM instead of soil backfill as reported by Yang et al. [66]. Kong et al. [67] 

investigated the use of microencapsulated phase change materials (MPCM) to improve the coefficient 

of performance of a GSHP in which it was enhanced up to 4. PCM can also decrease the outlet 

temperature fluctuations of EAHEs. Liu et al. [68] compared the use of PCM in the EAHE and 

traditional system to show that the temperature fluctuations can be reduced up to 31%. PCM can also 

be used as a TES tank to store energy excess, especially in hybrid systems incorporating GE and solar 

energy [69]. 

Table 3: Summary of the phase change materials presented as grouts in the current review paper 

Reference Phase change 

material 

Phase change 

temperature 

(°C) 

Thermal 

conductivity 

(W/m.K) 

Density 

(kg/m3) 

Latent heat 

(kJ/kg) 

Yang et al. [66] 

66% decyl acid & 

44% lauric acid 20.55 0.235 880 133.7 

Oleic acid 8.11 0.330 881 94.5 

Kong et al. [67] 

MPCM (methyl 

stearate & 

polyurea) 

36.90-41.70 0.559-0.589 975- 983 9.0- 20.9 

Liu et al. [68] RT-22 ~22 0.21 779-870 133.4-165.5 
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Figure 4: Phase change materials; advantages, types and improved versions 

3. Grout material testing 

Grout materials should always be tested before being installed to check if the thermal and mechanical 

properties are suitable for the BHE in terms of performance and structure. The test used more 

commonly is the durability test which consists of various wet and dry cycles. The test starts by placing 

the material in a water tank for approximately a day. Then, it should be dried in ambient conditions 

for two days. After that, the thermal performance and mechanical strength must be measured and 

compared to the initial values. The properties that are usually taken into consideration in such tests 

are the thermal conductivity, compressive strength, and flexural strength. This test was further 

enhanced by Indacoechea-Vega [70] in which it was recommended to apply freeze-thaw cycles in 

addition to the wet-dry cycles. This test is known as the double durability test and is mainly used to 

determine the optimal water to grout ratio which significantly affects the freezing status. This ratio 

depends on the type of grout material and amount of heat addition/rejection. It is also essential to 

examine the grout material before installation to avoid contamination which may occur due to 
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underground chemical reactions. Contamination may cause failure in the system’s operation or a 

decrease in its performance. It is better to use additional amounts of water at high loads as reported 

by Indacoechea-Vega et al. [70] since this will increase the workability of grout. It was also 

mentioned that a high amount of water is preferable in the presence of stability and when the system 

is thermally balanced. In some cases, it would be necessary to use another source of energy to 

compensate the average heat/coolth lost which usually occurs at high loads. Thus, hybrid geothermal 

systems are considered as a solution for thermal imbalance. The type of geothermal hybrid most often 

used is the solar-geothermal system [71]. However, solar energy's stochastic and intermittent nature 

make it crucial to integrate fast response energy storage systems [72]. Such combinations are 

frequently used in remote islands and microgrid district energy systems [73]. 

4. Moisture content 

One of the most important factors affecting the heat transfer rate in grout materials is the degree of 

saturation which represents the amount of moisture in grout. This was confirmed by Kim and Oh [45] 

in which the change in amount of moisture significantly affected the thermal conductivity and specific 

heat capacity of the grout material. The results showed that the relation between degree of saturation 

with both properties was directly proportional. The same result was achieved by Do et al. [50] in 

which the CLSM was used as grout. Kim et al. [32] mentioned that this relation will be reversed after 

reaching the degree of saturation. This means that the amount of water in the grout must not be 

increased at high degrees of saturation. Some important factors may change the degree of saturation’s 

effect, such as mixture ratio [74] and matric suction [50]. The latter represents the pressure exerted 

by the dry material on the surrounding to equalize the water content. Do et al. [50] deduced that the 

relationship between matric suction and degree of saturation is independent of mixture proportions 

and do not present a linear relation such that when the matric suction was less than 100 kPa, the 

degree of saturation decreased slightly. However, at high values of matric suction, the degree of 

saturation’s drop rate was increased. 
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The risk of using a high degree of saturation needs to be considered as an important factor since it 

has a significant effect on the grout’s freezing which may cause critical damage to the GHE’s pipes 

and grout material. This may occur due to ice formation followed by volume expansion. This would 

probably happen at high heating loads. In such cases, it is recommended to use anti-freeze mixture 

(low freezing point). In some applications, the GHE is installed underneath the building. This can 

also increase the risk of freezing which may cause a damage in the building's foundation after a certain 

time [75]. In the absence of heat compensation, the freezing can expand under the ground and cause 

severe damages. Additionally, some other factors can influence the freezing effect, such as 

soil/grout’s permeability and porosity. Erol and Francois [76] suggested using a grout material having 

a thermal conductivity almost equal to that of the surrounding soil to avoid freezing. The results also 

showed that the grout materials having low permeability and high porosity may be fractured when 

applying the freezing test. 

5. Discussion 

Grout material plays a crucial role in the performance of GE systems. It must be selected precisely 

whilst balancing between the thermal and mechanical properties. The grout is an intermediate 

medium between the ground and GHE. Thus, it must provide convenient conditions for heat transfer 

as well as protecting the GHE from being damaged when subjected to external pressure. Bentonite 

and cement have been considered as conventional grout materials and used in many BHE installations 

previously due to their high strength and low permeability. However, they have exhibited critical 

issues such as low thermal conductivity and volume reductions. Additionally, their mechanical and 

thermal properties would change when interacting with water. Modern versions of grout materials 

integrate different additives into conventional types. One of the most used additives is graphite which 

can significantly increase the thermal performance of the grout. It can help avoiding chemical 

reactions from occurring since it is insoluble in water. Besides that, the cost of installation and grout 

material used need to be taken into consideration. These encourage to use drilling cuttings such as 

dolomite to reduce the capital cost of BHE, while it is still unsuitable for all cases because it is fragile. 
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Another frequently used grout is the CLSM, which is characterized by its good flowability and low 

shrinkage. However, such materials' low mechanical strength is also a major problem that necessitates 

the integration of additional supporting materials. Table 4 presents a summary of the specific 

properties of the different reviewed grout materials. 

Table 4: Advantages/disadvantages of the grout materials reviewed in the current paper 

Grout material Advantages Disadvantages 

Bentonite - Flexibility 

- Low permeability 

- Low thermal conductivity 

- Volume reductions 

Cement High strength Low thermal conductivity 

Graphite - High thermal conductivity 

- Insoluble in water 

- Low flowability 

- Low strength 

Dolomite Low cost Fragile 

Controlled low-strength material - Good flowability 

- Low shrinkage 

Low strength 

Phase change materials High capacity - Low thermal conductivity 

- Leakage 

 

Recommendations 

The type of grout material can significantly affect the soil thermal interference radius. This parameter 

is very important in BHEs since it can increase/decrease the capital cost of installation, required 

borehole length and performance of the GE system. Additionally, the thermal radius cannot be 

controlled in the absence of heat compensation. This demands the use of modern types of grout 

materials such as PCM which are mainly characterized by high storage capacity. PCM can provide 

stability and reduce the risk of thermal imbalance that may occur at high loads and consequently 

enhancing the GE system’s performance. However, many types of PCM do not have adequate heat 

transfer properties as compared with other materials. In these cases, it would be preferable to use 

composite [77] and MPCM [78]. Another method to enhance the thermophysical properties of PCM 

is to incorporate nano particles such as copper. This type of storage material is known as nano-

enhanced PCM [79, 80]. The second problem of conventional PCM is the risk of leakage [81]. 

Therefore, shape-stabilized PCM could be used in which they are based on adding a supporting 

material to ensure stability and avoid leakage. One of the commonly used PCM-based shape-
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stabilized material is polyethylene glycol [82]. In some applications, the choice of grout material 

cannot solve the problem of thermal imbalance due to the extreme high loads meaning that GE will 

not be able to stand alone. In such cases, hybridization would be the best solution to provide additional 

amount of power when needed. Figure 5 presents the important parameters that affect the selection 

of grout materials including risks, positive/negative factors and required assessments. 

 

Figure 5: The factors affecting the selection of grout materials 

Grout material selection 

Selecting the most suitable grout material is a complex process which needs to be carried out for each 

specific application depending on the available conditions and characteristics of the GE system. 

Conventionally, bentonite and cement were the most frequently used types of grout due to their high 

mechanical strength. The thermal conductivity of these grout materials can be enhanced by using 

additives such as graphite, aluminum shavings and CLSM. However, all these mentioned materials 

cannot ensure stable output or avoid thermal imbalance. Thus, PCM is attractive with its high storage 

capacity and phase change temperatures near to the operating and surrounding temperatures. These 

characteristics contribute to reduction in soil thermal interference radius and provision of stability. 
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Therefore, grout mixtures must be chosen to create a good balance between the mechanical strength, 

thermal conductivity and storage capacity of conventional grouts, additives and PCM, respectively. 

6. Conclusion 

The high capital cost of GE system’s installation makes it essential to study the different components 

of the BHE. The current study highlighted the importance of investigating grout materials whilst 

presenting the effects of grout properties on system performance. Several types of materials were 

reviewed such as bentonite, cement, sand, graphite, CLSM and PCM. Each type should pass the 

durability/double durability test before being used. This is necessary to ensure the endurance of the 

selected grout material as well as to study its thermal and mechanical properties. To select the 

appropriate grout material it is necessary to examine the pressure inside the BHE, inlet/outlet fluid 

temperature and load. Bentonite and cement were considered as conventional grouts and had 

presented almost similar results in the previous reviewed investigations. These materials were 

previously used since they represent good sealants and have high mechanical strengths. The major 

barrier facing bentonite and cement is the low thermal conductivity. Thus, sand and graphite can be 

introduced as additives to enhance the thermal performance of the grout mix. Another factor that can 

enhance the heat transfer is the degree of saturation. However, after exceeding the full saturation 

point, the increase in the degree of saturation may be accompanied by negative effects. The GE 

system's capital cost is directly related to the required size of BHE and the cost of backfilling material. 

Thus, dolomite drilling cuttings could be used to backfill the BHE to reduce the cost of installation. 

According to the reviewed literature, CLSM and PCM have been considered as attractive grouts. The 

former is characterized by low shrinkage and high flowability in which these are suitable properties 

for grouting. However, the low strength of CLSM makes it inappropriate for standing alone. The 

latest version of grout material is the PCM in which it provides several advantages regarding capacity 

and stability mainly. It can reduce the soil thermal interference radius and avoid thermal imbalance 

which may occur at high load or in cases where there is insufficient heat compensation. Selecting 

composite PCM is highly recommended, allowing heat transfer between grout and soil/GHE to be 
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optimized. This could be done by integrating additional elements such as water and graphite. Further 

studies should be dedicated to exploring new composite PCM to be more suitable for BHEs. Such 

grout materials must be specially prepared to avoid the reduction in PCM’s high capacity when 

enhancing heat transfer by means of high thermal conductive additive materials. 
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