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Measurable Counterfactual Local Explanations for Any
Classifier

Adam White and Artur d’Avila Garcez1

Abstract. We propose a novel method for explaining the predic-
tions of any classifier. In our approach, local explanations are ex-
pected to explain both the outcome of a prediction and how that
prediction would change if ’things had been different’. Furthermore,
we argue that satisfactory explanations cannot be dissociated from
a notion and measure of fidelity, as advocated in the early days of
neural networks’ knowledge extraction. We introduce a definition
of fidelity to the underlying classifier for local explanation models
which is based on distances to a target decision boundary. A system
called CLEAR: Counterfactual Local Explanations via Regression, is
introduced and evaluated. CLEAR generates b-counterfactual expla-
nations that state minimum changes necessary to flip a prediction’s
classification. CLEAR then builds local regression models, using the
b-counterfactuals to measure and improve the fidelity of its regres-
sions. By contrast, the popular LIME method [17], which also uses
regression to generate local explanations, neither measures its own fi-
delity nor generates counterfactuals. CLEAR’s regressions are found
to have significantly higher fidelity than LIME’s, averaging over 40%
higher in this paper’s five case studies.

1 Introduction

Machine learning systems are increasingly being used for automated
decision making. It is important that these systems’ decisions can
be trusted. This is particularly the case in mission critical situations
such as medical diagnosis, airport security or high-value financial
trading. Yet the inner workings of many machine learning systems
seem unavoidably opaque. The number and complexity of their cal-
culations are often simply beyond the capacities of humans to un-
derstand. One possible solution is to treat machine learning systems
as ‘black-boxes’ and to then explain their input-output behaviour.
Such approaches can be divided into two broad types: those provid-
ing global explanations of the entire system and those providing lo-
cal explanations of single predictions. Local explanations are needed
when a machine learning system’s decision boundary is too complex
to allow for global explanations. This paper focuses on local expla-
nations.

Unfortunately, many explainable AI projects have been too reliant
on their researchers’ own intuitions as to what constitutes a satisfac-
tory local explanation [13]. Yet the required structure of such expla-
nations has been extensively analysed within philosophy, psychology
and cognitive science. Miller[13, 12] has carried out a review of over
250 papers from these disciplines. He states that perhaps his most
important finding is that explanations are counterfactual: ”they are
sought in response to particular counterfactual cases . . . why event P
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happened instead of event Q. This has important social and compu-
tational consequences for explainable AI”. An explanation of a clas-
sification needs to show why the machine learning system did not
make some alternative (expected or desired) classification.

A novel method called Counterfactual Local Explanations viA
Regression (CLEAR) is proposed. This is based on the philosopher
James Woodard’s [22] seminal analysis of counterfactual explana-
tion. Woodward’s work derives from Pearl’s manipulationlist account
of causation [16]. Woodward states that a satisfactory explanation
consists in showing patterns of counterfactual dependence. By this
he means that it should answer a set of ’what-if-things-had-been-
different?’ questions, which specify how the explanandum (i.e. the
event to be explained) would change if, contrary to the fact, input
conditions had been different. It is in this way that a user can under-
stand the relevance of different features, and understand the differ-
ent ways in which they could change the value of the explanandum.
Central to Woodward’s notion is the requirement for an explanatory
generalization:

”Suppose that M is an explanandum consisting in the statement
that some variable Y takes the particular value y. Then an ex-
planans E for M will consist of (a) a generalization G relating
changes in the value(s) of a variable X (where X may itself be
a vector or n-tuple of variables Xi) with changes in Y, and (b)
a statement (of initial or boundary conditions) that the variable
X takes the particular value x.”

In Woodward’s analysis, X causes Y. For our purposes, Y can be
taken as the machine learning system’s predictions where X are the
system’s input features. The required generalization can be a regres-
sion equation that captures the machine learning system’s local input-
output behaviour. For Woodward, an explanation not only enables
an understanding of why an event occurs, it also identifies changes
(’manipulations’) to features that would have resulted in a different
outcome.

CLEAR provides counterfactual explanations by building on the
strengths of two state-of-the-art explanatory methods, while at the
same time addressing their weaknesses. The first is by Wachter
et al. [20, 15] who argue that single predictions are explained by
what we shall term as ’boundary counterfactuals’ (henceforth: ‘b-
counterfactuals’) that state the minimum changes needed for an ob-
servation to ’flip’ its classification. The second method is by Riberio
et al. [17] who argue for Local Interpretable Model-Agnostic Ex-
planations (LIME). These explanations are created by building a re-
gression model that seeks to approximate the local input-output be-
haviour of the machine learning system.

In isolation, b-counterfactuals do not provide explanatory gener-
alizations relating X to Y and therefore are not satisfactory explana-
tions, as we exemplify in the next section. LIME, on the other hand,
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does not measure the fidelity of its regressions and cannot produce
counterfactual explanations.

The contribution of this paper is three-fold. We introduce a novel
explanation method capable of:

• providing b-counterfactuals that are explained by regression coef-
ficients including interaction terms;

• evaluating the fidelity of its local explanations to the underlying
learning system;

• using the values of b-counterfactual to significantly improve the
fidelity of its regressions.

When applied to this paper’s five case studies, CLEAR improves
on the fidelity of LIME by an average of over 40%.

Section 2 provides the background to CLEAR including an anal-
ysis of b-counterfactuals and LIME. Section 3 introduces CLEAR
and explains how it uses b-counterfactuals to both measure and im-
prove the fidelity of its regressions. Section 4 contains experimental
results on five datasets showing that CLEAR’s regressions have sig-
nificantly higher fidelity than LIME’s. Section 5 concludes the paper
and discusses directions for future work.

2 Background

This paper adopts the following notation: let m be a machine learn-
ing system mapping X → Y ; m is said to generate prediction y for
observation x.

2.1 b-Counterfactual Explanations

Wachter et al.’s b-counterfactuals explain a single prediction by iden-
tifying ‘close possible worlds’ in which an individual would receive
the prediction they desired. For example, if a banking machine learn-
ing system declined Mr Jones’ loan application, a b-counterfactual
explanation might be that ‘Mr Jones would have received his loan,
if his annual salary had been $35,000 instead of the $32,000 he cur-
rently earns’. The $3000 increase would be just sufficient to flip Mr
Jones to the desired side of the banking system’s decision boundary.

Wachter et al. note that a counterfactual explanation may involve
changes to multiple features. Hence, an additional b-counterfactual
explanation for Mr Jones might be that he would also get the loan if
his annual salary was $33,000 and he had been employed for more
than 5 years. Wachter et al. state that counterfactual explanations
have the following form:

”Score p was returned because variables V had values (
v1, v2, . . .) associated with them. If V instead had values
(v′1, v′2, . . .), and all other variables remained constant, score p’
would have been returned”

The key problem with b-counterfactuals: b-counterfactual ex-
planations fail to satisfy Woodward’s requirement that: a satisfactory
explanation of prediction y should state a generalization relating X
and Y.

For example, suppose that a machine learning system has assigned
Mr Jones a probability of 0.75 for defaulting on a loan. Although
stating the changes needed to his salary and years of employment has
explanatory value, this falls short of being a satisfactory explanation.
A satisfactory explanation also needs to explain:

1. why Mr Jones was assigned a score of 0.75. This would include
identifying the contribution that each feature made to the score.

2. how the features interact with each other. For example, perhaps
the number of years employed is only relevant for individuals with
salaries below $34,000.

These requirements could be satisfied by stating an explana-
tory equation that included interaction terms and indicator vari-
ables. At a minimum, the equation’s scope should cover a neigh-
bourhood around x that includes the data points identified by its b-
counterfactuals.

2.2 Local Interpretable Model-Agnostic
Explanations

Ribeiro et al. [17] propose LIME, which seeks to explain why m
predicts y given x by generating a simple linear regression model
that approximates m’s input-output behaviour with respect to a small
neighbourhood of m’s feature space centered on x. LIME assumes
that for such small neighbourhoods m’s input-output behaviour is ap-
proximately linear. Ribeiro et al. recognize that there is often a trade
off to be made between local fidelity and interpretability. For exam-
ple, increasing the number of independent variables in a regression
might increase local fidelity but decrease interpretability. LIME is
becoming an increasingly popular method, and there are now LIME
implementations in multiple packages including Python, R and SAS.

The LIME algorithm: Consider a model m (e.g. a random forest
or MLP) whose prediction is to be explained: The LIME algorithm:
(1) generates a dataset of synthetic observations; (2) labels the syn-
thetic data by passing it to the model m which calculates probabilities
for each observation belonging to each class. These probabilities are
the ground truths that LIME is trying to explain; (3) weights the syn-
thetic observations (in standardised form) using the kernel:

K(d) =

√
e−

(
d2/kernelwidth2

)
where d is the Euclidean distance

from x to the synthetic observation, and the default value for kernel
width is a function of the number of features in the training dataset;
(4) produces a locally weighted regression, using all the synthetic
observations. The regression coefficients are meant to explain m’s
forecast y.

Key problems with LIME: LIME does not measure the fidelity of
its regression coefficients. This hides that it may often be producing
false explanations. Although LIME displays the values of its regres-
sion coefficients, it does not display the predicted values y calculated
by its regression model. Let us refer to these values as regression
scores (they are not bounded by the interval [0,1]). Ribeiro provides
an online ’tutorial’ on LIME, which includes an example of a ran-
dom forest model of the Iris dataset2. As part of this paper’s analysis,
the LIME regression scores were captured revealing large errors. For
example, in ≈20% of explanations, the regression scores differed by
more than 0.4 from the probabilities calculated by the random forest
model.

It might be thought that an adequate solution would be to provide
a goodness-of-fit measure such as adjusted R-squared. However, as
will be explained in Section 3, such measures can be highly mis-
leading when evaluating the fidelity of the regression coefficients for
estimating b-counterfactuals.

Another problem is that LIME does not provide counterfactual
explanations. It might be argued that LIME’s regression equations
provide the basis for a user to perform their own counterfactual cal-
culations. However, there are multiple reasons why this is incorrect.
First, as will be shown in Section 3, additional functionality is nec-
essary for generating faithful counterfactuals including the ability to
2 https://github.com/marcotcr/lime
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Figure 1. Toy example of a machine learning function represented by tan/blue background. The circled cross is x whose prediction is to be explained. The
other crosses are synthetic observations. (a) LIME uses all synthetic observations in each regression (15,000 in this paper) with weights decreasing with

distance from x. (b) CLEAR selects a balanced subset of ≈ 200 synthetic observation. (c) shows the corresponding b-perturbations.

solve quadratic equations. Second, LIME does not ensure that the re-
gression model correctly classifies x. In cases where the regression
misclassifies x’s class, then any subsequent b-counterfactual will be
false. Third, it does not have the means of measuring the fidelity
of any counterfactual calculations derived from its regression equa-
tion. Fourth, LIME does not offer an adequate dataset for calculat-
ing counterfactuals. The data that LIME uses in a local regression
needs to be representative of the neighbourhood that its explanation
is meant to apply to. For counterfactual explanations, this extends
from x to the nearest points of m’s decision boundary.

2.3 Other Related Work

Early work seeking to provide explanations to neural networks have
been focused on the extraction of symbolic knowledge from trained
networks [1], either decision trees in the case of feedforward net-
works [4] or graphs in the case of recurrent networks [10, 21]. More
recently, attention has been shifted from global to local explanation
models due to the very large-scale nature of current deep networks,
and has been focused on explaining specific network architectures
(such as the bottleneck in auto-encoders [8]) or domain specific net-
works such as those used to solve computer vision problems [3], al-
though some recent approaches continue to advocate the use of rule-
based knowledge extraction [2, 19]. The reader is referred to Guidotti
et al. [6] for a recent survey.

More specifically, Lundberg et al.[11] propose SHAP, which ex-
plains a prediction by using the game-theory concept of Shapley Val-
ues. Shapley Values are the unique solution for fairly attributing the
benefits of a cooperative game between players, when subject to a
set of local accuracy and consistency constraints. SHAP explains a
model m’s prediction for observation x by first simplifying m’s input
data to binary features. A value of 1 corresponds to a feature having
the same value as in x and a value of 0 corresponds to the feature’s
value being ‘unknown’. Within this context, Shapley Values are the
changes that each simplified feature makes to m’s expected predic-
tion when conditioned on that feature. Lundberg et al. derive a kernel
that enables regressions where (i) the dependent variable is m’s (re-
based) expected prediction conditioned on a specific combination of
binary features (ii) the independent features are the binary features
(iii) the regression coefficients are the Shapley Values. A key point
for this paper is that the Shapley Values apply to the binarized fea-
tures and cannot be used to estimate the effects of changing a numeric
feature of x by a particular amount. They therefore do not provide a
basis for estimating b-counterfactuals.

Ribeiro et al. [18], the authors of the LIME paper, have subse-
quently proposed ‘Anchors: High Precision Model-Agnostic Expla-
nations’. In motivating their new method they note that LIME does
not measure its own fidelity and that ’even the local behaviour of a
model may be extremely non-linear, leading to poor linear approx-
imations’. An Anchor is a rule that is sufficient (with a high prob-
ability) to ensure that a local prediction will remain with the same
classification, irrespective of the values of other variables. The ex-
tent to which the Anchor generalises is estimated by a ’coverage’
statistic. For example, an Anchor for a model with the Adult dataset
could be: ”If Never-Married and Age ≤ 28 then m will predict ’≤
$50k’ with a precision of 97% and a coverage of 15%”. A pure-
exploration multi-armed bandit algorithm is used to efficiently iden-
tify Anchors. As with SHAP, Anchors do not provide a basis for es-
timating b-counterfactuals. Therefore neither method can be directly
compared to CLEAR.

LIME has spawned several variants. For example LIME-SUP [9]
and K-LIME [7] both seek to explain a machine learning system’s
functionality over its entire input space by partitioning the input
space into a set of neighbourhoods, and then creating local mod-
els. K-LIME uses clustering and then regression, LIME-SUP just
uses decision tree algorithms. LIME has also been adapted to enable
novel applications, for example SLIME [14] provides explanations
of sound and music content analysis. However none of these variants
address the problems identified with LIME in this paper.

3 The CLEAR Method

CLEAR is based on the view that a satisfactory explanation of a sin-
gle prediction needs to both explain the value of that prediction and
answer ’what-if-things-had-been-different’ questions. In doing this it
needs to state the relative importance of the input features and show
how they interact. A satisfactory explanation must also be measur-
able and state how well it can explain a model. It must know when it
does not know [5].

CLEAR is based on the concept of b-perturbation, as follows:
Definition 5.1 Let minf (x) denote a vector resulting from apply-

ing a minimum change to the value of one feature f in x such that
m(minf (x)) = y’ and m(x) = y, class(y) �= class(y’). Let vf (x) denote
the value of feature f in x. A b-perturbation is defined as the change
in value of feature f for target class(y’), that is vf (minf (x)) − vf (x).

For example, for the b-counterfactual that Mr Jones would have
received his loan if his salary had been $35,000, a b-perturbation for
salary is $3000. If x has p features and m solves a k-class problem
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Figure 2. Excerpt from a CLEAR b-counterfactual report. In this example CLEAR uses multiple regression to explain a single prediction generated by an
MLP model trained on the Pima dataset

then there are q ≤ p×k−1 b-perturbations of x; changes in a feature
value may not always imply a change of classification.

CLEAR compares each b-perturbation with an estimate of that
value, call it estimated b-perturbation, calculated using its local re-
gression, to produce a counterfactual fidelity error, as follows:

counterfactual fidelity error =

| estimated b-perturbation − b-perturbation |
Henceforth these will be referred to simply as ’fidelity errors’.
CLEAR generates an explanation of prediction y for observation x
by the following steps:

1. Determine x’s b-perturbations. For each feature f, a separate one-
dimensional search is performed by querying m starting at x, and
progressively moving away from x by changing the value of f by
regular amounts, whilst keeping all other features constant. The
searches are constrained to a range of possible feature values.

2. Generate labelled synthetic observations (default: 50,000 obser-
vations). Data for numeric features is generated by sampling from
a uniform distribution. Data for categorical features is generated
by sampling in proportion to the frequencies found in the train-
ing set. The synthetic observations are labelled by being passed
through m.

3. Create a balanced neighbourhood dataset (default is 200 observa-
tions). Synthetic observations that are near to x (Euclidean dis-
tance) are selected with the objective of achieving a dense cloud
of points between x and the nearest points just beyond m’s deci-
sion boundaries (Figure 1). For this, the neighbourhood data is se-
lected such that it is equally distributed across classes, i.e. approx-
imately balanced. CLEAR was also evaluated using ’imbalanced’
neighbourhood data, where only the synthetic observations near-
est to x were selected. However, it was found this reduced fidelity
(see Figure 3). It might be thought that a balanced neighbourhood
dataset should not be used when x is far from m’s decision bound-
ary; as this would lead to a ’non-local’ explanation. But this misses
the point that a satisfactory explanation is counterfactual, and that
the required locality therefore extends from x to data points just
beyond m’s decision boundary.

4. Perform a step-wise regression on the neighbourhood dataset, un-
der the constraint that the regression curve should go through x.
The regression can include second degree terms, interaction terms
and indicator variables. CLEAR provides options for both multi-
ple and logistic regression. A user can also specify terms that must
be included in a regression.

5. Estimate the b-perturbations by substituting x’s b-counterfactual
values from minf (x), other than for feature f , into the regression
equation and calculating the value of f . See example below.

6. Measure the fidelity of the regression coefficients. Fidelity errors

are calculated by comparing the actual b-perturbations determined
in step 1 with the estimates calculated in step 5.

7. Iterate to best explanation. Because CLEAR produces fidelity
statistics, its parameters can be iteratively changed in order to
achieve a better trade-off between interpretability and fidelity. Rel-
evant parameters include the number of features/independent vari-
ables to consider and the use and number of quadratic or interac-
tion terms. Figure 2 shows excerpts from a CLEAR report.

8. CLEAR also provides the option of adding x’s b-counterfactuals,
minf (x), to x’s neighbourhood dataset. The b-counterfactuals are
weighted and act as soft constraints on CLEAR’s subsequent re-
gression. Algorithms 1 and 2 outline the entire process.

Algorithm 1: CLEAR Algorithm
input : t (training data), x,m,T
output: expl (set of explanations)
S← Generate Synthetic Data(x,t,m)
for each target class tc do

for each feature f do
w ← Find Counterfactuals(x,m)

end

Ntc ← Balanced Neighbourhood(S, x, m)
Optional: Ntc ← Ntc ∪ w
r ←Find Regression Equations(Ntc, x)
w′ ← Estimate Counterfactuals(r,x)
e ← Calculate Fidelity(w,w’,T)
return expltc =< w,w′, r, e >

end

Algorithm 2: Balanced Neighbourhood
input : S (synthetic dataset), x,m

b1, b2 (margins around decision boundary)
output: N (neighbourhood dataset)
n ← 200
for si ∈ S do

di ← Euclidean Distance (si, x)
yi ←m(si)

end

N1 ← n/3 members of {S} with lowest di s.t. 0 < yi ≤ b1
N2 ← n/3 members of {S} with lowest di s.t. b1 < yi ≤ b2
N3 ← n/3 members of {S} with lowest di s.t. b2 < yi ≤ 1
return N ← N1 ∪N2 ∪N3

Notice that for CLEAR an explanation (expl) is a tuple <
w,w′, r, e >, where w and w′ are b-perturbations (actual and es-
timated), r is a regression equation and e are fidelity errors.
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Table 1. Comparison of % fidelity of CLEAR and LIME: the use of a balanced neighbourhood, centering and quadratic terms allow CLEAR, in general, to
achieve a considerably higher fidelity to b-counterfactuals than LIME, even without training with b-counterfactuals. Including training with b-counterfactuals

(optional step 8 of CLEAR method), % fidelity is further increased.

Adult Iris Pima Credit Breast

CLEAR- not using b-counterfactuals 80% ± 0.9 80% ± 1.0 57% ± 0.8 39% ± 1.3 54% ± 1.1
CLEAR- using b-counterfactuals 80% ± 0.8 99.8% ± 0.1 77% ± 0.8 55% ± 1.7 81% ± 1.3
LIME algorithms 26% ± 0.6 30% ± 0.3 20% ± 0.4 12% ± 0.5 14% ± 0.3

Example of using regression to estimate a b-perturbation: An
MLP with a softmax activation function in the output layer was
trained on a subset of the UCI Pima Indians Diabetes dataset. The
MLP calculated a probability of 0.69 for x belonging to class 1
(having diabetes). CLEAR generated the logistic regression equation
(1 + ewT x)−1 = 0.69 where:

wT x = −0.8 + 1.73 Glucose+ 0.25 BloodPressure

+0.31 Glucose2

Let the decision boundary be P (x ∈ class 1) = 0.5. Thus, x
is on the boundary when wT x = 0. The estimated b-perturbation
for Glucose is obtained by substituting into the regression equation:
wT x = 0 and the value of BloodPressure in x:

−0.31 Glucose2 + 1.73 Glucose− .04 = 0

Solving this equation, CLEAR selects the root equal to 0.025 as
being closest to the original value of Glucose in x. The original
value for Glucose was 0.537 and hence the estimated b-perturbation
is -0.512. The actual b-perturbation (step 1) for Glucose to achieve a
probability of 0.5 of being in class 1 was -0.557; hence, the fidelity
error was 0.045.

A CLEAR prototype has been developed in Python3. CLEAR can
be run either in batch mode on a test set or it can explain the pre-
diction of a single observation. In batch mode, CLEAR reports the
proportion of its estimated b-counterfactuals that have a fidelity error
lower than a user-specified error threshold T, as follows:

Definition 5.3 (% fidelity): A b-perturbation is said to be feasible if
the resulting feature value is within the range of values found in m’s
training set. The percentage fidelity given a batch and error threshold
T is the number of b-perturbations with fidelity error smaller than T
divided by the number of feasible b-perturbations.

Both fidelity and interpretability are critical for a successful ex-
planation. An ’interpretable explanation’ that is of poor fidelity is
not an explanation, it is just misinformation. Yet, in order to achieve
high levels of fidelity, a CLEAR regression may need to include a
large number of terms, including 2nd degree and interaction vari-
ables. A criticism of CLEAR might then be that whilst its regres-
sion equations are interpretable to data scientists, they may not be
interpretable to lay people. However CLEAR’s HTML reports are
interactive, providing an option to simplify the representation of its
equations. Consider Figure 2, if a user was primarily interested in
the effects of Glucose and BMI, then CLEAR can substitute the val-
ues of the other features leading to the full regression equation being
re-expressed as:

wT x = 0.46 + 0.3 Glucose+ 0.18 BMI − 0.05 BMI2

This equation helps to explain the b-counterfactuals, for example it
shows why observation 1’s classification is more easily ’flipped’ by
changing the value of Glucose rather than BMI. CLEAR addition-

3 https://github.com/ClearExplanationsAI

ally provides options for the user to simplify the original regression,
for example by reducing the number of terms, excluding interaction
terms etc. CLEAR then enables the user to see the resulting fall in fi-
delity, putting the user in control of the interpretability/fidelity trade-
off. Figure 3 illustrates how fidelity is reduced by excluding both
quadratic and interaction terms; notice that even both are excluded,
CLEAR’s fidelity is much higher than LIME’s.

4 Experimental Results

Experiments were carried out with five UCI datasets: Pima Indians
Diabetes (with 8 numeric features), Iris (4 numeric features), Default
of Credit Card Clients (20 numeric features, 3 categorical), and sub-
sets of Adult (with 2 numeric features, 5 categorical features), and
Breast Cancer Wisconsin (9 numeric features). For the Adult dataset,
some of the categorical features values were merged and features
with little predictive power were removed. With the Breast Cancer
dataset only the mean value features were kept. For reproducibility,
the code for pre-processing the data is included with the CLEAR
prototype on GitHub.

For the Iris dataset, a support vector machine (SVM) with RBF
kernel was trained using the scikit-learn library. For each of the other
datasets, an MLP with a softmax output layer was trained using Ten-
sorflow. Each dataset was partitioned into a training dataset (used to
train the SVM or MLP, and to set the parameters used to generate
synthetic data for CLEAR) and a test dataset (out of which 100 ob-
servations were selected for calculating the % fidelity of CLEAR and
LIME). Experiments were carried out with different test sets, with
each experiment being repeated 20 times for different generated syn-
thetic data. The experiments were carried out on a Windows i7-8700
3.2GHz PC. A single run of a 100 observations took 40-80 minutes,
depending on the dataset.

In order to enable comparisons with LIME, CLEAR includes an
option to run the LIME algorithms for creating synthetic data and
generating regression equations. CLEAR then takes the regression
equations and calculates the corresponding b-counterfactuals and
fidelity errors. It might be objected that it is unfair to evaluate LIME
on its counterfactual fidelity, as it was not created for this purpose.
But if you accept Woodward and Miller’s requirements for a satisfac-
tory explanation, then counterfactual fidelity is an appropriate metric.

CLEAR’s regressions are significantly better than LIME’s. The
best results are obtained by including b-counterfactuals in the neigh-
bourhood datasets (step 8 of the CLEAR method). Overall, the best
configuration comprised: using balanced neighbourhood data, forc-
ing the regression curve to go through x (i.e. ’centering’), including
both quadratic and interaction terms, and using logistic regression for
Pima and Breast Cancer and multiple regression for Iris, Adult and
Credit datasets. Unless otherwise stated % fidelity is for the error
threshold T = 0.25. Table 1 compares the % fidelity of CLEAR and
LIME (i.e. using LIME’s algorithms for generating synthetic data
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Figure 3. Comparison of fidelity with different configurations. Fidelity is reduced when any of the above changes are made to the best configuration. The
changes include:’Imbalanced neighbourhood’ = ’using best configuration but with imbalanced neighbourhood datasets’, and ’LIME’ = ’using the LIME

algorithms’. Notice the benefits of CLEAR using a balanced neighbourhood dataset. Also, when CLEAR has ’no quadratic and interaction terms’, it is still
significantly more faithful than LIME.

and performing the regression). This used LIME’s default parame-
ter values except for the following beneficial changes: the number
of synthetic data points was increased to 15,000 (further increases
did not improve fidelity), the data was not discretized, a maximum
of 14 features were allowed, several kernel widths in the range from
1.5 to 4 were evaluated. By contrast, CLEAR was run with its best
configuration and with 14 features. As an example of LIME’s per-
formance: with the Credit dataset, the adjusted R2 averaged ≈ 0.7,
the classification of the test set observations was over 94% correct.
However, the absolute error between y and LIME’s estimate of y was
8% (e.g. the MLP forecast P (x ∈ class 1) = 0.4, while LIME es-
timated it at 0.48) and this by itself would lead to large errors when
calculating how much a single feature needs to change for y to reach
the decision boundary. LIME’s fidelity of only 12%, illustrates that
CLEAR’s measure of fidelity is far more demanding than just clas-
sification accuracy. Of course, LIME’s poor fidelity was due, in part,
to its kernel failing to isolate the appropriate neighbourhood datasets
necessary for calculating b-counterfactuals accurately.

Table 2 shows how CLEAR’s fidelity (not using b-counterfactuals)
varied with the maximum ’number of independent variables’ allowed
in a regression. At first, fidelity sharply improves but then plateaus.

Despite CLEAR’s regression fitting the neighbourhood data well,
a significant number of the estimated b-counterfactuals have large fi-
delity errors. For example, in one of the experiments with the Adult
dataset where the multiple regression did not center the data, the av-
erage adjusted R2 was 0.97, classification accuracy 98% but the %
fidelity error < 0.25 was 59%. This points to a more general problem:
sometimes the neighbourhood datasets do not represent the regions
of its feature space that are central for its explanations. With CLEAR,
this discrepancy can at least be measured.

Table 2. Variation of % fidelity with the choice of number of variables

No. Adult Iris PIMA Credit Breast

8 35% 50% 42% 27% 43%
11 76% 62% 53% 38% 46%
14 80% 80% 57% 39% 54%
17 78% n/a 59% 40% 55%
20 78% n/a 62% 39% 56%

CLEAR was tested in a variety of configurations. These included
the best configuration, and configurations where a single option was
altered from the default, e.g. by using a imbalanced neighbourhood
of points nearest to x. Figure 3 displays the results when CLEAR

used a maximum of 14 independent variables.
CLEAR’s fidelity was sharply improved by adding x’s b-

counterfactuals to its neighbourhood datasets. In the previous ex-
periments, CLEAR created a neighbourhood dataset of at least 200
synthetic observations, each being given a weighting of 1. This was
now altered so that each b-counterfactual identified in step 1 was
added and given a weighting of 10. For example, for the Pima
dataset, an average of ≈3 b-counterfactuals were added to each
neighbourhood dataset. The consequent improvement in fidelity in-
dicates as expected that adding these weighted data points results in
a dataset capable of representing better the relevant neighbourhood,
with CLEAR being able to provide a regression equation that is more
faithful to b-counterfactuals.

5 Conclusion and Future Work

CLEAR satisfies the requirement that satisfactory local explanations
should include statements of key counterfactual cases. CLEAR ex-
plains a prediction y for data point x by stating x’s b-counterfactuals
and providing a regression equation. The regression shows the pat-
terns of counterfactual dependencies in a neighbourhood that in-
cludes both x and the b-counterfactual data points. CLEAR rep-
resents a significant improvement both on LIME and on just us-
ing b-counterfactuals. Crucial to CLEAR’s performance is the abil-
ity to generate relevant neighbourhood data bounded by its b-
counterfactuals. Adding these to x’s neighbourhood led to sharp fi-
delity improvements. Another key feature of CLEAR is that it reports
on its own fidelity. Any local explanation system will be fallible, and
it is critical with high-value decisions that the user knows if they can
trust an explanation.

There is considerable scope for further developing CLEAR. These
include (i) the neighbourhood selection algorithms could be further
enhanced. Other data points could also be added, for example b-
counterfactuals involving changes to multiple features. A user might
also include some perturbations that are important to their project.
CLEAR could guide this process by reporting regression and fidelity
statistics. And step 8 of the CLEAR algorithm could be replaced
by increasingly complex and more sophisticated learning algorithms.
Constructing neighbourhood datasets in this way would seem a bet-
ter approach than randomly generating data points and then selecting
those closest to x (ii) the search algorithm for actual b-perturbations
in step 1 of the CLEAR algorithm could be replaced by a more com-
putationally efficient algorithm (iii). CLEAR should be evaluated in
practice in the context of comprehensibility studies.
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