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Abstract
Weuse derived localization of the bar and nerve constructions to provide simple proofs
of a number of results in algebraic topology, both known and new. This includes a
recent generalization ofAdams’s cobar-construction to the non-simply connected case,
and a new algebraic model for the homotopy theory of connected topological spaces
as an ∞-category of discrete monoids.

Keywords Cobar-construction · Relative category · Derived localization · Simplicial
sets

Mathematics Subject Classification 55P15 · 55P35 · 57T30

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1 The bar cobar adjunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2 Localization of dg algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Communicated by Jim Stasheff.

This work was partially supported by EPSRC Grants EP/N015452/1 and EP/N016505/1.

B Andrey Lazarev
a.lazarev@lancaster.ac.uk

Joe Chuang
joseph.chuang.1@city.ac.uk

Julian Holstein
julian.holstein@uni-hamburg.de

1 Department of Mathematics, City, University of London, Northampton Square, London EC1V
0HB, UK

2 Fachbereich Mathematik, Universität Hamburg, Bundesstraße 55, 20146 Hamburg, Germany

3 Department of Mathematics and Statistics, Lancaster University, Lancaster LA1 4YF, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40062-021-00276-6&domain=pdf


J. Chuang et al.

2.3 Localization of ∞-categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.4 Grouplike simplicial sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.5 Relative categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 Bar and nerve construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.1 The generalized correspondence of cobar and loop construction . . . . . . . . . . . . . . . . . .
4.2 Chain coalgebras detect weak homotopy equivalences . . . . . . . . . . . . . . . . . . . . . . .
4.3 Derived categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 An algebraic model for the homotopy category of spaces . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 Introduction

In this paper we examine the consequences of the close relationship between the
topological classifying space construction and the algebraic bar construction combined
with the techniques of derived localization of differential graded (dg) algebras.

Let M be any discrete monoid with a subset W . We consider its monoid algebra
C(M) and its derived localization LWC(M); it is a dg algebra obtained from C(M)

by inverting the elements in W in a homotopy invariant fashion [5]. Let BLWC(M)

be the bar construction on LWC(M). On the other hand, let N(M) be the nerve (clas-
sifying space) of M considered as an ∞-category and LWN(M) be its localization
at W , viewed as 1-morphisms in N(M). Finally let CLWN(M) be the normalized
chain coalgebra of the simplicial set LWN(M). Then we prove that the dg coalgebras
BLMC(M) and CLWN(M) are weakly equivalent, i.e. there is a zig–zag of filtered
quasi-isomorphisms between them.

We can then deduce the following results with minimal computation:

1. For any connected grouplike (in particular Kan or 1-reduced) simplicial set K there
is an equivalence between CG(K ), the chain algebra of the loop group of K , and
ΩC(K ), the cobar construction on the chain coalgebra of K . See Corollary 4.2.
This generalizes a classical result of Adams [1].

2. For an arbitrary connected simplicial set K there is an equivalence between CG(K )

and a localization of ΩC(K ). See Corollary 4.4.
3. The derived category of second kind of the chain coalgebra on a connected sim-

plicial set K contains the derived category of ∞-local systems on |K |. If K is
grouplike the categories are equivalent. See Corollary 4.8.

4. Two connected Kan complexes are weakly equivalent if and only if there is a weak
equivalence between their integer-valued chain coalgebras. See Corollary 4.7.

Some of these, or similar, results have appeared in the literature before: (1) was
shown when K is a simplicial singular set of a topological space by Rivera–Zeinalian
in [23], (2) is equivalent to the extended cobar construction ofHess–Tonks [14], and (4)
is originally due to Rivera–Zeinalian [22]. However, we believe this paper significantly
simplifies the existing proofs and adds conceptual clarity. In particular, we show that
the extended cobar-construction of Hess and Tonks [14] of the chain coalgebra of a
simplicial set is a derived localization of the ordinary cobar-construction and clarify
its dependence on the choices made.
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The main theorem of this paper is a new result, which provides an entirely alge-
braic model for the homotopy category of connected spaces. By inverting those maps
of discrete monoids which induce quasi-isomorphisms of derived localized monoid
algebras one obtains an ∞-category of discrete monoids. More precisely, this ∞-
category is realized as a relative category in the sense of Barwick and Kan [4]. We
prove in Theorem 5.2 that this ∞-category of discrete monoids is equivalent to the
∞-category of reduced simplicial sets (also viewed as a relative category with ordi-
nary weak equivalences of simplicial sets). This is potentially of great computational
utility since derived localizations of associative rings are effectively computable in a
number of situations, both of algebraic and topological origin cf. [5].

As far aswe know, this is the first result providing an algebraization of the homotopy
category of spaces without any restrictions apart from connectivity (such as simple
connectivity, rationality or being of finite type). It is ideologically similar to the well-
known result of Thomason [24] constructing a closed model category structure on
small categories that also models the ∞-category of spaces as well as its refinement
due to Raptis [21]. However Thomason’s and Raptis’s constructions (while providing
more structured equivalences of closedmodel categories) cannot be viewed as genuine
algebraization results since weak equivalences of small categories are defined by
appealing to the category of spaces.

1.1 Notation

Wework over a commutative ground ring k that is a principal ideal domain. All tensor
products are understood over k.

We denote the category of simplicial sets by sSet and its subcategory of reduced
simplicial sets, i.e. simplicial sets with exactly on 0-simplex, by sSet0. We write qCat
for the category of simplicial sets with the Joyal model structure as a model for ∞-
categories; the subcategory of simplicial sets with one object is denoted by qCat0. To
distinguish the classical weak equivalences in sSet and the categorical equivalences
in qCat we will denote them by�Q (for Quillen) and�J (for Joyal) respectively. The
geometric realization of a simplicial set K will be denoted by |K |.

We denote the category of monoids by Mon and that of simplicial monoids by
sMon.

The category of unital dg algebras, free as k-modules, is denoted by dgA and the
category of augmenteddg-algebras bydgA/k .Wedenote bydgCoaconil the dg category
of counital conilpotent dg coalgebras, also free as k-modules. By weak equivalences
of dg coalgebras we always mean morphisms in the class generated by filtered quasi-
isomorphism, the definition is recalled in Sect. 2.1. All our gradings are homological.

We will denote by C the normalized chain coalgebra functor with coefficients in k
on sSet, cf. Chapter 10 of [19]. We also denote by C the functor that sends any monoid
to its monoid algebra over k, it will be viewed as an object of dgA.
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2 Background

2.1 The bar cobar adjunction

We recall that over any commutative ring the bar and cobar construction provide an
adjunction Ω : dgCoaconil � dgA/k : B. See for example [16].

For the reader’s convenience we repeat some definitions. For an augmented dg
algebra ε : A → k, set A+ = ker(ε). Then define B(A) = ⊕∞

n=0(s A+)⊗n with
comultiplication defined by deconcatenation and counit given by the projection to
(s A+)⊗0 ∼= k, where s denotes the suspension. We define the differential on B(A) to
be the unique coderivation whose projection B(A) → s A+ restricts to dsA on s A+,
to sμA(s−1 ⊗ s−1) on s A+ ⊗ s A+ and to 0 on higher tensors. The cobar construction
of a coalgebra is defined analogously.

Now assume that k is a field. Then the bar-cobar adjunction is a Quillen equiva-
lence [20]. We consider the usual model structure on augmented dg algebras (so that
weak equivalences are multiplicative quasi-isomorphisms). For the model structure
on dgCoaconil see [20, Theorem 9.3(b)]. The key definition is that f : C → D is
a filtered quasi-isomorphism if there are admissible filtrations on C and D such that
the associated graded map Gr( f ) is a graded quasi-isomorphism. A filtration F on
a conilpotent coalgebra C is admissible if it is increasing, compatible with comulti-
plication and differential, and F0 equals the image of the coaugmentation k → C .
An admissible filtration always exists. Then f : C → D is a weak equivalence in
dgCoaconil if it is contained in the smallest class of morphisms containing filtered
quasi-isomorphisms and closed under the 2-out-of-3 property. If k is not a field we
will, somewhat abusing terminology, still refer to filtered quasi-isomorphisms as weak
equivalences, even though theremay not be an underlying closedmodel category. Cofi-
brations in dgCoaconil are just monomorphisms.

2.2 Localization of dg algebras

Given a dg algebra A with a collection of cycles S, its derived localization LS A is the
homotopy initial dg algebra under A such that the images of all s ∈ S are invertible in
homology, [5, Definition 3.3]. By [5, Theorem 3.10], LS(A) is a homotopy pushout
of the form A ∗hk〈S〉 k〈S, S−1〉.

2.3 Localization of∞-categories

Wewill use Joyal’s theory of∞-categories as quasi-categories, see [17,18] for further
background. Given any simplicial set K with a subsimplicial set W we may con-
sider it as an object of qCat and define its localization LW K , see [7, Proposition
7.1.3]. It has the universal property that for any quasi-category C the functor category
Fun(LW K ,C) is equivalent to the subcategory of Fun(K ,C) consisting of functors
sending any map in W to an invertible map in C . See also the section on homotopy
localization in [17].
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We restrict attention to reduced simplicial sets. We are particularly interested in the
case where W is given by a collection of 1-simplices S and will write LSK in this
case. Let I be the nerve of N, the free monoid on one generator, and J the nerve of Z,
the free group on one generator. There are natural maps I → J and �S I → K , and
LSK is equivalent to the homotopy pushout in qCat0 of �S J ← �S I → K . This
follows from the proof of [7, Proposition 7.1.3]: The map �S I → �S J is an anodyne
extension, i.e. a trivial cofibration in the Quillen model structure, thus it may play the
role of W → W ′ and the rest of the proof applies without changes.

2.4 Grouplike simplicial sets

Any simplicial set K may be interpreted as an object in qCat and its fundamental
category π(K ) is defined as the left adjoint of the nerve functor from categories
to simplicial sets. If K is weakly Kan, there is an explicit construction of π(K ) as
the category with objects given by 0-simplices and morphisms given by 1-simplices
modulo 2-simplices, see [18, Section 1.2.3].

We say K is grouplike if π(K ) is a groupoid. In particular all Kan complexes are
grouplike. A converse is true for weak Kan complexes: if K is a weak Kan complex
and grouplike then it is a Kan complex, see [18, Proposition 1.2.5.1]. The property
of being grouplike is invariant under categorical equivalence, thus the Joyal fibrant
replacement of a grouplike simplicial set is a Kan complex.

2.5 Relative categories

We will also use the theory of relative categories as introduced in [4] as a model for
∞-categories. A relative category (C,W ) is just a pair consisting of a category C and
a class of weak equivalences W ⊂ Mor(C).

Associated to any relative category (C,W ) is a simplicial category LWC obtained
by simplicial localization of C (viewed as a simplicial category) atW . There is a model
structure on relative categorieswhoseweak equivalences (C,W ) → (C′,W ′) are those
maps that induce weak equivalences of simplicial localizations LWC → LW ′C′, cf.
[3].

The model category of relative categories is Quillen equivalent to the model cate-
gories of simplicial categories and quasi-categories. In particular the relative category
(sSet,WQ), where WQ denotes weak homotopy equivalences, is a model for the ∞-
category of spaces.

We are not aware of a good exposition of homotopy limits and colimits in relative
categories. To avoid technicalities we define the homotopy limit of a diagram in a
relative category by taking the ∞-categorical limit of the corresponding diagram in
the associated ∞-category. A comparison result ensures that if the relative category
happens to be a model category then this recovers the usual homotopy limits and
homotopy colimits. This is explained in Remark 7.9.10 of [7] or Remark 2.5.8 in
[2]. In particular it follows from this that any weak equivalence of relative categories
preserves homotopy limits, which we will need below.
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3 Bar and nerve construction

We begin by considering the following diagram.

Mon
N−−−−→ qCat0

⏐
⏐
�C

⏐
⏐
�C

dgA/k
B−−−−→ dgCoaconil

Here N is the usual nerve of a monoid, considered as a reduced simplicial set. The
vertical arrows are given, respectively, by the monoid algebra and the normalized
chain coalgebra, over k. For any monoid M the augmentation ε on C(M) is induced
by M → ∗. Finally, B is the bar construction on an augmented dg algebra as recalled
in Sect. 2.1.

It is a straightforward but fundamental observation that this diagram commutes:

Lemma 3.1 For any monoid M there is a natural isomorphism of dg coalgebras
CNM ∼= BCM.

Proof With the augmentation ε : C(M) → k given as above we write M = ker ε and
m form−1 in CM . Write M for M \ {1}. Then the set of elementsm form ∈ M gives
a basis for M . The map m �→ sm induces an isomorphism from CnNM = k[M×n]
to BCMn = (sM)⊗n . A quick computation shows that the differentials also match, as
do the coalgebra structures. ��

We will refine this result by considering localizations of dg algebras and simplicial
sets.

Lemma 3.2 There is a natural model structure on qCat0 such that weak equivalences
are categorical equivalences and cofibrations are monomorphisms.

Proof We recall the Quillen equivalence C � N : qCat � sCat, see e.g. [18] and
observe that it restricts to an adjunction sMon � qCat0. Then the proof of the lemma
is the same as for the non-reduced case, cf. [18, Theorem 2.2.5.1]. We need to check
three conditions:

1. The class of categorical equivalences in qCat0 is perfect in the sense of [18, Defi-
nition A.2.6.10]. Namely, it contains isomorphisms, is closed under 2-out-of-3, is
stable under filtered colimits and is generated under filtered colimits by a small sub-
set. As the class of weak equivalences in sMon are perfect it suffices to check that
C preserves filtered colimits by [18, Corollary A2.6.12]. But C : qCat0 → sMon
commutes with colimits.

2. Categorical equivalences are stable under pushout by cofibrations. Cofibrations in
qCat0 are also cofibrations in qCat, so this follows from the non-reduced case (or
directly by the same argument).

3. Finally we need to check that a map f : K → L of reduced simplicial sets
which has the right lifting property with respect to all cofibrations is a categorical

123



Homotopy theory of monoids and derived localization

equivalence. It suffices to show that if f has the right lifting property with respect to
all cofibrations between reduced simplicial sets then it has the right lifting property
with respect to all cofibrations; this reduces the problem to the non-reduced case.
So let A → B be a cofibration. But any maps A → K and B → L factor through
the reduced simplicial sets Ā = A/A0 and B̄ = B/B0, and Ā → B̄ is a cofibration.
Thus the right lifting property with respect to Ā → B̄ provides a right lift with
respect to A → B.

��
The following lemma is essentially [23, Proposition 7.3].We provide a direct proof.

Lemma 3.3 Let k be a field. The chain coalgebra functor C : qCat0 → dgCoaconil

preserves weak equivalences.

Proof We reduce this lemma to three claims.

1. C sends categorical equivalences between weak Kan complexes to weak equiva-
lences.

2. C sends pushouts along disjoint unions of inner horn inclusions to trivial cofibra-
tions.

3. There is a functor Gx∞ sending each reduced simplicial set A to a reduced weak
Kan complex. For each reduced simplicial set A there is a naturalmap A → Gx∞ A
which is a colimit of pushouts along disjoint unions of inner horn inclusions.

If we have these claims we may take any categorical equivalence A → B and
using (3) replace it by a zig-zag A → Gx∞ A → Gx∞ B ← B. C sends the middle
map to a weak equivalence by (1). The outer maps are sent to direct limits of trivial
cofibrations, thus they are trivial cofibrations themselves, and C(A) � C(B).

To prove (1) it suffices to show that homotopy equivalences in qCat0 are sent to
filtered quasi-isomorphisms. In fact we will show that homotopies of maps in qCat0

are sent to homotopies between maps of dg coalgebras.
Let I be aKan complex such that the functor X �→ X×I gives good cylinder objects

in qCat. For example, we can take for I the nerve of the category with two objects
and two mutually inverse morphisms between them. We denote by I+ the simplicial
set obtained by adding a disjoint base point.

Then a cylinder object in qCat0 is given by the smash product K ∧ I+, i.e. K ×
I+/K ∨ I+. Thus any homotopy between two maps from K to K ′ in qCat0 may be
represented by a map F : K ∧ I+ → K ′. This gives a map of coalgebras C(F) :
C(K ∧ I+) → CK ′ and it suffices to show that C(K ∧ I+) is a cylinder object in
dgCoaconilk/ . For any coaugmented coalgebra (C, w) we write C̃ for C/w(k). Then

C(K ) � C(K ) ∼= k ⊕ C̃(K ) ⊕ C̃(K ) injects into C(K ∧ I+) = k ⊕ C̃(K ) ⊗ C(I),
thus it is a cofibration of dg coalgebras. It remains to show that C sends the projection
to a filtered quasi-isomorphism. Let F0(C(K ∧ I+)) = w(k) and Fi (C(K ∧ I+)) =
Fi C̃(K ) ⊗ C(I). This is an admissible filtration and on graded pieces we have quasi-
isomorphisms GriC(K ) ⊗ C(I) � GriC(K ).

To establish (2) we consider a simplicial set K and let K ′ be defined by attaching
a collection of n-simplices Bi along inner horns. We need to show C( f ) : C(K ) →
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C(K ′) is a filtered quasi-isomorphism. Filter C(K ) by FiC(K ) = ⊕ j≤iC(K ) j . This
is clearly an admissible filtration. To define the filtration on C(K ′) we denote the face
of Bi that is not in K by bi . I.e. the bi are the (n − 1)-simplices which are in K ′ but
not in K .

We let F ′
iC(K ′) = FiC(K ) for i < n and F ′

iC(K ′) = FiC(K ) ⊕ k.Bi ⊕ k.bi
for i ≥ n. Thus every n-simplex appears in the the n-th graded piece of K ′, with the
exception of the bi , which are in the n-th piece despite being (n − 1)-simplices.

This is clearly compatible with differentials, we need to check the comultiplication.
We check this on a basis. By definition ΔBi = ∑

k ∂k0 Bi ⊗ ∂n−k
max Bi . Applying ∂0 or

∂max k times to Bi gives a n−k simplex which lives in F ′
n−k unless one of those terms

is of the form b j . For degree reasons this could only be ∂0Bi and ∂max Bi , but as we
attached along inner horns both of these are in K , and thus in F ′

n−1C(K ′).
Thus F ′ gives an admissible filtration on C(K ′) which is clearly compatible with

C( f ).
GrFi C(K ) → GrF

′
i C(K ′) is an isomorphism everywhere except for degree n. In

degree n the cokernel has a basis give by all Bi and bi , and dBi = bi mod K , so the
cokernel is acyclic.

Thus C(K ) and C(K ′) are filtered quasi-isomorphic. Since C( f ) is a monomor-
phism it is a trivial cofibration. In this argument we fixed n for ease of notation but
the same argument goes through if we are attaching n-simplices for different values
of n simultaneously.

Claim (3) follows directly from the discussion after Definition 3.2.10 in [25]. The
only change is that one defines Gx by filling all inner horns, rather than filling all
horns. ��
Lemma 3.4 Let k be a field. Then the functor of the normalized chain coalgebra
C : qCat0 → dgCoaconil is left Quillen.

Proof Firstwenote thatChas a right adjoint. It is providedbyC �→ HomdgCoa(C(Δ•),
C) where Δ• is the cosimplicial simplicial set given by the n-simplex in degree n.

The fact that the adjunction is Quillen follows from Lemma 3.3 together with the
observation that C preserves cofibrations, which are just monomorphisms in both
categories. ��
Remark 3.5 The reason for assuming that k be a field in 3.3 and 3.4 is that the category
of dg coalgebras is only known to have a closed model category structure (with filtered
quasi-isomorphisms as weak equivalences) under this assumption. Consequently, it is
also needed for establishing dgKoszul duality as aQuillen equivalence between dgA/k

and dgCoaconil in [20]. This result should generalize to more general commutative
rings, but there are technical difficulties in implementing it. We will establish Koszul
duality as an equivalence of relative categories; this suffices for our purposes.

Lemma 3.6 Let X be a complex of free k-modules such that for any field F and a map
k → F the complex X ⊗k F is acyclic. Then X is acyclic to begin with.

Proof It is well-known that a k-module is zero if and only if its localization at every
maximal ideal of k is zero; together with the exactness of the localization functor for

123



Homotopy theory of monoids and derived localization

modules over a commutative ring this implies that it suffices to assume that k is local.
Let its unique maximal ideal be generated by x ∈ k. Then we have the following
homotopy pullback square, cf. [10, Proposition 4.13]:

X −−−−→ X̂(x)
⏐
⏐
�

⏐
⏐
�

X ⊗ k[x−1] −−−−→ X̂(x) ⊗ k[x−1]

Here X → X̂(x) is the Bousfield localization of X with respect to the functor−⊗k/(x)
(it agrees with the completion of X at the ideal (x) ∈ k). Since k/(x) and k[x−1] are
both fields, we have that X ⊗k[x−1] and X̂(x), and thus also X̂(x) ⊗k[x−1], are acyclic
and then so is X . ��

Proposition 3.7 The relative categories (dgA/k,WA) and (dgCoaconil,WC ) are
weakly equivalent; here WA denotes quasi-isomorphisms and WC weak equivalences
of dg coalgebras.

Proof Wewill prove that for any augmented dg algebra A there is a quasi-isomorphism
ΩB(A) → A and for any conilpotent dg coalgebra C the natural map C → BΩ(C)

is a weak equivalence. If k is a field this follows immediately from the results recalled
in Sect. 2.1.

Let F be a field supplied with a map k → F . Then by construction BΩ(A) ⊗ F =
BΩ(A ⊗ F). Thus BΩ(A ⊗ F) � A ⊗ F implies BΩ(A) ⊗ F � A ⊗ F . But it
follows from Lemma 3.6 that two complexes of free k-modules are quasi-isomorphic
if they are quasi-isomorphic after tensoring with any field; thus ΩB(A) → A is a
quasi-isomorphism.

The statement for dg coalgebras follows by applying the same argument to the
graded pieces of the natural filtrations on C and BΩ(C), see the proof of Theorem
6.10 in [20].

This shows that ΩB and BΩ are strictly homotopic to the identity functor on
dgA/k and dgCoaconil respectively in the sense of [4]. So the two relative categories
are strictly homotopy equivalent, and thus weakly equivalent by Proposition 7.5 (iii)
in [4]. ��

In the following formulation we denote by W , slighty abusing the notation, a sub-
monoid ofM , the corresponding subset of 1-simplices inN(M), and the corresponding
subset of the canonical basis of C(M).

Theorem 3.8 Let W ⊂ M be a submonoid. Then there is a natural zig-zag of weak
equivalences of dg coalgebras CLWN(M) � BLWC(M).

Proof By definition the localization constructions in dg algebras and simplicial sets
are given by homotopy colimits, see Sects. 2.2 and 2.3. As B is an equivalence of
relative categories by Proposition 3.7 it preserves homotopy colimits and we deduce
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L′
WBC(M) � BLWC(M) where

L′
WBC(M) = BC(M)

h
∐

�WB(k〈t〉)
�WB(k〈t, t−1〉)

where
∐h stands for the homotopy pushout of dg coalgebras.

There is also a natural map η : L′′
WCN(M) → CLWN(M) where

L′′
WCN(M) = CN(M)

h
∐

�WC(I )

�WC(J )

and I , J are as in Sect. 2.3. We note first that η is a weak equivalence if k is a field
since in that case C is a left Quillen functor by Lemma 3.4 and so, it commutes with
homotopy colimits. As the tensor product commutes with the homotopy colimit it
follows that η becomes a quasi-isomorphism after tensoring with an arbitrary field.
Thus by Lemma 3.6 it is a weak equivalence in general.

It remains to identify the two different coalgebra localizations. We apply the iso-
morphic functors CN and BC to the map of discrete monoids N → Z to show that
C(I ) → C(J ) is weakly equivalent to B(k〈t〉) → B(k〈t, t−1〉). ��

4 Applications

4.1 The generalized correspondence of cobar and loop construction

The second key ingredient for our applications is the following result of Fiedorowicz:

Proposition 4.1 There is a functor M : sSet0 → Mon satisfying K �Q NM(K ).

Proof By [12, Theorem 3.5] there is a a functor D from based path connected topo-
logical spaces to discrete monoids such that X is weakly equivalent to the classifying
space of D(X). Then M(K ) := D(|K |). ��

Applying Theorem 3.8 in the case that W = M allows us to prove the following
theorem that was proved for topological spaces in [23]. It is a generalization of a
classical result by Adams [1].

To state the result we recall that the simplicial loop group G and the simplicial
classifying space W (constructed e.g. in [13, Chapter V]) give a Quillen equivalence
between reduced simplicial sets and simplicial groups.

Corollary 4.2 Let K be a grouplike reduced simplicial set. Then there is a natural
zig-zag of quasi-isomorphism of dg algebras CG(K ) � ΩC(K ).

Proof We denote a functorial fibrant replacement in the classical model structure by
RQ and in the Joyal model structure by RJ . Then we note that RJ K is weakly Kan
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and grouplike, thus it is a Kan fibrant replacement for K . By Proposition 4.1 we have
K �Q NM(K ) and RQK �J RQNM(K ) as sSet is a Bousfield localisation of qCat.
As LK1K �J K by assumption and RJLK1 is a Kan replacement (see Sect. 2.4) we
obtain

K �J RJ K �J RQK �J RJLM(K )NM(K ) �J LM(K )NM(K ).

Thus C(K ) � CLM(K )NM(K ) � BLM(K )CM(K ) by Theorem 3.8 and ΩC(K ) �
LM(K )CM(K ) by Proposition 3.7. Next LM(K )CM(K ) � CLM(K )M(K ) by [5, The-
orem 10.1]. The classifying space of LM(K )M(K ) is weakly equivalent to NM(K ) by
[11, Theorem 5.5(ii)]. As LM(K )M(K ) is a simplicial group (cf. [11, Theorem 5.5(i)]),
its classifying space may be computed by W [13, Section V.4], so by the equivalence
discussed above LM(K )M(K ) is of the form GNM(K ), which is weakly equivalent to
GK by Proposition 4.1. The result follows by applying C. ��

Togobeyondgrouplike simplicial setsweneed to refine the loopgroup construction.
The following almost trivial example is instructive.

Example 4.3 Consider the simplicial set K with one 0-simplex and one non-degenerate
1-simplex. Topologically, K is the circle, and so its loop space is the infinite cyclic
group and the dg algebra CG(K ) is (quasi-isomorphic to) the ring of Laurent polyno-
mials k[t, t−1] with |t | = 0.

On the other hand, ΩC(K ) ∼= k[t] �= k[t, t−1]. The reason for this discrepancy is
that K is not grouplike.

This example suggests that, even in the case when a simplicial set K is not grouplike,
the chains on its loop space could still be recovered as a localization of ΩCK . This is
indeed true:

Corollary 4.4 For any reduced simplicial set K there is a weak equivalence CG(K ) �
L1+K1ΩC(K ). Here the localization on the right hand side is performed at the set of
cycles {1 + s−1x}x∈K1 , where s

−1 denotes desuspension.

Proof First we will show that L1+K1ΩC(K ) � ΩCLK1(K ) by commuting localiza-
tion past Ω and C.

SinceΩ is an equivalence of relative categories it commutes with colimits. As in the
proof of Theorem 3.8 we may express the localization of a coalgebra as a homotopy
pushout along�C(I ) → �C(J ) or equivalently along�B(k〈t〉) → �B(k〈t, t−1〉).
Again from the proof of Theorem 3.8 we know that this localization commutes with
C. Thus we have ΩCLK1K � ΩLK1C(K ) � L1+K1ΩC(K ). Here for the last step
we use that ΩB(k〈t, t−1〉) � k〈t, t−1〉. The equivalence from C(I ) to B(k〈t〉) sends
an element x ∈ K1 to s−1x − 1 in ΩC(K ), cf. the correspondence in Lemma 3.1.
Then s−1x−1 is sent to x by the natural transformation fromΩB to the identity. Thus
localizing K at K1 corresponds to localising ΩCK at 1 + K1.

For the left hand side we note that CG(K ) � CGLK1(K ) since G preserves the
(classical) weak equivalence between K and LK1(K ), and thus we deduce the result
from Corollary 4.2 applied to LK1(K ). ��
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Remark 4.5 This result throws some light on a construction of Hess and Tonks [14].
For a simplicial set K that is not necessarily grouplike they consider an extended cobar
construction Ω̂C(K ), see [14, Section 1.2], and then show that CG(K ) � Ω̂C(K ) (in
fact, they construct an explicit chain equivalence between these dg algebras).

Unravelling the extended cobar construction in the special case of a chain coalgebra
we see that Ω̂C(K ) may be constructed as the dg algebra obtained from ΩC(K ) by
adding inverses for all the cycles 1 + s−1x for x ∈ K1. As ΩC(K ) is cofibrant over
its subalgebra generated by these cycles, this is a derived localization, see [5, Remark
3.11]. Therefore we obtain that CG(K ) � L1+K1ΩC(K ) � Ω̂C(K ) by Corollary
4.4, recovering the result of [14].

The construction of Ω̂C for a dg coalgebra C depends on the choice of a basis for
C1 and [14] does not address the question whether different choices lead to quasi-
isomorphic dg algebras. For C = C(K ) there is a natural basis in C1(K ) given by
1-simplices and with this basis the quasi-isomorphism CG(K ) � Ω̂C(K ) does hold.
The following example shows that it will not hold with a wrong choice of basis.

Example 4.6 Consider a monoid M with two elements 1 and b where 1 is the identity
element and b2 = b. It is clear that NM is contractible and so L1+K1ΩCN(M) �
C(M)[b−1] ∼= k. On the other hand, choosing the basis in (CNM)1 given by the
negatives of 1-simplices in NM leads to the extended cobar construction Ω̂CN(M)

that is quasi-isomorphic to C(M)[1 + (1 − b)]−1 ∼= C(M)[2 − b]−1. It is easy to
compute that C(M)[2− b]−1 ∼= k[ 12 ] × k and this is not isomorphic to k unless k has
characteristic 2.

4.2 Chain coalgebras detect weak homotopy equivalences

Next, we deduce the main result of [22] as follows:

Corollary 4.7 Let k = Z. A map of reduced fibrant simplicial sets f : K → K ′ is
a weak equivalence if and only if f∗ : C(K ) → C(K ′) is a weak equivalence of dg
coalgebras.

Proof The “only if” follows from Lemma 3.3 and Lemma 3.6.
To show the converse we assume that f∗ : C(K ) � C(K ′). By Corollary 4.2

this implies that we have a quasi-isomorphism CG( f ) : CG(K ) � CG(K ′). Thus
H0(CG( f )) is bijective. By construction it is a morphism of Hopf algebras, compat-
ible with both the composition of loops and the coproduct. Together this shows that
H0(CG( f )) induces an isomorphism between grouplike elements in H0(GK ) and
H0(GK ′), i.e. between the fundamental groups of |K | and |K ′|.

We finish the proof by applying Whitehead’s theorem. The identity components of
GK andGK ′ are connected nilpotent spaces, thus by [9] they areweakly equivalent.As
all components are equivalent and f identifies the π0(GK ) and π0(GK ′) we obtain
a weak homotopy equivalence and thus a weak equivalence of simplicial monoids
GK → GK ′. This implies K �Q K ′. ��
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4.3 Derived categories

For the last part of this section we assume that k is a field. We recall the derived
categories of second kind constructed in [20]. Specifically, for the coalgebra C(K )we
consider the coderived category Dco(C(K )), which is a triangulated category obtained
as the localization of the homotopy category of dg comodules over C(K ) at morphisms
with coacyclic cone. A dg comodule is coacyclic if it is contained in the minimal
triangulated subcategory that contains the total complexes of short exact sequences
and is closed under infinite direct sums.

A fundamental result says that for any conilpotent coalgebra C there is an equiv-
alence Dco(C) � D(ΩC), cf. [20, Theorem 6.5(a)]. Thus weakly equivalent dg
coalgebras have equivalent coderived categories.

It follows directly from Lemma 3.3 that the coderived category of the chain coal-
gebra of a simplicial set is an invariant with respect to Joyal weak equivalences. On
the other hand, there is another homotopy invariant, this time with respect to classical
(Quillen) weak equivalences of simplicial sets. It is the triangulated category of ∞-
local systems on a simplicial set K . This could be defined e.g. as the derived category
of cohomologically locally constant sheaves on |K |, cf. [6,15].
Corollary 4.8 The derived category of ∞-local systems on K is a full subcategory of
Dco(CK ). If K is grouplike the two categories are equivalent.

Proof By [20, Theorem 6.5(a)] Dco(C(K )) � D(ΩC(K )). On the other hand, the
derived category of ∞-local systems is D(CG(K )), by the second part of Theorem 26
in [15].

If K is grouplike, the two categories agree by Corollary 4.2. Otherwise we have
D(CG(K )) � D(L1+K1ΩC(K )) by Corollary 4.4, so ∞-local systems are modules
over a localization of ΩC(K ). But by Corollary 4.29 in [5] the derived category of
modules over a localized dg algebra is a full subcategory of the derived category of
modules over the original dg algebra. Explicitly, ∞-local systems are equivalent to
the full subcategory of K1-local objects in D(ΩC(K )). ��

5 An algebraic model for the homotopy category of spaces

Finally, our results give us an algebraic model for the homotopy theory of connected
topological spaces (equivalently, reduced simplicial sets). In this section we fix k = Z.

We consider the relative category (Mon,W )whereMon is the category of discrete
monoids and f : M → N is inW if and only if it induces a quasi-isomorphism of the
derived localizations of the monoid algebras, i.e. if LMC(M) � LNC(N ).

This definition is completely algebraic in the sense that a monoid is an algebraic
structure i.e. a set with a collection of finitary operations subject to finitely many iden-
tities [8] and the notion of a weak equivalence inMon is also described algebraically.
The definition is meaningful because of the following:

Corollary 5.1 Two discrete monoids B and B ′ are weakly equivalent if and only if
N(B) �Q N(B ′).
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Proof By Theorem 3.8 we know that BLBC(B) � CLBN(B) for any monoid, and
together with Proposition 3.7 this gives LBC(B) � ΩCLBN(B). This shows immedi-
ately that N(B) �Q N(B ′) implies B � B ′. Moreover N preserves weak equivalence
as ΩC reflects weak equivalences by Corollary 4.7. ��
Theorem 5.2 The nerve functor provides an equivalence of relative categories N :
(Mon,W ) → (sSet0,WQ).

Proof N preserves weak equivalences by Corollary 5.1. Using the functor M from 4.1
we have K � NM(K ).

Moreover for any monoid B to show B � MN(B) it suffices to show that N(B) �
NMN(B), which follows immediately from the above.

This shows that (Mon,W ) and (sSet0,WQ) are homotopy equivalent and thus
weakly equivalent, cf. the proof of Proposition 3.7. ��
Acknowledgements The authors would like to thank Michael Batanin, Jonathan Block, Denis Cisinski,
Kathryn Hess and Andy Tonks for useful input.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Adams, J.: On the cobar construction. Proc. Natl. Acad. Sci. USA 42, 409–412 (1956)
2. Barnea, I., Harpaz, Y., Horel, G.: Pro-categories in homotopy theory. Algebra Geom. Topol. 17, 567–

643 (2017)
3. Barwick, C., Kan, D.M.: A characterization of simplicial localization functors and a discussion of DK

equivalences. Indag. Math. (N.S.) 23, 69–79 (2012)
4. Barwick, C., Kan, D.M.: Relative categories: another model for the homotopy theory of homotopy

theories. Indagat. Math. 23, 42–68 (2012)
5. Braun, C., Chuang, J., Lazarev, A.: Derived localisation of algebras and modules. Adv. Math. 328,

555–622 (2018)
6. Chuang, J., Holstein, J., Lazarev, A.: Maurer–Cartan moduli and theorems of Riemann–Hilbert type.

Appl. Categor. Struct. https://doi.org/10.1007/s10485-021-09631-3. arXiv:1802.02549. (2018)
7. Cisinski, D.-C.: Higher categories and homotopical algebra. Lectures notes availble at www.

mathematik.uni-regensburg.de/cisinski/CatLR.pdf
8. Cohn, P. M.: Universal algebra, vol. 6 of Mathematics and its Applications, 2nd edn, D. Reidel Pub-

lishing Co., Dordrecht-Boston (1981)
9. Dror, E.: A generalization of the whitehead theorem. Lect Note Math. 249, 13–22 (1971)

10. Dwyer, W.G., Greenlees, J.P.C.: Complete modules and torsion modules. Am. J. Math. 124, 199–220
(2002)

11. Dwyer, W.G., Kan, D.M.: Simplicial localizations of categories. J. Pure Appl. Algebra 17, 267–284
(1980)

12. Fiedorowicz, Z.: Classifying spaces of topological monoids and categories. Am. J.Math. 106, 301–350
(1984)

13. Goerss, P., Jardine, J.: Simplicial homotopy theory, Progress in Mathematics Series, Birkhäuser Verlag
(1999)

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s10485-021-09631-3
http://arxiv.org/abs/1802.02549
www.mathematik.uni-regensburg.de/cisinski/CatLR.pdf
www.mathematik.uni-regensburg.de/cisinski/CatLR.pdf


Homotopy theory of monoids and derived localization

14. Hess, K., Tonks, A.: The loop group and the cobar construction. Proc. Am.Math. Soc. 138, 1861–1876
(2010)

15. Holstein, J.V.S.: Morita cohomology. Math. Proc. Camb. Philos. Soc. 158, 1–26 (2015)
16. Husemoller, D., Moore, J.C., Stasheff, J.: Differential homological algebra and homogeneous spaces.

J. Pure Appl. Algebra 5, 113–185 (1974)
17. Joyal, A.: The theory of quasi-categories and its applications. Notes available at http://www.mat.uab.

cat/~kock/crm/hocat/advanced-course/Quadern45-2.pdf
18. Lurie, J.: Higher Topos Theory. Ann. Math. Stud. 170 (2011)
19. Neisendorfer, J.: Algebraic Methods in Unstable Homotopy Theory, vol. 12. Cambridge University

Press, Cambridge (2010)
20. Positselski, L.: Two kinds of derived categories, Koszul duality, and comodule-contramodule corre-

spondence, Mem. Amer. Math. Soc., 212, pp. vi+133 (2011)
21. Raptis, G.: Homotopy theory of posets. Homol. Homotopy Appl. 12, 211–230 (2010)
22. Rivera, M., Wierstra, F., Zeinalian, M.: The functor of singular chains detects weak homotopy equiv-

alences. Proc. Am. Math. Soc. 147, 4987–4998 (2019)
23. Rivera, M., Zeinalian, M.: Cubicial rigidification, the cobar construction, and the based loop space.

Algebra Geom. Topol. 18, 3789–3820 (2018)
24. Thomason, R.W.: Cat as a closedmodel category. Cahiers Topologie Géom. Différentielle 21, 305–324

(1980)
25. Waldhausen, F., Jahren, B., Rognes, J.: Spaces of PL Manifolds and Categories of Simple Maps (AM-

186). Annals of Mathematics Studies, Princeton University Press, Princeton (2013)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://www.mat.uab.cat/~kock/crm/hocat/advanced-course/Quadern45-2.pdf
http://www.mat.uab.cat/~kock/crm/hocat/advanced-course/Quadern45-2.pdf

	Homotopy theory of monoids and derived localization
	Abstract
	1 Introduction
	1.1 Notation

	2 Background
	2.1 The bar cobar adjunction
	2.2 Localization of dg algebras
	2.3 Localization of infty-categories
	2.4 Grouplike simplicial sets
	2.5 Relative categories

	3 Bar and nerve construction
	4 Applications
	4.1 The generalized correspondence of cobar and loop construction
	4.2 Chain coalgebras detect weak homotopy equivalences
	4.3 Derived categories

	5 An algebraic model for the homotopy category of spaces
	Acknowledgements
	References




