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Abstract

A vastly growing literature on explaining deep learning models has emerged. This paper

contributes to that literature by introducing a global gradient-based model-agnostic method,

which we call Marginal Attribution by Conditioning on Quantiles (MACQ). Our approach is

based on analyzing the marginal attribution of predictions (outputs) to individual features

(inputs). Specifically, we consider variable importance by fixing (global) output levels and,

thus, explain how features marginally contribute across different regions of the prediction

space. Hence, MACQ can be seen as a marginal attribution counterpart to approaches such

as accumulated local effects (ALE), which study the sensitivities of outputs by perturbing

inputs. Furthermore, MACQ allows us to separate marginal attribution of individual fea-

tures from interaction effect, and visually illustrate the 3-way relationship between marginal

attribution, output level, and feature value.

Keywords. explainable AI (XAI), model-agnostic tools, deep learning, attribution, accumu-

lated local effects (ALE), partial dependence plot (PDP), locally interpretable model-agnostic

explanation (LIME), variable importance, post-hoc analysis.

1 Introduction

Deep learning models are typically trained to provide an optimal predictive performance. In-

terpreting and explaining the results of deep learning models has, until recently, only played a

subordinate role. With growing complexity of deep learning models, the need and requirement

of being able to explain deep learning solutions has become increasingly important. This applies

to almost all fields of their applications: deep learning findings in medical fields and health care

need to make sense to patients, loan and mortgage evaluations and credit approvals need to

be understandable to customers, insurance pricing must be explained to insurance policyhold-

ers, business processes and decisions need to be transparent to regulators, autonomous robotic

tools need to comply with safety standards according to admission offices and governments, etc.

These needs are even reinforced by the requirements of being able to prove that deep learning
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solutions do not discriminate w.r.t. protected features and are in line with data protection reg-

ulation. Thus, there is substantial social and political pressure to be able to explain, illustrate

and verify deep learning solutions, in order to provide reassurance that these work properly.

Recent research focuses on different methods of explaining deep learning decision making; an

overview is given in [Samek and Müller 2019]. Some of these methods provide a post-hoc analysis

which aims at understanding global model behavior, explaining individual outcomes and learned

representations. Often this is done by explaining representative examples. We are going to

discuss some of these post-hoc analysis methods in the literature overview presented in the next

section. Other methods aim at a wider interdisciplinary approach by more broadly examining

how decision making is done in a social context, see e.g. [Miller 2019]. All these approaches have

in common that they try to “open up the black-box” to make decision making explainable to

stakeholders.

Our paper contributes to this literature. Our main contribution is that we provide a novel

gradient-based model-agnostic tool that is motivated by analyzing marginal contributions to

deep learning decisions in the spirit of salience methods, as described in [Ancona et al. 2019].

Salience methods are local model-agnostic tools that attribute marginal effects on outputs to

different inputs. Motivated by sensitivity analysis tools in risk measurement, we aggregate

local marginal attributions to obtain a global picture at a given quantile level of the output

variable. We call this method Marginal Attribution by Conditioning on Quantiles (MACQ).

It describes a global variable importance measure that varies with the output level. The ag-

gregation of local marginal effects is justified by the fact that this aggregation can be seen

as a directional derivative of a distortion risk measure, see [Hong 2009] and Proposition 1 in

[Tsanakas and Millossovich 2015]. As second contribution, we extend this view by including

higher order derivatives beyond linear marginal contributions. This additional step can be seen

in the context of deep Taylor decompositions (DTD), similar to [Montavon et al. 2017]. A dif-

ficulty in Taylor decompositions is that they depend on a reference point. By rearranging the

terms and by taking advantage of our quantile view, we determine an optimal global refer-

ence point that allows us to quantify both variable importance and interaction strength in our

MACQ approach. The third contribution is that we provide graphic tools that provide a 3-way

relationship between (i) marginal attribution, (ii) response/output level and (iii) feature value.

Organization. In the next section we give a literature overview that embeds our MACQ method

into the present toolbox of model explainability. This literature overview is also used to introduce

the relevant notation. In Section 3 we present our main idea of aggregating local marginal

attributions to a quantile sensitivity analysis. Section 4 presents a higher order expansion which

grounds a study of interaction strength. Section 5 discusses the choice of the reference point.

An extended example is presented in Section 6. Finally, in Section 7 we state brief conclusions.

2 Literature overview

We give a brief summary of recent developments in post-hoc interpretability and explainability

tools for deep learning models. This summary also serves to introduce the relevant notation for

this paper. Assume the following regression function is smooth (in fact, we are only going to

use twice differentiable in our setting)

µ : Rq → R, x 7→ µ(x), (2.1)
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with feature x = (x1, . . . , xq)
> ∈ Rq. This regression function is assumed to describe the

systematic effects of features on the random variable Y via the (conditional) expectation

E[Y |x] = µ(x).

We assume smoothness of regression function (2.1) because our model-agnostic proposal will be

gradient-based. In our example in Section 6, we will use a deep feed-forward neural network

on tabular input data, having the hyperbolic tangent as activation function. This gives us a

smooth regression function and formal derivation can be done in standard software such as

TensorFlow/Keras and PyTorch.

2.1 Model-agnostic tools

Recent literature aims understanding such regression functions (2.1) coming from deep learning

models. One approach is to analyze marginal plots. We select one component xj of x and study

the function

xj ∈ R 7→ µ(xj ,x\j),

where x\j denotes the remaining components of x which are kept fixed. This is the method

of individual conditional expectation (ICE) of [Goldstein et al. 2015]. If we have thousands or

millions of instances (Y,x), it might be advantageous to study ICE profiles on an aggregated

level. This is the proposal of [Friedman 2001] and [Zhao and Hastie 2021] called partial depen-

dence plots (PDPs). We introduce the feature distribution P which describes the family of all

(potential) features X ∼ P . The PDP profile of component 1 ≤ j ≤ q is defined by

xj 7→ EP
[
µ(xj ,X\j)

]
=

∫
µ(xj ,x\j)dP (x\j).

The critical point in this approach is that it does not reflect the (true) dependence structure be-

tween feature components Xj and X\j , i.e., as described by feature distribution P . The method

of accumulated local effects (ALEs) introduced by [Apley and Zhu 2020] aims at correctly incor-

porating the dependence structure in X. The local effect of component xj in individual feature

x is given by the partial derivative

µj(x) =
∂µ(x)

∂xj
. (2.2)

The average local effect of component 1 ≤ j ≤ q is obtained by

xj 7→ ∆j(xj) = EP [µj(X)|Xj = xj ] =

∫
µj(xj ,x\j)dP (x\j |xj), (2.3)

where P (x\j |xj) denotes the conditional distribution of X\j , given Xj = xj . ALEs integrate

the average local effects ∆j(·) over their domain, thus, the ALE profile is defined by

xj 7→
∫ xj

xj0

∆j(zj)dzj =

∫ xj

xj0

∫
µj(zj ,x\j)dP (x\j |zj)dzj , (2.4)

where xj0 is a given initialization point. The main difference between PDPs and ALEs is that

the latter correctly considers the dependence structure between Xj and X\j .
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Remark 2.1 • The main difference between PDPs and ALEs is that the latter correctly

considers the dependence structure between Xj and X\j . The two profiles coincide if Xj

and X\j are independent under P .

• [Apley and Zhu 2020] provide a discretized version of the ALE profile that can also be

applied to non-differentiable regression functions µ(·). Basically, this can be received

either by finite differences or by a local analysis in an environment of a selected feature

value xj .

• More generally the local effect (2.2) allows us to consider a 1st order Taylor expansion.

Denote by ∇xµ(x) the gradient of µ(·) w.r.t. x. We have

µ(x+ ε) = µ(x) + (∇xµ(x))>ε+ o(‖ε‖), (2.5)

for ε ∈ Rq going to zero. This gives us a 1st order local approximation to µ(·) in x,

which reflects the local (linear) behavior similar to the locally interpretable model-agnostic

explanation (LIME) introduced by [Ribeiro et al. 2016]. That is, (2.5) fits a local linear

regression model around µ(x) with regression parameters described by the components

of the gradient ∇xµ(x). LIME then uses regularization, e.g. LASSO, to select the most

relevant feature components in the neighborhood of µ(x).

• More generally, (2.5) defines a local surrogate model that can be used for a local sensitivity

analysis by perturbing x within a small environment. White-box surrogate models are

popular tools to explain complex regression functions, for instance, decision trees can be

fit to network regression models for extracting the most relevant feature information.

2.2 Gradient based model-agnostic tools

Gradient-based model-agnostic tools can be used to attribute outputs to (feature) inputs. At-

tribution denotes the process of assigning a relevance index to input components, in order

to explain a certain output, see [Efron 2020]. [Ancona et al. 2019] provide a nice overview of

gradient-based attribution methods. In formula (2.2) of the previous subsection we have met

a first attribution method which gives the sensitivity of the output µ(x) as a function of the

input x. The marginal attribution we are going to present considers the contribution to a given

output in the spirit of salience methods.

Marginal attribution is obtained by considering the directional derivative w.r.t. the features

xj 7→ xjµj(x) = xj
∂µ(x)

∂xj
. (2.6)

This has first been discussed in the machine learning community by [Shrikumar et al. 2016]

who observed that this can make attribution more concise; these directional derivatives have

been coined Gradient*Input in the machine learning literature, see Ancona [Ancona et al. 2019].

Mathematically speaking, these marginal attributions can be understood as individual contri-

butions to a certain value in a Taylor series sense (and relative to a reference point). Having

a linear regression model x 7→ β0 +
∑q

j=1 βjxj , the marginal attributions give an additive

decomposition of the regression function, and βj can be considered as the relevance index of

component j. In non-linear regression models, such a linear decomposition only holds true very
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locally, see (2.5), and other methods such as the Shapley value [Shapley 1953] are used to quan-

tify non-linear effects and interaction effects, see [Lundberg and Lee 2017]. We also mention

[Sundararajan et al. 2017], who consider integrated gradients

xj 7→ xj

∫ 1

0
µj (x0 + z(x− x0)) dz, (2.7)

for a given reference point x0. This mitigates the problem of only being accurate locally. In

practice, however, this is computationally demanding, similarly to the Shapley value.

There are other methods that are specific to deep networks. We mention layer-wise propa-

gation (LRP) by [Binder et al. 2016] and DeepLIFT (Deep Learning Important FeaTures) by

[Shrikumar et al. 2017]. These methods use a backward pass from the output to the input. In

this backward pass a relevance index (budget) is locally redistributed (recursively from layer to

layer), resulting in a relevance index on the inputs (for the given output). [Ancona et al. 2019]

show in Propositions 1 and 2 that these two methods can be understood as an average over

marginal attributions. We remark that these methods are mainly used for convolutional neural

networks (CNNs), e.g., in image recognition, whereas our MACQ proposal is more suitable for

tabular data because we require differentiability w.r.t. the inputs x. CNNs architectures are

often non-differentiable because of the use of max-pooling layers.

Our contribution builds on marginal attributions (2.6). Marginal attributions are, by definition,

local explanations, and we are going to show how to integrate these local considerations into

a global variable importance analysis. [Samek and Müller 2019] call such an aggregation of

indivdiual explanations a global meta-explanation. As a consequence, our MACQ approach is

the marginal attribution counterpart to ALEs by fixing (global) output levels and describing

how features marginally contribute to these levels, whereas ALEs rather study the sensitivities

of the outputs by perturbing the inputs.

3 Marginal attribution by conditioning on quantiles

We consider regression model (2.1) from a marginal attribution point of view. Motivated by the

risk sensitivity tools of [Hong 2009] and [Tsanakas and Millossovich 2015], we do not consider

average local effects (2.3) conditioned on event {Xj = xj}, but we would rather like to under-

stand how feature components contribute to a certain response level µ(x). The former studies

sensitivities of outputs µ(x) in inputs x, whereas the latter considers marginal attribution of

outputs µ(x) to inputs x. This allows us to study how the response levels are composed in

different regions of the decision space, as this is of intrinsic interest e.g. in financial applications.

Select a quantile level α ∈ (0, 1), the α-quantile of µ(X) is given by

F−1µ(X)(α) = inf
{
y ∈ R; Fµ(X)(y) ≥ α

}
,

where Fµ(X)(y) = P [µ(X) ≤ y] describes the distribution function of µ(X).

The 1st order attributions to components 1 ≤ j ≤ q on quantile level α are defined by

Sj(µ;α) = EP
[
Xjµj(X)

∣∣∣µ(X) = F−1µ(X)(α)
]
. (3.1)

These are the marginal attributions by conditioning on quantiles (MACQ).
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[Tsanakas and Millossovich 2015] show that (3.1) naturally arises as sensitivities of distortion

risk measures, and choosing the α-Dirac distortion we exactly receive (3.1), which corresponds

to the sensitivities of the value-at-risk (VaR) risk measure on the given quantile level. Thus, the

sensitivities of the VaR risk measure can be described by the average of the marginal attributions

Xjµj(X), conditioned on being on the corresponding quantile level. The interested reader is

referred to Appendix A for a more detailed description of distortion risk measures.

Alternatively, we can describe the 1st order attributions (3.1) by a 1st order Taylor expansion

(2.5) in feature perturbation ε = −x

µ(0) ≈ µ (x)− (∇xµ(x))> x. (3.2)

This explains that the 1st order attributions (3.1) describe a 1st order Taylor approximation at

the common reference point 0, and rearranging the terms we get the 1st order contributions to

a given response level

F−1µ(X)(α) = EP
[
µ (X)

∣∣∣µ(X) = F−1µ(X)(α)
]
≈ µ (0) +

q∑
j=1

Sj(µ;α). (3.3)

Remark 3.1 • A 1st order Taylor expansion (2.5) gives a local model-agnostic description

in the spirit of LIME. Explicit choice ε = −x provides (3.2), which can be viewed as a

local description of µ(0) relative to x. The 1st order contributions (3.3) combine all these

local descriptions (3.1) w.r.t. a given quantile level to get the integrated MACQ view of

µ(0), i.e.

µ(0) ≈ E
[
µ (X)− (∇xµ(X))>X

∣∣∣µ(X) = F−1µ(X)(α)
]

= F−1µ(X)(α)−
q∑
j=1

Sj(µ;α).

This exactly corresponds to 1st order approximation (3.3). In the sequel it is less important

that we can approximate µ(0) by this integrated view, but µ(0) plays the role of the

reference level that calibrates our global meta-explanation. Thus, all explanations made

are understood relative to this reference level µ(0).

• In (3.2)-(3.3) we implicitly assumed that 0 is a suitable reference point for calibrating our

global meta-explanation. We further explore and improve this calibration in Section 5,

below.

• Integrated gradients (2.7) integrate along a single path from a reference point x0 to x to

make the 1st order Taylor approximation precise. We exchange the roles of the points,

here, and we approximate the reference point by aggregating over all local descriptions in

features X.

• 1st order contributions (3.3) provide a 3-way description of the regression function, namely,

they combine (i) marginal attribution Sj(µ;α) as a function of 1 ≤ j ≤ q, (ii) response

level F−1µ(X)(α) as a function of α, and (iii) feature values xj . In our application in Section

6 we will illustrate the data from these different angles, each having its importance in

explaining the response.
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• 1st order attribution (3.1) combines marginal attributions Xjµj(X) by focusing on a

common quantile level. A similar approach could also be done for other model-agnostic

tools, such as the Shapley value.

Example 3.2 (linear regression) A linear regression model considers regression function

x 7→ µ(x) = β0 + β>x, (3.4)

with bias/intercept β0 ∈ R and regression parameter β ∈ Rq. The 1st order contributions (3.3)

are for α ∈ (0, 1) given by

F−1µ(X)(α) = µ (0) +

q∑
j=1

Sj(µ;α) = β0 +

q∑
j=1

βjEP
[
Xj

∣∣∣µ(X) = F−1µ(X)(α)
]
. (3.5)

Thus, we weight regression parameters βj with the feature components Xj according to their

contributions to quantile F−1µ(X)(α); and the reference point 0 is given naturally providing ini-

tialization µ(0) = β0.

This MACQ explanation (3.5) is rather different from the ALE profile(2.4). If we initialize

xj0 = 0 we receive ALE profile for the linear regression model

xj 7→
∫ xj

0
∆j(zj)dzj = βjxj .

This is exactly the marginal attribution (2.6) of component j in the linear regression model

and it explains the change of the linear regression function if we change feature component xj ,

whereas (3.5) describes the contribution of each feature component to an expected response level

µ(x). �

In general, Taylor expansion (3.3) is accurate if the distance between 0 and X is small enough

for all relevant X, and if the regression function can be well described around µ(X) by a linear

function. The former requires that the reference point is chosen somewhere “in the middle” of

the feature distribution P . The accuracy of the 1st order approximation is quantified by∣∣∣∣∣∣F−1µ(X)(α)− µ (0)−
q∑
j=1

Sj(µ;α)

∣∣∣∣∣∣ . (3.6)

Thus, we want (3.6) to be small uniformly in quantile level α, for the given reference point 0,

as then the 1st order attributions give a good description on all quantile levels α. In the linear

regression case this description is exact, see (3.5). In contrast to the Taylor decomposition in

[Montavon et al. 2017], the quantiles F−1µ(X)(α) give us a natural anchor point for determining a

suitable reference point, which is also computationally feasible. This will be done in Section 5.

4 Interaction strength

[Friedman and Popescu 2008] and [Apley and Zhu 2020] have shown how higher order deriva-

tives of µ(·) allow us to study interaction strength in systematic effects. This requires the study

of higher order Taylor expansions. The 2nd order Taylor expansion is given by

µ(x+ ε) = µ(x) + (∇xµ(x))>ε+
1

2
ε>(∇2

xµ(x))ε+ o(‖ε‖2), (4.1)
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where ∇2
xµ denotes the Hessian of µ w.r.t. x. Setting ε = −x allows us, in complete analogy to

(3.3), to study 2nd order contributions

F−1µ(X)(α) ≈ µ (0) +

q∑
j=1

Sj(µ;α)− 1

2

q∑
j,k=1

Tj,k(µ;α), (4.2)

with 2nd order attributions, for 1 ≤ j, k ≤ q,

Tj,k(µ;α) = EP
[
XjXkµj,k(X)

∣∣∣µ(X) = F−1µ(X)(α)
]
. (4.3)

Slightly rearranging the terms in (4.1) allows us to study individual feature contributions and

interaction terms separately, that is,

F−1µ(X)(α) ≈ µ (0) +

q∑
j=1

(
Sj(µ;α)− 1

2
Tj,j(µ;α)

)
−

∑
1≤j<k≤q

Tj,k(µ;α). (4.4)

The latter term quantifies all 2nd order contributions coming from interactions between Xj and

Xk, j 6= k. We will show how interaction effects can be included in individual features’ marginal

attributions towards the end of Section 6.4.

Remark 4.1 The motivation for studying 1st order attributions (3.1) has been given in terms

of the risk sensitivity tools of [Hong 2009] and [Tsanakas and Millossovich 2015]. These are

obtained by calculating directional derivatives of distortion risk measures (using a Dirac dis-

tortion, see Appendix A). This argumentation does not carry forward to the 2nd order terms

(4.3), as 2nd order directional derivatives of distortion risk measures turn out to be much more

complicated, even in the linear case, see Property 1 in [Gourieroux et al. 2000].

5 Choice of reference point

To obtain sufficient accuracy in 1st and 2nd order approximations, respectively, the reference

point should lie somewhere “in the middle” of the feature distribution P . We elaborate on this

in this section. Typically, we want to get the following expression small, uniformly in α ∈ (0, 1),∣∣∣∣∣∣F−1µ(X)(α)− µ (0)−
q∑
j=1

Sj(µ;α) +
1

2

q∑
j,k=1

Tj,k(µ;α)

∣∣∣∣∣∣ .
This expression is for reference point 0. However, we can select any other reference point a ∈ Rq,
by exploring the 2nd order Taylor expansion (4.1) for ε = a − x. This latter reference point

then provides us with a 2nd order approximation

F−1µ(X)(α) ≈ µ (a)− EP
[
(a−X)>∇xµ(X)

∣∣∣µ(X) = F−1µ(X)(α)
]

(5.1)

− 1

2
EP
[
(a−X)>(∇2

xµ(X))(a−X)
∣∣∣µ(X) = F−1µ(X)(α)

]
.

The same can be received by translating the distribution P of the features by settingXa = X−a
and letting µa(·) = µ(a + ·). Approximation (5.1) motivates us to look for a reference point

a ∈ Rq which makes the 2nd order approximation as accurate as possible for “all” quantile levels.
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Being a bit less ambitious, we select a discrete quantile grid 0 < α1 < . . . < αL < 1 on which we

would like to have a good approximation capacity. Define the events Al = {µ(X) = F−1µ(X)(αl)}
for 1 ≤ l ≤ L. Consider the objective function

G(a;µ) =
L∑
l=1

(
F−1µ(X)(αl)− µ (a) + EP

[
(a−X)>∇xµ(X)

∣∣∣Al] (5.2)

+
1

2
EP

[
(a−X)>(∇2

xµ(X))(a−X)>
∣∣∣Al]

)2

.

Minimizing this objective function in a gives an optimal reference point w.r.t. the quantile

levels (αl)1≤l≤L. Unfortunately, a 7→ G(a;µ) is not a convex function, and therefore numerical

methods may only find local minima. These can be found by a plain vanilla gradient descent

method. We calculate the gradient of G w.r.t. a

∇aG(a;µ) = 2

L∑
l=1

(
F−1µ(X)(αl)− µ (a) + EP

[
(a−X)>∇xµ(X)

∣∣∣Al]
+

1

2
EP

[
(a−X)>(∇2

xµ(X))(a−X)>
∣∣∣Al]

)

×

(
−∇aµ (a) + EP [∇xµ(X)| Al]

− EP
[
X>∇2

xµ(X)
∣∣∣Al]+

1

2
a>EP

[
∇2

xµ(X)
∣∣Al]

)
.

The gradient descent algorithm then provides for a tempered learning rate εt+1 > 0 updates at

algorithmic time t

a(t) 7→ a(t+1) = a(t) − εt+1∇aG(a(t);µ). (5.3)

This step-wise locally decreases the objective function G.

Remark 5.1 The above algorithm provides a global optimal reference point, thus, a calibration

for a global 2nd order meta-explanation. In some cases this global calibration may not be

satisfactory, in particular, if the reference point is far from the feature values X = x that mainly

describe a given quantile level F−1µ(X)(α), i.e. through the corresponding conditional probability

P [ · |µ(X) = F−1µ(X)(α)]. In that case, one may be interested in different local reference points

that are optimal for certain quantile levels, say, between 95% and 99%. In some sense, this

will provide a more “honest” description (4.2) because we do not try to simultaneously describe

all quantile levels. The downside of multiple reference points is that we lose comparability of

marginal effects across the whole decision space.

6 Example

6.1 Model choice and model fitting

We consider the bike rental example of [Fanaee-T and Gama 2014] which has also been studied

in [Apley and Zhu 2020]. The data describes the bike sharing process over the years 2011 and
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2012 of the Capital Bikesharing system in Washington DC. On an hourly time grid we have

information about the proportion of casual bike rentals relative to all bike rentals of casual and

registered users. This data is supported by explanatory variables such as weather conditions and

seasonal variables. We provide a descriptive analysis of this data in Appendix B. On average 17%

of all bike rentals are made by casual users and 83% are done by registered users. However, these

proportions heavily fluctuate w.r.t. daytime, holidays, weather conditions, etc. This variability

is illustrated in Figure 12 in Appendix B. We design a neural network regression function to

forecast the proportion of casual rentals. We denote this response variable (proportion) by Y ,

and we denote the features (explanatory variables) by x ∈ Rq.
For our example we choose a fully-connected feed-forward neural network θ : Rq → R of depth

d = 3 having (q1, q2, q3) = (20, 15, 10) neurons in the three hidden layers. This provides us with

network regression function

x ∈ Rq 7→ µ(x) = σ(θ(x)) ∈ (0, 1), (6.1)

where σ is the sigmoid output activation, and x 7→ θ(x) models the canonical parameter of

a logistic regression model. In order to have a smooth network regression function we choose

the hyperbolic tangent as activation function in the three hidden layers. We have implemented

this network in [TensorFlow 2015] and [Keras 2015], these allow us to directly formally calculate

gradients and Hessians.

In all what follows we do not consider the attributions of the regression function x 7→ µ(x), but

we directly focus on the corresponding attributions on the canonical scale x 7→ θ(x). This has

the advantage that the results do not get distorted by the sigmoid output activation. Thus, we

replace µ by θ in (4.4), resulting in the study of 2nd order contributions

F−1θ(X)(α) ≈ θ (0) +

q∑
j=1

(
Sj(θ;α)− 1

2
Tj,j(θ;α)

)
−

∑
1≤j<k≤q

Tj,k(θ;α). (6.2)

The network architecture is fitted to the available data using early stopping to prevent from over-

fitting. Importantly, we do not say here anything about the quality of the predictive model, but

we aim at understanding the fitted regression function x 7→ θ(x). This can be done regardless

whether the chosen model is suitable for the predictive task at hand.

Figure 1 (lhs) shows the empirical density of the canonical parameters xi 7→ θ(xi) of the fitted

model over our data 1 ≤ i ≤ n. We have negative skewness in this empirical density. A simple

way of analyzing importance of feature components is to randomly permute one component

xj at a time across all records 1 ≤ i ≤ n and study the increase in objective function; this

is the method of variable permutation importance introduced by [Breiman 2001]. We use as

objective function the Bernoulli deviance loss which is proportional to the binary cross-entropy

(also called log loss). Figure 1 (rhs) shows the variable permutation importances. There are

three variables (hour, working day and temperature) that highly dominate the others. Note

that variable permutation importance does not properly consider the dependence structure in

X, similarly to ICEs and PDPs, because permutation of xj is done without impacting x\j .

6.2 1st and 2nd order contributions

The accuracy of the 2nd order contributions (6.2) will depend on the choice of the reference

point a ∈ Rq. For network gradient descent fitting we have normalized the feature components
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Figure 1: (lhs) Empirical density of canonical parameters (θ(xi))1≤i≤n, (rhs) variable permuta-

tion importance.

to be centered and having unit variance, i.e. EP [X] = 0 and VarP (Xj) = 1 for all 1 ≤ j ≤ q.

This pre-processing is needed to efficiently apply stochastic gradient descent network fitting. We

now translate these feature components by choosing a reference point a such that the objective

function G(a; θ) is minimized, see (5.2). We use a plain vanilla gradient descent update (5.3)

using a learning rate of εt+1 = 10−2/‖∇aG(a(t); θ)‖. For the quantile grid we choose αl = l/100

for 1 ≤ l ≤ L = 99, thus, α ∈ {1%, . . . , 99%}. The resulting decrease in objective function

G(·; θ) is plotted in Figure 2.
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Figure 2: (lhs) Gradient descent for reference point a, (rhs) 2nd order contributions (6.2).

Working with observed data, we need to discretize the MACQ analysis for quantile levels
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{θ(X) = F−1θ(X)(α)}, α ∈ (0, 1). We do this on a discrete grid by using a local smoother of

degree 2, in particular, we use the R function locfit with parameters deg=2 and alpha=0.1

(being the chosen bandwidth) for observations xai,jθj(xi) and xai,jx
a
i,kθj,k(xi), 1 ≤ i ≤ n, where

we set xa
i = xi − a. We then fit the local smoother to these observations being ordered accord-

ing to the ranks of θ(xi), to work with the corresponding empirical output quantiles. Thus, for

instance, the a-adjusted 1st order attributions Sj(θ;αl), 1 ≤ l ≤ L, are estimated empirically

by using the pseudo code

predict(locfit(xai,jθj(xi) ∼ rank(θ(xi))/n, alpha = 0.1, deg = 2), newdata = c(1 : 99)/100).

Figure 2 (rhs) gives the results after optimizing for the reference point a. The orange color

shows the 1st order contributions C1 = θ(a) +
∑q

j=1 Sj(θ;α), the cyan line shows the 2nd

order contributions without interaction terms C2 = θ(a) +
∑q

j=1(Sj(θ;α)− 1
2Tj,j(θ;α)) and the

red line shows the full 2nd order contributions C2,2 = θ(a) +
∑q

j=1(Sj(θ;α) − 1
2Tj,j(θ;α)) −∑

1≤j<k≤q Tj,k(θ;α).

We observe from Figure 2 (rhs) that the full 2nd order contributions C2,2 match the empirical

quantiles (black dots) quite well which explains that there is a reference point a that allows for

suitable 2nd order approximations over the entire quantile set. The shaded cyan area between

C2 (cyan line) and C2,2 (red line) shows the influence of the interaction terms Tj,k(θ;α), j 6= k,

which illustrates that this model undergoes substantial interactions, and a simple generalized

additive model (GAM) will not be able to model this data accurately.
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Figure 3: (lhs) attributions Sj(θ;α) − 1
2Tj,j(θ;α) excluding interaction terms, see (6.2), (rhs)

attributions Sj(θ;α)− 1
2Tj,j(θ;α) for selected quantile levels α ∈ {20%, 40%, 60%, 80%}.

In Figure 3 (lhs) we show the attributions Sj(θ;α) − 1
2Tj,j(θ;α), excluding interaction terms

Tj,k(θ;α), j 6= k, relative to the optimal reference point a. These attributions show the dif-

ferences relative to canonical parameter in the reference point θ(a); when aggregating over

1 ≤ j ≤ q this results in the cyan line of Figure 2 (rhs). Figure 3 (lhs) shows substantial

sensitivities in the variables month, hour, working day and temperature. From this we conclude

that these are the important variables in our regression model for differentiating the responses

12



Y w.r.t. available feature information x. In contrast to the variable permutation importance

plot of Figure 1 (rhs), this assessment correctly considers the dependence structure within the

features X. Moreover, this plot now allows us to analyze variable importance on different quan-

tile levels by considering vertical slices in Figure 3 (lhs). We consider such vertical slices in

Figure 3 (rhs) for four selected quantile levels α ∈ {20%, 40%, 60%, 80%}. We observe that the

variables month, hour, workingday and temp undergo the biggest changes when moving from

small quantiles to big ones. The quantile level at 20% can be explained by the three features

temp, month and workingday, whereas for the quantile level at 60% has hour (daytime) as an

important variable, see Figure 3 (rhs). Note that this is not the full picture, yet, as we do not

consider interactions in these vertical slices; the importance of interactions is indicated by the

cyan shaded area in Figure 2 (rhs) for different quantile levels.
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Figure 4: Robustness of 2nd order contributions across 4 different networks: (top row) empirical

densities of canonical parameters (θ(xi))1≤i≤n, (bottom row) 2nd order contributions (6.2).

In Figure 4 we analyze the robustness of the attribution results. We do this by considering

different networks x 7→ θ(x) for predicting the response variable Y . Network regression mod-

els lack a certain degree of robustness as gradient descent network fitting explores different

(local) minima of the objective function; note that, in general, neural network fitting is not

a convex minimization problem. This issue of non-uniqueness of good predictive models has

been widely discussed in the literature, and ensembling may be one solution to mitigate this

problem, we refer to [Dietterich 2000a, Dietterich 2000b], [Zhou et al. 2002], [Zhou 2012] and

[Richman and Wüthrich 2020]. The top row shows the empirical distributions of the canonical

parameters (θ(xi))1≤i≤n for 4 different networks; we observe that there are some differences in

these empirical densities. The bottom row shows the corresponding 2nd order contributions

(6.2), split by 1st order contributions C1, 2nd order contributions without interactions C2 and

the full 2nd order contributions C2,2. At this level, we judge the attributions made to be rather

robust over the different models, the general shapes of these graphs being similar, and also the

interaction terms C2,2 − C2 showing a similar structure and magnitude across the 4 different
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network models.
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Figure 5: Choice of reference point a across 4 different networks illustrated for all feature

components 1 ≤ j ≤ q.

From Figure 4 we also observe that the 1st order contributions C1 intersect the quantiles F−1θ(X)(α)

at different levels for the 4 different calibrations. This indicates that the optimal reference point

a is chosen differently in the different networks. Figure 5 shows the chosen reference points

a in relation to the features (xi)1≤i≤n; as explained above, we have centered and normalized

the feature components for gradient descent network fitting. The boxplots in Figure 5 show

these centered and normalized features in comparison to the reference points of the 4 different

networks. Some feature components have a very skewed distribution as can be seen from the

thicker horizontal boxplot lines showing the median of each feature component (xi,j)1≤i≤n, 1 ≤
j ≤ q. The reference point mostly lies within the interquartile range (IQR).

Remark 6.1 The feature components of x need pre-processing in order to be suitable for gra-

dient descent fitting. Continuous and binary variables have been centered and normalized so

that their gradients live in a similar range. This makes gradient descent fitting more efficient

because all partial derivatives of the gradient are directly comparable. Our example does not

have categorical feature components. Categorical feature components can be treated in different

ways. For our MACQ proposal we envisage two different treatments. Firstly, dummy coding

could be used. This requires the choice of a reference level, and considers all other levels relative

to this reference level. The resulting marginal attributions should then be interpreted as differ-

ences to the reference level. Secondly, one can use embedding layers for categorical variables,

see [Bengio et al. 2003] and [Guo and Berkhahn 2016]. In that case the attribution analysis can

directly be done on these learned embeddings of categorical levels, in complete analogy to the

continuous variables.
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6.3 Attribution to individual instances

Next, we focus on individual instances xa
i = xi−a and study individual marginal contributions

ωi,j = (xi,j − aj)θj(xi)− (xi,j − aj)2θj,j(xi)/2 to attribution Sj(θ;α)− Tj,j(θ;α)/2.
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Figure 6: Individual marginal contributions ωi,j of 1,000 randomly selected instances xi for

(top-left) j = month, (top-right) j = hour, (bottom-left) j = temp and (bottom-right) j =

workingday; the black line shows attribution Sj(θ;α) − Tj,j(θ;α)/2 and the black dotted line

gives one standard deviation; the y-scales differs in the plots and the colors illustrate the feature

values xj .

For Figure 6 we select at random 1,000 different instances, and plot their individual marginal

contributions ωi,j to the attributions Sj(θ;α) − Tj,j(θ;α)/2 (black solid line). The ordering

on the x-axis for the selected instances xi is obtained by considering the empirical quantiles

of the responses θ(xk) over all instances 1 ≤ k ≤ n. We start with Figure 6 (bottom-right)

which shows the binary variable workingday. This variable clearly differentiates low from high

15



quantiles F−1θ(X)(α), showing that the casual rental proportion Y is in average bigger for non-

working days (red dots). Moreover, for low quantiles levels the working day variable clearly

lowers (expected response) θ(x) compared to the reference level θ(a), as the cyan dots are below

the horizontal black line at 0 which corresponds to the reference level. In addition to the average

attributions Sj(θ;α)− Tj,j(θ;α)/2 (black solid line), the plot is complemented by black dotted

lines giving one (empirical) standard deviation

VarP

(
(Xj − aj)θj(X)− (Xj − aj)2θj,j(X)/2

∣∣∣θ(X) = F−1θ(X)(α)
)1/2

.

The sizes of these standard deviations quantify the heterogeneity in the individual marginal

contributions ωi,j . This can either be because of heterogeneity of the portfolio xi,j on a certain

quantile level, or because we have a rough regression surface implying heterogeneity in derivatives

θj(xi) and θj,j(xi).

Next, we study the variable temp of Figure 6 (bottom-left). In this plot we see a clear positive

dependence between quantile levels and temperature, showing that casual rentals are generally

low for low temperatures, which can either be the calendar season or bad weather conditions.

We have clearly more heterogeneity in features (and resulting derivatives θj(xi) and θj,j(xi))

contributing to low quantile levels than to higher ones. The variable temp is highly correlated

with calendar month, and the calendar month plot in Figure 6 (top-left) looks similar, saying

that casual rental proportions Y are negatively impacted by winter seasons. There are some low

proportions, though, also for summer months, these need to be explained by other variables, e.g.,

they may correspond to a rainy day or to a specific daytime. The interpretation of the variable

hour in Figure 6 (top-right) is slightly more complicated since we do not have monotonicity of

θ(x) in this variable, see also Figure 12. Nevertheless we also see a separation between working

and leisure times (for the time-being ignoring interactions with holidays and weekends).
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Figure 7: Individual marginal contribuions ωi,j of 1,000 randomly selected instances xi for (lhs)

j = month, (middle) j = hour and (rhs) j = temp; the black line shows the empirical average;

the colors show the expected responses µ(xi) ∈ (0, 1) (casual rental proportions).

In Figure 6 we have plotted the individual marginal contributions ωi,j on the y-axis against the

quantiles α ∈ (0, 1) on the x-axis to explain how the features xi enter the quantile levels F−1θ(X)(α).

This is the 3-ways analysis mentioned above, where the third dimension is highlighted by using

different colors in Figure 6. Alternatively, we can also try to understand how this third dimension
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of different feature values xj contributes to the individual marginal contributions ωi,j . Figure 7

plots the individual marginal contributions ωi,j on the y-axis against the feature values xj on the

x-axis. The black line shows the averages of ωi,j over all instances, and the colored dots show the

1,000 randomly selected instances xi with the colors illustrating the expected responses, i.e. the

expected casual rental proportions µ(xi) = σ(θ(xi)) ∈ (0, 1). The general shape of the black

lines in these graphs reflects well the marginal empirical observations in Figure 12. However, the

detailed structure slightly differs in these plots as they do not exactly show the same quantity,

the latter shows a marginal empirical graph, whereas Figure 7 quantifies individual marginal

contributions to expected responses θ(x) in an additive way (on the canonical scale). Figure 7

(rhs) shows a clear monotone plot which also results in a separation of the colors, whereas the

colors in Figure 7 (lhs, middle) can only be fully understood by also studying contributions and

interactions with other components xi,k, k 6= j.

6.4 Interaction terms

There remains the analysis of the interaction terms −Tj,k(θ;α), j 6= k, that account for the cyan

shaded are in Figure 2 (rhs). These interaction terms are shown in Figure 8.
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Figure 8: Off-diagonal terms −Tj,k(θ;α) giving the interactions.

To not overload Figure 8 we only show the interaction terms Tj,k for which maxα |Tj,k(θ;α)| >
0.2. We identify three major interaction terms: workingday-hour, workingday-month and

hour-month. Of course, these interactions make perfect sense in describing the casual rental

proportion. For small quantiles also interactions temp-month and temp-hour are important. In-

terestingly, we also find an interaction workingday-year: in the data there is a positive trend

of registered rental bike users (in absolute terms) which interacts differently on working and

non-working days because casual rentals are more frequent on non-working days. Identifying

the importance of these interactions highlights that it will not be sufficient to work within a

generalized linear model (GLM) or a generalized additive model (GAM) unless we add explicit

interaction terms to them.
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Figure 9: (lhs) 2nd order attributions Vj(θ;α) including interaction terms, and (rhs) Vj(θ;α)

for selected quantile levels α ∈ {20%, 40%, 60%, 80%}.

In the final step we combine the attributions Sj(θ;α) − Tj,j(θ;α)/2 with the interaction terms

Tj,k(θ;α), k ≤ j. A natural way is to just allocate half of the interaction terms Tj,k(θ;α) to

each component j and k. This then provides allocated 2nd order attribution to components

1 ≤ j ≤ q

Vj(θ;α) = Sj(θ;α)− Tj,j(θ;α)/2−
∑
j 6=k

Tj,k(θ;α)/2 = Sj(θ;α)−
q∑

k=1

Tj,k(θ;α)/2.

Adding the reference level θ(a), we again receive the full 2nd order contributions C2,2 =

θ(a) +
∑q

j=1 Vj(θ;α) illustrated by the red line in Figure 2 (rhs). In Figure 9 we provide

these attributions Vj(θ;α) for quantiles α ∈ (0, 1). These plots differ from Figure 3 only by the

inclusion of the 2nd order off-diagonal (interaction) terms. Comparing the right-hand sides of

these two plots we observe that firstly the level is shifted, which is explained by the shaded cyan

area in Figure 2 (rhs). Secondly, interactions impact mainly the small quantiles in our example,

this is clear from Figure 8 and, for instance, impacts the significance of hour on the 20% quantile

level.

6.5 Scrolling through the network layers

Up to this point our MACQ analysis has been fully general, in the sense that it can be applied

to any smooth deep learning model. In the last step of our analysis we specifically focus on the

deep network introduced in Section 6.1, and we try to better understand how networks learn

new representations through the network layers. A deep feed-forward neural network θ : Rq → R
is a composition of d hidden neural network layers z(k) : Rqk−1 → Rqk , 1 ≤ k ≤ d; we initialize

input dimension q0 = q. Define the composition x 7→ z(d:1)(x) = (z(d) ◦ . . . ◦ z(1))(x) which

maps input x ∈ Rq to the last hidden network layer having dimension qd. Network (6.1) with
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logistic output can then be written as

x ∈ Rq 7→ µ(x) = σ(θ(x)) = σ
(
β0 + β>z(d:1)(x)

)
,

with bias/intercept β0 ∈ R and regression parameter/weight β ∈ Rqd . This should be compared

to linear regression (3.4).

Each hidden layer learns a new representation of the inputs xi, that is, the representations

learned in layer k are given by x
(k:1)
i := (z(k) ◦ . . . ◦ z(1))(xi), for 1 ≤ i ≤ n. We can view these

learned representations as new inputs to the remaining network after hidden layer k

x ∈ Rqk 7→ σ
(
β0 + β>z(d:k+1)(x)

)
= σ

(
β0 + β>(z(d) ◦ . . . ◦ z(k+1))(x)

)
.

In the following analysis we consider the instances (Yi,x
(k:1)
i ) with these learned features x

(k:1)
i

as inputs to the remaining network z(d:k+1) after layer k, and we perform the same MACQ

analysis in this reduced setup.
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Figure 10: 2nd order contributions (6.2) of the (learned) representations: (lhs) original inputs

xi, (middle) learned representations x
(1:1)
i , and (rhs) learned representations x

(2:1)
i .

Figure 10 provides the 2nd order contributions (6.2) of the original inputs (lhs), the learned

representations x
(1:1)
i in the first hidden layer (middle), and the learned representations x

(2:1)
i in

the second hidden layer (rhs) on the corresponding remaining networks z(3:k+1). We interpret

these MACQ results as follows. The first hidden layer (middle graph) has mainly a smoothing

effect in recomposing the inputs xi suitably. The second layer takes care of the interaction

effects diminishing the cyan shaded area in Figure 10 (rhs). Of course, this makes perfect sense

as the output layer considers a linear function with weight β ∈ Rqd which no longer allows for

interactions. Therefore, interactions need to be learned in the previous layers. The same applies

to non-linear structures (on the canonical scale). This completes our example.

7 Conclusions

This manuscript proposes a novel gradient-based global model-agnostic tool that can be calcu-

lated efficiently for differentiable deep learning models and produces informative visualizations.

This tool studies marginal attribution to feature components on a given response level. Marginal
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attributions allow us to separate marginal effects of individual feature components from inter-

action effects, and they allow us to study resulting variable importance plots on different parts

of the decision space characterized by different response levels. This variable importance is

measured w.r.t. a reference point that calibrates the entire space for our explanation. Finding

a good reference point has been efficiently performed by a simple gradient descent search. A

main result of our model-agnostic tool is a 3-way relationship between marginal attribution,

output level and feature value which can be illustrated in different ways. This extends response

sensitivity analyses, such as accumulated local effects, by an additional marginal attribution

view.
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[Ancona et al. 2019] Ancona, M., Ceolini, E., Öztireli, C., Gross, M. (2019). Gradient-based attribution

methods. In: Explainable AI: Interpreting, Explaining and Visualizing Deep Learning. Samek, W.,

Montavon, G., Vedaldi, A., Hansen, L.K., Müller K.-R. (Eds.). Springer, Lecture Notes in Artificial

Intelligence 11700, 168-191.

[Apley and Zhu 2020] Apley, D.W., Zhu, J. (2020). Visualizing the effects of predictor variables in black

box supervised learning models. Journal of the Royal Statistical Society: Series B 82/4, 1059-1086

[Bengio et al. 2003] Bengio Y., Ducharme R., Vincent P., Jauvin C. (2003). A neural probabilistic lan-

guage model. Journal of Machine Learning Research 3/Feb, 1137-1155.

[Binder et al. 2016] Binder, A., Bach, S., Montavon, G., Müller K.-R., Samek, W. (2016). Layer-wise rel-

evance propagation for deep neural network architectures. In: Information Science and Applications

(ICISA). Kim K., Joukov N. (Eds.). Springer, Lecture Notes in Electrical Engineering 376.

[Breiman 2001] Breiman, L. (2001). Random forests. Machine Learning 45/1, 5-32.

[Keras 2015] Chollet, F., et al. (2015). Keras. https://github.com/fchollet/keras

[Dietterich 2000a] Dietterich, T.G. (2000). An experimental comparison of three methods for constructing

ensembles of decision trees: bagging, boosting, and randomization. Machine Learning 40/2, 139-

157.

[Dietterich 2000b] Dietterich, T.G. (2000). Ensemble methods in machine learning. In: Multiple Classifier

Systems, J. Kittel, F. Roli (eds.). Lecture Notes in Computer Science, 1857, Springer, 1-15.

[Efron 2020] Efron, B. (2020). Prediction, estimation and attribution. International Statistical Review

88/S1, S28-S59.

[Fanaee-T and Gama 2014] Fanaee-T, H. , Gama, J. (2014). Event labeling combining ensemble detectors

and background knowledge. Progress in Artificial Intelligence 2, 113-127.

[Friedman 2001] Friedman, J.H. (2001). Greedy function approximation: a gradient boosting machine.

Annals of Statistics 29/5, 1189-1232.

[Friedman and Popescu 2008] Friedman, J.H., Popescu, B.E. (2008). Predictive learning via rule ensem-

bles. Annals of Applied Statistics 2/3, 916-954.

20

https://www.tensorflow.org/
https://github.com/fchollet/keras


[Goldstein et al. 2015] Goldstein, A., Kapelner, A., Bleich, J., Pitkin, E. (2015). Peeking inside the black

box: visualizing statistical learning with plots of individual conditional expectation. Journal of

Computational and Graphical Statistics 24/1, 44-65.

[Gourieroux et al. 2000] Gourieroux, C., Laurent, J.P., Scaillet, O. (2000). Sensitivity analysis of values

at risk. Journal of Empirical Finance 7, 225-245.

[Guo and Berkhahn 2016] Guo, C., Berkhahn, F. (2016). Entity embeddings of categorical variables.

arXiv:1604.06737.

[Hong 2009] Hong, L.J. (2009). Estimating quantile sensitivities. Operations Research 57/1, 118-130.

[Lundberg and Lee 2017] Lundberg, S.M., Lee, S.-I. (2017). A unified approach to interpreting model

predictions. In: Advances in Neural Information Processing Systems 30, Guyon, I., Luxburg, U.V.,

Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.), 4765-74. Montreal:

Curran Associates.

[Miller 2019] Miller, T. (2019). Explanation in artificial intelligence: insights form social sciences. Arti-

ficial Intelligence 267, 1–38.

[Montavon et al. 2017] Montavon, G., Lapuschkin, S., Binder, A., Samek, W., Müller K.-R. (2017).

Explaining nonlinear classification decisions with deep Taylor decomposition. Pattern Recognition

65, 211-222.

[Ribeiro et al. 2016] Ribeiro, M.T., Singh, S., Guestrin, C. (2016). “Why should I trust you?”: explaining

the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Confer-

ence on Knowledge Discovery and Data Mining, KDD ’16. New York: Association for Computing

Machinery, 1135-1144.
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A Sensitivities in distortion risk measures

The purpose of this appendix is to briefly explain distortion risk measures and how they re-

late to marginal attribution. For this discussion we impose stronger assumptions than we need

above, i.e., these more restrictive assumptions are only made for the explanation here. As-

sume the expected response µ(X) has a continuous distribution function Fµ(X). It follows that

Uµ(X) = Fµ(X)(µ(X)) is uniformly distributed on [0, 1]. Choose a density ζ on [0, 1]. We can in-

terpret ζ(Uµ(X)) as a probability distortion (probability re-weighting scheme inducing a change

of probability measure) because we have

EP
[
ζ(Uµ(X))

]
=

∫ 1

0
ζ(u)du = 1.

The distorted expected response can then be defined by

%(µ(X); ζ) = EP
[
µ(X)ζ(Uµ(X))

]
.

The functional %(µ(X); ζ) describes a distortion risk measure, see [Wang 1996] and [Acerci 2002].

It can be interpreted as a Radon–Nikodým derivative changed probability measure dPζ(X =

x) = ζ(Uµ(x))dP (X = x). We study the sensitivities of this distortion risk measure w.r.t. the

components ofX. Assume that the following directional derivatives exist in zero for all 1 ≤ j ≤ q

Sj(µ; ζ) =
∂

∂ε
%
(
µ
(

(X1, . . . , Xj−1, Xj(1 + ε), Xj+1, . . . Xq)
>
)

; ζ
)∣∣∣
ε=0

.

Then, Sj(µ; ζ) can be interpreted as the sensitivity of X 7→ µ(X) in feature component Xj .

[Hong 2009] and [Tsanakas and Millossovich 2015] prove under different sets of assumptions that

these sensitivities satisfy

Sj(µ; ζ) = EP
[
Xjµj(X)ζ(Uµ(X))

]
.

Observe that this exactly uses the marginal attribution (2.6). We still have the freedom of

choosing the density ζ on [0, 1]. If we choose the uniform distribution ζ ≡ 1 on [0, 1] we receive

the average expected response and its average marginal attribution

%(µ(X); ζ ≡ 1) = EP [µ(X)] and Sj(µ; ζ ≡ 1) = EP [Xjµj(X)].

If we choose for density ζ the Dirac measure δα in α ∈ (0, 1), which allocates probability weight

1 to α, this gives us the α-quantile

%(µ(X); ζ = δα) = F−1µ(X)(α).

For its sensitivities we receive for 1 ≤ j ≤ q

Sj(µ; ζ = δα) = EP
[
Xjµj(X)

∣∣∣µ(X) = F−1µ(X)(α)
]
,

which exactly corresponds to 1st order attribution (3.1).

Remark. We could choose any other density ζ on [0, 1] to obtain sensitivities of other distortion

risk measures. Such other choices may also have interesting counterparts in interpreting smooth

deep learning models, by reflecting attention to different areas of the prediction space.
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B Descriptive analysis of bike rental example

In this appendix, we give a brief descriptive analysis of the data used that helps us to interpret

the network regression models. The data comprises the number of casual and registered bike

rentals every hour from 2011/01/01 until 2012/12/31. This data has originally been studied in

[Fanaee-T and Gama 2014] and [Apley and Zhu 2020], and it can be downloaded from https://

archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset. Listing 1 gives a short excerpt

of the data.

Listing 1: Excerpt of bike rental data.

1 ’data.frame ’: 17379 obs. of 13 variables:

2 $ date : Date , format: "2011 -01 -01" "2011 -01 -01" "2011 -01 -01" ...

3 $ year : num 2011 2011 2011 2011 2011 ...

4 $ month : int 1 1 1 1 1 1 1 1 1 1 ...

5 $ hour : int 0 1 2 3 4 5 6 7 8 9 ...

6 $ weekday : int 6 6 6 6 6 6 6 6 6 6 ...

7 $ holiday : Factor w/ 2 levels "holiday","no -holiday ": 2 2 2 2 2 2 2 2 2 2 ...

8 $ workingday: Factor w/ 2 levels "no -working"," workingday ": 1 1 1 1 1 1 1 1 1 1 ...

9 $ weather : num 1 1 1 1 1 2 1 1 1 1 ...

10 $ temp : num 0.24 0.22 0.22 0.24 0.24 0.24 0.22 0.2 0.24 0.32 ...

11 $ temp_feel : num 0.288 0.273 0.273 0.288 0.288 ...

12 $ humidity : num 0.81 0.8 0.8 0.75 0.75 0.75 0.8 0.86 0.75 0.76 ...

13 $ windspeed : num 0 0 0 0 0 0.0896 0 0 0 0 ...

14 $ casual : int 3 8 5 3 0 0 2 1 1 8 ...

15 $ registered: int 13 32 27 10 1 1 0 2 7 6 ...

16 $ count : int 16 40 32 13 1 1 2 3 8 14 ...

As response variable we consider the proportion of casual rentals relative to all rentals, thus, we

set response Y = casual/count ∈ [0, 1] on an hourly grid over the entire observation period.

These are n = 17, 379 hours from 2011/01/01 until 2012/12/31, see line 1 of Listing 1. We

note that count ≥ 1 for all observations, which makes Y well-defined throughout the whole

observation period. The goal is to predict this response variable Y based on available feature

information x which is provided on lines 3-13 of Listing 1. These are the year, month and hour

of the observations Y . The weekday (with 0 for Sunday), holiday (yes/no for public holiday),

workingday (yes/no, the former neither being a public holiday nor a weekend), weather (1,2

and 3 for clear, cloudy and rain/snow), temperature temp, the felt temperature temp feel,

humidity and windspeed. Note that all these features are continuous or binary, thus, we can

directly use this feature encoding for regression modeling.

We illustrate this data. Figure 11 shows the observed responses Y = casual/count over the

entire observation period. In average the casual rentals make 17% of all rentals, and the empirical

density of Y is strongly skewed.

In Figure 12 we provide the marginal observed responses for each label of all features. The top-

left shows the average response for each calendar week from 2011/01/01 until 2012/12/31. This

depicts a strong seasonal pattern of the casual rentals proportion. Moreover, daytime, weekdays,

working days/holidays and weather conditions such as temperature is important information for

predicting the proportion of casual rentals. Only wind speed does not seem to be very relevant.

From the top-middle we also observe that the proportion of casual rentals slightly decreases over

time which can be explained by increasing regular rental subscriptions from 2011 to 2012.

For many of the feature components it is clear that they are highly correlated. In Figure 13 we
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Figure 11: (lhs) Histogram and (rhs) boxplot of (hourly) responses Y = casual/count ∈ [0, 1]

over the entire observation period; the orange line shows the empirical mean of 17%.

plot temperature, humidity and wind speed against calendar month (top row), daytime (middle

row) and weather conditions (bottom row). These plots clearly show this dependence. Moreover,

humidity is negatively correlated with wind speed and positively correlated with temperature

(at least up to moderate temperatures).
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Figure 12: Average response Y for each label of all features date (in weekly units), year, month,

hour, weekday, holiday, workingday, weather, temp, temp feel, humidity and windspeed.
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Figure 13: Dependence between feature components: (top) temperature, humidity and wind

speed against calendar month, (middle) temperature, humidity and wind speed against daytime,

(bottom) temperature, humidity and wind speed against weather conditions.
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