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Abstract: We propose several different types of construction principles for new classes

of Toda field theories based on root systems defined on Lorentzian lattices. In analogy

to conformal and affine Toda theories based on root systems of semi-simple Lie algebras,

also their Lorentzian extensions come about in conformal and massive variants. We

carry out the Painlevé integrability test for the proposed theories, finding in general only

one integer valued resonance corresponding to the energy-momentum tensor. Thus most

of the Lorentzian Toda field theories are not integrable, as the remaining resonances,

that grade the spins of the W-algebras in the semisimple cases, are either non integer or

complex valued. We analyse in detail the classical mass spectra of several massive variants.

Lorentzian Toda field theories may be viewed as perturbed versions of integrable theories

equipped with an algebraic framework.

1. Introduction

Toda theories are one of the best studied and understood classical and quantum integrable

systems. The integrability of their classical discrete lattice versions [1] is known for a long

time and has been established by the construction of explicit Lax pairs [2] as well as the

application of the Painlevé integrability test [3]. Their continuous field theoretical versions

are scalar field theories defined by Lagrangians of the general form

Lg
−n

=
1

2
∂µφ · ∂µφ− g

β2

r
∑

i=−n

eβαi·φ, (1.1)

with coupling constants g, β ∈ R or β ∈ iR. The r + n+ 1 vectors αi of dimension ℓ+ 2m

are taken to be roots on a lattice associated to some Lie algebras and the scalar field φ(x, t)

has in general ℓ + 2m components, i.e. φa(x, t) with a = 1, . . . , ℓ + 2m. Folded versions

may also been constructed in which some field components are identified in very specific

ways, see e.g. [4].

Many versions of the Lagrangians in (1.1) have been well studied. For instance, for

ℓ = r, m = 0, n = −1 with αi taken to be the simple roots of a semisimple Lie algebra

http://arxiv.org/abs/2005.13582v1
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g, the Lagrangians Lg1
corresponds to the well known description of conformal Toda field

theory, see e.g. [5, 6]. When ℓ = r, m = 0, n = 0, with α0 taken to be the negative of the

highest root, the Lagrangians Lg0
corresponds to affine Toda field theory with r massive

scalar fields, see for instance e.g. [7, 8]. Similarly as for their discrete counterparts, the

classical integrability of these continuous systems has been established by the explicit

construction of Lax pairs or zero curvature expressions [9, 10, 11, 12]. Since the classical

equations of motion are nonlinear integrable equations, they possess solutions of with very

rich solitonic structures [13, 14, 15, 16, 17]. One of the most remarkable properties of

these systems is the fact that the quantum scattering matrices for affine Toda field theories

have been constructed to all orders in perturbation theory by using what is referred to as

the bootstrap approach [18, 19, 20, 21, 7, 22, 23]. For theories based on simply laced Lie

algebras this has been possible due to the fact that the classical mass ratios [8] are preserved

to all orders in perturbation theory [18, 19, 20, 21, 24]. For non-simply laced theories the

masses renormalize with different factors, but, nonetheless, closed exact expressions for the

scattering matrices were still found [25, 26] by exploiting properties of q-deformed Coxeter

elements. Once again the root space provides the general framework, where in this case

the dual affine algebras correspond to the two classical limits of very weak or very strong

coupling. While the Yang-Baxter equation is trivially satisfied by the scattering matrices

describing theories with real coupling constants β ∈ R, it possesses non-trivial solutions

characterized by their quantum group symmetries when β ∈ iR is taken to be purely

imaginary [27]. The S-matrices factorize into the so-called minimal and CDD factor, with

the former describing the scattering in the Restricted Solid-on-Solid (RSOS)-models and

the latter containing the coupling constant.

While all of the above theories are integrable and based on root systems that lead to a

positive definite or semi-definite Cartan matrix, some attempts have been made to extend

the theories in (1.1) and formulate them on root systems corresponding to hyperbolic Kac

Moody algebras [28]. These algebras have been fully classified [29] and proven to be very

useful in a string/M theory context [30], with E10 being a popular example. However, it has

turned that E11, which is not a hyperbolic Kac Moody algebra [31], is even more useful.

It belongs to the larger class of algebras that are Lorentzian [32, 33, 34]. A particular

subclass of them studied in [33], is defined in terms of their connected Dynkin diagrams

so that the deletion of at least one node leaves a possibly disconnected set of connected

Dynkin diagrams each of which is of finite type, except for at most one affine type. In [34]

an even larger class of n-extended Lorentzian Kac Moody algebras was introduced. Here

the aim is to investigate the properties of Toda field theories described by the Lagrangians

in (1.1) based on these Lorentzian type of root systems.

Since the algebras discussed come along with a classification scheme based on their

root systems, the above results have proven very successfully that the physical properties

of the theories based on them can be characterized very systematically. In has turned

out that theories in the same subclass share the same general properties. These subclasses

may be defined for instance by being simply laced or non-simply laced, semisimple or affine,

having real or purely imaginary coupling constants, being hyperbolic, etc. It has turned

out that Toda field theories based on root systems corresponding to hyperbolic Kac Moody
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algebras are not integrable as they do not pass the Painlevé test [28]. However, similarly as

their integrable cousins, they, together with the theories of Lorentzian type discussed here,

provide a systematic framework for the study of nonintegrable quantum field theories [35].

We take these two aspects as our main motivation to study Lorentzian Toda field theories.

To set up these new systems we need to specify not only the limits in the sum in

(1.1), the dimension of the representation space of the roots and the choice of the highest

root similarly as for the conformal and affine cases, but in addition we also have to re-

defined the inner product in the kinetic term between the derivatives of the fields and in

the potential term between the roots and the scalar field. These new inner products will

place the theories onto Lorentzian lattice.

Our manuscript is structured as follows: In section 2 we introduce our definition and

some key properties of the Lorentzian inner products. In addition, we introduce several

matrices that are central for our analysis. In section 3 we employ these products to set

up our Lorentzian Toda field theories. In section 4 we carry our the Painlevé integrability

test for these theories. The test can be entirely reduced to an eigenvalue problem of what

we refer to as the Painlevé matrix, that we analyse in section 5. In section 6 we discuss in

detail the classical mass spectra of Lorentzian Toda field theories produced from different

schemes. Our conclusions are stated in section 7.

2. Lorentzian products, the K, M, Λ, D and Painlevé matrices

The main difference between theories based on root systems for semisimple or affine alge-

bras is the re-definition of the inner product between the derivatives of the scalar fields

and between the roots and the scalar fields in kinetic and the potential term in (1.1), re-

spectively. Following [33, 34], we define here the following Lorentzian inner products for

two ℓ+ 2m dimensional vectors x = (x1, . . . , xℓ+2m) and y = (y1, . . . , yℓ+2m) as

x · y :=

ℓ
∑

β=1

xβyβ −
m
∑

β=1

(xℓ+2β−1yℓ+2β + xℓ+2βyℓ+2β−1) . (2.1)

We extend the definition of this product to matrix multiplication in a natural way. For a

N × (ℓ+ 2m)-matrix A and a (ℓ+ 2m)×N -matrix B, we define

(AB)ij :=
ℓ
∑

β=1

AiβBβj −
m
∑

β=1

[

Ai(ℓ+2β−1)B(ℓ+2β)j +Ai(ℓ+2β)B(ℓ+2β−1)j

]

, i, j = 1, . . . , N.

(2.2)

In particular, taking now N = r + n + 1 we define a (r + n + 1) × (ℓ+ 2m)-matrix M

with rows comprised of r + n+ 1 root vectors αi = (α1
i , . . . , α

ℓ+2m

i )T of dimension ℓ+ 2m,

i.e. Miβ := αβ
i . When r + n + 1 ≤ ℓ + 2m the matrix M possess a right inverse, which is

obtained by defining a (ℓ+ 2m)× (r+n+1)-matrix Λ with columns comprised of r+n+1

fundamental weight vectors λi = (λ1
i , . . . , λ

ℓ+2m

i ) of dimension ℓ+2m, i.e. Λβi := λβ
i . Hence

with

Miβ := αβ
i , Λβi := λβ

i , i = 1, . . . , r + n+ 1; β = 1, . . . , ℓ, (2.3)

– 3 –
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we obtain

(MΛ)ij = αi · λj = δij = λi · αj =
(

ΛTMT
)

ij
. (2.4)

Moreover, we may employ M , MT and Λ, ΛT to factorize the symmetric Cartan matrix K

and their inverse K−1, respectively, as

(

MMT
)

ij
= αi · αj = Kij , and

(

ΛΛT
)

ij
= λi · λj = K−1

ij . (2.5)

In general the Cartan matrix is defined as 2αi · αj/α
2
j , which only in the symmetric case

may be reduced to αi ·αj when taking the length of the roots to be 2. Since below we shall

also encounter roots of length 0, we adopt here the symmetric definition. When summing

over one index of the inverse symmetric Cartan matrix we obtain some constants

Dk :=

r
∑

j=−n

K−1
kj = ρ · λk, k = −n, . . . ,−1, 0, 1, . . . , r, (2.6)

that encode information about the existence of SO(1, 2) and SO(3) principal subalgebras

and the decomposition of the root lattices with their corresponding algebras [33, 34]. As

stated in (2.6) the constants Dk can also be computed directly from their Lorentzian inner

products of weight vectors λk with the Weyl vector ρ. Using these constants to define a

diagonal matrix D := diag(Dr, . . . ,D−n) we introduce a further matrix

P := 2DK, (2.7)

referred to here as the Painlevé matrix. As we will see below the Painlevé integrability test

can be reduced entirely to an eigenvalue problem for this matrix.

In what follows below we will take all inner products and matrix multiplications as

specified in this subsection.

3. Perturbed L
g
−1
-Lorentzian Toda field theory

Let us now discuss some theories with the root system enlarged to a Lorentzian lattice. We

start by illustrating the construction principle for the perturbation of some over extended

algebra g−1.

To define these systems we need to enlarge the root space. Adopting the conventions

from [33, 34], the root lattice Λg of the semisimple Lie algebra g is extended by a self-dual

Lorentzian lattice Π1,1 to

Λg
−1 = Λg ⊕Π1,1. (3.1)

The root space Π1,1 contains two null vectors k and k̄ with k ·k = k̄ · k̄ = 0, k · k̄ = 1 and two

vectors ±
(

k + k̄
)

of length 2. The simple root system consists in this case of the r simple

roots α1, . . . , αr of the semisimple Lie algebra g, the modified affine root α0 = k−
∑r

i=1 niαi,

with ni ∈ N denoting the Kac labels, and the Lorentzian root α−1 = −
(

k + k̄
)

.

For the corresponding Lagrangians the construction is summarized as follows

Lg1

α0→ Lg0

α
−1→ Lg

−1

α
−2→ L

g̊
−2
. (3.2)
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We have started here with the standard conformal Toda field theory Lg1
and added the

modified root α0 to obtain the massive affine Toda field theory Lg0
. Adding the root α−1

yields the scalar field theory described by the Lagrangian Lg
−1
, which turns out to be

conformal and can be identified with a theory that is sometimes referred to as conformal

affine Toda field theory [36, 37]. The corresponding algebra is an over extended algebra,

of which for instance (E8)−1 aka E10 is of relevance in a string/M-theory context [30]. We

discuss now this theory in some detail before we state how the root α−2 is constructed in

order to obtain the massive L
g̊
−2
-theory.

The classical equations of motion for Lg
−1
, resulting from ∂µ [∂L/∂(∂µφa)] = ∂L/φa,

are

�φa +
g

β2

r
∑

i=−1

αa
i e

βαi·φ = 0, a = 1, . . . , ℓ+ 2. (3.3)

We may view the potential in Lg
−1
as a perturbation of an affine Toda field theory with

potential Vg0
so that Vg

−1
= Vg0

+ δVg0
, where δVg0

corresponds to the term in the sum

related to α−1.

Since Vg0
possess a proper vacuum around which one may expand, it is clear that the

additional term δVg0
will spoil this property, unless it vanishes by itself for the value of

the vacuum, and the right hand sides in (3.3) only vanish for αi · φ → −∞. An alternative

way to verify whether a theory is conformally invariant or massive is to use the well-

known property of the trace of the improved energy momentum tensor, that is zero or

nonvanishing, respectively. For this purpose we first transform the equation of motion into

a more convenient form by defining a new field Φi := αi · φ− β−1 ln(2α−2
i ), such that the

equation of motion (3.3) converts into

�Φj +
g

β2

r
∑

i=−1

Kjie
βΦj = 0, (3.4)

with Kij := 2αi ·αj/α
2
j denoting the Cartan matrix, which we assume here to be symmetric,

i.e. α2
j = 2. Defining further the fields ϕi through the relations Φi = (Mϕ)i, where the

matrix M defined in (2.3) factorizes the Cartan matrix as in (2.5), we obtain the following

version of the equation of motion

�ϕα +
g

β2

r
∑

i=−1

(

MT
)

αi
eβ(Mϕ)i = 0. (3.5)

Following [5, 6], the trace of the improved energy tensor results to

Θµ
µ =

r
∑

i=−1

(

2g

β2 e
β(Mϕ)i + γi�ϕi

)

. (3.6)

Thus for γi = 2β−1∑

k M
−1
ik we obtain the equation of motion for each term in the sum

and the trace of the improved energy tensor vanishes. In turn, this means when the matrix

M is not invertible the model is not conformally invariant and hence massive.

– 5 –
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While Lg
−1

is a massless conformally invariant theory, which might be studied in its

own right, here we are interested in the question of whether it is possible to construct a

massive field theory and therefore add consistently a perturbing term to Vg
−1

V
g̊
−2

(φ) := Vg
−1
(φ) + δVg

−1
(φ) = Vg

−1
(φ) + ε

g

β2 e
βα

−2·φ. (3.7)

The vacuum φ(0) for the new potential V
g̊
−2

computed from the equations ∂V
g̊
−2

/∂φa
∣

∣

∣

φ(0)
=

0, a = 1, . . . , r + 2, leads to the constraint

r
∑

i=−1

αie
βαi·φ(0)

= −εα−2e
βα

−2·φ(0)

. (3.8)

Multiplying with the fundamental weights λj and using the orthogonality relation αi ·λj =

δij yields the relations

eβαi·φ(0)

= −ελi · α−2e
βα

−2·φ(0)

, i = −1, 0, 1, . . . , r. (3.9)

Expanding now the potential V
g̊
−2
(φ) around the vacuum we obtain with (3.9)

V
g̊
−2
(φ(0) + φ̃) = ε

g

β2 e
βα

−2·φ(0)

[

eβα−2·φ̃ −
r
∑

i=−1

λi · α−2e
βαi·φ̃

]

=
m2

β2

r
∑

i=−2

n̂ie
βαi·φ̃, (3.10)

where m2 = εgeβα−2·φ(0)
, n̂−2 = 1 and n̂i = −λi · α−2.

We now make the choice α−2 = k̄, so that with the realizations of the fundamental

weights for g−1 as [33, 34]

λi = λf
i + niλ

o
0, λ0 = k̄ − k, λ−1 = −k, with i = 1, . . . , r, (3.11)

and λi denoting the fundamental weights of g, we compute n̂−1 = 1, n̂0 = 1 and n̂i = ni.

Notice that g̊−2 is not a proper over extended algebra as defined in [34], hence the notation

g̊−2 instead of g−2. We have α−2 ∈ Λg ⊕ Π1,1 connecting in an almost identical way as

the root k −
(

ℓ+ ℓ̄
)

to all the other simple roots with α−2 · α−1 = −1, α−2 · αi = 0,

i = 1, . . . , r. However, this root also connects to the affine root α−2 · α0 = 1, has length

zero, i.e. α2
−2 = 0 6= 2, and is defined in a smaller representation space than the standard

α−2-root. Hence Λ̊g
−2 can not be viewed as a lattice related to a Kac-Moody algebra and

we refer to it therefore as a root lattice to an almost over extended algebra.

Expanding now (3.10) around zero we obtain a constant term in the potential of the

form m2/β2(n̂−2 + n̂−1 + n̂0 +
∑r

i=1 ni ) = m2/β2(2 + h) with h denoting the Coxeter

number of g. Crucially, our choice for α−2 also has the desired property that the linear

term in the expansion vanishes, because
∑r

i=−2 n̂iαi = 0. Labeling rows and columns as

(φ̃1, . . . , φ̃r+2) the square mass matrix is obtained as

M2 = m2
r
∑

i=−2

n̂i

















α1
iα

1
i . . . α1

iα
r
i −α1

iα
r+2
i −α1

iα
r+1
i

...
. . .

...
...

...

α1
iα

r
i . . . αr

iα
r
i −αr

iα
r+2
i −αr

iα
r+1
i

−α1
iα

r+2
i . . . −αr

iα
r+2
i αr+2

i αr+2
i αr+1

i αr+2
i

−α1
iα

r+1
i . . . −αr

iα
r+1
i αr+1

i αr+2
i αr+1

i αr+1
i

















. (3.12)
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The classical mass spectra resulting from (3.12) are only physically meaningful when the

eigenvalues of M2 are real and positive. Before we will discuss concrete examples below,

we first establish whether these type of theories are integrable by performing the Painlevé

integrability test.

4. Painlevé integrability test

We now largely follow the line of reasoning in [3, 28] and generalize the Painlevé test

[38, 39, 40, 41, 42] in order to establish whether variations of the Lg
−n

Lorentzian Toda

theories and perturbations thereof are integrable. First we transform the equation of motion

in version (3.5) into light-cone coordinates so that � = ∂−∂+. For the sake of brevity, we

denote ∂− by an overdot and ∂+ by an overdash, e.g. ∂−ϕ =: ϕ̇ and ∂+ϕ =: ϕ́. For further

convenience we set g = β = 1. We start by separating the second order equation of motion

into two two first order equations, which can be achieved by introduce two quantities, akin

but not equal to canonical variables, as

Pα = ϕ̇α, Qi = e(Mϕ)i , α = 1, . . . , ℓ+ 2m,i = 1, . . . , r + n+ 1. (4.1)

Differentiating these quantities with respect to each light-cone coordinate we obtain

Ṕα = �ϕα = −
r
∑

i=−n

(

MT
)

αi
Qi, Q̇i = Qi (MP )i . (4.2)

We now Painlevé expand Pα and Qi, making the standard assumption that both quantities

possess movable critical singularities in some field φ(x−, x+) → 0, whose leading order is

determined by some positive integers np, nq > 0

Qi =
∞
∑

k=0

a
(k)
i φk−nq , Pα =

∞
∑

k=0

b(k)α φk−np. (4.3)

Differentiating the expansions we obtain

Q̇i =
∞
∑

k=0

(k − nq)a
(k)
i φk−nq−1φ̇ , Ṕα =

∞
∑

k=0

(k − np)b
(k)
α φk−np−1φ́. (4.4)

Substituting next the expansions (4.3) and (4.4) into (4.2) and balancing the powers we

obtain

(k − np)φ́b
(k)
α = −

r
∑

i=−n

(

MT
)

αi
a
(k)
i , (4.5)

(k − nq)φ̇a
(k)
i =

k
∑

m=0

a
(k−m)
i

(

Mb(m)
)

i
, (4.6)

with nq = np + 1. At this point we have to distinguish between two cases i) when the

Cartan matrix is invertible and ii) when it is not.

– 7 –
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4.1 Invertible Cartan matrix

For k = 0 we can solve the equations (4.5) and (4.6) for the leading order coefficient

functions when the Cartan matrix is invertible

a
(0)
i = −npnqφ̇φ́Di, b(0)α = −nqφ̇

r
∑

i=−n

(

MT
)

αi
Di, (4.7)

where the Di are the constants as defined in (2.6).

Next we extract in (4.6) the terms in the sum for m = 0 and m = k. Using also
(

Mb(0)
)

i
= −nqφ̇, we re-write (4.5) and (4.6) as

kφ̇a
(k)
i + npnqφ̇φ́Di

(

Mb(k)
)

i
=

k−1
∑

m=1

a
(k−m)
i

(

Mb(m)
)

i
, (4.8)

r
∑

i=−n

(

MT
)

αi
a
(k)
i + (k − np)φ́b

(k)
α = 0. (4.9)

These equations, (4.8) and (4.9), can be converted into matrix form

T (k)X(k) = Y (k), (4.10)

when defining the N +M = (r + n+ 1) + (ℓ+ 2m) dimensional column vectors

X(k) = (a
(k)
1 , · · · , a(k)M , b

(k)
1 , · · · , b(k)N )T , (4.11)

Y (k) =

k−1
∑

m=1

(a
(k−m)
1

(

Mb(m)
)

1
, · · · , a(k−m)

M

(

Mb(m)
)

M
, 0, · · · , 0)T , (4.12)

together with the (M +N)× (M +N)-matrix

T (k) =

(

A
(k)
M×M B

(k)
M×N

C
(k)
N×M E

(k)
N×N

)

. (4.13)

The block matrices in T have entries

A
(k)
ij = kφ̇δij, B

(k)
iα = npnqφ̇φ́DiMiα, C

(k)
αi =

(

MT
)

αi
, E

(k)
αβ = (k − np)φ́δαβ. (4.14)

Equation (4.10) is the central equation for the Painlevé integrability test. It is a recursive

equation that may in principle be solved iteratively at each level k for the coefficient

functions contained in X(k) as long as the matrix T (k) is invertible. Whenever this is not

the case one is introducing a free parameter, a resonance in Painlevé integrability test

parlance, into the set of equations. When there are enough resonances in the system as

boundary conditions or integration constants, the system is passing the test and is said to

be integrable.

Let us therefore compute the determinant of T (k). Using the identity

det

(

A B

C E

)

= det

(

A B

C E

)

det

(

I 0

−E−1C I

)

= det(A−BE−1C) det(E), (4.15)

– 8 –
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we obtain

detT (k) = (k − np)
r+nφ́

r+n+1
φ̇ det [k(k − np)I − np(np + 1)DK] . (4.16)

Apart from the pre-factor, for n = np = 1 this reduces to the expression previously obtained

in [28] for the hyperbolic Kac-Moody algebras. Taking now np = 1, the matrix in the

determinant becomes the Painlevé matrix and the last factor in (4.16) can be read as the

characteristic equation for the matrix P = 2DK with eigenvalues k(k − 1). Thus we have

found that also for the Lg
−n

Lorentzian Toda theories the integrability test can be reduced

to an eigenvalue problem for P . Nicolai and Olive noticed in [43] that this matrix also

emerges from the adjoint action of the SO(1, 2) Casimir operator on the Cartan subalgebra

and that in fact the eigenvalues are identical to the Casimir eigenvalues. In this generalised

case a principal SO(1, 2)-subalgebra does not always exist, as explicitly argued in [34] for

many cases, so that it needs to be replaced in part by a principal SO(3)-subalgebra.

4.2 Non-invertible Cartan matrix

When the Cartan matrix is not invertible we can not derive (4.7) from the equations (4.5)

and (4.6). As a specific theory that involves a non-invertible Cartan matrix let us know

consider the Lg0
-theory, corresponding to affine Toda theory. Of course in this case we

know that the theory is integrable since exact Lax pairs have been constructed for the

classical theory [12] and in the quantum case the S-matrix factorizes into two-particle S-

matrices as a consequence of the integrability [7]. However, let us see how the Painlevé

test can be implemented, since the same line of argumentation can then also be applied to

some extended theories we consider below. Using the fact that Kij = K̃ij for i, j = 1, . . . , r

with K̃ denoting the invertible Cartan matrix of g, we can split off the last row and the

last column from K. Then it is easily seen that (4.7) is replaced by

a
(0)
i = −npnqφ̇φ́D̃i + nia

(0)
0 , b(0)α = −nqφ̇

r
∑

i=1

(

MT
)

αi
D̃i, (4.17)

where D̃i :=
∑r

j=1 K̃
−1
ij and the ni denote the Kac labels as defined after (3.1). Following

now the same steps as in the previous subsection we derive the matrix T with block matrices

A
(k)
ij = kφ̇δij, B

(k)
iα = npnqφ̇φ́DiMiα−niMiαa

(0)
0 , C

(k)
αi =

(

MT
)

αi
, E

(k)
αβ = (k−np)φ́δαβ,

(4.18)

where we defined D0 := 0. Taking now a
(0)
0 = 0, we notice that the only non-vanishing

entry in the 0-row of T (k) is T
(k)
00 = A

(k)
00 = kφ̇. We can then expand detT (k) with respect

to the first row and derive

detT (k) = k(k − np)
r+1φ́

r+2
φ̇
2
det
[

k(k − np)Ir×r − np(np + 1)D̃K̃
]

, (4.19)

with D̃, K̃ belonging to g. Thus we have reduced the Painlevé test for the Lg0
-theory to

an eigenvalue problem for the matrix np(np + 1)D̃K̃ associated to g.

Thus we conclude that the integrability properties of the Lg-theory are inherited by

the Lg0
-theory, that is when Lg is (non)integrable so is Lg0

.
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For simplicity we derived here the eigenvalue equation (4.16) for symmetric Cartan

matrices. We may repeat the same line of argumentation by replacing in MT roots by

coroots, αi → α̂i = 2αi/α
2
i when α2

i 6= 0. Then it is easily seen that (4.16) generalizes to

the nonsymmetric case for which the Cartan matrix is defined as Kij = 2αi · αj/α
2
j when

α2
j 6= 0 and remains Kij = αi · αj when α2

j = 0.

5. The characteristic equation of the Painlevé matrix

We will keep now np = 1 and analyse the characteristic equation for the Painlevé matrix

P as defined in (2.7)

det [k(k − 1)I − P ] = 0, (5.1)

in some more detail. As argued in the previous subsection, for any version of the Lorentzian

Toda field theories to be integrable the eigenvalues of the Painlevé matrix must be integer

valued and factorize as k(k−1) with k ∈ N. In particular, this means when the eigenvalues

are negative the theory is not integrable. These cases can be identified easily. We need

to argue differently depending on whether the matrix D is positive or negative definite,

semi-definite of indefinite:

Denoting by indA = ep − en the index of the matrix A, defined as the difference

between the positive and negative eigenvalues of A, ep and en, respectively, we have the

relation

ind(±2DK) = ind(K), (5.2)

where the +sign holds for D positive definite and the −sign for D negative definite.

To prove this relation we first note that the matrix
√
±DK

√
±D has the same eigen-

values as ±DK. Here
√
±D is the positive square root with the sign depending on whether

D is positive or negative definite. Next we invoke Sylvester’s theorem, see e.g. Theorem

12.3 in [44], which states that two symmetric square matrices A and B that are congru-

ent to each other, i.e. A = QBQT for some nonsingular matrix Q, have the same index.

Applied to the above this means that ind(
√
±DK

√
±D) = ind(K), since

√
±D

T
=

√
±D.

Therefore with ind(
√
±DK

√
±D) = ind(±DK) we obtain (5.2).

When D is semi-definite we can define a reduced D-matrix as D̂ by setting the positive

or negative entries to zero and use a reduced version of (5.2) as ind(±2D̂K) = ind(K).

Since a necessary condition for passing the Painlevé test is that all eigenvalues of 2DK

are positive, i.e. ind(2DK) = ℓ with ℓ denoting the rank of K, the relation (5.2) implies

that ind(±K) = ℓ . This means only Lorentzian Toda field theories based on positive or

negative definite Cartan matrix can pass the Painlevé test. In turn this means that those

theories build from non-definite Cartan matrices can not be integrable.

6. Constructions of Lorentzian Toda field theory

We will now construct various types of Toda field theories based on different versions of

root systems corresponding to Lorentzian Kac-Moody algebras and their extensions. We

will encounter conformally invariant and massive models.
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6.1 L
g̊
−n

-extended Lorentzian Toda field theory

This first type of theories is a series constituting an infinite extension of the perturbed

Lg
−1

-theory introduced in section 3.1. The theories in this series come in two variants:

The L
g̊
−n

-Lorentzian Toda field theories for odd n are conformally invariant and those for

which n is even are massive. As a construction principle we extend the one previously used

for the perturbation of the Lg
−1
-theory and build the roots as follows. For the massless

L
g̊
−(2n−1)

-theories we have the r + 2n roots

αi ≡ simple roots of g for j = 1, . . . , r,

α−(2i−2) = ki −
∑r

j=−(2i−3) njαj for i = 1, . . . , n,

α−(2i−1) = −(ki + k̄i) for i = 1, . . . , n.

(6.1)

We notice that the roots α−(2i−2) have length zero for i = 2, . . . , n, have a standard inner

product equal to −1 with nearest neighbour roots on the Dynkin diagram and a more

unusual inner product equal to 1 for next to nearest neighbours. The roots α−(2i−1) have

length 2 for i = 1, . . . , n. Thus we have the inner products

α2
−(2i−2) = 0, α2

−(2j−1) = 2, α−k · α−(k+1) = −1, α−2l · α−(2l+2) = 1, (6.2)

for i = 2, . . . , n, j = 1, . . . , n, k = 1, . . . , 2n − 2 and l = 0, 1, . . . , n − 2. At each affine root

α0 the Dynkin diagram is extended by the following segment:

g̊1−2n : . . . •
α0

•
α−1

◦
α−2

•
α−3

◦
α−4

. . . ◦
α4−2n

• ◦
α2−2n

•

We used here the standard conventions for drawing Dynkin diagrams related to semi-

simple Lie algebras in which vertices with bullets indicate roots of length 2 and single line

links between two vertices correspond to inner products of −1 between the two correspond-

ing roots. We increase the set of rules by indicating roots of length 0 with an empty circles

and inner products of 1 by dotted links between two vertices correspond to the roots. Such

type of zero length roots and inner products equal to 1 are not entirely unusual and also

occur in the context of Lie superalgebras and of their affine extensions [45].

The corresponding Cartan matrix is

Kg̊
−(2n−1)

=



























q1 0 · · · 0

Kg

...
...

...

qr 0 · · · 0

q1 · · · qr 2 −1 1 0

0 · · · 0 −1
...

... 1 K̂2n−1

0 · · · 0 0



























(6.3)

with qs := α0 · αs, s = 1, . . . , r, and (2n − 1)× (2n − 1) matrix K̂2n−1 with entries

K̂2i−1,2i−1 = 2, K̂2j,2j = 0, K̂k,k+1 = −1, K̂2l,2l+2 = 1, (6.4)
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for i = 1, . . . , n, j = 1, . . . , n− 1, k = 1, . . . , 2n − 2 and l = 1, . . . , n − 2.

Taking the same roots and adding one root at the end of the Dynkin diagram as the

negative highest root, designed to make the linear term in the potential vanish, we obtain

the massive L̊g
−(2n)

-theory based on r + 2n+ 1 roots

αi ≡ simple roots of g for j = 1, . . . , r,

α−(2i−2) = ki −
∑r

j=−(2i−3) njαj for i = 1, . . . , n,

α−(2i−1) = −(ki + k̄i) for i = 1, . . . , n,

α−(2n) = −
∑r

j=−(2n−1) njαj .

(6.5)

Now at each affine root α0 the Dynkin diagram is extended by the segment:

g̊−2n : . . . •
α0

•
α−1

◦
α−2

•
α−3

◦
α−4

. . . ◦
α4−2n

• ◦
α2−2n

• ◦
α−2n

The corresponding Cartan matrix is

Kg̊
−2n =



























q1 0 · · · 0

Kg

...
...

...

qr 0 · · · 0

q1 · · · qr 2 −1 1 0

0 · · · 0 −1
...

... 1 K̂2n

0 · · · 0 0



























(6.6)

where the entries of the (2n) × (2n) matrix K̂2n are defined as in (6.4) with i = 1, . . . , n,

j = 1, . . . , n, k = 1, . . . , 2n − 1 and l = 1, . . . , n− 1.

For the Toda field theories constructed from these root systems it follows from section

4 and 5 that the Painlevé integrability test is entirely reduced to an eigenvalue problem

for the Painlevé matrix P , which must factor as n(n − 1) with n being an integer. For

the semi-simple Lie algebras these integer have been identified as the exponents related

to properties of the Casimir operator of the principle subalgebra on one hand [43] and on

the other as labeling the spins of conserved W-algebra currents [46]. From the arguments

in section 4.2 it also follows directly that we can reduce the test to the L
g̊
−2n

-extended

Lorentzian Toda field theory to the eigenvalue problem for 2Dg̊
−(2n−1)

Kg̊
−(2n−1)

.

Let us now study these theories for some concrete algebras in more detail.

6.1.1 (Å2)−2-Lorentzian Toda field theories

We start with a simply system, the (Å2)−2-Lorentzian Toda field theories. We represent

the (Å2)−2 roots (6.5) on a four dimensional lattice as

α1 =

(

√

3

2
,−
√

1

2
; 0, 0

)

, α2 =
(

0,
√
2; 0, 0

)

, α0 =

(

−
√

3

2
,

√

1

2
−
√
2; 1, 0

)

, (6.7)

α−1 = (0, 0;−1, 1) , α−2 = (0, 0; 0,−1) . (6.8)
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The analogue of the affine root is α−2 = −
∑2

j=−1 njαj with all Kac labels nj = 1. It is

easily checked that indeed the roots α−1, α0, α1, α2 have length 2 and the root α−2 has

length 0. The Dynkin diagram drawn with the standard rules augmented with the set of

rules as stated at the end of the previous subsection is therefore:

Å−2 :
α1

α2

•

•
❅❅

��
•
α0

•
α−1

◦
α−2

The eigenvalues of the Cartan matrix K(Å2)−1
are (3.48119, 3., 1.68889,−0.170086),

with exactly one negative eigenvalue as we expect. The mass matrix (3.12) for this root

system is computed to

M2 =
1

2
m2















3 0 0
√

3
2

0 3 0 1√
2

0 0 2 −1
√

3
2

1√
2
−1 2















, (6.9)

with positive, that is physical, eigenvalues (4.1701, 3, 2.3111, 0.51880) for m =
√
2. The

matrix D(Å2)−1
as defined in (2.6) is negative definite with D1 = D2 = −6, D3 = −7 and

D4 = −3. The eigenvalues of the Painlevé matrix P are (−42,−36,−12, 2) and the relation

(5.2) is confirmed as ind(−2DK) = ind(K) = 2. The theory fails the Painlevé test and is

therefore not integrable.

6.1.2 (E̊8)−2n-Lorentzian Toda field theories

The first member of the (E̊8)−2n-series is the (E̊8)0-theory corresponding to the well studied

affine Toda field theories, that describes the scaling limit of the Ising model at critical

temperature in magnetic field [19]. The next member is the (E̊8)−2-theory for which we

represent the roots (6.5) on a ten dimensional root lattice as

α1 =
(

1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,

1
2 ; 0, 0

)

, α2 = (1, 1, 0, 0, 0, 0, 0, 0; 0, 0) ,

α3 = (−1, 1, 0, 0, 0, 0, 0, 0; 0, 0) , α4 = (0,−1, 1, 0, 0, 0, 0, 0; 0, 0) ,

α5 = (0, 0,−1, 1, 0, 0, 0, 0; 0, 0) , α6 = (0, 0, 0,−1, 1, 0, 0, 0; 0, 0) ,

α7 = (0, 0, 0, 0,−1, 1, 0, 0; 0, 0) , α8 = (0, 0, 0, 0, 0,−1, 1, 0; 0, 0) ,

α0 = (0, 0, 0, 0, 0, 0,−1,−1; 1, 0) , α−1 = (0, 0, 0, 0, 0, 0, 0, 0;−1, 1) ,

α−2 = (0, 0, 0, 0, 0, 0, 0, 0; 0,−1) .

(6.10)

We have constructed the analogue of the affine root as α−2 = −
∑8

j=−1 njαj with Kac

labels n = (2, 3, 4, 6, 5, 4, 3, 2, 1, 1, 1). Using the Lorentzian inner product we compute for

the extended part α2
−2 = 0, α2

−1 = 2, α−2 · α−1 = −1, α−1 · α0 = −1, α−2 · α0 = 1. The

Dynkin diagram drawn with the standard rules augmented with the set of rules as stated

at the end of the previous subsection is therefore:

(

E̊8

)

−2
: •

α1
•
α3

•
α4

•α2

•
α5

•
α6

•
α7

•
α8

•
α0

•
α−1

◦
α−2
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The conformal part of the theory is the (E8)−1-theory, aka E10, whose Cartan matrix

has exactly one negative eigenvalue with all other eigenvalues being positive. The Cartan

matrix of (E̊8)−2 has a zero eigenvalue, one negative eigenvalue with the remaining ones

being positive. The mass squared matrix (3.12) for the (E̊8)−2-theory is computed to

M2 =
1

2
m2







































15 −3 −1 −1 −1 −1 −1 1 0 0

−3 27 −11 1 1 1 1 −1 0 0

−1 −11 23 −9 1 1 1 −1 0 0

−1 1 −9 19 −7 1 1 −1 0 0

−1 1 1 −7 15 −5 1 −1 0 0

−1 1 1 1 −5 11 −3 −1 0 0

−1 1 1 1 1 −3 7 1 0 2

1 −1 −1 −1 −1 −1 1 3 0 2

0 0 0 0 0 0 0 0 4 −2

0 0 0 0 0 0 2 2 −2 4







































. (6.11)

The ten eigenvalues (19.4794, 12.8905, 8.8224, 7.4524, 5.1100, 3.7371, 3.0181, 2.1237, 1.1227,

0.2437) of M2 are all positive, thus leading to a physically well-defined classical mass

spectrum. We may set here m = 1, as only mass ratios will be relevant. Similarly we

compute the masses for the other members of the (E̊8)−2n-series, which all posses well

defined spectra. We present our results for the first members of the series in figure 1.

Figure 1: Mass ratios for the r + 2n particles in the
(

E̊8

)

−2n

-Toda field theories with almost

stable noncrystallographic H4 compound.

We observe the interesting feature that when comparing the masses with those of

standard E8-affine Toda field theory, four masses are especially stable and remain almost

all identical irrespective of the value of n. These masses can be identified when recalling

that folding the E8-affine Toda field theory [4] leads to a grouping of the eight masses

in the E8-theory [19] into as two copies of four masses attributed to a theory based on
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the root space of noncrystallographic type H4. One set is obtained from the other by a

multiplication of the golden ration φ = (1 +
√
5)/2. Normalizing the E8- masses so that

the largest takes on the value 1, we have

m1 = 1, m2 = 2 sin(4θ), m3 =
cos θ

φ cos(4θ)
, m4 =

1

2φ cos(4θ)
, (6.12)

m5 = φ−1m1, m6 = φ−1m2, m7 = φ−1m3, m8 = φ−1m4, (6.13)

with θ = π/30. We observe in figure 1 that the fourH4 masses in (6.12) are almost identical

in all (E̊8)−2n-theories.

However, none of these theories, apart from (E̊8)0, passes the Painlevé integrability

test. In all other cases the eigenvalues of the matrix 2Dg̊
−(2n−1)

Kg̊
−(2n−1)

are all non integer

valued and sometimes negative. We find that Dg̊1 ≡ DE8 is positive definite, as is expected

for the semi-simple case. We confirm in this case the relation (5.2) as ind (2DE8KE8) =

ind (KE8) = 8. Moreover the eigenvalues factorize into si(si +1) with si = 1, 7, 11, 13, 17,

19, 23, 29, corresponding to the 8 exponents of E8.

In contrast, the matrices Dg̊
−(2n−1)

are negative definite for all values of n ≥ 1. The

8+2n eigenvalues for 2D(̊E8)
−(2n−1)

K(̊E8)
−(2n−1)

for n = 1, 2, . . . separate into 8+n negative

and n positive eigenvalues. The relation (5.2) is confirmed as

ind
(

−2Dg̊
−(2n−1)

Kg̊
−(2n−1)

)

= ind
(

Kg̊
−(2n−1)

)

= 8, for n = 1, 2, . . . (6.14)

Surprisingly the index of K is preserved for all values of n. To make this plausible we list

here the first characteristic polynomials det(K − λI) = 0 for the Cartan matrix Kg̊
−(2n−1)

ch (KE8) = λ8 − 16λ7 + 105λ6 − 364λ5 + 714λ4 − 784λ3 + 440λ2 − 96λ + 1, (6.15)

ch
(

K(̊E8)
−1

)

= λ10 − 20λ9 + 171λ8 − 816λ7 + 2379λ6 − 4356λ5 + 4949λ4 − 3304λ3(6.16)

+1140λ2 − 144λ− 1,

ch
(

K(̊E8)
−2

)

= λ12 − 22λ11 + 208λ10 − 1100λ9 + 3531λ8 − 6892λ7 + 7356λ6 (6.17)

−1914λ5 − 4872λ4 + 5944λ3 − 2626λ2 + 388λ + 1,

ch
(

K(̊E8)
−4

)

= λ14 − 24λ13 + 249λ12 − 1450λ11 + 5103λ10 − 10576λ9 + 9896λ8 (6.18)

+7088λ7 − 31796λ6 + 37074λ5 − 17467λ4 − 520λ3 + 3050λ2 − 636λ− 1.

We observe that in each polynomial of the general form
∑8+2n

i=1 aiλ
i, the sequence of coef-

ficients ai has exactly 8 + n sign changes. Thus according to Descartes’ rule of signs, see

e.g. [47], we have exactly 8+ n positive real eigenvalues confirming the observation above.

The factorization of these eigenvalues into si(si + 1) leads to the form si = 1/2 + λi with

λi ∈ R and si = κi with κi ∈ R, for the negative and positive eigenvalues, respectively.

We depict the eigenvalue spectra for some L
(E̊8)−2n

-extended Lorentzian Toda field

theory in figure 2.

As most of the eigenvalues are negative or non integer valued, the L
(E̊8)−2n

-extended

Lorentzian Toda field theory fail the Painlevé test and are therefore not integrable.
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Figure 2: Eigenvalue spectra for the Painlevé matrix 2Dg̊
−(2n−1)

Kg̊
−(2n−1)

.

6.2 L(̊g1)
−2n⋄(̊g2)

−2m
-extended Lorentzian Toda field theory

This construction is based on a generalization of what is referred to in [33] as the symmetric

fusion of two finite semisimple Lie algebras g1 and g2 by means of some Lorentzian roots

in Π1,1. Here we consider a root lattice of the form

Λ(̊g1)1−2n⋄(̊g2)1−2m
= Λ(̊g1)1−2n

⊕Π1,1 ⊕ Λ(̊g2)1−2m
. (6.19)

It is comprised of the r1+2n roots αi with i = 1−2n, . . . , r1 of (̊g1)1−2n, the r2+2m roots

βi with i = 1− 2m, . . . , r2 of (̊g2)−2m and two modified roots

α−2n = kn+1 −
∑r1

j=1−2n
njαj, β−2m = k̄n+1 −

∑r1

j=−1−2m
njβj

with kn+1, k̄n+1 ∈ Π1,1. The Lorentzian roots used in the construction of the α and β

roots are unrelated with mutual inner products equal to zero. They are labeled by ki, k̄i,

i = 1, . . . , n and ℓi, ℓ̄i, i = 1, . . . ,m, respectively. For n = m = 0 this construction coincides

with the one in [33] apart from a change of sign in the definition of β0 where we added k̄

instead of −k̄ as in [33]. We explain the reason for our preferred choice below. The massive

version is then constructed by adding a root γ = −(kn+1+ k̄n+1). Using the rules as stated

above, the part of the Dynkin diagram where the (̊g1)−2n and (̊g2)−2m for n ≥ 1, m ≥ 1

are joined is:

(̊g1)−2n ⋄ (̊g2)−2m : . . . ◦
α4−2n

• ◦
α2−2n

• ◦
α−2n

◦
β−2m

•
�� ❅❅

γ

• ◦
β2−2m

• ◦
β4−2m

. . .

The corresponding Cartan matrix is simply linking up the two affine Cartan matrices
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K(̊g1)
−2n

and K(̊g2)
−2m

as

K(̊g1)
−2n⋄(̊g2)

−2m
=







































q1 0 0 · · · 0

K(̊g1)1−2n

...
...

...
...

qr1 0 0
...

q1 · · · qr1+2n 0 −1 1 0 · · · 0

−1 2 −1

0 · · · 0 1 −1 0 pr2+2m · · · p1
...

... 0 pr2
...

...
...

... K(̊g2)1−2m

0 · · · 0 0 p1







































, (6.20)

where qs := α−2n · αs, s = 1, . . . , r1 + 2n and ps := β−2m · βs, s = 1, . . . , r2 + 2m.

We present now some examples for Lorentzian Toda field theories build from concrete

algebras of this type of construction.

6.2.1 (E̊8)−2n ⋄ (E̊8)−2n-Lorentzian Toda field theories

We start with (E̊8)0 ⋄ (E̊8)0 ≡ (E8)0 ⋄ (E8)0 and take the same representation for the eight

simple roots αi, i = 1, . . . 8 as defined in (6.10), but we enlarge the representation space from

10 to 18 dimensions by adding 8 zero entries. The modified affine root α0 = k−
∑8

j=1 njαj

takes on the same form as in (6.10). Next we construct the roots for the second set of simple

roots as βj+10
i = αj

i , i, j = 1, . . . 8, and with all remaining entries 0. The second modified

affine root is constructed as β0 = k̄ −
∑8

j=1 njβj . The additional root γ = −(k + k̄) has

therefore nonvanishing entries γ9 = −γ10 = −1. The Dynkin diagram becomes in this case

(E8)0 ⋄ (E8)0: •
α1

•
α3

•
α4

•α2

•
α5

•
α6

•
α7

•
α8

•
α0

•γ
�� ❅❅•

β0

•
β8

•
β7

•
β6

•
β5

•
β4

•β2

•
β3

•
β1

Similarly we construct the Cartan matrix for the other members of the (E̊8)−2n ⋄
(E̊8)−2n-series.

With a well defined root system and vanishing linear term we can compute the mass

squared matrix as defined in (3.12). Once more we find that all eigenvalues of the mass

squared matrix are positive. Taking the normalized square root of these eigenvalues, we

depict the classical mass spectra for the first seven members of the (E̊8)−2n ⋄(E̊8)−2n-series

in figure 3.

We note that all mass spectra in figure 3 are nondegenerate. Even though it may

appear from the figure that some of the heaviest particles have the same mass, there is in

fact always at least a very small difference not visible on the scale used in the figure. For

the lighter particles in the spectrum the difference becomes more apparent. Splitting the

particles into sets belonging to the left and right set of roots, α and β, respectively, and

comparing with the mass spectrum of the affine (E8)0-theory, we observe that the mass
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Figure 3: Mass ratios for the 18 + 2n particles in the (̊E8)−2n ⋄ (̊E8)−2n-Lorentzian Toda field

theory.

Figure 4: Real part of the eigenvalue spectra for the 2DK-matrix for the (̊E8)−2n ⋄ (̊E8)−2n-

Lorentzian Toda field theory.

spectrum of five heaviest particles is almost identical to the masses in the left and right set

of roots.

Next we consider the eigenvalues of the Painlevé matrix. First we notice that the

diagonal matrix D(E8)0⋄(E8)0 is positive definite and that the relation (5.2) holds with

ind
(

K(E8)0⋄(E8)0

)

= 16. It is these eigenvalue spectrum that motivates the choice for the

sign in front of the Lorentzian roots in the definition of β0. Choosing −k̄ instead of k̄ will

not affect the mass spectrum, but it will reverse the sign in signature of the eigenvalues of

2DK. However, this theory does not pass the Painlevé integrability test as the eigenvalues

of the matrix 2DK are all non integer valued.

In contrast, for (E̊8)−2n⋄(E̊8)−2n with n ≥ 1 theD-matrix is semi-definite with the four

central diagonal entries D(9+n±1)(9+n±1), D(9+n±2)(9+n±2) being positive and the remaining

negative. Defining a reduced D-matrix as D̂ by setting the positive entries to zero we find
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a reduced version of (5.2) as ind(−2D̂K) = ind(K) = 16. None of the theories in this

series passes the Painlevé integrability test as the eigenvalues of the matrix 2DK are not

only all non integer valued or negative, but in addition some of the eigenvalues occur in

complex conjugate pairs. We depict the real eigenvalues in figure 4.

We observe that the “almost degeneracy is roughly preserved for the six heaviest

particles.

7. Conclusions

We have introduced various types of construction principles for conformal, i.e. massless,

and massive versions of Toda field theories based on roots defined on Lorentzian lattices. We

carried out a detailed Painlevé integrability test, that established that these theories are in

general not integrable. Nonetheless, the theories possess well defined classical mass spectra

and inherit some of the features of their integrable reductions. For instance, part of the

mass spectrum of the (E̊8)−2n-theories consists of the four masses of the noncrystallographic

H4-theory obtained by folding the integrable affine E8-theory. Remarkably, these masses

are only slightly changed for all values of n, so that we may view this feature as a remnant

that survives the perturbation of the integrable system.

Evidently there are many interesting routes for further investigations left. We have

only presented here some of the examples of algebras we have investigated. It would be

interesting to extract more generic features from those and develop an algebraically inde-

pendent formulation and treatment for them similar to their integrable counterparts. It

is clear from the above, that there are also more options for possible construction prin-

ciples that can be explored further. Of course also standard calculations, such as mass

renormalization for these theories or the study of flows between models can be carried out.

Acknowledgments: SW is supported by a City, University of London Research Fellow-
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