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Abstract—We derive infima for posterior confidence in bounds
on system pfd, subject to various constraints – called “prior knowl-
edge” – on joint prior distributions. This concerns confidence
bounds on the pfd for a system B, upon observing two systems,
A and B, operate without failure. In particular, the results
hold when evidence supports a claim of B being as reliable,
or better, than A. The propositions proved in this technical
report are motivated, explained and discussed in the paper
“Conservative Confidence Bounds in Safety, from Generalised
Claims of Improvement & Statistical Evidence”, reported at the
51st IEEE/IFIP DSN conference.

INTRODUCTION

This report derives conservative confidence bounds on the
probability of failure on demand (pfd) for a system. Let XA

and XB be the unknown pfds of systems A and B. Consider
the following 4 forms of “prior knowledge” that each constrain
the joint prior distribution of 〈XA, XB〉. We refer to these
constraints as PK 1, 2, 3 and 4 respectively.

Prior Knowledge 1. certainty that the system pfd X is no
better than some pl > 0. That is, P (X > pl) = 1 .

Prior Knowledge 2. θ×100% confidence that the system pfd
X meets, or surpasses, a pfd ε. That is, P (X 6 ε) = θ.

Prior Knowledge 3. confidence in version A’s pfd being α or
better, and in the B version being an improvement:

P (XB 6 XA, XA 6 α) = ϕ (1)

where ε 6 α 6 1 and 0 < ϕ < 1. In particular, φ is defined
as the value of ϕ when α = 1.

Prior Knowledge 4. confidence in version A’s pfd falling
within some range of values, and version B being an improve-
ment: for some sub-interval I of [0, 1], with φ as just defined,

P (XB 6 XA, XA ∈ I) =
φ

1− φP (XA < XB , XA ∈ I) (2)

In particular, we consider the case when such a requirement
holds for the two intervals [pl 6 XA 6 ε], [α 6 XA 6 1]
and, thus (as probabilities must add up to 1), also holds for
[ε < XA < α].

Let two independent Bernoulli processes characterise the
occurrence of failures for systems A and B. If systems A and
B experience no failures, respectively, on a sequence of nA

and nB independent demands, then the posterior probability
that [XB 6 p] for some p is

P (XB6p | nA, nB) =
E[L(XA, XB)1XB6p ]

E[L(XA, XB) ]
(3)

where L(x, y) = (1−x)nA(1−y)nB is the likelihood function,
and 1S is an indicator function – it equals 1 when predicate S

is true, and 0 otherwise.
Let D be the set of all probability distributions over the

unit square. The following two propositions are constrained
optimisation problems that give the infima (i.e. greatest lower
bounds) for (3) under different circumstances. Solving these
problems entails determining preferred joint prior distributions
with P (XB < p | nA, nB) equal to the relevant infimum.
Each optimisation problem is solved subject to PK constraints
and certain parameter ranges of θ, ϕ and φ. The solutions
illustrate how to solve analogous optimisation problems for
other parameter ranges, using similar solution steps.

Proposition 1. Consider the optimisation problem

inf
D
P (XB 6 p | nA, nB)

where ε 6 p, subject to systems A, B satisfying PK 1, 2, 3.
Fig. 1 shows a prior distribution that solves this problem

when ϕ > θ > 1− θ, ε < α 6 p. The infimum is

Num

Num+ L(pl, p)(1− ϕ)
(4)

where Num := L(α, α)(ϕ − θ) + L(ε, ε)(ϕ + θ − 1) +
L(α, ε)(1 − ϕ). This is the value of P (XB < p | nA, nB)
computed using this prior distribution.

Proposition 2. Consider the optimisation problem

inf
D
P (XB 6 p | nA, nB)

where ε 6 p, subject to systems A, B satisfying PK 1, 2, 4.
Fig. 2 shows a prior distribution that solves this problem

when φ > θ, p < α < 1 . The infimum is

L(ε, ε)φ2θ

L(ε, ε)φ2θ +Den
(5)
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Fig. 1: A prior distribution that solves proposition 1, when
ϕ > θ > 1− θ, ε < α 6 p .

Fig. 2: A prior distribution that solves proposition 2 when φ >

θ, p < α < 1.

where Den := L(p, p)φ(φ − θ) + L(pl, p)φ(1 − φ)θ +
L(ε, p)(1−φ)(φ− θ)+L(α, α)(1−φ)2θ. This is the value of
P (XB<p | nA, nB) computed using this prior distribution.

The joint prior distributions in Fig.s 1 and 2 are depicted
“from above”, looking down on the distributions’ domain. In
each figure, the PKs partition the domain into the subsets
shown, with associated masses for θ, ϕ and φ.

CONSEQUENCES OF INVARIANT RATIO PROPERTY IN PK 4
Consider a probability distribution P over the unit square.

Suppose 0 < φ < 1 and, for all sub-intervals I of [0, 1],

P (XA > XB , XA ∈ I) =
φ

1− φ
P (XA < XB , XA ∈ I) (6)

Then

P (XA < XB) = P (XA < XB | XA ∈ I) = 1− φ (7)

Moreover, P (XA < XB | nA) = 1− φ for all nA > 0.

Proof. For any sub-interval I of [0, 1], (6) implies

P (XA ∈ I)
= P (XA < XB , XA ∈ I) + P (XA > XB , XA ∈ I)

= P (XA < XB , XA ∈ I) +
φ

1− φP (XA < XB , XA ∈ I)

=
1

1− φP (XA < XB , XA ∈ I)

Thus, whenever I is such that P (XA ∈ I) 6= 0,

P (XA < XB | XA ∈ I) =
P (XA < XB , XA ∈ I)

P (XA ∈ I)
= 1− φ

In particular, when I = [0, 1], P (XA < XB) = 1− φ. More-
over, the following limiting, sandwiching argument proves that
P (XA < XB | nA) = 1− φ.

Consider the following sequence P1, P2, P3, . . . of partitions
of (0, 1], consisting of dyadic intervals:
P1 ={(0, 1]}, P2 ={(0, 1/2], (1/2, 1]}, P3 ={(0, 1/4], (1/4, 1/2],
(1/2, 3/4], (3/4, 1]}, . . . and so on.
Pn contains 2n−1 disjoint intervals. For interval I in Pn, let

xIinf and xIsup be the infimum and supremum of this interval.
Let L(x) = (1 − x)nA . The monotonicity and continuity of
L over [0, 1] guarantees L attains all values from L(xIsup) to
L(xIinf ). Consequently, (7) implies∑

I∈Pn
L(xIinf )P (XA < XB , XA ∈ I)∑

I∈Pn
L(xIsup)P (XA < XB , XA ∈ I)/(1− φ)

=

∑
I∈Pn

L(xIinf )P (XA < XB , XA ∈ I)∑
I∈Pn

L(xIsup)P (XA ∈ I)

>

∑
I∈Pn

E[L(XA)1XA<XB
1XA∈I ]∑

I∈Pn

E[L(XA)1XA∈I ]

>

∑
I∈Pn

L(xIsup)P (XA < XB , XA ∈ I)∑
I∈Pn

L(xIinf )P (XA ∈ I)

=

∑
I∈Pn

L(xIsup)P (XA < XB , XA ∈ I)∑
I∈Pn

L(xIinf )P (XA < XB , XA ∈ I)/(1− φ)
. (8)

Again, by the monotonicity and continuity of L over [0, 1],
the monotone convergence theorem [1] implies

lim
n→∞

∑
I∈Pn

L(xIinf )P (XA < XB , XA ∈ I)

= lim
n→∞

∑
I∈Pn

L(xIsup)P (XA < XB , XA ∈ I)

Thus, upon using the following identity (for all n) in (8),∑
I∈Pn

E[L(XA)1XA<XB1XA∈I ]∑
I∈Pn

E[L(XA)1XA∈I ]
=

E[L(XA)1XA<XB ]

E[L(XA) ]

and then taking limits as n→∞, the monotone convergence
theorem implies

(1− φ) lim
n→∞

∑
I∈Pn

L(xIinf )P (XA < XB , XA ∈ I)∑
I∈Pn

L(xIsup)P (XA < XB , XA ∈ I)

= (1− φ)
lim
n→∞

∑
I∈Pn

L(xIinf )P (XA < XB , XA ∈ I)

lim
n→∞

∑
I∈Pn

L(xIsup)P (XA < XB , XA ∈ I)

= 1− φ >
E[L(XA)1XA<XB

]

E[L(XA) ]
> 1− φ

= (1− φ)
lim
n→∞

∑
I∈Pn

L(xIsup)P (XA < XB , XA ∈ I)

lim
n→∞

∑
I∈Pn

L(xIinf )P (XA < XB , XA ∈ I)

= (1− φ) lim
n→∞

∑
I∈Pn

L(xIsup)P (XA < XB , XA ∈ I)∑
I∈Pn

L(xIinf )P (XA < XB , XA ∈ I)
(9)
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Since P (XA < XB | nA) =
E[(1−XA)nA1XA<XB

]

E[(1−XA)nA ] by
definition, (9) shows that P (XA < XB | nA) = 1− φ.

Remark : P (nA successes | XA < XB) = P (nA successes) .

PROOFS OF PROPOSITIONS 1 AND 2

(a) ε 6 α 6 p (b) p 6 α 6 1

Fig. 3: Priors that solve propositions 1 or 2 will have one of these
discrete distribution forms, depending on the value of α. There are 13
regions, where region i has probability mass Mi. The white circles
approximately indicate a corner within each region i. When mass Mi

is assigned to a point within the region, the closer the point is to the
corner, the smaller P (XB < p | nA, nB) becomes.

In what follows, propositions 1 and 2 are proved. In either
proposition, we seek a prior distribution – from the set of all
probability distributions that are justified by the PK for the
respective proposition – that gives the greatest lower bound
on the value of P (XB 6 p | nA, nB).

PK 1, 2, 3 and 4, along with the bound p on XB , partition a
subset of the unit square into 13 subsets. Two such partitions
are illustrated in Fig. 3, with each subset having an associ-
ated probability mass that will be determined by solving the
constrained optimisation problems in the propositions.

So, consider a finite partition of the unit square into n
regions R1, . . . , Rn, and let D be the set of all probability
distributions over the unit square. Each of these distributions
assigns probabilities – generically labelled M1,M2, . . . ,Mn

– to the respective regions. Denote, by D∗, that subset of D
consisting of discrete distributions that assign each probability
Mi to a single point within region Ri. The following lemma
guarantees that extremising over D∗ is the same as extremising
over D. Its proof is reproduced from [2].

Lemma 1. Let f and g be non-negative functions with finite
non-zero expectations, and let each function be defined over
the unit square. Let D and D∗ be as already defined. Then,

inf
D∗

∑n
i=1 f(ui)Mi∑n
i=1 g(ui)Mi

= inf
D

E[f ]
E[g]

(where ui ∈ Ri) (10)

Proof. Clearly, D∗ ⊂ D implies the l.h.s. of (10) is greater
than, or equal to, the r.h.s.. The converse is also true, as the
following “proof by contradiction” shows. For any distribution
in D, assume

E[f ]
E[g]

=

∑n
i=1 E[f |Ri]Mi∑n
i=1 E[g |Ri]Mi

<

∑n
i=1 f(ui)Mi∑n
i=1 g(ui)Mi

(11)

for all ui ∈ Ri. Rearranging gives
n∑
i=1

E[f |Ri]Mi

n∑
i=1

g(ui)Mi <

n∑
i=1

E[g |Ri]Mi

n∑
i=1

f(ui)Mi

for all ui ∈ Ri. An equivalent way of writing this, using
indicator functions, is
n∑

i=1

E[f |Ri]Mi

n∑
i=1

g(wi)1RiMi <

n∑
i=1

E[g |Ri]Mi

n∑
i=1

f(wi)1RiMi

where the wi are dummy variables. Taking conditional
expectations E[ · | Rj ] for j = 1, . . . , n, on both sides of
this inequality, and summing these, yields the contradiction
n∑

i=1

E[f |Ri]Mi

n∑
i=1

E[g |Ri]Mi <

n∑
i=1

E[g |Ri]Mi

n∑
i=1

E[f |Ri]Mi

Consequently, (11) must be false for all distributions in D.
Hence, the r.h.s. of (10) is greater than, or equal to, the l.h.s..

So, for each proposition, (3) and lemma 1 imply

inf
D
P (XB6p | nA, nB) = inf

D

E[L(XA, XB)1XB6p ]

E[L(XA, XB) ]

= inf
D∗

∑i=13
i=1 L(xi, yi)Mi1yi6p∑i=13
i=1 L(xi, yi)Mi

= inf
D∗

1

1 +
∑i=13

i=1 L(xi,yi)Mi1yi>p∑i=13
i=1 L(xi,yi)Mi1yi<p

=
1

1 + sup
D∗

∑i=13
i=1 L(xi,yi)Mi1yi>p∑i=13
i=1 L(xi,yi)Mi1yi<p

(12)

Above, note that the events [yi 6 p] have been replaced by the
events [yi < p]. This does not change the infimum. However,
now, the priors that give the infimum value for P (XB 6 p |
nA, nB) will do so by their value for the posterior probability
P (XB<p | nA, nB).

The rational function in the denominator of (12) can be
made as large as possible, if the Mi probabilities within
each region Ri are allocated to points (xi, yi) that, asymp-
totically, make terms like L(xi, yi)Mi1yi<p as small as pos-
sible, and terms like L(xi, yi)Mi1yi>p as large as possible.
These (xi, yi) locations tend toward certain “corners” of each
region, as approximately depicted in Fig. 3. These unique
corners within each region are limit points of the respective
regions – they are arbitrarily well-approximated1 by countable
sequences of points within the respective region [3,4].

Given these limit points at which probability mass may lie
for optimality, and given the PK in each proposition, a prior
that gives the supremum of the expression in the denominator
of (12) can be solved for, either numerically or analytically.

Numerical Solutions: To numerically obtain the conserva-
tive priors, cast the problem in the denominator of (12) as a
linear-fractional programming problem,

1Using the “open balls” topology associated with 2D Euclidean space.
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maximise
Mi

cccTMMM

dddTMMM
, subject to AAAMMM 6 bbb (13)

where the thirteen Mis are variables (denoted as a column vec-
tor MMM ), the row vectors cccT and dddT each have 13 components
– consisting of the L(xi, yi) polynomials and zeroes – and
the matrix AAA and vector bbb ensure that the inequality AAAMMM 6 bbb
constrains the MMM to satisfy the PK in each proposition. This
linear fractional programming problem can be translated into a
more convenient, equivalent linear programming problem via
the Charnes-Cooper transformation [5] and solved.

Analytical Solutions: Alternatively, these worst-case priors
may be deduced by systematically placing masses at the
preferred “corners” within the regions, in a manner that
achieves conservatism and is consistent with prior knowledge.
We illustrate this by deriving the worst case priors in Fig.s 1
and 2 – respectively, these solve propositions 1 and 2.

1) proof of proposition 1: to derive prior Fig. 1, consider
the PK for proposition 1, when ϕ > θ > 1 − θ > 1 − ϕ and
α 6 p. Lemma 1 implies the conservative prior must conform
to Fig. 3a. The parameter inequalities determine the probability
masses at the 13 regional points as follows (see Fig. 4).

In Fig. 3a, because of PK 3, the complement of the triangu-
lar “ϕ” region contains probability 1−ϕ. To be conservative,
all of this probability mass should be allocated to the point
(pl, p), where XA is the most reliable it can be (i.e. pl)
while XB is not reliable enough, but only just2 (see Fig. 4a).
Since PK 1 and 2 mean P (XA 6 ε) = θ, then probability
mass ϕ + θ − 1 must be assigned to (ε, ε) (see Fig.s 3a and
4b). And, since PK 1 and 2 also apply to version B (i.e.
P (XB 6 ε) = θ), mass 1 − ϕ must be located at (α, ε)
(see Fig. 4c). Finally, PK 3 implies the triangular region must
have mass ϕ; therefore, mass ϕ−θ must be assigned to (α, α)
(see Fig. 4d). Thus, we obtain conservative prior Fig. 1.

This distribution gives the infimum in (4) by computing
P (XB<p | nA, nB) for this distribution. Using the standard
expression for P (XB<p | nA, nB), we have

P (XB<p | nA, nB) =
P (XB < p, nA&nB successes)

P (nA&nB successes)

=
E[L(XA, XB)1XB<p ]

E[L(XA, XB) ]

=
Num

Num+ L(pl, p)(1− ϕ)

where Num := L(α, α)(ϕ − θ) + L(ε, ε)(ϕ + θ − 1) +
L(α, ε)(1− ϕ).

2) proof of proposition 2: to derive conservative prior Fig.
2, consider the PK supporting proposition 2 when φ > θ and
p < α < 1. Lemma 1, again, implies the conservative prior
must conform to Fig. 3b. The stated constraints can now be
used to determine the probability masses at the 13 regional
points as follows (see Fig. 4).

2The consequence of this allocation is that no mass, from the complement
of the “ϕ” region, contributes to the denominator of the “sup” expression in
(12). Instead, all of this mass contributes to the numerator.

(a) (b)

(c) (d)

Fig. 4: A sequence of probability mass allocations that result in prior
Fig. 1, which solves proposition 1. After each mass allocation, the
white areas indicate regions where mass cannot lie.

(a) (b)

(c) (d)

Fig. 5: A sequence of probability mass allocations that result in prior
Fig. 2, which solves proposition 2. As in Fig. 4, white areas indicate
regions where mass cannot lie.
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In Fig. 5a, because of PK 1 and 2 (concerning the engi-
neering goal for version A), the region [pl 6 xA 6 ε, pl 6
xB 6 1] must contain mass θ. So, by PK 4, there must be
probability mass (1 − φ)θ within this region but above the
main diagonal, and mass φθ within this region but below the
main diagonal. The location (pl, p) gives the largest “L” value
in the numerator of the “sup” expression in (12) – so, to be
conservative, one must assign (1 − φ)θ to this location (see
Fig. 5a). And, by Fig. 3b, mass φθ must then be assigned to
(ε, ε) (see Fig. 5b).

PK 1 and 2 (concerning the engineering goal for version
B) now imply there must be mass (1 − φ)θ in the region
[ε < xA 6 1, pl 6 xB 6 ε]. The location (1, ε) within this
region has an “L” value of zero – the smallest “L” value in
the denominator of the “sup” expression in (12). So, assign
mass (1− φ)θ here (see Fig. 5c).

Since the total mass below the main diagonal is φ, the
remaining unallocated mass below the main diagonal must
be φ − θ. The location (p, p) gives the largest “L” value
(amongst locations below the main diagonal) in the numerator
of the “sup” expression – so, assign all of φ − θ to this
location. Doing this also ensures that the “sup” expression’s
denominator is kept as small as possible, since none of this
mass will contribute to the denominator.

And finally, within the regions [ε < xA 6 α, pl 6 xB 6 1]
and [α 6 xA 6 1, pl 6 xB 6 1], the respective locations
(ε, p) and (α, α) give the largest “L” values (amongst lo-
cations in their respective regions that lie above the main
diagonal) in the numerator of the “sup” expression. Because
of PK 4, masses (1−φ)(φ−θ)

φ and (1−φ)2
φ θ must be allocated

to these locations (see Fig. 5d). Thus, we obtain conservative
prior Fig. 2.

This distribution gives the infimum in (5) by computing
P (XB<p | nA, nB) for this distribution. Using the standard
expression for P (XB<p | nA, nB), we have

P (XB<p | nA, nB) =
P (XB < p, nA&nB successes)

P (nA &nB successes)

=
E[L(XA, XB)1XB<p ]

E[L(XA, XB) ]

=
L(ε, ε)φ2θ

L(ε, ε)φ2θ +Den

where Den := L(p, p)φ(φ − θ) + L(pl, p)φ(1 − φ)θ +
L(ε, p)(1− φ)(φ− θ) + L(α, α)(1− φ)2θ.
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