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Abstract 

Global trends in population ageing will lead to an exponential increase in age-related eye 
disease. If undetected, and in the absence of timely treatment, these diseases could 
result in significant visual impairment. New technologies for the assessment of ocular 
structure and function could potentially improve disease identification, but it is 
paramount that their diagnostic performance is fully evaluated before they can be 
employed in a routine clinical setting. 

Chapter 2 describes the results from a systematic review of the diagnostic accuracy of 
five non-invasive tests to detect those at risk of primary angle closure glaucoma. The 
tests evaluated were the van Herick test of limbal anterior chamber depth, flashlight 
test, Scanning Peripheral Anterior Chamber Depth Analyser, Scheimpflug photography 
and Anterior Segment Optical Coherence Tomography. A meta-analysis was performed 
and summary estimates of sensitivity and specificity were calculated for each test. In 
addition, test comparisons were conducted based on the thresholds with the best 
performing diagnostic odds ratio. Overall, most tests performed well and showed 
equivalent accuracy. However, care should be taken in applying the summary estimates 
in clinical practice due to the observed heterogeneity and high risk of bias found in most 
studies. 

Chapter 3 describes a diagnostic accuracy study to investigate the performance of a 
prototype flicker perimeter (Accelerator 4-Alternative Forced-Choice Flicker Test 
prototype (A4FTp)) to detect primary open angle glaucoma (POAG). Participants with 
glaucoma (n=38) were compared to normal controls (n=40). The diagnosis of POAG was 
confirmed by a reference standard ophthalmic examination and the performance of the 
A4FTp was compared with two available screening tests: Frequency Doubling 
Technology perimeter and optical coherence tomography (OCT). The clinician 
performing these tests was masked to the results of the reference standard examination. 
Diagnostic accuracy of all three tests was equivalent in the detection of POAG. Time 
taken to complete the A4FTp was relatively short with good subject acceptability. Initial 
results are promising and with further development, the test could have a role in 
glaucoma detection. 

Chapter 4 reports on the diagnostic value of OCT to detect glaucomatous disc damage 
or retinal pathology using a clinical vignette methodology. A sample of 50 community 
optometrists undertook online training followed by completion of a computer-based 
vignette assessment, showing either a single fundus/disc photographic image (n=26) or 
a combination of a fundus/disc image with the corresponding OCT scan (n=26). 
Comparing the OCT combination to fundus imaging alone improved overall diagnostic 
performance by approximately 20%, with fewer false positives and false negatives 
recorded. These findings suggest that OCT could augment case-finding, but further 
research is needed to evaluate its value in a real-world setting. 
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Chapter 1 Introduction 

1.1 Epidemiology of age-related posterior segment diseases 

It is estimated that there are 253 million people worldwide who live with a visual 

impairment; its distribution is affected by age and 81% of people who are blind or have 

moderate/severe visual impairment (MSVI) are aged 50 years and above (Bourne et al., 

2017). In 2019, there was an estimated 702 million people who were aged 65 years or 

over, accounting for 9.1% of the global population and by 2050, this number is 

forecasted to increase to 1.5 billion (15.9%) (UN, 2019). It was previously thought that 

population ageing was confined to high income countries, however a recent report has 

found that virtually all countries are now experiencing this phenomenon (UN, 2019). 

It is predicted by 2020 there will be 237.1 million people globally who will have MSVI and 

38.5 million who will be blind, increasing by 20 million and 2.5 million respectively from 

2015 (Flaxman et al., 2017). Anterior segment eye diseases account for a greater 

proportion of age-related blindness than posterior segment eye diseases (Figure 1.1). 

However, the two leading causes of irreversible MSVI and blindness affect the posterior 

segment, which are glaucoma and age-related macular degeneration (AMD) where age 

is the predominant risk factor for both diseases. Glaucoma is the leading cause of 

irreversible blindness worldwide (Kapetanakis et al., 2016), accounting for 2% of global 

visual impairment and 8% of blindness in those aged 50 years or older (Flaxman et al., 

2017). AMD prevalence is high in the elderly population, particularly in high income 

countries, where it is the leading cause of irreversible blindness (Bressler, 2004, Congdon 

et al., 2004, Chakravarthy, 2006, Jager et al., 2008, Bourne et al., 2018). Globally, AMD 

accounts for 4% of MSVI and 6% of blindness (Congdon et al., 2004, Flaxman et al., 2017). 

It has been forecasted that from 2015 to 2020, there will be an increase of almost 1 

million people with MSVI and 0.2 million people suffering from blindness from these two 

conditions alone (Flaxman et al., 2017).  
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Figure 1.1. Global causes of blindness in those aged 50 years and older (Flaxman et al., 

2017). RE: Refractive Error (uncorrected); AMD: Age-Related Macular Degeneration; 

DR: Diabetic Retinopathy, CO: Corneal Opacities. 

 

1.1.1 Glaucoma 

Glaucoma can be defined as ‘a group of optic neuropathies characterised by progressive 

degeneration of retinal ganglion cells’ (Weinreb et al., 2014). There are several 

classifications used to define the subtypes of glaucoma. It can be initially classified as 

primary or secondary. Primary glaucomas are not associated with any other ocular or 

systemic diseases, whereas secondary glaucomas show these associations. Further sub-

classification is based on the status of the anterior chamber angle (ACA) as determined 

by gonioscopy. In the presence of glaucomatous optic neuropathy; primary open angle 

glaucoma (POAG) is diagnosed when the posterior trabecular meshwork (PTM) within 

the ACA is not obscured by the peripheral iris whereas in primary angle closure glaucoma 

(PACG) the PTM is mechanically blocked by the peripheral iris. Figure 1.2 describes the 

classification of glaucoma. 

35%
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For this thesis, the term POAG has been predominantly used. Occasionally, reference is 

made to chronic open angle glaucoma (COAG), which was the terminology adopted by 

the National Institute for Health and Care Excellence (NICE) glaucoma clinical guideline 

committee (NICE, 2017). Both terms are effectively synonymous. 

 

Figure 1.2. Classification of glaucoma. 

 

A systematic review identified the pooled global prevalence of POAG and PACG was 

3.05% and 0.50%, where prevalence is highest in those residing in Africa and Asia, 

respectively (Tham et al., 2014). With an ageing population and increased longevity, the 

number of individuals globally affected by POAG is forecasted to increase from 57.5 

million in 2015 to 65.5 million by 2020 (Kapetanakis et al., 2016). In the case of PACG, it 

is likely to affect 23.4 million by 2020 and 32 million by 2040 in those aged 40 to 80 years 

old (Tham et al., 2014). Glaucoma can cause visual disability (Johnson et al., 2017), as it 

can affect the patients’ ability to drive (Ramulu et al., 2009a), read (Ramulu et al., 2009b) 

and navigate (Baig et al., 2016). In 2015, there were 4 million people worldwide suffering 

Glaucoma
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from glaucomatous MSVI and this is projected to increase by 0.5 million by 2020 

(Flaxman et al., 2017). 

There are numerous risk factors that can be attributed to either POAG or PACG, 

important demographical risk factors include age and family history. A number of 

epidemiological studies have demonstrated that the prevalence of POAG increases 

exponentially with age, depending on the population studied (Tielsch et al., 1991a, 

Wormald et al., 1994, Mitchell et al., 1996, Varma et al., 2004, Leske et al., 2008); as well 

for PACG (Foster et al., 1996, Foster et al., 2000b, Yamamoto et al., 2005, He et al., 

2006a, Liang et al., 2011). If there is a first degree relative with POAG, studies have 

identified the odds of the individual having this disease increases by up to 9 times 

(Tielsch et al., 1991a, Wolfs et al., 1998, Doshi et al., 2008). For PACG, the heritability of 

a narrow angle has been reported as high as 60%, where siblings of those affected by 

PACG have been estimated to be 7 times more likely to have a narrow angle 

(Amerasinghe et al., 2011). Another well-documented risk factor is ethnicity, the 

prevalence of POAG is higher in those of African origin than in any other racial/ethnic 

groups (Tielsch et al., 1991b, Leske et al., 1994, Rotchford & Johnson, 2002, Rotchford 

et al., 2003), as African-Americans are 6 times more likely to develop glaucoma 

compared to whites (Tielsch et al., 1991b). In the case of PACG, higher rates of the 

disease occur with Inuit and Asian populations (Clemmesen & Alsbirk, 1971, Drance, 

1973, Tham et al., 2014). Intraocular pressure (IOP) is the only modifiable risk factor for 

the development and progression of POAG, where hypotensive treatment has been 

shown to have a positive effect on disease progression (Cartwright & Anderson, 1988, 

Schulzer et al., 1998, Heijl et al., 2002). 

 

 

 

 



22 
 

1.1.2 Age-related retinal diseases 

Age is a significant risk factor in a number of retinal diseases that can cause visual 

impairment such as age-related macular degeneration (Evans, 2001, Chakravarthy et al., 

2010, NICE, 2018), epiretinal membrane (Mitchell et al., 1997, Miyazaki et al., 2003, 

McCarty et al., 2005, Kawasaki et al., 2008), central retinal vein occlusion (Rogers et al., 

2010, Sartori et al., 2013) and vitreo-retinal conditions such as macula holes and vitreo-

macular traction (Garcia-Layana et al., 2015). AMD affects the central retina (macula) 

and it has been documented that nearly all late AMD cases occur in people older than 

60 years (Meuer et al., 2014, Mitchell et al., 2018). There were 8.4 million people globally 

that had MSVI from AMD in 2015 and this is forecasted to increase to 8.8 million by 2020 

(Flaxman et al., 2017). Global projections for the number of people affected with AMD 

by 2020 are 196 million, increasing to 288 million in 2040 (Wong et al., 2014). 

With a global increase in population ageing, health systems will need to adapt in order 

to serve the growing number of older people to maximise health and well-being (UN, 

2015). In many cases, timely detection and treatment of posterior segment eye diseases 

can lower the risk of vision impairment in the patient’s lifetime (Heijl et al., 2002, 

Chakravarthy et al., 2010, Kersey et al., 2013). There is increasing recognition that 

detecting age-related eye diseases can be augmented by the application of new 

structural and visual function technologies. Recent evidence has shown these devices 

can be effective in identifying glaucoma (Dabasia et al., 2015b, Azuara-Blanco et al., 

2016a, NICE, 2017) and retinal diseases (Ouyang et al., 2013). Therefore, establishing the 

diagnostic accuracy of these tests is vital to ensure successful implementation into 

clinical practice. 
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1.2 Diagnostic accuracy 

Diagnostic test accuracy is a key component of health care and is critical to the initial 

diagnosis, staging, screening, monitoring and surveillance of disease. Diagnostic 

information can be obtained from several sources that include imaging, biochemical 

technologies, pathological and psychological investigations (Sackett et al., 1991). 

Diagnostic accuracy studies usually report sensitivity, specificity, receiver-operator 

characteristics curves and/or positive and negative predictive values as measures of 

diagnostic performance from a test (Deeks, 2001). These studies compare test results 

from those with a disease and those without. The accuracy of the test being assessed is 

usually termed the ‘index test’ and is compared to a ‘reference standard’; which is 

usually a test or group of tests where a diagnosis of the target or ‘true’ disease for each 

patient is made. Thus, when an index test threshold has been specified, results can be 

then categorised as true positive, false positive, true negative, and false negative (Table 

1.1) (Mallett et al., 2012). 

 Reference standard test 

Index Test Disease Positive Disease Negative 

Test Positive True Positive False Positive 

Test Negative False Negative True Negative 

Table 1.1. Diagnostic table (2x2). 

Paired diagnostic measures determine the sensitivity and specificity of an index test. 

Sensitivity is the proportion of true positives that are correctly identified by the index 

test and specificity is the proportion of true negatives identified. By comparing the 

diagnostic accuracy of tests in terms of their sensitivities and specificities relative to a 

reference standard, this ensures the most appropriate tests are deployed in the clinical 

setting (Swets & Pickett, 1982, Freedman, 1987, Zhou et al., 2009). However, these 

indices used alone provide limited information regarding the test’s applicability to a 

wider population. Predictive values can be used that account for the prevalence of a 
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disease in a given population. The positive predictive value is the probability that an 

individual with a positive screening result has the disease and negative predictive value 

is the probability that an individual with a negative screening result doesn’t have the 

disease (Altman & Bland, 1994). Other paired diagnostic measures include positive and 

negative likelihood ratios which describe the discriminatory properties of positive and 

negative test results, respectively (Deeks & Morris, 1996). Likelihood ratios state how 

many times more likely the test results are in patients with disease than in those without. 

A positive likelihood ratio above 10 and a negative likelihood ratio below 0.1 are 

considered to provide convincing diagnostic evidence, whereas those above 5 and below 

0.2 give strong diagnostic evidence (Jaeschke et al., 1994). Likelihood ratios can be 

directly applied to give probabilistic statements concerning the likelihood of disease in 

an individual (Deeks, 2001). 

Diagnostic accuracy studies report the performance of a test or group of tests and their 

potential application. Yet, if studies are not conducted properly or reporting is found to 

be inconsistent, there is potential for bias (internal validity) or difficulty in estimating the 

generalisability of the findings (external validity) (Fidalgo et al., 2015). Bias can lead to a 

systematic distortion that can result in the premature adoption of a poorly performing 

test. To improve the quality and reporting of studies, two tools were developed, a quality 

assessment tool known as QUADAS (Quality Assessment of Diagnostic Accuracy Studies) 

(Whiting et al., 2003) and STARD (Standards for the Reporting of Diagnostic Accuracy 

Studies) (Bossuyt et al., 2003). Since their conception, there have been evolutions in both 

tools with revised and updated versions of STARD 2015 (Cohen et al., 2016) and 

QUADAS-2 (Whiting et al., 2011). 

QUADAS-2 is a multi-domain checklist recommended by the Cochrane Collaboration and 

NICE for assessing the methodological quality of diagnostic accuracy studies in 

systematic reviews. QUADAS-2 consists of four key domains, where the risk of bias and 

concerns of applicability are judged on patient selection, index test, reference standard, 

and flow of patients. The STARD 2015 checklist was developed to standardise reporting 

of diagnostic test accuracy studies. The STARD 2015 tool has a list of 30 items that should 
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be checked, which includes the use of a flow diagram to present the design of the study 

and key reporting of facts. 

An evaluation of the original STARD and QUADAS by Fidalgo et al (Fidalgo et al., 2015), 

found 58 studies that were suboptimal in reporting automated perimetry testing in 

glaucoma. Comparing a ten-year period before and after the introduction of both tools, 

the authors concluded that reporting did not substantially improve following the 

introduction of STARD. Evaluation using STARD 2015 for glaucoma diagnostic test 

accuracy (Virgili et al., 2017) found similar results to Fidalgo et al, however Virgili and 

colleagues did find a slight improvement in reporting over time. 

 

1.3 Reference standard 

In ophthalmology, the structural and functional assessment of the eye is integral for the 

detection of ocular abnormalities. The reference standard(s) for identifying and 

diagnosing ocular diseases are discussed below. 

 

1.3.1 Anterior segment 

The slit lamp bio-microscope allows the anterior segment of the eye to be examined in 

high detail using various types of illumination and magnification by a trained clinician. 

Since its invention over 100 years ago, the stereoscopic slit lamp examination still 

remains the reference standard in assessing the anterior segment from the ocular 

adnexa through to the anterior vitreous. 

ACA evaluation is important for the classification of glaucoma (SIGN, 2015, Prum et al., 

2016, EGS, 2017, NICE, 2017). Yet, direct visualisation of the ACA is not possible using 

the slit lamp alone, as the angle is masked by total internal reflection. Gonioscopy is a 

technique that allows the clinician to view the irido-corneal angle using a gonio-lens with 

a slit lamp. This lens contains a mirror which is applied to an anaesthetised cornea with 
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the possible use of coupling fluid, thus allowing visualisation of the ACA (Figure 1.3). This 

technique should be performed under dark room conditions with the eye in the primary 

position, to view the angle structures (Figure 1.4), presence of irido-trabecular contact, 

peripheral anterior synechiae or both (Bhargava et al., 1973). 

 

Figure 1.3. Ray diagram of the optics associated with gonioscopy (Lucas, 2006). 

 

 

Figure 1.4. Gonioscopy of an open anterior chamber angle with all the structures 

visible. Image adapted from (Castañeda-Díez et al., 2011). 

 

 

https://upload.wikimedia.org/wikipedia/commons/7/7c/Gonio.png
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1.3.2 Posterior segment structural assessment 

Indirect ophthalmoscopy is usually the primary method that is performed in most 

ophthalmic settings to diagnose posterior segment eye diseases. This technique 

involves a slit lamp coupled with a supplementary lens, usually a Volk lens. This method 

offers greater fields of view when compared to traditional direct ophthalmoscopy and 

also provides a stereoscopic examination of the posterior segment. For glaucoma, it is 

recommended that structural examination of the optic disc requires dilated binocular 

indirect ophthalmoscopy (SIGN, 2015, Prum et al., 2016, EGS, 2017, NICE, 2017). In 

retinal diseases such as AMD, this method is also recommended to document the size, 

number and location of lesions detected (NICE, 2018). 

Optic nerve head examination involves the observer assessing the structure of the 

neuroretinal rim. Glaucomatous damage to the optic nerve may start as localised or 

generalised loss of neural tissue. Early damage to the optic nerve head frequently occurs 

in the superior and inferior quadrants which can cause a notch within the neural retinal 

rim of the optic disc. This can also be accompanied or be preceded by a focal or diffuse 

loss of the retinal nerve fibre layer (Sommer et al., 1991, Quigley et al., 1992, Lee et al., 

2016), that will lead to an associated area of reduced of sensitivity in the patient’s visual 

field (Figure 1.5). As damage of the retinal ganglion cells (RGC) and supporting optic 

nerve tissues progresses, this will lead to further excavation of the neural tissues and 

deepen the level of cupping, until there is total loss of optic nerve tissue that results in a 

complete loss of the visual field. 

 

Figure 1.5. Superior excavation of the optic nerve head with an associated inferior 

visual field defect. Image sourced from (Jindal et al., 2019). 
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1.3.3 Functional assessment 

The normal field of vision in a human eye is 160 degrees horizontally and 120 degrees 

vertically. The visual pathway begins with light being detected by photoreceptors 

comprising of rods and cones within the neurosensory retina. This causes a cascade of 

chemical reactions where the signal is then transmitted to the bipolar cells and RGC 

which lie mainly in the retinal nerve fibre layer (Fortune et al., 2015). The nerves then 

leave the eye via the optic nerve, which then projects onto the lateral geniculate nucleus 

and subsequent visual cortex. 

Visual field assessment tests the function of the visual pathway where any damage may 

result in a functional deficit that is either relative or absolute; nearly all pathological 

abnormalities are detected in central 20–30 degrees (Wong & Plant, 2015). Perimetry is 

a technique that assesses the visual field. Gross field assessment by traditional 

confrontation can detect large and dense visual field defects, for smaller/relative 

defects, Standard Automated Perimetry (SAP) is usually required. SAP projects a white 

stimulus onto a white background, the luminance of the stimulus increases and 

decreases incrementally to determine a threshold value, where this has been defined as 

a stimulus that has a 50% chance of being perceived.  

SAP thresholding is generally acknowledged as the reference standard for visual field 

assessment. Functional abnormalities resulting from RGC damage can be identified by 

SAP. A popular SAP device known as the Humphrey Visual Field Analyser (HFA), is 

commonly used in secondary care in the United Kingdom (UK), where it employs the 

Swedish Interactive Thresholding Algorithm (SITA). SITA significantly reduced the time 

taken to complete the original HFA programme from 12 minutes to 6 minutes per eye 

(Bengtsson et al., 1998). Such algorithms modernised field testing by achieving good 

levels of sensitivity and reduced test times (Sekhar et al., 2000). 

The reference standard is the conclusive diagnostic examination to confirm a disease. 

However, barriers that may prevent such an examination being performed include the 

time taken to obtain a result, practicality, requirement of space, skilled personal or costs 
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to administer. With advances in technology and methods in both structural and 

functional assessment, these may overcome these limitations and provide suitable 

diagnostic performance, but before these new techniques are incorporated into 

practice, their test accuracy should be assessed. 

 

1.4 Index tests 

Evaluation of diagnostic accuracy requires a comparison between the test being 

evaluated (‘index’ test) and the accepted reference (‘gold’) standard, where subsequent 

application could potentially identify those with or at risk of disease. 

 

1.4.1 Anterior chamber assessment 

Gonioscopy is not routinely performed outside a specialist setting since it is invasive, 

time consuming and requires a high level of skill. A number of methods have been 

developed that can assess the anterior chamber configuration that are non-invasive, 

relatively quick to perform and require less training when compared to gonioscopy. A 

systematic review (Smith et al., 2013) evaluated some of these devices to ascertain their 

correlation to gonioscopy. They found that these machines provided useful information 

regarding the dimensions of the anterior chamber depth/angle, but none provided 

enough information to be considered a substitute for gonioscopy. In addition, they 

recommended more research is needed to validate the diagnostic significance of these 

tests in identifying those at risk of PACG. Other tests that were designed to evaluate the 

risk of PACG and necessitate the requirement of gonioscopy include the van Herick 

method that estimates the limbal anterior chamber depth (LACD) and the flashlight test 

(Van Herick et al., 1969, Vargas & Drance, 1973). 
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1.4.2 Posterior segment structural assessment 

Dilated indirect ophthalmoscopy is required to suitably examine the optic nerve head 

and retina. However, this method is relatively time consuming, subjective and requires 

the use of mydriatic drops that can affect the patient’s vision for several hours. 

Glaucoma 

Assessment of the optic nerve head and retinal nerve fibre layer relies on direct 

observation, however it has been estimated that up to 40% of retinal nerve fibres may 

be lost before glaucomatous damage is detected (Quigley et al., 1980). This could be 

attributed to subtle thinning being missed or obscuration by media opacities and/or 

fundus pigmentation. Over the past twenty years, the introduction of computerised 

imaging has led to supplementary assessment of the posterior segment. Some of these 

devices can provide objective and quantitative measurements that are highly 

reproducible; as well as showing very good agreement with clinical estimates of the optic 

nerve head structure and visual function (Greenfield & Weinreb, 2008). A systematic 

review that investigated the diagnostic accuracy of some of these devices, suggested 

that they could be used to inform glaucoma decision making in primary care and triaging 

referrals (Michelessi et al., 2015). 

Retina 

For retinal examination, a recent cross-sectional study in the United States of America 

found that 25% of eyes were misdiagnosed using indirect ophthalmoscopy as ‘normal’, 

whereas they had macular characteristics that indicated AMD that was revealed by 

fundus photography (Neely et al., 2017). In another study, investigators examined the 

value of scanning laser ophthalmoscopy in combination with traditional fundal 

examination; they found that this technology enhanced the detection of retinal lesions 

such as naevi, retinal pigment epithelial changes and retinal haemorrhages (Brown et 

al., 2013). 
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It has been suggested that case-finding for age-related eye diseases can be augmented 

by the application of imaging technologies (Brown et al., 2013, Ouyang et al., 2013, 

Dabasia et al., 2015b, Azuara-Blanco et al., 2016a). One device that has been rapidly 

adopted in secondary care ophthalmology and more recently in primary care is optical 

coherence tomography (OCT) (Dabasia et al., 2014b, Jamous et al., 2014, Kiely et al., 

2017, Ly et al., 2017). OCT was first described in 1991 (Huang et al., 1991), it is an 

interferometric non-invasive imaging modality that enables in-vivo imaging of biological 

tissues that can provide objective and rapid measurements of the posterior segment 

(Michelessi et al., 2015, Kashani et al., 2017). This has resulted in its ability to facilitate 

in the diagnosis of a number of diseases that affect the optic nerve and retina (Jeong et 

al., 2016). Early OCT devices that used the time-domain principle have evolved into the 

current clinical standard of Spectral-Domain Optical Coherence Tomography (SD-OCT). 

SD-OCT incorporates Fourier domain strategies that offer higher sensitivity, improved 

scan acquisition speeds as well as higher axial and transverse resolutions (Leitgeb et al., 

2003, Bengtsson et al., 2012), when compared to time-domain OCT. SD-OCT projects a 

wavelength beam of approximately 830nm into the eye and the frequency information 

of the back reflected light is used to generate an image of the structure. The image 

acquisition rate of the device ranges between 25,000-75,000 axial scans/second, 

enabling the acquisition of three-dimensional data from the area of interest due to new 

light sources and fast sensors (Leitgeb et al., 2014, Kostanyan et al., 2015). More recent 

developments include Swept-Source Optical Coherence Tomography (SS-OCT) that uses 

a single tunable laser that sweeps through different frequencies to cover the entire 

broad spectrum, where scanning speeds of up to 400,000 axial scans/second can be 

captured (Potsaid et al., 2010). As SS-OCT systems use a more complex light source than 

SD-OCT, this allows better tissue penetration and in detailed visualisation of structures 

such as the choroid (Mrejen & Spaide, 2013, Adhi et al., 2014) and lamina cribosa (Wang 

et al., 2014) that was previously inaccessible. However, SS-OCT is currently limited to 

either research or secondary care clinics due to its’ prohibitive cost. 

 

https://www.sciencedirect.com/topics/neuroscience/in-vivo
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1.4.3 Functional visual field assessment 

SAP threshold testing can cause fatigue and reduced reliability due to the time taken to 

complete, especially in those with advanced disease as it would take longer to reach 

endpoint. In addition, a trained operator must monitor the patient when performing 

SAP, which can be prohibitive when allocating resources. Based on histological analysis 

and glaucoma modelling, it has been estimated that up to 50% of the RGC may be 

damaged before a defect can be identified using SAP (Quigley et al., 1989, Kerrigan-

Baumrind et al., 2000, Harwerth & Quigley, 2006), hence early functional loss may be 

missed (Nouri-Mahdavi et al., 2011). 

It was originally thought that glaucoma preferentially damages large diameter retinal 

ganglion cells (Quigley et al., 1987, Kerrigan-Baumrind et al., 2000) namely M cells. 

However, studies reported that the apparent attenuation of large ganglionic fibres in 

glaucoma patients, is purely a result of shrinkage of the entire cell population, where 

morphological studies appear to support this claim (Morgan, 1994, Osborne et al., 1999, 

Morgan, 2002). Furthermore, recent research has cast doubt on the exclusive 

vulnerability of RGC with large somata to glaucoma, as it is now estimated that there are 

more than 30 different RGC types and research is still ongoing to ascertain the selectivity 

of cell loss (Santina & Ou, 2017). Nonetheless, knowledge that M cells were sensitive to 

high temporal frequency stimuli combined with reports that this method could 

potentially improve sensitivity to functional glaucomatous damage when compared to 

SAP (Tyler, 1981, Lachenmayr & Drance, 1992, Horn et al., 1997), led to many studies 

designing tests that employed stimuli that moved or flickered in some way at a high 

temporal frequency in an attempt to ‘isolate’ this magnocellular pathway. These studies 

found that by employing temporal modulation flicker, flicker sensitivity was reduced in 

those with glaucoma (Tyler, 1981, Kondo et al., 1998, Spry et al., 2005, Prokosch & Eter, 

2014, Reznicek et al., 2015, Horn et al., 2016).  

Frequency doubling perimetry has been incorporated into the Frequency Doubling 

Technology (FDT) perimeter and the subsequent Matrix perimeter. Psychophysical 
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investigations using a vertical sinusoidal grating that is flickered at a high frequency 

resulted in a frequency doubling phenomenon (Kelly, 1966). This method was originally 

thought to isolate a subpopulation of My cells from the magnocellular pathway, whereby 

these cells exhibited non-linear properties to increasing temporal frequency. However, 

it has been argued that this method may not be targeting a particular cell type (Johnson, 

1994, Sample et al., 2000, White et al., 2002a) and maybe even attributed to non-retinal 

mechanisms within the visual cortex (White et al., 2002b, Zeppieri et al., 2008). 

Nevertheless, whatever the exact mechanism, studies have found that frequency 

doubling perimetry could potentially detect glaucomatous field loss earlier than SAP, and 

possibly even predict future SAP defects (Medeiros et al., 2004, Kim et al., 2007, 

Leeprechanon et al., 2007, Fan et al., 2010, Liu et al., 2014), however this remains 

controversial (Patel et al., 2007, Redmond et al., 2013). Further details regarding the FDT 

stimuli are described in chapter 3. 

 

1.5 Detection of eye disease 

Eye diseases can be identified either by case-finding or formal screening programmes. 

Case-finding describes a process of opportunistic detection of disease, whereby the 

population screened is self-selected. By contrast, formal screening invites all participants 

who are considered to be at risk of developing a disease, by virtue of age or other risk 

factors. 

 

1.5.1 Screening 

The UK National Screening Committee (NSC) defines screening as “a process of 

identifying apparently healthy people who may be at increased risk of a disease or 

condition” (NSC, 2016), otherwise known as ‘targeted screening’; whereas a universal 

screening programme requires all individuals within a given population to be screened. 

It is recommended that screened individuals that have been identified at risk of disease, 
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are then “offered information, further tests and appropriate treatment to reduce their 

risk and/or any complications arising from the disease or condition” (NSC, 2016). The 

aims of both types of screening are similar, to detect the disease where subsequent 

treatment can be provided. 

When determining screening suitability, the condition must meet an eligibility criteria in 

order to be medically and financially acceptable. Criteria described by Wilson & Jungner 

(Wilson & Jungner, 1968) outlines the principles of screening that needs to be fulfilled 

(Table 1.2). This has defined the basis of preventive medicine and is largely considered 

the standards needed, by which screening tests are judged and determined (Sheehy et 

al., 2009). 

1. The condition being screened for should be an important health problem 

2. The natural history of the condition should be well understood 

3. There should be a detectable early stage 

4. Treatment at an early stage should be of more benefit than at a later stage 

5. A suitable test should be devised for the early stage 

6. The test should be acceptable 

7. Intervals for repeating the test should be determined 

8. Adequate health service provision should be made for the extra clinical 

workload resulting from screening 

9. The risks, both physical and psychological, should be less than the benefits 

10. The costs should be balanced against the benefits 

Table 1.2. The principles of screening criteria outlined by Wilson & Jungner (Wilson & 

Jungner, 1968). 

In the UK, the NSC is responsible for advising ministers and the National Health Service 

about screening and its implementation of screening programmes. They have 

established an internationally agreed set of criteria categorised by the condition, test, 

treatment and screening programme. In addition to the Wilson and Jungner criteria, they 
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recommend that a screening programme should be evidence-based; where high-quality 

randomised controlled trials have demonstrated a reduction in mortality and/or 

morbidity; offering of treatment policies; and evidence that the programme (test, 

diagnostic procedures, treatment/intervention) is clinically, socially and ethically 

acceptable to health professionals and the public (NSC, 2016). 

A clear benefit of screening is that it may reduce the risk of developing a condition, 

however it cannot offer a guarantee of protection, as there will always be an unavoidable 

number of false negative and positive results. Consequently, a false negative result 

would lead to false reassurance by both patients and clinicians and may even dissuade 

patients from returning for future screening tests. In the case of a false positive, the 

patient may experience anxiety and this would also impact the screening’s cost efficiency 

due to the unnecessary referral. Another problem of screening is the overall cost to 

society that includes; equipment, services, treatment and time taken off work for people 

to attend, where the allocated funds could be spent elsewhere. 

In response to the potential burdens of screening, analysis must be conducted to 

evaluate the cost-effectiveness of such programme which includes; screening and 

treatment costs per quality-adjusted life-year gained and years where sight is saved with 

respect to eyes, however even when provisionally costed, this is based on a number of 

assumptions. Targeted screening programmes developed to detect diabetic retinopathy 

(Javitt & Aiello, 1996, Jones & Edwards, 2010) were based on ideal levels of attendance 

and access to examination. Yet, data found that the screening coverage and attendance 

was below recommended levels for this disease (Millett & Dodhia, 2006, Paz et al., 2006, 

Saadine et al., 2008); as such this can have major financial consequences (Lawrenson et 

al., 2018). 
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1.5.2 Case-finding 

With the lack of available screening programmes, most posterior eye diseases are 

detected when the patient self-presents themselves to a medical practitioner, 

optometrist, or ophthalmic nurse in either a primary or secondary care setting. 

A general practitioner (GP) is typically the first point of care and treatment for medical 

concerns in the UK. In 2013 eye health accounted for 4.5 million GP consultations and 

cost the UK economy £22 billion (RCGP, 2016). However, a GP would not normally assess 

an asymptomatic eye due to either time constraints, lack of detailed ophthalmic 

knowledge and/or possess the necessary equipment for an in-depth ocular examination. 

Furthermore, non-specialist healthcare professionals may have a low threshold for 

referring patients to an optometrist or ophthalmologist (Hornby, 2013). 

Optometrists are primary healthcare practitioners of the eye and visual system, who 

provide comprehensive eye and vision care (WCO, 2018). As the major provider of 

primary eye care in the UK, optometrists play a key role in the opportunistic detection 

of both symptomatic and asymptomatic eye disease. It is well recognised that glaucoma 

is dependent on opportunistic case-finding amongst those attending for a routine eye 

examination (Lawrenson, 2013). When patients self-present for an eye examination in 

primary care, usually an optometrist would assess an at-risk glaucoma patient by 

examining the optic disc, LACD, measure visual fields and perform tonometry to measure 

the IOP and would refer cases of suspect glaucoma, usually to a glaucoma sub-specialist 

ophthalmologist. If glaucoma is detected early, subsequently cost savings could be 

realised as management costs are higher in those with advanced disease (Traverso et al., 

2005, Lee et al., 2006, Stein et al., 2012, Lorenz et al., 2013, Chan et al., 2014, Gazzard 

et al., 2019), although this could be offset if there are a high number of false positives. 

Optometrists have the necessary equipment and knowledge to provide some primary 

care ophthalmology services and their role has been systematically reviewed (Hawley, 

2011, Baker et al., 2016). Furthermore, optometrists are expanding their scope of 

practice by engaging in therapeutic prescribing and management of diseases in high 
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income countries (Krumholz et al., 2001, Roth, 2007, Needle et al., 2008). With the 

growing demand for eye care services and limited medical professionals providing 

ophthalmic services, it’s foreseeable that optometrists will play a greater role in the 

detection and management of eye diseases. 

 

1.6 United Kingdom 

In the UK it has been projected by 2035 the population over 75 years will increase to 8.9 

million, representing an 80% increase compared to 2010 (Rutherford, 2012). Population 

ageing is leading to substantial increases in visual impairment (Pezzullo et al., 2018); the 

burden of sight loss disproportionally affects the elderly with 1 in 5 people aged 75 or 

over (Evans & Rowlands, 2004), and 1 in 2 people aged 90 and over (RNIB, 2009). 

Currently, AMD is the largest cause of registration for sight impairment and severe sight 

impairment in England and Wales accounting for 52% and 42% respectively (Rees et al., 

2014). This is followed by glaucoma accounting for 8.4% sight impairment and 7.4% of 

severely sight impairment registrations (Bunce et al., 2010). The overall prevalence of 

late AMD is 2.4% in those aged 50 years or more, increasing to 12.2% in individuals 

greater than 80 years of age in the UK (Owen et al., 2003, Minassian & Reidy, 2009, Owen 

et al., 2012, Rudnicka et al., 2012). This equates to an estimated 513,000 people 

currently affected by late AMD, which is set to rise to 679,000 by 2020 (Owen et al., 

2012). In the UK the overall prevalence of POAG is 2.1%, where this increases from 0.3% 

in people aged 40 years to 3.3% in those aged 70 years and older and it is estimated that 

11,000 new cases are diagnosed annually (Burr et al., 2007). For PACG, prevalence in 

European‐derived populations aged 40 years and older is 0.4%, which corresponds to 

130,000 cases in the UK, and it is predicted to increase by 19% within the next decade 

due to increased longevity (Day et al., 2012). Recent projections have forecasted that 

from 2015 to 2035, there will be an almost 60% and 44% rise in late AMD and glaucoma 

cases in the UK, respectively (RCO, 2017a, RCO, 2017b). 
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1.7 Rationale 

Evidence has shown that 50% of sight loss could be avoided through improved eye care 

and early detection (RNIB, 2009). With slowly progressing eye diseases, medical 

consultation is usually sought when symptoms occur, which can result in irreversible 

structural and/or functional damage being observed on examination. As case-finding 

relies on self-presentation, diseases such as glaucoma or chronic retinal diseases 

requires awareness of the patient to attend routine eye examinations. Various public 

health campaigns have been successful in raising awareness of glaucoma within at-risk 

populations; but this has not necessarily translated into a change in health seeking 

behaviour by attending an optometrist for an eye examination (Baker & Murdoch, 2008). 

Therefore, newer strategies are needed in order to improve detection in order to reduce 

the risk of age-related sight loss.  

With the advent of new structural and visual function testing technologies, these devices 

could potentially improve detection in those at risk of visual impairment in their lifetime. 

For the detection of PACG, there are several tests that are currently available to identify 

those at-risk but there has been no systematic evaluation of their diagnostic accuracy in 

identifying the disease. Undetected glaucoma in those who have limited access to eye 

care remains to be problematic, where the risk of ocular morbidity is high. In addition, 

there is currently no individual test or group of tests that have shown to be superior for 

POAG screening in the general population (Mowatt et al., 2008, Geimer, 2013, Dabasia 

et al., 2015b). Successive surveys have found OCT gaining popularity with optometrists, 

where adoption has increased seven-fold within a decade (Myint et al., 2011, Dabasia et 

al., 2014b). However, at present there is a lack of evidence regarding the diagnostic 

benefit offered by OCT in case-detection in primary care in a range of age-related 

posterior segment diseases. 
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1.8 Aims of this thesis 

The primary aims of this thesis are: 

1. Conduct a systematic review and meta-analysis evaluating the diagnostic 

accuracy of non-contact methods for the detection of people at risk of primary 

angle closure glaucoma. 

 

2. Investigate the diagnostic accuracy of a newly developed test to detect primary 

open angle glaucoma and compare it with current screening technology.  

 

3. Determine the value of OCT when diagnosing posterior segment eye diseases by 

community optometrists. 
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Chapter 2: Non-contact methods for the detection of people at risk of 

primary angle closure glaucoma: a systematic literature review and meta-

analysis 

2.1 Introduction 

2.1.1 Background 

Glaucoma is the leading cause of irreversible blindness worldwide, the global prevalence 

of primary angle closure glaucoma (PACG) in a population aged 40 to 80 years is 0.5% 

(Tham et al., 2014). Although, globally open angle glaucoma is more common (3.0%) 

than PACG (Tham et al., 2014), PACG is more likely to result in bilateral blindness 

(Quigley, 1996, Resnikoff et al., 2004). It was estimated that PACG caused bilateral 

blindness in 3.9 million people in 2010, rising to 5.3 million by 2020 where it will account 

for 50% of global glaucoma blindness (Quigley & Broman, 2006).  

Primary angle closure is characterised by appositional or adhesional (synechial) 

narrowing and eventually occlusion of the drainage angle in the anterior chamber of the 

eye, resulting in elevated intraocular pressure (IOP) and optic neuropathy. If the 

occlusion occurs rapidly with symptomatic IOP elevation, this is termed acute angle 

closure (AAC) where patients are treated medically followed by laser peripheral 

iridotomy (LPI), where the fellow eye is also prophylactically treated using LPI (Emanuel 

et al., 2014). Alternatively, angle closure may develop insidiously with chronically raised 

IOP that is often asymptomatic. If not treated, the increased IOP leads to damage to 

retinal ganglion cells and glaucomatous optic neuropathy, otherwise known as PACG. In 

those presenting with PACG, a recently published multicentred randomised controlled 

trial has provided evidence that clear lens extraction is associated with better clinical 

and patient-reported outcomes than LPI and may therefore be a better first-line 

treatment option (Azuara-Blanco et al., 2016b). With timely detection in those with an 

anatomically narrow anterior chamber angle (ACA), the risk of further occlusion, 

subsequent PACG and blindness can be reduced with appropriate treatment. 
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2.1.2 Gonioscopy 

Gonioscopy is the acknowledged reference standard for the assessment of the ACA 

(Prum et al., 2016, EGS, 2017, NICE, 2017). Gonioscopy should be performed on both 

eyes in any individual with suspected angle closure. Dynamic assessment can be 

performed and is helpful in distinguishing irido-trabecular contact (ITC) from peripheral 

anterior synechiae (PAS) using a four-mirror lens, which is applied to the cornea creating 

pressure via the gonio-lens. There are several grading systems that are used to 

document the angle viewed on gonioscopy, commonly used schemes are the Shaffer, 

Scheie and Spaeth. The Shaffer grading system (Shaffer, 1960) is the most widely 

adopted ACA classification scheme, this records the ACA width in four quadrants, from 

grade 0 (closed) to grade 4 (wide open) (Figure 2.1). Angle morphology can be described 

using the Scheie grading system (Scheie, 1957). This scheme describes the angle 

according to the anatomical structures observed (grade IV: Schwalbe’s line not visible; 

grade III: Schwalbe’s line visible; grade II: anterior trabecular meshwork visible; grade I: 

visible scleral spur; and grade 0: ciliary body band visible). The Spaeth classification is the 

most detailed of the three grading systems where this allows grading of the geometric 

angle, iris profile and level of iris insertion (Spaeth, 1971).  

 

Figure 2.1. Shaffer grading of the angle width using gonioscopy. This figure was 

published with permission from Elsevier (Kanski, 2003). 
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The clinical course of PACG has been described in a modern International Society 

Geographical & Epidemiological Ophthalmology (ISGEO) classification scheme for use in 

prevalence surveys and epidemiological research (Foster et al., 2002). This identifies 

three stages in the natural history of angle closure from initial ITC to anterior segment 

signs of disease (raised IOP, peripheral anterior synechiae, or both), culminating in 

glaucomatous optic neuropathy.  

1. Primary angle closure suspect (PACS): an eye in which appositional contact 

between the peripheral iris and posterior trabecular meshwork (irido-trabecular 

contact) is considered in two or more quadrants, in dark room conditions using 

static gonioscopy. 

 

2. Primary angle closure (PAC): an eye with an occludable drainage angle and 

features indicating that trabecular obstruction by the peripheral iris has 

occurred, such as PAS, elevated IOP (>21 mmHg), iris whorling (distortion of the 

radially orientated iris fibres), glaucomfleken lens opacities or excessive pigment 

deposition on the trabecular surface. There is no evidence of glaucomatous optic 

neuropathy or associated glaucomatous field loss. 

 

3. Primary angle closure glaucoma: signs of PAC as described above and evidence 

of glaucomatous optic neuropathy. 

 

2.1.3 Incidence and prevalence 

Longitudinal incidence studies are helpful in understanding the natural history and 

causes of a disease. Longitudinal studies in those with no previous diagnosis of angle 

closure have found different rates of development. A study of an Mongolian population 

aged 50 years and older, found a PACS incidence of 20.4% among participants with a 

central anterior chamber depth (ACD) of <2.53 mm over 6 years (Yip et al., 2008) and a 

10 year follow up study in an urban Chinese population aged 50 years and older found 

the cumulative incidence of PACS was 16.9% (Wang et al., 2019). For those with 
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established angle closure, a 5-year Indian cohort study found 22% of those with PACS 

progressed to PAC and 28.5% of those with PAC converted to PACG (Thomas et al., 2003). 

Among Inuit individuals with a shallow anterior chamber, 16% developed PACG at a 10-

year follow-up visit (Alsbirk, 1992). Among 129 primary angle closure suspects (94% 

Caucasian), 19.4% developed a study endpoint during a mean 2.7-year follow-up in a 

clinical setting (Wilensky et al., 1993). However, in a community cohort of 485 Chinese 

individuals with PACS, only 4.1% progressed to PACG over 6 years of follow-up (Ye et al., 

1998). Furthermore, a recent study in another Chinese population aged 50-70 years, 

found that only 4.8% of those with untreated PACS converted to PAC/AAC over 6 years 

(He et al., 2019). However, differences found may be attributed to the different 

populations studied, sample sizes used, and the definitions used to define angle closure. 

The prevalence of PACG varies across geographic regions and ethnic groups, the 

prevalence of PACG is highest in Asia (1.09%), where more than three-quarters of those 

affected with PACG reside (Tham et al., 2014). Another review reported a lower PACG 

pooled prevalence of 0.75% in Asia, however they noted an increased prevalence in 

those aged 70 years or older of 2.32% (Cheng et al., 2014). The prevalence of PACG in 

African and European populations are lower than the values found in Asia, where the 

later population was found to have a prevalence of approximately 0.4% (Day et al., 2012, 

Tham et al., 2014).  

 

2.1.4 Target condition 

Many population-based surveys have adopted the ISGEO classification. In practice, a key 

issue is the definition of a narrow (occludable) angle (Sun et al., 2017). While the ISGEO 

classification is comprehensive, it has been argued that this definition would still exclude 

many people deemed at risk of developing angle closure glaucoma, such as those with 

less than 180 degrees of irido-trabecular contact, appositional angle closure or primary 

PAS (Foster et al., 2002). An alternative term that has been suggested for clinicians was 

a ‘narrow angle,’ this would indicate those at risk of the disease where they would have 
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an anatomical predisposition to angle closure using gonioscopy (Weinreb, 2006). For the 

purpose of this review, we have defined the target condition of a narrow angle using 

gonioscopy as either: 

1. An eye with any appositional contact between the peripheral iris and posterior 

trabecular meshwork in two or more quadrants (≥180 degrees); or 

2. An eye with or at risk of angle closure as judged by a trained and experienced eye 

care professional using gonioscopy with or without indentation. 

Currently, narrow angles are typically diagnosed by opportunistic case-finding, where 

patients present in either primary or secondary care to a healthcare practitioner with an 

ophthalmic subspecialty using gonioscopy. While gonioscopy is the current reference 

standard to diagnose a narrow angle, this technique is not routinely performed outside 

of a specialist setting. Furthermore, it is not ideal for angle closure screening since its 

invasive, time consuming and requires a high level of skill that can result in moderate 

agreement even amongst expert clinicians (Foster et al., 1996, Foster et al., 2000a, Aung 

et al., 2001). In addition, gonioscopic interpretation can be affected by gonio-lens 

pressure, direction of gaze, lighting and patient co-operation (Forbes, 1966, Sakata et 

al., 2008). Therefore, other approaches need to be considered when working outside a 

traditional ophthalmic environment.  

 

2.1.5 Index tests  

There have been various anatomical and demographic risk factors identified for PAC 

(Lowe, 1970, Congdon et al., 1996, Weinreb, 2006). Anatomical risk factors include a 

shallow ACD, thickening of the crystalline lens, lens vault, small corneal diameter, 

hyperopia and a short axial length (Nolan et al., 2006). Major demographical risks factors 

include older age and female gender (Weinreb, 2006). Also, those of Inuit and Asian 

ancestry are of greater risk of angle closure (Clemmesen & Alsbirk, 1971, Drance, 1973, 

Tham et al., 2014), where it is thought that those of Chinese origin have a greater 
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shallowing of the anterior chamber with age than Europeans or Africans (Wojciechowski 

et al., 2003). Furthermore, all the prior risk factors have been associated with a shallower 

ACD. It is thought that this anatomical shallowing of the anterior chamber depth is the 

highest risk factor in most ethnic groups for the development to angle closure glaucoma 

(ACG) (Nolan et al., 2006). Studies that have evaluated PACG screening have established 

the effectiveness of measuring anterior chamber dimensions to identify occludable 

angles (Congdon et al., 1996, Devereux et al., 2000, Kurita et al., 2009). As gonioscopy is 

not routinely done in a primary setting, a variety of non-contact devices with varying 

degrees of sophistication have been developed to evaluate the risk of angle closure that 

can measure the ACD, ACA, or both. 

Anterior Segment Optical Coherence Tomography 

Anterior Segment Optical Coherence Tomography (AS-OCT) allows both qualitative and 

quantitative analysis of the angle. This technique is based on low-coherence 

interferometry whereby the delay and intensity of light reflected from the ocular tissue 

structures is measured. There are currently several optical coherence tomography (OCT) 

devices that can measure the anterior chamber; depending on the device, they use one 

of the following domains to obtain clinical data: time-domain, spectral-domain or the 

more recent swept-source domain method that may or may not require a special lens 

adapter. Spectral and swept-source domain methods have a higher scan speed and axial 

resolution than time-domain methods. While a wavelength of approximately 830nm is 

required to image the posterior segment, a longer wavelength of 1310nm is used to 

image the anterior segment where inbuilt software can be used to quantitatively assess 

the angle parameters, which include: the trabeculo-iris space area (TISA), angle recess 

area (ARA) and angle opening distance (AOD) (Quek et al., 2011) as well as ACD and ACA 

(Figure 2.2). Qualitative interpretation by a clinician has been typically defined by 

contact between the peripheral iris and any part of the angle wall anterior to the scleral 

spur (Figure 2.3). Studies state different AODs of 500 or 750 microns in the detection or 

diagnosis of narrow angles or an ACA of less than 20 degrees (Smith et al., 2013). 
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However, there is no current consensus on any parameter with its associated cut-off to 

identify a narrow angle. 

 

Figure 2.2. AS-OCT image illustrating areas of measurement with respect to ACD and 

ACA. Image sourced from (Kim et al., 2011). 

 

 

Figure 2.3. Qualitative interpretation of AS-OCT output. The red circle shows a closed 

angle and the white circle highlights a narrow angle. Image adapted from (Angmo et 

al., 2016). SS: Scleral Spur. 
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Scheimpflug photography 

The Scheimpflug principle is used to correct perspective distortion in aerial photographs 

and has been adapted for ocular imaging. The Oculus Pentacam (Oculus, Wetzlar, 

Germany) device employs this principle using monochromatic blue light at a wavelength 

of 475nm. By rotating the apparatus around the optical axis of the eye, a series of radially 

oriented images are generated in three dimensions around 360 degrees of the anterior 

segment. Between 12 and 50 real-time sections from the anterior surface of the cornea 

to the posterior vertex of the lens are acquired within a 2 second acquisition frame. This 

generates a set of measurements that provide a detailed description of the biometric 

configuration of the anterior segment, which includes the ACA, ACD and the anterior 

chamber volume (ACV) (Figure 2.4). When calculating the ACA, it should be noted that 

this is not a direct measurement but is extrapolated from the measurements taken. 

Currently, there is no consensus on which parameter or cut-off value that should be used 

for the determination of a narrow angle.  

 

Figure 2.4. Image of Pentacam image capture. Reproduced with permission of OCULUS.  
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Scanning Peripheral Anterior Chamber Depth Analyser  

Scanning Peripheral Anterior Chamber Depth Analyser (SPAC) is an objective method for 

measuring the peripheral ACD by automatically taking 21 slit lamp images of the anterior 

chamber using a 1 mm-wide slit at 0.4-mm intervals from the optical axis towards the 

limbus (Kashiwagi et al., 2006). These measurements are compared to a normative 

database and converted into a numerical scale ranging from 1 to 12, with 12 

representing the deepest ACD. In addition, the output provides a categorical grading (as 

a suffix to the numerical grade) reporting the risk of angle closure: S (suspect angle 

closure), P (potential angle closure) and no suffix (normal). The device has been shown 

to be reproducible and easy to operate, therefore making it suitable for use by non-

clinicians (Kashiwagi et al., 2004). 

Limbal anterior chamber depth assessment (van Herick technique) 

The van Herick technique is used to assess the anterior chamber depth at the limbus 

using a slit lamp bio-microscope (Van Herick et al., 1969). The illumination system is set 

at 60 degrees from the observation system. A focused vertical slit-beam is positioned at 

the limbus and moved just onto the cornea until the beam separates into a corneal 

section and reflection of the beam onto the iris. An estimate of the thickness of the dark 

space between the beams (which corresponds to the limbal anterior chamber depth 

(LACD)) is recorded as a fraction (or percentage) of the corneal section thickness over 

the central portion of the beam. Van Herick originally described a four-point grading 

scheme (Van Herick et al., 1969), which was extended to a seven-point scale by Foster 

et al (Foster et al., 2000a). Foster and colleagues used an intuitive percentage scale, in 

an effort to improve the precision of the measurement. Van Herick et al considered that 

an eye with a LACD of grade 2 or less required gonioscopy (≤25%) (Figure 2.5) and that a 

grade 1 angle (<25%) was at a high risk of angle closure. Foster et al, further subdivided 

grade 1 into 5% and 15% cut-off values and found that the augmented scale was 

associated with improved test accuracy. Table 2.1 describes the van Herick grading with 

the 7-point grading system described by Foster and colleagues. 
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van Herick Grade 
Corneal section 

thickness (fraction) 
Corneal section thickness 
(extended percentages) 

Grade 1 <1/4 0%, 5% 15% 

Grade 2  1/4 25% 

Grade 3 >1/4 to 1/2 40%, 75% 

Grade 4 ≥1 ≥100% 

Table 2.1. Van Herick grading using the traditional four-point system alongside the 

modified seven-point LACD grading. 

 

Figure 2.5. Limbal chamber depth grade 2 (25%) of peripheral corneal thickness. 

Reproduced from (Foster et al., 2000a) with permission from BMJ publishing group Ltd. 

 

Flashlight 

The flashlight test is an accessible screening method if no other equipment is available. 

The test can be carried out in a primary or secondary care setting and involves shining a 

pen torch from the temporal limbus parallel to the iris to assess the ACD. Quantitative 

grading uses a 4 point scale that corresponds to the proportion of the nasal iris in shadow 

from the pen torch, between the limbus and the pupillary edge (Vargas & Drance, 1973) 

(grade 4=minimal/none of the nasal iris in shadow to grade 1=nasal iris is in complete 

shadow); grade 1 is associated with a high risk of angle closure (Figure 2.6b). Qualitative 
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grading can also be used to describe the amount of shadow falling on the iris as shallow, 

medium or deep which is further described by He and colleagues (He et al., 2007). 

Figures 2.6a and 2.6b, a) left image: flashlight shone from the temporal limbus showing 

a deep anterior chamber with no nasal shadow (grade 1) and b) right image: a shallow 

anterior chamber with the nasal iris in complete shadow. Reproduced from (Gracitelli 

et al., 2014) with permission from Springer Nature. 

 

2.1.6 Clinical pathway 

With the high prevalence of PAC and the burden of blindness attributable to PACG in 

high-risk populations, this opens up the possibility of using non-contact devices for 

population or opportunistic screening (Nolan et al., 2003, Nolan et al., 2006). Non-

invasive assessment of the dimensions of the anterior chamber depth and/or angle are 

part of a standard ophthalmic examination (Figure 2.7). If the screening test is positive 

such individuals are identified as being 'at-risk' then the patient is referred for further 

assessment, usually to a glaucoma sub-specialist ophthalmologist or specialist 

optometrist. The clinician will then carry out gonioscopy (the reference standard for 

qualitative and quantitative assessment of the ACA) and further tests such as IOP 

measurement by Goldmann Applanation Tonometry, optic nerve head examination and 

automated threshold visual field testing to diagnose PACS/PAC/PACG. Depending on the 
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clinical presentation, the affected individual may be monitored or undergo medical 

and/or surgical treatment. 

 

Figure 2.7. Clinical pathway. 

 

2.1.7 Rationale 

Non-contact screening tests are relatively quick and can be carried out by appropriately 

trained healthcare professionals or technicians as a triage test when screening or case-

finding, to identify eyes at risk of angle closure. These non-contact tests cannot replace 

gonioscopy as they do not provide sufficient information on the ACA anatomy (Smith et 

al., 2013). However, in cases, when gonioscopy is not possible or fails to visualise the 

anterior chamber configuration/depth, some of these techniques (AS-OCT) can be used 



52 
 

to measure the area of interest (Kang et al., 2013) or can be used as an alternative (LACD) 

to facilitate in the diagnosis of glaucoma (NICE, 2017). Furthermore, objective devices 

such as AS-OCT and Scheimpflug photography can be used to supplement existing clinical 

documentation by providing objective measurements (Smith et al., 2013). 

At present, there are no screening programmes specifically designed for PACG detection. 

In the United Kingdom (UK) and Finland, costed population-based screening 

programmes for primary open angle glaucoma (POAG) were found not to be cost-

effective, but screening may be more effective if targeting at-risk populations (Burr et 

al., 2007, Vaahtoranta-Lehtonen et al., 2007, Hernández et al., 2008). While PACG is less 

prevalent than POAG in patients of European ancestry, it is unlikely that screening at 

present would be cost-effective in this population, however in the UK, ACG is predicted 

to increase by 19% within the next decade due to increased longevity (Day et al., 2012). 

Additionally, in countries where PACG prevalence is higher, the risk of blindness presents 

a potential problem, for example in China, PACG accounts for 91% of bilateral glaucoma 

blindness (Foster & Johnson, 2001). Therefore, screening those who are at risk of PACG 

may prove cost-effective and could play an important role in identifying and treating 

those early to prevent blindness. Presently, there is a lack of high-quality evidence on 

the value of non-invasive screening methods to detect those at risk of PACG. Such data 

could be potentially used to inform future economic models in determining the cost 

effectiveness of screening and/or clinical guidelines.  

The primary objective of this systematic review was to determine the diagnostic 

accuracy of non-contact screening methods for identifying eyes with a narrow angle. 

Secondary objectives included; the comparison of non-contact screening tests, assessing 

the accuracy of each test for detecting the most severe referable condition or PACG 

(versus PAC, PACS or a non-occludable angle) and to explore potential causes of 

heterogeneity in diagnostic accuracy. 
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Study Contributions 

Title registration and drafting of the Cochrane protocol was completed by Anish Jindal 

(AJ). Electronic searches of the databases were performed by Iris Gordon (IG). Assessment 

of the studies for inclusion and exclusion were conducted by AJ and Irene Ctori (IC). Risk 

of bias, data extraction, data entry and authoring of the first draft of the Cochrane review 

was undertaken by AJ and John Lawrenson (JL). The statistical methods section and 

analysis was completed by Ersilla Lucenteforte (EL). Comments of the text were reviewed 

by AJ, JL, IC, EL and Gianni Virgili.  
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2.2 Methods 

2.2.1 Inclusion criteria 

Non-contact methods for the detection of narrow angles are mainly of interest in 

screening and primary-care settings as a triage test, aiming to guide referrals to 

ophthalmologists, however the overall accuracy of these tests is not known in any care 

setting. We therefore included all prospective and retrospective cohort studies ('single-

gate' design) and case-control studies ('two-gate' design) that were conducted in either 

primary or secondary care; where the accuracy of the non-contact method for 

diagnosing a narrow angle was compared to a gonioscopic reference standard. Studies 

that compared each method separately and studies that compared more than one 

method, to the reference standard in the same population were included. Participants 

in these studies received all the tests or were randomised to receive different tests. We 

included studies that provided sufficient data to allow the calculation of sensitivity and 

specificity.  

Participants  

Participants who met the inclusion criteria for studies conducted in any setting, which 

evaluated any of the index tests against the reference standard. 

Index tests  

The non-contact methods that were assessed were: flashlight, LACD using the van Herick 

technique, SPAC, Scheimpflug photography and AS-OCT. 

Target condition  

A narrow angle, as a referable condition that can include PACS, PAC or PACG, as 

described earlier. 
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Reference standard 

Gonioscopy was the reference standard for the diagnosis of a narrow angle. When the 

information was available, we further classified a narrow angle into one of three 

subgroups PACS, PAC, PACG, if the following measurements have been taken; IOP 

measurement, visual field assessment and optic disc examination. 

 

2.2.2 Search methods for identification of studies  

The Cochrane Eyes and Vision Information Specialist (IG) searched the following 

electronic databases. Cochrane Central Register of Controlled Trials, Health Technology 

Assessment Database, MEDLINE Ovid, Embase Ovid, BIOSIS, System for Information on 

Grey Literature in Europe (OpenGrey), Aggressive Research Intelligence Facility 

database, ISRCTN registry, US National Institutes of Health Ongoing Trials Register and 

World Health Organisation International Clinical Trials Registry Platform. There were no 

language or publication year restrictions imposed. Searches were conducted on the 

reference lists of included studies to identify further studies. We did not hand search 

journals or conference proceedings.  

 

2.2.3 Selection of studies  

Two review authors (AJ and IC) independently screened the titles and abstracts of all 

studies identified by the electronic searches. Each record at this stage was labelled as 

"definitely relevant", "possibly relevant" or "definitely not relevant." Records labelled as 

"definitely not relevant" by both review authors were excluded. A pilot stage was 

completed where both authors screened 100 titles independently then discussed any 

inconsistencies in labelling to reduce potential disagreements. After the pilot, all titles 

and abstracts were screened and disagreements were resolved by discussion at the end 

of the screening process. 
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Full text reports of records labelled as "definitely relevant" or "possibly relevant" were 

retrieved and the two reviewers independently assessed whether these met the 

inclusion criteria. Agreements on inclusion were reached by consensus and 

disagreements were resolved by the involvement of a third reviewer (JL).  

 

2.2.4 Data extraction and management  

Two review authors (AJ and JL) independently extracted the following data from the 

included studies regarding the characteristics of each study (see Appendix 1a) and where 

possible: the number of true positives, false positives, true negatives and false negatives 

using 2x2 contingency tables. From the 2x2 tables, sensitivity (true positive rate) and 

specificity (true negative rate) with 95% Confidence Intervals (CI) were calculated.  

One review author entered data into Review Manager 5 (RevMan) (RevMan, 2015) and 

a second review author verified the entered data. Independent data extraction was 

piloted on 5 studies, modifications were then made to streamline the extraction process 

to improve consistency and translation of data into RevMan. We resolved any 

disagreement when presented through discussion. AJ contacted the study investigators 

if there was missing data or for clarification, a two weeks allowance was given for a 

response. If there was no response, data extraction proceeded using the information 

available via the published reports.  

 

2.2.5 Assessment of methodological quality  

Two review authors (AJ and JL) independently assessed each included study for risk of 

bias using the Quality Assessment of Diagnostic Accuracy Studies tool (QUADAS-2) to 

assess the susceptibility to bias of the included studies, based on guidance (Whiting et 

al., 2011). Assessment of each study was conducted and judged each bias criterion to be 

at 'high', 'low' or 'unclear' risk of bias (lack of information or uncertainty over the 
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potential for bias). Concerns regarding applicability in studies that included patients that 

had a previous diagnosis of a narrow angle were rated as ‘high’ (Table 2.2). 

 

2.2.6 Statistical analysis and data synthesis  

We extracted and analysed the available data at fixed thresholds for each index test, in 

order to ease the interpretability of our summary measures of accuracy. Our preferred 

thresholds were: 

• Flashlight technique: grades 1 and 2. 

• LACD using the van Herick technique: percentages or van Herick grades 1 and 2 

(≤25%). 

• SPAC: categorical grading of suspect angle closure or potential angle closure and 

numerical grading, as provided by the device. 

There is no current consensus regarding thresholds for Scheimpflug photography and 

AS-OCT, data was extracted using reported thresholds, where a 2x2 diagnostic table 

could be constructed. 

When four or more studies provided data at fixed thresholds; a bivariate model was 

fitted by a statistician (EL) using the metaDAS macro in SAS to provide summary point 

estimates of sensitivity and specificity. For all index tests, comparisons of diagnostic 

accuracy were made with the threshold that yielded the highest diagnostic odds ratio 

(DOR) for each test. DOR summarises the diagnostic accuracy of the index test as a single 

number that describes how many times higher the odds are of obtaining a test positive 

result in a diseased rather than a non‐diseased person, were it depends significantly on 

the sensitivity and specificity of a test (Šimundić, 2009, Macaskill et al., 2010). We also 

reported positive predictive values (PPV) and negative predictive values (NPV) in relation 
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to disease prevalence with regards to the estimations of test accuracy, as these are 

useful measures of test performance for population screening. 

Since narrow angles are often bilateral, this complication may result in unit of analysis 

issues. We included studies that evaluated only one eye of each participant or, in 

participants with two affected eyes, studies that randomly selected only one eye. We 

also included studies that pooled data from both eyes in the review, however we 

acknowledge that these studies would suffer from unit of analysis issues that would 

overestimate the precision in test accuracy, but this was controlled in some cases. 

 

2.2.7 Investigations of heterogeneity and sensitivity analysis  

Initial investigation of heterogeneity in sensitivity and specificity was performed by 

visual inspection of the forest plots. Formal analysis was planned (Jindal et al., 2018) 

using the following study-level covariates: study design (e.g. single-gate and two-gate 

designs); diagnostic reference thresholds (gonioscopy grading (e.g. number of quadrants 

occluded)); and characteristics of the study population (e.g. high versus low prevalence, 

ethnicity) for the diagnostic tests. 

A sensitivity analysis was also planned to assess the impact of risk of bias on test accuracy 

by repeating the analysis after removing studies at high risk of bias. Subgroup analysis 

was proposed to compare the accuracy of each test between healthcare settings, as well 

as test performance to detect the most severe referable condition or PACG (versus PAC, 

PACS or non-occludable angle). 
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DOMAIN LOW HIGH UNCLEAR 

PARTICIPANT SELECTION 
Describe methods of participant selection; describe included participants (prior testing, 

presentation, intended use of index test and setting) 

Was a consecutive or 
random sample of 

participants enrolled? 

Consecutive sampling or random 
sampling of people according to 

inclusion criteria 

Non-consecutive cohort of 
referrals (from primary care) or 
(in screening setting) sampling 

based on volunteering or 
referral 

Unclear whether 
consecutive or 

random sampling 
used 

Was a case-control design 
avoided? 

No selective recruitment of 
people with or without narrow 
angles, or nested case-control 

designs (systematically and 
randomly selected from a defined 

population cohort) 

Selection of either cases or 
controls in a predetermined, 

non-random fashion; or 
enrichment of the cases from a 

selected population 

Unclear selection 
mechanism 

Did the study avoid 
inappropriate exclusions? 

Exclusions are detailed and felt to 
be appropriate (e.g. people with 

corneal opacities, ocular 
malformation causing bulbar 

derangement) 

Inappropriate exclusions are 
reported (e.g. people with 

borderline index test results) 

Exclusions are not 
detailed (pending 
contact with study 

authors) 

Risk of bias: could the 
selection of participants 
have introduced bias? 

All signalling questions = ‘Yes’ Any signalling question = ‘No’ Unclear 

Concerns regarding 
applicability: are there 

concerns that the included 
participants do not match 

the review question? 

Inclusion of participants without 
a previous diagnosis of a narrow 

angle 

Inclusion of participants with a 
previous diagnosis of a narrow 

angle 

Unclear inclusion 
criteria 

INDEX TEST Describe the index test and how it was conducted and interpreted 

Were the index test results 
interpreted without 

knowledge of the results of 
the reference standard? 

Test performed blinded or 
independently and without 

knowledge of reference standard 
results are sufficient and full 

details of the blinding procedure 
are not required; or clear 

temporal pattern to the order of 
testing that precludes the need 

for formal blinding 

Reference standard results 
were available to those who 
conducted or interpreted the 

index tests 

Unclear whether 
results are 
interpreted 

independently 

If a threshold was used, 
was it prespecified? 

The study authors declare that 
the selected cut-off used to 

dichotomise data was specified a 
priori; or a protocol is available 

with this information 

A study is classified at higher 
risk of bias if the authors define 

the optimal cut-off post hoc, 
based on their own study data 

No information on 
preselection of index 

test cut-off values 

Risk of bias: could the 
conduct or interpretation 

of the index test have 
introduced bias? 

All signalling questions = ‘Yes’ Any signalling question = ‘No’ Unclear 

Concerns regarding 
applicability: are there 

concerns that the index 
test, its conduct or 

interpretation differ from 
the review question? 

Tests used and testing procedure 
clearly reported and tests 

executed by personnel with 
sufficient training 

Tests used are not validated or 
study personnel was 
insufficiently trained 

Unclear execution of 
the tests or unclear 

study personnel 
profile, background 

and training 

Table 2.2. Guidance for QUADAS-2 assessment of risk of bias. 
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DOMAIN LOW HIGH UNCLEAR 

REFERENCE STANDARD Describe the reference standard and how it was conducted and interpreted 

Is the reference standard 
likely to correctly classify 

the target condition? 
Not applicable. Score ‘Yes’ for all studies 

Were the reference 
standard results 

interpreted without 
knowledge of the results of 

the index test? 

Reference standard performed 
blinded or independently and 

without knowledge of index test 
results are sufficient and full 

details of the blinding procedure 
are not required; or clear 

temporal pattern to the order of 
testing that precludes the need 

for formal blinding 

Index test results were 
available to those who 

conducted the reference 
standard 

Unclear whether 
results were 
interpreted 

independently 

Risk of bias: could the 
reference standard, its 

conduct or its 
interpretation have 

introduced bias? 

All signalling questions = ‘Yes’ Any signalling question = ‘No’ Unclear 

Concerns regarding 
applicability: are there 

concerns that the target 
condition as defined by the 

reference standard does 
not match the review 

question? 

Not applicable. Score ‘Low’ for all studies 

FLOW AND TIMING 
Describe any participants who did not receive the index test(s) or reference standard, 

or either, or who were excluded from the 2x2 table; describe the time interval and any 
interventions between index test(s) and reference standard 

Was there an appropriate 
interval between index 
test(s) and reference 

standard? 

No more than three months 
between index and reference test 

execution 

More than three months 
between index and reference 

test execution 

Unclear whether test 
results were 

executed within 
three months 

Did all participants receive 
a reference standard? 

All participants receiving the 
index test were verified with the 

reference standard 

Not all participants receiving 
the index test were verified 
with the reference standard 

Unclear whether all 
participants receiving 
the index test were 

verified with the 
reference standard 

Did all participants receive 
the same reference 

standard? 
Not applicable. Score ‘Yes’ for all studies 

Were all participants 
included in the analysis? 

The number of participants 
included in the study match the 

number in the analysis 

The number of participants 
included in the study does not 

match the number in the 
analysis 

Insufficient 
information on 

whether the number 
of participants 

included in the study 
matches the number 

in the analysis 

Risk of bias: could the 
participants' flow through 
the study have introduced 

bias? 

All signalling questions = ‘Yes’ Any signalling question = ‘No’ Unclear 

Table 2.2 (continued). Guidance for QUADAS-2 assessment of risk of bias. 
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2.3 Results 

2.3.1 Results of the search and characteristics of included studies 

Searches of the literature were conducted on the 10th of November 2017. The electronic 

searches yielded 5844 records, the Cochrane Information Specialist removed 2246 

duplicate records and we screened the titles and abstracts of the remaining 3598 

records. We obtained full‐text reports of 142 references for further assessment and 

excluded 99 reports (Figure 2.8). We identified 43 reports of 38 studies (see Appendix 

1b for full characteristics of the included studies) that met the inclusion criteria and 

provided data from 19,425 participants for quantitative analysis. Fifteen of the included 

studies were cohort studies, 13 were cross-sectional and 10 used a case‐control design. 

Most studies were conducted in Asia (29, 76.3%), followed by Europe (4, 10.5%), North 

America (2, 5.2%), South America (2, 5.2%) and Africa (1, 2.6%). Over half the studies 

(23, 60.5%) were conducted in a secondary care setting, with the remainder in a 

community setting (Table 2.3). The sample size ranged from 24 to 2052 patients (median 

201) with most studies enrolling one eye per person (26, 68%) (see Appendix 1c, for 

demographics of the included studies).  

Twenty-three studies assessed AS-OCT (13,335 patients), 14 studies LACD (6257 

patients), 7 studies Scheimpflug photography (974 patients), 6 studies SPAC (5239 

patients) and 5 studies evaluated the flashlight test (974 patients). Twenty-four of the 

studies evaluated a single index test and the remainder evaluated two or more tests on 

the same population. For the gonioscopic reference standard, 34 studies reported either 

the number of quadrants or degrees occluded, 2 studies used unique definitions such as 

the mean of four quadrants or an ACA angle less than 20 degrees in one quadrant and 1 

study used the clinician’s subjective opinion of occludability. The gonioscopic reference 

criterion was unclear in one study (Table 2.4). 
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Figure 2.8. Flow diagram. 
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Study Identification Study design Country Setting Recruitment 

(Alonso et al., 2010) Cohort Brazil Secondary NR 

(Andrews et al., 2012) Case-control China Secondary Consecutive 

(Ashaye, 2003) Cohort Nigeria Secondary Consecutive 

(Baskaran et al., 2007) Cohort Singapore Secondary Consecutive 

(Baskaran et al., 2012) Cohort Singapore Secondary Consecutive 

(Campbell et al., 2015) Cohort UK Primary Triaged 

(Chang et al., 2011) Cross-sectional Singapore Primary Consecutive 

(Congdon et al., 1996) Cross-sectional Taiwan Primary Consecutive 

(Dabasia et al., 2015a) Case-control UK Secondary NR 

(Foster et al., 2000a) Cross-sectional Mongolia Primary Consecutive 

(Gracitelli et al., 2014) Cohort Brazil Secondary NR 

(Grewal et al., 2011) Cohort India Secondary Consecutive 

(He et al., 2007) Case-control China Primary Random 

(Hong et al., 2009) Case-control Korea Secondary NR 

(Khor et al., 2010) Cross-sectional Singapore Primary Consecutive 

(Kim et al., 2014) Case-control Korea Secondary Consecutive 

(Ko et al., 2015) Cross-sectional Taiwan Primary Random 

(Kurita et al., 2009) Cohort Japan Secondary Consecutive 

(Lavanya et al., 2008) Cross-sectional Singapore Primary Consecutive 

(Melese et al., 2016) Case-control USA Secondary NR 

(Narayanaswamy et al., 2010) Cross-sectional Singapore Primary Consecutive 

(Nolan et al., 2006) Cross-sectional Singapore Secondary Consecutive 

(Nolan et al., 2007) Case-control Singapore Secondary NR 

(Nongpiur et al., 2011) Case-control Singapore Secondary NR 

(Okabe et al., 1991) Cross-sectional Japan Primary Random 

(Park et al., 2011) Cohort Korea Secondary Consecutive 

(Radhakrishnan et al., 2005) Case-control USA Secondary NR 

(Rossi et al., 2012) Case-control Italy Secondary Consecutive 

(Sakata et al., 2010) Cohort Singapore Secondary Consecutive 

(Tan et al., 2012) Cross-sectional Singapore Primary Consecutive 

(Thomas et al., 1996) Cohort India Secondary Consecutive 

(Tun et al., 2017) Cohort Singapore Secondary Consecutive 

(Wirbelauer et al., 2005) Cohort Germany NR NR 

(Wong et al., 2009a) Cohort Singapore Secondary Consecutive 

(Wong et al., 2009b) Cohort Singapore Secondary Consecutive 

(Wu et al., 2011) Cross-sectional Singapore Primary Consecutive 

(Yu et al., 1995) Cross-sectional China Primary Random 

(Zhang et al., 2014) Cross-sectional China Primary Consecutive 

Table 2.3. Study design and recruitment method of the included studies. NR: Not 

recorded.  



64 
 

Study Identification Tests and Thresholds evaluated Target condition 
Gonioscopic 
occlusion 
(No. degrees) 

Alonso 2010 Scheimpflug photography: ACA and ACD NR NR 

Andrews 2012 LACD: ≤25%; SPAC: ≤6 PACS ≥180 

Ashaye 2003 LACD: ≤25% Gonioscopic occlusion  ≥270 

Baskaran 2007 LACD: 0%, ≤5%, ≤15%, ≤25%, ≤40%; SPAC; S and S or P  Gonioscopic occlusion (with or without PAS) ≥180 

Baskaran 2012 AS-OCT: Subjective ≥2 quadrants closed Gonioscopic occlusion  ≥180 

Campbell 2015 LACD: <25%; AS-OCT: Subjective ≥1 quadrants closed Gonioscopic occlusion  ≥90 

Chang 2011 
SPAC: ≤4 and ≤5; AS-OCT: Temporal AOD750 and 
subjective ≥2 quadrants closed 

Gonioscopic occlusion (with or without PAS) ≥180 

Congdon 1996 LACD: <25% and >25% to ≤50%; flashlight grade 1 and 2 Gonioscopic occlusion (PACS, PAC, PACG grouped) ≥90 

Dabasia 2015 
LACD: 0%, ≤5%, ≤15%, ≤25%; AS-OCT: ACA, ACD; 
Scheimpflug photography: ACA, ACD and ACV 

Gonioscopic occlusion (PACS, PAC, PACG grouped) ≥270 

Foster 2000 LACD: 0%, ≤5%, ≤15%, ≤25%, ≤40% Gonioscopic occlusion (PACS, PAC, PACG grouped) ≥270 

Gracitelli 2014 Flashlight: Grade 1 Gonioscopic occlusion  ≥180 

Grewal 2011 
AS-OCT: Temporal AOD500, TISA500; Scheimpflug 
photography: ACD and ACV 

Gonioscopic occlusion (PACS and PAC grouped) 360 

He 2007 Flashlight: Grade 1 Gonioscopic occlusion  ≥180 

Hong 2009 
AS-OCT: ACA and ACD; Scheimpflug photography: ACA 
and ACD 

Gonioscopic occlusion  ≥270 

Khor 2010 AS-OCT: Subjective ≥1 quadrants closed Gonioscopic occlusion  ≥90 

Kim 2014 AS-OCT: ACD and LV Gonioscopic occlusion (PAC and PACG grouped) ≥180 

Ko 2015 LACD: >25% to ≤50% Gonioscopic occlusion (PACS, PAC, PACG grouped) ≥270 

Kurita 2009 Scheimpflug photography: ACD Gonioscopic occlusion (PACS and PAC grouped) ≥270 

Table 2.4. Index tests and reference standard of the included studies. LV: Lens vault. 
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Study Identification Tests and Thresholds evaluated Target condition 
Gonioscopic 
occlusion 
(No. degrees) 

Lavanya 2008 
SPAC: S or P, S or P and/or ≤5, ≤5; AS-OCT: Subjective ≥2 
quadrants closed 

Gonioscopic occlusion (with or without PAS) ≥180 

Melese 2016 AS-OCT: Temporal AOD500, AOD 750, TISA500, TISA750 Gonioscopic occlusion  ≥90 

Narayanaswamy 2010  
AS-OCT: Temporal AOD500, AOD750, TISA500, TISA750, 
ARA750 

Gonioscopic occlusion  ≥180 

Nolan 2006 LACD: 0%, ≤5%, ≤15%, ≤25% Gonioscopic occlusion  ≥270 

Nolan 2007 AS-OCT: Subjective ≥1 quadrants closed Gonioscopic occlusion  ≥90 

Nongpiur 2011 AS-OCT: LV Gonioscopic occlusion (PACS, PAC, PACG grouped) ≥180 

Okabe 1991 LACD: ≤25% Gonioscopic occlusion  
360 (mean of 
4 quadrants 
Shaffer ≤2) 

Park 2011 LACD: <25%; AS-OCT: Subjective ≥1 quadrants closed Gonioscopic occlusion (with and without PAS) ≥60 

Radhakrishnan 2005 AS-OCT: AOD500, ARA500, ARA750, TISA500, TISA750 Gonioscopic occlusion  360 

Rossi 2012  Scheimpflug photography: ACA, ACD, ACV Gonioscopic occlusion (PACG excluded) ≥180 

Sakata 2010 AS-OCT: Subjective ≥1 quadrants closed Gonioscopic occlusion  ≥90 

Tan 2012 AS-OCT: ACA, ACV and LV Gonioscopic occlusion (with or without PAS) ≥180 

Thomas 1996 LACD: <25%; flashlight grade 1 and 2 Gonioscopic narrow  
Clinical 
opinion 

Tun 2017 AS-OCT: Subjective ≥2 quadrants closed Gonioscopic occlusion  ≥180 

Table 2.4 (continued). Index tests and reference standard of the included studies. 
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Study Identification Tests and Thresholds evaluated Target condition 
Gonioscopic 
occlusion 
(No. degrees) 

Wirbelauer 2005 LACD: ≤25%; AS-OCT: ACA, AOD500 Gonioscopic narrow  

Narrow  
(ACA ≤20 
degrees in 1 
quadrant) 

Wong 2009a   
SPAC: S or P, S or P and/or ≤5, ≤5; AS-OCT: Subjective ≥2 
quadrants closed 

Gonioscopic occlusion  ≥180 

Wong 2009b  AS-OCT: Subjective ≥1 quadrants closed Gonioscopic occlusion  ≥90 

Wu 2011  AS-OCT: ACA and ACV Gonioscopic occlusion  ≥180 

Yu 1995 Flashlight: Grade 1 and 2 Gonioscopic occlusion  ≥90 

Zhang 2014 
LACD: ≤15%, ≤25%, ≤40%; SPAC: S or P and/or ≤5, S or P 
and/or ≤6; AS-OCT: Subjective ≥2 quadrants closed; 
Scheimpflug photography: ACD, ACA and ACV 

Gonioscopic occlusion  ≥180 

Table 2.4 (continued). Index tests and reference standard of the included studies.
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2.3.2 Methodological quality of included studies 

A summary of the methodological quality assessment is shown in Figure 2.9 which 

illustrates the risk of bias and applicability concerns for the 38 included studies. 

 

Figure 2.9. Risk of bias and applicability concerns graph: review authors’ judgements 

about each domain presented as percentages across included studies. 

 

Patient Selection domain 

Thirteen of the included studies (34.2%) were judged to have a high risk of patient 

selection bias, where one or more of the signalling questions answered negatively. Ten 

studies adopted a diagnostic case-control design that recruited patients with the target 

condition (cases) and a group of control patients without the target condition. Two 

studies reported using inappropriate exclusions, and 1 study enriched their sample by 

recruiting patients who had been previously examined who either had or were at risk of 

glaucoma. Five studies (13%) were categorised as having an unclear risk of bias; 3 studies 

did not report their exclusion criteria coupled with the method of sampling and 2 studies 

did not report their exclusion criteria. 

The purpose of the index tests is to triage at-risk populations or for use in opportunistic 

screening to identify eyes at risk of angle closure. The inclusion of patients with a 
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previous diagnosis of the target condition therefore raised applicability concerns, as the 

spectrum of patients in these studies was not representative of those who would receive 

the test in practice. 

Index test domain 

There was a high risk of bias in studies where index test thresholds were not pre-defined. 

Optimal cut-offs were determined post hoc in all of the studies that evaluated 

Scheimpflug photography (7 studies, 100%), over half for AS-OCT (12 studies, 52%), and 

2 of the 6 studies that evaluated SPAC. In the majority of studies, the index test was 

interpreted without knowledge of the reference standard results. However, for LACD, 

five studies (35.7%) were judged at high risk of bias since the same observer performed 

the index and reference test, which may have influenced the interpretation of the index 

test result. For the flashlight test masking was performed in 4 out of the 5 included 

studies.  

Applicability of the test was generally of low concern across all the index tests, as the 

tests and testing procedures were clearly described and executed by personal who were 

sufficiently trained.  

Further classification regarding the risk of bias and applicability per test is provided in 

Appendix 1d.  

Reference standard domain 

For the reference standard domain, 27 studies (71%) were judged to be at a low risk of 

bias, 6 studies (16%) were classified as high risk as gonioscopy was not masked to the 

index test result and in 5 studies (13%) masking was unclear. Concerns regarding 

applicability were not applicable for this review, since gonioscopy was used as the 

reference standard for the diagnosis of a narrow angle in all of the included studies.  
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Flow and Timing domain 

For the flow and timing domain, the majority of studies (35, 92%) were classified as 

having a low risk of bias. In these studies, all participants receiving the index test were 

verified with the reference standard, the number of participants included in the study 

matched the number in the analysis and there was less than a three-month interval 

between the execution of the index test and reference test. There were 2 studies (5%) 

where the time interval between the index and reference test was not reported and in 

1 study it was unclear whether all patients were included in the analysis. 

The overall number of subjects/eyes excluded from all the studies due to gonioscopy 

was negligible (44, 0.2%); for LACD, flashlight, SPAC and Scheimpflug photography it was 

small (0% to 1.9%). The number of eyes/participants excluded from the final analysis 

using AS-OCT was relatively high (14.7%), due to the non-interpretation of the data 

owing to either the clinician or the internal software inability to identify the scleral spur 

(see Appendix 1e for full details regarding the number of eyes/subjects excluded per 

study). 

 

2.3.3 Conflict of interest 

Conflict of interest was of high concern in 15 studies, unclear concern in 8 studies, and 

of no concern in 15 studies. Conflicts of interest were reported for 13 studies that 

evaluated AS-OCT (56.5%) where the authors described receiving financial support from 

the manufacturer and/or loan of the device. For SPAC, 4 studies (66%) involved the 

patent holder of the device who was also a co-author, hence this was considered of high 

concern.  
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2.3.4 Diagnostic accuracy findings 

Thirty-eight studies reported sensitivity and specificity values for one or more index 

tests. Sensitivities and specificities were very heterogeneous, as observed from the 

forest plots (see Appendix 1f) due to the number of different thresholds, target 

definition consensus, population studied, study designs and/or unit of analysis issues. 

Table 2.5 presents the diagnostic accuracy of the index test parameters that were used 

to conduct a meta-analysis using the bivariate model. Fixed thresholds for the tests were 

analysed and the thresholds for each index test that had the highest DOR were: LACD 

(≤25%); flashlight (grade 1); SPAC combination numerical and categorical grading (≤5 

and/or S or P); Scheimpflug photography (ACD) and AS-OCT (subjective). Twelve studies 

analysed data from both eyes, however 4 studies corrected for the clustering of data 

(Congdon et al., 1996, Foster et al., 2000a, Lavanya et al., 2008, Rossi et al., 2012).  

Test (parameter) 
No. studies, No. 
patients (range) 

Sensitivity 
(95% CI) 

Specificity 
(95% CI) 

DOR 
(95% CI) 

LACD 

0%  
4, 2920 

(78-1632) 
0.08 

(0.03-0.18) 
1.00 

(0.99-1.00) 
28.28 

(8.78-91.11) 

≤5%  
4, 2920 

(78-1632) 
0.43 

(0.31-0.55) 
0.97 

(0.96-0.97) 
21.42 

(12.12-37.86) 

≤15% 
5, 3345 

(78-1632) 
0.61 

(0.36-0.81) 
0.93 

(0.83-0.97) 
20.43 

(6.21-67.21) 

≤25%  
13, 6412 

(78-1632) 
0.85 

(0.74-0.92) 
0.88 

(0.82-0.92) 
41.26 

(22.48-75.72) 

Scheimpflug photography 

ACV  
4, 832 

(36-299) 
0.84 

(0.79-0.89) 
0.79 

(0.65-0.88) 
19.94 

(9.31-42.73) 

ACD 
7, 1056 

(34-299) 
0.91 

(0.20-0.96) 
0.79 

(0.69-0.86) 
38.65 

(11.74-127.3) 

ACA 
5, 725 

(36-299) 
0.72 

(0.60-0.82) 
0.91 

(0.67-0.98) 
25.84 

(5.70-117.12) 

SPAC 

≤5 and/or S or P 
4, 4677 

(153-2052) 
0.81 

(0.70-0.89) 
0.80 

(0.77-0.83) 
17.29 

(9.45-31.63) 

AS-OCT 

Subjective 
12, 7385 

(45-2052) 
0.87 

(0.77-0.93) 
0.69 

(0.60-0.77) 
15.14 

(9.63-23.82) 

Flashlight 

Grade 1 
5, 1188 

(45-390) 
0.53 

(0.31-0.74) 
0.92 

(0.77-0.97) 
12.33 

(6.05-25.11) 

Table 2.5. Accuracy of parameters for each test. Summary estimates calculated when 

≥4 studies were available for meta-analysis. 



71 
 

2.3.5 Diagnostic accuracy of the index tests  

LACD 

Fourteen studies (6257 patients) assessed LACD, with 7 studies evaluating a single 

threshold, 2 studies reporting two or more thresholds and the remainder providing data 

on three or more thresholds (Table 2.4). With an increasing LACD cut-off criterion (0%, 

≤5%, ≤15%, ≤25%), there were gains in sensitivity from the summary point estimates of 

0.08 (LACD 0%) to 0.85 (LACD ≤25%) and a corresponding reduction in specificity (1.00 

to 0.88). The most commonly used threshold was ≤25% (used in 13 studies), which 

produced pooled sensitivity and specificity estimates of 0.85 (95% CI 0.74 to 0.92) and 

0.88 (95% CI 0.82 to 0.92) respectively. Significant heterogeneity in sensitivity can be 

observed in the forest plot from the reported studies (Figure 2.10), with values ranging 

from 0.54 to 0.99. A summary receiver-operator characteristics curve (SROC) for LACD 

≤25% is shown in Figure 2.11. 

 

Figure 2.10. Forest plot for LACD threshold ‘≤25%.’ 
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Figure 2.11. LACD threshold ‘≤25%,’ SROC curve and summary point (with associated 

95% confidence region). 

 

Scheimpflug photography 

Seven studies (974 patients) evaluated Scheimpflug photography. Four studies reported 

all three anterior segment parameters (ACA, ACD and ACV), 2 studies evaluated 2 

parameters and 1 study evaluated only ACD (Table 2.4). Although different thresholds 

were used for each parameter, these were grouped for the meta-analysis. Point 

estimates of summary sensitivity varied between 0.72 and 0.91 across the parameters, 

where ACD had the highest sensitivity estimate and DOR (Table 2.5); the range in 

specificity and sensitivity values for this parameter was similar (Figure 2.12 and Figure 

2.13).  
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Figure 2.12. Forest plot for Scheimpflug photography threshold ‘ACD.’ 

 

 

Figure 2.13. Scheimpflug photography threshold ‘ACD,’ SROC curve and summary point 

(with associated 95% confidence region). 

 

 

 

 

 



74 
 

SPAC 

Six studies (5239 patients) examined SPAC, 3 studies reported both categorical and 

numerical grades, 2 studies presented only the numerical grading and 1 study described 

categorical thresholds (Table 2.4). With a variety of grading both categorical, numerical 

and combinations were used across the studies, the most common numerical grading 

was a SPAC threshold of ≤5, for the current analysis, this was amalgamated with the 

equivalent categorical grades suspect (S) and potential (P) risk of angle closure to 

produce a summary estimate (sensitivity 0.81; specificity 0.80) (Table 2.5), with 

sensitivities from the studies ranging from 0.63 to 0.90 (Figure 2.14 and Figure 2.15).  

 

Figure 2.14. Forest plot for SPAC threshold ‘≤5 and/or S or P.’ 

 

Figure 2.15. SPAC threshold ‘≤5 and/or S or P,’ SROC curve and summary point (with 

associated 95% confidence region). 
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AS-OCT 

Twenty-three studies (13,335 patients) assessed AS-OCT, 16 studies used the Visante 

time-domain AS-OCT; 3 studies, slit lamp OCT; 2 studies spectral-domain OCT with a lens 

adapter and 1 study utilised swept-source OCT. Sixteen AS-OCT parameters were 

reported; using either quantitative or qualitative thresholds or both. Point estimates of 

sensitivity and specificity could only be calculated for the subjective judgement of 

occludability (12 studies, 7385 patients). This revealed a high sensitivity (0.87) but lower 

specificity (0.69) (Table 2.5). There were large variabilities in sensitivity (0.50-1.00) and 

specificity (0.42-0.89) from the studies, as observed from the forest plot and summary 

point confidence estimates (Figure 2.16 and Figure 2.17).  

Quantitative parameters reported unique cut-off values that were derived post-data 

collection, despite grouping the cut-off values per parameter, there were insufficient 

studies for meta-analysis. 

 

 

Figure 2.16. Forest plot for AS-OCT ‘subjective judgement.’ N.B. Wong 2009 and Wong 

2009a are associated with the referenced ‘Wong et al., 2009a’ and’ Wong et al., 2009b’ 

studies respectively. 
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Figure 2.17. AS-OCT ‘subjective judgement,’ SROC curve and summary point (with 

associated 95% confidence region).  

 

Flashlight 

Five studies (974 patients) evaluated the flashlight test, 3 studies evaluated grades 1 and 

2 and two studies evaluated only grade 1 (Table 2.4). Flashlight grading uses a 4-point 

scale; grades 1 and 2 are clinically more informative when diagnosing a narrow angle 

since they describe angles that are critically narrow or narrow respectively. A meta-

analysis was conducted for grade 1, with an estimated sensitivity of 0.53 and specificity 

of 0.92 (Table 2.5). Visual inspection of the forest plot revealed heterogeneity with 

respect to sensitivity ranging from 0.20 to 0.89 (Figure 2.18). There was considerable 

uncertainty in the summary estimate as observed from the large size regarding the 95% 

confidence region in Figure 2.19. There were insufficient studies to generate a summary 

estimate for grade 2. 
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Figure 2.18. Forest plot for flashlight ‘grade 1.’ 

 

 

Figure 2.19. Flashlight threshold ‘grade 1,’ SROC curve and summary point (with 

associated 95% confidence region). 
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2.3.6 Test comparisons 

For each test, the parameter yielding the highest DOR was compared in the bivariate 

model, using LACD (≤25%) as the reference test (Table 2.6). Sensitivity comparisons were 

similar across all the index tests except for the flashlight test, where a grade 1 threshold 

had a significantly lower sensitivity than the reference test. Specificity evaluation was 

also similar for all the best performing index test parameters apart from AS-OCT, which 

showed a significantly lower specificity than LACD.  

Test 
(parameter) 

No. studies, 
No. patients 

(range) 

Sensitivity 
(95% CI) 

Specificity 
(95% CI) 

Sensitivity 
(p value) 

Specificity 
(p value) 

LACD (≤25%) 13, 6412 
(78-1632) 

0.85         
(0.74-0.91) 

0.88         
(0.82-0.92) 

Reference Reference 

Scheimpflug 
photography 

(ACD) 

7, 1056 
(34-299) 

0.90 
(0.78-0.96) 

0.79 
(0.67-0.88) 

0.31 0.10 

SPAC (≤5 
and/or S or P) 

4,4677 
(153-2052) 

0.81 
(0.58-0.93) 

0.80 
(0.65-0.90) 

0.65 0.16 

AS-OCT 
(Subjective) 

12, 7385   
(45-2052) 

0.88 
(0.78-0.93) 

0.70 
(0.59-0.79) 

0.62 <0.001 

Flashlight 
(Grade 1) 

5, 1188     
(45-390) 

0.53 
(0.31-0.74) 

0.92 
(0.77-0.97) 

0.02 0.55 

Table 2.6. Relative accuracy of the best parameter (based on DOR) for each test. 
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2.3.7 Investigation of heterogeneity and sub-group analysis 

There were insufficient studies to evaluate test accuracy for detecting the most severe 

referable condition (PACG) versus a narrow angle or to compare test performance 

between primary and secondary care. There were also insufficient studies to conduct 

the pre-specified formal investigation of heterogeneity. We had planned to perform a 

sensitivity analysis to assess the impact of risk of bias on test accuracy by repeating the 

analysis after removing studies at high risk of bias, however nearly all the studies were 

judged to have at least one domain that was labelled as high/unclear risk of bias or had 

an applicability concern. 

 

2.3.8 Interpretation of findings 

Published prevalence estimates for angle closure disease (PACS, PAC and PACG) in Asian 

populations are variable, ranging from 6-20% of those aged 40 and over (Foster et al., 

2000a, Bourne et al., 2003, He et al., 2006a, Nolan et al., 2006, Lavanya et al., 2008, 

Vijaya et al., 2008, Liang et al., 2011, Sawaguchi et al., 2012, Tang et al., 2019, Wang et 

al., 2019). We have used the summary estimates for each index test derived from the 

bivariate model to simulate the performance of these tests for population screening 

(Table 2.7), based on prevalence values of 5% and 10%. For example, using the LACD 

threshold ≤25%, if 50 people out of 1000 had a narrow angle, the test would only miss 7 

cases and 114 patients would be unnecessarily referred for specialist investigation.  
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What is the accuracy of LACD, Scheimpflug photography, SPAC, AS-OCT and flashlight for diagnosing a narrow angle? 

Patient/population Patients ≥40 years with a narrow angle compared to open angle controls 

Studies 15 cohort, 13 cross-sectional and 10 studies were a case‐control design 

Prior testing Present in 20 studies (Unclear in 4 studies) 

Setting Primary or secondary care 

Index tests LACD, Scheimpflug photography, SPAC, AS-OCT and flashlight 

Reference standard Clinical assessment of a narrow angle using gonioscopy 

Role and purpose Identify those at risk of a narrow angle for subsequent gonioscopy examination by a glaucoma specialist 

Quality concerns Patient selection bias and index test threshold not being pre-defined were common concerns 

Limitations Insufficient studies to explore heterogeneity or subgroup analysis 

  

Test (parameter) 

No. 
studies, 
patients 
(range)  

Sensitivity        
(95% CI) 

Specificity      
(95% CI) 

Implications in 1000 patients undergoing community triage 

 

NA prevalence 5% 
50 cases out of 1000  

Narrow angle prevalence 10%              
100 cases out of 1000  

NA 
detected 

NA  
Missed 

Referred 
(no NA) 

PPV NPV 
NA 

detected 
NA  

Missed 
Referred 
(no NA) 

PPV NPV 

LACD (≤25%) 
13, 6412       

(78-1632) 
0.85 

(0.74-0.92) 
0.88      

(0.82-0.92) 
43 7 114 0.27 0.99 85 15 108 0.44 0.98 

Scheimpflug 
photography (ACD) 

7, 1056 
(34-299) 

0.91     
(0.20-0.96) 

0.79 
(0.69-0.86) 

46 4 199 0.19 0.99 91 9 189 0.33 0.99 

SPAC (≤5 and/or S or P) 
4, 4677 

(153-2052) 
0.81     

(0.70-0.89) 
0.80 

(0.77-0.83) 
41 9 190 0.18 0.99 81 19 180 0.31 0.97 

AS-OCT (Subjective) 
12, 7385 

(45-2052) 
0.87     

(0.77-0.93) 
0.69     

(0.60-0.77) 
44 6 295 0.13 0.99 87 13 279 0.24 0.98 

Flashlight (Grade 1) 
5, 1188 

(45-390) 
0.53      

(0.31-0.74) 
0.92             

(0.77-0.97) 
27 23 76 0.26 0.97 53 47 72 0.42 0.95 

Table 2.7. Summary of findings. NA: Narrow angle. 
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2.4 Discussion 

Future projections indicate that those with PACG aged 40-80 years will reach 23.4 million 

by 2020, accounting for 50% of glaucoma blindness and disproportionally affect those 

who reside in Asia (Quigley & Broman, 2006, Tham et al., 2014). The current reference 

standard to detect a narrow angle is gonioscopy. Whilst this technique offers 

comprehensive visualisation of the ACA and adjacent structures, it is invasive, requires a 

high degree of skill to perform and is not usually performed outside a specialist 

ophthalmic setting. Gonioscopy is therefore unsuitable for population screening. As a 

shallow ACD is the cardinal risk factor in most ethnic groups for the development of 

PACG, tests that can evaluate the risk of angle closure by measuring the anterior 

chamber dimensions could potentially be used to identify those at risk of the disease.  

This systematic review evaluated the diagnostic accuracy of non-contact screening 

methods including LACD (van Herick test), flashlight, SPAC, Scheimpflug photography 

and AS-OCT for detecting individuals at risk of PACG. These tests were evaluated as 

stand-alone screening methods that could be used by specialist or non-specialist 

healthcare professionals in a primary care or triage setting. In the proposed clinical 

pathway, screen positive cases would be referred for gonioscopic assessment by a 

glaucoma specialist. 

 

2.4.1 Summary of main results 

We analysed data from a total of 19,425 participants in 38 studies reporting the 

diagnostic accuracy of one or more index tests for the detection of a narrow angle. The 

majority of studies were conducted in Asia. Pre-specified thresholds were reported for 

LACD, flashlight, SPAC and the subjective judgement of occludability using AS-OCT. 

However, all the reported thresholds for Scheimpflug photography and quantitative AS-

OCT thresholds were calculated post-hoc and were based on the best performing cut-

points derived from each study population. The heterogeneity of sensitivity and 
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specificity estimates for each test was large and could not be adequately explained. 

Furthermore, 25 of the 38 included studies (66%) were judged to have a high risk of bias 

in at least one domain, most commonly due to patient selection bias and/or not pre-

defining the index test threshold. This suggests that we should be cautious in our 

interpretation of the results. 

A meta-analysis was conducted to generate summary estimates of diagnostic accuracy 

based on thresholds with the highest DOR for all of the index tests. We found that the 

overall accuracy of LACD assessment based on a threshold of ≤25% was good (sensitivity 

0.85 (0.74 to 0.92); specificity 0.88 (0.82 to 0.92) and similar to Scheimpflug photography 

and SPAC. The flashlight test had a significantly lower sensitivity and the subjective 

judgement of occlusion by AS-OCT was associated with a lower specificity than LACD. 

 

2.4.2 Comparison with previous reviews 

Two systematic reviews have previously evaluated the diagnostic accuracy of anterior 

segment imaging to detect angle closure (Smith et al., 2013, Porporato et al., 2018). 

Neither of these reviews conducted a meta-analysis. 

The review by Smith and colleagues formed part of an Ophthalmic Technology 

Assessment conducted by the American Academy of Ophthalmology, included data from 

79 articles published to July 2011 that provided quantitative and qualitative data on 

ultrasound biomicroscopy (UBM), AS-OCT, Scheimpflug photography and SPAC. A more 

recent review by Porporato et al, evaluated the role of AS-OCT in angle closure disease 

where this review included 71 studies, published to June 2017. 

For AS-OCT, both reviews commented on its non-contact nature and ease of obtaining 

images when compared to invasive methods. They also concluded that it correlated well 

with the information provided by gonioscopy in terms of sensitivity and highlighted its 

potential for primary angle closure screening, however as in the current review, 

concerns were raised regarding its specificity. In addition, they discussed the AS-OCT’s 
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inability to clearly define the scleral spur, which is located deep within the anterior 

chamber recess, in a high proportion of participants; that led to a large number of 

uninterpretable results. This limitation was also echoed in a number of narrative reviews 

(Friedman & He, 2008, Lin & Huang, 2012, Dabasia et al., 2014a, Chansangpetch et al., 

2018). In the current review, the overall number of exclusions for AS-OCT was 

unacceptably high, with approximately 15% of participants excluded, due to either poor 

image quality or inability to identify the scleral spur. 

For Scheimpflug photography, Smith and colleagues commented that its non-contact 

approach is appealing for screening, but emphasised that the device does not allow 

detailed visualisation of angle structures, making it difficult to estimate the ACA (Smith 

et al., 2013). Consequently, the ACA had the poorest correlation with gonioscopy, 

compared to the ACD and ACV parameters. This limitation was also commented in other 

narrative reviews, (Dabasia et al., 2014a, Nguyen et al., 2016, Shinoj et al., 2016).  

SPAC captures information about the peripheral anterior chamber depth, where it is 

essentially an automated quantitative van Herick test (Smith et al., 2013), which is 

appealing for non-clinical personnel to operate and interpret. Smith et al described that 

SPAC correlated well with AS-OCT, based on its performance in a large cross-sectional 

study (Lavanya et al., 2008).  

The UK National Institute for Health and Care Excellence (NICE) published a national 

clinical guideline for the diagnosis and management of chronic open angle glaucoma 

(COAG) (NICE, 2017), which applies in England, Wales and Northern Ireland. As part of 

the evidence synthesis for this guideline, the accuracy of tests to identify a narrow angle 

was evaluated for the purpose of differentially diagnosing COAG. The index tests 

included: AS-OCT, Scheimpflug imaging, UBM and LACD. The search was restricted to 

studies that used the ISGEO definition for gonioscopic occlusion (posterior trabecular 

meshwork not visible for ≥180 degrees). There were insufficient studies to conduct the 

planned meta-analysis, however they reported that a LACD threshold of ≤25% achieved 

the highest specificity, compared to AS-OCT and Scheimpflug photography, whereas AS-
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OCT achieved the highest sensitivity. The guideline committee concluded that none of 

the index tests met the pre-specified sensitivity level of 95% needed to recommend the 

test as an alternative to gonioscopy, however they recommended that AS-OCT or LACD 

could be used when clinical circumstances rule out gonioscopy. The Scottish 

Intercollegiate Guidelines Network (SIGN) have produced specific guidance on glaucoma 

referral and safe discharge (SIGN, 2015). This guideline discusses the relatively high 

specificity associated with LACD and low specificity with AS-OCT, as well as their 

accessibility by community optometrists. The guideline committee recommended that 

gonioscopy or LACD could be used when case-finding. SIGN further stated the specific 

thresholds that would trigger a referral into secondary eye care services, irrespective of 

any other findings. They endorsed a gonioscopic threshold of ≥270 degrees of PTM not 

visible and a LACD threshold of ≤25%. The latter recommendation was based on two 

cohort studies in Asia (Thomas et al., 1996, Baskaran et al., 2007). Our comprehensive 

review provides further validation for the ≤25% LACD threshold, which gave the best 

balance between sensitivity and specificity. 

 

2.4.3 Applicability of findings to the review question 

Non-invasive techniques for the evaluation of the ACA are commonly performed as part 

of a standard eye examination by ophthalmic clinicians. These tests could potentially be 

used for population screening to identify those at risk of angle closure. Given that the 

tests could be applied in either primary or secondary care, we did not place any 

restriction on setting, although in both pathways consecutive undiagnosed patients 

would be evaluated or triaged. However, approximately one-third of the included 

studies recruited participants with a previous diagnosis of a narrow angle, which was 

mainly attributed to the use of a case-control design. These designs are known to over-

estimate the performance of screening tests and therefore our estimates of test 

accuracy could be higher than would be expected in unscreened populations. 



85 
 

Three-quarters of the included studies were performed in Asia, which carries the 

greatest burden of PACG and its associated blindness (Tham et al., 2014). The prevalence 

of PACG in Asian populations is up to three times higher than in European derived groups 

(Day et al., 2012, Cheng et al., 2014). Consequently, population screening for angle 

closure in these populations is more likely to be cost-effective (Tang et al., 2019). The 

review findings are therefore particularly applicable for the design of screening 

programmes in these high-risk groups. 

Non-contact methods for identifying narrow angles include both subjective (flashlight, 

LACD) and objective tests (SPAC and Scheimpflug photography). AS-OCT imaging can be 

interpreted subjectively or objectively. Subjective tests in the included studies were 

generally interpreted by ophthalmologists, who are usually based in a secondary care 

setting. Previous studies evaluating LACD have found no difference in performance 

between ophthalmologists and non-medical healthcare professionals, with moderate 

inter-observer agreement for each group (Jindal et al., 2015, Johnson et al., 2018). 

Similarly, a small study assessing AS-OCT qualitative judgements by glaucoma specialists 

also found moderate agreement (Tay et al., 2015). 

Angle closure disease represents a spectrum of disorders from angle closure suspect to 

PACG. Angle closure is defined by the degree of appositional contact between the 

peripheral iris and trabecular meshwork and the presence or absence of trabecular 

damage (PAS). Although all the studies used gonioscopy as the reference standard, a 

variety of diagnostic definitions were used. Our review allowed for flexibility in the 

clinical definition and accepted the classification of a narrow angle adopted by the 

investigators. Almost half of the studies (42.1%) used the widely accepted ISGEO 

classification (2 or more quadrants occluded), the remainder used either a more (26.3%) 

or less (26.3%) stringent definition, the classification was unclear in 2 studies (5.3%).  
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2.4.4 Implication for practice 

Although PACG is less common than primary open angle glaucoma, it is often more 

severe and is associated with a greater likelihood of visual morbidity. Nearly half of the 

people affected by PACG worldwide are of Chinese descent (Quigley & Broman, 2006), 

where in China 3.1 million are blind in at least one eye due to the condition (Foster & 

Johnson, 2001). Angle closure often develops insidiously and is frequently asymptomatic 

in this and other East Asian populations. Early detection is therefore crucial to avoid 

visual impairment. Although the studies included in the current review have a number 

of methodological shortcomings, we nonetheless consider the results valuable. The 

finding that the estimation of LACD performed as well as highly sophisticated imaging 

technologies, confirms the potential for this test for screening for narrow angles in high-

risk populations. The test is simple to perform and can be learned with relatively little 

training. A recent health economic analysis concluded that combined population 

screening for open and closed angle glaucoma in Chinese adults aged 50 years or above 

is likely to be cost-effective (Tang et al., 2019). In their decision-analytic model, the 

authors included diagnostic estimates for the combined sensitivities and specificities of 

LACD and optic nerve photography. Using a LACD threshold of ≤25% alone and based on 

our summary estimate of test accuracy, approximately 40% of those who would be 

identified as test positive would have a narrow angle (PPV=0.44; narrow angle 

prevalence 10%).  

Sixty percent of the included studies evaluated AS-OCT. This technology has a number 

of theoretical advantages, including the rapid and non-invasive acquisition of high-

resolution images of the entire circumferential ACA. These images can be interpreted 

qualitatively or quantitatively. Although the included studies provided data on 16 

separate AS-OCT parameters, the lack of consistency in the thresholds meant that 

summary estimates could only be calculated for the subjective judgement of 

occludability. Comparative analysis for this parameter showed similar sensitivity to LACD 

but an inferior specificity. However, OCT technology is continuing to develop with 
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ongoing improvements in image resolution. It is likely that the superior resolution of 

newer devices e.g. swept-source OCT, will overcome the current problem of scleral spur 

visualisation, which is an important anatomical landmark for ACA evaluation. 

 

2.4.5 Strengths and weaknesses of the review 

Strengths of this systematic review included its methodological rigour, which included 

the following: 

• A comprehensive search strategy to identify as many potential studies for 

inclusion with no language, clinical setting, study design or publication year 

restrictions. 

• All titles and abstracts were independently screened by two reviewers (AJ and 

IC). 

• Two reviewers (AJ and JL) independently extracted data and conducted a quality 

assessment of studies (using QUADAS-2).  

• We obtained translations of two Asian studies that met the inclusion criteria, 

undertook data extraction and conducted risk of bias assessments. 

• Sufficient studies were available to conduct a meta-analysis and produce 

summary estimates of sensitivity and specificity for all five index tests. 

There were a number of limitations of the review. Comparisons between index tests are 

best conducted using direct (within study) comparisons, as direct comparisons are 

considered to be more reliable than indirect comparisons (between studies) (Takwoingi 

et al., 2013). Since relatively few of the included studies reported more than one test or 

parameter, indirect comparisons were conducted throughout. Indirect comparisons can 

potentially lead to confounding due to between study differences in the characteristics 

of participants, reference standards and study design (Bossuyt et al., 2013). The majority 

of studies had a high or unclear risk of bias in at least one domain and substantial 

heterogeneity was observed between studies. This should be taken into consideration 

when interpreting the review findings. Finally, there were insufficient studies to compare 
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test performance in different clinical settings and disease severity, in addition we were 

unable to conduct the planned sensitivity analysis on the risk of bias, as this may have 

impacted the applicability of such tests.  

 

2.4.6 Conclusion 

The global burden of PACG is mainly associated with those who reside in Asia, where the 

majority of the studies included in this review were conducted. As such, our findings 

would be applicable to the design of screening programmes in these high-risk groups. 

Meta-analysis of the assessed non-contact methods showed relatively good 

performance for most tests for the detection of a narrow angle. Indirect comparisons in 

diagnostic accuracy were similar, but flashlight and AS-OCT had a lower sensitivity and 

specificity, respectively. However, care is advised when interpreting these estimates for 

clinical decision making, due to the observed heterogeneity in test performance and high 

risk of bias found in most studies.  

There is still a need for high-quality studies to evaluate the performance of non-invasive 

tests for angle assessment. These studies should adopt consecutive or random sampling 

using pre-specified thresholds. Furthermore, investigators performing the index test and 

reference standard should be masked. The diagnostic accuracy of index tests to identify 

angle closure in subgroups (PACS, PAC, PACG) would also provide useful additional 

information that would be relevant for the development of care pathways for angle 

closure. 

 

Disclaimer 

This chapter is based on a pre-peered review version of a Cochrane Review. Upon 

completion and approval, the final version is expected to be published in the Cochrane 

Database of Systematic Reviews (www.cochranelibrary.com). 
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Chapter 3: Diagnostic accuracy of a new thresholding glaucoma 

programme using temporally modulated flicker 

3.1 Introduction 

Functional assessment using visual field testing remains one of the most important tools 

for identifying and monitoring vision loss in glaucoma (Jampel et al., 2011). Glaucoma 

detection currently relies on opportunistic case-finding, however epidemiological 

studies have shown that up to a half of glaucoma is undiagnosed in high income 

countries (Tielsch et al., 1991a, Klein et al., 1992, Mitchell et al., 1996, Quigley & Vitale, 

1997, Weih et al., 2001, Chan et al., 2017) and over 90% in low income countries 

(Ramakrishnan et al., 2003, Vijaya et al., 2008, Garudadri et al., 2010, Thapa et al., 2012, 

Budenz et al., 2013). Glaucoma fulfils many of the standard criteria (Wilson & Jungner, 

1968) needed to justify the development of a population-based screening programme. 

However several studies have reported that primary open angle glaucoma (POAG) 

screening in the general population is not cost-effective in high income countries such 

as the United Kingdom (UK) and Finland, but screening may be more effective if targeting 

at-risk populations (Burr et al., 2007, Vaahtoranta-Lehtonen et al., 2007, Hernández et 

al., 2008). Two recent studies evaluating glaucoma screening in rural India (John & 

Parikh, 2018) and China (Tang et al., 2019) have found that combined screening for open 

and closed angle glaucoma could be cost-effective due to lower overhead costs and the 

high risk of blindness in untreated cases of primary angle closure glaucoma. 

Since the introduction of automated perimetry in the early 1970s, developments have 

included improving the following; sensitivity of the tests to detect early visual field 

damage; test efficiency; test reliability and the ability to ascertain progressive field loss 

(McKendrick, 2005, Wu & Medeiros, 2017). Perimeters have been developed to use 

different stimuli that have attempted to ‘isolate’ retinal ganglion cell (RGC) mechanisms 

in order to improve test performance to glaucoma such as the use of ‘flicker’. The first 

commercially available perimeters utilising this phenomenon were the first generation 

‘Frequency Doubling Technology ‘(FDT) perimeter and the subsequent Matrix perimeter, 
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manufactured by Carl Zeiss Meditec, whereby both machines contain in-built algorithms 

which can be used for screening or case-finding. Newer flicker strategies such as Pulsar 

and Flicker Defined Form perimetry have been incorporated into the Octopus 600 

perimeter and the Heidelberg Edge Perimeter, respectively. Pulsar performance has 

been shown to be comparable with FDT (Gonzalez de la Rosa, 2011), however it is 

affected by refractive blur (Gonzalez-Hernandez et al., 2007). Flicker defined form 

perimetry has been demonstrated to distinguish healthy from those with early 

glaucoma, however its ability to make this distinction reduces with more advanced 

disease (Horn et al., 2015). Alternate strategies to flicker include Short Wave Automated 

Perimetry (SWAP) and motion displacement thresholding. The former uses a blue on 

yellow stimuli that attempts to isolate the koniocellular pathway (Dacey & Packer, 2003) 

and the later uses a temporal form of hyperacuity. The main disadvantage of SWAP is 

that its performance is affected by the natural age-related yellowing of the crystalline 

lens and subsequently this has probably limited the widespread use of this strategy. 

Motion displacement thresholding has been incorporated into the Moorfields Motion 

Displacement Thresholding perimeter, this uses white vertical line stimuli, where the 

smallest displacement of the line is observed as the threshold. The programme was 

designed to overcome the effects of cataract and uncorrected refractive error (Bergin et 

al., 2011, Dabasia et al., 2015b, Che Hamzah et al., 2020). It’s initial diagnostic 

capabilities were found to be promising (Ong et al., 2014), but a subsequent cross-

sectional study found its performance to be lower when tested in an elderly population 

(Dabasia et al., 2015b), in addition this test at present is not commercially available.  

With the advent of touch screen and tablet-technology, this has created new 

opportunities for the development of a portable low-cost glaucoma-screening test that 

could be used in those at risk of disease, home setting or in underserved communities. 

For example, an iPad-based threshold perimeter using stimulus locations based on the 

Humphrey Field Analyser (HFA) 24-2 test grid showed good diagnostic performance for 

the detection of glaucoma (Vingrys et al., 2016, Schulz et al., 2018). In addition, the newly 

developed ‘Eyecatcher’ portable perimeter uses an inexpensive eye tracker and tablet 



91 
 

computer, where it was found it could clearly discriminate between glaucomatous and 

normal eyes and it may be used for case-finding or where testing remains difficult (Jones 

et al., 2019).  

A new device termed the Accelerator 4-Alternative Forced-Choice Flicker Test prototype 

(A4FTp) has been developed for the purpose of screening POAG. This device 

incorporates temporally modulated flicker whereby the temporal modulation uses a 

flicker stimulus that is matched in luminance to the background, the contrast of the 

stimulus is then temporally modulated at a fixed spatial frequency, and the amplitude of 

the flicker modulation to detect the stimulus is determined (Tyler, 1991). Sensitivity to 

temporal modulation flicker has been shown to be effective in separating normal 

subjects from glaucoma patients, and flicker stimuli have been utilised in a number of 

perimeters (Tyler, 1981, Lachenmayr & Drance, 1992, Horn et al., 1997, Yoshiyama & 

Johnson, 1997). Another advantage of these flicker methods is that they are relatively 

unaffected by optical blur due to uncorrected refractive error (Tyler, 1991, Lachenmayr 

& Gleissner, 1992), where it has been demonstrated that an optical defocus of up to +6 

dioptres has little effect on FDT perimetry, in terms of sensitivity in normal observers 

(Anderson & Johnson, 2003b). The stimuli are displayed in a uniform red field (610nm) 

which was designed to minimise transmission losses in the optic media (Wyszecki & 

Stiles, 1982). Another feature of the A4FTp test design is the use of extended stimulation 

areas at a small number of test locations. Previous studies have shown that the large 

numbers of stimulus locations used in current threshold perimeters are not always 

necessary to achieve high levels of sensitivity; good diagnostic performance can be 

achieved using relatively few test locations, confined to areas that are particularly prone 

to glaucomatous damage (Bosworth et al., 1997, Westcott et al., 1999, Wang & Henson, 

2013). Moreover, one of the most common indices of glaucomatous loss is the mean 

deviation (MD) of the HFA, which focuses on the average loss across large areas of the 

retina (Hodapp et al., 1993). The philosophy of the stimulus design in the A4FTp test is 

therefore to use large stimuli that integrate information across extended retinal regions 
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to detect those who are at higher risk of visual disability in their lifetime; that will then 

lead to subsequent referral for further investigation and diagnosis. 

The aim of the present study was to assess the diagnostic performance of the A4FTp, 

using a new psychophysical thresholding algorithm that could potentially be used to 

detect functional vision loss outside the normal clinical setting and in those who are at 

risk of glaucomatous visual disability in their lifetime. Performance of the A4FTp was also 

compared with commercially available screening glaucoma technologies that detect 

structural or functional glaucomatous damage. 

 

 

 

 

 

 

 

 

 

 

 

 

Study Contributions 

Development of the A4FTp design and algorithm involved Christopher Tyler (CT), Bruno 

Fidalgo (BF), JL. Ethics application and the study protocol was written by AJ. Recruitment 

of all participants, study logistics and user acceptability survey was organised by AJ. AJ 

conducted the reference standard ophthalmic examination and BF performed the index 

tests for all study participants. Statistical analysis and study findings were conducted and 

written by AJ. Comments on the peer-reviewed paper were reviewed by BF, AJ, IC, CT and 

JL.  
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3.2 Methods 

This prospective diagnostic accuracy study was conducted in a university-based primary 

eye clinic in London, UK, between January and July 2017. The study was approved by the 

School of Health Sciences Research Ethics Committee, City, University of London, and 

complied with the tenets of the Declaration of Helsinki. Written and informed consent 

was obtained from all participants prior to taking part in the study.  

 

3.2.1 Study participants 

Participants eligible for inclusion were consecutive adults (≥40 years) with a clinical 

diagnosis of POAG and were recruited either from the university eye clinic or via a 

request for volunteers in the ‘International Glaucoma Association’ newsletter. The 

control participants were consecutive non-glaucomatous adults (≥40 years), who were 

recruited from the university eye clinic and local optometry practices.  

 

3.2.2 Inclusion and exclusion criteria 

There is no universally-accepted reference standard for the diagnosis of glaucoma; 

however optic disc and visual field damage are typically used to diagnose the presence 

of the disease (Michelessi et al., 2015). For the current study, the diagnosis of POAG was 

based on a reference standard examination and included the following diagnostic 

criteria: open anterior chamber angles, presence of glaucomatous optic neuropathy 

(classified as localised absence of neuroretinal rim, cup-to-disc ratio of 0.7, or interocular 

asymmetry in vertical cup-to-disc ratio of 0.2 in similar sized discs); and the presence of 

a concordant glaucomatous field defect using the 24-2 Swedish Interactive Thresholding 

Algorithm (SITA) programme on the HFA. The classification of a field defect was based 

on criteria amended from Anderson (Anderson & Patella, 1999) (a cluster of 3 points on 

the pattern deviation plot having p<5%, with at least 1 point with p<1%, none of which 
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could be edge points unless located immediately above or below the nasal horizontal 

meridian, and a pattern standard deviation at p<5%). 

The inclusion criteria for the control participants included: normal appearance of the 

optic disc, normal fundus, intraocular pressure ≤21mmHg and full visual fields on the 

reference examination. Any participant with a history of angle closure or significant 

ocular co-morbidity was excluded e.g. diabetic retinopathy, retinal vascular occlusions, 

peripheral retinal abnormalities, optic atrophy, clinically significant cataract (indexed by 

the Lens Opacity Classification System III (Chylack et al., 1993) (LOCS III) (N≥4.0, C≥2.0, 

P≥2.0) or a neurological field defect (based on HFA perimeter criteria).  

 

3.2.3 Procedures 

Figure 3.1 shows the flow of patients through the study. All participants underwent 

testing on both eyes with the three index tests specified below, performed in a random 

order by an experienced optometrist (BF) who was unaware of the participants’ ocular 

status. This was then followed by a reference standard ophthalmic examination by a 

clinician (AJ) masked to the index test results. Participants were included in the analysis 

if they underwent both reference and index tests; those with uninterpretable results 

were excluded. 

Thresholds of abnormality for the index tests were based on cut-offs commonly reported 

in the literature and were pre-defined before data analysis except for the A4FTp.  
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Figure 3.1. Study flow diagram. 

 

3.2.4 Index tests 

The index tests included: A4FTp; FDT; and the iVue Spectral-Domain Optical Coherence 

Tomography (SD-OCT). 

A4FTp 

The A4FTp (software version 1.0) is a computer-based full threshold test, which uses a 

four-alternative forced-choice staircase termination paradigm to determine sensitivity 

to temporally modulated sinusoidal flicker. Studies have found that by employing 

temporal modulation flicker, flicker sensitivity was reduced in those with glaucoma 

(Tyler, 1981, Kondo et al., 1998, Spry et al., 2005, Prokosch & Eter, 2014, Reznicek et al., 

2015, Horn et al., 2016). The first commercial perimeter to incorporate a flicker strategy 

was the FDT, where studies found it achieved moderate to high diagnostic performance 

in those with established glaucoma (Quigley, 1998, Trible et al., 2000, Horn et al., 2002, 
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Müskens et al., 2004, Stoutenbeek et al., 2004, Geimer, 2013, Dabasia et al., 2015b). 

Previous studies have suggested that the large numbers of test locations in current 

threshold perimeters are not necessary to achieve high levels of sensitivity; good 

diagnostic performance can be achieved by using relatively few test locations, confined 

to areas that are particularly susceptible to glaucomatous damage (Henson et al., 1988, 

Wang & Henson, 2013). Whilst the informational value of stimulus locations in 

susceptible areas of the visual field may be high, the correlation between adjacent test 

locations limits the value of adding multiple stimuli in these areas. The choice of stimulus 

location for this first iteration of the A4FTp was based on the study by Wang and Henson 

(Wang & Henson, 2013) who used optimised sub-sets of the standard 24-2 test pattern, 

based on the positive predictive value (PPV) of each test location that broadly 

corresponded to the typical patterns of glaucomatous visual field loss (Nicholas & 

Werner, 1980, Keltner et al., 2003). 

The A4FTp stimuli are located in the superior and inferior arcuate regions of the visual 

field, with two temporal stimuli (11 degrees diameter) positioned 9-21 degrees from 

fixation and two nasal (11.7 degrees diameter) targets 14-26 degrees from fixation, 

situated at the endpoints of the arcuate sweep of the retinal nerve fibre layer, the visual 

field location subject to the well-known ‘nasal step’. Stimuli were displayed at a viewing 

distance of 33cm on a high refresh rate screen (120 Hz) on a uniform background (Figures 

3.2a-3.2b). The target stimulus in each of four test fields was a burst of 30 Hz effectively 

sinusoidal flicker with the same mean luminance as the background (19 cd/m2) that was 

ramped on and off according to a 1 second raised cosine envelope in order to avoid onset 

and offset transients. After each stimulus, a 2-beep audio signal was cued to indicate 

that the stimulus had been presented and that the user then had to input their response 

onto a 4-button keypad, that translated to the presented stimuli location. Thresholds for 

each location were measured by a 2-up, 1-down staircase in log modulation steps of 1 

deciLog (dL) (1/10th of log10 base intervals, following the simplifying convention relative 

to decibel (dB) units adopted by Tyler (Tyler, 1991)) based on an incorrect/correct choice 

of the four regions, which was flickering on each trial. The staircase ended when 
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performance reached the stable criterion level of <1 decilog in terms of both slope and 

variability over the last 8 trials of the staircase (Fidalgo et al., 2018). Results were plotted 

in decilog units. The participant‘s refractive error was corrected for the working distance 

if the participant habitually wore a distance correction. In the absence of a pre-defined 

threshold for abnormality, the optimal threshold for the A4FTp was derived from the 

data and corresponded to the criterion value that maximised both sensitivity and 

specificity. 

 

Figures 3.2a and 3.2b, a) Left image: A4FTp stimuli locations translated onto an HFA 

24-2 visual field plot of the right eye and b) right image: A4FTp presentation of the 

flickering stimuli in one of the 4 locations in the right eye. 

 

FDT perimeter  

The FDT was introduced into clinical practice in the late 1990s (Anderson & Johnson, 

2003a). The first generation FDT (Carl Zeiss Meditec Inc., Dublin CA, software version 

4.00.0) incorporates both suprathreshold and threshold algorithms; it measures contrast 

sensitivity at 0.25 cycles/degree, which is counterphase flickered at 25Hz (Anderson & 

Johnson, 2003b). There are two suprathreshold probability algorithms which are 

matched to the machine’s normative database which can test the central 20 or 30 

degrees of the visual field, both can be used for screening; the most common are the 
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C20-5 or C20-1 programmes. Both these test patterns have been systematically 

evaluated in the literature (Burr et al., 2007). For comparative performance against the 

A4FTp, the first generation FDT perimeter using C20-5 supra-threshold mode was chosen 

as this is widely used for glaucoma detection in primary care and both machines use 

similar stimuli that allow a more direct comparison of the visual field function compared 

to other perimeters. 

The contrast levels for C20-5 are measured at 17 locations within the central 20 degrees 

of the visual field and are compared to an age-corrected normative database. Test 

results for each location are classified into probability levels that are represented by a 

greyscale (Figure 3.3). Trial lens correction was provided as per the manufacturer’s 

recommendations for high refractive errors. Classification of an abnormal result was 

based on the following criteria: any location missed at the p<5% significance level or any 

location missed at the p<1% level. If any of the indices were unreliable, which included 

false positives, false negative or fixation losses ≥33% or any point missed, the test was 

repeated, with the repeated test result analysed.  

    

Figure 3.3. FDT plot with the associated probability levels. 
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IVue Spectral-Domain-Optical Coherence Tomography  

Optical coherence tomography (OCT) is a non-invasive imaging method, which provides 

an in-vivo examination of the eye by constructing high-resolution cross-sectional images 

following the principle of low-coherence interferometry.  

The iVue SD-OCT (Model iVue 100, Optovue Inc, Fremont CA) incorporates spectral-

domain technology to provide an axial and transverse resolution of 5μm and 15μm 

respectively. The capture rate is 26,000 A-scans/sec using a wavelength of 840nm 

±10μm. Segmentation algorithms allow the identification and quantification of 

individual retinal layers, for example the retinal nerve fibre layer (RNFL) or the combined 

ganglion cell and inner plexiform layers of the ganglion cell complex (GCC) whereby 

thinning has been observed in glaucoma (Tan et al., 2009, Na et al., 2012, Sevim et al., 

2013). The glaucoma optic nerve head scan protocol provides a measure of the 

peripapillary RNFL thickness, from the disc margin up to the edge of a circular area of 

4.93mm radius from the disc centre (Optovue, 2010) (Figure 3.4). The GCC thickness data 

(Figure 3.5) is acquired from the inner limiting membrane to the outer plexiform layer in 

the macula area of 7mm by 7mm, centred 1mm temporal to the fovea to sample a 

greater area of the temporal retina (Dabasia, 2014).  

 

Figure 3.4. IVue SD-OCT RNFL profile analysis report. 
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Figure 3.5. IVue SD-OCT GCC analysis report.  

The IVue SD-OCT (software version 3.2.0.42) was used to scan the posterior segment of 

the eye, capturing data from the optic nerve head RNFL and GCC average thickness. 

Scans were taken through un-dilated pupils under dark room conditions. If the scan 

quality (scan quality index was below 50) was inadequate or data uninterpretable, the 

pupil was dilated and the scan was repeated, if the scan did not meet this criterion the 

eye was excluded. Cut-offs for abnormality were for any RNFL quadrant or GCC average 

thickness identified at p<1% or p<5% from the manufacturers’ normative database.  

 

3.2.5 Reference test 

All participants underwent a reference standard ophthalmic examination on the same 

day as the index tests by an experienced glaucoma-specialist optometrist (AJ) (with 

training and accreditation within glaucoma clinics in the UK Hospital Eye Service), 

masked to the index tests results. The ocular examination comprised: LogMAR best 

correct visual acuity; refraction; intraocular pressure measurement (IOP) with a 

Goldmann Applanation Tonometer; slit lamp biomicroscopy including grading of the 

crystalline lens with the LOCS III and van Herick assessment of limbal anterior chamber 

depth (Van Herick et al., 1969) (with potentially occludable angles examined using 
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gonioscopy); dilated fundus examination and detailed disc assessment using indirect 

ophthalmoscopy. Visual fields were measured using a Humphrey Field Analyser (Carl 

Zeiss Meditec Inc) using the SITA 24-2 standard pattern (model 720i software version 

5.1.2). Humphrey field testing was repeated for false positives >15%, false negatives or 

fixation losses >33%. Glaucomatous visual field loss was classified using the Hodapp 

Parrish-Anderson criteria, where a participant with a mean deviation of <6dB was 

defined as having early glaucoma, ≥6db to <12dB as moderate glaucoma and ≥12dB as 

advanced glaucoma, the full classification has been described elsewhere (Hodapp et al., 

1993). 

The Hodapp criteria allows rapid classification of glaucomatous field loss in a clinical 

setting, however it may be inappropriate for finer categorisation of visual field loss. A 

newer glaucoma staging system (GSS2) described by Brusini and Filacorda uses a 7-stage 

system that may be better suited for classifying localised defects compared to traditional 

systems (Brusini & Filacorda, 2006). The GSS2 stages glaucoma severity by plotting the 

visual field indices onto a graph by taking both pattern standard deviation (PSD) and MD 

into account (Brusini & Filacorda, 2006). Exploratory analysis using the GSS2 was 

conducted on the glaucoma cohort regarding the performance of the functional index 

tests and classification. 

 

3.2.6 Evaluation of user acceptability 

Subjects were asked to complete a questionnaire regarding the acceptability of the index 

tests and the HFA at the end of the reference examination. The questionnaire evaluated 

the ease of use, test duration and test comfort using a seven-point Likert scale (see 

Appendix 2). 
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3.2.7 Sample size calculation 

The sample size was based on precision and the A4FTp’s anticipated sensitivity reaching 

0.85. It was considered that the 95% confidence limit should not fall below 0.60 with a 

0.95 probability. This level required a minimal sample of 33 participants with glaucoma 

(Flahault et al., 2005).  

 

3.2.8 Statistical analysis 

Statistical analysis was performed using SPSS 23.0 (www.ibm.com/analytics/spss-

statistics-software) and MedCalc 17.4 (www.medcalc.org). All tests were performed on 

both eyes for comparison with the clinical assessment of individual eyes and the data 

from one eye used in the analysis. In the case of glaucoma participants, this was the eye 

with the greater glaucomatous visual field loss and the right eye for the controls. If this 

eye did not meet the inclusion criteria, the other eye was selected; however, if neither 

eye met the inclusion criteria, the participant would have been excluded. 

Receiver operator characteristics curves (ROC) were plotted for the ability of the index 

tests to discriminate glaucomatous from non-glaucomatous eyes. Differences in the area 

under the receiver operator characteristics curves (AUROC) for each test parameter at 

the 95% confidence interval (CI) was compared statistically using the DeLong method 

(DeLong et al., 1988), a p-value of 0.05 was considered as the threshold for significance. 

Sensitivity, specificity, positive and negative likelihood ratios were also calculated. 

Parametric and non-parametric tests were used to compare the differences between the 

two groups with respect to participant characteristics and user acceptability of the tests. 

Linear regression was used to assess the correlation between A4FTp threshold and the 

age of the controls. 
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3.3 Results  

3.3.1 Participant characteristics  

Eighty-one participants were assessed for initial eligibility and were invited to 

participate. Three participants were excluded from the analysis: 1 had uninterpretable 

results on all the visual function tests, 1 had suspected glaucoma and 1 participant with 

glaucoma had a bilateral neurological visual field defect. Thirty-eight controls and 40 

participants diagnosed with glaucoma were included in the final analysis. There were no 

uninterpretable OCT scans of the 78 eyes that were analysed. The glaucoma group 

contained more pseudophakics (n=22, 55%) compared to the controls (n=2, 5.3%). There 

was no statistical difference between the two groups in visual acuity, refractive error or 

gender. Most participants were of Caucasian origin and the average ages for the control 

and glaucoma groups were 61.6 years (95% CI 58.1-65.0) and 71.9 years (68.8-74.9), 

respectively. A summary of the demographic and clinical data for the controls and 

glaucoma participants is provided in Table 3.1. There were no adverse events when 

performing any of the index tests or reference examination.  

Glaucoma cases were categorised by glaucoma severity using the criteria from Hodapp 

criteria as: early (n=13, 32.5%), moderate (n=14, 35%) and advanced glaucoma (n=13, 

32.5%). Using the GSS2 criteria, cases were categorised as: stage 0 (n=1, 2.5%), 

borderline (n=2, 5%), stage 1 (n=5, 12.5%), stage 2 (n=5, 12.5%), stage 3 (n=10, 25%), 

stage 4 (n=8, 20%) and stage 5 (n=9, 22.5%).  
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 Control Glaucoma p value 

No. Participants 38 40  

Age (years) (Mean±SD) 61.6±10.6 71.9±9.4 <0.001 

No. Female (%) 22 (57.9%) 24 (60%) 0.85 

Ethnicity (No. %) 
Caucasian  
Asian Indian  
African Origin  

 
28 (73.7%) 
10 (26.3%) 

0 (0%) 

 
37 (92.5%) 

2 (5%) 
1 (2.5%) 

 

Visual Acuity (LogMar) 
(Mean±SD) 

0.04±0.17 0.09±0.12 0.092 

IOP (mmHg) (Mean±SD) 17.5±2.5 15.3±5.5 0.023 

Refractive Error (DS) 
(Mean±SD) 

-0.26±3.59 -0.72±2.81 0.53 

Refractive Error (DC) 
(Mean±SD) 

-0.72±0.71 -1.01±0.93 0.13 

HFA SITA 24-2 MD (dB) 
(Mean±SD) 

-0.71±1.55 -10.53±7.61 <0.001 

 
Table 3.1. Demographical and summary clinical data for the participants in each group. 

DS: Dioptric Sphere; DC: Dioptric Cylinder; MD: Mean Deviation; SD: Standard 

Deviation. Independent t-tests were performed for each category except for gender, 

where chi-squared was used. 

 

3.3.2 Diagnostic performance of the A4FTp 

The threshold that optimised sensitivity and specificity (Youden index), with the 

respective AUROC was determined per stimuli location or an average of either two or 

four locations from the A4FTp. The best performing thresholds (as determined by the 

greatest AUROC) were; single location, superior nasal quadrant mean AUROC 0.77 

(95%CI 0.66-0.86); hemifield location, nasal hemifield 0.80 (95% CI 0.70-0.88) and the 

mean threshold from all four stimulus locations 0.82 (95% CI 0.73-0.92). The best 

performing parameter for the A4FTp was the mean threshold from all four stimulus 

locations (Table 3.2).  
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Index 
Test 

Test 
Parameter 

Optimal 
Threshold

(dL) 
Se (%) Sp (%) PLR NLR 

AUROC  
(95% Cl) 

A4FTp 

Mean of 4 
Locations 

>12.3 82.5 73.7 3.1 0.2 
0.82 

 (0.73-0.92) 

Superior 
hemifield 

>10.8 95.0 55.3 2.1 0.1 
0.79  

(0.69-0.88) 

Inferior 
hemifield 

>13.1 75.0 73.7 2.9 0.3 
0.78  

(0.67-0.87) 

Nasal 
hemifield 

>13.3 82.5 73.7 3.1 0.2 
0.80 

 (0.70-0.88) 

Temporal 
hemifield 

>10.5 95.0 57.9 2.3 0.1 
0.79 

 (0.68-0.87) 

Superior 
nasal 

quadrant 
>10.4 92.5 50.0 1.9 0.2 

0.77  
(0.66-0.86) 

Superior 
temporal 
quadrant 

>10.9 77.5 68.4 2.5 0.3 
0.76 

 (0.65-0.85) 

Inferior 
nasal 

quadrant 
>14.1 67.5 73.7 2.6 0.4 

0.74 
 (0.63-0.84) 

Inferior 
temporal 
quadrant 

>10.3 97.5 47.4 1.9 0.1 
0.75 

 (0.64-0.84) 

 

Table 3.2. A4FTp diagnostic performance of the locations tested. Se: Sensitivity; Sp: 

Specificity; PLR: Positive Likelihood ratio; NLR: Negative Likelihood Ratio; CI: 

Confidence Interval.  

The A4FTp optimal parameter achieved a sensitivity and specificity of 83% and 74% 

respectively. Sensitivity of the test could potentially be increased by lowering the log 

threshold, however this would lead to an unacceptable reduction in specificity; Figure 

3.6 plots the A4FTp thresholds with their respective sensitivity/specificity. Figure 3.7 

shows a histogram of the mean log flicker thresholds for the control and glaucoma 

subgroups with their 95% confidence intervals. Mean log thresholds increased with 

disease severity, although there was overlap in the distributions for control participants 
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and those with early glaucoma. In the control group, there was no statistically significant 

correlation (p=0.24), using the A4FTp optimal threshold against age. 

 

Figure 3.6. Sensitivity and specificity plot of the A4FTp thresholds.  

 

 

Figure 3.7. Histogram of the mean log thresholds of control and glaucoma subgroups. 

Error bars represent the 95% confidence interval. 
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3.3.3 Comparison of the A4FTp with other index tests  

Table 3.3 displays the diagnostic performance of all the index tests, the best performing 

threshold for each index test was, A4FTp; mean of the 4 locations, FDT; any location 

missed at p<5% level and for the SD-OCT; any quadrant at the p<1% level in the RNFL.  

Index 
Test 

Test 
Parameter 

Optimal 
Threshold 

Se (%) Sp (%) PLR NLR 
AUROC  
(95% CI) 

A4FTp 
Mean of 4 
Locations 

>12.3dL 82.5 73.7 3.1 0.2 
0.82 

(0.73-0.92) 

FDT 

Any point 
missed at 

p<5% 
level 

>0 90.0 92.1 11.4 0.1 
0.91 

(0.82-0.96) 

Any point 
missed at 

p<1% level 
>0 82.5 97.4 31.7 0.2 

0.90 
(0.81-0.96) 

iVue 
SD-OCT 

RNFL 

Any 
quadrant 
at p<1% 

- 87.5 84.2 5.5 0.1 
0.90 

(0.83-0.97) 

Any 
quadrant 
at p<5% 

- 95.0 68.4 3.0 0.1 
0.82 

(0.74-0.90) 

iVue 
SD-OCT 

GCC 

Mean GCC 
p<5% 

- 70.0 78.9 3.3 0.4 
0.75 

(0.63-0.84) 

Mean GCC 
p<1% 

- 57.5 92.1 7.3 0.5 
0.75 

(0.64-0.84) 

 
Table 3.3. Diagnostic performance of A4FTp, FDT and iVue SD-OCT.  

Table 3.4 shows pairwise comparisons of the AUROC between A4FTp and other index 

test parameters. There was no statistical significance between the A4FTp and FDT cut-

offs. Comparisons between the A4FTp and the SD-OCT parameters showed no 

statistically significant difference for either the GCC average thickness or RNFL any 

quadrant identified at the p<1% level and p<5% level. 
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Test comparisons 
Difference between the 

AUROC’s (95% CI) 
p value 

A4FTp vs FDT p<1% any point missed 0.08 (-0.03-0.18) 0.15 

A4FTp vs FDT p<5% any point missed 0.09 (-0.02-0.02) 0.12 

A4FTp vs SD-OCT RNFL p<1% 0.07 (-0.04-0.18) 0.18 

A4FTp vs SD-OCT RNFL p<5% 0.01 (-0.11-0.12) 0.91 

A4FTp vs SD-OCT GCC mean p<5% 0.08 (-0.06-0.22) 0.27 

A4FTp vs SD-OCT GCC mean p<1% 0.08 (-0.05-0.20) 0.23 

 
Table 3.4. Pairwise comparison of AUROC between A4FTp and the other index 

parameters.  

Figure 3.8 shows a Venn diagram for the best performing criteria of each index test in 

identifying the glaucoma participants. The A4FTp detected slightly fewer glaucoma cases 

(n=33, 83%) than the FDT (n=36, 90%) or SD-OCT (n=35, 88%). Two cases (5%) were 

missed by all three index tests. The diagram also shows that a screening strategy that 

combines a structural test (SD-OCT RNFL) with a functional test (FDT or A4FTp) increases 

the likelihood of detecting the disease.  

 

Figure 3.8. Venn diagram of the best performing parameter from the index tests in 

identifying the glaucoma cases alone or combined with the other tests.  
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3.3.4 Glaucoma detection between A4FTp and FDT 

Using the optimal thresholds, the A4FTp test identified 93% and 100% of moderate and 

severe glaucoma respectively, it identified half of those diagnosed with early glaucoma 

as defined using the Hodapp classification (Figure 3.9). The FDT detected all cases of 

early glaucoma, where 87% and 85% of those with moderate and advanced glaucoma 

were identified, respectively (Figure 3.10).  

 

Figure 3.9. Histogram of the glaucoma severity detected by the A4FTp.  

 

Figure 3.10. Histogram of the glaucoma severity detected by the FDT.  
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Using the GSS2 criteria, performance between the A4FTp and FDT were similar across all 

the glaucomatous stages except for stage 1. FDT detected all stage 1 cases but the A4FTp 

detected 2 out of 5, stage 1 cases. Performance of the A4FTp and FDT using GSS2 are 

plotted in Figure 3.11. 

 

Figure 3.11. GSS2 plot of glaucoma detected by the A4FTp and FDT.  

 

In total, there were 4 glaucomatous eyes that the FDT detected but the A4FTp missed. 

Using the GSS2 classification, 2 cases were defined as having generalised loss and 2 with 

focal loss; 3 out of 4 cases were classified as stage 1 and 1 case as stage 3. Examination 

of the 4 printouts from the FDT and HFA revealed only one subject had generalised loss, 
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where the A4FTp’s tested locations were not sensitive enough to detect this loss (Figure 

3.12a); 3 subjects had focal damage in locations where the A4FTp stimuli did not test 

(Figures 3.12b-3.12d).  

  

Figure 3.12a. Inferior generalised loss detected on FDT and HFA but missed on the 

A4FTp. 

 

Figure 3.12b. Extreme ‘nasal step’ focal loss missed on A4FT but detected on FDT and 

HFA. 
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Figure 3.12c. Superior focalised loss missed on A4FTp but detected on FDT and HFA. 

Note: nasal step was missed on both A4FTp and FDT. 

  

Figure 3.12d. Inferior nasal focalised loss missed on A4FTp but detected on FDT and 

HFA. Note: inferior temporal loss was missed on both FDT and A4FTp. 
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3.3.5 A4FTp outliers 

Analysis of A4FTp performance identified 3 control participants with flicker sensitivity 

outside the 95% confidence interval of the mean. These participants were confirmed as 

healthy on the reference examination and were within normal limits on all the other 

index tests. A recalculation of the diagnostic accuracy of the A4FTp with these 3 outliers 

removed improved specificity to 80% and the AUROC to 0.88 (95% CI 0.79-0.95) (Figure 

3.13). However, there was no statistical significance in AUROC with and without the 

outliers (p=0.11).  

 

Figure 3.13. ROC of the A4FTp with and without outliers. 
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3.3.6 Test duration 

Table 3.5 and Figure 3.14 shows the time taken to perform the functional tests (including 

the HFA 24-2, which was undertaken as part of the reference examination). The mean 

time taken for all participants in the tests were FDT C20-5 (62±35 seconds), A4FTp 

(142±86 seconds) and HFA (364±79 seconds), which was statistically significantly 

different between all three tests (p<0.001). There were also statistically significant 

differences between the control and glaucoma groups for the HFA (p<0.001), FDT C20-5 

(p<0.001) and A4FTp (p<0.008). 

 

All 
participants 
Time Taken 

(secs) 

Control 
Time Taken 

(secs) 

Glaucoma 
Time Taken 

(secs) 
p value 

HFA SITA 24-2 Threshold 
(Mean±SD)  

364±79 
(~6 mins) 

307±29 
(~5.2 mins) 

419±73 
(~7 mins) 

<0.001 

FDT time  
(Supra-threshold C20-5) 
(Mean±SD)  

62±35 sec 
(~1 mins) 

37±9.0 
(~0.6 mins) 

86±33 
(~1.4 mins) 

<0.001 

A4Tp Threshold 
(Mean±SD) 

142±86 sec 
(~2.4 mins) 

116±45 
(~1.9 mins) 

167±106 
(~2.8 mins) 

0.008 

 
Table 3.5. Time taken to perform each functional test. 

 

Figure 3.14. Box and whiskers plot of time taken to perform each functional test. 
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3.3.7 User acceptability 

Figure 3.15 shows the Likert test scores from the acceptability survey. There was a higher 

proportion of participants who found the HFA uncomfortable and time taken to 

complete when compared to all the other index tests. There was no statistical difference 

regarding difficulty to perform when compared to the A4FTp (p=0.877) but there was 

with the FDT (p=0.002) and OCT (p<0.001).  

The A4FTp, FDT and OCT had a similar proportion of participants (>90%) rating the tests 

as not uncomfortable or not too long. There were more participants who found the 

A4FTp more difficult to perform which was statistically significant when compared to the 

FDT (p<0.001) and OCT (p<0.001). Comparisons between the glaucoma and controls, 

found those with glaucoma experienced statistically more difficulty with the A4FTp when 

compared to the controls (p=0.015). There was no significant difference between the 

two groups between any of the other tests when reporting discomfort or the time taken 

to complete. 

 

Figure 3.15. Likert responses from user acceptability survey from all participants. 
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3.4 Discussion 

Glaucoma is the leading cause of irreversible blindness worldwide; in a recent systematic 

review it was estimated that glaucoma was responsible for 6.6% of total global blindness 

and 2.2% of all moderate and severe visual impairment (Bourne et al., 2016). The lack of 

symptoms in its early stages, coupled with inequitable access to healthcare contributes 

to high rates of undiagnosed glaucoma, especially in those deemed at risk of glaucoma.  

The introduction of mobile technology has created new opportunities for the 

development of low-cost glaucoma-screening tests for use in at-risk populations. The 

current study evaluated the diagnostic performance of a simple screening test (A4FTp) 

for potential use in areas where glaucoma detection remains an issue and to evaluate 

those at higher risk of visual disability from glaucoma in their lifetime. This diagnostic 

case-control study evaluated 40 cases of glaucoma and 38 controls (≥40 years) and 

compared A4FTp performance with two commercially available glaucoma screening 

technologies.  

 

3.4.1 A4FTp characteristics 

The flicker rate in the A4FTp was set at the value found to be effective for glaucoma 

detection in previous studies (Tyler, 1981, Tyler et al., 1994). The A4FTp measured flicker 

thresholds at 4 fixed locations, strategically placed to detect the arcuate or nasal step 

defects that are commonly seen in manifest glaucoma. By selecting a reduced number 

of locations, it was hypothesised that this would lead to a reduction in time taken to 

complete but also to maintain suitable diagnostic performance in those with moderate 

disease. At each test location, a flickering field was displayed and the sensitivity to 

sinusoidal flicker modulation at a fixed temporal frequency (30Hz) was determined. 

Flicker sensitivity has been shown to be resilient to optical blur (Tyler, 1991) and the 

large stimulus size minimised the impact of fixation losses. Furthermore, presenting the 

stimuli in a red field reduces optical scatter due to opacities in the ocular media. 
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The best performing threshold for the A4FTp was the mean threshold of all 4 stimulus 

locations, which was based on the highest AUROC. Comparison of AUROC’s found the 

performance of the A4FTp to be similar to the best performing parameters of the FDT 

(C20-5 algorithm) and the SD-OCT (RNFL thickness outside normal limits). Using this 

optimal threshold criterion, the A4FTp identified 33 out of the 40 glaucoma cases in our 

sample (83%) and correctly classified 28 out of the 38 of the controls (74%). All cases of 

advanced glaucoma were detected, and all but one of the subjects with moderate 

glaucoma. However, a high proportion (50%) of early glaucomas were not detected 

(Hodapp et al., 1993). The test took on average just over 2 minutes per eye to complete 

and the user acceptability survey found the test positive, in terms of comfort and 

participant’s opinion on the duration of the test. 

 

3.4.2 A4FTp comparison with FDT 

Both the A4FTp and FDT assess visual function by using similar stimuli, the A4FTp took 

on average just over 2 minutes per eye to complete using a novel staircase termination 

criterion. The time taken to complete the A4FTp test was within the clinically recognised 

‘3-minute period of vigilance’; this is advantageous in terms of response variability, as 

beyond this time the variability increases (Henson & Emuh, 2010). The FDT time taken 

in the current study for both controls and glaucoma was similar to other studies (Johnson 

et al., 1999, Detry-Morel et al., 2004). Overall, FDT testing using the C20-5 algorithm took 

approximately half the time to complete when compared to the A4FTp. This finding was 

not surprising, as supra-threshold algorithms commence testing at pre-defined 

thresholds set by the machine’s internal database; where a minimal number of stimuli 

presentations are required to confirm a defect, however this at the expense of 

measuring retinal sensitivity precisely at each location (Takahashi et al., 2017).  

Diagnostic performance regarding FDT have reported sensitivities between 80–100% for 

perimetric glaucoma and specificities of 80–95% (Quigley, 1998, Trible et al., 2000, Horn 

et al., 2002, Müskens et al., 2004, Stoutenbeek et al., 2004, Geimer, 2013, Dabasia et al., 
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2015b) which complements the current study findings. More specifically, FDT AUROC in 

this study achieved similar performance to previous studies using the C20-5 and C20-1 

programmes (Müskens et al., 2004, Stoutenbeek et al., 2004) of 0.92 and 0.93, 

respectively. 

While there was no difference in overall diagnostic performance between the FDT and 

A4FTp, there was a difference in performance in those with early disease. Glaucoma 

classification regarding disease severity was staged using the Hodapp classification 

(Hodapp et al., 1993), that offers a quick and simple categorisation of glaucoma using 

the mean deviation. Using this classification, the FDT identified proportionally more 

individuals with early glaucoma than the A4FTp (100% vs 50%). Performance between 

FDT and A4FTp for the detection of moderate and advanced glaucoma was similar. Using 

the GSS2 staging system (Brusini & Filacorda, 2006), further analysis was undertaken to 

investigate whether the A4FTp was missing cases with localised defects. Although the 

numbers were small, there were no obvious differences when compared to the FDT 

based on the pattern of glaucomatous loss, which was supported by manual inspection 

of the field plots. Interestingly, there were two cases where glaucomatous damage 

occurred within the central 10 degrees, where both FDT and A4FTp missed but the HFA 

detected, this is of particular relevance considering new evidence of early glaucoma 

affecting the central visual field (Grillo et al., 2016, De Moraes et al., 2017). 

 

3.4.3 A4FTp comparison with SD-OCT 

Objective imaging modalities are being increasingly used to facilitate the diagnosis and 

monitoring of glaucoma (Chong & Lee, 2012). OCT provides a rapid, non-invasive method 

of evaluating the structural integrity of the posterior segment. AUROC comparison found 

no statistical significance between the A4FTp and SD-OCT where abnormalities were 

identified in the RNFL or GCC at the 5% or 1% probability level. In a recent systematic 

review, RNFL parameters were still preferable to GCC for diagnosing manifest glaucoma 

(Oddone et al., 2016), which was echoed in the current study where RNFL yielded a 
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higher AUROC than GCC. Diagnostic performance of the RNFL in the current study was 

similar to other studies evaluating iVue 100 SD-OCT regarding sensitivity (79%-90%) and 

specificity (88%-95%) (Seong et al., 2010, Huang et al., 2011, Kim et al., 2013, Bertuzzi et 

al., 2014). 

Whilst the OCT is a structural examination, advantages over functional assessment 

include its objectivity, repeatability and the time taken to acquire rapid quantitative data 

that can be easily interpreted by a non-clinician; its use of colour coded maps, with red 

being flagged as abnormal at the p<1% level. However, it is recognised that caution is 

needed when interpreting red disease as this is dependent on the machine’s normative 

databases (Chong & Lee, 2012). A review of OCT as a single test in population-based 

screening is still not well understood (Ervin et al., 2012); it has been proposed that OCT 

could be used to complement other diagnostic tests in a primary care, or triage setting 

(Michelessi et al., 2015). Nonetheless, with its ease of use and ability to gather diagnostic 

data it has been proposed that SD-OCT could be used for screening glaucoma in high-

risk populations (Bengtsson et al., 2012). However, as with FDT, both devices are 

relatively expensive and not currently portable. It has been proposed that if OCT was 

more compact and less expensive, this might render it suitable for screening (Geimer, 

2013), and as such these developments are currently being experimented (Chopra et al., 

2018).  

 

3.4.4 User acceptability  

A user acceptability survey was given to all participants. The HFA took the longest time 

to perform, where it was outside the ‘3-minute period of vigilance’, unsurprisingly it 

registered the largest proportion of participants agreeing that it was ‘too long’ (37.2%) 

or ‘uncomfortable’ (26.9%). 

As part of the survey, there was an additional comments section where 43 (55.1%) 

participants completed. Responses were coded into 4 categories that related to; FDT; 

A4FTp; HFA and researchers plus other comments. A fifth of the responses contained 
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negative comments regarding HFA describing discomfort, fatigue and difficulty in 

performing the test that was reflected in the acceptability scores. From the 21 comments 

relating to the A4FTp, 5 positively referred to the test ‘as easier than the HFA’. From the 

remaining 16 responses, 3 were from the controls and the rest had glaucoma where 

participants described confusion in either; registration of the user response and/or use 

of the keypad operation in translating the observed stimuli. When the data was 

unmasked, none of the patients were found to have a medical history that may have 

affected their co-ordination, hearing or dexterity in operating any of the tests. In 

addition, specificity for the A4FTp was the lowest of all three tests, there were 3 controls 

that had A4FTp threshold values well outside the 95% confidence interval, suggesting 

they were poor performers of only the A4FTp. Therefore, both the acceptability survey 

and lower specificity support the higher difficulty experienced in undertaking the A4FTp, 

suggesting its current interface requires improvement.  

 

3.4.5 Application of A4FTp 

Patients who are at higher risk of visual field impairment generally present with greater 

field damage on presentation (Saunders et al., 2014). The initial design of the A4FTp was 

based on a minimal number of locations that could be tested and theoretically retain an 

adequate diagnostic performance to moderate visual damage. This would best suit those 

at risk of developing visual disability in their lifetime, with the current study supporting 

good performance in those with moderate and advanced glaucoma. If the test strategy 

was to improve sensitivity to detect early glaucoma, additional stimuli locations could 

be added, but this may cause the specificity to be lowered as described by Wang and 

colleagues (Wang & Henson, 2013). However, in Wang and Henson’s report, they based 

their assumptions on the HFA SITA 24-2 white stimuli size of 0.43 degrees diameter, 

whereas the flicker stimuli used in the A4FTp is considerably larger (approximately 11 

degrees). Therefore, by modifying the A4FTp stimulus size and increasing the number of 

locations tested, this could improve sensitivity without causing a significant reduction in 

specificity.  
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An ideal screening test should be safe, quick, easy to administer and interpret, 

acceptable to the people who are to be tested and valid to distinguish between those 

who do and do not have glaucoma (Burr et al., 2007). The A4FTp has been shown to be 

acceptable to patients in terms of comfort, time taken and easy to administer. While the 

A4FTp had comparable diagnostic accuracy to current glaucoma diagnostic technology, 

test performance from the evaluated index tests did not reach the sensitivity and 

specificity needed for glaucoma population screening due it’s relatively low prevalence 

(Mowatt et al., 2008), whereas targeting those at high risk may prove beneficial (Fleming 

et al., 2005, Burr et al., 2007, Hernández et al., 2008, Bengtsson et al., 2012). Based on a 

glaucoma prevalence of 5% in high-risk populations (Kapetanakis et al., 2016) and a test 

with 90% sensitivity and 90% specificity, only one in three persons screening positive 

would have the disease. As sensitivity and specificity are inversely proportional, by 

lowering the A4FTp threshold to maximise sensitivity leads to a corresponding reduction 

in specificity, therefore this test as with other tests would lead to an unacceptable rise 

in false positives. It has been proposed that future glaucoma screening strategies will 

employ combinations of tests and target those most likely to be affected by vision loss 

in their lifetime (Friedman, 2007, Boland et al., 2016), as described by two models in 

India and China (John & Parikh, 2018, Tang et al., 2019). Combining structural and 

functional testing can be used to improve the sensitivity or specificity for glaucoma 

detection in either a screening or case-finding setting, depending on whether the priority 

is to maximise true positives or minimise false positives (Shah et al., 2006). For example, 

if structural and functional tests are used and disease positives are defined as those who 

test positive by either test, there will be a net increase in sensitivity; conversely, a 

strategy where disease negatives are defined as those who test negative on both tests 

will maximise specificity. For example, in the current study a combination of the 

functional A4FTp and the structural OCT using the optimal thresholds would have 

achieved a sensitivity of 90% which is better than either of tests used alone. 
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3.4.6 Strengths and limitations 

This study has a number of strengths: the design, analysis and reporting of the study 

complied with the principles of the Standards for Reporting of Diagnostic Accuracy 

(STARD 2015). The performance of the index tests was compared in a representative 

sample of participants with the target condition, with a range of disease severities. The 

reference standard and index tests were conducted on the same day as the index tests 

by an experienced clinician masked to the index test results. The reference standard for 

POAG was based on a comprehensive ophthalmic examination typical of that conducted 

in a hospital glaucoma unit. 

The study contained several limitations, it was not a population-based study, the use of 

a case-control design may have artificially overestimated the performance of all the 

index tests. For example, both sensitivity and specificity reduced with the FDT when 

tested in larger population-based studies (Detry-Morel et al., 2004, Robin et al., 2005, 

Boland et al., 2016); a meta‐analysis of two high-quality studies using the FDT C20‐5 to 

detect open angle glaucoma found a pooled sensitivity of 72% and specificity of 60% 

(Burr et al., 2007). This is not surprising, considering flicker sensitivity can be affected by 

non-glaucomatous diseases such as cataract (Tanna et al., 2004, Swanson et al., 2005, 

Casson & James, 2006) and other posterior segment conditions (Cioffi et al., 2000, 

Kopplin & Mansberger, 2015, Boland et al., 2016, Fidalgo et al., 2019). This is the first 

time the A4FTp has been evaluated, as with most initial studies an initial enriched 

population is sought to optimise preliminary performance before testing in wider 

populations and allocating the appropriate resources to further develop the test.  

For the reference standard, both established visual field loss and glaucomatous disc 

damage were required to be present for the case definition in the current study. 

Therefore, those with pre-perimetric glaucoma were not included and would have 

affected real-world diagnostic performance, however given the comparative nature of 

the study, the same degree of bias would apply for all the index tests. Similarly for the 

A4FTp, the age of the control and glaucoma groups differed by approximately a decade, 

hence the relative effect of an age-related loss in flicker sensitivity would have also 
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applied to the FDT. The majority of glaucoma cases were Caucasian with over 80% of the 

study population of European origin, therefore this may limit the generalisability of the 

findings, and performance may differ in other ethnic groups where glaucoma is more 

prevalent (e.g. patients of African origin).  

 

3.4.7 Conclusion 

The A4FTp was designed to detect those at risk of developing visual disability from 

glaucoma in their lifetime, with the current study supporting its ability to detect those 

with moderate and advanced disease. Application of such a tool may be advantageous 

for populations in which the immediate priority is to slow aggressive visual field loss. The 

A4FTp features comparable performance to currently available glaucoma diagnostic 

technologies, easy administration, ready interpretation, relatively short testing time and 

robustness to the effects of refractive error. With further development in usability and 

performance, the A4FTp could have a future role in glaucoma detection.  
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Chapter 4: Impact of optical coherence tomography on diagnostic 

decision-making by UK community optometrists  

4.1 Introduction 

As the major provider of eye care in the United Kingdom (UK), optometrists play a key 

role in the opportunistic detection of both symptomatic and asymptomatic eye disease. 

They also initiate the vast majority of referrals into secondary care (Bell & O'Brien, 1997, 

Bowling et al., 2005, Azuara-Blanco et al., 2007, Davey et al., 2011, Kelly et al., 2011, 

Muen & Hewick, 2011, O'Connor et al., 2012). Although optometrists’ referral accuracy 

seems to improve with clinical experience (Davey et al., 2015, Parkins et al., 2018), 

decision-making in the diagnosis of glaucoma and retinal disease is often associated with 

considerable uncertainty. In practice, the health of the optic disc or macula is judged 

subjectively based on direct or indirect fundoscopy. High false positive and false negative 

rates have been reported in disc assessment by optometrists (Keenan et al., 2015, 

Ratnarajan et al., 2015). Similarly, a prospective study of optometrist referrals for 

neovascular age-related macular degeneration (AMD) reported satisfactory 

performance in identifying symptoms, but poorer performance in recognising clinical 

signs (Muen & Hewick, 2011). 

Optical coherence tomography (OCT) is an interferometric imaging modality that 

enables in-vivo imaging of biological tissues and provides an objective, rapid and non-

invasive method of evaluating the structural integrity of the posterior segment 

(Michelessi et al., 2015, Kashani et al., 2017). This technology has the potential to 

improve clinical decision making in a primary care or triage setting for glaucoma and 

other age-related eye diseases (Ouyang et al., 2013, Dabasia et al., 2015b, Michelessi et 

al., 2015, Azuara-Blanco et al., 2016a).  

Successive surveys in the UK have shown that utilisation of OCT by optometrists have 

increased from 2% in 2008 to 15% within a decade (Myint et al., 2011, Dabasia et al., 

2014b). Whilst OCT is becoming more popular in primary care, there is a lack of high-
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quality evidence to support this technology in improving diagnostic performance in case-

finding. Furthermore, there is currently no formal requirement for optometrists to 

demonstrate competency in interpreting its diagnostic data post qualification. A recent 

study in Australia using case vignettes found that the diagnostic accuracy of macular 

disease is only marginally improved with the incorporation of advanced imaging 

techniques when compared to colour fundus photography alone; the additional 

information from advanced imaging led to increased numbers of false positives and a 

greater tendency to refer cases to secondary care (Ly et al., 2018).  

Clinical vignettes can simulate realistic patient interactions and are widely used to 

measure variation in the diagnosis and management of disease across a range of medical 

specialities (Veloski et al., 2005). Vignettes have been validated against unannounced 

standardised patients and case record abstraction as a measure of quality of care 

(Peabody et al., 2000, Peabody et al., 2004). They offer a number of advantages including 

control of case mix and the economies of scale, which means that they can be 

administered simultaneously to a large group of clinicians. 

The benefit of the widespread adoption of OCT on case-finding for ocular disease by 

community optometrists in the UK is unclear. The aim of the current study was to 

determine the value of OCT in a representative sample of community optometrists, by 

evaluating their performance and confidence to detect posterior segment diseases, 

using a clinical vignette methodology. 
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Study Contributions 

Ethics application, study protocol and the selection of images required for the clinical 

vignettes was written and carried out by AJ. Establishment of the expert panel and their 

findings was organised by AJ. The clinical vignette software package was developed by 

Ripley systems and the clinical data was inputted by AJ. The pilot and the OCT training 

was organised by AJ and IC, online training was delivered by AJ. Study eligibility, 

recruitment of all the participants, study logistics, statistical analysis and study findings 

were performed and written by AJ. Comments on the peer-reviewed paper were reviewed 

by AJ, IC and JL.  
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4.2 Methods 

4.2.1 Participating optometrists 

UK registered community optometrists were recruited from several sources. An 

invitation to participate in the study was sent either directly by email, via posters 

distributed to local community practices or through contacting Local Optical 

Committees. Optometrists expressing an interest were asked to complete an online 

questionnaire to determine their eligibility for the study. The questionnaire also asked 

for information on mode of practice (locum, independent, and multiple group), 

postgraduate qualifications and any further training or professional development 

undertaken (see Appendix 3). To be included in the study, participants had to be 

registered in the UK and employed in community optometry practice for at least 2 days 

per week. Optometrists were excluded if they had ever participated in any AMD shared 

care schemes, or had previously worked in a medical retina or glaucoma secondary care 

clinic. 

The study was approved by the School of Health Sciences Research Ethics Committee, 

City, University of London, and complied with the tenets of the Declaration of Helsinki. 

Written and informed consent was obtained from all participants prior to taking part in 

the study. 

 

4.2.2 Standardised online training 

It was anticipated that participating optometrists would vary in their experience of 

interpreting OCT data and it was decided a priori to develop a bespoke online training 

programme to familiarise participants with the principles of OCT interpretation and 

specifically, the characteristics of the data output from the iVue Spectral-Domain Optical 

Coherence Tomography (SD-OCT). The training consisted of a 1-hour online lecture 

(delivered via the universities virtual learning system) and links to relevant publications 

on OCT interpretation. The lecture was written and delivered by AJ and covered the 
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principles of OCT, interpretation of quantitative and qualitative data outputs and clinical 

examples of retinal and optic nerve pathology. 

 

4.2.3 Sourcing of clinical data 

Fundus and OCT images selected for the study were taken from a dataset, which was 

previously collected in a prospective community-based cross-sectional study (Dabasia et 

al., 2015b); all the patients had consented for their anonymised clinical information to 

be shared for the purpose of future research. OCT scans of the disc and macula were 

captured using the IVue SD-OCT (Optovue Inc, www.optovue.com, software version 

3.2.0.42) (details of scan protocols have been described elsewhere (Aref & Budenz, 

2010). Forty-five-degree fundus photographs were taken through dilated pupils using 

the Topcon mydriatic/non-mydriatic retinal camera (Topcon Medical Systems Inc., 

www.topconmedical.com, model TRC-NW8F) at a resolution of 3008x2000. The patients 

were diagnosed at the time of data capture following a reference standard ophthalmic 

examination. The reference examination was conducted by an experienced clinician who 

had undertaken validated training in glaucoma and completed grader accreditation in 

diabetic retinopathy and age-related macular degeneration at the Reading Centre, 

Moorfield’s Eye Hospital, UK. The definitions regarding glaucoma classification that were 

used in this study have been described elsewhere (Dabasia et al., 2015b).  

Twenty-six fundus images were chosen from the dataset, consisting of a mixture of 

normal eyes and eyes showing disc or retinal pathology; a similar, independent set of 26 

images with their corresponding OCT data files were also selected (Table 4.1). The image 

sets were of good quality and free from artefacts. Seventy percent of the images in each 

set contained an ocular abnormality (Figure 4.1); this proportion was similar to the 

posterior segment abnormalities detected in the original cross-sectional study (Dabasia 

et al., 2015b). 
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Figure 4.1. Flow diagram of the image allocation for the assessment. 

Fundus alone (n=26) OCT combination (n=26) 

Median age (IQR) 66 (65-72) 66 (65-74) 

Ethnicity No. (%) 
Caucasian  
African origin 
South Asian 
Asian 

24 (92%) 
1 (4%) 
0 (0%) 
1 (4%) 

17 (65%) 
5 (19%) 
3 (12%) 
1 (4%) 

Diagnosis                                          No. Diagnosis                                          No. 

Healthy disc 4 Healthy disc 4 

Glaucoma suspect 5 Glaucoma suspect 4 

Glaucoma  4 Glaucoma  5 

Healthy retina 4 Healthy retina 4 

Vitreo-macular traction 1 Vitreo-macular traction 1 

Epiretinal membrane 2 Epiretinal membrane 2 

Diabetic maculopathy 1 Diabetic maculopathy 2 

Choroidal naevus 1 Choroidal naevus 1 

Advanced dry AMD  1 Advanced dry AMD 1 

Macular hole 1 Macular hole 1 

Early AMD 1 Early AMD 0 

Intermediate AMD 1 Intermediate AMD 1 

Table 4.1. Case mix of the conditions shown in the clinical vignettes. IQR: Interquartile 

range. 

52 Fundus 
Images

26 Fundus Images displayed 
alone

Optic nerve head

Diseased (n=9)

Non-diseased (n=4)

Posterior pole

Diseased (n=9)

Non-diseased 
(n=4)

26 Fundus Images displayed 
with corresponding OCT data

Optic nerve head

Diseased (n=9)

Non-diseased 
(n=4)

Posterior pole

Diseased (n=9)

Non-diseased 
(n=4)
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4.2.4 Expert panel 

An independent expert panel was convened to ensure that a) the fundus images to be 

presented alone and those presented in combination with OCT data were of a similar 

level of difficulty and b) confirm that the cases were typical of those seen in primary 

care. The panel comprised 5 clinicians with expertise in medical retina and glaucoma, 

including two consultant ophthalmologists, an academic optometrist, an experienced 

community optometrist and a hospital optometrist. The panel were asked 

independently to view both sets of fundus photographs and grade the level of difficulty 

of each set to diagnose the condition from the photographs using a 10-point Likert scale 

(Figure 4.2). They were also asked to state whether the conditions were representative 

of a primary care case mix. All members of the panel agreed that the conditions were 

representative with 4 out of 5 clinicians agreeing the case mix was appropriate. Similarly, 

the level of difficulty scored by the expert panel was equivalent for the optic nerve and 

retinal disease cases between the two image sets. 

 

Figure 4.2. A set of normal discs presented to the expert panel to determine the 

difficulty of diagnosis. 
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4.2.5 Case vignettes  

Case vignettes displayed a monoscopic fundus image, the age of the patient, best-

corrected visual acuity and pinhole acuity gathered at the time of the original data 

capture. The fundus image showed either an optic disc or posterior pole of the retina, 

26 of the vignettes were combined with the corresponding SD-OCT analytical report. For 

the disc image, they were asked to classify the disc as either 1. Healthy, 2. Probably 

healthy, 3. Probably damaged, or 4. Damaged (Figure 4.3). For the posterior pole images, 

participants were asked to select a diagnosis from a pull-down menu containing a list of 

11 retinal conditions including a ‘healthy’ option (Figure 4.4). Following each clinical 

decision, participants were asked to rate their confidence in their decision using a 10-

point Likert scale. The order of vignettes was randomised by a random number 

generator and presented using a specifically developed software package produced by 

Ripley Systems Ltd (www.ripleysystems.co.uk). 

 

4.2.6 Pilot 

The vignettes were independently piloted for clarity, questions, layout and time taken 

to complete a sample of 4 questions from the assessment by 28 optometrists 

undertaking the MSc in Clinical Optometry at City, University of London. The time taken 

to complete the pilot was within 5 minutes for all participants. The cohort reported that 

clarity, questions and layout were appropriate for the assessment. Suggestions included; 

facility to enlarge the images as this would be reflective of current clinical practice and 

to incorporate a demonstration of the assessment before formal commencement. The 

interface was subsequently modified based on these suggestions and the full assessment 

(52 vignettes) was then piloted by 3 optometrists. All three optometrists completed the 

assessment well within an hour. None of the piloted data from the 31 optometrists was 

used in the final analysis.  
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Figure 4.3. Optic disc vignette with corresponding OCT data; RNFL thickness with 

colour coded comparisons to the normative database in their respective quadrants; 

average overall RNFL thickness and hemifield thickness; optic nerve head analysis 

displaying cup to disc ratios and volumetric analysis. 

 

Figure 4.4. Vignette illustrating the central retina with the corresponding OCT data; 

seven B-scans displaying sections of the macula from superior to inferior; macular 

thickness map that is colour coded according to the machines normative database. 
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4.2.7 Computer-based assessment 

Participants completed the assessment during a single 1-hour session, held at City, 

University of London. The vignettes were viewed under standardised viewing conditions 

on calibrated 21.5-inch computer monitors at a resolution of 1920x1080. Before the 

assessment, participants were instructed on the nature of the examination and were 

shown demonstration vignettes. Participants were also briefed on the classification 

system used when categorising age-related macular degeneration (Ferris et al., 2013). In 

addition, they were informed that each vignette related either to a normal eye or an eye 

showing a single ophthalmic diagnosis. Furthermore, it was confirmed that there was no 

evidence of amblyopia and that the only risk factor provided was age. 

 

4.2.8 Sample size 

A minimum of 51 images was needed to detect a statistically significant difference of 

20% in performance; between the 2 diagnostic methods with 95% confidence and 80% 

power (Hajian-Tilaki, 2014). For the sample size calculation, a median specificity of 74% 

was assumed based on previous studies involving community optometrists in detecting 

glaucomatous discs using disc images (Hadwin et al., 2013, Myint et al., 2014). For the 

number of participants making a clinical decision, a formal sample size calculation was 

not performed. However, we aimed to recruit a suitable number of community-based 

optometrists who are representative of those working in the UK. From a previous study 

of glaucoma decision-making using a similar computer-based assessment, a sample of 

53 optometrists provided a sufficiently narrow confidence interval (CI) for diagnostic 

performance in a disc assessment task (Myint et al., 2014). 
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4.2.9 Statistical analysis 

Statistical analysis was performed using SPSS 24.0 (www.ibm.com/analytics/spss-

statistics-software). To calculate the overall diagnostic performance for each participant, 

responses for each case vignette were converted into a binary score (one mark for a 

correct diagnosis and zero for an incorrect diagnosis).  

In cases where the original diagnosis was either suspect glaucoma or definite glaucoma, 

a correct mark was given in both cases if the user answered either damaged or probably 

damaged, similarly if the disc was healthy, ‘probably healthy’ was an acceptable answer. 

For cases of early or intermediate AMD, a mark was given if the participant classified the 

disease as either diagnosis. For all other retinal conditions, only the correct diagnosis 

was acceptable and alternative diagnoses were deemed to be incorrect. 

For incorrect responses, the false positive and false negative rates were determined. A 

false negative was defined as a case showing an ocular disease incorrectly diagnosed as 

healthy; a false positive was a normal case incorrectly diagnosed as diseased. Secondary 

analysis was undertaken to determine the sensitivity and specificity of the two 

modalities with respect to disease presence and absence.  

Parametric paired t-tests were used to compare diagnostic performance and Wilcoxon 

tests for the confidence scores between fundus and OCT combination data sets. The 

Mann-Whitney test was used for subgroup analyses based on participant gender, 

practice setting or years of experience post-qualification. Linear regression was used to 

compare practitioner confidence and diagnostic performance to years qualified. For all 

tests, p<0.05 was considered statistically significant. 
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4.3 Results 

4.3.1 Participant characteristics  

Sixty-two participants completed the eligibility questionnaire and 12 participants were 

excluded: 3 participants worked less than 2 days a week in community practice and 9 

optometrists had previously worked in a medical retina or glaucoma secondary care 

clinic. Fifty optometrists were included in the final analysis and completed all case 

vignettes.  

Characteristics of participants are summarised in Table 4.2. Participants had a median of 

10 years post-registration experience with the majority female (62%). Approximately 

equal numbers were either working as locums or based in independent or multiple 

practices. Less than a fifth of participants had additional qualifications related to either 

glaucoma or medical retina. Although the majority (84%) used fundus photography 

routinely, less than a third had used OCT in their practice or had undertaken previous 

training in OCT interpretation.  
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Median 

(IQR) 
No. (%) 

A. No. years qualified 10 (4-19)  

B.  Gender 
Female 
Male 

 
 

31 (62%) 
19 (38%) 

C. Setting of primary practice 
Independent 
Multiple 
Locum 

 

 
16 (32%) 
17 (34%) 
17 (34%) 

D. No. optometrists working in community primary 
care 

 50 (100%) 

E. No. days working in community practice in a week 4 (3-5)  

F. No. optometrists working in secondary care  5 (10%) 

G. No. days working in secondary care in a week 2 (1-2.5)  

H. Optometrists using fundus photography routinely  42 (84%) 

I. Optometrists using OCT routinely  15 (30%) 

J. Optometrists with postgraduate qualifications 
specific to glaucoma 

 8 (16%) 

K. Optometrists with postgraduate qualifications 
specific to medical retina 

 1 (2%) 

L. Previous attended training/courses regarding OCT 
OCT manufacturer 
Distance learning continued education and training 
Own Practice/company 

 

 
 6 (12%) 

    2 (4%) 
 7 (14%) 

 
Table 4.2. Demographic characteristics of the participants (n=50). For practice setting 

‘multiple’ refers to high street chains with practices throughout the UK. 

 

4.3.2 Overall diagnostic performance  

The mean percentage of case vignettes correctly identified using fundus imaging alone 

was 62% (16/26 cases) (95% CI 59%-64%), increasing to 80% (21/26 cases) (95% CI 77%-

82%) for the fundus image/OCT combination, which was statistically significant 

(p<0.001). Statistically significant improvements were also seen for the OCT combination 

for both disc (p<0.001) and retinal cases (p<0.001) (Figure 4.5). Nearly all the 

optometrists performed better with the supplementary OCT clinical data (94%), one 
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participant (2%) showed no improvement and two participants (4%) performed worse 

(Figure 4.6).  

 

Figure 4.5. Correctly identified mean percentage score of total, optic discs and retinal 

cases using fundus alone and combination OCT. Error bars represent the upper 95% 

confidence interval. * indicates a statistically significant difference (p<0.001). 

 

 

Figure 4.6. Difference in scores between the OCT combination and fundus alone. 

Positive scores indicate improvement with the combination. 
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4.3.3 Performance to disease  

The mean sensitivity and specificity of all participants regarding the case vignettes to any 

disease for fundus imaging alone was 73% and 80% respectively, increasing to 87% and 

92% for the fundus image/OCT combination (Table 4.3). Overall and disc pairwise 

comparisons regarding sensitivity and specificity between these two sets of images were 

all statistically significant (p<0.001). Sensitivity for the retinal cases did not improve 

statistically for the OCT combination, however specificity did improve (p=0.002). 

 Sensitivity (95% CI) Specificity (95%CI) 

All Fundus images 73% (70%-76%) 80% (75%-84%) 

All Fundus images with OCT 87% (84%-90%) 92% (89%-94%) 

Discs images 54% (48%-60%) 87% (81%-92%) 

Disc images with OCT 80% (76%-85%) 99% (96%-100%) 

Retina images 92% (90%-95%) 73% (67%-79%) 

Retina images with OCT 94% (91%-96%) 85% (80%-90%) 

 
Table 4.3. Sensitivity and specificity values of cases using fundus alone and 

combination OCT. 

 

4.3.4 False negative and false positive rates 

The overall false negative rate was 27% for cases consisting of a fundus image alone. This 

reduced to 13% for the fundus image/OCT combination. Although this difference was 

statistically significant (p<0.001), a significant reduction was seen only for the disc 

scenarios (Figure 4.7).  

The mean false positive rate using fundus image alone and for the combination with OCT 

was 27% and 9% respectively, which was statistically significant (p<0.001). Significant 

reductions were observed for both discs and retinal cases, (p<0.001) and (p=0.002) 

respectively (Figure 4.8). 
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Figure 4.7. False negative rates of total, optic discs and retinal cases using fundus alone 

and combination OCT. Error bars represent the upper 95% confidence interval. * 

indicates a statistically significant difference (p<0.05). 

 

 

Figure 4.8. False positive rates of total, optic discs and retinal cases using fundus alone 

and combination OCT. Error bars represent the upper 95% confidence interval. * 

indicates a statistically significant difference (p≤0.002). 
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4.3.5 Subgroup analysis of diagnostic performance 

There was no difference in diagnostic performance based on participant gender, practice 

setting, OCT experience or years qualified post qualification. Further analysis regarding 

those qualified ≥10 years (n=26) and <10 years (n=24) showed no statistically significant 

difference in diagnostic performance between the two modalities. Although prior OCT 

training did not have an impact on overall performance, there was a statistically 

significant improvement for retinal conditions with OCT (p=0.026) but not for discs. The 

overall performance of optometrists with additional qualifications in either glaucoma or 

medical retina with the OCT combination was better than those without (p=0.024).  

 

4.3.6 Confidence scores 

The median confidence of diagnostic decisions was high (median 8 out of 10), and 

confidence only marginally improved with the addition of the OCT data for both retinal 

and disc cases (Table 4.4). There was no statistically significant difference in diagnostic 

confidence between the genders or practice setting. Similarly, further qualifications, 

training or experience in using OCT did not influence confidence. There was a positive 

correlation between the number of years qualified and confidence in decisions for all 

vignettes consisting of the fundus image alone, (Pearson correlation, r=0.324, p=0.022), 

but not for the OCT combination. 

 Fundus confidence Combination confidence p value 

Total confidence 
median (IQR) 

8.0 (7.0-8.0) 8.3 (8.0-9.0) <0.001 

Disc confidence 
median (IQR) 

8.0 (7.0-8.0) 9.0 (8.0-9.0) <0.001 

Retina confidence 
median (IQR) 

8.0 (7.0-8.0) 9.0 (8.0-9.0) <0.001 

 
Table 4.4. Confidence scores of participants; p values were calculated using the 

Wilcoxon sign rank test. 
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4.4 Discussion 

The global distribution of visual impairment is affected by age, where it is a significant 

risk factor in the development of a number of eye diseases including: glaucoma (Tielsch 

et al., 1991a, Wormald et al., 1994, Mitchell et al., 1996, Varma et al., 2004, Leske et al., 

2008), age-related macular degeneration (Meuer et al., 2014, Mitchell et al., 2018), 

epiretinal membrane (Mitchell et al., 1997, Miyazaki et al., 2003, McCarty et al., 2005, 

Kawasaki et al., 2008) and vitreo-retinal conditions such as macular holes and vitreo-

macular traction (VMT) (Garcia-Layana et al., 2015). Timely detection is key and visual 

loss in these conditions can be prevented, with up to 50% of sight loss potentially 

avoided (RNIB, 2009).  

With the ease in using OCT and its ability to gather a huge amount of diagnostic 

information rapidly, it has been widely adopted to diagnose a number of eye diseases 

(Jeong et al., 2016). It has been proposed that OCT could fulfil the test acceptability 

requirement needed for eye disease screening (Wilson & Jungner, 1968, NSC, 2016). A 

recent systematic review found that OCT achieved a pooled specificity of 95% and 

sensitivity of 75% in the diagnosis of glaucoma (Oddone et al., 2016). However, nearly 

all the studies in the review were case-control studies, where these can over-estimate 

diagnostic accuracy (Medeiros et al., 2007, Rao et al., 2012), whereas different study 

designs with larger cohorts demonstrated lower specificity (Dabasia et al., 2015b, Virgili 

et al., 2018). Furthermore, based on the relatively low prevalence of glaucoma in the 

general population, the diagnostic capability of OCT alone is probably insufficient to 

meet the requirements needed for general glaucoma screening. However it has been 

proposed that it could be used to screen glaucoma in high-risk populations (Bengtsson 

et al., 2012), but this has not been formally evaluated. A review investigating macular 

oedema in patients with diabetic retinopathy, recognised OCT as the new reference 

standard for its detection (Virgili et al., 2015). When OCT was applied prior referral to 

the Diabetic Retinopathy Screening Service (DRSS), it was found it could lower health 
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service costs (Olson et al., 2013) and when used adjunct to current DRSS modalities, it 

was considered cost-effective (Leal et al., 2019).  

With the absence of age-based population screening programmes, the majority of eye 

diseases are detected by case-finding where advances in imaging technology can provide 

additional diagnostic information. A systematic review suggested OCT could be used to 

inform glaucoma case-finding in primary care (Michelessi et al., 2015), where community 

optometrists are well placed for the detection and referral of ocular abnormalities. The 

College of Optometrists-funded ‘impact of equipment in eye care’ project showed there 

was widespread investment in modern imaging technologies by optometrists in primary 

care, especially OCT (Dabasia et al., 2014b). This is expected to substantially increase 

following the announcement that the largest optometry chain in the UK will be 

incorporating OCT in all of their practices within the next few years (AOP, 2017).  

With the widespread adoption of OCT, its benefit in case-finding for ocular disease by 

community optometrists is unclear. The current study investigated the value of OCT in 

the diagnosis of posterior segment diseases in a representative sample of community 

optometrists by evaluating their performance and confidence in clinical decision making. 

The performance of 50 community optometrists was assessed in diagnosing a range of 

pathologies affecting the posterior segment, using 26 case vignettes containing fundus 

images alone and 26 vignettes showing fundus images with their corresponding OCT 

data. 

 

4.4.1 Disc assessment 

Several authors have previously investigated the performance of community 

optometrists in the subjective assessment of optic discs (Hadwin et al., 2013, Myint et 

al., 2014, Yoshioka et al., 2015). The disc images and OCT scans used in the present study 

were taken from participants recruited into a community-based cross-sectional study to 

assess the performance of technologies for glaucoma case-finding (Dabasia et al., 

2015b). Within each image set, 70% of discs were from patients with confirmed or 
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suspect primary open angle glaucoma (presence of glaucomatous optic neuropathy and 

a concordant glaucomatous field defect or a disc showing glaucomatous features and a 

normal field, respectively) and 30% were normal. The overall diagnostic performance 

based on monoscopic observation of disc images alone was approximately 65%, with a 

sensitivity of 54% and specificity of 87%. Diagnostic performance was similar to previous 

studies of optometrists in Australia (Yoshioka et al., 2015) and the UK (Myint et al., 2014).  

Since the original diagnoses of glaucomatous optic neuropathy was based on dilated 

indirect ophthalmoscopy, it is possible that diagnostic accuracy may have improved with 

stereoscopic visualisation. A UK study, using stereoscopic photographs of healthy and 

glaucomatous discs reported an overall accuracy of 80% (Hadwin et al., 2013). Although 

it could be argued that in standard clinical practice, a diagnosis of glaucoma is usually 

based on a combination of disc observation and visual field assessment; optic nerve 

damage is often the first clinically detectable sign of the disease. For example, in 

randomised controlled trials of patients with ocular hypertension, 40-60% of cases 

converting to glaucoma showed optic disc changes before reproducible visual field 

damage (Keltner et al., 2006, Miglior et al., 2007).  

In the current study, there was a significant improvement in classification and diagnostic 

performance with the OCT combination alongside reductions in false positive and false 

negative rates. Similarly, Yoshioka and colleagues (Yoshioka et al., 2015), found that 

when OCT was combined with an image of the optic disc, overall performance and 

sensitivity increased with a reduction in false negatives. The current study provides 

evidence that disc evaluation can be augmented by additional information on the 

integrity of the retinal nerve fibre layer provided by the OCT.  
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4.4.2 Diagnosis of retinal disease 

A major advantage in using OCT to diagnose retinal and macular diseases is its ability to 

provide high-resolution cross-sectional images of the retina and perform quantitative 

segmental analysis of retinal layers (Ontario, 2009). The Retinal Disease Screening Study 

compared fundus photography with OCT imaging in 158 asymptomatic subjects and 

concluded that OCT was more sensitive than fundus photography for the detection of 

retinal irregularities and was able to detect significantly more clinically relevant disease 

(Ouyang et al., 2013). The present study showed an improvement in performance for 

the diagnosis of retinal conditions with the additional data from OCT and a 

corresponding reduction in the false positive rate. The false negative rate was low 

(<10%) for both sets of vignettes.  

To the author's knowledge, this is the first study to look at the impact of OCT on 

optometrist’s diagnostic decisions for a range of retinal and macular diseases. A recently 

published vignette study from Australia evaluated the effect of advanced imaging 

(including OCT) on optometrist’s decision-making for the diagnosis and management of 

AMD (Ly et al., 2018); the use of fundus photography alone resulted in an accurate 

diagnosis of AMD in 61% of cases, this was similar to the current study where 

participants detected 59% of cases correctly in a range of retinal conditions. Ly and 

colleagues (Ly et al., 2018) found overall diagnostic accuracy improved by a modest five 

per cent with advanced imaging and the additional information led to an increased false 

positive rate and a greater tendency to refer to secondary care. The authors concluded 

that a lack of training in interpreting the results of advanced imaging might explain the 

findings. Although participants in the current study had varying experience of OCT 

interpretation upon recruitment, we attempted to mitigate this via standardised online 

training prior to carrying out the assessment.  
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4.4.3 Participant variables affecting performance 

In the current study, almost a fifth of participants had higher professional qualifications 

in glaucoma or medical retina. The overall diagnostic performance of this group was 

superior with the overall OCT combination to those who did not have these 

qualifications. This is consistent with the findings of Hadwin and colleagues (Hadwin et 

al., 2013), who reported that optometrists with higher qualifications had a higher overall 

accuracy in stereoscopic optic disc assessment.  

The overall diagnostic performance was found to be unaffected by the number of years 

post-registration experience, which was also found by Hadwin and colleagues (Hadwin 

et al., 2013). Although optometrist’s referral accuracy has been shown to improve 

slightly with clinical experience (Davey et al., 2015, Parkins et al., 2018), the greatest 

improvement occurs within the first two years post-qualification, after which a plateau 

is reached in terms of diagnostic performance, which may explain the present study’s 

findings as the median number of years qualified for the participants in the current study 

was 10 years and 94% of participants had been qualified for at least two years.  

 

4.4.4 Diagnostic confidence 

Participant confidence in their diagnostic decisions was high for both image sets. 

Although there was a small numerical improvement that was statistically significant with 

the OCT combination, this finding is not clinically significant. As with other clinical 

studies, this study risked the attraction of optometrists who were more confident in their 

diagnostic skills (Myint et al., 2011, Theodossiades et al., 2012, Parkins et al., 2018), 

which probably induced a ‘ceiling effect’ and could explain the high confidence scores 

with both image sets. 
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4.4.5 OCT implication 

OCT use in secondary care ophthalmology and potential for primary care has led to the 

recognition that case-finding may be enriched in glaucoma (Dabasia et al., 2015b, 

Azuara-Blanco et al., 2016a) and the identification of retinal disease (Ly et al., 2018). The 

current study found that with the OCT combination, the overall percentage of cases that 

were correctly classified increased by an average of approximately 20%, with over 90% 

of participants showing an improvement in their overall diagnostic accuracy when the 

fundus images were combined with OCT. The performance of some individuals increased 

by over 40%. One particular case was associated with the greatest improvement, where 

only one optometrist correctly diagnosed VMT from the fundus image alone, where this 

improved to 38 optometrists (76%) correctly diagnosing a case when combined with 

OCT. This highlights the problem of diagnosing this condition based on limited symptoms 

and absence of OCT (Johnson, 2005). 

Poor diagnostic accuracy has been reported in disc assessment by optometrists (Bowling 

et al., 2005, Keenan et al., 2015, Ratnarajan et al., 2015) and retinal conditions (Muen & 

Hewick, 2011, Parkins et al., 2018). Subsequently, there has been a shift towards 

integrating advanced imaging technologies in the hope of improving the conventional 

assessment. The current study reports that with the additional objective information 

provided with OCT with fundus examination, the proportion of false negatives and false 

positives were significantly reduced; this would inevitably lead to improved disease 

detection and reduce the induced cost-resource implications of unnecessary referrals. 

With OCT uptake increasing over the last decade (Myint et al., 2011, Dabasia et al., 

2014b), our sample demonstrated 30% of optometrists had access to OCT, which 

suggests its popularity is continuing. In agreement with other studies, the current study 

reported that optometrists with further professional qualifications showed improved 

diagnostic performance (Hadwin et al., 2013). With the increased incorporation of OCT 

in primary care, there is a concern that if clinicians do not receive the necessary training, 

this may result in reduced diagnostic performance, leading to an increase in 

inappropriate referrals. OCT outputs provide colour coded maps which are based on the 
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machine’s normative databases, if practitioners are unaware of the limitations of this 

data this may lead to under or overdiagnosis (Chong & Lee, 2012).  

The current study mainly focused on the detection of diseases using clinical vignettes, it 

did not explore management. There are few studies that have investigated triaging using 

OCT (Talks et al., 2007, Kelly et al., 2011, Ly et al., 2016). They concluded that OCT has 

the potential to assist triage and improve interdisciplinary professional working 

relationships, but even if the disease has been successful detected, triaged and referred, 

are there are enough resources to enable management of these conditions in an already 

over-stretched secondary care setting. It may be therefore appropriate that 

optometrists in primary care will shift the traditional management of diseases from 

secondary care into the community by acquiring higher qualifications (CoO, 2019) and 

purchase the relevant technology. However, with the volume and complexity of 

diagnostic imaging increasing faster than human expertise to interpret it, in addition to 

the time and cost needed to train optometrists; artificial intelligence may be the next 

step in facilitating the detection and management of eye diseases. Artificial intelligence 

that use deep learning strategies can analyse a significant amount of diagnostic data 

from a variety of sources such as OCT, fundus imaging and/or visual field data, and have 

been applied to detect diabetic retinopathy, glaucoma and age-related macular 

degeneration. With advancing algorithms, it has been proposed that deep learning 

methods coupled with telemedicine in primary eye care, could provide a financially long 

term solution to either screen, triage and/or monitor patients (Ting et al., 2019) 

 

4.4.6 Strengths and limitations of the study 

One of the strengths of the current study was the relevance of the case mix. The clinical 

vignettes were drawn from real clinical cases who participated in a large cross-sectional 

study of elderly subjects with a range of pathologies that would be typical of those seen 

in routine optometric practice (Dabasia et al., 2015b). The two sets of vignettes were 

externally validated to ensure a similar level of difficulty and the assessment was pilot 
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tested. In addition, all participants received a standardised online training package in 

OCT interpretation, that is similar to training given to new OCT users and in the 

assessment, they were forced to select a diagnosis as they would in clinical practice. In 

terms of demographics and mode of practice, the study participants were broadly 

representative of community optometrists working in the UK (CoO, 2015, GOC, 2017).  

Since the aim of the study was to investigate the ability of optometrists to recognise disc 

damage and features on retinal images, the vignettes did not contain all of the diagnostic 

information that would normally be available to the optometrist e.g. presence of risk 

factors, data from visual field plots and intraocular pressure readings. Studies evaluating 

UK optometric practice patterns found that community optometrist’s use of direct 

ophthalmoscopy was more common than indirect ophthalmoscopy (Shah et al., 2009, 

Myint, 2013). As non-stereoscopic images were used in the assessment, this is likely to 

reflect the view of the disc obtained by most UK community optometrists, but it should 

be noted that both these surveys were conducted almost a decade ago. A systematic 

review comparing stereoscopic and monoscopic disc methods found that monoscopic 

assessment generated a lower sensitivity than the stereoscopic (Newman-Casey et al., 

2014). With the advent of updated clinical guidelines (SIGN, 2015, NICE, 2017), it is 

therefore possible that optometrists in UK community practice may be making greater 

use of binocular indirect ophthalmoscopy for detecting and referring optic nerve head 

disease. Another issue that could have been induced was the framing of some of the disc 

photographs in the vignettes. This may have prohibited participants in identifying 

peripapillary signs of RNFL damage that could have affected the diagnostic performance 

gained using OCT. In addition, the inclusion of unequivocally ‘normal’ vignettes may have 

unintentionally improved the diagnostic performance of the OCT. It has previously been 

demonstrated that effectiveness of the OCT in detecting glaucoma significantly 

decreases when evaluated against a more clinically relevant control group with 

suspicious-looking discs compared to a control group with no suspicious findings (Rao et 

al., 2012). The results may therefore not be fully representative of the participants’ 

diagnostic performance in a ‘real world’ setting; this assumption is also relevant to the 
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artificially raised prevalence of certain eye diseases presented in the current study such 

as disc pathology. Subsequently, this may have influenced the decision making of 

participants attending an assessment that evaluated their ability to detect disease; with 

a perception that there would be a greater number of those with disease, that could 

have led to an over-classification of pathology. 

 

4.4.7 Conclusion 

There has been widespread investment in imaging technologies by UK community 

optometrists, most notably OCT. The results of this study suggest that OCT improves 

optometrist’s diagnostic performance and confidence. These initial results imply that 

OCT provides valuable additional data that could augment case-finding for glaucoma and 

retinal disease. Whilst the improvement in diagnostic performance is encouraging, the 

OCT should still be employed judiciously in a routine clinical practice setting. It is also 

important that clinicians are appropriately trained in OCT data interpretation and 

appreciate the limitations as well as the strengths of the technology. 
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Chapter 5: Summary and directions for future work 

5.1 Summary  

With global shifts towards an ageing population, there will be an exponential increase in 

age-related eye diseases that could result in unavoidable sight loss if left undetected. 

The emergence of new imaging and visual assessment technologies has provided 

opportunities for improved detection and assessment of ocular disease. However, 

before these technologies can be incorporated in a routine clinical setting, it is crucial 

that their performance is fully evaluated. 

In high income countries, epidemiological studies have shown that up to a half of 

glaucoma is undiagnosed (Tielsch et al., 1991a, Klein et al., 1992, Mitchell et al., 1996, 

Quigley & Vitale, 1997, Weih et al., 2001, Chan et al., 2017) and over 90% is undiagnosed 

in low income countries (Ramakrishnan et al., 2003, Vijaya et al., 2008, Garudadri et al., 

2010, Thapa et al., 2012, Budenz et al., 2013). In the United Kingdom (UK) a cost based 

analysis that built-in the relatively low costs of ‘technicians’ for primary open angle 

glaucoma (POAG) screening using current technologies, was found to be not cost-

effective in the general population (Burr et al., 2007), which concurs with similar findings 

from a Finnish study (Vaahtoranta-Lehtonen et al., 2007). In both studies, the authors 

concluded that whilst POAG is the predominate form of glaucoma in their studied 

population, the diagnostic accuracy of the reviewed technologies coupled with the low 

prevalence of the disease did not satisfy the requirements needed for population 

screening. However, they suggested that targeting those at risk of the disease may be 

economically viable (Burr et al., 2007, Vaahtoranta-Lehtonen et al., 2007, Hernández et 

al., 2008). With the emergence of primary angle closure glaucoma (PACG) contributing 

to a greater proportion of global glaucoma blindness, it will be those in Asia who will be 

greatest affected by this disease (Quigley & Broman, 2006, Tham et al., 2014). Two 

recent economic models found that screening for glaucoma which encompassed both 

POAG and PACG in rural India and China, could be cost-effective due to the higher 
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prevalence and risk of blindness associated with PACG (John & Parikh, 2018, Tang et al., 

2019), however at present there are no screening programmes that are in operation. 

For the definitive detection of those at risk of PACG, this requires gonioscopic 

assessment of the angle. This technique is not appropriate for population screening 

however, several non-invasive methods are available to identify eyes at risk of occlusion. 

Studies evaluating the diagnostic performance of these techniques are increasingly 

being published, however there have been relatively few attempts to synthesise this 

evidence. Systematic reviews of diagnostic test accuracy provide a quantitative summary 

of test accuracy, risk of bias assessment and compare the performance of alternative 

tests. Chapter 2 systematically reviews the diagnostic performance of five tests in the 

identification of a narrow angle: flashlight test, limbal anterior chamber depth (LACD), 

Scanning Peripheral Anterior Chamber Depth Analyser, Scheimpflug photography and 

Anterior Segment Optical Coherence Tomography (AS-OCT). Thirty-eight studies 

provided quantitative data for the review and a quality assessment (using QUADAS-2) 

was conducted for each study. The majority of studies were conducted in Asia, where 

the findings would be particularly applicable. Meta-analysis was conducted for all five 

tests; overall there was relatively good performance for most tests for the detection of 

a narrow angle, based on the test threshold with the highest diagnostic odds ratio. A 

comparison of diagnostic test accuracy using the LACD ≤25% threshold as the reference, 

revealed similar performance between the tests although flashlight and AS-OCT had a 

lower sensitivity and specificity, respectively. The studies included in the current review 

had a number of methodological shortcomings, for example a third of the studies 

recruited subjects with a previous diagnosis of narrow angle and all thresholds for 

Scheimpflug photography and quantitative AS-OCT thresholds were calculated post-hoc 

rather than being pre-determined. While these limitations could have led to an over-

estimation of test performance, we nonetheless consider the results valuable. An 

important finding from the review was that LACD performed as well as sophisticated 

imaging technologies and confirms it’s potential for screening narrow angles in high-risk 

populations. Although, care should be taken when interpreting and applying these 
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estimates for clinical decision making due to the observed heterogeneity in test 

performance and high risk of bias found in most studies.  

In low income countries, the proportion of undetected glaucoma and the risk of 

associated blindness is high due to inadequate access to eye care and poor public 

awareness. Furthermore, with limited availability of low-cost technologies that can be 

deployed in such settings with minimal operator training, detection will always remain 

problematic. Chapter 3 describes the development and evaluation of a newly developed 

test named the ‘Accelerator 4-Alternative Forced-Choice Flicker Test prototype (A4FTp)’ 

to detect POAG; that could be used by non-clinical personnel outside the normal clinical 

setting for those at risk of glaucomatous visual disability in their lifetime. Its performance 

was evaluated and compared to current screening technologies (Spectral-Domain 

Optical Coherence Tomography (SD-OCT) and Frequency Double Technology (FDT) 

perimeter in a case-control study that recruited 78 consecutive adults with (n=40) and 

without (n=38) glaucoma. These three tests were performed by an experienced 

optometrist and masked to a reference ophthalmic examination conducted by the 

author. The overall diagnostic performance of the A4FTp was found to be equivalent for 

the detection of POAG. The A4FTp thresholding algorithm generated a relatively short 

testing time of approximately 2 minutes per eye for all participants. Detection of those 

with moderate and advanced glaucoma was similar to the FDT, however the FDT was 

more likely to detect early glaucomatous loss. A user acceptability survey was given to 

all participants and the A4FTp was reported to be acceptable in terms of test duration 

and comfort, but participants found the test more difficult to operate than the FDT. None 

of the index tests used alone met the high sensitivity and specificity needed for 

population screening due to the low prevalence of the disease in European based 

populations, as described in previous studies of glaucoma screening tests (Mowatt et al., 

2008, Geimer, 2013, Dabasia et al., 2015b). However, with rates of undiagnosed 

glaucoma reaching as high as 95% in low income countries, the need to provide 

affordable and accessible strategies for testing in the community are still warranted. 
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Hence, with further development the A4FTp could have a future role alongside other 

tests in glaucoma detection in these at-risk populations. 

In the UK and internationally, there has been a shift in integrating optical coherence 

tomography (OCT) from secondary care ophthalmology to primary care (Dabasia et al., 

2014b, Jamous et al., 2014, Kiely et al., 2017, Ly et al., 2017). Successive surveys have 

found OCT gaining popularity with UK community optometrists (Myint et al., 2011, 

Dabasia et al., 2014b) however, there is a lack of evidence regarding the diagnostic 

benefit offered by OCT in primary care. Chapter 4 reports on a vignette case study 

comparing the diagnostic performance of 50 community-based optometrists using 

fundus imaging alone (as a proxy for a conventional ophthalmoscopic examination) 

compared to a set of cases where fundus imaging was supplemented by SD-OCT. 

Optometrists completed an online educational package on OCT interpretation that was 

followed by attendance of a computer-based assessment. The mean percentage of 

correct diagnoses for the combination of fundus image/OCT improved by approximately 

20% when compared to fundus imaging alone. Nearly all the optometrists (94%) 

performed better with the supplementary OCT clinical data. In addition, those with 

higher qualifications had superior performance in clinical decision making with the OCT 

combination when compared to those without. The current study also reports that the 

additional OCT information resulted in a reduction in the proportion of false negatives 

and false positives. These observations suggest that OCT provides valuable additional 

data that could augment case-finding for glaucoma and retinal disease. Whilst the 

improvement in diagnostic performance is encouraging, more research is needed to 

assess the diagnostic benefit of OCT in a routine clinical setting.  
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5.2 Directions for future work 

Chapter 2 evaluated the diagnostic accuracy of triage tests to identify a narrow angle. 

The employment of these tests for population screening or opportunistic case-finding 

could identify eyes at risk of angle closure that could then be referred for prophylactic 

treatment to reduce the risk of developing PACG. A recent large study in a Chinese 

population found that 4.8% of untreated primary angle closure suspects (PACS) and 2.5% 

of treated PACS using laser peripheral iridotomy (LPI) converted to primary angle closure 

(PAC)/acute angle closure (AAC) over a 6-year period (He et al., 2019). With the relatively 

low numbers of individuals converting to PAC/AAC, the authors advised against the 

widespread use of LPI in PACS and concluded that resources should be directed at those 

with more blinding forms of angle closure. This could include the selective use of clear 

lens extraction, which has been shown to be an effective intervention for reducing the 

risk of PACG (Azuara-Blanco et al., 2016b). The authors did concede that their findings 

may vary in other populations, due to the anatomical variations of the anterior segment 

(He et al., 2006b).  

While this review established the diagnostic accuracy of non-contact methods to identify 

a narrow angle, there was no economic evaluation to determine the cost-effectivity of 

screening. A recent economic analysis found that glaucoma screening could be 

potentially cost-effective in Chinese adults aged 50 years or older (Tang et al., 2019), by 

harnessing the combined sensitivities and specificities of LACD and optic nerve 

photography. The estimates of test performance obtained from our meta-analysis could 

be used in future economic models to determine the cost-effectiveness of LACD or other 

test combinations and/or risk factors. Methodological limitations in the studies 

contributing to this analysis indicate that there is still a need for further high-quality 

studies to evaluate the performance of non-invasive tests for angle assessment. The 

following recommendations are suggested, that could reduce heterogeneity, increase 

validity and improve the generalisability of the results. 
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• Test thresholds should be pre-defined. 

• A case-control design should be avoided. 

• Investigators performing the index test and reference standard should be 

masked. 

• Target condition using gonioscopy should conform to the ISGEO definition of 

primary angle closure, where diagnostic accuracy of the tests should analyse 

each stage of the disease (PACS, PACS and PACG) and overall. This would provide 

useful information for the development of care pathways. 

• Evaluation of test performance in a variety of populations. 

• Diagnostic test performance of the newer generation anterior segment devices 

should be evaluated i.e. spectral and swept source domain OCT. 

• The number of exclusions with reasons should be reported where the index test 

result was not possible/uninterpretable.  

Chapter 3 described the diagnostic accuracy of the A4FTp. Although the performance of 

this prototype was equivalent to currently available screening technologies, there were 

a number of elements that were identified that could improve it’s test duration and 

usability. One of the key differences between the FDT and A4FTp was the use of the 

supra-threshold algorithm and the number of locations tested. It is well known that 

suprathreshold programmes are considerably quicker than thresholding (Katz et al., 

1993, Weber & Klimaschka, 1995, Matsumoto et al., 2006, Iwase et al., 2007, Hirasawa 

et al., 2016). It’s therefore envisaged that the next version of the A4FTp will employ a 

supra-threshold mode that should see testing times substantially reduced. The use of a 

supra-threshold algorithm would also allow the use of a greater number of stimulus 

locations whilst maintain a short test duration.  

With these refinements, future work would be required to evaluate the performance of 

the A4FTp in a larger cohort that would be representative of the target population. The 

use of a touch screen display in place of the keypad used in the current prototype, could 

improve the usability and accessibility of the test. 
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Chapter 4 provided evidence that OCT improved clinical decision making by community 

optometrists in a range of posterior segment diseases. Recruited optometrists were 

generally representative of those working in the UK, however it mainly comprised of 

relatively experienced clinicians. It is known that less experienced clinicians can create a 

significant proportion of unnecessary referrals (Parkins et al., 2018). Considering newly 

qualified optometrists are unlikely to have higher qualifications and are known to be 

responsible for higher numbers of referrals, the diagnostic benefit of OCT may not 

extend to this cohort, even with the greater exposure of recent graduates to OCT during 

their undergraduate training. With the number of newly qualified optometrists rising in 

the UK (Harper & Lawrenson, 2018), this could lead to increased false positives that may 

confound the potential diagnostic value offered, therefore it may be worthwhile 

evaluating the value of OCT on clinical decision-making in a newly qualified cohort. 

Vignettes have been validated against unannounced standardised patients as a measure 

of quality of care (Peabody et al., 2000, Peabody et al., 2004). However, the vignettes in 

the current study limited the clinical information that would normally be present in 

practice such as intraocular pressure, visual field data and medical history. In addition, 

management of the scenarios presented to the participants was not evaluated. Previous 

studies have investigated the diagnostic performance of community optometrists in a 

real world setting by appraising the pattern and quality of referrals into secondary care 

(Bell & O'Brien, 1997, Bowling et al., 2005, Parkins et al., 2018). With the recent 

popularity of OCT amongst UK community optometrists, there is growing concern 

amongst secondary care providers that this will precipitate into an increase in 

unnecessary referrals, despite the current study suggesting otherwise. With the largest 

UK optometry chain announcing that they will be incorporating OCT into all of their 

practices within the next few years (AOP, 2017); this could provide an opportunity to 

investigate whether OCT has indeed impacted the number of referrals. In a triage audit 

conducting by Parkins and colleagues (Parkins et al., 2018), a similar approach could be 

adopted to evaluate referrals patterns before and after this mass OCT roll out, which 
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could provide further insight into the role OCT has on clinical decision making in primary 

care. 
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Non-contact methods for the detection of people at risk of primary angle closure 

glaucoma.  

Appendix 1a. Characteristics of study extraction table. 

Study 

identification 

First author, year of publication. 

Clinical 

features and 

settings 

Previous testing and clinical setting including country where the study was 

conducted. Presentation at recruitment, prior treatment that would affect the 

ACD (i.e. peripheral iridotomy, iridoplasty, etc.) 

Participants Sample size, age, sex, ethnicity and country 

Study design Whether the sample was selected as a single group (consecutive series) or as 

separate groups with and without the target condition (case-control). Whether 

participants were consecutively enrolled in the study and were identified 

retrospectively or prospectively. Training involved for index tests, both eyes 

included in the study 

Target 

condition 

A narrow angle as a referable condition, which includes PACS, PAC and PACG 

Reference 

standard 

The reference standard test used: gonioscopy for diagnosing a narrow angle; 

this is acceptable if this is the only target condition in large-scale screening or 

primary-care settings. Gonioscopy combined with tonometry, visual fields 

investigation and optic disc assessment for distinguishing the relative subgroup 

of participants with a narrow angle PACS/PAC/PACG 

Index tests - Flashlight technique: grade recorded 

- LACD using the van Herick technique: van Herick grade, or percentage, 

or both 

- SPAC: numerical or categorical grade, or both 

- Scheimpflug photography: ACA, ACV and ACD 

- AS-OCT: model of OCT device, manufacturer and any technical 

characteristics (e.g. software analyses). TISA, ARA, AOD 500 microns 

and 750 microns for each parameter 

Follow up Numbers of participants lost to follow-up or who had uninterpretable test 

results 

Notes Source of funding, anything else of relevance 
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Appendix 1b. Characteristics of the included studies. 
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Appendix 1c. Study demographics. No. cases refer to the number of eyes/subjects with a narrow angle.  

Study Identification 
No. Eyes 
Analysed 

No. Cases 
(Eyes) 

No. Subjects 
Analysed 

No. Cases 
(Subjects) 

Unit of 
Analysis 

Age Mean (SD) 
Female 
No. (%) 

Ethnicity 

Alonso 2010 112 38 60 NR Both eyes 51±12  32 (53.3) NR 

Andrews 2012 442 370 442 370 One eye 59.8±4.9 345 (78.0) 100% Chinese 

Ashaye 2003 490 40 490 40 One eye 56.8±11.1 214 (43.7) 100% African 

Baskaran 2007 120 53 120 53 One eye 62.1±11.3 68 (56.7) 72.5% Chinese 

Baskaran 2012 97 39 97 39 One eye 60.7±12.6 49 (50.0) 70% Chinese 

Campbell 2015 80 12 80 12 One eye 58.9±10.0 53 (66.0) 87.5% Caucasian 

Chang 2011 2047 395 2047 395 One eye 63.2±8.0 1077 (52.6) 100% Chinese 

Congdon 1996 NR NR 
503 LACD   
362 flashlight  

17 Both eyes  59.2+11.8 312 (55.6) 100% East Asian 

Dabasia 2015 78 42 78 42 One eye NR (Median 66) 44 (56.4) 56% Caucasian 

Foster 2000 NR NR 1717 140 Both eyes  
NR (Age range 
40-93) 

974 (56.7) NR 

Gracitelli 2014 45 9 45 9 One eye 47.1±16.4 30 (67.7) NR 

Grewal 2011 265 28 265 28 One eye 55.3±5.1 136 (51.3) 100% Indian 

He 2007 295 186 295 186 One eye 67.8±9.5 186 (63.0) 100% Chinese 

Hong 2009 73 41 73 41 One eye 65.2±10.0 50 (68.5) 100% Korean 

Khor 2010 1853 380 1853 380 One eye 63.4±8.1 1103 (52.4) 89.5% Chinese 

Kim 2014 202 101 202 101 One eye 64.5±6.2 110 (54.4) 100% Korean 

Ko 2015 374 199 374 199 One eye 77.4±3.8 122 (32.6) 100% Chinese 

Kurita 2009 72 42 39 NR Both eyes 58.4±15.3 NR 100% Japanese 

Lavanya 2008 NR NR 2052 422 Both eyes  63.3±8.0 1085 (52.9) 89.7% Chinese 

Melese 2016 69 31 69 31 One eye 54.0±14.1 132 (70.0) 50% Caucasian 
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 Study Identification 
No. Eyes 
Analysed 

No. Cases 
(Eyes) 

No. Subjects 
Analysed 

No. Cases 
(Subjects) 

Unit of 
Analysis 

Age Mean (SD) 
Female 
No. (%) 

Ethnicity 

Narayanaswamy 2010  NR NR 1465 315 Both eyes  62.7±7.7 793 (54.1) 90.0% Chinese 

Nolan 2006 1090 71 1090 71 One eye 
NR Age range 
(40-81) 

593 (54.4) 
100% Chinese 
 

Nolan 2007 342 152 200 99 Both eyes  
NR (Median 
62.5) 

123 (60.6) 85.7% Chinese 

Nongpiur 2011 278 102 278 102 One eye 58.3±9.9 150 (54.0) 100% Chinese 

Okabe 1991 1169 94 585 NR Both eyes 59.1 (SD NR) 380 (65.0) 100% Japanese 

Park 2011 148 93 148 93 One eye 65.1±12.0 72 (48.6) NR 

Radhakrishnan 2005 31 8 24 NR Both eyes  42.9 (SD NR) 15 (62.5) 58.3% Caucasian 

Rossi 2012  64 28 34 28 Both eyes 66.7±10.5 23 (67.7) 100% Caucasian 

Sakata 2010 83 30 83 30 One eye 62.4±9.6  57 (58.0) 87% Chinese 

Tan 2012 1465 315 1465 315 One eye 62.7±7.7 793 (54.1) 90.0% Chinese 

Thomas 1996 96 21 96 21 One eye 45.5±14.9 46 (47.9) 100% Indian 

Tun 2017 202 50 202 50 One eye 62.3±9.7  113 (55.9) 84.2% Chinese 

Wirbelauer 2005 138 
64 LACD  
122 AS-OCT 

109 NR Both eyes 66±15 66 (60.1) NR 

Wong 2009a   153 51 153 51 One eye 63.3±10.5 107 (57.0) 86.2% Chinese 

Wong 2009b  45 17 45 17 One eye 62.5±9.1 28 (62.2) 91.1% Chinese 

Wu 2011  1922 317 1922 317 One eye 63.0±7.9 1007 (52.4) 89.3% Chinese 

Yu 1995 390 72 200 NR Both eyes NR NR 100% Chinese 

Zhang 2014 425 126 425 126 One eye 56.9±10.1 270 (63.5) 100% Chinese 
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Appendix 1d. Risk of bias and applicability graphs per index test. 
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Appendix 1e. Number of eyes/subjects excluded from the final analysis. 

Study Identification Index Test(s) 
Recruited 
No. Eyes; 
subjects 

Excluded 
No. Eyes; 
subjects 

Excluded 
No. Eyes 
(index test) 

Excluded 
No. Eyes 
(gonioscopy) 

Exclusion Comment 

Alonso 2010 
Scheimpflug 
photography 

112;60 0 0 0 None 

Andrews 2012 LACD and SPAC 442 0 0 0 None 

Ashaye 2003 LACD 490 0 0 0 None 

Baskaran 2007 LACD and SPAC 120 0 0 0 None 

Baskaran 2012 AS-OCT 98 1 NR NR Reason not specified (n=1) 

Campbell 2015 LACD and AS-OCT 84 4 0 4 Gonioscopy not tolerated (n=4) 

Chang 2011 SPAC and AS-OCT 2102 
579 AS-OCT 
41 SPAC 

See 
comment 

0 
Quantitative data missing AS-OCT 
(n=579), couldn't complete all tests 
(n=55) 

Congdon 1996 LACD and flashlight NR;562 NR NR NR 
Flashlight sample smaller than LACD as 
study recruitment was delayed 

Dabasia 2015 
LACD, AS-OCT and 
Scheimpflug 
photography 

78 0 0 0 None 

Foster 2000 LACD NR;1800 NR;83 
See 
comment 

See comment 
Subjects: LACD ungradable (n=76), 
gonioscopy ungradable (n=17) 

Gracitelli 2014 Flashlight 45 0 0 0 None 

Grewal 2011 
AS-OCT and Scheimpflug 
photography 

300 35 35 0 AS-OCT Undetectable scleral spur (n=35) 

He 2007 Flashlight 602 307 22 5 

Angle closure suspects (n=236), 
aphakic/pseudophakic (n=44), corneal 
defects (n=22), gonioscopy data missing 
(n=5)  

Hong 2009 
AS-OCT and Scheimpflug 
photography 

73 0 0 0 None 
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Study Identification Index Test(s) 
Recruited 
No. Eyes; 
subjects 

Excluded  
No. Eyes; 
subjects 

Excluded 
No. Eyes 
(index test) 

Excluded 
No. Eyes 
(gonioscopy) 

Exclusion Comment 

Khor 2010 AS-OCT 2104 251 251 0 Poor AS-OCT image quality (n=251) 

Kim 2014 AS-OCT 236 34 23 0 
Poor AS-OCT image quality (n=23), cases 
excluded to match control no (n=11) 

Ko 2015 LACD 460 86 0 15 
Pseudophakia (n=65), gonioscopy not 
performed (n=15), LPI (n=6) 

Kurita 2009 
Scheimpflug 
photography 

83;47 11;8 0 0 
Eyes: ACA abnormalities (n=9), nystagmus 
(n=2) 

Lavanya 2008 SPAC and AS-OCT NR;2114 NR;62 
See 
comment 

See comment 
Subjects: Couldn't complete tests (n=50), 
pseudophakic/glaucoma (n=12) 

Melese 2016 AS-OCT 189 120 0 0 Eyes used for training (n=120) 

Narayanaswamy 2010  AS-OCT NR;2047 NR;582 
See 
comment 

See comment 
Subjects: AS-OCT data not interpretable 
(n=582); scleral spur undetected (n=515) 

Nolan 2006 LACD 1090 0 0 0 None 

Nolan 2007 AS-OCT 346;203 4;3 
See 
comment 

See comment 
Subjects: Either gonioscopy or AS-OCT not 
possible (n=3) 

Nongpiur 2011 AS-OCT 278 0 0 0 None 

Okabe 1991 LACD 1169;585 0 0 0 None  

Park 2011 LACD and AS-OCT 148 0 0 0 None 

Radhakrishnan 2005 AS-OCT 31;24 0 0 0 None 

Rossi 2012  
Scheimpflug 
photography 

64;34 0 0 0 None 

Sakata 2010 AS-OCT 101 18 18 0 AS-OCT data not interpretable (n=18) 

Tan 2012 AS-OCT 2047 582 571 11 
AS-OCT not interpretable (n=571); scleral 
spur undetected (n=467), gonioscopy not 
possible (n=11) 
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Study Identification Index Test(s) 
Recruited 
No. Eyes; 
subjects 

Excluded  
No. Eyes; 
subjects 

Excluded 
No. Eyes 
(index test) 

Excluded 
No. Eyes 
(gonioscopy) 

Exclusion Comment 

Thomas 1996 LACD and flashlight 100 4 0 0 Acute ocular co-morbidities (n=4) 

Tun 2017 AS-OCT 202 10 10 0 AS-OCT not interpretable (n=10) 

Wirbelauer 2005 LACD and AS-OCT 138;109 0 0 0 None 

Wong 2009a  SPAC and AS-OCT 188 35 35 0 
AS-OCT data not interpretable (n=35); 
scleral spur undetected (n=21) 

Wong 2009b  AS-OCT 45 0 0 0 None 

Wu 2011  AS-OCT 2047 125 120 5 
AS-OCT data not interpretable (n=120), 
gonioscopy not possible (n=5) 

Yu 1995 Flashlight 390;200 0 0 0 None 

Zhang 2014 
LACD, SPAC, AS-OCT 
and Scheimpflug 
photography 

431 6 
See 
comment 

See comment 
Could not fixate on index or gonioscopy 
refused (n=6) 
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Appendix 1f. Forest plots for all reported thresholds per index test. 
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Appendix 2. 

Diagnostic accuracy of a new thresholding glaucoma programme using temporally 

modulated flicker. 

User acceptability survey of diagnostic technology. 

Questionnaire of user acceptability of diagnostic equipment                                     

 

Date of Examination…………………………………….Subject ID VFF………………………….. 

Unless otherwise stated, please fill one circle for each question using black or blue ink. 

For questions 1-4, please indicate whether you agree or disagree with the statements relating 

to. Your views on the screening tests carried out on you today, using the seven-point scale. 

Example: The test was uncomfortable 

                                                                                                                           
Disagree                                                                        
Agree 

⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ 

Q1) Humphrey visual fields (Location DAIR 2) –Responding to white flashes on a screen  

 

                                                                                                                   

 Disagree                                                                                   Agree                                                                                            

a) The test was 
uncomfortable 

⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ 

 

b)  Test was too long ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ 

 

c) The test was difficult to 
undertake 

⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ 
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Q2) A4FTp test (Location DAIR 2) –Pressing the numbers on the keypad and flicker (On large 

monitor/screen) 

 

                                                                                                                   

 Disagree                                                                           Agree                                                                                  

a) The test was uncomfortable ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ 

 

b)   Test was too long ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ 

 

c) The test was difficult to 
undertake 

⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ 

 

 

Q3) FDT (Location DAIR 2) –Seeing flicker bars flicker (looking down at a display) 

 

                                                                                                                   

 Disagree                                                                            Agree                                                                         

a) The test was uncomfortable ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ 

 

b)  Test was too long ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ 

 

c) The test was difficult to 
undertake 

⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ 
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Q4) iVue OCT (Location DAIR 2)- Instrument capturing image of the back of the eye 

 

                                                                                                                   

  Disagree                                                                          Agree                                                                 

a) The test was uncomfortable ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ 

 

b)  Test was too long ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ 

 

c)   The test was difficult to undertake 
 

⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ 

 

 

Demographics 

How would you best describe your ethnicity? (Your answer will help us analyse the results of the 

tests that you have undertaken today) 

⃝ White/Caucasian  ⃝ Black African/Caribbean   

⃝ Asian Indian/Pakistani/ Bangladeshi/Sri Lankan) ⃝ Asian Chinese 

⃝ Mixed  ⃝ Arab  

⃝ Other Ethnic group, please describe: 

 

If you have any further comments on the usability of the tests today or any other aspect of the 

study, please write them in the box below. 

 

 

 

 

 

 

 

 

Thank you for your time. 
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Appendix 3. 

Impact of optical coherence tomography on diagnostic decision-making by UK 

community optometrists. 

Eligibility survey for participants working status. 

 

A comparative study of the diagnostic accuracy of fundus photography alone and in 

combination with optical coherence tomography (OCT) for detection of abnormalities of 

the optic disc and retina. 

Name: 

Email Address: 

The following questionnaire will ask about your mode of practice and training with respect to imaging, 

which is relevant to our study. This survey will take approximately 5 minutes and your responses will 

remain confidential. 

Questionnaire  

1. Are you currently practicing as a community optometrist?  

-Yes (Includes optometrists who work in the HES/ Academia but undertake part-time 

work in community practice) 

-No  

 

2. Have you ever participated in any age-related macular degeneration shared care scheme 

or worked in a medical retina or glaucoma secondary care clinic? 

- Yes/No 

- If yes, please provide details 

 

 

 

3. Which of the following is your principal mode of community practice? 

 

- Independent 

- Multiple/Group 

- Locum 

- Other 

 

4. Please indicate the proportion of your working time as (%) spent working in practice 

specified in Q3 

i. Division of time (percentage)   ___% 
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5. During the last working month how many days per week did you spend working in the 

practice specified in Q3? 

- <1 

- 1 

- 2 

- 3 

- 4 

- 5 

- 6 

- 7 

 

6. Do you work in secondary care (HES/ophthalmology triage, etc)?  

i. If no, go to question 9. 

ii. Please indicate the proportion of your working time as (%) spent 

working in HES? - Division of time (percentage)   ___% 

 

7. During the last working month how many days in the week did you spend working in the 

HES? 

- <1 

- 1 

- 2 

- 3 

- 4 

- 5 

- 6 

- 7 

9.  Do you use OCT routinely in your work in community and/or hospital clinics?  

 - Yes/No 

10.   Do you use fundus imaging routinely in your work community and/or hospital clinics? 

- Yes/No 

11.   Have you completed any postgraduate qualifications specific to glaucoma or medical 

retina? 

 -No 

 - Yes, please provide details  

 

12.  Have you received any training specific to OCT interpretation? 

 -No 

 - Yes, please provide details of the training you have received 
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13. In which year did you register with the GOC? 

 

 

14. Are you: 

 

i. Male 

ii. Female  

iii. Prefer not to say 

iv. Other 
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