

City, University of London Institutional Repository

Citation: He, Y. & Lukas, A. (2021). Machine learning Calabi-Yau four-folds. Physics

Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 815, 136139.
doi: 10.1016/j.physletb.2021.136139

This is the published version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/25967/

Link to published version: https://doi.org/10.1016/j.physletb.2021.136139

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Physics Letters B 815 (2021) 136139

Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Machine learning Calabi-Yau four-folds

Yang-Hui He a,b,c,∗, Andre Lukas d

a Department of Mathematics, City, University of London, London EC1V 0HB, UK
b Merton College, University of Oxford, OX1 4JD, UK
c School of Physics, NanKai University, Tianjin, 300071, PR China
d Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK

a r t i c l e i n f o a b s t r a c t

Article history:
Received 14 September 2020
Received in revised form 22 December 2020
Accepted 10 February 2021
Available online 12 February 2021
Editor: N. Lambert

Hodge numbers of Calabi-Yau manifolds depend non-trivially on the underlying manifold data and they
present an interesting challenge for machine learning. In this letter we consider the data set of complete
intersection Calabi-Yau four-folds, a set of about 900, 000 topological types, and study supervised learning
of the Hodge numbers h1,1 and h3,1 for these manifolds. We find that h1,1 can be successfully learned
(to 96% precision) by fully connected classifier and regressor networks. While both types of networks fail
for h3,1, we show that a more complicated two-branch network, combined with feature enhancement,
can act as an efficient regressor (to 98% precision) for h3,1, at least for a subset of the data. This hints at
the existence of an, as yet unknown, formula for Hodge numbers.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Topological quantities of manifolds, such as Betti or Hodge
numbers, are often non-trivially related to the data describing the
underlying manifold and tend to be difficult to work out. Explicit
formulae are usually not known and calculations rely on compli-
cated and frequently computationally intense algorithms (see, for
example, the volume [1] and references therein for applications
of computational algebraic geometry to string and gauge theo-
ries). For this reason, such topological properties are an interesting
and challenging playground for machine learning. At the most ba-
sic level, we can ask if neural networks are capable of learning
these properties. In this letter, we will address this problem for
complete intersection Calabi-Yau (CICY) four-folds and their Hodge
numbers.

The complete set of CICY three-folds was the first large dataset
of Calabi-Yau manifolds to be constructed [2,3]. It consists of 7890
different topological types of manifolds which have provided string
theorists and mathematicians alike with a fertile ground for ex-
ploration (for some recent applications in the context of string
theory, see, for example, Refs. [4–8]). More recently, techniques
of machine learning have been applied to the study of the string
landscape [9–14] (for reviews see Refs. [15,16]). In fact, CICY three-

* Corresponding author.
E-mail addresses: hey@maths.ox.ac.uk (Y.-H. He), andre.lukas@physics.ox.ac.uk

(A. Lukas).
https://doi.org/10.1016/j.physletb.2021.136139
0370-2693/© 2021 The Authors. Published by Elsevier B.V. This is an open access article
SCOAP3.
folds were the first data set to be analysed from this viewpoint [9].
Subsequent work has studied Hodge numbers of CICY three-folds
systematically, using different types of neural network architec-
tures [17–20].

With the advent of F-theory, Calabi-Yau four-folds have become
increasingly important for string compactifications. CICY four-folds
have been classified more recently [22] and their relevant topologi-
cal properties have been computed in Ref. [23]. The dataset is con-
siderably larger and richer than the one for CICY three-folds and it
consists of about 900000 topological types of manifolds. However,
so far, this new dataset has not been used for machine learning
and the purpose of this letter is to fill this gap. More specifically,
we will explore, within the context of supervised learning, if and
to what extent Hodge numbers of CICY four-folds can be learned
by neural networks.

2. Background and notation

2.1. CICY four-folds

A CICY four-fold is defined as a complete intersection of the
zero loci of K multi-homogeneous polynomials in the ambient
space A = Pn1 × Pn2 × . . . × Pnm with dimension d = n1 + · · · +
nm = K + 4. The degrees of these polynomials are collected in
a m × K configuration matrix Q = (qi

a), where i = 1, . . . , m and
a = 1, . . . , K . Its entries qi

a ∈Z≥0 specify the degree of homogene-
ity of the ath defining polynomial in the homogeneous coordinates
of the ith projective ambient space factor. The Calabi-Yau condition
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by

https://doi.org/10.1016/j.physletb.2021.136139
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2021.136139&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:hey@maths.ox.ac.uk
mailto:andre.lukas@physics.ox.ac.uk
https://doi.org/10.1016/j.physletb.2021.136139
http://creativecommons.org/licenses/by/4.0/

Y.-H. He and A. Lukas Physics Letters B 815 (2021) 136139
ni + 1 =
K∑

a=1

qi
a for i = 1, . . . ,m , (2.1)

fixes the dimensions ni of the projective spaces in terms of the
configuration matrix. A configuration matrix Q , therefore, deter-
mines the ambient space A as well as a family of CICY four-folds
therein, defined by all (sufficiently generic) polynomials with the
specified multi-degrees. Fortunately, many topological quantities,
including Hodge numbers, only depend on the family and, hence,
only the configuration matrix Q , rather than the specific choice of
polynomials.

Calabi-Yau three-folds have two non-trivial1 Hodge numbers,
h1,1 and h2,1, which are related to the Euler number χ by χ =
2(h1,1 −h2,1). Since the Euler number is usually easily determined,
three-folds require only one non-trivial Hodge number computa-
tion. The situation is significantly more complicated for four-folds
which have four non-trivial Hodge numbers, h1,1, h2,1, h3,1 and
h2,2. In addition to the formula for the Euler number

χ = 6(8 + h1,1 + h3,1 − h2,1) , (2.2)

there is an additional linear relation [25]

h2,2 = 2(22 + 2h1,1 + 2h3,1 − h2,1) , (2.3)

between those Hodge numbers which can be derived from the in-
dex theorem. As for three-folds, the Euler number is usually easily
computed. In fact, for CICYs of any dimension it can be expressed
explicitly in terms of the entries of the configuration matrix Q
(see, for example, Ref. [26]). In view of Eq. (2.3), this leaves us with
two Hodge numbers to be determined by a non-trivial computa-
tion and, for our purposes, we will take these to be h1,1 and h3,1.

CICY four-folds for which the entire second cohomology de-
scends from the ambient space are called favourable and a sig-
nificant fraction of CICY four-folds have this property. Evidently,
favourable four-folds satisfy h1,1 = m so in this case one of the re-
maining Hodge number computations is simple.

2.2. Data sets

The different topological types of CICY four-folds were classified
in Ref. [22] (q.v. [23,24]) by listing their configuration matrices.
Discarding cases which correspond to direct product manifolds,
this has led to 905684 inequivalent configuration matrices Q with
minimal size (m, K) = (1, 1) and maximal size (m, K) = (16, 20).
About 54% of these are favourable. The distribution of Hodge num-
bers h1,1 and h3,1 for this data set is shown in Fig. 1.

The configuration matrices have different sizes so, as stands,
they are not well-suited for training neural networks. We resolve
this problem by padding each configuration Q with zeros (on the
right and at the bottom) to create a 16 × 20 enhanced configura-
tion matrix Q̃ , whose size matches that of the largest configura-
tion. As an example, the enhanced configuration matrix Q̃ for a
configuration Q with (m, K) = (10, 12) is given by

Q̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

00000000011000000000
00000001100000000000
00000010100000000000
00001100000000000000
00010100000000000000
00200000000000000000
01000101000000000000
10001000100000000000
10010000001000000000
01100010010000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

↔

1 Throughout this letter, we only consider smooth, compact Calabi-Yau n-folds
with holonomy group SU (n).
2

Fig. 1. Distribution of h1,1 and h3,1 for all CICY four-folds.

On the right, we have represented Q̃ by an image with 16 × 20
pixels and the typical entries 0, 1, 2 of Q̃ mapped to grey-scales.
This has been done, as was in Ref. [9], to emphasise the analogy
of our problem with pattern recognition. However, unlike for typ-
ical pattern recognition problems (such as classifying the MNIST
numbers), it is not intuitively clear how our target (the Hodge
numbers) is related to the features of the image.

Our data sets will be of the form

D1,1 = {Q̃ → h1,1} or D3,1 = {Q̃ → h3,1} . (2.4)

It is possible to enlarge these data sets by adding equivalent con-
figurations obtained from the given ones by simultaneous permu-
tations of rows and columns. Indeed, this method has been used
to enlarge the set of CICY three-folds in Refs. [9,10,17,18]. How-
ever, the set of CICY four-folds is considerably larger and numbers
are certainly sufficient for machine learning purposes without any
enlargement. In fact, for cases where we use the entire data set
we have also checked that enlarging by equivalent configurations
does not significantly increase the performance of the networks
we study. For these reasons, we take the data sets D1,1 and D3,1

above to contain the 905684 inequivalent (enhanced) configura-
tions of the original classification.

We will also analyse feature-enhanced versions of these data
sets where we supplement the configuration matrix Q by mono-
mials of degree up to four in its entries qi

a . For larger configuration
matrices this leads to very large input spaces which are not practi-
cal. For this reason and for specificity we will limit our discussion
to configurations with size (m, K) = (4, 4). This subset only con-
tains 1035 configurations so, unlike for the full data set, we now
opt for an enlargement by all simultaneous row and column per-
mutations of Q . This leads to a total of 1035 × 242 = 596160
configurations. These 4 × 4 configurations Q are then feature-
enhanced to a vector Q q , where q = 1, 2, 3, 4, by including all
monomials of degree ≤ q between the column entries of Q . For
q = 2 this means Q 2 = (qi

a, q j
aqk

a), where a, i, j, k = 1, . . . , 4 and

Y.-H. He and A. Lukas Physics Letters B 815 (2021) 136139
j ≤ k, and analogously for q > 2. The dimensions2 dq of these en-
hanced configurations are given by (d1, d2, d3, d4) = (4 × 4, 14 ×
4, 34 × 4, 69 × 4). This choice of feature-enhancement is inspired
by the success in bundle-cohomology calculations [14,30,31] and
well-motivated mathematically. For an n-fold, cohomology, and
Hodge numbers in particular, should depend on n-tuple intersec-
tion of divisors, and thus on polynomials up to degree n in the
multi-degrees of the bundles; hence we add this information to
the input.3 In summary, this leads to data sets of the form

D1,1
q = {Q q → h1,1} or D3,1

q = {Q q → h3,1} , (2.5)

where q = 1, 2, 3, 4. As is customary, we need to disjointly split
the above data sets into a training set, a validation set and a test
set. We typically use 15% for training and 5% for validation, both
randomly selected from the full set, and the remainder of 80% for
testing. The validation set is used to monitor progress during train-
ing and we evaluate the trained network on the test set.

2.3. Neural networks

Key components in the subsequent discussion are standard
forward-feed, fully connected neural networks of depth d, which
define a map of the form

Rn0
Ln1−→ Rn1

f−→ Rn1
Ln2−→ · · · Lnd−→ Rnd

f−→ Rnd .

Here Ln is a standard affine transformation with trainable weights
and biases and co-domain dimension n and f represents a
component-wise function, typically a logistic sigmoid function,
σ(z) := (1 + e−z)−1, or a scaled exponential-linear unit (SELU), de-
fined by s(z) = 1.0507 z for z ≥ 0 and s(z) = 1.7851(exp(z) − 1)

for z < 0. In some cases, we will use a probability p dropout
layer, denoted δp , which is a standard tool to avoid over-fitting.
The dropout probability p is chosen to optimise performance.
For classifier networks we also require a softmax layer S(zi) =
ezi (

∑
i ezi)−1. For notational convenience, we will use the short-

hand Nn0 (n1, f , n2, . . . , nd, f) for the above network.
Explicit training is carried out with the Mathematica machine

learning suite [32], using the ADAM [33] steepest gradient descent
minimiser and a mean square loss (for the categorical classifica-
tion cases we also tried cross-entropy loss and the results were
comparable). Evidently, the network architectures explored in this
letter are relatively simple. We have checked that convolutional
networks, similar to those used for digit recognition, do not im-
prove the performance significantly. However, it would be expedi-
ent to apply the methods of Ref. [19,20], as well as the interesting
representation of configurations in [21] to the CICY four-fold data
set.

3. Learning h1,1

Fig. 1 shows that h1,1 takes a rather limited set of values for our
data set. More specifically, it turns out that h1,1 ∈ {1, 2, . . . , 24}.
This suggests that both a 24-way classifier network and a regressor
network with a real output intended as an approximation of h1,1

may be feasible. We discuss these two options in turn.

2 Recall that one can write (m+d−1
d

)
independent monomials of degree d in m

variables (here m = 4), so there are 10 quadrics, 20 cubics, and 35 quartics com-
posed from the columns of Q .

3 There are, indeed, more equivalences of configurations than just permutations
and are more sophisticated mathematical equivalences such as splitting. In the
threefold case such enhancement were performed in [21]. However, for the four-
folds, such data is not readily available so we do not consider them in this work.
3

Fig. 2. The training plot for the data set D1,1 in Eq. (2.4) and the classifier net-
work (3.1). Indicated is the error rate as a function of training rounds for the
training set (orange) and the validation set (blue).

3.1. Classifier network

The relevant data set for this task is D1,1 in Eq. (2.4) which is
used to train a network of the form

N16×20(512,σ , δ0.4,256,σ , δ0.3,256,σ ,24, S) . (3.1)

As mentioned earlier, we use 15% of the data set for training and
5% for validation. Training is performed at a learning rate of 1/300
for 150 rounds and takes about 18 minutes on a single laptop CPU.
The training curves are shown in Fig. 2. The trained network is ap-
plied to the test set (at 80% the bulk of the data) and it predicts
h1,1 correctly for 96% of the cases. The 24 × 24 confusion matrix
is diagonal to a good accuracy, with any single off-diagonal entry
< 0.05. This is a rather convincing performance by a relatively sim-
ple, feed-forward network. We note that the substantial width of
the network (3.1) is required to achieve the stated accuracy and we
have to include the dropout layers in order to avoid over-fitting.
In summary, we conclude that the Hodge numbers h1,1 for CICY
four-folds can be successfully learned by a suitably configured fully
connected classifier network.

Not surprisingly, for favourable manifolds, the network predicts
h1,1 with 100% accuracy, so misclassifications only arise for non-
favourable cases. This observation suggests that a simple binary
classifier network, similar to (3.1) but with the 24-dimensional
output layer replaced by a two-dimensional one, can be used to
distinguish favourable and non-favourable CICY four-folds. This is
indeed the case and works at about 96% accuracy on the test set.

The above network generalises well when trained on a ran-
domly selected training set. A somewhat more ambitious question
is whether a network trained on configurations with small Hodge
number, say h1,1 < 8 (about 20% of the configurations), can pre-
dict the Hodge numbers of configurations with h1,1 ≥ 8. For CICY
three-folds this was attempted in Ref. [18]. Obviously, such a net-
work, trained only on small and relatively simple configurations
but able to predict properties of larger and more complicated ones
would be very useful. Unfortunately, for the case of CICY four-folds
and classifier networks of the type (3.1) this does not work well
and the network performs poorly, with a success rate close to zero
on configurations with h1,1 ≥ 8. However, seeding the training set
with a small sample (say 10000) of configurations with h1,1 ≥ 8
leads to a significant improvement (success rate around 0.6).

3.2. Regressor network

Encouraged by the success of the classifier, let us see how a
regressor performs. We emphasize that the difference with the re-
gressor and the classifier is that the former puts the input data
into some category while the latter tries to find a “best-fit” func-
tion (albeit complicated) that analytically gives the Hodge numbers
from the input configuration. This might be more mathematically

Y.-H. He and A. Lukas Physics Letters B 815 (2021) 136139
interesting than a mere categorization. We use the same dataset
D1,1 in Eq. (2.4) and a network of the form

N16×20(512, s,256, s,128, s,32, s,8, s,1) . (3.2)

The idea is that the one-dimensional real output of this network
approximates h1,1 and we take its rounding to the nearest inte-
ger as the prediction for h1,1. This is clearly challenging since a
successful prediction requires an accurately trained network with
a typical loss significantly less than one.

The above network is the best-performing we have found. After
training for 150 rounds at a learning rate of 1/1000 (about 15 min-
utes on a single CPU), the network output has an average deviation
from h1,1 of ∼ 0.3 on the test set. This translates, after rounding,
into 83% of test set values correctly predicted. While this is a re-
spectable success rate and the network trains efficiently, a wrong
prediction for h1,1, typically by 1, in 17% of the cases means the
network is of limited practical use.

4. Learning h3,1

Fig. 1 shows that the range of h3,1 values is considerably larger
than the one for h1,1. More specifically, we have 20 ≤ h3,1 ≤ 426.
As we will see, for this range it is significantly harder to obtain
convincing performances from simple classifier or regressor net-
works of the kind we have used for h1,1. For this reason, we also
explore other options, focusing on the feature-enhanced data sets
D3,1

q in Eq. (2.5) and more complicated two-branch networks.

4.1. Classifier and regressor networks

A 407-way classifier based on a network of the form

N16×20(512,σ , δ0.4,512,σ , δ0.4,512,σ , δ0.4,407, S)

trained on the dataset D3,1 in Eq. (2.4) leads to a poor perfor-
mance, with a 27% success rate on the test set. Likewise, a regres-
sor network of the form

N16×20(256, s, δ0.2,128, s,16, s,1) ,

trained on D3,1, produces test set predications for h3,1 with an av-
erage deviation of ∼ 2.7 from the true value. While this might be
considered a reasonable accuracy for some purposes, it is not suffi-
cient to predict the correct integer after rounding. In fact, only 15%
of test set values for h3,1 are reproduced exactly after rounding.
For either of the above networks, we have not been able to im-
prove performance significantly by hyper-parameter optimisation.

4.2. Classifier and regressor for 4 × 4 configurations

We can ask if a classifier network performs better on the data
set D3,1

1 of 4 × 4 configurations as defined in Eq. (2.5). In addition
to a much smaller dimension of the feature space, the range of
h3,1 values is now reduced to 20 ≤ h3,1 ≤ 260. In fact, a 235-way
classifier network of the form

N4×4(512,σ , δ0.4,512,σ , δ0.4,512,σ , δ0.4,235, S) ,

trained on D3,1
1 performs perfectly on the test set at a 100%

success rate. This is quite impressive, considering the number of
classes is still large.

However, a regressor network of the form

N4×4(512, s,256, s,64, s,16, s,1)

trained on D3,1
1 is much less successful. It predicts h3,1 for the

test set with an average error of ∼ 1 which leads to a success
rate of 35% after rounding. We have not been able to improve this
performance significantly by variations in hyper-parameters.
4

4.3. Two branch network and feature enhancement

Is it possible to construct a successful regressor network for
h3,1? The approach we are about to present is motivated by ob-
servations made in the related context of line bundle cohomol-
ogy. Line bundle cohomology dimensions have been conjectured,
in many cases empirically verified [27–29] and for some classes
shown [30] to be described by piecewise polynomial formulae in
the line bundle degrees. The degree of the polynomials equals the
complex dimension of the underlying manifold. In Ref. [31] a two-
branch neural network adapted to this structure and trained with
feature-enhanced data has been constructed. It has been shown
that conjectures for piecewise polynomial cohomology formulae
can be extracted from this network.

The present context is of course somewhat different. We are
not interested in all line bundles on a fixed manifold but rather in
specific properties for a class of different manifolds. Nevertheless,
it is the case that computations of Hodge numbers for CICYs are
ultimately reduced to the computation of line bundle cohomology.
For this reason it is not far-fetched to try a two-branch regressor
network, similar to the one used in Ref. [31], in order to learn h3,1.

More specifically, we would like to consider networks of the
form

Q 1 → N4×4(512,σ ,512,σ ,256,σ) ↘
dot → h3,1

↗
Q q → Ndq (256)

where “dot” indicates a dot product between the two vectors. The
upper branch of the network is intended to detect the regions of
the underlying piecewise polynomial formula. Since the bound-
aries of these regions are usually described by linear equations
the upper branch only receives the 4 × 4 configuration matrices
Q 1 ∈ D3,1

1 . On the other hand, the lower part of the network,
which consists of a single affine layer is supposed to reproduce the
polynomial and, therefore, receives the feature-enhanced matrices
Q q ∈ D3,1

q which consists of the configuration matrix as well as its
monomials of degree ≤ q. The analogy with line bundles suggests
that we need up to quartic monomials (since we are working on
four-folds). We have, therefore, constructed the data sets D3,1

q for
q up to four. For comparison purposes we will consider all cases
q = 1, 2, 3, 4.

Training the above network with D3,1
1 and D3,1

q for q = 1, 2
leads to poor performance, with an average error of ∼ 1 and a
test set success rate of 54% for q = 1 and 40% for q = 2. On the
other hand, training with D3,1

1 and D3,1
q for q = 3, 4 leads to very

accurately trained networks. Specifically, for q = 3 we achieve an
average error of 0.04 which translates into a 98% success rate on
the test set. For q = 4 the results are similar, with an average error
of 0.17 and a test set success rate of 95%.

Achieving this accuracy for q = 3, 4 requires a careful adjust-
ment of the learning rate during training. In an initial training step
of about 100 rounds the learning rate is set to 1/1000. This leads
to a network whose average error does not decrease below ∼ 1.
Adding successive short training steps of about 5 - 10 rounds with
gradually decreasing learning rate to a final value of 1/100000
then leads to the accuracy mentioned above.

In conclusion, we are able to build a successful regressor for
h3,1, at least for the 4 × 4 configurations under consideration,
by using a two branch network motivated by the results for line
bundle cohomology in Ref. [31]. As expected, we require feature-
enhanced data which includes at least quadrics and cubics of the
configuration matrix for this network to perform well. We note
that the two-branch network can also be applied to the data sets
D1,1

q for h1,1, where it leads to a 100% success rate on the test set.

Y.-H. He and A. Lukas Physics Letters B 815 (2021) 136139
5. Conclusion & outlook

Computing Hodge numbers of Calabi-Yau manifolds is a non-
trivial task and presently known methods require, in all but special
cases, complicated algorithms in commutative algebra, based on
sequence-chasing in cohomology. For this reason, machine learn-
ing of Hodge numbers is an interesting and challenging task. This
problem has obvious analogies with image classification, as orig-
inally pointed out in Ref. [9]. Despite this analogy, it is, a priori,
unclear if these numbers can be successfully learned and, if so,
what the required network architectures might be. Indeed, from
universal approximation theorem, we expect that an NN could fit
the given data of Hodge numbers. However, it is not clear that we
could extrapolate from the training data to truly learn some un-
derlying functional dependence.

In this letter, we have studied supervised machine learning of
the Hodge numbers h1,1 and h3,1 for complete intersection Calabi-
Yau (CICY) four-folds. This data set consists of about 900,000 topo-
logical types, each described by an integer (configuration) matrix
Q . We find that h1,1 can be successfully predicted from Q with
both fully connected classifier and regressor networks. The former
are particularly effective and lead to a 96% success rate on the test
set when trained on only 15% of the data.

Unfortunately, fully connected classifier or regressor networks
do not work efficiently for h3,1, presumably due to the large range
of h3,1 values. However, we have shown that a two branch regres-
sor network, combined with feature enhanced data, works well for
a subset of the data which consists of 4 × 4 configuration matrices.

The structure of this two-branch network is motivated by re-
cent results for line bundle cohomology [27–30]. Its success hints
at the existence of a formula for h3,1 in terms of Q which is at
present unknown. It would be interesting to search for this for-
mula, possibly assisted by the information encoded in the trained
network. Such a formula would be a new mathematical result and
useful for applications in theoretical physics.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgements

YHH would like to thank STFC UK, for grant ST/J00037X/1. AL
would like to thank Andrei Constantin for discussions.

References

[1] Y-H. He, P. Candelas, A. Hanany, A. Lukas, B. Ovrut, Computational algebraic
geometry in string and gauge theory, www.hindawi .com /journals /ahep /2012 /
431898/.

[2] P. Candelas, A.M. Dale, C.A. Lutken, R. Schimmrigk, Complete intersection CY,
Nucl. Phys. B 298 (1988) 493, https://doi .org /10 .1016 /0550 -3213(88)90352 -5.

[3] P.S. Green, T. Hubsch, C.A. Lutken, All Hodge numbers of all complete intersec-
tion Calabi-Yau manifolds, Class. Quantum Gravity 6 (1989) 105–124, https://
doi .org /10 .1088 /0264 -9381 /6 /2 /006.

[4] V. Braun, On free quotients of complete intersection CY, J. High Energy Phys.
04 (2011) 005, arXiv:1003 .3235.

[5] A. Lukas, C. Mishra, Discrete symmetries of complete intersection Calabi-Yau
manifolds, arXiv:1708 .08943.

[6] L.B. Anderson, X. Gao, J. Gray, S.J. Lee, Fibrations in CICY 3-folds, J. High Energy
Phys. 10 (2017) 077, arXiv:1708 .07907.

[7] L.B. Anderson, Y.H. He, A. Lukas, Heterotic compactification, an algorithmic ap-
proach, J. High Energy Phys. 07 (2007) 049, arXiv:hep -th /0702210.

[8] L.B. Anderson, A. Constantin, J. Gray, A. Lukas, E. Palti, A comprehensive scan
for heterotic SU(5) GUT models, J. High Energy Phys. 01 (2014) 047, arXiv:
1307.4787.

[9] Y.H. He, Deep-learning the landscape, arXiv:1706 .02714.
[10] Y.H. He, Machine-learning the string landscape, Phys. Lett. B 774 (2017) 564.
[11] D. Krefl, R.K. Seong, Machine learning of Calabi-Yau volumes, Phys. Rev. D

96 (6) (2017) 066014, arXiv:1706 .03346.
[12] F. Ruehle, Evolving neural networks with genetic algorithms to study the string

landscape, J. High Energy Phys. 1708 (2017) 038, arXiv:1706 .07024.
[13] J. Carifio, J. Halverson, D. Krioukov, B.D. Nelson, Machine learning in the string

landscape, J. High Energy Phys. 1709 (2017) 157, arXiv:1707.00655.
[14] R. Deen, Y.H. He, S.J. Lee, A. Lukas, Machine learning string standard models,

arXiv:2003 .13339.
[15] Y.H. He, The Calabi-Yau landscape: from geometry, to physics, to machine-

learning, arXiv:1812 .02893.
[16] F. Ruehle, Data science applications to string theory, Phys. Rep. 839 (2020) 1.
[17] K. Bull, Y.H. He, V. Jejjala, C. Mishra, Machine learning CICY threefolds, Phys.

Lett. B 785 (2018) 65–72, arXiv:1806 .03121.
[18] K. Bull, Y.H. He, V. Jejjala, C. Mishra, Getting CICY high, Phys. Lett. B 795 (2019)

700–706, arXiv:1903 .03113.
[19] H. Erbin, R. Finotello, Inception neural network for complete intersection

Calabi-Yau 3-folds, arXiv:2007.13379.
[20] H. Erbin, R. Finotello, ML for CICYs: a methodological study, arXiv:2007.15706.
[21] S. Krippendorf, M. Syvaeri, Detecting symmetries with neural networks, arXiv:

2003 .13679.
[22] J. Gray, A.S. Haupt, A. Lukas, All CICY four-folds, J. High Energy Phys. 07 (2013)

070, arXiv:1303 .1832.
[23] J. Gray, A.S. Haupt, A. Lukas, Topological invariants and fibration structure of

complete intersection Calabi-Yau four-folds, J. High Energy Phys. 09 (2014) 093,
arXiv:1405 .2073.

[24] Y. Kimura, Discrete gauge groups in F-theory models on genus-one fibered
Calabi-Yau 4-folds without section, J. High Energy Phys. 04 (2017) 168, arXiv:
1608 .07219.

[25] S. Sethi, C. Vafa, E. Witten, Constraints on low dimensional string compactifi-
cations, Nucl. Phys. B 480 (1996) 213–224, arXiv:hep -th /9606122.

[26] T. Hübsch, CY manifolds: a bestiary for physicists, www.worldscientific .com /
worldscibooks /10 .1142 /1410.

[27] A. Constantin, A. Lukas, Formulae for line bundle cohomology on Calabi–Yau
threefolds, Fortschr. Phys. 67 (12) (2019) 1900084, arXiv:1808 .09992.

[28] D. Klaewer, L. Schlechter, Machine learning line bundle cohomologies of hyper-
surfaces in toric varieties, Phys. Lett. B 789 (2019) 438–443, arXiv:1809 .02547.

[29] M. Larfors, R. Schneider, Line bundle cohomologies on CICYs with Picard num-
ber two, Fortschr. Phys. 67 (12) (2019) 1900083, arXiv:1906 .00392.

[30] C.R. Brodie, A. Constantin, R. Deen, A. Lukas, Index formulae for line bundle
cohomology on complex surfaces, Fortschr. Phys. 68 (2) (2020) 1900086, arXiv:
1906 .08769.

[31] C.R. Brodie, A. Constantin, R. Deen, A. Lukas, Machine learning line bundle co-
homology, Fortschr. Phys. 68 (1) (2020) 1900087, arXiv:1906 .08730.

[32] Wolfram Research, Inc., Mathematica, 12.1.0, Champaign, IL, https://www.
wolfram .com /mathematica/, 2020.

[33] Diederik P. Kingma, Jimmy Ba, Adam: a method for stochastic optimization,
arXiv:1412 .6980.
5

http://www.hindawi.com/journals/ahep/2012/431898/
http://www.hindawi.com/journals/ahep/2012/431898/
https://doi.org/10.1016/0550-3213(88)90352-5
https://doi.org/10.1088/0264-9381/6/2/006
https://doi.org/10.1088/0264-9381/6/2/006
http://refhub.elsevier.com/S0370-2693(21)00079-4/bib7C3AF9671134D03258B08F389EE6A702s1
http://refhub.elsevier.com/S0370-2693(21)00079-4/bib7C3AF9671134D03258B08F389EE6A702s1
http://refhub.elsevier.com/S0370-2693(21)00079-4/bib6748094BD9F26FC192D836F82BC86ED1s1
http://refhub.elsevier.com/S0370-2693(21)00079-4/bib6748094BD9F26FC192D836F82BC86ED1s1
http://refhub.elsevier.com/S0370-2693(21)00079-4/bib70C5703FB019CBCB2F26EA4917C85F87s1
http://refhub.elsevier.com/S0370-2693(21)00079-4/bib70C5703FB019CBCB2F26EA4917C85F87s1
http://refhub.elsevier.com/S0370-2693(21)00079-4/bib2B0BA9DE2D0F2AAD088CC9084458ECE1s1
http://refhub.elsevier.com/S0370-2693(21)00079-4/bib2B0BA9DE2D0F2AAD088CC9084458ECE1s1
http://refhub.elsevier.com/S0370-2693(21)00079-4/bibBE8BA9A7271FCAC2D55C4A55339B9247s1
http://refhub.elsevier.com/S0370-2693(21)00079-4/bibBE8BA9A7271FCAC2D55C4A55339B9247s1
http://refhub.elsevier.com/S0370-2693(21)00079-4/bibBE8BA9A7271FCAC2D55C4A55339B9247s1
http://refhub.elsevier.com/S0370-2693(21)00079-4/bib72B267D44BE5FCF317BE94B1AD36FB21s1
http://refhub.elsevier.com/S0370-2693(21)00079-4/bib798CFFDE6573213870CE4BEE88006FF6s1
http://refhub.elsevier.com/S0370-2693(21)00079-4/bib9443D7C188285E16223A3A12E3CD1994s1
http://refhub.elsevier.com/S0370-2693(21)00079-4/bib9443D7C188285E16223A3A12E3CD1994s1
http://refhub.elsevier.com/S0370-2693(21)00079-4/bib0735B9E6CA77637CBD7D31996F9E246Es1
http://refhub.elsevier.com/S0370-2693(21)00079-4/bib0735B9E6CA77637CBD7D31996F9E246Es1
http://refhub.elsevier.com/S0370-2693(21)00079-4/bibFBD53BECD6627FB0C01372289FCA3C24s1
http://refhub.elsevier.com/S0370-2693(21)00079-4/bibFBD53BECD6627FB0C01372289FCA3C24s1
http://refhub.elsevier.com/S0370-2693(21)00079-4/bibAE52ECADA65B3B68BC0BFE8187693085s1
http://refhub.elsevier.com/S0370-2693(21)00079-4/bibAE52ECADA65B3B68BC0BFE8187693085s1
http://refhub.elsevier.com/S0370-2693(21)00079-4/bibE54B5E009CAC5DB1D219B97EADE7E925s1
http://refhub.elsevier.com/S0370-2693(21)00079-4/bibE54B5E009CAC5DB1D219B97EADE7E925s1
http://refhub.elsevier.com/S0370-2693(21)00079-4/bib0EC867B5E381642262CB792EDBE6E978s1
http://refhub.elsevier.com/S0370-2693(21)00079-4/bibEA3FD0DDF36F031D1D884C187BA14CC0s1
http://refhub.elsevier.com/S0370-2693(21)00079-4/bibEA3FD0DDF36F031D1D884C187BA14CC0s1
http://refhub.elsevier.com/S0370-2693(21)00079-4/bibCA7EAD48DE0C59CB2139B7A09BD5D403s1
http://refhub.elsevier.com/S0370-2693(21)00079-4/bibCA7EAD48DE0C59CB2139B7A09BD5D403s1
http://refhub.elsevier.com/S0370-2693(21)00079-4/bib79AC5BDF68C4D8D72127988D4B47DADAs1
http://refhub.elsevier.com/S0370-2693(21)00079-4/bib79AC5BDF68C4D8D72127988D4B47DADAs1
http://refhub.elsevier.com/S0370-2693(21)00079-4/bib56C4C56D3A321F5F5E905D9CC5DC96B7s1
http://refhub.elsevier.com/S0370-2693(21)00079-4/bib9C484DBD6201851DCB4242CCF008C61Es1
http://refhub.elsevier.com/S0370-2693(21)00079-4/bib9C484DBD6201851DCB4242CCF008C61Es1
http://refhub.elsevier.com/S0370-2693(21)00079-4/bib2A0056B4EEEFADE211ABDBAB64DA77FFs1
http://refhub.elsevier.com/S0370-2693(21)00079-4/bib2A0056B4EEEFADE211ABDBAB64DA77FFs1
http://refhub.elsevier.com/S0370-2693(21)00079-4/bibEEB74C154438093C08149BBAAEF323ACs1
http://refhub.elsevier.com/S0370-2693(21)00079-4/bibEEB74C154438093C08149BBAAEF323ACs1
http://refhub.elsevier.com/S0370-2693(21)00079-4/bibEEB74C154438093C08149BBAAEF323ACs1
http://refhub.elsevier.com/S0370-2693(21)00079-4/bib7BA5700C389022ED5ED4BEC8E065E72Ds1
http://refhub.elsevier.com/S0370-2693(21)00079-4/bib7BA5700C389022ED5ED4BEC8E065E72Ds1
http://refhub.elsevier.com/S0370-2693(21)00079-4/bib7BA5700C389022ED5ED4BEC8E065E72Ds1
http://refhub.elsevier.com/S0370-2693(21)00079-4/bib51990008286FCE2EFCACE05B003B69E2s1
http://refhub.elsevier.com/S0370-2693(21)00079-4/bib51990008286FCE2EFCACE05B003B69E2s1
http://www.worldscientific.com/worldscibooks/10.1142/1410
http://www.worldscientific.com/worldscibooks/10.1142/1410
http://refhub.elsevier.com/S0370-2693(21)00079-4/bib77A43360F6FF2D96BDE4ECA9B7BFC5F7s1
http://refhub.elsevier.com/S0370-2693(21)00079-4/bib77A43360F6FF2D96BDE4ECA9B7BFC5F7s1
http://refhub.elsevier.com/S0370-2693(21)00079-4/bib17AA6AA627E236F92FD49BAAA8835835s1
http://refhub.elsevier.com/S0370-2693(21)00079-4/bib17AA6AA627E236F92FD49BAAA8835835s1
http://refhub.elsevier.com/S0370-2693(21)00079-4/bibCF58F7BE29302F93B86A6FCC992A36E3s1
http://refhub.elsevier.com/S0370-2693(21)00079-4/bibCF58F7BE29302F93B86A6FCC992A36E3s1
http://refhub.elsevier.com/S0370-2693(21)00079-4/bib58D9A60E4DAB4F3CF75922722C4A3B1As1
http://refhub.elsevier.com/S0370-2693(21)00079-4/bib58D9A60E4DAB4F3CF75922722C4A3B1As1
http://refhub.elsevier.com/S0370-2693(21)00079-4/bib58D9A60E4DAB4F3CF75922722C4A3B1As1
http://refhub.elsevier.com/S0370-2693(21)00079-4/bib5D5E3C098012C28F02E25B3FA575C925s1
http://refhub.elsevier.com/S0370-2693(21)00079-4/bib5D5E3C098012C28F02E25B3FA575C925s1
https://www.wolfram.com/mathematica/
https://www.wolfram.com/mathematica/
http://refhub.elsevier.com/S0370-2693(21)00079-4/bib333D749A7EFFAA4922BB5F4FB130A2FFs1
http://refhub.elsevier.com/S0370-2693(21)00079-4/bib333D749A7EFFAA4922BB5F4FB130A2FFs1

	Machine learning Calabi-Yau four-folds
	1 Introduction
	2 Background and notation
	2.1 CICY four-folds
	2.2 Data sets
	2.3 Neural networks

	3 Learning h1,1
	3.1 Classifier network
	3.2 Regressor network

	4 Learning h3,1
	4.1 Classifier and regressor networks
	4.2 Classifier and regressor for 4×4 configurations
	4.3 Two branch network and feature enhancement

	5 Conclusion & outlook
	Declaration of competing interest
	Acknowledgements
	References

