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Abstract 

The IRR (dollar-weighted return) reflects the periodic addition or withdrawal of funds by investors, 

and the difference between IRR and geometric mean is widely used to indicate the impact that the 

timing of these flows has had on investor returns. This is a biased measure, since it is also affected 

by investment flows which “chase” previous strong returns. A method has previously been derived 

for separating this bias from genuine timing effects. This paper demonstrates that using in-sample 

mean returns for this decomposition causes an additional bias which again misleadingly suggests 

bad investor timing. This paper quantifies this bias, allowing unbiased investor timing effects to be 

estimated. A proper understanding of these biases is of significant practical importance, since 

investors are often presented with biased timing indicators based on IRRs. 
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Further Biases in Using Dollar-Weighted Returns to Infer 

Investment Timing Effects 

 

1. Introduction 

 The internal rate of return (IRR) reflects the timing of investment flows. As a result, it is widely 

argued that the “performance gap” between the IRR and geometric mean (GM) return measures 

the extent to which bad timing of these flows affects returns. Using this method a large number of 

papers have concluded that the bad timing of investments into the equity market has substantially 

reduced the overall return to the average investor (Dichev (2007), Friesen & Sapp (2007), Dichev 

and Yu (2011), Chieh-Tse Hou  (2012),  Muňoz (2015), Navone and Pagani (2015), Cornell et al. 

(2016)). 

This method has been shown to be biased. Hayley (2014) demonstrated that the IRR can be 

affected by investment flows after a period of unusually high or low returns just as much as it can 

be affected by investment flows before this period. Indeed, there is a strong case for expecting the 

first effect (the “hindsight effect”) to have a significant negative impact on IRRs, since there is 

ample evidence that investors “chase returns” by investing more following periods of high returns 

(e.g Siri and Tufano (1998), Phillips et al. (2012)).  

Hayley (2014) also derived a method for decomposing the performance gap into the hindsight 

effect and genuine timing effects. The results of this decomposition were sensitive to the initial 

assumption chosen for the mean return, but over a range of different assumptions, the observed 
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negative performance gap in US equities could be explained by the hindsight effect, with any 

timing effect close to zero. 

Despite this, subsequent research has continued to interpret the performance gap between 

IRRs and GM returns as an indicator of bad timing (e.g. Muňoz (2015), Navone and Pagani (2015), 

Cornell et al. (2017)). Commercial databases such as Morningstar continue to publish mutual fund 

IRRs in addition to their GM returns. 

Vicente and Muňoz (2018) uses an approach based on Hayley (2014) to decompose the 

performance gaps on US mutual funds (1990-2016) and finds that although the majority of the 

performance gap can be attributed to the hindsight effect, there still appears to be significant 

genuine bad timing of investment flows into all the major categories of mutual fund (e.g. a 

“corrected” timing effect of 0.71% out of a total performance gap of 1.80% for all US domestic 

equity mutual funds). However, these decompositions were derived by initially assuming for each 

fund that the return in each period is equal to the GM return observed for that fund over the entire 

investment period. It is demonstrated below that this assumption consistently biases the 

decomposition.  

The intuition behind this additional bias is that using the sample mean implies that above-

average returns prior to any given period must by construction be followed by subsequent below-

average returns. Given that return-chasing by investors leads to additional investment inflows 

following periods with above-average returns, these inflows will by construction come ahead of 

periods of below-average returns. This is an entirely spurious correlation. It will tend to push the 
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DWRR below the GM return, and this is likely to be misinterpreted as evidence that investors timed 

their investment flows badly. 

Section 3 (below) derives an expression for the expected size of this bias. This is close to the 

size of the timing effects claimed by Vicente and Muňoz (2018), suggesting that their results are 

not evidence of consistent bad timing by investors. More importantly, identifying and quantifying 

this bias offers a methodological improvement which will allow unbiased estimates of any genuine 

timing effects to be estimated. A proper understanding of these biases is of significant practical 

importance, since investors are often presented with biased timing indicators based on IRRs.  

2. Approximating the Hindsight Effect in the IRR 

The IRR is usually defined as the discount rate that sets the NPV of investment cashflows to zero:  

଴ܭ ൅	∑
௔೟

ሺଵାூோோሻ೟
െ ௄೅

ሺଵାூோோሻ೅
ൌ 0்

௧ୀଵ     (1) 

where Kt is the portfolio value at the end of period t, and at is the flow of new cash invested into 

this portfolio each period. This flow could be positive or negative, and is assumed to take place at 

the end of each period.1 Remaining assets KT are treated as if liquidated in the final period. 

                                                      
1 Hayley (2014) shows that shifting to assuming that flows come at the start of each month has negligible 

impact on the resulting decompositions. 
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The change in portfolio value each period is a function of the return rt on the portfolio 

during this period and any additional cash at invested: Kt=Kt-1(1+rt)+at. Substituting this 

relationship into equation (1) and rearranging shows that the IRR can also be expressed as a 

weighted average of the individual period returns rt, where the weight used is determined by the 

present value of the investment at the start of each period (see Dichev and Yu, 2011). Hence the 

IRR is also referred to as the dollar-weighted rate of return: 

ܴܴܫ ൌ 	∑ ቀݎ௧
௄೟షభ

ሺଵାூோோሻ೟షభ
∑ ௄೟షభ

ሺଵାூோோሻ೟షభ
்
௧ୀଵൗ ቁ்

௧ୀଵ     (2) 

The IRR is a complex polynomial function of the periodic returns rt over the course of the 

investment horizon. This complexity means that approximations are generally required in order to 

derive useful analytic results. The simulations presented later in this paper allow us to assess the 

accuracy of these assumptions. We assume that the returns rt are serially independent, which can 

be interpreted as weak form market efficiency. If inflows and outflows after period 0 and the 

standard deviation of rt are all fairly small, Kt-1 grows at an approximately uniform rate which is 

roughly equal to the IRR, implying that each rt will be given an approximately equal weight in the 

IRR calculation, so the IRR will be close to the mean: 

	ܴܴܫ ൎ ଵ

்
∑ ௧்ݎ
ଵ       (3) 

From this simple starting condition, we introduce a single investment inflow a at the end of 

period n (a is expressed here as a percentage of the portfolio value at that time, and a negative a 

indicates an outflow as investors withdraw funds). This inflow increases Kt in all subsequent 
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periods in the investment horizon. Instead of all weights being 1/T, the weights given to rt will now 

be approximately as shown in equation 4: 

	ܴܴܫ ൎ ଵ

୬ାሺଵାୟሻሺ୘ି୬ሻ
∑ ௧௡ݎ
ଵ ൅ ଵାୟ

୬ାሺଵାୟሻሺ୘ି୬ሻ
∑ ௧்ݎ
௡ାଵ     (4) 

ൎ ଵ

୬ାሺଵାୟሻሺ୘ି୬ሻ
∑ ௧௡ିଵݎ
ଵ ൅ ఓ

୬ାሺଵାୟሻሺ୘ି୬ሻ
൅ ሺ௥೙ିఓሻ

୬ାሺଵାୟሻሺ୘ି୬ሻ
൅ ଵାୟ

୬ାሺଵାୟሻሺ୘ି୬ሻ
∑ ௧்ݎ
௡ାଵ   (5) 

Prior research has suggested that the cash inflow a is strongly related to the immediately 

preceding return (Sirri/Tufano (1998), and Phillips et al. (2012)). This is commonly referred to as 

“return chasing” by investors, and is presumed to be due to strong returns in one period resulting 

in investors becoming more optimistic about future returns. For simplicity we assume that a is a 

function of rn, but not of earlier returns. This, and the serial independence of the returns, means 

that the summations in equation (5) have no correlation with their multiplicands, and so have 

expected value μ in each period. Only rn is correlated with a in the denominator, thus: 

Eሾܴܴܫሿ 	ൎ
ሺ୬ିଵሻஜା	ஜାሺଵାୟሻሺ୘ି୬ሻஜ

୬ାሺଵାୟሻሺ୘ି୬ሻ
൅ E ቂ ሺ୰౤ିஜሻ

୬ାሺଵାୟሻሺ୘ି୬ሻ
ቃ    (6) 

ൎ μ ൅ E ቂ ሺ୰౤ିஜሻ

୬ାሺଵାୟሻሺ୘ି୬ሻ
ቃ      (7) 

For small a, 	 ଵ

୬ାሺଵାୟሻሺ୘ି୬ሻ
ൎ ଵ

୘
 and we approximate using 1/(1+x)≈1-x for small x: 

Eሾܴܴܫሿ 	ൎ ߤ ൅ ቀଵ
்
ቁܧሾሺݎ௡ െ ሻߤ ൬2 െ

ଵ

்
൫n ൅ ሺ1 ൅ aሻሺT െ nሻ൯൰	ሿ																		 (8) 

Assuming the relationship between flows and returns to be linear (a= w(rn-μ), where w is a 

constant), and noting that E[rn-μ]=0, E[(rn-μ)2]=σ2: 
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ሿܴܴܫሾܧ ൎ ߤ െ ݓ	 ఙమ

்మ
ሺܶ െ ݊ሻ																			                                         (9)  

The derivation above shows how the hindsight effect identified in Hayley (2014) affects 

the performance gap (IRR-μ). Return-chasing by investors leads to a significant investment inflow 

after an above-average return rn in the immediately preceding period. Thus the numerator (rn-μ) in 

equation (7) is positively correlated with the denominator. For example, a high return rn would 

generate a positive investment inflow a which increases the relative weight given to future 

investment returns. But the weights given to all the periods in our investment horizon must sum to 

one, so this inflow a also reduces the weight given to prior returns, including rn. Conversely, a 

below-average return rn leads to an outflow of funds which reduces the weight given to future 

returns and increases the relative weight given to rn. Thus above-average returns are given a 

reduced weight, and below-average returns an increased weight, consistently reducing the IRR.  

It would be a mistake to interpret this as bad investment timing – it does not have any effect 

on investors’ expected terminal wealth since it is a retrospective adjustment of the relative weights 

in the IRR calculation after the period has passed because inflows tend to be correlated with past 

returns. Instead, genuine timing effects need to adjust investors’ exposures before the return 

concerned (i.e. inflows correlated with future returns). 

Equation (9) gives us the effect on the IRR from a specific investment flow immediately 

after period n. In order to generate the total effect on the IRR, we sum this effect over each specific 

period from n=1 to T, giving us a result equivalent to that in Perkins (2018): 
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ܴܴܫሾܧ െ ሿߤ ൎ െ	ݓ ఙమ

ଶ
ቀ୘ିଵ

୘
ቁ																							                              (10) 

For large T, this approximates to െ௪ఙమ

ଶ
	so this bias is not a small sample effect. The impact 

that each individual rt has on the IRR declines with T as it becomes a smaller part of the sample. 

But the total effect on the IRR is then the sum of a correspondingly increased number of such 

individual effects.2 

The above derivation considered the effect of each individual flow a in isolation, ignoring 

any interaction between the effects of flows in different periods. Given the underlying assumptions 

that returns rt are independently and identically distributed and that flows are a stable function of 

these returns, the effect of interactions between these periodic flows in the IRR calculation are 

likely to be of second order. The simulations (Table 1, below) confirm that equation (10) is an 

adequate approximation for investment horizons in the range used by Vicente and Muňoz  (2018). 

                                                      
2 Equation (10) gives an estimate of the performance gap as normally defined: IRR-geometric mean (GM). This may 
seem contradicted by the fact that μ was defined as the expected periodic return E[rt], i.e. the arithmetic mean return. 
However, there is another effect at work even if there are no periodic cashflows (at=0): an above-average rt increases 
the portfolio value Kt, increasing the relative weight given in the IRR calculation to subsequent returns, and hence 
reducing the relative weight given to rt itself (a below-average rt will correspondingly increase its own weight).  For 
simplicity suppose that rt=μ for all t, except for rn>μ. The weight given to rt in the IRR calculation is a function of the 
present value of Kt-1. The value of Kt-1 is unaffected by rt, but the discount rate will have increased (by around 	

௥೙ିఓ

்
, 

as a first approximation), reducing the present value by approximately 	ቀ
ଵ

ሺଵାሺ୰౤ିஜሻ/୘ሻ
ቁ
௡ିଵ

. The weights given to r1 

through rn-1 will also have been reduced, but the weights for rn+1 through rT will have been increased because of the 
increased portfolio values Kt to KT. If the rt are serially independent then the only systematic effect will be that each 
large rt reduces its own weight in the IRR calculation (and vice versa). Taking a Taylor expansion of the 

௡ݎ ቀ
ଵ

ሺଵାሺ୰౤ିஜሻ/୘ሻ
ቁ
௡ିଵ

term, taking expectations and averaging over all t gives μ	െ ఙమ

ଶ
, i.e. even before introducing any 

intermediate cashflows at, the expected value of the IRR is the GM, not the AM. Equation (10) shows the additional 
effect which pulls the IRR below the GM as we introduce periodic cashflows which are positively correlated with prior 
returns. 
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Equation (10) gives us an expression for the expected size of the theoretical performance 

gap ܧሾܴܴܫ െ  ሿ when investment flows chase returns (according to an=w(rn-1-μ)).We might beߤ

concerned that in practice because μ is not known, the empirical performance gap ܴܴܫ െ  ,is used	ݎ̅

which compares the IRR to the sample mean. However, whilst equation (7) requires the existence 

of a well-defined distribution mean μ, it does not require us to know its value. Our corresponding 

estimate of ߤ as the sample mean would inevitably include some noise, but it is unbiased, so the 

expected value of the empirical performance gap	ሺܴܴܫ െ  ሻ is the same as our expression for theݎ̅

true gap in equation (10). By contrast, the following section shows that using the sample mean 

results in a substantial bias in the decomposition of this gap into an estimated hindsight effect and 

genuine timing effect. 

3.  Decomposing the Performance Gap Using the Sample Mean Return 

This section investigates whether using the sample mean rather than the true mean μ affects the 

decomposition of ሺܴܴܫ െ  ሻ into timing and hindsight effects. For this purpose, we again assumeݎ̅

a set of serially uncorrelated returns rt. These can be thought of as generated by a pure random 

walk process, removing the possibility of consistently good or bad timing. We then derive an 

expression for the size of the timing effect that we would estimate when we decompose this 

performance gap. 

The decomposition process derived by Hayley (2014) works by initially setting all periodic 

returns rt equal to an assumed mean μ, and all periodic flows at to zero. At this point the IRR for 

this investment will by construction be equal to μ. The first observed return r1 is then substituted 
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in, and the IRR recalculated. Then the first observed investment inflow a1 is substituted in, and the 

IRR again recalculated. These substitutions are repeated for each successive period. Following all 

these substitutions, all actual data are in place, so the final calculation gives the IRR observed in 

the actual data. Because these substitutions are made in chronological order, substituting in the 

returns has a non-zero net effect on the IRR to the extent that each rt is correlated with prior 

investment flows (this represents genuine good/bad timing of these flows which will affect investor 

wealth). By contrast, substituting in the flows at affects the IRR to the extent that the flows at are 

correlated with prior returns the hindsight effect). 

We derived equation (10), giving the expected total performance gap, by initially 

considering each flow at in isolation. By contrast, now that we are estimating the apparent “timing 

effect” we need explicitly to include the investment flows prior to period t in order to estimate the 

degree to which these are correlated with subsequent returns. We continue to assume that each 

inflow (measured as a percentage of the fund’s size at the time) is ܽ௧ ൌ ௧ݎሺݓ െ  .ሻߤ

We will first consider what happens when we substitute in a single rn. We then repeat this 

process for n=1 to T to generate an aggregate overall effect for 1≤n≤T, replicating the process by 

which the total timing effect is estimated. As above, the IRR calculation immediately before 

substituting in rn gives a relative weight to each of the prior returns r1 to rn-1 which depends on the 

cumulative investment inflows ahead of each period (a0 is normalised to zero, and we set the initial 

portfolio value K0=1). All future returns rn to rT are given an equal relative weight determined by 
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the cumulative inflows so far (1 ൅ ∑ ܽ௧ିଵ௡ିଵ
ଵ ), with these future returns at this stage all assumed 

equal to μ: 

IRR	 ൎ
∑ ቀଵା∑ ௔ೕషభ	

೟
ೕసభ ቁ௥೟

೙షభ
೟సభ ା൫ଵା∑ ௔೟

೙షభ
೟సభ ൯∑ ఓ೅೙

∑ ሺଵା∑ ௔ೕషభ	
೟
ೕసభ

೙షభ
೟సభ ሻା൫ଵା∑ ௔೟

೙షభ
೟సభ ൯ሺ୘ି୬ାଵሻ

            (11) 

From this starting point we now substitute in the actual value of rn: 

IRR	 ൎ
∑ ቀଵା∑ ௔ೕషభ	

೟
ೕసభ ቁ௥೟

೙షభ
೟సభ ା	ሺଵା∑ ௔೟

೙షభ
೟సభ ሻሺ௥೙ିఓሻା൫ଵା∑ ௔೟

೙షభ
೟సభ ൯∑ ఓ೅೙

∑ ሺଵା∑ ௔ೕషభ	
೟
ೕసభ

೙షభ
೟సభ ሻା൫ଵା∑ ௔೟

೙షభ
೟సభ ൯ሺ୘ି୬ାଵሻ

    (12) 

The denominator does not change, since we have not yet substituted in at, so the change in 

IRR resulting from substituting in rn is the difference between equations 11 and 12: 

	ܴܴܫ݀ ൎ ሺଵା∑ ௔೟
೙షభ
೟సభ ሻሺ௥೙ିఓሻ	

∑ ሺଵା∑ ௔ೕషభ	
೟
ೕసభ

೙షభ
೟సభ ሻା൫ଵା∑ ௔೟

೙షభ
೟సభ ൯ሺ୘ି୬ାଵሻ

    (13) 

E[dIRR] in equation 13 is zero, since (rn-μ) is independent of prior at and E[rn-μ]=0. This 

correctly reflects the fact that if the rt follow a random walk, and hence are genuinely 

unforecastable, then we should expect no timing effect. But in practice we do not know μ with 

certainty. Hayley (2014) responded to this by considering a range of different values for μ. Vicente 

and Muňoz  (2018) instead estimate the timing and hindsight effects for different US funds just by 

initially setting all rt equal to the observed mean return ̅ݎ, giving: 

	ܴܴܫ݀ ൎ
ሺଵା∑ ௔೟

೙షభ
೟సభ ሻሺ௥೙ି௥̅ሻ	

∑ ሺଵା∑ ௔ೕషభ	
೟
ೕసభ

೙షభ
೟సభ ሻା൫ଵା∑ ௔೟೙షభ

೟సభ ൯ሺ୘ି୬ାଵሻ
    (14) 
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This means that E[dIRR] is no longer zero, since ሺr୬ െ r̅ሻ is correlated with ∑ ܽ௧௡ିଵ
௧ୀଵ , 

since at=w(rt-μ). Approximating, using 1/(1+x)≈1-x and noting that the denominator is 

approximately equal to T: 

ܴܴܫ݀ ൎ
ሺr୬ െ r̅ሻ

T
൭1 ൅෍ܽ௧

௡ିଵ

௧ୀଵ

൱

ۉ

ۈ
ۇ
2 െ

1
T
൮෍ቌ1 ൅෍ ௝ܽିଵ	

௧

௝ୀଵ

ቍ

௡ିଵ

௧ୀଵ

൅ ൭1 ൅෍ܽ௧

௡ିଵ

௧ୀଵ

൱ ሺT െ n ൅ 1ሻ൲

ی

ۋ
ۊ
								ሺ15ሻ 

ܴܴܫ݀ ൎ
ሺr୬ െ r̅ሻ

T
൭1 ൅෍ܽ௧

௡ିଵ

௧ୀଵ

൱൮1 െ
1
T
ቌ෍෍ ௝ܽିଵ	

௧

௝ୀଵ

௡ିଵ

௧ୀଵ

൅ ሺT െ n ൅ 1ሻ෍ ܽ௧

௡ିଵ

௧ୀଵ

ቍ൲															ሺ16ሻ 

ܴܴܫ݀ ൎ
ሺr୬ െ r̅ሻ

T
൅
ሺr୬ െ r̅ሻ

T
൮෍ܽ௧

௡ିଵ

௧ୀଵ

െ
1
T
ቌ෍෍ ௝ܽିଵ	

௧

௝ୀଵ

௡ିଵ

௧ୀଵ

൅ ሺT െ n ൅ 1ሻ෍ܽ௧

௡ିଵ

௧ୀଵ

ቍ൲

െ
ሺr୬ െ r̅ሻ
Tଶ

൮෍ܽ௧

௡ିଵ

௧ୀଵ

ቌ෍෍ ௝ܽିଵ	

௧

௝ୀଵ

௡ିଵ

௧ୀଵ

൅ ሺT െ n ൅ 1ሻ෍ܽ௧

௡ିଵ

௧ୀଵ

ቍ൲														ሺ17ሻ 

The first term is simply the increase in the recorded mean at this stage in the decomposition 

as a result of substituting in the actual value of rn in place of ̅ݎ. This has an expected value of zero. 

Recalling that ܽ௡ ൌ ௧ݎሺݓ െ  ሻ, the last term is a collection of third order terms in the deviation ofߤ

rt from either the sample mean or the true mean. The expected value of these third order terms is 

likely to be small, and we omit them to focusing instead on the second-order terms. The second 

term has expectation: 

ሿܴܴܫሾ݀ܧ ൎ െܧ ቂ
ሺ୰౤ି୰തሻ

୘మ
൫∑ ∑ ௝ܽିଵ	

௧
௝ୀଵ

௡ିଵ
௧ୀଵ െ ሺn െ 1ሻ∑ ܽ௧

௡ିଵ
௧ୀଵ ൯ቃ      (18)  
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ሿܴܴܫሾ݀ܧ ൎ െ
୵

୘మ
∑ൣܧ ∑ ሺr୬ െ r̅ሻሺr௝ିଵ െ ௧	ሻߤ

௝ୀଵ
௡ିଵ
௧ୀଵ െ ሺn െ 1ሻ∑ ሺr୬ െ r̅ሻሺr௧ െ ሻ௡ିଵߤ

௧ୀଵ ൧  (19) 

ሿܴܴܫሾ݀ܧ ൎ െ
w
Tଶ

ܧ ቎෍෍ሺr୬r୨ିଵ െ r̅r௝ିଵ ൅ r̅μ െ r୬ߤሻ	

௧

௝ୀଵ

௡ିଵ

௧ୀଵ

– ሺn െ 1ሻ෍ሺr୬r୲ିଵ െ r̅r௧ିଵ ൅ r̅μ െ r୬ߤሻ

௡ିଵ

௧ୀଵ

቏ 

Recalling that Eሾr୬ሿ ൌ Eሾr̅ሿ ൌ μ, and that serial independence means that  Eሾr୬r୬ି୨ሿ ൌ μଶ: 

ሿܴܴܫሾ݀ܧ  ൎ െ
୵

୘మ
ܧ ൤∑ ∑ ൬ߤଶ െ

ݐݎ
2൅ሺܶെ1ሻ2ߤ

ܶ
൰	௧

௝ୀଵ
௡ିଵ
௧ୀଵ െ ሺn െ 1ሻ∑ ൬ߤଶ െ

ݐݎ
2൅ሺܶെ1ሻ2ߤ

ܶ
൰	௡ିଵ

௧ୀଵ ൨												ሺ20ሻ 

ሿܴܴܫሾ݀ܧ ൎ െ
୵

୘మ
ቀି

ሺ௡ିଵሻሺ௡ିଶሻఙమ

ଶ்
൅

ሺ௡ିଵሻమఙమ

்
ቁ    (21) 

ሿܴܴܫሾ݀ܧ ൎ െ
௪௡ሺ௡ିଵሻఙమ

ଶ்య
      (22) 

Summing from n=1 to T, the expected value of this estimated timing effect over the whole 

decomposition process is: 

ൎ െቀ்ିଵ
୘
ቁ
ଷ ௪ఙమ

଺
             (23) 

Thus when substituting in the rt, there is an expected reduction in the IRR even if, as 

assumed in the derivation above, there is no correlation between successive returns or between 

flows and subsequent returns. This reduced IRR should not be interpreted as the effect of bad 

investment timing. Instead it is entirely due to the use of the sample mean return rather than the 

actual mean μ, which introduces a spurious negative autocorrelation of returns, since above-

sample-mean cumulative returns must by construction be followed on average by below-sample-

mean returns.  
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Referring to equation (14), E[ሺ1 ൅ ∑ ܽ௧௡ିଵ
௧ୀଵ ሻሺݎ௡ െ ሻሿݎ̅ ൏ 0 because even though ܧሾሺݎ௡ െ

ሻሿݎ̅ ൌ ሾܽ௧ሿܧ ൌ 0, these two components are negatively correlated because of the return-chasing 

investor behaviour which leads to a large (small) ∑ ܽ௧௡ିଵ
௧ୀଵ  if prior returns have been above (below) 

average, and hence future returns will by construction be below (above) average. By contrast, if 

we were to use the actual mean μ, ܧሾሺ1 ൅ ∑ ܽ௧௡ିଵ
௧ୀଵ ሻሺݎ௡ െ ሻሿߤ ൌ 0 because the two component 

terms are independent.  

In effect, this is a form of the spurious negative autocorrelation effect identified by Kendall 

(1954). That was a small sample effect which disappears as the length of the horizon increases. In 

the derivation above, the effect of each individual return rn does indeed become negligible for large 

T (equation 22), but the total effect does not disappear when we sum over all periods (equation 23). 

Thus the effect of this spurious autocorrelation does not disappear for large horizons, implying that 

decomposting the performance gap using the sample mean is likely to result in a misleading 

negative “timing” effect of –wσ2/6 even when, as assumed in our derivation above, rt follows a 

random walk. 

One way around this is, as in Hayley (2014), to use a range of plausible alternative 

assumptions for the true mean of the return distribution. Failing this, we can use equation (23) to 

construct a ready-reckoner for the size of the likely bias, and only apparent timing effects 

significantly different from this should be construed as evidence of genuine timing effects. 

We saw earlier that the total expected effect of return-chasing on the IRR when returns 

follow a random walk is 
ି௪ఙమ

ଶ
. Of this, we have found that 

ି௪ఙమ

଺
 is likely to be falsely attributed to 
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bad timing, because of the spurious autocorrelation of	ሺܴܴܫ െ  ሻ. The remainingݎ̅
ି௪ఙమ

ଷ
 will then be 

correctly attributed to the hindsight effect (as confirmed in the annex). Thus, for large T, one third 

of the recorded “performance gap” (IRR-GM) is likely to be interpreted as being due to bad timing, 

even if there is no such effect. The remaining two thirds will be correctly attributed to the hindsight 

effect caused by return chasing. 

Vicente and Muňoz (2018) found that the total performance gap of 1.80% per annum for 

all US domestic equity mutual funds decomposed into a hindsight effect of 1.09% and bad timing 

of 0.71%. They interpreted this as evidence that investment flows were indeed badly timed, 

although the scale of this effect had been substantially reduced by taking account of the hindsight 

effect. However, their decomposition was based on the assumption that the mean return for each 

fund represented the true mean of the underlying return distribution. As demonstrated above, this 

assumption introduces a bias which should be expected to lead to around one third of the 

performance gap being misclassified as bad timing. This bias would account for 0.60% of their 

0.71% estimated bad timing effect, implying very little evidence of actual bad timing. 

4. Simulation Evidence 

We made a number of approximations in the derivations above, but in this section we find that 

simulation evidence is consistent with these results.  

These simulations generated monthly returns and then the corresponding monthy 

investment inflow/outflow using ܽ௧ ൌ ௧ݎሺݓ െ  ሻ. The GM and IRR returns were calculated forߤ
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these simulated series. The resulting performance gap (IRR-GM) was then decomposed using the 

Hayley (2014) method, but with the monthly returns always initially assumed equal to the observed 

sample GM. Where this decomposition records a significant timing effect we know that this is 

entirely spurious, since monthly returns were generated as a random walk which cannot be 

consistently timed.  

The simulations in Table 1 below were conducted using lognormal monthly returns over a 

wide range of different investment horizons. These results use w=3 to determine the size of the 

return-chasing effect in the investment flows, since this generates performance gaps of the same 

sort of magnitude as are observed in practice.3 The monthly volatility of returns rt is set to 4% to 

represent the volatility of a well diversified portfolio (annual standard deviation of 14%) and 8% 

to represent periods of exceptional volatility when the results derived above might be expected to 

be less accurate approximations.  

  

                                                      
3 Using a smaller value of w would scale down both the simulated and theoretical effects proportionately, 
leaving their comparative values unchanged. Sirri and Tuffano (1998) and Philips et al. (2012) found that 
on average the effect is roughly w≈0.3, although it can be much larger for the best performing funds. 
Darendeli (2017) also argues that the return-chasing effect can be much larger than 0.3 for some funds 
(where the appropriate return metric is included in the monthly factsheet). Our derivation above shows that 
the average bias observed will be heavily influenced by outliers, so the net effect is likely to be much larger 
than would be generated using w=0.3, so for this reason we use a much larger figure (w=3) in order to 
determine whether our mathematical derivation is acceptably accurate when we generate hindsight effects 
of around the size found in empirical studies.  
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Table 1 – Simulations: apparent timing effects as percentage of total performance gap 

Monthly s.d. 
of returns 

 Investment horizon (years)  
 1 2 4 8 16 

4% 
Performance Gap -0.17% -0.20% -0.22% -0.23% -0.24% 
Timing (% of gap) 42.1% 37.4% 35.1% 33.5% 31.0% 

8% Performance Gap -0.71% -0.80% -0.86% -0.92% -0.95% 
Timing (% of gap) 42.1% 36.4% 34.0% 29.9% 28.2% 

 

The simulations do indeed generate a consistently negative performance gap. The size of 

this gap is not of central interest here, since it is driven by our choice of w. Instead, our key interest 

is in the accuracy of our result that when the decomposition by initially sets monthly returns equal 

to the sample mean return it will mistakenly attribute around one third of the performance gap to 

bad investor timing. 

For investment horizons of only one or two years rather more than one third of the 

performance gap is attributed to bad timing, but any performance measures estimated over such a 

short time horizons are likely to be very noisy. The horizons considered by typical investors are 

likely to be longer than this, and for these (between 4 and 16 years) we find that our conclusion 

that around one third of the observed performance gap will be spuriously attributed to bad timing 

is a fairly accurate estimate. Even in exceptionally volatile markets (monthly s.d.=8%) one third is 

likely to be an acceptable ready reckoner. For very long horizons second order effects appear to 
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become more significant, implying that the spurious timing effect will account for less than one 

third of the measured performance gap. 

These simulations are consistent with the result derived in Section 3: that decomposing the 

performance gap using the sample mean gives rise to a spurious timing effect equal to around one 

third of the performance gap.  

5. Concluding Remarks 

A large number of papers have used the “performance gap” between the IRR and GM returns as 

an estimate of the effect that the timing of investment flows has had on the returns earned by 

investors. These suggest that bad timing has substantially reduced investor returns.  

Academic studies are typically been skeptical of claims that it is easy to generate consistent 

outperformance by predicting market returns. By contrast, studies based on performance gaps have 

been surprisingly willing to conclude that large groups of investors have consistently generated 

very substantial negative alpha entirely by accident (since investors were presumably not trying to 

time their investment flows badly). 

Hayley (2014) demonstrated that a misleading hindsight effect is inherent in the 

performance gap when investors chase returns. Vicente and Muňoz (2018) investigated the 

performance gap for US domestic equity mutual funds and argued that even after correcting for 

this hindsight effect, bad timing had significantly reduced investor returns. However, as 

demonstrated above, the assumptions used in their decomposition should be expected to lead to 
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around one third of the performance gap being misclassified as bad timing. This would account for 

the large majority of their estimated bad timing effect, leaving very little evidence of actual bad 

timing. This is an important result, since the apparent bad timing effect was economically 

significant.  

However, the contribution of this paper is not just to correct this particular finding, but also 

to offer a methodological improvement: a more robust method for interpreting performance gap 

data, taking appropriate account of the hindsight effect and also the bias resulting from using the 

sample GM return in the decomposition. This will allow future studies to derive more accurate 

estimates of the genuine effects of the timing of investment flows. 

We know that investor flows can be driven by entirely spurious data (e.g. Phillips et al., 

2012) showed that investor flows into mutual funds increase when the latest annual return rises 

purely because a significant monthly loss one year ago had dropped out of this calculation of this 

annual return. This is entirely spurious, since this effect is predictable and gives no new information 

on the skill of the managers concerned. This suggests that we should be concerned that investors 

will be similarly responsive to entirely spurious data on the “performance gap” (defined as IRR-

GM) that similarly has no relevance to the fund manager’s skill. It is likely to be very difficult to 

remove predictable behavioural biases from investors allocation of their savings, but we should at 

least aim to stop investors from being presented with misleading performance indicators.  
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Annex: Estimating the Hindsight Effect  

Above we considered substituting in rn during the decomposition of the performance gap to 

replicate the process of identifying the timing component of the gap. Now we look at the effect of 

substituting in an to derive the corresponding hindsight effect. We start with a version of equation 

(12), with rn already set to its actual value, and future values set to ̅ݎ:  

IRR	 ൎ
∑ ൫1 ൅ ∑ ௝ܽିଵ	

௧
௝ୀଵ ൯ݎ௧௡

௧ୀଵ ൅ ሺ1 ൅ ∑ ܽ௧௡ିଵ
௧ୀଵ ሻ∑ ்ݎ̅

௡ାଵ

∑ ሺ1 ൅ ∑ ௝ܽିଵ	௧
௝ୀଵ

௡ିଵ
௧ୀଵ ሻ ൅ ሺ1 ൅ ∑ ܽ௧௡ିଵ

௧ୀଵ ሻሺT െ n ൅ 1ሻ
 

IRR	 ൎ
1
ܶ
ቌ෍ቌ1 ൅෍ ௝ܽିଵ	

௧

௝ୀଵ

ቍ ௧ݎ

௡

௧ୀଵ

൅ ൭1 ൅෍ܽ௧

௡ିଵ

௧ୀଵ

൱෍ ݎ̅

்

௡ାଵ

ቍ

ۉ

ۈ
ۇ
2 െ

1
ܶ
൮෍ሺ1 ൅෍ ௝ܽିଵ	

௧

௝ୀଵ

௡ିଵ

௧ୀଵ

ሻ ൅ ൭1 ൅෍ܽ௧

௡ିଵ

௧ୀଵ

൱ ሺT െ n ൅ 1ሻ൲

ی

ۋ
ۊ

 

We then substitute in an. The numerator changes by	ܽ௡ሺܶ െ ݊ሻ̅ݎ and the denominator 

changes by an(T-n): 

IRR	 ൎ
∑ ൫1 ൅ ∑ ௝ܽିଵ	

௧
௝ୀଵ ൯ݎ௧

௡
௧ୀଵ ൅ ሺ1 ൅ ∑ ܽ௧

௡ିଵ
௧ୀଵ ሻ∑ ்ݎ̅

௡ାଵ ൅ ܽ௡ሺܶ െ ݊ሻ̅ݎ

∑ ሺ1 ൅ ∑ ௝ܽିଵ	
௧
௝ୀଵ

௡ିଵ
௧ୀଵ ሻ ൅ ሺ1 ൅ ∑ ܽ௧

௡ିଵ
௧ୀଵ ሻሺT െ n ൅ 1ሻ ൅ ܽ௡ሺܶ െ ݊ሻ

 

IRR	 ൎ
1
ܶ
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௧

௝ୀଵ

ቍ ௧ݎ

௡

௧ୀଵ

൅ ൭1 ൅෍ܽ௧

௡ିଵ

௧ୀଵ

൱෍ ݎ̅

்

௡ାଵ

൅ ܽ௡ሺܶ െ ݊ሻ̅ݎቍ൮2

െ
1
ܶ
ቌ෍ሺ1 ൅෍ ௝ܽିଵ	

௧

௝ୀଵ

௡ିଵ

௧ୀଵ

ሻ ൅ ൭1 ൅෍ܽ௧
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dIRR	 ൎ
ܽ௡
ܶ
ሺܶ െ ݊ሻ̅ݎ

ۉ

ۈ
ۇ
2 െ

1
ܶ
൮෍ሺ1 ൅෍ ௝ܽିଵ	

௧

௝ୀଵ

௡ିଵ

௧ୀଵ

ሻ ൅ ൭1 ൅෍ܽ௧

௡ିଵ

௧ୀଵ

൱ ሺT െ n ൅ 1ሻ൲

ی

ۋ
ۊ

െ
ܽ௡ሺܶ െ ݊ሻ

ܶଶ
ቌ෍ቌ1൅෍ ௝ܽିଵ	

௧

௝ୀଵ

ቍ ௧ݎ

௡

௧ୀଵ

൅ ൭1 ൅෍ܽ௧

௡ିଵ

௧ୀଵ

൱ ሺܶ െ ݊ሻ̅ݎ ൅ ܽ௡ሺܶ െ ݊ሻ̅ݎቍ 

Noting that E[anan-j]=0: 

EሾdIRRሿ 	ൎ E ൥
ܽ௡
ܶ
ሺܶ െ ݊ሻ̅ݎ െ

ܽ௡ሺܶ െ ݊ሻ
ܶଶ

൭෍ݎ௧

௡

௧ୀଵ

൅ ሺ1 ൅ ܽ௡ሻሺܶ െ ݊ሻ̅ݎ൱൩ 

									ൎ E ൤
ܽ௡ݎ௡
ܶଶ

ሺܶ െ ݊ሻ െ
ܽ௡ሺܶ െ ݊ሻ

ܶଶ
ቀݎ௡ ൅ ሺ1 ൅ ܽ௡ሻ

௡ݎ
ܶ
ሺܶ െ ݊ሻቁ൨ 

	ൎ E ቈെ
ܽ௡ݎ௡ሺܶ െ ݊ሻଶ

ܶଷ
ሺ1 ൅ ܽ௡ሻ቉ 

Substituting an=w(rn-μ), summing over n=1 to T, and approximating for large T, small E[an] 

EሾdIRRሿ ൎ െ
ଶሺܶߪݓ െ 1ሻଶ

3ܶଷ
ሺ1 ൅ ሾܽ௡ሿሻܧ ൎ െ

ଶߪݓ

3
		 

ൌ൐ 	EሾdIRRሿ ൎ ୵஢మ

ଷ
			for	large	T, consistent with equations (10) and (23) for the overall 

performance gap and timing effect respectively. 

 


