IT City Research Online
UNIVEREIST;]OggLfNDON

City, University of London Institutional Repository

Citation: Frankl, P. G., Hamlet, R. G, Littlewood, B. & Strigini, L. (1998). Evaluating testing
methods by delivered reliability. IEEE Transactions on Software Engineering, 24(8), pp. 586-
601. doi: 10.1109/32.707695

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/259/

Link to published version: https://doi.org/10.1109/32.707695

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral Rights
remain with the author(s) and/or copyright holders. URLs from City Research
Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or charge.
Provided that the authors, title and full bibliographic details are credited, a
hyperlink and/or URL is given for the original metadata page and the content is
not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Evaluating Testing Methods
by Delivered Reliability*

Phyllis Frankl! Dick Hamlet
CIS Dept. Dept. of CS
Polytechnic Univ. Portland State Univ.
6 Metrotech Center PO Box 751
Brooklyn, NY 11201 Portland, OR 97207
USA USA
phyllis@morph.poly.edu hamlet@cs.pdx.edu

Bev Littlewood
Lorenzo Strigini

Centre for Software Reliability
City University
Northampton Square
London EC1V OHB
UK
{b.littlewood,strigini }@csr.city.ac.uk.

* This work was carried out in part during visits of Hamlet and Frankl to the Centre for Software
Reliability, with support from EPSRC visiting fellowship grants GR/K68134 and GR/L00445.

! Supported in part by NSF grant CCR-9206910.

! Littlewood and Strigini were funded in part by the European Commission via the ESPRIT Long Term
Research Project 20072 “DeVa”.

ABSTRACT

There are two main goals in testing software: (1) To achieve adequate quality (debug testing);
the objective is to probe the software for defects so that these can be removed. (2) To assess
existing quality (operational testing); the objective is to gain confidence that the software
is reliable. The names are arbitrary, and most testing techniques address both goals to
some degree. However, debug methods tend to ignore random selection of test data from
an operational profile, while for operational methods this selection is all-important. Debug
methods are thought, without any real proof, to be good at uncovering defects so that these
can be repaired, but having done so they do not provide a technically defensible assessment
of the reliability that results. On the other hand, operational methods provide accurate
assessment, but may not be as useful for achieving reliability.

This paper examines the relationship between the two testing goals, using a probabilistic
analysis. We define simple models of programs and their testing, and try to answer theo-
retically the question of how to attain program reliability: Is it better to test by probing
for defects as in debug testing, or to assess reliability directly as in operational testing,
uncovering defects by accident, so to speak? There is no simple answer, of course.

Testing methods are compared in a model where program failures are detected and the
software changed to eliminate them. The “better” method delivers higher reliability after
all test failures have been eliminated. This comparison extends previous work, where the
measure was the probability of detecting a failure. Revealing special cases are exhibited
in which each kind of testing is superior. Preliminary analysis of the distribution of the
delivered reliability indicates that even simple models have unusual statistical properties,
suggesting caution in interpreting theoretical comparisons.

Keywords

Reliability, debugging, software testing, statistical testing theory

1 INTRODUCTION - RELIABILITY VS. DEBUG-
GING

There are two main goals in testing software. On the one hand, testing can be seen as a
means of achieving reliability: here the objective is to probe the software for bugs' so that
these can be removed and its reliability thus improved. Alternatively, testing can be seen
as a means of gaining confidence that the software is sufficiently reliable for its intended
purpose: here the objective is reliability evaluation.

We begin by taking the point of view of a developer who tests to find and correct bugs and
improve the delivered software. A systematic testing method includes a criterion for selecting
test cases and a criterion for deciding when to stop testing. Most common approaches to
systematic testing are directed at finding as many bugs as possible, by either sampling all

1We deliberately use this informal term in this introductory discussion: in later sections we shall discuss
the problems in finding a formal interpretation of the notion of “fault.”

situations likely to produce failures (e.g., methods informed by code coverage or specification
coverage criteria), or concentrating on situations that are considered most likely to do so (e.g.,
stress testing or boundary testing methods). The choice among such testing methods will
depend on hypotheses about the likely types and distributions of bugs at the point in the
software development process when testing is applied. We shall call all these approaches,
collectively, “debug testing.”

A completely different approach is “operational testing,” where the software is subjected
to the same statistical distribution of inputs that is expected in operation. Instead of actively
looking for failures, the tester in this case waits for failures to surface spontaneously, so to
speak.

In comparing the relative advantages of operational testing and debug testing, important
points are:

e Debug testing may be more effective at finding bugs (provided the intuitions that drive
it are realistic), but if it uncovers many failures that occur with negligible rates during
actual operation, it will waste test and repair efforts without appreciably improving
the software. Operational testing, on the other hand, will naturally tend to uncover
earlier those failures that are most likely in actual operation, thus directing efforts at
fixing the most important? bugs.

o The cost of testing with the various approaches varies widely with the characteristics
of the program and of the application problem. These latter determine the relative
costs of the components of the testing process (generating test cases, executing the
software, checking for correct results), in particular through the extent to which they
can be automated.

o The fault-finding effectiveness of a debug testing method hinges on whether the tester’s
assumptions about bugs represent reality; for operational testing to deliver on its
promise of better use of resources, it is necessary for the testing profile to be truly
representative of operational use.

e Operational testing is attractive because it offers a basis for reliability assessment, so
that the developer can have not only the assurance of having tried to improve the
software, but also an estimate of the reliability actually achieved.

Previous comparisons of the effectiveness of testing techniques have used the failure-
finding probability, the probability that a testset will detect at least one failure, as a measure
of effectiveness. This measure was used in simulations comparing “partition-testing” tech-
niques to random testing by Duran and Ntafos [8], and Hamlet and Taylor [12]; in analytical
treatments by Weyuker and Jeng [16], and Chen and Yu [4]; in analytical comparisons of
various testing techniques by Frankl and Weyuker [10]; and in experimental comparisons by

Frankl and Weiss [9], and Mathur and Wong [26].

ZNotice that, throughout the paper, we treat the “importance” of a bug solely in terms of its contribution
to unreliability. We do not take any account of the consequences of failure. In practice, of course, these
can vary greatly from one bug to another. The results of the paper could, of course, be applied to suitably
defined subclasses of failures, representing particular levels of severity of consequences.

Failure-finding probability may be a good measure for evaluating test data adequacy
criteria (stopping criteria). The best stopping criterion may be the one that is most likely to
detect at least one failure, for then when it detects nothing, the tester has the most confidence
that nothing has been missed. However, failure-finding probability sheds little light on how
the detection and elimination of failures during the testing process affects the delivered
reliability. Different failures may make vastly different contributions to the (un)reliability of
the program. Thus, testing with a technique that readily detects “small” faults, may result
in a less reliable program than would testing with a technique that less readily detects some
“large” faults. Examples of this situation in which failure-finding probability and better
reliability do not go together are given in section 3.5, Multiple Failure Regions, Debugging
with Subdomains, below.

Several papers have considered the expected number of failures during test as a measure
of effectiveness [10, 5]. Chen and Yu [5] argue that, although ideally one would like to assess
the number of faults detected, and although there is no general relation between number of
failures and number of faults, if more failures occur during test, it will be easier to find and
remove more faults. Several experiments have compared the number of faults detected by
different testing techniques [14, 26|, but this issue has not been addressed analytically. In
addition several reliability growth models [15, 19]are based on the number of faults detected.

This paper studies testing effectiveness based on the reliability of a program after it is
tested. This measure is used to compare debug testing to operational testing, exploring
circumstances under which each technique is likely to yield superior reliability. Li and
Malaiya [18] consider a similar question, but in the narrower context of altering the test profile
to emphasize particular subdomains of the program. Their model assumes that failures that
occur in these subdomains have a fixed detection probability.

Our model is more realistic: the probability of a test case detecting a fault depends not
only on the subdomain hit by the test case, but on the way test cases are selected in the
subdomain. We also model a wider range of testing methods: operational testing, and two
forms of debug testing, one driven by the consideration of subdomains in the input space,
and one ignoring the subdomains. Last, we clarify the difficult problem of modeling “the
fault” that is responsible for a failure.

1.1 The Debugger’s Intuition

There is a deeply rooted belief among program testers and debuggers that the process of
probing software for bugs is a cost-effective way of achieving sufficient reliability. That is,
employing testing methods that are designed to expose failures is believed to be a better
alternative than simulating normal operation and letting the failures appear. Indeed, the
latter method is used by only a small minority of industrial organizations. This paper
examines the validity of that belief. (Detailed definitions of “debug testing” and “operational
testing” are given in sections below.)

The validity of testers’ trust in debug testing is not an academic question. Software whose
reliability must be high could be tested in a number of different ways, and because testing
is expensive and time-consuming, developers and regulatory agencies would like to choose
among alternatives, not use them all. Thus if debug testing is not effective, it should not be
used at all. In particular, there is a currently popular position that can be paraphrased as

follows:

Reliable software can best be developed using formal methods. When properly
applied, these methods eliminate at source those failures normally exposed at
the unit and subsystem levels by debug testing. Therefore, unit debug testing
should be reduced in favor of additional system-level random testing.

In the “Cleanroom” development methodology [6, 24|, to give an extreme example, debug
testing is generally not used at all, particularly by those doing the development. Apart
from its ability to provide reliability estimates, it is argued that operational testing detects
any remaining failures that could occur, with probabilities that are in proportion to their
seriousness. However, experienced developers, say of flight-control software, are profoundly
disturbed by the suggestion that they abandon debug testing. As an indication of the
depth of traditional testers’ reaction to this position, Beizer [2] has attacked Cleanroom as
“lead[ing] to false confidence.”

Attempts to support or refute beliefs about debug testing have been inconclusive:

Empirical studies. Case studies comparing software development methods are difficult to
conduct. Attempts to establish a correlation between the degree of debug testing (usu-
ally measured by some structural “coverage” of unit tests) and the resulting software
quality are at best preliminary [7, 13, 22, 9, 17]. On the other side, case studies using
formal methods development show great variation, both in the care with which the
method is defined and applied and in the results [11]. Neither side has any real claim
to establishing its case.

Analysis of “partition testing.” A number of theoretical studies have compared random
testing with debug (“partition”) testing [8, 12, 16, 25, 4, 5]. The original motivation for
these studies was a belief that random testing might be a real alternative to partition
testing for finding failures. However, no such conclusive result was obtained. Although
random testing is a surprisingly good competitor for partition testing, it is seldom
better, and scenarios can be constructed (although their frequency of occurrence in
practice is unknown) in which partition testing is much better at failure exposure.
Thus our question remains.

In this paper we take a new analytical approach to comparing debug testing with operational
testing. This approach was devised to study theoretically the question of delivered reliability,
without prejudice to the outcome of comparisons.

1.2 Analytical Approach

We believe that analytic, probabilistic methods are the best tools for studying software
reliability. Basing an important choice on intuition, without much supporting evidence, is
clearly dangerous. Analytical studies help by giving clear representations of the competing
intuitive beliefs and of their actual implications, and also by indicating which empirical
measurements could provide indirect evidence that, in a particular project and phase of
development, a certain test method is best. We consider the situation in which software fails

under test, then is changed so that the failure no longer occurs. We compare testing methods
according to the probability that the corrected software will subsequently fail in operation
(that is, the delivered software reliability). This measure is expressed as a random variable,
and we mainly focus on its expected value, although the distribution is also of interest.

A simple program model is used; this simplifies the analysis, and focuses attention on the
question of reliability. The testing-failure-fix process must also be abstracted and simplified
for analysis. We believe that the notion of a software “fault” is central to this abstraction,
and that a meaningful, formal treatment of “faults” is not available. Instead, we introduce
the notion of a “failure region” of the input space, a set of failure points that is eliminated
by a program change.

For our simple abstractions, we compare operational testing to debug testing, and present
revealing special cases in which each technique yields better reliability after some failures are
eliminated. For a single failure region, the results are similar to those obtained by analyzing
the probability of finding a failure. But for multiple failure regions new phenomena are
captured. For example, for some programs the testing technique that best finds failures
may not lead to the best reliability, because it finds trivial problems with little operational
impact.

1.3 Statistical Nature of Analysis

If methods of achieving reliability are to be assessed, probabilistic analysis must be used.
Statistical questions must be framed and answered by calculation, to inform a debate that
so far has little content beyond strongly held beliefs on both sides. The partition vs. random
studies suggest that if we can frame the questions, a combination of mathematical analysis
and simulation can answer them, with a marked improvement in fundamental understanding.

The questions here need to be posed in ways that acknowledge the inevitable underly-
ing uncertainty. In other words, we need to be aware that probability and statistics are
appropriate tools for expressing the problem. This means that our answers will inevitably
be couched in these terms. Thus, for example, we shall not be able to make deterministic
claims for the superiority of one testing regime over another. Instead, we shall be looking for
evidence that one type of testing is likely to be superior to another, or that it is on average
better.

Such observations involve us in some subtleties which may not be obvious to the unwary.
For example, we may sometimes prefer a testing procedure that is inferior to another on
average (e.g., in its ability to increase reliability most cost-effectively) if its efficacy shows
less variation from one application to another. We might prefer the near certainty of a modest
gain in reliability for a particular outlay from the first procedure, to a mere possibility of a
high gain from the other. Such considerations will not loom large in the following, which we
realize represents only the beginnings of an understanding of these issues, but they must be
addressed in future work.

2 TERMINOLOGY AND ASSUMPTIONS

In formal work, it is important to have precise definitions and to explicitly state assumptions.
In this preliminary work, these must be particularly simple.

2.1 Tests and Failures

A test or test case is a single value of program input, which enables a single execution of the
program. A testset is a finite collection of tests. These definitions implicitly assume a simple
programming context: a program with a pure-function semantics. The program is given a
single input, it computes a single result and terminates. The result on another input in no
way depends on prior calculations. In particular, if an input is repeated, the result is always
the same. Although many programs do not behave in this manner, the relevant issues about
reliability arise for pure-function programs.

This simple program model abstracts reality, but it is more general than it may appear.
Real programs may have complex input tuples, and produce complex outputs. But we can
imagine coding each tuple into a single value, so that the simplification to one input value is
not a transgression in principle. Some interactive programs, programs that read and write
permanent data, and real-time programs, do not fit the pure-function model. However, it
is possible to treat these more complex programs as if they used testsets of independent
inputs, at the cost of some artificiality. For example, an interactive or real-time program
can be thought of as having artificial testsets whose members (single tests) are sequences of
the real input elements, starting from some standard “reset” state. Each such sequence is
one abstract input in the pure-function model.

Each program has a specification that is an input-output relation. That is, the specifi-
cation S is a set of ordered input-output pairs describing allowed behavior. A program P
meets its specification for input z if and only if (iff) the following is true: if z € dom(S) then
on input @, P produces output y such that (z,y) € S. When z ¢ dom(S), that is, when an
input does not occur as any first element in the specification, the program may do anything,
even fail to terminate, yet still meet the specification. S defines the input domain as well
as behavior on that domain. Many real specifications can be recursively extended to be
everywhere defined, by adding required “ERROR” responses; but some, notably involving
unbounded searches with uncertain outcome, cannot be effectively extended.

A program P with specification S fails on input z iff P does not meet S at . When a
program fails, the event is called a failure, and the input responsible is a failure point. The
program’s failure set is the collection of all failure points. Hence a program that meets its
specification has an empty failure set. The opposite of fails is succeeds; the opposite of a
failure is a success; the complement of the failure set is the success set.

We assume that the specification of a program does not change during testing and cor-
rective changes to the program.

2.2 So-called “Faults”

Program testing methods are often designed to find “faults.” But it is a strong, unjustified
assumption that “a fault” is an objective characteristic of a program. Although fault is

an IEEE standard term for “bug” (or “defect,” or “error”), this idea is not precise, and
is difficult to make precise. The IEEE glossary states that a fault is the part of a source
program that causes a failure. However appealing and necessary this intuitive idea may be,
it has proved extremely difficult to define formally. The difficulty is that “faults” have no
unique characterization. In practice, software fails for some testset, and is then changed so
that it succeeds on that testset.

The (not necessarily true) assumption is made that the change does not introduce any
new failures. The “fault” is then defined by the “fix,” and is characterized, for example
“wrong expression in an assignment”, by what was changed. But the change is by no means
unique. Literally an infinity of other changes would have produced the same effect.

Some fixes do appear to be unique and easily localized: for example, a wrong operand —
perhaps a typo — in an expression. But “faults of omission” are common, and for these it is
difficult for even reasonable programmers to agree on a fix. In addition, two changes that
both fix a given set of failure points may differ in the remainder of their effects on program
behavior. The complications of a “partial fix” that removes fewer failure points than it might
have done, and a “least fix” that is in some textual way minimal for the effect it has, are
extremely difficult to capture.

An operational method for identifying “the set of faults” in a program, as this term is
commonly understood, might be as follows.

Give the program to a debugging team to be tested and corrected until no more
failures are detected, then analyze the history of program changes. Every change
is motivated by a fault perceived by the debugging team in response to some
failure(s). Some of these faults were introduced by the team itself by mistake.
The others are the set of faults in the original program.

The problem with this method is that if we gave the same original program to a different
debugging team, or even to the same team under different circumstances, we might end up
identifying a different set of faults. So, any model that depends on a program having a
uniquely identifiable set of faults, or even a unique number of faults, in order to predict how
these may be removed by testing, cannot use this method to identify them.

Thus “the fault” is not a precise idea, and the usual intuitive meaning of the word cannot
be used here.

On the other hand, “failure” is well defined, and so is a change in failure behavior resulting
from a program change. Most of what we need to say can be phrased in these terms, as
follows:

A program change may alter the failure set; that is, the changed program’s failure
set will in general be different from that of the original program. A change is a
fiz for a collection of failure points F' (the change fizes F) if it is conservative
in the sense that (1) the failure set of the changed program no longer includes
any member of F', (2) the failure set of the changed program is a subset of the
original failure set.

Thus a fix for a set of failure points F' may eliminate failure points outside F, but it may
not introduce new failures?.

30ur models only consider changes that are fixes, i.e., successful changes. We could have avoided this

In these terms, the closest we can come to speaking of a “fault” is to talk of a faulure
region, a collection of failure inputs that some change fixes exactly. Every change that does
not introduce new failure points has such a region (if no more than the empty one). It is
tempting to begin thinking of such a fix as the basis for defining “fault,” but this would not
satisfy the intuition behind the IEEE definition. We can hardly say that an elaborate change
tailored to some failure region bears any relation to a mistake made by a programmer; nor
does the failure region indicate or constrain a fix that might remove it.

We believe that one should try to avoid the term “fault” in discussing testing and the
dependability of software. Thus one should say, “testing exposed a failure,” not, “testing
found a fault.” One should say, “source change A led to a failure set strictly contained in the
failure set resulting from change B,” not, “A fixed more faults than B” (much less, “B didn’t
fix the bug, but A did”). Suppose a fix is found for a certain collection of failure points By,
and another fix for other points B, which seem unrelated. However, a clever programmer
then finds a completely different fix for B; U B, (and there is always such a fix, whatever
arguments it causes among programmers). One should describe the situation in that neutral
way, saying nothing about which are the “real bug(s).”

With the usual flawed assumption that each failure is due to one well defined “fault”
in the program source, the process of testing and fixing a program appears to be affected
by only two sources of uncertainty: which “faults” the testers will find and how effective
their attempted fixes will be. (Perfect fixes are usually assumed.) Our contrary viewpoint
recognizes three sources of uncertainty: which failure points will be found, which fixes the
testers will try (hence which failure regions they expect to remove), and how effective the
fixes will be (which failure regions will actually be removed).

The modeling in this paper uses the conventional assumption that all testers will react
to a given observed failure with the same, successful fix. We wish to show how wide a
spectrum of situations is possible, even under this restrictive assumption. However, we think
that in many situations of interest, especially with highly reliable programs, this restrictive
assumption is unrealistic, as the failure set may be determined by rare, complex patterns of
program behavior.

Specifically, we will assume that all testers, upon observing a test failure, choose fixes
that eliminate exactly the same failure region, irrespective of which test method they are
using. We can thus talk of failure regions as characteristics of the program — as people usually
talk about “faults” being characteristics of the program — rather than of the fixing process.
This is a useful simplification in this initial analysis. The reason why it is unrealistic is that
the way a debugger chose the test case that caused a failure may affect the debugger’s guess
about an underlying “fault” and thus the way he/she will proceed to fix the problem. Such
“cues” may be beneficial or misleading depending on both the test method and the failure
set of the program. So, following a failure on a given test case (or on test cases that appear
equivalent to some tester) different testers may perceive the existence of different defects in

assumption by adding appropriate parameters to our models, describing the probability that fixes are com-
pletely or partially unsuccessful. In practice, we have avoided this, like other possible “improvements” to
the models, to avoid an overwhelming number of degrees of freedom in the scenarios that can be modeled.
When seeking insight into the effects of some specific factors — the fault-finding abilities of different testing
strategies, in our case — it is better at first to avoid refinements that might obscure these effects in complex
ways.

the code, and their changes may eliminate different sets of failure points, and even add new
failure points.

We also assume that failure regions are disjoint, and all test failures are noticed (that is,
there is a perfect oracle). So, each test failure deterministically causes one failure region to
be removed.

2.3 Operational Testing

To define operational testing requires two main concepts: the operational profile that deter-
mines the likelihood of selection of the different points of the input domain, and an allocation
of labels “¢” and “o” (for failure and success) to the points.

The operational profile is a probability distribution) over the input domain D, i.e., to
each point is allocated a probability of selection, and these probabilities sum to one over the
points of the domain. That is, @ : D — [0,1], and ¥ ,cp Q(¢) = 1. Operational testing* then
proceeds by independently selecting points from the input domain with these probabilities.
In many applications, a point-by-point operational profile is far too detailed to obtain, and
even a crude approximation requires considerable developer effort [21]. However, for our
theoretical treatment, the profile () is a central concept.

Informally, the operational profile can be thought of as characterizing the nature of the
use to which the program is put, and will in general be determined by the system(s) (including
people) that interact with the software. In itself it does not tell us about the reliability of
the software. We need in addition that all points in the input domain have associated with
them either a label ¢ (to indicate that such a point, when selected, results in a failure), or
o (for success). Define the indicator variable

_J 1 if t has label ¢
8(t) = { 0 if ¢t has label o

Then the failure probability for a test point drawn randomly from the operational profile is

0=>3 Q@)= > Q).

teD tefailure set

Of course, in practice we do not know what the labelings of the points in the input
domain are: if we did, we could simply fix things without any testing! Thus estimation of 8
will have to be statistical, and come from the results of a testset randomly selected from the
operational profile. One simple approach would use the proportion of failures within such a
sample of tests as an estimate of 6.

The reliability of the program is then the probability of it surviving N executions on
inputs drawn from the operational profile:

R(N) = (1 — §)".

4Operational testing is sometimes called random testing, but the latter term is wider and could be used
for statistical testing from any distribution, rather than one, as is intended here, that reflects operational
use. Indeed, random testing is often taken to mean uniform random testing, where all points in the input
domain are equally likely to be selected.

10

The probability of failure on a randomly selected input, and thus the reliability of a
program, is determined partly by the probabilities of selection of the different points in the
input domain (the operational profile), and partly by the way in which these points are
labeled ¢ and o. Operational testing only takes account of the operational profile in the
selection of tests. Debug testing, on the other hand, seems mainly to take account of the
labeling: it seems implicit that testers have knowledge (or at least believe they have) of
which points in the input space are more likely to have ¢ labels, and testers give such points
a greater chance of being selected than in operational testing; the points that are believed
to be more likely to be o points are given correspondingly smaller chances of selection.

There is a subtle interplay between the two contributions to (un)reliability, and how the
two testing approaches treat them. Consider a single point in the input domain, z;, with
probability of selection in operation p;. The operational tester says “I don’t know anything
about the chance that z; will have label ¢, so I will select it with probability p;; that way, if
it has a label ¢, I at least have a chance of detecting it that is proportional to its contribution
to the unreliability of the program.” The debug tester says “I don’t know anything about
the operational profile (or if I do I don’t care!), but I do have a good intuition about which
points are likely to cause failure, and z; is one of them, so I will select it with high probability
and thus have a good chance of improving the reliability.”

2.4 “Debug” Testing

Whereas the operational tester focuses attention on developing an input profile that closely
approximates the distribution that the software will encounter in the field, the debug tester
seeks to develop a distribution that will be likely to find the points labeled “¢”. A perfect
debug testing strategy would assign probability zero to all points labeled “o”. In practice,
debug testers develop distributions based on heuristics that they hope will give high selection
probabilities to failure points. Many such heuristics divide the program’s input domain into
(possibly overlapping) regions called subdomains and require that at least 7; > 1 test cases
be drawn from the :** subdomain. (The earlier discussion of “partition testing” refers to
subdomains that do not overlap®.)

In a number of practical testing methods, the subdomains are based on analysis of the
specification (specification-based or black-boz methods). The primary such method is func-
tional testing, in which a number of program “functions” are identified (roughly, things the
software should do), and the subdomains are defined as those inputs that result in its doing
each thing. A second important collection of debug-testing methods are program-based, or
structural, or clear-boz methods. The archetype structural testing method is “statement test-
ing,” in which the subdomains correspond to the execution of individual program statements,
and a test point selected from each and every subdomain forces every program statement
to have been executed. These statement-testing subdomains therefore overlap, as do the
subdomains of most structural testing methods and of many functional methods.

S«Partition” is a good word to avoid, not only because it technically does not include the important
practical case of overlapping subdomains, but also because in common parlance “partitions” refer to the
subdomains themselves, while in the technical mathematical usage “partition” refers to the relation that
induces a set of equivalence classes (the subdomains).

11

Subdomains may be used either 1) as a means of evaluating whether enough testing
has been done, or 2) the basis for test selection. In approach 1, testers select test cases
by some independent means, such as use of a different subdomain testing strategy, random
testing according to some well-defined input distribution, or “haphazard” selection (random
testing in which the input distribution is difficult to characterize precisely). They then check
whether the requisite number of points has been selected from each subdomain and, if not,
select additional test cases. In approach 2, testers systematically look for test points that
lie in the subdomains. They may give preference to certain types of points, such as those
close to the boundary of a subdomain, or those that for some other reason are believed to be
more “failure-prone.” Clear-box testing techniques are usually more amenable to approach
1, whereas functional testing techniques are usually more amenable to approach 2. For clear-
box methods, particularly the more abstruse, it is not easy to force test points to fall in the
defined subdomains. However, since automatic tools exist to measure structural coverage
and report deficiencies by subdomain, the tester can obtain a list of untested subdomains
and find test points in the missed structural subdomains. In contrast, for functional methods
it is usually relatively easy to identify the subdomains and select test cases from them, but
harder to check which test requirements are covered by an arbitrary test case.

We consider two models of debug testing, which roughly correspond to the two ways
debug-testing techniques are used. The first model, which we call debug testing without sub-
domains, describes the case in which a tester aims to select ¢ points, without considering
subdomains. The probability distribution is defined on the entire input domain and the
tester selects inputs independently until some stopping criterion is satisfied. If the stopping
criterion is that some pre-determined number T of test cases has been selected, then debug
testing without subdomains differs from operational testing only in the input profile used,
which the tester hopes will produce more frequent failures during testing. This model cap-
tures only part of the first way of using subdomains, in that it does not require test points in
each subdomain as a stopping criterion. In the second model, debug testing with subdomains,
which models the second method of using debug testing, there is a probability distribution
on each subdomain and the tester independently selects T; test cases from each subdomain
1.

In experimental comparisons among structural methods [9, 14] a somewhat different
selection procedure is used:

Test points are selected from a profile over the entire input domain (usually a
uniform profile, although an arbitrary profile poses no difficulty). Each such
test point falls in some subdomain(s), and by selecting enough overall points,
one obtains “random” points in each subdomain. This procedure is adopted to
eliminate possible human bias in selecting test points within subdomains.

The experimental procedure illustrates the difficult connection between any overall profile
and structural parts of the program. Not only can it happen that a profile neglects some
part (subdomain) so that an excessive number of choices of overall random points is needed
to reach it, but the pattern that does reach it may not be appropriately “random” on the
subdomain.

These models are only approximations of how testing is done in practice. In particular, a
tester may use knowledge of previous test cases when selecting new ones, thereby violating

12

the independence assumption. Nevertheless, we believe that they provide a fairly general
and reasonably accurate starting point for our investigations.

Two practical problems must be accounted for. Some testing strategies may produce
empty subdomains. That is, an apparently sensible subdomain (e.g., “inputs that make this
branch condition TRUE”) may in fact be empty (the TRUE branch is then infeasible). In
our analysis of debug testing with subdomains, we assume that all empty subdomains have
been eliminated from consideration. Very small subdomains also cause problems in practice,
either because the subdomain size is smaller than the required number of elements from the
subdomain, or the subdomain cannot be easily “hit” by tests. We do not require that the 7;
test cases drawn from subdomain 2 be distinct. We ignore difficulties in hitting a subdomain,
while in practice testers may have to stop testing before 100% coverage has been achieved.

3 DEBUGGING VS. OPERATIONAL TESTING

Exercising a program, whether in test or in operational use, involves selecting a succession
of inputs to be presented for execution. The selection mechanism distinguishes between
different types of test and of use.

3.1 The Analytical Context

Reliability in the technical sense is characterized by the failure probability when inputs are
selected according to the operational profile. Failure points will be encountered at random,
and there is a certain probability that the program will fail in use. If a testset is selected by
sampling according to the operational profile, then direct estimates of the failure probability
may be obtained. If a testset is selected in any other way, then the probability of encountering
a failure region bears no necessary relation to the failure probability in operational use. But
there is still a probability that the program will fail under test, which we call the “detection
rate.” In debug testing one tries to arrange that the detection rate is high. It is the
“debugger’s intuition” that the way to achieve reliability is through clever testing with high
detection rates.

Reliability improves under either testing scheme when failures are found, the software is
successfully changed, and the operational failure probability decreases.

The precise question we wish to study is the following:

Under which conditions (on the program, and the testing method) will debug
testing deliver better reliability than operational testing?

Certainly conditions exist favoring each alternative. If many debug tests fail and the
corresponding fixes substantially decrease the overall failure probability, then debug testing
may be superior to operational testing in which fewer tests happened to fail. However, it
may happen instead that many fixes originated by debug testing are less effective, in terms
of improving reliability in operation, than a few fixes originated by operational testing.

The case of ultra-reliability is of particular interest. When the failure set has a very small
chance of being encountered in operation [20, 3|, operational testing has a correspondingly
very small chance of inducing failures and thus allowing the removal of failure regions. Debug

13

testing is therefore the only option that allows some hope of further improving reliability.
However, simply choosing debug testing is no guarantee that the results will be better than
with operational testing. It may still happen that debug tests encounter only failure points
whose probability in the operational profile is so low that fixes are worthless, or simply that
it does not encounter any failure region. That is, the debug test regime chosen, or the tester’s
experience, may be ill-matched to the failure regions present in the software. Furthermore,
even if debug testing does achieve ultra-reliability, it cannot demonstrate that ultra-reliability
has been achieved; only an infeasible amount of operational testing can demonstrate that
[20, 3].

We assume that all testers, upon observing a test failure, choose fixes that eliminate
exactly the same failure region; that failure regions are disjoint; and that all test failures are
noticed (that is, there is a perfect oracle). The limitations of these assumptions have been
discussed in section 2.2.

Note that we are not considering the cost of removing a failure region; in practice, this
may depend on the testing method that was used to detect the failure and on the phase of
the development cycle in which the failure occurred.

In practice, a debugger may use information about the subdomain D; from which a failed
test case comes in order to figure out how to “fix” the problem. This information may make
it easier to locate the problem, but may also lead to an inadequate fix, for example, one that
only removes D; N F, rather than all of a failure region F. This situation is not captured
by our model, in which we assume that fixes and their corresponding failure regions are
uniquely determined by failure points, independent of the testing strategy.

The failure rate of a failure region is the probability that an element of that region will
be selected when selecting an input according to the operational distribution. The detection
rate of a failure region is the probability that an element of that region will be selected when
one input is selected during debug testing. These are the probabilities that the program
will fail because of this particular region under the operational profile and the debug profile,
respectively.

We will study the program failure probability after a testset of size T' tests has been
applied, as a random variable ©. In this section, we focus mainly on the expected value of
O; later we explore other aspects of the distribution of ®.” The simplest form of comparison
assumes that equal effort is spent on both testing methods, and that the effort is measured
by T. The comparison can be generalized to account for different costs per test case between
methods. Although our examples only scratch the surface of the analysis possible in our
models, we believe that they show the formalism to be reasonable and useful, and they
provide insight into the process of testing to achieve reliability.

3.2 Single Failure Region, Debug Testing without Subdomains

Consider a program with failure probability ¢ and only one failure region F. (Thus F’s
failure rate for operational testing is g as well.) Initially, we take debug testing as being
conducted according to some overall test profile V. That is, tests are selected just as in
operational testing, but with a different profile. The detection rate is thus a constant given

14

d=Y V(). (1)

teF
After a testset of size T' has been tried, what is the distribution of the failure probability
© of the final debugged program? Under the assumptions above, ©® will be 0 if the test
encountered the region (which is then eliminated by a fix), and still g otherwise. Thus for
debug testing:

PO=0) = 1-(1-d7F (2)
PO =gq) = (1-d)f (3)
E®) = 0-P(@=0)+q-P(O=gq) (4)
= q(1-4d)". (5)
With operational testing:
PO=0) = 1-(1-q) (6)
P(O=q) = (1-q)" (7)
E©) = q(1-q)" (8)

So we get the obvious result that debug testing is superior iff d > gq.

As a simple case, assume that a fixed budget is available for testing and allows different
numbers of tests depending on the type of testing, say, Tp tests for debug testing and Tr
for operational testing. In other words, a test case in debug testing costs on average Tr/Tp
times what it costs in operational testing. Then, debug testing is superior iff

Tplog(l —d) < Trlog(l —gq), (9)
that is, for small g and d, iff
dT'p > qTR. (10)

That is, debug testing is superior if, compared with operational testing, it improves the
effectiveness of a single test more than it raises its average cost.

3.3 Single Failure Region, Debug Testing with Subdomains

Let the input domain be divided into subdomains Dy, D, ..., D,. T; test cases are selected
independently from each D; according to test profile V; on subdomain D;,1 < 2 < n. The
single failure region F' may be spread across the subdomains in an arbitrary way. Let d* be
the debug detection rate® for subdomain D;:

&= Y V). (11)

tcFnD;

6The somewhat peculiar use of a superscript anticipates a different usage for subscripts to follow.

15

Then

PO=0)=1- ﬁ(l —d")E (12)

=1

and

5(0) = ¢ J[(1 - &)™ (13)

For comparison with operational testing, equation (8) can be compared with (13) by
taking T' =" | T;.

Here E(O) depends on the extent to which the subdomains “concentrate” the failure
points. In comparing the probability of detecting at least one failure using random testing
and partition testing, Weyuker and Jeng [16] and Hamlet and Taylor [12] observed this
“concentration” effect. In the case of a single failure region, we are considering almost the
same question that they did. Weyuker has noted that failure detection probability may not
be the right parameter to study, and here we go beyond it to study the delivered reliability.
Our explicit use of failure region(s) makes our model capable of analyzing more complex
situations.

Several straightforward special cases explore failure concentration:

o At one extreme, suppose that for some 4, subdomain D; C F. Then d' = 1, and
consequently E(O) = 0, so debug testing is superior for any 0 < ¢ < 1.

o At the other extreme, the failure region might be uniformly “spread out” over all the
subdomains weighted by their profiles and test counts, in the sense that the chance d
of finding a failure in each subdomain is the same. Then the results of the previous
section apply, with d = d in equation (5). Operational testing is superior iff ¢ > d,
which is to be expected if the operational profile has a peak within F'.

o More generally, the expected failure probability after debugging is smaller for debug-
ging with subdomains than for operational testing if and only if there is a collection

D, ,...,D,, of k subdomains such that

(1= d)Ta (1= d2) (1= d#)T < (1-q)". (14)

As in the previous extreme, one way this can happen is if some subdomain is completely
contained in the failure set, in which case its detection rate is 1 and the left-hand side
of (14) is 0. It is also possible for some collection of subdomains which individually
have moderately, but not exceptionally, high detection rates to collectively yield a high
enough detection rate to make debug testing superior. On the other hand, operational
testing will be superior if the above condition does not hold. For instance, because
of poor choice of the input distributions within subdomains, a failure region with
high failure rate may have low detection rate for every subdomain; or the tester may
select large numbers of test cases from subdomains with low detection rates and small
numbers of test cases from the “good” subdomains.

By considering the failure region F' to be a strict subset of a single subdomain, it is
possible to capture two intuitively appealing special cases, one in which debug testing is

16

superior, the other in which operational testing is superior. Suppose that F' C Dy for some
k, but some points of subdomain Dy are not failure points: Dy ¢ F'; and that no possibly
overlapping subdomain touches F: F N D; = 0,7 # k. Further suppose that within Dy the
two testing techniques (on average) are equally likely to encounter F. That is, the detection
probability d* is just the fraction of the operational-distribution inputs in Dy, that encounter

F:
dk — ZtEF Q(t)
EtEDk Q(t) ‘

Finally, take the debug testing points as equally spread among subdomains, so since there
are n subdomains, and 7T test points for comparison with operational testing, Ty = T'/n.

The intuitive situation in which debug testing should be superior is the one in which
operational testing with profile () is relatively neglectful of Dy, that is, T 3 ,cp, Q(t) < Tk,
or substituting Ty = T'/n,

(15)

ZQ@«% (16)

tEDk
Under these assumptions, the expected value of failure probability for debug testing is:

n

o0 d)™ = ot - o)
B >ter Q1) \1/m
= ZtEDkQ(t)) (18)
< g1 - Zeer o (19)
~ q(1-T) Q) (20)
~ q(l_q)T7 (21)

where the last term is the expected value of the failure probability for operational testing.
(The approximations in (20) and (21) require that d* and g are small, using (1 +z)¥ ~ 1+y=z
for small z.)

Thus when debug testing is used, the failure probability delivered will be less than the
failure probability delivered when operational testing is used. That is, debug testing delivers
the better reliability. To paraphrase, we have captured the situation where a subdomain
includes the only failure region, and under plausible assumptions debug testing leads to the
better reliability. Intuitively, the subdomain Dy is chosen to be “failure prone,” and it is
then given more test cases than the operational profile would imply.

A similar analysis yields the opposite result when many operational tests fall in Dy. If
there are many other subdomains, debug testing “wastes” most of its tests on them (still
assuming that T = T'/n). That operational sampling of Dy is much greater than its debug
sampling is expressed as T > ;cp, @(t) > Tk, or substituting T}, = T'/n,

ZQ@»% (22)

tEDk

17

Then using (22) instead of (16) in equation (19) above reverses the inequality and gives the
result that operational testing delivers better reliability than debug testing.

Although these two cases are intuitively obvious, and can be obtained using the failure-
detection measure of [16], they demonstrate that our model is useful, and in section 3.5 on
“Multiple Failure Regions, Debugging with Subdomains” below they will be combined to
demonstrate that good failure detection does not imply good delivered reliability.

3.4 Multiple Failure Regions, Debugging without Subdomains

Suppose a program contains m non-overlapping failure regions {Fy, Fa, ..., Fi, }, with failure
rates qi,qa, ..., gm and detection rates di,ds,...,d,,. Then its expected failure probability
after T tests is

E(©) =) a(l —di)" (23)
for debug testing, and
E©)=> a(l-a)" (24)
1=1

for operational testing. These formulas are justified by considering that the contribution
of each failure region to the failure rate after testing is a random variable, taking on the
value 0 if the failure region is eliminated during testing, and the value g; otherwise. Its
expected value is obtained by multiplying g; times the probability of the failure region not
being detected. The failure probability of the debugged program is the sum of these random
variables, and its expected value is thus the sum of their expected values.

If, for instance, d; > ¢; for = = 1, ..., m, debug testing is superior to operational testing.
This seems natural, as the hypothesis means that debug testing performs better than opera-
tional testing on each failure region. This belief is probably the usual basis of the “debugger’s
intuition.” However, it is a very strong assumption. If it is false, the main factor affecting
the delivered reliability is the relationship between the failure rates and the detection rates.

We can analyze the effect of this factor in isolation by assuming that, for each randomly
chosen test case, debug testing has the same probability of finding a failure region as oper-
ational testing, i.e., > d; = Y ¢;. In the simplest case that all the failure regions have the
same failure rate g, operational testing is superior, because to minimize

m

qZ(l - di)T7 (25)
i=1

under the condition that 3 d; = mgq, requires d; = q. More generally, we can compare a set
of testing methods such that they all have the same probability per test of finding a failure
(i.e., for all methods 3 d; = K). A way of looking at this question is to imagine that we can
freely “transfer” a certain amount of detection rate from one failure region to another — say,
from F; to F, leaving the detection rates of all the other failure regions unchanged — and
ask under which conditions this would decrease the expected value of the program’s failure
probability after T' tests. The new value of the failure probability would be

ql(]- —dl —|—€)T‘|‘q2(1 —d2 _E)T—I'Zqz(]- _d'i)T7 (26)
2=3

18

and by differentiating it with respect to € we obtain that the derivative is negative, i.e., the
change is beneficial, iff:

Qo (1— dz)(T_l)
g2 — (1 —dy)T-1
This inequality implies, in the first place, that it is never beneficial to increase the detection

rate of a failure region above the detection rate of another region with a higher failure rate.
This is an intuitively plausible extension of the results obtained by Hamlet and Taylor [12].

(27)

However, other consequences also hold:

o If we can run only one test, then the method which gives the best expected reliability
after debugging is one that has detection rate K for the failure region with the largest
failure rate, and 0 for the others;

o As the number of tests that one can run increases, it becomes beneficial to increase
the detection rates of regions with increasingly small failure rates. For a given number
of tests T, the optimal detection rates for failure regions F; and F; must satisfy the
equation:

(1 d) 7 = gi(1 —)T (28)
o As T tends to infinity, the optimal detection rates d; all tend to K/m.

Of course, these results only describe optimality for the ezpected failure probability after
debugging. If, for instance, we wished instead to maximize the probability of finding the
failure region with the highest failure rate, it would clearly be best to have a method that
has detection rate K for this failure region, and 0 for the others.

These considerations only apply under the artificial constraint > d; = K; however, they
help to clarify the issue of how the “allocation” of detection rates to failure regions affects
the effectiveness of testing, separately from the issue of how effective a testing method is at
finding failure regions.

With the model used in this section, it is easy to model cases in which the probability
of finding a failure is a bad indicator of how well a testing method improves reliability.
Consider a program with a large number m of failure regions, such that d; = d,» =1,...,m,
and that md > 37", ¢;, and that q; > d > ¢;,2 # 1. Then debug testing ensures the higher
probability of finding a failure, yet produces a much worse E(©) than operational testing,
since most of the failure regions that debugging detects have a negligible effect on reliability.
This case is the “debugger’s nightmare,” a situation in which debugging goes on and on with
apparent success, but really does no good at all.

Interestingly, one can also show that cases exist in which operational testing has the
better failure detection, but debug testing delivers better reliability, if few tests are run.
The actual numerical differences are negligible for practical purposes, but we describe such a
scenario to illustrate the subtlety of the problem. Consider a program in which failure region
F has a much greater failure rate than any other, but also a detection rate greater than its
failure rate, dy > q1 > g;,t # 1. Let the failure regions 2, ..., m have negligible detection

19

rates, but failure rates that together outweigh the imbalance between d; and g¢;. These
conditions ensure that 77", d; < 37", ¢;. Then the probability of failure per test is greater
for operational testing than for debug testing. Yet, during the early phase of testing, debug
testing will have a greater probability of eliminating Fy, and will thus offer a (marginally)
better E£(O) to a tester who can afford only a few tests.

3.5 Multiple Failure Regions, Debugging with Subdomains

The m failure regions F; may be arbitrarily spread across the n subdomains D;. The detec-

tion rates are now: '
&= 3 Vi) (29)
tEFjﬁDi

As in the case of a single failure region, there are some straightforward observations:

o The detection of a particular failure region Fj is guaranteed if there is a subdomain D;
that is completely contained in F;. More generally, the probability of detecting Fj is
high if for some ¢, the probability of selecting an element of F; from D, is high.

e However, in contrast to the analysis of operational testing and to debug testing with-
out subdomains, there is some interesting non-independence between different failure
regions. A simple illustration of this dependence arises when there are two failure re-
gions contained within the same subdomain, and no other subdomains that intersect
either failure region. In subdomain testing with one test case per subdomain, at most
one of these failure regions can be detected.

o If a high-failure-rate failure region is spread out across several big subdomains, it may
be hard to detect. If, moreover, these subdomains have moderately high concentrations
of small (low-failure-rate) failure regions, it will be fairly easy to detect a lot of those.
This is again the debugger’s nightmare: detection and removal of many minor problems,
while failing to detect the serious problems.

A general formula for the expected failure probability after debug testing with subdo-
mains follows from the discussion of ®’s distribution in section 4, below. In the remainder
of this section, we use examples to illustrate some of the phenomena that can occur.

3.5.1 Detecting failures vs. delivering reliability — operational testing superior

The two special cases described in section 3.3 above for a single failure region in which
debug testing (resp. operational testing) is superior when the failure region lies within a
subdomain, can occur simultaneously with multiple failure regions. It is possible to use this
situation to construct a special case with the properties that: (a) Debug testing is much
more likely to find a failure, but (b) Operational testing is superior in reducing the ultimate
failure probability under our assumption that all detected failure regions are removed.

Two disjoint subdomains suffice to construct this example: D; strictly containing Fj for
which debug testing is more likely to find a failure and D; strictly containing F, in which
operational testing is better. Assuming F; C D; , F» C D, implies d? = d} = 0. To account

20

for operational testing being better on F; than on Fj, let go =~ g > ¢;. Debug testing is made
much better than operational testing at finding F; by setting di >> g¢; and taking d2 ~ q
makes operational testing better at finding F5, because it places most of its T' test points
in Dy. Take Ty = Ty = T/2. We have thus a scenario in which debug testing looks — on a
test-by test basis — intuitively better than operational testing. However, operational testing
delivers better reliability. Here are the calculations:

1. The probability of finding a failure with debug testing is about
1—(1—d)"*(1-q)", (30)
while with operational testing it is
1—(1-q)% (31)
So since d} > g, debug testing is much better at finding a failure.

2. However, if we look at the failure probability delivered after fixing the failure regions
uncovered, the situation is different. For operational testing,

E®)=a(l—a)"+q(l—q) (32)

(as explained at the beginning of section 3.4). Let us consider small values of T', such
that the first summand is much smaller than the second one, because ¢; < g». Then
since ¢y & g, for operational testing:

E(©)~ q(1—q)". (33)

On the other hand, debug testing will likely result in F; being fixed, but F; will be
fixed with lower probability than in operational testing. For debug testing,

E©) = q(l-d)"+ql-q)" (34)
~ q(1—q)T/2 (35)

Comparing (33) and (35), operational testing results in much better delivered reliability
of the software.

This example straightforwardly captures the intuitive situation in which debug testing finds
the “wrong” bugs, from the standpoint of better delivered reliability.

Another way to measure the effectiveness of testing in this situation is the probability that
a preset reliability target 6g is reached. Then, the precise value of §g matters in determining
which testing regime is better. Let us simplify calculations by setting T=2. Then,

e if g < Or < g, the target is reached if F}, is detected, i.e., with probability d2 ~ q by
debug testing and with probability (1 — (1 —¢2)?) ~ (1 — (1 — q)?) ~ 2q by operational
testing, so operational testing is superior.

o If 0r < ¢1 < g then the target is attained if both failure regions are detected, i.e.,
with probability d}d% ~ diq by debug testing and with probability 2q;q; ~ 2¢:q with
operational testing. This expression is obtained because the event of interest is the
union of two disjoint events: finding F; with one test and F, with the second test, and
the inverse sequence. So, since we assumed d} > g > qi, debug testing is better in
this case.

21

3.5.2 Detecting failures vs. delivering reliability — debug testing superior

We have also been able to construct an example of the opposite case, in which operational
testing is better at detecting failures, yet debug testing yields better reliability. However,
the intuitive situation is more subtle, and the advantage for debug testing only marginal.

Consider m subdomains, each with a strictly contained failure region F;. Assume that
debug testing is very good at detecting one failure region Fj, which has a high failure rate,
but debug testing is unlikely to detect many other failure regions, with smaller failure rates.
That is, d} > q1 > ¢; > d: ~ 0,7 £ 1. F,, Fs, etc., correspond to bugs that are both “small”
— they have low failure rates — and “subtle” — intuitive debug testing strategies are unlikely
to discover them. Then, operational testing may be better at producing a failure early,
because debug testing wastes most test cases on those subdomains where it has negligible
probability of finding a failure. Yet, if debug testing does reveal a failure, it will cause
the most important failure region F; to be removed; hence debug testing can yield better
delivered reliability.

For convenience let all the failure rates other than g; be g,. The probabilities of causing
a failure in the first T' tests are:

1= (1= (g 4 (m—1)g))" (36)
for operational testing, and approximately
1—(1—dh)T/m (37)

for debug testing. The expected values of the delivered failure probability of the tested
program are:

a(l—aq)" +@m—-1)(1-q)" (38)

for operational testing, and approximately
g(m —1) + (1 — d})"/™ (39)

for debug testing.

The following is a typical numerical example: m = 20 subdomains and failure regions,
qu = 107%,d} = 0.05, and ¢; = 107*,d: = 107%,5 # 1, with a test run of 400 tests. Operational
testing is more likely to detect a failure (by 0.69 to 0.64), yet debug testing has a better
E(©) (by 0.00226 to 0.00250).

However, if we keep testing, then both testing methods will soon reach a practical cer-
tainty of eliminating Fi, and debug testing will have a smaller chance of finding other failure
regions. So, operational testing will catch up. In the example above, the cross-over is at
about 1318 tests, when both methods achieve E(0®) = 0.00193. After 10000 tests, E(O)
with operational testing is down to 7 X 10™* (that is, on average only seven failure regions
remain), against 0.0019 for debug testing (that is, on average none of the 19 “small” failure
regions have yet been found).

This example illustrates a general rule: the number of tests that we are willing to spend
on a given test regime affects which test regime we should choose. As testing and fixing
proceed and alter the failure set of the program, which test regime is better will also change

22

(but the tester will not know when, because the change depends on which (unknown) failure
regions are left in the program).

We emphasize that the case described in this section, in which operational testing is
better at failure detection, but debug testing may deliver better reliability, is quite unlike the
previous one favoring operational testing (section 3.5.1). The previous case has an obvious
intuitive meaning, and the analysis shows a substantial difference between the methods.
The present case appears contrived, to get the result requires careful adjustment of the
parameters, yet still the difference exhibited between methods is not substantial. Of course,
our failure to discover a satisfying, simple example does not mean one does not exist, but
we believe that the debug tester is more likely to be misled by considering failure-finding
probability, than is the operational tester.

3.5.3 Detecting failures vs. delivering reliability — complex cases

With different assumptions about the detection rates of failure regions with different failure
rates, it is possible to describe more complex situations. For instance, we could consider
the effect of having three classes of failure regions, with failure rates that are an order of
magnitude apart, and such that their detection rates are larger than failure rates for all
failure regions except those in the intermediate class. Then, we may have a scenario in
which debug testing yields the better expected reliability with a small test run, T' < T3,
then operational testing becomes better while 79 < T' < T3, and then again debug testing
is preferable if T' > T,. This points, again, at the opportunity of using combinations of
different test strategies in different phases of the testing.

These cases illustrate the extra complexity of the situations that can be analyzed using
failure regions and the expected value of the delivered reliability. Our examples mostly
involve the unrealistic (but easier to analyze) case of failure regions strictly contained in
subdomains. This is not a limitation of the model, but it is the simplest situation to conceive,
and it suffices to demonstrate most of the properties that concern us.

4 THE DISTRIBUTION OF 0

Up to this point, our investigation of the random variable © has focused on its expected
value. It is sometimes useful to consider other statistical properties of O, such as its variance
or the probability that © is less than some given (un)reliability target ;. One might prefer
testing method M; over testing method M, if Oy has a smaller variance than Oy, so that
the results of using M; are more predictable than those of M,. Alternatively, one might
prefer My if P(On < 6;) is relatively large, so that one can be more confident that the
reliability target will be achieved.

In this section we investigate the distribution of the random variable ©. We then present
an example illustrating how small changes in the detection rates can influence the tail prob-
ability P(© < ;). This example shows that while, under ideal circumstances, debug testing
can result in a high probability of reaching given reliability target, under less ideal circum-
stances, debug testing can perform as badly as, or worse than, operational testing.

23

4.1 Computation of the Distribution of ©

In order to compute the distribution of ®, we must derive the probability mass at each
possible value of ©. Let F = {Fy,..., F,,} denote the collection of failure regions of a
program and let gqi,...,gm, be their respective failure rates. For each sub-collection X C
{1,...,m}, let 0x = ¥ ;2x ;- Thus x is the failure probability after removal from F of
only the failure regions indexed by X.

There are at most 2™ values of x that © may assume, and there may be fewer values
if two different subsets X; and X, have the same total failure rate. To investigate the
probability mass at each value of ©, we initially assume, for simplicity, that each subset of
F has a different total failure rate, i.e., that © has 2™ possible values. We will then relax
this assumption.

Let px denote the probability that the failure regions denoted by X (and no others) are
detected. That is,

P(@ == Hx) =Px.

For a given collection X, the probabilities px depend, perhaps in a complicated way, on the
details of the test selection strategy.

Consider a sequence of n test cases. We can represent the results of executing such a
sequence by an n-tuple, (r1,...,rn) where r; = 0 if no new faults are discovered with the
1h test case and r; = 7 if F} is discovered with the 1** test case. For example, the 5-tuple
(0,3,0,1,0), represents execution of 5 test cases with discovery of failure region 3 with the
second test case, discovery of failure region 1 with the fourth test case, and no failures on the
other three test cases. We can then compute px by finding the probability of each sequence
in which those failure regions belonging to X (and no others) are discovered, then summing
those probabilities.

To compute the probability of a sequence (rq,...,r,), let pé- denote the probability that
failure region F; will be detected by the 3** test case. Let p) be the probability that no
new failure region is discovered by the it* test case. That is, pé- denotes the probability
that », = 7. The probability of sequence (ry,...,rn) occurring is then the product of the
corresponding p; For example, the above 5-tuple has probability pip2p3pip5.

The values of the p’ depend on the particular testing strategy used, as well as on the
detection rates or failure rates. For operational testing, p’ = g; if F; has not been detected
by test cases 1,...,2—1, and 0 otherwise. For debug testing without subdomains, p} = d; if
F; has not been detected by test cases 1,...,2— 1, and 0 otherwise. For debug testing with
subdomains, with one test case per subdomain, assuming the 1** test case is selected from
D,, pé- = d;- if F; has not been detected by test cases 1,...,72 —1, and 0 otherwise. Note that
the p} are not constants, but have values dependent on the history of the testing process.
Also note that with these testing scenarios, any sequence in which the same positive value
of 7 occurs more than once (representing rediscovery of failure region Fj after it has been
discovered and removed) has probability zero. More complicated situations such as partial
removal of a failure region can be modeled in a similar manner.

Finally, px is the sum of the probabilities of all those sequences in which the collection
of failure regions represented by X is detected (and no others).

More generally, we may have several different subsets of F that yield the same total

24

failure rate. If 0x, = x, = ... = 0x,, then
k
P(® = 0X1) = ZpXi‘
=1

4.2 Example

The previous sub-section shows how one can derive the exact probabilities for the different
values of © for the testing scenarios considered earlier. This situation is too complicated for
algebraic analysis, so we wrote a program to compute these probabilities from input values
of ¢; and d;-, for small numbers of test cases, subdomains, and failure-regions. From these
probabilities we can obtain the expected value and variance of O, and the probability that
a given reliability target is reached.

In this subsection, we present an example in which, for a single hypothetical program,
we examine the distribution of ©® and the resulting tail probabilities under several different
testing scenarios. Consider a program with six failure regions, with ¢; = 0.01 and ¢» = g3 =
s = g5 = g = 0.001. Before testing, the failure rate is § = 0.015. Call F; the “big” failure
region and F,...Fg “small” failure regions. In this example the possible values of © are
determined by whether the big failure region is detected, along with the number of small
failure regions detected, so there are 12 possible values, rather than 2% = 64 of them. These
12 values are shown in the second column, 8, of Table 1. The remaining columns give the
corresponding probabilities for operational testing and for several debug testing scenarios,
which are described below. The last four rows of the table give the expected value, the
variance, the probability of reaching the reliability target § = 0.01 (P(® < 0.01)), and the
probability of detecting at least one failure region (P(® < 0.015)). To reach the reliability
target 0.01, it is necessary to either detect the big failure region or to detect all five of the
small failure regions.

Table 1 shows four scenarios for debug testing with subdomains. In each, there are six
disjoint subdomains, with F; C D,. Thus d;- = 0 for 2 # j. The four scenarios have been
selected for their illustrative value, although of course they are not necessarily representa-
tive of any real-world situation. The debug testing results are based on one test case per
subdomain and the operational testing results are also based on a total of six test cases.

In each scenario, d} = q; = 0.01. The debug scenarios differ only in the values of d
for the small subdomains, i.e., in how likely it is to detect failure region : with a test case
from subdomain 2. In all four scenarios, all of the detection rates assumed for the small
failure regions are at least an order of magnitude greater than the failure rates of these
failure regions. Thus, one might expect that these scenarios would strongly favor debug
testing over operational testing. We shall see that, as we move away from the ideal debug
testing scenario, the advantage of debug testing (measured by the probability of reaching
the reliability target) quickly diminishes.

operational: Of the 12 possible values for ®, many have negligible probabilities. For ex-
ample © = 0.003 requires detection of the large failure region and two of the small
ones, which occurs with probability approximately 1078. The probability of reaching
the reliability target is quite low, essentially equal to the probability of detecting the

25

P(G =90)

0 | operational | debug-1 | debug-2 | debug-3 | debug-4

0.015 0.9133 | 0.0000 | 0.0024 | 0.0309 | 0.0000

0.014 0.0279 | 0.0000 | 0.0281 | 0.1547 | 0.0000

0.013 0.0003 | 0.0000 | 0.1310 | 0.3094 | 0.0000

Distribution 0.012 0.0000 | 0.0000 | 0.3056 | 0.3094 | 0.0000
of © 0.011 0.0000 | 0.0000 | 0.3565 | 0.1547 | 0.9801
0.010 0.0000 | 0.0000 | 0.1664 | 0.0309 | 0.0099

0.005 0.0570 | 0.0000 | 0.0000 | 0.0003 | 0.0000

0.004 0.0014 | 0.0000 | 0.0003 | 0.0016 | 0.0000

0.003 0.0000 | 0.0000 | 0.0013 | 0.0031 | 0.0000

0.002 0.0000 | 0.0000 | 0.0031 | 0.0031 | 0.0000

0.001 0.0000 | 0.9900 | 0.0036 | 0.0016 | 0.0099

0.000 0.0000 | 0.0100 | 0.0017 | 0.0003 | 0.0001

Expected value E(O) 0.0144 | 0.0010 | 0.0114 | 0.0124 | 0.0109
Variance 0.0123 | 0.0010 | 0.0029 | 0.0029 | 0.0104
P(6 <0.01) 0.0584 | 1.0000 | 0.1764 | 0.0409 | 0.0199
P(0 < 0.15) 0.0866 | 1.0000 | 0.9976 | 0.9691 | 1.0000

Table 1: Distributions of © with means and variances for several testing scenarios.

big failure region in six tries. The probability of detecting at least one failure region
is only a bit better, with the slight improvement reflecting the possibility of detecting
one of the small failure regions.

Debug-1: This scenario is as favorable as possible for debug testing, under the above

constraints. Each small failure region is guaranteed to be detected: d: = 1.0 for
1=2,...,6. Since all five small failure regions are guaranteed to be detected, there are
only two non-zero values of P(0© = 0), distinguished by whether or not the big failure
region is detected. The variance is low, the reliability target is guaranteed to be met
and it is guaranteed that at least one failure region will be detected. So, under these
ideal circumstances, debug testing is a clear winner. But in the remaining scenarios,
we investigate what happens when these most favorable conditions do not hold.

Debug-2: In this scenario, the small failure regions are fairly likely to be detected: dt = 0.7

forz =2,...,6. Although the probability of detecting at least one failure region is still
very high, and the variance is quite small, F(®) is close to that of operational testing
and the probability of reaching the reliability target has fallen substantially (compared
to Debug-1). This is because with d: = 0.7, the probability of finding all five small
failure regions is low.

Debug-3: Continuing in this manner, in the next scenario the small failure regions are even

less likely to be detected: dt = 0.5 for 2 = 2,...,6. Note that the detection rates are
still much higher than the failure rates. E(©) is still slightly better than for operational

26

testing, but the probability of reaching the target is less than for operational testing.”

This is quite surprising. This scenario models a situation in which the debug tester
has very good, but not perfect, intuition as to where the small failure regions are — for
1 > 1, half of each subdomain D; consists of failure points from F;. This good intuition
pays off by giving the debug tester a high probability of detecting at least one failure
region. On the other hand, the good intuition is useless in terms of enhancing the
probability of reaching the reliability target!

Debug-4: Lastly, we consider another scenario in which the debug tester has very good
intuition. Detection of four of the small failure regions is guaranteed, but one small
failure region has a detection rate equal to that of the big failure region: d3 = 0.01,
dt = 1.0 for 2 =3,...,6. Detection of at least one failure region is guaranteed, E(©) is
slightly better than for operational testing, the variance is similar to that of operational
testing, but, again, the probability of reaching the target is very low. Like the Debug-3
scenario, this shows that with imperfect, but still very good intuition, the debug tester
may perform worse than operational testing, in terms of probability of reaching the
reliability target.

One cannot draw sweeping conclusions from this small and somewhat contrived example.
In it the failure rates are much higher, and the reliability target is much looser, than for
systems that purport to be highly reliable. However, several points are worth noting:

e Testing scenarios that have similar values of E(©) may differ widely in other important
statistical measures. The implication is that analysis much more detailed than that
attempted to date is required to compare testing methods.

e Small deviations from the optimal debug-testing scenario lead to severe degradations
in behavior, especially in the probability of reaching a reliability target. Operational
testing cannot be used to attain stringent reliability targets [20, 3], but it seems unlikely
that debug-testing is an alternative under realistic assumptions.

e The distribution of © is very different from the usual “textbook” ones (binomial, etc.).
This calls into question any simple assumptions about the behavior of O.

5 SUMMARY AND FUTURE WORK

We have considered the question of whether low operational failure probability (and hence
better reliability) may be better obtained by looking for failures (debug testing), or by
sampling from expected usage (operational testing). The testing models we considered can
be analyzed in two ways, with and without identifying subdomains for debug testing. This
paper generalizes and extends the “random vs. partition” studies that followed from the
work of Duran and Ntafos [8]. We have analyzed a number of special cases, showing that

"This may seem counter-intuitive, given that d} = g;. However, debug testing with subdomains only has
one chance to find the big failure region (when using a test case from D;), whereas operational testing gets
six chances to find it.

27

the theory can capture and inform our intuition about the strengths and weaknesses of the
two testing schemes.

Debug testers always have the potential advantage that by adjusting the test profile and
subdomain definitions they might improve the behavior of debug methods. While operational
testers have no such freedom, they do have the advantage that the operational profile, and
operational testing, define the desired result. Studies like this one can thus be viewed as
advice to the debug tester, on how to choose a test profile that will yield superior reliability.
If the debug tester has good intuition about which points are likely to be failure points and,
moreover, about which of these failure points are likely to belong to large failure regions,
such insight can be used to devise testing strategies that deliver much lower expected failure
probability than operational testing. If the tester lacks such intuition or is unable to map that
intuition into an appropriate input distribution, then operational testing may be indicated.

Trusting the debuggers’ own judgement about their abilities would be inappropriate (see
e.g., the experiments by Basili and Green [1]). But it is possible to compare the effectiveness
of their testing profiles with that of operational profiles. A limited investment in such
measurement would be, for any large development organization, a cost-effective step towards
better quantitative decision-making.

In particular, our analysis has shown:

e There are obvious cases in which debug testing is superior (roughly, because its de-
tection rates are greater than the failure probability). Similarly, operational testing
can be obviously superior (roughly, because detection rates in many subdomains are
smaller than the failure probability, so debug tests there are wasted). These examples
show that the theory corresponds with intuition in limiting cases.

o Debug testers should be aware of the potential confusion between detecting failures
and achieving reliability, a confusion that occurs when testing finds only unimportant
failures. “Unimportant” of course refers to the weighting of the operational profile,
which may well be unknown. But there is usually some intuition about the frequency
with which a problem might arise in use, and if a debug technique consistently turns
up low-frequency problems, it may be counterproductive to use it.

e Trust in subdomain testing depends on trusting one’s beliefs about how failure regions
are divided among subdomains. Previous work in this area has, in essence, considered
all failure points to be equally important. We have instead distinguished between
different groups of failure points based on their contribution to the overall failure
probability, and have thus considered the reliability achieved by testing.

e The analysis of debug testing without subdomains suggests that, if limited resources
are available, only debug methods that focus on the most important failure regions are
appropriate.

e The problem of comparing testing strategies is very challenging. Our model is more
general than those previously published, yet it is still quite simplistic. Despite the
model’s tractable nature, numerical computation shows that results are very sensitive
to the details assumed for the methods compared, and suggests that the distributions
may be quite unlike those usually assumed.

28

e The results here may be of particular relevance to those who have a responsibility for
assuring ultra-high reliability in safety-critical systems. While debug testing may be a
means of identifying failure sets that have a very small chance of being encountered,
and thus improving reliability beyond what can be achieved with operational testing,
this cannot be guaranteed: one could not be sure that the test regime was not in some
way ill-matched to the actual failure regions present. Even when an ideal debug testing
strategy yields high probability of reaching a reliability target, small deviations from
the ideal may perform much worse. There is thus a need to demonstrate the reliability
that has actually been achieved, and debug testing is unable to do this.

We hope that this kind of analysis will lead to more direct practical uses. Ideally, one
would be able to describe sets of alternative conjectures about the failure regions of a program
that: i) translate into indications for the testing regime to be used, and ii) can be checked
by experiment. A tester could thus decide on a sound basis which testing regime to apply
at a specific phase in the combined debugging and validation process. As a minimum, this
would be based on which conjectures have proven to be verified in the previous experience of
a certain development organization on a certain kind of program; at best, the observations
made during the testing of a specific program could directly support the decisions about
testing that program.

A necessary next step is to proceed from assuming a certain set of failure regions in
the program, as we did here, to considering probability distributions of the features of the
(actually unknown) failure regions of the program under test. With the latter, more realistic
hypothesis, we would expect operational testing, in which failure detection is “directed” by
the faults that are actually present, to be more predictable than debug testing, directed
by a knowledge of where failure regions may be. Preliminary results [23] indicate that,
under plausible assumptions, a debug tester who performs better than operational testing
on average (over many programs), would still exhibit a higher variance in the achieved
reliability, and thus a higher probability of unacceptably high residual failure probability in
the delivered program.

Likewise, while considering the expected values of failure intensities allows some insight
into the phenomena of interest, a tester will also be interested in other measures of the
distribution of a program’s failure probability. For instance, the probability of achieving a
failure probability no greater than some stated target value (as in the example at the end of
section 4) would probably be most interesting.

It is sensible to expect that different testing methods will prove optimal for different
organizations, different software projects and different stages in a project. So, research
cannot offer decision makers a single testing method that is best for all situations. What it
can do is to offer better criteria for informing the choice of a method in a decision maker’s
specific situation.

No mathematical analysis, without the support of empirical knowledge, is sufficient for
decision making. But for comparing testing methods, the direct experimental approach of
measuring the costs and achieved reliability levels on parallel testing campaigns with different
methods is prohibitively expensive. The analytic approach we have used in this paper deals
with one aspect of the problem, i.e., with the effectiveness of running a certain number of test
cases. Directions for future analytical research include relaxing the assumptions underlying

29

our model, such as the assumption that failure regions are disjoint, fixes are perfect and
all testers react to the same failure with the same fix, and incorporating a more realistic
measure of test case cost.

Our analysis of the effectiveness of tests improves the possibilities of rational decision-
making because it describes effectiveness in terms of other meaningful measures. Even
for decisions that are based on intuitive judgement, it can flag — and thus avoid — illogical
decisions, by showing non-obvious implications of the decision maker’s premises. In addition,
it can free the decision maker from total dependence on judgement, because some of the
measures it involves can be more easily estimated than the reliability improvement that is
really of interest.

References

[1] V. Basili and S. Green. Software process evolution at the sel. IEEE Software, pages
58-66, 1994.

[2] B. Beizer. The cleanroom process model: a critical examination. In Proceedings 18th
Annual Pacific Northwest Software Quality Conference, pages 148-173, Portland, OR,
1995.

[3] R. W. Butler and G. B. Finelli. The infeasibility of quantifying the reliability of life-
critical real-time software. IEEE Trans. on Soft. Eng., pages 3—-12, 1993.

[4] T.Y. Chen and Y.T. Yu. On the relationship between partition and random testing.
IEEE Trans. on Soft. Eng., 20(12):977-980, December 1994.

[5] T.Y. Chen and Y.T. Yu. On the expected number of failures detected by subdomain
testing and random testing. IEEE Trans. on Soft. Eng., 22(2):109-119, February 1996.

[6] R. H. Cobb and H. D. Mills. Engineering software under statistical quality control.
IEEE Software, pages 44-54, November 1990.

[7] S. R. Dalal, J. R. Horgan, and J. R. Kettenring. Reliable software and communication:
software quality, reliability, and safety. In 15th ICSE, pages 425-435, Baltimore, MD,
1993.

[8] J. Duran and S. Ntafos. An evaluation of random testing. IEEE Trans. on Soft. Eng.,
10:438-444, 1984.

[9] P. G. Frankl and S. N. Weiss. An experimental comparison of the effectiveness of branch
testing and data flow testing. IEEE Trans. on Soft. Eng., 19(8):774-787, August 1993.

[10] P. G. Frankl and E. J. Weyuker. Provable improvements on branch testing. [EEFE
Trans. on Soft. Eng., 19(10):962-975, October 1993.

[11] S. Gerhart, D. Craigen, and T. Ralston. Observations on industrial practice using
formal methods. In 15th International Conference on Software Engineering, pages 24—

33, Baltimore, MD, 1993.

30

[12]

[13]

[14]

[20]

[21]

[22]

23]

[24]

[25]

[26]

D. Hamlet and R. Taylor. Partition testing does not inspire confidence. IEEE Trans. on
Soft. Eng., 16:1402-1411, 1990.

J. Horgan, S. London, and M. Lyu. Achieving software quality with testing coverage.
IEEE Computer, 27:60-69, 1994.

M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. Experiments on the effectiveness of
dataflow- and controlflow-based test adequacy criteria. In Proceedings 16th International
Conference on Software Engineering, May 1994.

Z. Jelinski and P B Moranda. Software reliability research. In Statistical Computer
Performance Evaluation, pages 465-484. Academic Press, New York, 1972.

B. Jeng and E. J. Weyuker. Analyzing partition testing strategies. IEEE Trans. on
Soft. Eng., 17:703-711, 1991.

L. Lauterbach and W. Randall. Experimental evaluation of six test techniques. In

COMPASS ‘89, pages 36—41, Gaithersburg, MD, 1989.

N. Li and Y. K. Malaiya. On input profile selection for software testing. In Fifth
International Symposium on Software Reliability Engineering, pages 196-205, 1994.

B Littlewood. Stochastic reliability growth: a model with applications to computer
software and hardware design. IEEE Trans. on Reliability, 30(4):313-320, October
1981.

B. Littlewood and L. Strigini. Validation of ultra-high dependability for software-based
systems. Communications of the ACM, 36(11):69-80, 1993.

J. D. Musa. Operational profiles in software-reliability engineering. IEEE Software,
pages 14-32, 1993.

P. Piwowarski, M. Ohba, , and J. Caruso. Coverage measurement experience during

function test. In 15th ICSE, pages 287-301, Baltimore, MD, 1993.

M. Pizza and L. Strigini. The effect of program variability on debugging efficiency —
preliminary results. Technical report, Centre for Software Reliability, 1998.

R. Selby, V.R. Basili, and T. Baker. Cleanroom software development: An empirical
evaluation. IEEE Trans. on Soft. Eng., 13(9):1027-1037, September 1987.

M. Z. Tsoukalas, J. W. Duran, and S. C. Ntafos. On some reliability estimation problems
in random and partition testing. IEEE Trans. on Soft. Eng., 19:687-697, July 1993.

W. E. Wong, J. R. Horgan, S. London, and A. P. Mathur. Effect of test set size and
block coverage on the fault detection effectiveness. Technical Report SERC-TR-153-P,
SERC, 1994.

31

