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Abstract. Explainable artificial intelligence (XAI) is concerned with creating
artificial intelligence that is intelligible and interpretable by humans. Many AI
techniques build classifiers, some of which result in intelligible models, some of
which don’t. Rule extraction from classifiers treated as black boxes is an impor-
tant topic in XAI, that aims to find rule sets that describe classifiers and that are
understandable to humans. Neural networks provide one type of classifier where
it is difficult to explain why the inputs map to the decision; support vector ma-
chines provide a second example of this kind. A third type of classifier, k-nearest
neighbour (k-NN), gives more interpretable classifiers, but suffers from perfor-
mance problems as the model is little more than a representation of the training
data. This work investigates a technique to extract rules from classifiers where
the underlying problem’s feature space is Boolean, without looking at the in-
ner structure of the classifier. For such a classifier with a small feature space, a
Boolean function describing it can be directly calculated, whilst for a classifier
with a larger feature space, a sampling method is investigated to produce rule-
based approximations to the behaviour of the underlying classifier, with varying
granularity, leading to XAI. The behaviour of the technique with neural network,
support vector machine, and k-NN classifiers is experimentally assessed on a
dataset of cross-site scripting (XSS) attacks, and proves to give very high accu-
racy and precision, often comparable to the classifier being approximated.

Keywords: Rule Extraction · Explainable AI · Neural Networks · XSS

1 Introduction

Explainable Artificial Intelligence (XAI) is the term used to capture the problem of
making artificial intelligence applications intelligible to humans [15]. XAI aims to “pro-
duce more explainable models, while maintaining a high level of learning performance
(prediction accuracy); and enable human users to understand, appropriately trust, and
effectively manage the emerging generation of artificially intelligent partners” [15].

Machine learning, especially neural networks, can produce classifiers that give high
predictive accuracy, leading to excellent performance in complex tasks such as detecting
objects in the images [45, 17], or understanding natural language [9]. The resulting
trained models (again, particularly from neural networks) are often essentially black
boxes. The way in which a neural network reaches a decision from the input data is not
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accompanied by an explanation that can be interpreted by a user. This also applies to
an extent to other machine learning techniques such as support vector machines. There
is a lot of interest in being able to give an explanation for the decision making resulting
from machine learning models. That might be by opening up black box models [4, 3],
by developing methods that help to understand what the model has learned [25, 34], or
as is done in the current paper, by extracting rules from the networks.

In [29] the authors introduced a technique for rule extraction from neural networks
(NN) in the case that the feature set is Boolean. This initial investigation begins with the
observation that if the features that form the input to a neural network are all Boolean,
and the output value is a Boolean, then the trained neural network precisely defines a
Boolean function. It is demonstrated that if the number of features is small, then each
possible input combination can be evaluated, essentially enumerating the truth table
for the Boolean function represented by the neural network. As the number of fea-
tures increases, the size of the truth table rises rapidly, hence its enumeration becomes
infeasible. Therefore, for neural networks defined over larger feature spaces approxi-
mations of the encoded Boolean function were considered which use a sampling based
approach. The extracted rules are Boolean functions and, with each Boolean variable
corresponding to a feature in the problem domain, these rules are clearly interpretable.

The target application is the detection JavaScript based cross-site scripting (XSS)
attacks. In previous work, a variety of machine learning techniques were applied to
determine whether a script was malicious or benign [30, 31]. The performance of the
resulting classifiers was evaluated and they achieved high predictive accuracy results
using a large real-world dataset of scripts. It was found in this work that the most suc-
cessful set of features to abstract the scripts to was Boolean valued (sixty-two features
in total), hence the models are Boolean valued.

The current paper develops this works further. The approximation of classifiers
which cannot be exactly described is based on a sampling of the values given by the
classifier. This sampling is further explored, in terms of the size of the sample needed
in order to determine the classification value, how accurate this classification is, and
how the sampling determines the classification value.

In [29] it was conjectured that the technique would work with any classifier with
Boolean features. In earlier work, support vector machines (SVM) and k-nearest neigh-
bour (k-NN) classifiers have proved to be particularly good at classifying XSS [30, 31].
SVM share, to some extent, the problems of interpretability that neural networks have.
Whilst k-NN classifiers are fairly easy to interpret (so there is not a big XAI challenge
in using them), unlike many other classifiers they grow with the size of the training
data, since they are essentially a representation of that data. This leads to performance
problems, and motivates rule extraction for a different reason, namely that an extracted
rule would not be of the same size as the training data and should perform classification
more efficiently.

The aim of this paper is to perform rule extraction from classifiers treated as black
boxes, with the extracted Boolean functions giving a decision making method that is
more explainable to humans [15]. The contributions of this paper are as follows:

– Validation of the observation that for an entirely Boolean feature set, with binary
classification, the trained classifier defines a Boolean function
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– An investigation into how to use a sampling approach to approximate this Boolean
function when the feature set is sufficiently large for the generation of the precise
function to be infeasible

– A demonstration that the Boolean function extraction can be performed for neural
network, SVM, and k-NN classifiers for XSS detection problems

– An empirical evaluation of approximate rule extraction from the XSS classifiers.

The rest of this paper is organised as follows: Section 2 gives background and related
work on methods for extracting rules and the detection of XSS attacks in scripts. Sec-
tion 3 describes the dataset used, including how features are selected and ranked, how
classifiers are trained and evaluated using this dataset, and the method used for con-
structing and approximating Boolean functions. Section 4 presents results related to the
application of the rule extraction, and Section 5 discusses the results. Further discussion
and concluding remarks are given in Section 6.

2 Background and Related Work

It has been said that requirements of a software system (accuracy, and ease-of-use) al-
most always work in a contradictory manner. As [7] has stated, “Unfortunately, in pre-
diction, accuracy and simplicity (interpretability) are in conflict.” The extraction of rules
from a trained classifier can be an intermediate method which allows for the satisfac-
tion of both of these requirements via the use of a relatively simple and understandable
set of such rules which simulates a model’s predictions (that is, they explain the rules
which are used inside a black box) [11, 27, 5].

The neural network classifier model represents one of the most popular types of
classifier from which rules can be extracted. Algorithms for extracting rules from neural
network classifiers may be divided into three main categories:

1. Pedagogical: This kind of method is not concerned with the internal structure of
the network, but only with deriving the rules used by the network by looking at the
relationships between the inputs and the outputs. It does not scrutinise the internal
behaviour of the network [46, 48]. An example of the use of this type of rule ex-
traction can be found in [40], where rules were extracted from a multilayer medical
diagnostic system by monitoring the impact on network outputs of changes to its
inputs. The VIA technique [47] is another example of a pedagogical method, where
the generation and testing of an input dataset was focused on the extraction of rules
from the neural network while it was being trained using backpropagation. Other
techniques in this category are sampling and the reverse engineering of neural net-
works [16]. An example of the use of samples for a pedagogical approach is given
in [10], where Craven and Shavlik proposed an algorithm called TREPAN. This al-
gorithm extracts M-of-N and split trees from an ANN with one hidden layer, which
the network employed as an “oracle” to statistically validate the correctness and
significance of the generated rules. Saad and Wunsch proposed, in [39], a method
they termed HYPINV which relied on a network inversion technique. This method
is capable of extracting the hyperplane rule learned by a multilayer perceptron in
the form of conjunctions and disjunctions of hyperplanes.
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The present study will focus on the use of samples to extract rules from black
box classifiers. Hence, knowing how to use samples to extract rules is essential.
Huysmans et. al. [12] specifies methods for using samples to extract rules; addi-
tional training instances are created to act as samples for use by TREPAN. Another
method is to create random instances; this method keeps the samples nearer to the
original training instances, which in turn ensures that the generated samples are
similar to the original training data when used with ANN-DT in [41].

2. Decompositional: The methods in this category are concerned with extracting the
rules directly from the layers within the network. Such decompositional methods
analyse network activation, the outputs of hidden layers and the associated weights
[13]. An example of this type of method is found in [43, 44] where a three step
algorithm was proposed for analysing and thus ‘understanding’ the neural network.
Deriving rules from deep neural networks is one of the more difficult tasks in this
area. Katz et. al proposed a new algorithm in [22] to verify the properties of neu-
ral networks using ReLUs activation functions [33] by the application of simplex.
The algorithm was modified to support ReLU constraints and termed Reluplex. Re-
luplex is concerned with reducing the search space, but it needs to ‘split’ using a
specific ReLU constraint. Note that in this method many or indeed all of the ReLUs
involved can be ignored. This algorithm has been applied to the next generation of
airborne collision avoidance systems for unmanned aircraft [20].

3. Eclectic: Methods of this type combine attributes derived from the two previous
types. This type of rule extraction was used in [23], where a method for discovering
trends within a large dataset was proposed which employed a neural network as a
black box which had the function of discovering knowledge. At the same time, the
method examines weights by pruning and clustering the activation values of the
hidden units within the network.

It is fruitful to compare the types of extraction methods used in terms of their rela-
tive advantages and disadvantages. First, it can be observed that the extraction of rules
using decompositional approaches is complex and requires considerable computational
resources, and this is the most important constraint with regard to the use of these meth-
ods. Pedagogical approaches are generally faster because they do not attempt to analyse
the weights and internal structure of the associated neural network. However, the most
important disadvantage of this approach is that it is less likely to find all the rules that
describe the behaviour of the network correctly. The eclectic approach is slower but
more precise because it combines the two other methodologies [2].

A decision tree is one of the most common methods of representing the rules ex-
tracted from non-rule-based classifiers, where the individual rules can be specified in
the form i f ...then. The decision tree itself is built using these rules such that the classes
(returned by the classifier) are the leaves and the branches represent the sequences of
features (conditions) that lead to these classes [1]. Representing the rules in a way which
is understandable by human-being is described in [6] and [18].

1. If-Then / If-Then-Else: Rules are represented by using ”i f ” condition. The con-
dition component is a set of conditions on input variables, followed by a ”then”
which indicates a class. An example of an ”i f ...then...else” rule is:
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i f (a11 < x1 < a12) and (a21 < x2 < a22) then Class A else Class B.
Note that most extraction algorithms create rules that contain conjunctions and they
will generally ensure that the conditional parts define separate areas in the input
space, meaning that the rules are mutually exclusive. Therefore, only one rule will
be able to classify a new entry.

2. M-of-N: This type of represention of the rules is considered to be more compact
than “i f ...then” rule sets; the decision in relation to just one class is made such that
it is required that M of the full set of N rules be true for this class to be returned.

3. Oblique rules / multi-surface: This type of representation is made using rules that
separate a feature space using planes, each side of each plane represents a particular
class, this allows each data point in the space to belong to a specific class. This
representation is more difficult to understand, but such rules are powerful.

4. Equation rules: This type of rule representation is similar to oblique rules, but
non-linear equations in the condition part are used for this purpose. This type of rule
representation makes it difficult to understand the extracted rules, thus contributes
little to the interpretation of the original model.

5. Fuzzy rules: This method of representing rules is similar to that of (i f ...then) rules,
the difference being that this representation deals with fuzzy sets and its underlying
mechanism is many valued fuzzy logic. Fuzzy rules are easy to understand because
they are expressed using concepts that are readily comprehensible by the user.

In this study, the pedagogical approach combined with a sampling technique will
be adopted to extract the rules from a neural network classifier. The proposed approach
will focus on extracting the rules by finding the relationships between the inputs and the
returned classes. The rules so extracted will be represented in the form (i f ...then..else),
since Boolean functions act as decision trees.

2.1 Overview of Minimising Boolean Expressions

To better understand the Boolean function being used, it is useful to extract the rules into
a compact representation. A minimal representation of a Boolean expression is easier
to understand and to write out; in addition, explanations based on such minimal forms
are less prone to error. Importantly, a minimal representation can be more effective
and efficient when implemented in experiments [38]. Therefore, the minimisation of
Boolean expressions, to find a representation equivalent to the original expression but
of a minimum size, is considered here.

Minimisation can be achieved in several ways, where the important factor in relation
to choosing a method is the number of variables in the expression. The commonly used
methods for minimising Boolean expressions are:

1. Karnaugh Maps: This is a graphical method for minimising Boolean expressions
[21], whereby the truth table of the expression is expressed as a matrix, all the
complementary pairs are then eliminated, and the result is a minimised Boolean
expression. This method is very effective when only small numbers of variables are
involved, but it becomes more unwieldy when there are large numbers of variables.
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2. Tabular (Quine-McCluskey): This method is, in general, more effective than the
Karnaugh maps method, and in particular its effectiveness can be observed when
minimising expressions containing a large number of variables [26]. Minimising
Boolean expressions using this method is achieved via two main activities: the
identification of primary implicants and the selection of essential primary impli-
cants. Essential primary implicants are all those terms that will be present in the
final simplified function. The starting point is to list the minterms that define the
function, then the prime implicants are found by a matching method. Each minterm
and maxterm are compared with every other minterm. When the expressions differ
in terms of only one variable, this variable will be removed and a function will be
created which excludes it. This process is repeated for each minterm and maxterm
pair until the search ends. The selection of essential primary implicants is achieved
by creating a table containing the prime implicants. The prime implicant can then
be reduced by removing the essential prime implicants, removing the rows that
dominate others, and removing the columns that dominate others. These steps are
repeated until there no further reduction possible. The weakness of this method is
that the run time grows exponentially with the number of variables [19]

3. Reduced Ordered Binary Decision Diagrams (ROBDDs): This method is under-
taken by imposing an order on the variables of a Boolean function, and then repre-
senting this function as a graph structure; this provides a canonical non-redundant
representation of the Boolean function, given the variable ordering [8].

In this study, the tabular method will be adopted, because of its effectiveness when
minimising expressions with large numbers of variables.

2.2 Cross-Site Scripting

Cross-Site Scripting (XSS) is a type of attack targeting web applications, ranked by
OWASP as one of the top 10 attacks [35]. XSS is standardly prevented from being
executed through good coding practice, using sanitization and escaping to prevent un-
trusted content being interpreted as code [51]. Parser-level isolation provides an alter-
native, confining user input data during the lifetime of the application [32]. Blacklists
are viewed as easy to circumvent and these approaches are preferred [51].

Machine learning techniques have been applied to prevent XSS attacks. An early ap-
proach [24] evaluates ADTree, SVM, Naive Bayes, and RIPPER classifiers by tracking
the symbols that appear in malicious and benign scripts, and achieved precision of up
to 92%. Another approach, [50], extracts features used in malicious scripts much more
than benign, such as the DOM-modifying functions and the eval function; this method
achieved accuracy rate of up to 94.38%. Furthermore, in [30] a number classifiers were
evaluated: SVM with linear and polynomial kernels, k-NN and Random Forest. Using
a k-NN classifier achieved high accuracy results up to 99.75%, with precision rate up
to 99.88%. Here the extracted features depend on the occurrence or not of a syntactic
element within a script. A neural network classifier was evaluated in [31] to prevent
XSS attacks by using ensemble and cascading techniques and the results gave a very
high accuracy of up to 99.80% in the base level which their feature groups used directly,
and 99.89% at the meta level where the features are the outputs of base level.
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As well as in scripting, there is emerging interest in using neural networks to detect
malware in executables, for instance, in [36] a recurrent neural network is used to detect
malicious executables at execution time with 93% accuracy.

3 Methodology

This section describes the dataset used in the experiments, the approach to selecting
features to build analyses with, the training of the classifiers, and the way in which they
are evaluated. The aim of this work is to find Boolean functions as rules extracted from
classifiers, which can then themselves be used as classifiers, replacing the originals. The
approach to extracting a Boolean function from a classifier (neural network, support
vector machine or k-nearest neighbour) is given, both for exact rule extraction, and for
a series of approximations to classifiers.

3.1 Datasets

The current work uses the dataset from [29]. This is primarily the dataset from [31],
with the training set augmented with files from CSIC 2010 [14] (consisting of 152
malicious instances and 3971 benign instances) in order to to cover more types of scripts
to extract more precise rules. The classifiers being trained are to determine whether or
not text entered into a web application represents a cross-site script. Hence the dataset
consists of 43,218 files, of which 28,068 are labelled as benign and 15,150 are labelled
as malicious. Note that 9,068 of the benign scripts are plain text from [49]. These are
then divided into a training set of 19,122 instances (5,150 malicious and 13,972 benign)
and a holdout testing set of 24,096 instances (10,000 malicious and 14,096 benign).
There is no overlap between the training and testing datasets.

3.2 Selected Features

As in [29], the starting point of this work is to abstract the input script file into the
62 features used in [31]. These are divided into two groups: alphanumeric, a range
of keywords and tokens from the target application, and non-alphanumeric features,
the full set of non-alphanumeric characters. Rather than working with these features
immediately without further reflection as in [31], here the features have been ranked by
using Algorithm 1 [28]. The method selects the most powerful features in a sequential
feature selection. This method works by minimising over all feature subsets, which uses
the deviance and chi-square to find the most powerful features. The deviance is twice
the difference between the log likelihood of that model and the saturated model, and
the inverse of the chi-square with degrees of freedom is used to set the termination
tolerance parameter. The application of the ranking algorithm on the feature set shows
that only 34 features need be used, and the ranking of these selected features in order of
effectiveness is given in Table 1. The key observation of these features is that they are
all Boolean valued, that is, the feature occurs in the script or it does not, allowing the
exploitation of this additional 0/1 valued structure.
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Algorithm 1: Ranking Features Algorithm
Input: Original features set;
Start with empty features subset;
Feature = Sequential Feature Selection;
while (Deviance > Chi-Square) do

Feature Subset = Add feature to selected feature subset;
Feature = Sequential Feature Selection;

end

Table 1. Selected Features [29]

No. Features No. Features

1 Alert 18 %
2 < 19 (&lt)
3 { 20 @
4 ? 21 Onload
5 ! 22 StringfromCharCode
6 JS File 23 :
7 HTTP 24 \
8 - 25 ]
9 ’ 26 (

10 ; 27 ‘
11 & 28 Img
12 , 29 ′ >
13 Src 30 ==
14 Space 31 /
15 &# 32 Onerror
16 Eval 33 //
17 . 34 iframe

3.3 Training Classifiers

Using the features from Table 1, a series of classifiers were trained for each of: feed
forward neural networks, support vector machines and k-nearest neighbour. The neural
network classifiers were built using a single hidden layer, with 10 hidden units, and the
train function (which updates the weight and bias values) was optimised by setting it
to be “trainbr” to minimise a combination of squared errors and weights. The support
vector machines were trained using a linear kernel. The k-nearest neighbour classifier
was training with k optimised to be 4.

For each of the three machine learning techniques, two classifiers were built: one
using all 34 features, which is viewed as the best classifier, the one from which rules
are to be extracted, and the other using the top 16 features, which will be used for
comparison, evaluation and discussion.
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3.4 Classifiers and Boolean Functions

Observe that a classifier each of whose input features is Boolean, and whose output
is a Boolean value, is precisely equivalent to a Boolean function. Enumerating each
possible input, and calculating the corresponding output results in the truth table for
this Boolean function. Hence, the classifier can be replaced by this Boolean function.
The result is a rule based system, each of whose decisions is explainable and auditable.
This is particularly attractive when the initial classifier is a neural network where in-
dividual decisions are not explainable. The approach is also attractive when the initial
classifier is a SVM, since the Boolean classifier gives more easily understood deci-
sions. When k-NN provides the initial classifier, this classifier is already explainable,
but k-NN classifiers suffer in performance, since they grow linearly with the size of
the training dataset; the Boolean classifier is of a fixed sized, hence may perform better
when there is considerable training data.

In the current study, the feature set is Boolean, therefore this approach applies.
Whilst for a small number of features this rule extraction technique might be applied
directly, the number of potential inputs grows exponentially with the number of fea-
tures, and the problem quickly becomes infeasible. This motivates a sampling based
approach.

3.5 Sampling

The key classifier in this work is the neural network trained over a feature space with 34
features. This provides an exemplar case for a rule extraction where the Boolean func-
tion defined is too large to generate from the classifier. Despite this, there is motivation
to find a Boolean function that can be used in place of the neural network. With varying
motivation, as discussed in the previous section, this also applies to the SVM and k-NN
classifiers trained over 34 features. The approach taken is to sample the classifier and
to use this sample to build a Boolean function; this Boolean function then provides an
approximation of the original function. The idea is to fix a number of features for which
producing a Boolean function is feasible (via a truth table in this case) and to determine
what value the function should take by interrogating the initial classifier with the full
feature set. For example, suppose it is determined that considering 4 features will result
in a truth table that can be feasibly constructed. Then the four highest ranking features
(in Table 1) will provide the entries for the truth table. For a row of the truth table, the
values of these features is fixed, and then extended with values for the remaining 30
features to give an input to the classifier, which is then queried and the result noted.
This is done repeatedly and from the resulting sample the most frequently occurring
result is the entry in the truth table.

Whilst the training dataset is relatively large, with 19,112 scripts, this is still sparse
compared to the 234 possible inputs to the classifiers considered. This means that whilst
the classifiers learn from the training set, the generalisation is not necessarily great
enough that every input to the classifiers is equally meaningful. That is, a random sam-
pling extending the fixed values might not give good results, since it might not match
the shape of likely inputs. Indeed, this was observed in development of approximations
of neural networks in [29], with inputs holding the default value dominating. In order
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to counteract this, the extensions were generated from the training set, with a random
selection of instances from the training set being selected (with the full 34 features),
and these being used for sampling the classifiers with the fixed features replacing the
corresponding feature values.

Algorithm 2 specifies the sampling method. Here, the input to the algorithm is L (an
integer) the number of fixed features, Classifier which is a trained classifier (in this case
either neural network, SVM or k-NN trained over 34 features) and Sample which is a
random selection from the training set of inputs to the neural network. A truth table,
TT, for the fixed features, with undefined output values, is constructed by buildInit-
TruthTable. Each row of this truth table is considered in turn. The values of the row of
TT are substituted into each element of Sample leading to an input which is passed to
Classifier for classification. If the result is classification as malicious then a counter for
malicious instances, malicious count, is incremented, otherwise, benign count is incre-
mented. Once each element of Sample has been considered, a comparison between the
two counts is made, and the output column of the truth table TT is populated with 0 if
most instances are malicious, and 1 otherwise.

In [29], Sample in Algorithm 2 consisted of 1024 inputs chosen at random from the
training dataset. As well as repeating this experiment for neural networks, a tactic where
a much smaller sample is used investigated for all classifier considered. The 1024 inputs
are themselves randomly sampled, with just 32 samples chosen. If this gives a clear cut
answer (in these experiments, if 25 or more of the samples give the same output) then
this answer is used, if not the sample size is doubled to 64, and if this fails to give a clear
cut answer, the sample is again doubled to 128. Using this tactic, this work investigates
successive approximations, with a varying number of fixed features: 1, 2, 4, 8, 10, 12
and 16 features.

Fixing the size of Sample to be 32, this work will also investigate how precisely
the sampling works by two measures. Firstly, by tabulating for each row of the truth
table, how many samples gave malicious as the output. Secondly, by charting for each
test case the split between samples giving malicious, and samples giving benign, for the
rule that gave the output for the test case.

3.6 Extracting Rules

After labelling all rows in the truth table, each row can be considered to be a rule that
describes one class. To give a more succinct set of rules, the Boolean function can be
minimised [42] resulting in simplified expressions. The minimised Boolean functions
are then evaluated as classifiers. For minimising Boolean functions “Logic Friday” [37]
has been used which applies the Tabular Method as a minimisation algorithm.

4 Results

In the experiments, MatLab 2018b was used to build the classifiers, and to find the
truth tables based on these classifiers. This was done using various numbers of fixed
features: 1, 2, 4, 8, 10, 12, and 16. The extracted truth tables define sets of rules acting
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Algorithm 2: Sampling Method Algorithm
Input: L ∈ N, Classifier, Sample;
TT = buildInitTruthTable(L);
for row in TT do

malicious count = 0;
benign count = 0;
for s in Sample do

input = substitute(row, s);
result = Classifier(input) ;
if result == malicious then

malicious count ++;
else

benign count ++;
end

end
if malicious count > benign count then

TT[row] = 0 ; \\Malicious
else

TT[row] = 1 ; \\Benign
end

end

as classifiers approximating the original classifier, and these rule sets were then reduced
to a more compact representation using “Logic Friday” [37].

Results on trained classifiers and rule extraction are presented in turn for neural
networks, support vector machines, and k-nearest neighbour. This is followed by results
on how long it takes to perform the rule extraction, and on how clear cut the sampling
method for rule extraction is.

4.1 Neural Networks

For neural networks, the first results repeat the experiments from [29] on training neu-
ral network classifiers and extracting rules, then a revised set of experiments on rule
extraction is given.

4.1.1 Training Neural Network Classifiers As in [29], a neural network classifier
was trained using the full 34 features, and tested using the testing dataset. Table 2 gives
the performance of this classifier. Evaluation uses the confusion matrix, leading to Ac-
curacy, Precision, Sensitivity, and Specificity measures. This network is the one from
which rules are extracted, leading to a series of approximations to it.

In addition, for later comparison, a neural network classifier was trained using just
the 16 highest ranked features. Table 3 gives the performance of this classifier. For
this network, the Boolean function that the network defines can be precisely extracted.
This results in a Boolean classifier whose performance will be the same as the neural
network. Table 4 shows the number of the rules that result from constructing the truth
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Table 2. Neural Network Classifier Performance Using 34 Features [29]

Accuracy Precision Sensitivity Specificity Confusion Matrix
Malicious Benign

99.88 99.98 99.75 99.98 Malicious 9998 2
Benign 25 14071

table for the 16 features, along with the number of rules that classify scripts as benign
after minimisation is applied (hence any script whose features do not match a rule for
benign is malicious).

Table 3. Neural Network Classifier Performance Using 16 Features [29]

Accuracy Precision Sensitivity Specificity Confusion Matrix
Malicious Benign

99.78 99.94 99.53 99.95 Malicious 9994 6
Benign 47 14049

Table 4. Classifier Rules Using 16 Features [29]

Class Malicious Benign Minimised
Rules 41,549 23,987 2,560

4.1.2 Initial Rule Extraction Rules were extracted from the neural network trained
on 34 features by applying the sampling method for each row in the truth table, hence
the number of extracted rules is equal to 2n, where n is the number of fixed features in
the approximation, and each row describes one rule. As in [29], 1024 samples were used
for each row of the truth table. This process was repeated where the number of fixed
features was 1, 2, 4, 8, 10, 12, and 16 features. Each of these gives an approximation to
the neural network, and the purpose of this repetition is to observe the number of rules
that are extracted and the accuracy of the results on the testing dataset.

Table 5 gives the results of testing the rules extracted from the 34 feature neural
network, approximating with 1, 2, 4, 8, 10, 12 and 16 features. Again, the evaluation
is given in terms of the confusion matrix, and the Accuracy, Precision, Sensitivity and
Specificity measures.
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Table 5. Results for Rules Extracted from NN using 1, 2, 4, 8, 10, 12, and 16 Features [29]

Accuracy Precision Sensitivity Specificity Confusion Matrix
Malicious Benign

1 Feature 91.96 80.70 99.92 87.95 Malicious 8070 1930
Benign 6 14090

Malicious Benign
2 Features 91.96 80.70 99.92 87.95 Malicious 8070 1930

Benign 6 14090
Malicious Benign

4 Features 98.95 97.54 99.92 98.28 Malicious 9754 246
Benign 7 14089

Malicious Benign
8 Features 98.13 95.62 99.87 96.98 Malicious 9562 438

Benign 12 14084
Malicious Benign

10 Features 99.15 98.00 99.96 98.60 Malicious 9800 200
Benign 3 14093

Malicious Benign
12 Features 99.82 99.62 99.96 99.73 Malicious 9962 38

Benign 3 14093
Malicious Benign

16 Features 99.90 99.94 99.82 99.95 Malicious 9994 6
Benign 18 14078

Table 6 summarises the number of rules for each class by using the various numbers
of selected features. The final column gives the number rules that classify the input as
benign after minimisation (hence, any input not matching one of these rules is classified
as malicious).

Table 6. Numbers of Rules as Related to Numbers of Selected Features [29]

Features Malicious Benign Minimised

1 Feature 1 1 1
2 Features 2 2 1
4 Features 7 9 3
8 Features 100 156 29
10 Features 384 640 62
12 Features 1,560 2,536 229
16 Features 39,792 25,744 2,488

Also included is Table 7 detailing the time take to perform the rule extraction from
the 34 feature neural network using 1024 samples for each row of the truth table. The
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point to note here is that the extraction of the 16 feature Boolean approximation of the
neural network takes considerable time, more than five days of computation.

Table 7. Timing of Rule Extraction from the NN Classifier with 1024 samples [29]

Features Interval
1 Feature 18 sec
2 Features 37 sec
4 Features 120 sec
8 Features 390 sec

10 Features 7,846 sec
12 Features 30,598 sec
16 Features 482,618 sec

4.1.3 Revised Rule Extraction The time taken to extract Boolean rules with the 16
features using 1024 samples for each row of the truth table motivates investigation of
using a smaller sample size. Initial experimentation (not included, but used to generate
Figure 1) reduced the sample size to 32. As noted in section 4.5, some decisions based
on this reduced number of samples are close, so a tactic that expands the number of
samples to 64 if fewer that 25 samples indicate one value or the other is used, and
again if fewer that 50 samples indicate one value or the other, the number of samples is
expanded to 128.

Table 8 shows the result of applying the Boolean classifiers extracted from the 34
feature neural network to the testing dataset, where the experiment was conducted using
1, 2, 4, 8, 10, 12, and 16 features. Note that the results are close to those of the neural
network classifier which used 1024 instances as samples for decision making.

Table 9 shows the number of Boolean rules extracted for each class, and number of
rules after minimized.

4.2 Support Vector Machines

This section repeats the experiments performed in the previous section with neural net-
works, but instead using a 34 feature SVM as the base classifier.

4.2.1 Training Support Vector Machine Classifiers As for neural networks, two
SVM classifiers are trained, the first using 34 features, which will be used as the base
classifier for rule extraction, and the second using 16 features for comparison purposes.
The performance of the SVM trained on the full 34 features is given in Table 10.

Table 11 gives the performance of the SVM trained over 16 features. Again, the
Boolean function that this classifier defines can be extracted precisely, and the number
of rules that this gives can be seen in Table 12.
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Table 8. Extracted Results From NN Using 32/64/128 Samples

Accuracy Precision Sensitivity Specificity Confusion Matrix
Malicious Benign

1 Feature 58.49 0 0 58.49 Malicious 0 10000
Benign 0 14096

Malicious Benign
2 Features 98.95 97.60 99.87 98.32 Malicious 9760 240

Benign 12 14084
Malicious Benign

4 Features 98.74 97.08 99.88 97.96 Malicious 9708 292
Benign 11 14085

Malicious Benign
8 Features 96.61 99.61 92.76 99.70 Malicious 9961 39

Benign 777 13319
Malicious Benign

10 Features 98.37 96.60 99.46 97.63 Malicious 9660 340
Benign 52 14044

Malicious Benign
12 Features 99.84 99.75 99.87 99.82 Malicious 9975 25

Benign 13 14083
Malicious Benign

16 Features 99.87 99.86 99.83 99.90 Malicious 9986 14
Benign 17 14079

Table 9. Numbers of NN Rules Using 32/64/128 Samples

Features Malicious Benign Minimised
1 Feature 0 2 1
2 Features 3 1 1
4 Features 8 8 4
8 Features 103 153 29

10 Features 382 642 84
12 Features 1,576 2,520 245
16 Features 39,861 25,675 2,766

4.2.2 Rule Extraction Boolean rule extraction is performed as for neural networks.
The 34 feature SVM classifier is sampled using the 32/64/128 sample tactic and the
results are presented in Table 13. The number of rules extracted are given in Table 14.

4.3 k-NN

Again, the same set of experiments were conducted for k-NN. Classifiers are built, then
rule extraction performed, with the resulting classifiers evaluated.
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Table 10. SVM Classifier Performance Using 34 Features

Accuracy Precision Sensitivity Specificity Confusion Matrix
Malicious Benign

99.90 99.90 99.88 99.92 Malicious 9990 10
Benign 12 14087

Table 11. SVM Classifier Performance Using 16 Features

Accuracy Precision Sensitivity Specificity Confusion Matrix
Malicious Benign

99.90 99.87 99.89 99.90 Malicious 9987 13
Benign 11 14085

Table 12. SVM Classifier Rules Using 16 Features

Class Malicious Benign Minimised
Rules 33,589 31,947 8,043

4.3.1 Training k-NN Classifiers A k-NN classifier was trained using the same 34
features as for the NN and SVM classifiers. Here (unlike in previous work [30]) the
k parameter was optimised to be 4. Table 15 shows the performance results for k-NN
when using 34 features.

Again, a k-NN classifier trained using 16 features was also developed and the results
of testing this can be seen in Table 16. As for the other base classifiers, the Boolean
function that this classifier defines can be extracted and the number of rules that the
gives can be seen in Table 17.

4.3.2 Rule Extraction As in the previous sections, Boolean rule extraction was per-
formed by sampling the 34 feature k-NN classifier using the 32/64/128 sample tactic.
The results are presented in Table 18. The number of rules extracted are given in Ta-
ble 19.

4.4 Timings

A major motivation for investigating the number of samples required to extract good
Boolean rules from other classifiers is the time taken by the rule extraction from [29].
In this section, the time taken for rule extraction using the 32/64/128 tactic is given for
NN, SVM and kNN. These timings are given in Table 20.
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Table 13. Results for Rules Extracted from SVM using 32/64/128 Samples

Accuracy Precision Sensitivity Specificity Confusion Matrix
Malicious Benign

1 Feature 91.96 80.70 99.92 87.95 Malicious 8070 1930
Benign 6 14090

Malicious Benign
2 Features 91.96 80.70 99.92 87.95 Malicious 8070 1930

Benign 6 14090
Malicious Benign

4 Features 98.74 97.03 99.93 97.93 Malicious 9703 297
Benign 6 14091

Malicious Benign
8 Features 98.24 95.80 99.97 97.10 Malicious 9580 420

Benign 2 14094
Malicious Benign

10 Features 99.18 98.07 99.96 98.64 Malicious 9807 193
Benign 3 14093

Malicious Benign
12 Features 99.09 97.85 99.97 98.49 Malicious 9785 215

Benign 2 14094
Malicious Benign

16 Features 99.90 99.88 99.89 99.91 Malicious 9988 12
Benign 11 14085

Table 14. Numbers of SVM Rules Using 32/64/128 Samples

Features Malicious Benign Minimised
1 Feature 1 1 1
2 Features 2 2 1
4 Features 8 8 4
8 Features 79 177 35

10 Features 327 697 129
12 Features 1,193 2,903 448
16 Features 35,780 29,756 5,884

4.5 Labelling Via Sampling

The core of the rule extraction methods presented in this paper is sampling a classifier to
give an assignment of a Boolean value to a row in a truth table. This section investigates
the sampling and how clean a division is achieved. Figures 1, 2, 3 present results on
this for NN, SVM and k-NN respectively. Each figure gives two results, developed by
considering rule extraction for 16 features using a fixed sample size of 32 (note that this
differs from the 32/64/128 tactic used in the earlier results, although the performance
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Table 15. k-NN Classifier Performance Using 34 Features

Accuracy Precision Sensitivity Specificity Confusion Matrix
Malicious Benign

99.68 100 99.25 100 Malicious 1000 0
Benign 75 14021

Table 16. k-NN Classifier Performance Using 16 Features

Accuracy Precision Sensitivity Specificity Confusion Matrix
Malicious Benign

99.83 99.99 99.61 99.99 Malicious 9999 1
Benign 39 14057

Table 17. k-NN Classifier Rules Using 16 Features

Class Malicious Benign Minimised
Rules 47,244 18,292 1,598

of the extracted classifiers is not dramatically different). The first result (in blue) details
how many rows of the truth table (with 216 rows) result from the number of cases; that
is, Iterations gives the number of rows which has a split where Cases is the number
of samples giving malicious. The second result (in orange) gives the number of testing
instances that are assigned from a row of the truth table whose value was determined
by a sample with Cases being the number of samples giving malicious (for example, if
a test instance is determined to be malicious, Cases is the number of samples that have
malicious, say 30).

5 Discussion

As has already been established in [30, 31] a variety of machine learning classifiers can
be applied to the XSS detection problem giving very good results. This is confirmed
here in Tables 2, 10 and 15 giving performance results for NN, SVM and k-NN clas-
sifiers trained using the 34 highest ranked features. These results are accompanied by
Tables 3, 11 and 16 giving the results when training NN, SVM and k-NN classifiers us-
ing only the 16 highest ranked features, which again give good results, if (particularly
for NN) not quite as good as for the higher number of features.

Each of the classifiers above defines a Boolean function, which might be used to re-
place the original classifier. For the 16 feature classifiers, this Boolean function can be
calculated directly, but for the 34 feature classifiers this is computationally intractable.
The first question posed by this paper, is whether it is possible to find useful approxi-
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Table 18. Results for Rules Extracted from k-NN using 32/64/128 Samples

Accuracy Precision Sensitivity Specificity Confusion Matrix
Malicious Benign

1 Feature 58.49 0 0 58.49 Malicious 0 10000
Benign 0 14096

Malicious Benign
2 Features 98.95 97.60 99.87 98.32 Malicious 9760 240

Benign 12 14084
Malicious Benign

4 Features 98.74 97.08 99.88 97.96 Malicious 9708 292
Benign 11 14085

Malicious Benign
8 Features 99.48 98.25 92.78 99.44 Malicious 9925 75

Benign 772 13324
Malicious Benign

10 Features 96.50 96.91 94.78 97.77 Malicious 9691 309
Benign 533 13563

Malicious Benign
12 Features 99.72 99.79 99.54 99.85 Malicious 9979 21

Benign 46 14050
Malicious Benign

16 Features 97.06 99.95 93.43 99.96 Malicious 9995 5
Benign 702 13394

Table 19. Numbers of k-NN Rules Using 32/64/128 Samples

Features Malicious Benign Minimised
1 Feature 1 1 1
2 Features 3 1 1
4 Features 7 9 5
8 Features 151 105 32

10 Features 593 431 105
12 Features 3,334 762 94
16 Features 44,120 21,416 2,843

mations to the Boolean functions described by the higher dimensional classifiers? The
existence of the 16 feature Boolean classifiers suggests that it is. Table 5 repeats the
experiments from [29] using the sampling based approach to find a series of Boolean
classifiers using an increasing number of features to approximate the 34 feature NN
classifier. The performance of the approximating Boolean classifier using 16 features
matches (in fact, slightly betters) that of the neural network that it is modelling, with
99.90% accuracy and 99.94% precision, demonstrating that rule extraction has been



20 Fawaz A. Mereani and Jacob M. Howe

Table 20. Timing of Rule Extraction from NN/SVM/k-NN Classifiers Using 32/64/128 Samples

Features NN SVM k-NN
1 Feature 1 sec 1 sec 1 sec
2 Features 2 sec 1 sec 1 sec
4 Features 3 sec 1 sec 6 sec
8 Features 57 sec 9 sec 101 sec
10 Features 212 sec 36 sec 419 sec
12 Features 755 sec 135 sec 2,016 sec
16 Features 10,645 sec 3,720 sec 23,271 sec

Fig. 1. Number of occurrences of the samples in a NN

successfully accomplished. For comparison, the extracted rule-based Boolean function
classifier in Table 5 performs slightly better than those for the 16-feature neural network
in Table 3. These results show that rule extraction works, but the sampling used, where
1024 samples were used to generate each row of the truth table for the Boolean func-
tion, is slow. As can be seen in Table 7 the time taken to build the Boolean functions
increases exponentially, with the best approximation using 16 features taking more than
five days of computation.

The second question posed by this paper is whether the number of samples can be
reduced (speeding up the approximation process) whilst maintaining precision. This
is answered by Table 8 where a small number (32) of samples is used to determine the
value of a row in the truth table, and increasing this (to 64, then 128 samples) only when
the sample does not give a clear cut answer. The results show that the performance of the
resulting Boolean classifiers is comparable to that of the Boolean classifiers extracted
by using a larger number of samples, hence also comparable to that of the underlying
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Fig. 2. Number of occurrences of the samples in a SVM

Fig. 3. Number of occurrences of the samples in a k-NN

neural network when using 16 features. Table 20 shows that this approach is indeed
faster, taking about 3 hours of computation.

Third question is whether this approach works for classifiers developed using other
machine learning techniques? This work considers: i) support vector machines that to
some extent share the problem of neural networks in that the output of learning is a
function which is hard to interpret, ii) k-nearest neighbour where the interpretability of
the output is clear, but where the output model is large, being essentially a represen-
tation of the training data. Tables 13 and 18 give the results of repeating the approach
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to approximating neural network classifiers using instead SVM and k-NN respectively.
The results confirm that the approach works for other classifiers. The performance of
the Boolean functions extracted from the 34 feature SVM are excellent, with the 16 fea-
ture Boolean classifier working as well as the underlying base SVM. The performance
of the Boolean functions extracted from the 34 feature k-NN classifier, whilst giving
performance of over 90%, are not quite as strong as for the NN and SVM classifiers.
In particular the 16 feature Boolean function performs noticably less well that the k-
NN classifier it is approximating (and the 12 feature Boolean function). The authors
believe that this is because NN and SVM classifiers are learning functions that discrim-
inate between the features, weighting some more heavily than others; in contrast, k-NN
classifiers simply measure distance from the training data, with no feature being more
important than others.

When performing rule extraction, a series of approximations using an increasing
number of features have been built and evaluated in Tables 8, 13 and 18, as well as
Table 5. The number of rules both before and after minimisation are given in Tables 6,
9, 14, and 19. As might be expected, as the number of features increases, the number of
rules (after minimisation) increases too, and the performance of the resulting classifiers
improves. The improvements are not necessarily monotonic, but the pattern is clear. If
comparing against the Boolean function extracted from the 16 feature classifers, the
number of minimised rules is comparable (except for SVM).

The fourth question addressed is how well the sampling method gives Boolean val-
ues, that is, do all the samples give the same value, or do the samples give a split
decision? This is considered in Figures 1, 2, 3. The first result (the blue line) plots the
sample split (Cases) against the number of rows of the 16 feature truth table which de-
rive from this split. As can be seen in Figure 2, SVM gives the cleanest split with the
value for most rows deriving from a sample with only a handful of sample instances not
agreeing with the final label. Figure 1 shows a similar pattern for the neural network,
although this is shallower with more cases where the number of samples for each value
are close to each other. Figure 3, however, gives a different pattern for k-NN, with fewer
clean cut cases, hinting at why rule extraction works less well. The second result (the
orange line) plots the number of tests that were labelled using a rule whose split is given
by Cases. Here it can be seen why the approach works so well. For test data (which is
not a chimera of a row of the truth table and a sample from the training data) almost
all of the values assigned come from rules whose value comes from a clean cut sample.
This applies to all three base classifiers. That is, the doubt in the sampling comes from
examples which do not occur in practice.

The final question is what level of explainable AI has been extracted from classifiers
in the form of the Boolean rule-based systems? The approximations described in this
work give classifiers whose reasoning can be described, allowing decision making to be
auditable. The successive approximations show that relatively good performance can be
achieved with the use of only a small number of features. That the sampling approach
gives approximations with some degree of noise is illustrated across the tabled results
where anomalous cases can be found. For example, the 8 feature case in Table 5, where
the introduction of feature 7, URL addresses, leads to some additional misclassifica-
tions, compared to the courser 4 feature classifier. It should also be noted that the very
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course 1 and 2 feature classifiers still give useful result, with all the 2 feature classi-
fiers giving over 90% precision. The reason for this result is that the highest ranking
feature is the use of “Alert” within the script and that a high proportion of attacks in
the database use this, whilst it is rarely used in benign scripts. This first feature is very
powerful. This observation (whilst not surprising to the authors) is a good illustration
of XAI in action, where the rule-based system has made the explanation explicit.

The best approximation still requires thousands of rules even after minimisation.
It is not clear that each individual decision can be interpreted by a human user, in the
context of the larger number of rules. However it should be noted that these rules are
simply the flattening of a single binary decision-tree over 16 features. It seems unlikely
that a smaller datastructure can be used successfully as a classifier. In either view, the
extracted rules mean that decision making is always auditable, the reasoning for any
decision can be traced.

As noted in the methodology, the current approach requires a double use of the
training set, firstly to train the classifiers, and secondly to guide the sampling approach
used in the approximation of the classifiers by Boolean functions. However, given the
size of the Boolean function described by the trained classifiers, some kind of guidance
seems inevitable in a black box approach to approximation. The black box approach has
worked, resulting in successfully extracting rules in form of (i f ...then...else) in order to
distinguish malicious and benign scripts without delving deeper into the inner structure
of the classifiers.

6 Conclusion

This paper develops the approach to rule extraction first described in [29]. It considers
machine learning for classification problems where the feature space is Boolean, and the
classes are also Boolean. The example in this work is the classification of JavaScript as
malicious (an XSS attack) or benign, where the actual script is abstracted to a Boolean
feature set. The rule extraction first finds a Boolean function as a truth table describing
the classifier, then simplifies this. The Boolean function might be an exact description
of the classifier, or an approximation built using a sampling technique.

Rule extraction is successfully demonstrated for three kinds of classifier trained to
detect XSS attacks: neural networks, support vector machines and k-nearest neighbour.
Approximations to the full 34 feature classifiers were considered at different levels of
granularity. The most precise approximations are over 16 features. This work shows
how the sampling technique first suggested in [29] can be adapted to work with a re-
duced number of samples, producing approximations much more quickly. Using this
new, faster, approach to sampling, the 16 feature approximation to the original neural
network gives 99.87% accuracy and 99.86% precision. These results are as good as
those for the initial classifier and can be computed relatively quickly, extending and
improving upon the results in [29]. Similar results are obtained for SVM, and good,
though less reliable results for k-NN.

The number of rules extracted grows with the number of features used in the ap-
proximation. As discussed in Section 5, this means that these rules are auditable – the
reasoning for any given classification can easily be looked up and interpreted – and es-
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sentially form a 16 feature binary decision tree which, while relatively large, should be
seen as an explainable classifier.

Future work is to investigate how this approach might be generalised to features
which are not Boolean valued, by piecewise approximation, or otherwise. Alternative
ways of computing the rules (perhaps using BDDs), and further approximation to give
more compact rules sets will also be explored.

In conclusion, XAI principles have been followed to give a procedure resulting in
explanations of black box classifiers as a set of Boolean rules which can be understood
by human users, leading to successful rule extraction.
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