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Abstract

Longevity risk has emerged as an important risk in the early 21st

century for the providers of pension benefits and annuities. Any changes
in the assumptions for future mortality rates can have a major finan-
cial impact on the valuation of these liabilities and motivates many of
the longevity-linked securities that have been proposed to hedge this
risk. Using the framework developed in Hunt and Blake (2015b), we
investigate how these assumptions can change over a one-year period
and the potential for hedging longevity risk in an illustrative annuity

∗Work in this paper was presented at the 49th Actuarial Research Conference in Santa
Barbara, USA, in July 2014, the Tenth International Longevity Conference in Santiago,
Chile, in September 2014, and the Society of Actuaries Longevity Seminar in Chicago,
USA, in February 2015. We are grateful to participants at these conferences for their
comments and suggestions, to Andrew Cairns and Pietro Millossovich for their helpful
review on an earlier draft of this paper, and to Andrés Villegas for many useful discussions
on this and related topics.

†This study was performed when Dr Hunt was a PhD student at Cass Business School,
City University London, and therefore the views expressed within it are held in a personal
capacity and do not represent the opinions of Pacific Life Re and should not be read to
that effect.
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portfolio, and find that relatively simple hedging strategies can signif-
icantly mitigate longevity risk over a one-year period.
JEL Classification: C11, C15, G12
Keywords: Mortality modelling, age/period/cohort models, forward
mortality rates, longevity-linked securities, longevity hedging

1 Introduction

Longevity risk has emerged as an important risk in the early 21st century
for the providers of pension benefits and annuities. It is often defined as
the risk that life expectancy increases at a faster rate than assumed, or
conversely, that mortality rates decrease faster than assumed. However, in
many contexts, the major financial impact of longevity risk is not the differ-
ence between assumed and actual mortality rates. Instead, it is the impact
of changes in the assumptions for future mortality rates that has the greatest
impact on the valuation of longevity-linked liabilities and securities.

The efficient valuation of these liabilities and securities requires us to
make an assessment of what mortality rates are expected to be in future, i.e.,
a forward framework for mortality rates, such as that described in Hunt and
Blake (2015b). This framework builds on the structure of age/period/cohort
models of the force of mortality in discrete time, in order to give a forward
surface of mortality from which values of longevity-linked liabilities and se-
curities could be calculated. Market information is incorporated into this
surface via a change of measure using the Esscher transformation, enabling
all the values calculated from this surface to be both internally consistent as
well as consistent with any market prices for extant longevity-linked securi-
ties.

The measurement of longevity risk then requires us to investigate how
our assessment of future mortality rates changes in response to new informa-
tion and, thus, how values linked to longevity change with time. To do this,
this study develops the dynamics of the framework described in Hunt and
Blake (2015b) to investigate how forward mortality rates can change over
a one-year period. Because the values of all longevity-linked liabilities and
securities are then calculated from this updated forward mortality surface,
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their changes in value are consistent with each other. Consequently, we use
our forward mortality framework to investigate the longevity risk present
in annuities and other longevity-linked securities, and also the potential for
portfolios of these securities to hedge longevity risk.

The structure of this paper is as follows. In Section 2, we first review
the forward mortality rate framework used to value longevity-linked liabil-
ities and securities in Hunt and Blake (2015b). We then consider how the
forward surface of mortality will evolve over a one year period in Section 3
by examining the processes assumed to be generating the period and cohort
parameters. This is then applied in Section 4 to examine the longevity risk in
an illustrative annuity book, various longevity-linked securities and, finally,
the impact of using these securities to hedge longevity risk. Finally, Section
5 concludes.

2 Forward mortality rates in discrete time I: A

recap

In Hunt and Blake (2015b), we introduced the concept of forward mortality
rates in discrete time. Assuming the existence of a market in “longevity
zeros”,1 we defined the forward mortality rate, νQ

x,t(τ), for age x and future
time t, as

νQ
x,t(τ) = − ln

(

t−τ+1P
Q
x−t+τ,τ (τ)

t−τP
Q
x−t+τ,τ(τ)

)

(1)

where τ is the current time, Q is the “market-consistent” measure and sP
Q
x,τ(τ)

is the market expectation of the probability that an individual aged x at time
τ survives a further s years, conditional on information at τ . From this we
found2

ν
Q
x,t(τ) = EQ

τ µx,t (2)

1Longevity zeros are zero-coupon bonds whose principal is proportional to the survivor-
ship of a specified cohort of individuals.

2 We adopt the convention that the subscript on operators Eτ (.), Varτ (.) or Covτ (.)
denotes conditioning on the information available at time τ , i.e., Fτ .
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where µx,t is the stochastic force of mortality.3 We assumed that the dynamics
of the short rate is described by an age/period/cohort (APC) model of the
form considered in Hunt and Blake (2015e)

ln(µx,t) = ηx,t = αx + β⊤
xκt + γt−x (3)

where

• we have historical data for ages, x, in the range [1, X ] and periods, t,
in the range [1, τ ] and therefore observations of cohorts born in years,
y = t− x, in the range [1−X, τ − 1];

• αx is a static function of age;

• κt =
(

κ
(i)
t , . . . κ

(N)
t

)⊤

are N period functions governing the evolu-

tion of mortality with time;

• βx =
(

β
(i)
x , . . . β

(N)
x

)⊤

are corresponding age functions modulating

the impact of the period function dynamics over the age range;4 and

• γy is a cohort function describing mortality effects which depend upon
a cohort’s year of birth and follow that cohort through life as it ages.

We find

νP
x,t(τ) = exp

(

αx + β⊤
xE

P
τκt +

1

2
β⊤

xVar
P
τ (κt)βx + EP

τγt−x +
1

2
VarPτ (γt−x)

)

(4)

if the period and cohort functions are projected independently using time
series processes with normally distributed innovations in the real-world mea-
sure, P. We assume that a “well-identified”5 multivariate random walk is

3This also assumed that Eτ exp(µx,t) = exp(Eτ µx,t), which is the upper bound given
by Jensen’s inequality. When this assumption was tested in Hunt and Blake (2015b), it
was found to be reasonable across almost all ages and years of interest.

4These can be either non-parametric in the sense of Hunt and Blake (2015e) as being
one fitted without any imposing any a priori structure across ages, or parametric, in the

sense of having a specific functional form, β
(i)
x = f (i)(x; θ(i)), selected a priori.

5In the sense of Hunt and Blake (2015c,d) that the trends, Xt, are selected so that the
projected mortality rates do not depend on any identifiability constraints imposed to fit
the model in Equation 3 to historical data.
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used to project the period functions

κt = µXt + κt−1 + ǫt (5)

whilst the cohort parameters are modelled using the Bayesian approach de-
veloped in Hunt and Blake (2015a). Together, these mean that

EP
τκt = κτ + µ

t
∑

s=τ+1

Xs (6)

VarPτ (κt) = (t− τ)Σ (7)

Þτ−y,s ≡

s−1
∏

r=0

(1−Dτ−y+r) (8)

EP
τγy ≡ M(y, τ)

=

∞
∑

s=0

Þτ−y,sρ
s
[

Dτ−yγy(τ) + (1−Dτ−y+s)β(X̃y−s − ρX̃y−s−1)
]

(9)

VarPτ (γy) ≡ V (y, τ)

=
∞
∑

s=0

Þ2
τ−y,s(1−Dτ−y+s)ρ

2sσ2 (10)

where

• Xt is a set of deterministic functions (“trends”) chosen to ensure iden-
tifiability in the random walk process and µ is a matrix of “drift” coef-
ficients corresponding to these trends;6

• Σ is the covariance matrix of the random walk innovations in Equation
5, i.e., Σ = Var(ǫt);

• Dx is the proportion of a cohort assumed to still be alive by age x

(assumed to be constant in time);

6For example, the classic random walk with drift process has a constant trend, Xt = 1,
with the “drift”, µ, found be regressing ∆κt on this trend. Similarly, the random walk
with linear drift introduced in Hunt and Blake (2015d) and Hunt and Blake (2016b) has

constant and linear trends, Xt =
(

1, t
)⊤

, with the drifts found by regressing ∆κt against
Xt in a similar fashion.
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• ρ and σ2 are the autocorrelation and variance of the AR(1) process
assumed to be driving the evolution of the cohort parameters;

• X̃y are a set of deterministic functions introduced in order to ensure
that our projections of the cohort parameters are well-identified;

• β is a set of drifts for the cohort parameters with respect to X̃y;
7 and

• γy(τ) are the cohort parameters fitted by the mortality model at time
τ .

Together, these allow us to define forward mortality rates consistently across
all ages [1, X ] and for all future time period, t > τ . We refer to this complete
set of consistent forward mortality rates as the “forward mortality surface”,
since it can be treated as a single object governed by the dynamics of the
underlying period and cohort functions.

Finally, in order to price longevity-linked liabilities and securities, we
transform the forward mortality rates to a market-consistent measure, Q,
from those in the real-world measure, P, given by Equation 4, by using the
Esscher transformation

EQ
τ exp(ηx,t) =

EP
τ exp(Zx,tηx,t)

EP
τ exp(Zx,t)

(11)

with Zx,t = λ⊤κt + λγγt−x to obtain

ν
Q
x,t(τ) = exp

(

−β⊤
xVar

P
τ (κt)λ− λγVarPτ (γt−x)

)

νP
x,t(τ) (12)

where the N free parameters of the vector λ and λ(γ) are market prices of
longevity risk,8 associated with the different terms in the underlying APC
model. These are found using whatever market prices are available. In Hunt
and Blake (2015b), we calibrated the forward mortality surface in an illustra-
tive market-consistent measure. To do this, we first assumed that we had an
“external” market price for an index-based longevity swap, but also needed
“internal” market prices for the probabilities of death, derived from the im-
plicit price for longevity risk embedded in the mortality assumptions used by

7These depend upon our identifiability constraints. In practice, we impose a set of
identifiability constraints such that β = 0 to simplify matters considerably.

8Collectively, we denote these market prices of longevity risk as {λ(j) j = 1, . . . , N, γ}.
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the insurer for accounting and reserving purposes. In this study, we use the
same market-consistent measure to illustrate the risk arising from changes in
the market prices of longevity-linked liabilities and securities.

In Hunt and Blake (2015b), we used the above framework with a number
of different APC models, including the Lee-Carter model (Lee and Carter
(1992)), the classic APC model of Hobcraft et al. (1982) and the model
developed in Hunt and Blake (2016a) using the “general procedure” (GP)
of Hunt and Blake (2014). In this paper, we only use the GP model as it
provides a good fit to the historical data and possesses most of the features of
more complicated mortality models such as multiple age/period terms and a
cohort term. However, it is important to note that the techniques we propose
could be used in combination with any mortality model within the class of
APC models discussed in Hunt and Blake (2015e).

3 One-year updates of the forward mortality

surface

The mortality forward rate framework discussed in Hunt and Blake (2015b)
and Section 2 enables us to value longevity-linked liabilities and securities
values in a market-consistent fashion. However, for many risk measurement
purposes we are also interested in how these values change with time. There
will be three components to such changes:

1. Changes in value due to changing conditions in financial markets not
linked to longevity, for instance, due to changes in interest or inflation
rate expectations. Changes in these quantities have been widely stud-
ied and a range of models have been developed for interest rates and
inflation that could be used to deal with the impact of these changes
on longevity-linked liabilities and securities values. Accordingly, we do
not study the impact of these changes in this paper.9

9We also implicitly assume that processes governing the evolution of mortality rates are
independent of other financial risks. This is in common with the majority of studies, such
as Cairns et al. (2006) and Bauer et al. (2008) and with the available evidence to date, as
discussed in Loeys et al. (2007). Although there may be some situations where longevity
risk is not independent of other financial risks in the real-world measure, as in the examples
of Miltersen and Persson (2005), we believe that these situations are relatively extreme
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2. Changes due to new mortality data. Mortality data is released rela-
tively infrequently, typically annually, and would be used to refit the
underlying APC mortality model. Such changes will be considered fur-
ther in this paper.

3. Changes due to changing market preferences for longevity risk. These
would result in changes in the values of traded securities not explainable
in terms of new mortality data or changes in other non-demographic
market indicators, and would be incorporated into the forward mor-
tality rate model as time-dependent market prices of longevity risk,
λ(j)(τ). With the traded market in longevity-linked securities in the
very early stage of development, there is no reliable information avail-
able to determine how these changes should be modelled. As Blake
et al. (2006) said “sophisticated assumptions about the dynamics of the

market price of longevity risk are pointless”, given the absence of mar-
ket data to calibrate them. We therefore assume that the market prices
for longevity risk are constant and do not consider them further.

To investigate the second component of these changes, we are, therefore,
interested in the random variables

νQ
x,t(τ + 1)|Fτ

i.e., the distribution of the forward mortality rates at τ + 1 conditional on
information at time τ . This is equivalent to studying the “updating factors”

νQ
x,t(τ + 1)

ν
Q
x,t(τ)

which underpins the models of Cairns (2007) and Zhu and Bauer (2011b).

and are better considered by scenario analysis rather than through a stochastic model.
Furthermore, Dhaene et al. (2013) show that independence between longevity risk and
financial risks in the real-world measure does not automatically ensure independence in
the market-consistent measure. However, more complicated models are required in order
to allow for any dependence between longevity and investment risks, which require more
market information for calibration. Therefore, we believe that the assumption of indepen-
dence between longevity risk and other financial risks is both necessary and justifiable at
this early stage of development of the longevity risk market.
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In reality, the process of determining the forward surface of mortality
would involve acquiring death counts and exposures to risk across all ages
for year τ+1, re-estimating the chosen mortality model with a revised dataset
which included this new information to obtain new estimates of the various
age, period and cohort parameters and then using these revised estimates
within the framework of Hunt and Blake (2015b). However, this process is not
practical for risk management purposes, since the process of generating new
death counts and exposures to risk and refitting the model can be sufficiently
time consuming that it is not viable to perform it thousands of times. Instead,
we note the key new information which the additional data gives us:10

1. We can use the new data to estimate for the first time the value of
κτ+1.

2. We can use the new data to re-estimate the cohort parameters, and
so revise the old fitted cohort parameters, γy(τ), to a new set of fitted
cohort parameters, γy(τ + 1).

Accordingly, to avoid the need to simulate death counts and exposures for
τ + 1 and refit the model, we instead generate new “observations” of κτ+1

and γy(τ +1) based on the assumed time series dynamics which underlie the
forward mortality framework. The procedures for doing this are discussed in
Sections 3.1 and 3.2 for the period and the cohort functions, respectively.

In following this procedure, it is important to ensure that our updated
forward mortality surface is “self-consistent”, as defined in Zhu and Bauer
(2011b), namely that “that expected values of future forecasts should align

with the current forecasts”. This means that forward mortality rates should
be martingales. Such a condition is similar to “no arbitrage” conditions in
forward interest rate models. However, because the market for longevity risk
is not complete and is likely to cover a more diverse range of securities,11

we cannot rule out the possibility of arbitrage opportunities even in a self-
consistent framework. Given the definition of the forward mortality rates in

10A similar line of reasoning can be found in Tan et al. (2014), which used the “time
invariant” property of the period functions in some mortality models to investigate the
hedging of longevity risk.

11Such as longevity zeros (based on survivorship), q-forwards (based on probabilities of
death), e-forwards (based on period life expectancy) and other securities based on bespoke
indices.
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Equation 2, we note that

EP
τ ν

P
x,t(τ + 1) = EP

τE
P
τ+1 µx,t

= EP
τ µx,t

= νP
x,t(τ) (13)

by the tower property of conditional expectations. This means that real-
world measure forward mortality rates are self-consistent in the real-world
measure. We can verify this by considering the period and cohort functions
separately, which is done in Section 3.1 for the period parameters and Ap-
pendix A.1 for the cohort parameters.

A similar line of reasoning leads to

EQ
τ νQ

x,t(τ + 1) = νQ
x,t(τ)

i.e., market-consistent forward mortality rates are self-consistent in the market-
consistent measure. This result is verified algebraically in Appendix A.2 and
provides a useful and important check on the validity of the modelling ap-
proach and ensures that there are no internal contradictions.

For the hedging purposes discussed in Section 4, what is of interest is
how values of liabilities and securities change in the real-world measure (i.e.,
to investigate whether changes in the value of longevity-linked securities can
offset the changes in value of an annuity book). Since these values are calcu-
lated using market-consistent forward mortality rates, the value of liabilities
and securities are not self-consistent in the real-world measure. However, this
is not surprising and is similar to other results in finance.12 Nevertheless, it
will have a number of consequences for the behaviour of longevity-linked li-
abilities and securities, as discussed in the following sections.

12For example, the Black-Scholes stock option price is a martingale in the risk-neutral
measure by construction. When performing risk management on stock options in the real-
world measure, the options prices will not be martingales (in general, we would expect to
see the value of a call option increase with time, since the share price is expected to grow
at a faster rate than the risk-free rate).

10



3.1 Period parameters

Consider first the period functions. From Equation 6 and 7, we have

EP
τ+1κt = κτ+1 + µ

t
∑

s=τ+2

Xs

VarPτ+1 (κt) = (t− τ − 1)Σ

Therefore, by generating a value of κτ+1 using the random walk with drift
process underlying the projections, we can update the means and variances
of the future period functions (and hence the forward surface of mortality)
from those found at τ to a (stochastic) update at τ + 1:

EP
τ+1κt = κτ+1 + µ

t
∑

s=τ+2

Xs

= [κτ + µXτ+1 + ǫτ+1] + µ

t
∑

s=τ+2

Xs

= κτ + µ

t
∑

s=τ+1

Xs + ǫτ+1

= EP
τκt + ǫτ+1

VarPτ+1 (κt) = (t− τ)Σ− Σ

= VarPτ (κt)− Σ

Hence we see that the expectation of future period parameters changes by
the innovation ǫτ+1 for all future times, whilst the variance of the future
period parameters reduces to reflect that, at τ +1, they will be projected for
one fewer year than at τ .

Figure 1 shows the 95% prediction interval for EP
τ+1 κ

(1)
t |Fτ from the GP

model. As can be seen, it is the value of κ
(1)
τ+1 which generates the uncertainty

in the later period functions, which shift in parallel as a result of this new
information.13

13Note that, as the drift of the random walk process, µ, is assumed to be known, the
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Year
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10
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Figure 1: Distribution of Eτ+1κ
(1)
t |Fτ

To demonstrate the impact of this update of the period functions on the

forward mortality framework does not allow for what was termed “recalibration” risk in
Cairns et al. (2013), i.e., the risk that one year’s new information will cause a reappraisal
of the drift term. This may have the effect of understating the risk in long-term projections
of mortality rates. We leave the inclusion of recalibration risk in the framework as future
work.
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forward mortality rates, we see that

νP
x,t(τ + 1)|Fτ = exp

(

αx + β⊤
xEτ+1κt +

1

2
βxVarτ+1(κt)β

⊤
x

)

|Fτ

= exp

(

αx + β⊤
x

(

Eτκ
⊤
t + ǫτ+1

)

+
1

2
β⊤

x (Varτ (κt)− Σ)βx

)

|Fτ

= exp

(

β⊤
x ǫτ+1 −

1

2
β⊤

xΣβx

)

νP
x,t(τ)

if the underlying mortality model of the mortality short rate does not possess
a cohort term. Hence, generating random values of ǫτ+1 (the time-series in-
novations for the period parameters) can therefore be used to update stochas-
tically the forward mortality surface at τ + 1, conditional on information to
time τ in a relatively straightforward fashion. In addition, we see that

EP
τ νP

x,t(τ + 1) = exp

(

β⊤
xE

P
τǫτ+1 +

1

2
β⊤

xVarτ (ǫτ+1)βx −
1

2
β⊤

xΣβx

)

νP
x,t(τ)

= νP
x,t(τ)

and, hence, the real-world forward mortality rates are martingales in the
P-measure as expected.

3.2 Cohort parameters

As discussed above, the impact of new data for year τ+1 has a fundamentally
different impact on the cohort parameters compared with the period param-
eters in a mortality model. For the period parameters, new data would allow
us to estimate a value for κτ+1. To approximate this, we use the time series
dynamics of the period functions to project κτ+1 stochastically, and use this
to update the forward surface of mortality.

In contrast, new death count and exposure to risk data allows us to:

1. update the cohort parameters estimated by the model to allow for one
additional observation on each cohort which is alive at τ + 1;

γy(τ) → γy(τ + 1) for τ + 1−X ≤ y ≤ Y

13



2. estimate for the first time the cohort parameter for year of birth Y +1,
i.e., γY+1(τ+1), which we did not have sufficient information to do the
year before; and

3. revise our forecasts of cohort parameters for future years of birth due
to an adjusted boundary condition for the cohort parameter at Y + 1.

Unlike with the period functions, the new data does not give us a complete
observation of any new, single year of birth. It is this fundamental difference
in the information that new data provides that means that we need to adopt
a fundamentally different approach when updating the cohort parameters in
the forward mortality framework.

To explain why this is important, we need to first consider the problems
with using more classical approaches to projecting the cohort parameters. In
Hunt and Blake (2015b), we found that classical approaches, such as those
using ARIMA models, are not suitable in a forward mortality framework.
This was because there is a discontinuity in the variance of the parameters
when we move from the estimated parameters based on historical data to the
projected parameters. This discontinuity would give rise to pricing anoma-
lies. In the context of updating the forward mortality surface, we also find
that using these classical approaches will lead to certain irregularities, as we
now show.

Classical time series processes assume that the cohort parameters for
which we have observations at time τ (up to and including γY , say) are
known with certainty and will not be revised and updated to reflect the new
information received at τ + 1. Therefore, they do not allow for the first
impact of new data described above. Instead, new information at τ + 1 is
assumed to be sufficient to estimate γY+1, i.e., the second impact above.
This value of γY+1 is then used as the last observation (i.e., the boundary
condition between observations and projections) and so adjusts the forecasts
of the future cohort parameters, i.e., the third impact described above. The
pattern of updated cohort parameters which would be observed using such
as model is shown in Figure 2.

However, this is inconsistent with the impact new data would be expected
to have on the previously estimated cohort parameters. In addition, using
these classical approaches generates unfeasible patterns of uncertainty in the

14



Year of Birth
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0.1

Figure 2: One-year update of projected γy using AR(1) process

forward mortality surface, with a sharp discontinuity between cohort param-
eters which are estimated from historical data and those which are projected,
as discussed previously in Hunt and Blake (2015b).

In order to update the cohort parameters in a manner which is consistent
with how they would actually update in response to new data, we instead
need to use an approach which combines the time series dynamics of the co-
hort parameters with the partial observations we have of them to date. With
such an approach, we can model the updating of this partial information to
reflect the impact of new data, and then combine this updated set of observa-
tions with the time series dynamics to revise our forecast cohort parameters.
In Hunt and Blake (2015a), we developed a Bayesian modelling approach
which can be used for this purpose. In particular, we assumed that we had
two sources of information for estimating the “ultimate” cohort parameter,
γy, which would only be known fully once all members of the cohort had
died. These were, first, the underlying time series dynamics for the cohort
parameters, which acted as a prior assumption for their distribution, and,
second, the “interim” cohort parameters estimated by the mortality model,
γy(τ), which were based on partial information to time τ . Hence, the impact
of new data on the cohort parameters can be modelled by generating updates
of the estimated cohort parameters, γy(τ+1), which reflect new observations
of the relevant cohorts.

In Hunt and Blake (2015a), we assumed that the ultimate cohort param-
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eters were generated by independent discrete packets, γx
y , for each age of

observation for the cohort, i.e.,

γy =

X
∑

x=1

dxγ
x
y (14)

where dx is the proportion of the total cohort which dies at age x (assumed
to be the same for all cohorts). However, at any specific time, we would
only have received an incomplete set of observations of any cohort where
members of that cohort were still alive, i.e., we would have received packets
of information γx

y for x ∈ [1, τ − y] by time τ . These partial observations are
combined to give us the estimated cohort parameters fitted by a mortality
model based on data to time τ :

γ
y
(τ) =

τ−y
∑

x=1

dxγ
x
y (15)

γy(τ) =
1

Dτ−y

γ
y
(τ) (16)

where Dx =
∑x

ξ=1 dξ, i.e., the proportion of a cohort expected to die before
age, x, as defined in Section 2.

Hence, we can replicate the process of updating the fitted cohort param-
eters to reflect new information for year τ +1 to allow for the first impact of
new data discussed at the beginning of this section. This process is equivalent
to generating new packets of information to represent the new observations
of each of the still living cohorts at time τ + 1, and incorporating these into
the existing estimates of the cohort parameters at time τ

γ
y
(τ + 1) = γ

y
(τ) + dτ+1−yγ

τ+1−y
y (17)

γy(τ + 1) =
1

Dτ+1−y

γ
y
(τ + 1)

=
1

Dτ+1−y

[

γ
y
(τ) + dτ+1−yγ

τ+1−y
y

]

=
1

Dτ+1−y

[

Dτ−yγy(τ) + dτ+1−yγ
τ+1−y
y

]

(18)

This can be compared to the results of a credibility analysis, as described
in in Chapter 7 of Kaas et al. (2001), since the updated estimate of the
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cohort parameter is a weighted average of the previous estimate and the new
observation of the cohort. Because of this, our ability to update the forward
mortality surface for new cohort information rests on our ability to simulate
new packets of information, γτ+1−y

y . To do this, we know from Hunt and
Blake (2015a) and the well-identified AR(1) process underlying the cohort
parameters that

γx
y |γy−1, β, ρ, σ

2 ∼ N

(

βX̃y + ρ(γy−1 − βX̃y−1),
σ2

dx

)

where β, X̃y, ρ and σ2 are defined in Section 2. However, the ultimate cohort
parameter for year of birth y−1, γy−1, will not, in general, be known at time
τ (as individuals born in year y − 1 will still be alive), but we do know the
distribution of γy−1 at τ from Equations 9 and 10. Therefore, in order to find
the distribution of γτ+1−y

y |Fτ , we use Bayes Theorem and the distribution of
γy−1 to give

γτ+1−y
y |Fτ , β, ρ, σ

2 ∼ N

(

βXy + ρ(M(y − 1, τ)− βXy−1), ρ
2V (y − 1, τ) +

σ2

dτ+1−y

)

(19)

In addition, we assume

Covτ (γ
τ+1−y
y , γ

τ+1−y+s
y−s ) = ρsÞτ+1−y,s

σ2

dτ+1−y+s

(20)

in order for the forward mortality rates to be self-consistent in the P-measure,
which is demonstrated in Appendix A.1.

Hence, by generating new packets of information, γx
y , in respect of the

cohorts that we would have observed in the new data for year τ + 1, we
can update the values of γy(τ) consistent with how they would update in
response to actual new data.

To summarise, the process for updating the cohort parameters is:

1. generate new cohort information packets, γτ+1−y
y for y ∈ [τ+1−X, Y +

1], randomly using the distribution in Equations 19 and 20;

2. update partial sums using Equation 18 without refitting the APC mor-
tality model, to give γy(τ) → γy(τ + 1);
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(a) One-year update of γy(τ + 1)
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(b) One-year update of EP
τ+1γy =

M(y, τ + 1)

Figure 3: Updating the cohort parameters

3. use Equation 9 to find M(y, τ + 1) (the updated estimate of the mean
of the ultimate cohort parameters);

4. use Equation 10 to find V (y, τ+1) (the updated estimate of the variance
of the ultimate cohort parameters);

5. use these to calculate νP
x,t(τ+1) in conjunction with the updated period

parameters;

6. use Equation 12 to transform the real-world-measure forward mortality
rates to the market-consistent measure, for use in valuing liabilities and
securities.

The 95% prediction interval of the “interim” cohort parameters, γy(τ +
1)|Fτ is shown in Figure 3a, and the 95% prediction interval of the updated
expectation of the ultimate cohort parameters, M(y, τ + 1)|Fτ is shown in
Figure 3b.14 We observe the following:

14Note that we use indicator variables to remove the large outliers due to the cohort
anomalies in 1919/20 and 1946/47 when estimating the time series dynamics for the cohort
process. This is because we believe them to be artefacts of the data collection process (see
Richards (2008) and Cairns et al. (2015)), rather than genuine features of mortality for
these cohorts.
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• New data for τ + 1 does not update the interim or ultimate cohort
parameters for cohorts where we have assumed all members have died
by time τ + 1, i.e., for y ≤ τ −X.

• For years of birth τ +1−X ≤ y ≤ Y , the new information allows us to
update the interim cohort parameter, γy(τ), and hence the expectation
of the ultimate cohort parameter, M(y, τ). The importance of this new
information for the interim cohort parameters is relatively greater for
more recent years of birth than more distant years of birth. However,
the Bayesian approach implies that the ultimate cohort parameters can
be thought of as weighted averages of the prior distribution (given by
the time series dynamics) and the partial information received by ob-
serving the cohorts to date, which is represented by the interim param-
eters, γy. For more recent years of birth, this approach gives greater
weight to the prior distribution and less to the observations already
collected. Accordingly, for recent years of birth, the impact of the new
data updating the partial observations of the cohort (i.e., updating
γy(τ) to γy(τ +1)) has only a limited impact on the distribution of the
ultimate cohort parameters. This satisfies the first impact of new data
discussed above.

• We make our first estimate of the cohort parameters for year of birth
Y + 1. This gives a very high variability for the estimated cohort
parameter, γY+1(τ + 1), as this is based on very little information.
However, since the Bayesian approach gives most weight to the time
series dynamics for this cohort, this variability does not result in large
changes in the expectation of the ultimate cohort parameter. This
satisfies the second impact of new data discussed above.

• For y ≥ Y + 2, we are still making projections of cohort parameters
for which we have no observations at τ +1. However, these projections
will have changed slightly because of the updated boundary condition
at y = Y +1, i.e., our revised estimate for γY+1(τ+1). This satisfies the
third impact of new data discussed above. Since we have assumed that
the cohort parameters follow a well-identified AR(1) process, updating
the distribution of these parameters also updates the prior distribution
for the ultimate cohort parameters for y ≥ Y + 2. However, these
changes do not persist indefinitely and, over time, the impact of the
new information decreases exponentially. This is understandable, since
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we would not expect to update our estimates of the lifelong mortality
characteristics of the cohort born in 2050 (say), based on observations
of their parents and grandparents.

In these respects, the Bayesian framework has replicated what we would ex-
pect to see if we actually had new death counts and exposures for τ + 1 and
used them to refit the model as summarised at the beginning of this section.
In addition, in Appendix A.1, we check to ensure that the Bayesian frame-
work for the cohort parameters gives self-consistent forward mortality rates
in the real-world measure.

Cohort effects are a feature of many of the more recent mortality models
in use, and their robust estimation is of vital importance in the calculation
of liabilities, such as annuities, and many of the longevity-linked securities
which have been proposed. However, as discussed in Hunt and Blake (2015a),
the projection of cohort parameters is difficult, and made more complicated
by the nature of the partial information we have regarding them at any spe-
cific date. In part because of this, the forward mortality models proposed
to date, such as those in the Heath-Jarrow-Morton framework in Barbarin
(2008), Bauer et al. (2008) and Tappe and Weber (2013), the semi-parametric
factor model of Zhu and Bauer (2011a,b, 2014), or the Olivier-Smith model
developed in Olivier and Jeffrey (2004), Smith (2005), Cairns (2007) and Alai
et al. (2013), have not been able to incorporate cohort effects.

We believe that a key advantage of the forward mortality framework
developed in Hunt and Blake (2015b) and in this paper is that it can give
biologically reasonable15 dynamics for the forward surface of mortality, as
it is based on the dynamics of APC models of the mortality hazard rate,
which are well understood and easy to estimate from historical data. Since
cohort parameters are an important feature of such models, we believe that
the successful application of the forward mortality framework proposed in
Hunt and Blake (2015b) and which will be used in the present study for risk
management purposes is, ultimately, dependent upon using the Bayesian
approach of Hunt and Blake (2015a).

15Introduced in Cairns et al. (2006) and defined as “a method of reasoning used to
establish a causal association (or relationship) between two factors that is consistent with
existing medical knowledge”.
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4 Assessing and hedging longevity risk

Based on the results of Section 3, we are able to generate random realisations
of the forward mortality surface, which can then be used to value longevity-
linked liabilities and securities in a consistent fashion. We first investigate
the impact of longevity risk on the value of an illustrative annuity book in
Section 4.1, before considering the longevity risk in some of the longevity-
linked securities that have been proposed in Section 4.2. Finally, we bring
the two together by considering the effectiveness of using these securities to
hedge longevity risk over a one-year period in Section 4.3.

4.1 Liability values

We begin by considering an illustrative annuity book. At initial time, τ , the
value of an annuity at age x is calculated as

ax(τ) =

∞
∑

t=0

tP
Q
x,τ (τ)B(τ, τ + t) (21)

where tP
Q
x,τ(τ) is the market-consistent forward survival probability from time

τ to time τ+t (as evaluated at time τ), as defined in Hunt and Blake (2015b)
and used in Equation 1, and B(τ, τ + t) is the price at time τ of a risk-free
zero coupon bond maturing at time τ + t.16 For these and all future calcu-
lations, we assume a constant risk free real rate of interest of 1% p.a. and
extrapolate forward mortality rates beyond the maximum age in the data,
X = 100, using the topping out procedure of Denuit and Goderniaux (2005).

This assumes that the lives on which the annuities are written are not
systematically different from the national population, data for which was
used to calibrate the forward mortality surface. Accordingly, we do not allow
for potential basis risk in our annuity portfolio. We leave to future work
the extension of the forward mortality framework to include basis risk, for
example, using the relative modelling approaches of Villegas and Haberman
(2014) or Hunt and Blake (2016a). However, the results of Hunt and Blake
(2016a) indicate that the impact of basis risk on systematic longevity risk

16We therefore see that an annuity is equal to a portfolio of longevity zeros, as defined
in Blake et al. (2006) and used in Hunt and Blake (2015b).
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may be limited in many situations.

The individual annuities at different ages are then combined into our
illustrative annuity book, consisting of annuities written on male lives equally
distributed across ages 60 to 80. At time τ , this has present value L(τ), given
by

L(τ) =
80
∑

x=60

ax(τ) (22)

In order to assess the longevity risk in the annuity book over a one-year
period, we first need to update the forward surface of mortality to time
τ + 1 using the techniques of Section 3 and then use this updated surface
to calculate updated annuity values and, hence, and updated value for the
annuity book. The updated annuity values are given by

ax(τ + 1) =

∞
∑

t=0

tP
Q
x,τ+1(τ + 1)B(τ + 1, τ + 1 + t) (23)

However, a direct comparison between these updated annuity values and
those in Equation 21 is not valid. This is because ax(τ + 1) is not directly
comparable to ax(τ), since it relates to the cohort born in τ+1−x as opposed
to the cohort born in τ −x. Alternatively, if one tries to compare ax+1(τ +1)
with ax(τ) (which do refer to the same cohort), we note that this comparison
is also not valid, since the former includes one fewer year of benefits and is
discounted to a different point in time compared with the latter. The only
valid comparison is between ax(τ) and17

B(τ, τ + 1)1px,τ (1 + ax+1(τ + 1)) (24)

Doing so values the same set of cashflows for the same cohort, discounted
to the same point in time and therefore ensures that the two quantities are
comparable. The difference between them arises from:

1. replacing the time τ market-consistent forward mortality rates in year
τ + 1 with simulated “observed” rates for that year; and

17In Equation 24 and subsequently, tpx,τ is the probability that an individual aged x at
τ has survived to age x+ t at τ + t, which is realised at time τ + t but is a random variable
before then.
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2. replacing the time τ market-consistent forward mortality rates in years
t ≥ τ +2 with the time τ +1 market-consistent forward mortality rates
for the same years.

Hence the only differences arise from changes in the evolution of mortality
over the year and the consequent updating of the forward surface of mortality
and, therefore, solely reflect longevity risk.

Age
60 62 64 66 68 70 72 74 76 78 80

0

5

10

15

20

25

Figure 4: Projected annuity values at τ + 1

Figure 4 shows the 95% fan chart of simulated annuity values at differ-
ent ages in one year’s time. The coefficients of variation18 of the projected
annuity values increase with age, from around 1.4% of the current annuity

18The standard deviation of the annuity value divided by its expectation.
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value at age 60 to approximately 2.6% at age 80.

Figure 4 also shows the time τ annuity values, ax(τ), as a dashed white
line. It, therefore, illustrates that EP

τ ax(τ + 1) ≈ ax(τ). However, it is
important to note, however, that EP

τ ax(τ + 1) 6= ax(τ), i.e., the annuity
values are not martingales in the real-world measure. The reason for this is
that ax(τ + 1) is calculated using market-consistent forward mortality rates
at time τ + 1, which are themselves not martingales in the real-world mea-
sure, as discussed in Section 3.

In Hunt and Blake (2015b), we said that the marginal participant in the
market for longevity-linked securities would probably be a life insurer seeking
to hedge longevity risk. Such a life insurer would be averse to longevity risk,
and so, we expected that the market-consistent forward mortality rates would
be lower than those in the real-world measure

νQ
x,t(τ) ≤ νP

x,t(τ)

Thus, we expect to replace the expected survival probabilities for the period
[τ, τ +1) under the market-consistent measure with their projected values in
the real-world measure, which are lower on average, i.e.,

EP
τ 1px,τ = EP

τ exp (−µx,τ+1)

= exp
(

−νP
x,τ+1(τ)

)

< exp
(

−νQ
x,τ+1(τ)

)

= 1P
Q
x,τ(τ)

Therefore, we find EP
τ ax(τ + 1) < ax(τ) across ages, indicating that

annuity values would be expected to fall. In simulations, we find this has an
impact of around 1% of the value of an annuity. In an insurance context, this
would give an “expected return” due to the “release of reserves” in respect
of the annuity, caused by holding reserves for the policy higher than the
expected value of the benefits in the real-world measure. This expected re-
turn on longevity-linked liabilities and securities has important consequences,
which will impact the measurement of risk in liabilities and longevity-linked
securities, as discussed in the following sections.

In addition to looking at the annuity values at different ages in isolation,
we also need to assess their dependence upon each other in order to achieve
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Figure 5: Correlations between annuity values at τ + 1

a full assessment of the longevity risk in our illustrative annuity book. To
do this, Figure 5 shows the correlations between annuity values at different
ages. From this, we see that there is substantial correlation between annuity
values at different ages, typically between 95% and 100%. This is due to the
structure of the underlying APC mortality model, since the evolution of the
forward surface of mortality over the year is driven by the same few factors,
namely the four age/period terms with a limited contribution from the co-
hort term. This leads to relatively low diversification of longevity risk across
different ages. In contrast, there could be apparently large benefits in risk
reduction due to “natural hedging”, i.e., writing life assurance policies as the
value of these would be expected to be negatively correlated with annuity
values under longevity risk, as discussed in Cox and Lin (2007). However, as
argued in Zhu and Bauer (2014), these benefits are largely model dependent,
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although these criticisms can be partly assuaged by using APC mortality
models with a sufficient number of terms (in this case, four) to fully capture
the dynamics of mortality.

We then combine the time τ+1 annuity values into our illustrative annuity
book to calculate the liability value at time τ + 1

L(τ + 1) =
80
∑

x=60

B(τ, τ + 1)1px,τ (1 + ax+1(τ + 1)) (25)

Doing so, we find that:

• EτL(τ + 1) = 99.7%× L(τ) and

• StDevτ (L(τ + 1)) = 1.4%×L(τ).

The slight decrease in the expectation of the liabilities is due to the “release
of reserves” effect discussed above. In practice, this effect would be dwarfed
by the impact of the benefits being paid, which we have not included for
the reasons also discussed above. We also note that the longevity risk in the
portfolio, as measured by the standard deviation over a one-year period, is
approximately 1.4% of the nominal value, which means that longevity risk is
likely to be less important than interest rate, investment and inflation risks
over the same period. However, longevity risk is a long-term risk, which will
compound annually and, hence, is significant for annuity policies with terms
of several decades. In addition, unlike other financial risks, the instruments
for managing systematic longevity risk are far less developed, due to the
absence of liquid markets for longevity-linked securities.

4.2 Longevity-linked securities

In Hunt and Blake (2015b) the forward mortality framework was used to
value a number of potential longevity-linked securities. For capital efficiency,
most of these have taken the form of forward contracts, written on various
indices of mortality. A number of different mortality indices for use in forward
contracts have been proposed to date:

• q-forwards: as discussed in Coughlan et al. (2007), these are forward
contracts on future probabilities of death, qx,t (see also Li and Luo
(2012)).
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• s-forwards: as proposed in Dowd (2003), Blake et al. (2006) and by the
Life and Longevity Markets Association,19 these are forward contracts
on the probability of survival of a cohort from inception at time t0 to
maturity.

• e-forwards: as discussed in Denuit (2009), period life expectancy is a
natural index to use for summarising the evolution of mortality rates
in a population, and therefore we consider the potential of a forward
market in period life expectancy (which we refer to as “e-forwards” from
the demographic symbol for period life expectancy) at age x in future
year t for hedging purposes.

In each of these cases, we assume that the reference population for the
index is the national population used to estimate the APC model underpin-
ning the forward mortality model. Hence, the value of the mortality index
at time τ is calculated as:20

q-forward: Qx,t(τ) = 1− exp
(

−νQ
x,t(τ)

)

(26)

s-forward: Sx,t0,t(τ) = τ−t0px,t0 × t−τP
Q
x+τ−t0,τ

(27)

e-forward: Ex,t(τ) = 0.5 +
∞
∑

u=0

exp

(

−
u
∑

v=0

νQ
x+v,t(τ)

)

(28)

Thus, we can see that these mortality measures are qualitatively different
from each other, and range from q-forwards which are very simple securities
based on only one forward mortality rate, to more complex securities which
look at forward mortality rates across a number of different ages and years.

For a general forward contract, linked to mortality index Ix,t, the forward
price specified by the contract must be equal to the time τ value of the
mortality measure, i.e., Ix,t(τ), in order for the contract to have zero value
at inception. We assume that the buyer of the contract will receive a floating
payment and pay a fixed amount at time t. Hence, the value of the forward

19http://www.llma.org/
20Note that the s-forward is defined on a reference cohort aged x at the inception

data, t0 ≤ τ , and therefore the survivorship of this cohort is a product of the observed
survivorship from t0 to τ , given by τ−t0px,t0 , and the anticipated survivorship from τ to

maturity, t, given by t−τP
Q
x+τ−t0,τ

. For the purposes of this paper, we assume t0 = τ .
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contract at time τ + 1, will be

B(τ + 1, t) [Ix,t(τ + 1)− Ix,t(τ)]

and, therefore, we are interested in the distribution of the change in the index
of mortality over time

[Ix,t(τ + 1)|Fτ ]− Ix,t(τ)

Although longevity risk is a long-term risk which will materialise over a
number of decades, it is likely that longevity-linked securities will need to be
considerably shorter-term contracts in order to appeal to speculators. Hence,
we only consider forward contracts with maturities of 5, 10 and 15 years, i.e.
t = 5, 10, 15. Specifically, we investigate the time τ+1 values of the following
forward contracts entered into at time τ :

• a q-forward at age 65 and maturity τ + t, i.e., Q65,τ+t;

• an s-forward with maturity date τ + t, specified on a reference cohort
aged 65 at time τ i.e., S65,τ,τ+t; and

• an e-forward at age 65 with maturity τ + t, i.e., E65,τ+t.

Boxplots showing the time τ + 1 distribution of these forward contracts
per £100 of nominal value are shown in Figure 6.

As discussed earlier in the context of annuity values, we note from Figure
6 that

EP
τ [I(τ + 1)|Fτ ]− I(τ) 6= 0

i.e., the expected value of the forward contract at time τ + 1 is not equal
to zero, the value at inception. This is, again, due to the prices of securi-
ties in the market-consistent measure not being martingales under one-year
updates of the forward mortality surface in the real-world measure. Hence,
there will be an expected return from trading in longevity-linked forwards,
i.e., the premium that the current holders of longevity risk are willing to pay
to transfer the risk to the capital markets. This is equivalent to the expected
release of reserves for annuities, as discussed in Section 4.1.
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Figure 6: Distribution of τ + 1 values of different longevity-linked securities

29



We also see that for q-forwards and e-forwards, the one-year riskiness of
the contract does not change significantly with its term. In contrast, the
riskiness of an s-forward increases rapidly with the term of the contract.
The reason for this is that the nominal value of the mortality index for q-
forwards and e-forwards (probability of dying and period life expectancy,
respectively) does not change much with term, whilst that of the s-forward
(survivorship of a cohort) decreases rapidly. This means that long-term q-
forward and e-forward contracts could, potentially, be written, with the risk
in them managed by annually rebalancing the portfolio. However, this may
be more difficult for long-term s-forward contracts which might reduce the
willingness of speculators to trade (and hence create liquidity) in long-term
versions of these particular contracts.

Figure 6 also shows that the q-forward contracts are, however, signifi-
cantly riskier per £100 nominal than the alternatives. This is because the
nominal value of the mortality measure is relatively small,21 and hence the
value of the contract is proportionally more affected by new information. In
addition, the q-forward is specified on mortality rates at one specific age and
time – rather than across a range of ages and years, as in the case of the
s-forward and e-forward – which is likely to be more volatile than s-forwards
or e-forwards.

4.3 Hedging

Having measured the longevity risk in an annuity book in Section 4.1, it is
natural to consider how this risk could be managed and reduced. In prac-
tice, this can be achieved through reinsurance, securitisation (e.g., Cowley
and Cummins (2005)) or natural hedging (e.g., Cox and Lin (2007)). An-
other method which has been proposed (but not yet widely implemented) is
to hedge the longevity risk in a liability portfolio using standardised, tradable
longevity-linked securities.22

21Typically, qx,t will be in the range [0.005, 0.05] for most ages of interest, whilst t−t0px,t0
will be in the range [0.1, 0.9] and ex,t will be in the range [10, 30].

22We draw a slight distinction between such a strategy and purchasing a single, cus-
tomised asset without the intention of rebalancing the hedge in future. Examples of
these customised assets include bespoke longevity swaps, as considered in Hunt and Blake
(2016e), and highly customised bespoke options on mortality, such as those discussed in
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To illustrate the potential effectiveness of hedging these illustrative lia-
bilities, we consider using each of the different securities discussed in Section
4.2 in turn. We adopt a simple mean-variance hedging strategy and select
the portfolio whose value at time τ + 1 has smallest variance, i.e., we find
the hedged portfolio

L∗ = L − θ̃Ix,t

where θ̃ is chosen by minimising the variance

θ̃ = argminθVar
P
τ (L(τ + 1)− θIx,t(τ + 1))

⇒ θ̃ =
CovPτ (L(τ + 1), Ix,t(τ + 1))

VarPτ (Ix,t(τ + 1))

Varτ (L
∗(τ + 1)) =

(

1− ρ2L,I
)

Varτ (L(τ + 1))

Hence we see that such a strategy depends critically upon the correlation
between the liabilities and the hedging instrument, ρL,I , at time τ + 1, with
correlations closer to ±1 giving more effective hedges. The measured cor-
relations for the four securities considered are shown in Table 1. Because
we wish to minimise the variability of the value of the portfolio at time
τ + 1, this approach investigates “value” hedging strategies as opposed to
“cashflow” hedging strategies, which seek to minimise the uncertainty in the
realised cashflows.

Security q-forward s-forward e-forward

Term
5 -94.1% 83.9% 99.2%
10 -94.1% 88.9% 99.4%
15 -94.0% 93.3% 99.6%

Table 1: Correlation between L(τ + 1) and security values with different
terms

As can be seen from Table 1, most of the securities being considered give
very high correlations with the liabilities. In the case of q-forwards, this

Michaelson and Mulholland (2014). However, we feel that this alternative strategy has
more in common with a reinsurance policy than truly hedging risk using capital market
securities.
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correlation is negative, since higher than anticipated reductions in mortality
rates have the effect of increasing liability values, but triggering net payments
from the buyer to the seller of the q-forward, giving a negative value under
the convention adopted in Section 4.2. This means that a holder of longevity
risk will want to receive the floating leg of a q-forward, as opposed to wanting
to receive the fixed legs of the other forward contracts.

The high correlations shown in Table 1 arise from the same reasons that
we observed high correlations between annuity values at different ages in Sec-
tion 4.1. This was because relatively few factors (i.e., the age/period terms

in the model, and mainly κ
(1)
t ) drive the changes in mortality rates.

We also note that, for q-forwards and e-forwards, the correlation between
the forward contract and the liabilities is roughly independent of the term
of the contract. In contrast, the s-forward value becomes more highly cor-
related with the liability value as the term of the contract increases. This
in unsurprising, since longer term s-forward contracts are more exposed to
the cumulative effects of longevity risk and will behave more like annuity
contracts by their nature. However, as discussed in Section 4.2 and shown
in Figure 6, longer term s-forwards are also more risky. This might unfor-
tunately limit the development of the market in long-term s-forwards which
are more useful for hedging longevity risk than short-term contracts.

Figure 7 shows the empirical distribution of the value of the unhedged
and hedged liabilities (using the three different hedging securities with ma-
turities of ten years) based on 50,000 Monte Carlo simulations. As expected,
all the hedging strategies considered appear to substantially reduce the vari-
ability of the portfolio value at time τ + 1. This is shown by considering the
standard deviations (as percentages of L(τ)) of the hedged and unhedged
portfolios in Table 2.

It is noticeable from Figure 7 and Table 2 that the strategy based on an
e-forward is significantly more effective at reducing risk than the other two.
This is because the values of the period life expectancy at the maturity date
is calculated in a similar manner to the calculation of an annuity but over
a range of different cohorts, and therefore this security is sensitive to the
same risk factors as the annuities we are trying to hedge. In contrast, the

32



L*(τ+1)

305 310 315 320 325 330 335 340 345 350 355

D
en

si
ty

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

q-forward
s-forward
e-forward
Unhedged

Figure 7: Empirical distribution of liability values under different hedging
strategies

q-forward is sensitive to mortality rates at a single selected age, whilst the
s-forward considers only a single cohort, and consequently both are poorer
at hedging risk.

As can be seen, the reduction in longevity risk with even relatively sim-
ple hedging strategies over a one-year period is very high. These are “value
hedges”, in the sense that the strategy has been chosen to minimise the
variance of the total portfolio value, as opposed to “cashflow” hedges that
minimise the variability of the net cashflows from the portfolio.23 Longer
term hedges could potentially be achieved by rebalancing the portfolio at

23For examples of using q-forwards as cashflow hedges, see Li and Luo (2012).
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Unhedged
Term of instrument (yrs)

5 10 15
q-forward

1.74%
0.59% 0.59% 0.59%

s-forward 0.94% 0.80% 0.63%
e-forward 0.22% 0.19% 0.16%

Table 2: Standard deviation of hedged portfolios (as percentage of time τ

liability value) using instruments of different terms

least annually to reflect the actual experience of the annuity book. However,
such a strategy is dependent upon the existence of a relatively liquid market
in the underlying longevity-linked securities.

One potential criticism is that these results are all model dependent. It
does not seem likely that the high correlations shown in Table 1 could be
achieved in practice and, therefore, such large reductions in risk may not be
feasible. In particular, the use of relatively simple APC mortality models
to underpin the forward mortality framework might be felt to give correla-
tion structures for future mortality rates which are overly simplistic, and so
overstate the effectiveness of any hedging strategy. However, we note that
our underlying model for the force of mortality has four age/period terms
and a cohort term, making it relatively complex compared with many more
commonly used mortality models, and so it is unlikely that using a more
complicated model for the short rate would materially affect our results.24

In addition, the impact of hedging would be lower if the market prices of
risk change during the year. However, since the market for longevity risk
is just emerging, assuming constant market prices of risk is unavoidable at
present, for the reasons discussed in Section 3 and, accordingly, all liability
and securities values will be model-dependent for the foreseeable future. Fur-
thermore, high correlations between the liabilities and hedging instruments
are required in order to recognise the hedge under some accounting stan-
dards. Accordingly, we argue that reductions in risk, even if they are only

24We have tested the hedging strategies using the simpler models of the short rate of
mortality discussed in Hunt and Blake (2015b) and obtain even higher reductions in risk.
In particular, we observed perfect correction between the liabilities and securities, and
therefore perfect hedges, when using the Lee-Carter model as the underlying mortality
model, since this model only possesses one age/period term and hence only one source of
risk.
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mark-to-model, are still beneficial for many purposes.

In addition, the results presented above do not allow for potential basis
risk between populations or for idiosyncratic risk in the number of deaths
observed in an actual annuity book, and so will overstate the potential effec-
tiveness of hedging strategies which could be obtained in practice. We leave
the addition of both of these sources of risk to future work.

5 Conclusions

In Hunt and Blake (2015b), we defined a static forward surface of mortal-
ity for the purpose of valuing liabilities and longevity-linked securities. In
this study, we extend this framework by investigating the dynamics of the
forward mortality surface to show how these values might change with time.
This involves understanding the processes we use to project the underlying
parameters in the mortality model and how these update to reflect new in-
formation. In particular, an understanding of how the cohort parameters in
the model update in response to new information is critical in assessing the
dynamics of the forward mortality surface. We use this understanding to
show that the forward mortality rates are martingales in the real-world and
market-consistent measures, and therefore are “self-consistent” in the termi-
nology of Zhu and Bauer (2011b).

We then apply this dynamic framework to investigate longevity risk in
an illustrative annuity book and various longevity-linked securities. By com-
bining these, we then consider the potential for longevity-linked securities to
hedge longevity risk in an annuity portfolio, and find that relatively simple
hedging strategies can significantly mitigate the longevity risk in a set of il-
lustrative liabilities over a one-year period. Such strategies can be extended
over multiple years by rebalancing the hedging portfolio if there is a liquid
market in the hedging instruments.

We believe that the forward mortality framework discussed here has nu-
merous other applications, relating to the assessment and management of
longevity risk. One particular application we investigate in further, in Hunt
and Blake (2016d), is the use of the framework to assess the capital require-
ments for longevity risk under modern solvency regimes such as Solvency II
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in the EU.

However, the forward mortality framework described here and in Hunt
and Blake (2015b) contains some notable omissions. For example, it can-
not be used to value options on mortality rates (although we address this in
Hunt and Blake (2016c)), it does not allow for potential basis risk between
populations or recalibration risk. We leave the last two of these problems for
future work, but are confident that they are solvable.

In Hunt and Blake (2015b), we stated our belief that the forward mortality
rates are the way forward in answer to the question posed in Norberg (2010).
This study reaffirms this conclusion and demonstrates the many practical
uses a forward mortality framework can have in completing the framework
for measuring and managing longevity risk.

A Self consistency

In Section 3, we discussed the self-consistency property of Zhu and Bauer
(2011b) and argued that P-measure forward mortality rates should be self-
consistent in the real-world measure and Q-measure forward mortality rates
should be self-consistent in the market-consistent measure since they are
defined as conditional expectations. However, it is helpful to confirm this ex-
plicitly in order to ensure that there are no inconsistencies in the modelling
framework. This was done for age/period models of the short rate in Sec-
tion 3.1, where the time series process updating the period parameters was
relatively simple. In this Appendix, we first verify the martingale property
for models that include a cohort term and then verify that forward mortality
rates are self-consistent in the market consistent Q-measure.

A.1 Self consistency of the cohort parameters

For simplicity, consider a model of the force of mortality with no age/period
terms, i.e.,

lnµx,t = αx + γt−x
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In this case

νP
x,t(τ) = exp

(

αx +M(t− x, τ) +
1

2
V (t− x, τ)

)

and trivially therefore

νP
x,t(τ + 1) = exp

(

αx +M(t− x, τ + 1) +
1

2
V (t− x, τ + 1)

)

First, we observe that

V (y, τ + 1) = V (y − 1, τ) (29)

from the definition of the variance function in Equation 10. Then, using
Equation 29 and dropping the superscript P (since all expectations and vari-
ances are in the real-world measure), we see that self-consistency implies

exp

(

αx +M(t− x, τ) +
1

2
V (t− x, τ)

)

= Eτ exp

(

αx +M(t− x, τ + 1) +
1

2
V (t− x, τ + 1)

)

= exp

(

αx + EτM(t− x, τ + 1) +
1

2
(Varτ (M(t − x, τ + 1)) + V (t− x− 1, τ))

)

Therefore, we require

EτM(y, τ + 1) = M(y, τ) (30)

Varτ (M(y, τ + 1)) = V (y, τ)− V (y − 1, τ) (31)

It is important to note that these are direct consequences on the laws
of conditional expectation and variance, and therefore that the following is
merely a check of whether the Bayesian process underpinning the cohort pa-
rameter is internally consistent.

For simplicity, we assume that we have chosen a set of identifiability
constraints such that β = 0. From Hunt and Blake (2015a), we have the fol-
lowing recursive relationships which define the mean and variance functions
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(and which were solved to give the closed forms of M(y, τ) and V (y, τ) in
Equations 9 and 10)

M(y, t) = γ
y
(t) + (1−Dt−y)ρM(y − 1, t) (32)

V (y, t) = (1−Dt−y)σ
2 + (1−Dt−y)

2ρ2V (y − 1, t)) (33)

Starting with Equation 30

EτM(y, τ + 1) = Eτ

∞
∑

s=0

Þτ+1−y,sρ
sγ

y−s
(τ + 1)

=
∞
∑

s=0

Þτ+1−y,sρ
sEτγy−s

(τ + 1)

where Þτ−y,s is defined in Equation 8 and Þτ−y,0 = 1 by definition, as per
Hunt and Blake (2015a). From this definition, we note the following

Þτ−y,s+1 = (1−Dτ−y+s)Þτ−y,s

Þτ−y+1,s =
(1−Dτ−y+s)

(1−Dτ−y)
Þτ−y,s

From Equation 19 we have

Eτγ
τ+1−y
y = ρM(y − 1, τ)

Varτ (γ
τ+1−y
y ) = ρ2V (y − 1, τ) +

σ2

dτ+1−y

Using this with Equation 17 gives us

Eτγy
(τ + 1) = γ

y
(τ) + dτ−y+1Eτ [γ

τ−y+1
y ]

= γ
y
(τ) + dτ−y+1ρM(y − 1, τ)

= M(y, τ)− (1−Dτ−y)ρM(y − 1, τ) + dτ−y+1EτρM(y − 1, τ)

= M(y, τ)− (1−Dτ−y+1)ρM(y − 1, τ)

where we have used Equation 32 to remove the dependence on γ
y
(τ).
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It therefore follows that

EτM(y, τ + 1) =

∞
∑

s=0

Þτ+1−y,sρ
s (M(y − s, τ)− (1−Dτ−y+1)ρM(y − s− 1, τ))

=

∞
∑

s=0

Þτ+1−y,sρ
sM(y − s, τ)−

∞
∑

s=0

(1−Dτ−y+1)Þτ+1−y,sρ
s+1M(y − s− 1, τ)

=

∞
∑

s=0

Þτ+1−y,sρ
sM(y − s, τ)−

∞
∑

s=0

Þτ+1−y,s+1ρ
s+1M(y − s− 1, τ)

= Þτ+1−y,0ρ
0M(y, τ)

= M(y, τ)

as required.

Perhaps unsurprisingly, demonstrating Equation 31 is trickier. We start
by showing that it is true when y = τ + 1 − X, i.e., the cohort is one year
away from being fully run off. Trivially V (τ +1−X, τ +1) = 0, since at time
τ + 1, everyone in the cohort born at τ + 1 −X has died and so the cohort
parameter γτ+1−X = γ

τ+1−X
(τ + 1) is known with certainty. Therefore

Varτ (M(τ + 1−X, τ + 1)) = Varτ (γτ+1−X
(τ + 1))

= Varτ (γτ+1−x
(τ) + dXγ

X
τ+1−X)

= d2X
σ2

dX

= dXσ
2 = (1−DX−1)σ

2 = V (τ + 1−X, τ)

using Equations 19 and 10. This is the first step in an induction argument,
enabling us to work forwards in y to prove that Equation 31 holds true.

Varτ (M(y, τ + 1)) = Varτ

(

γ
y
(τ + 1) + (1−Dτ−y+1)ρM(y − 1, τ + 1)

)

= Varτ (γy
(τ + 1)) + (1−Dτ−y+1)

2ρ2Varτ (M(y − 1, τ + 1))

+ 2(1−Dτ−y+1)ρCovτ (γy
(τ + 1),M(y − 1, τ + 1))

using Equation 32 and expanding the variance. Looking at the first of these
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parts, we see

Varτ (γy
(τ + 1)) = Varτ (γy

(τ) + dτ−y+1γ
τ−y+1
y )

= d2τ−y+1Varτ (γ
τ−y+1
y )

= dτ−y+1σ
2 + ρ2d2τ−y+1V (y − 1, τ)

from Equation 19. For the second part, we assume that Equation 31 holds
for y − 1, using the inductive argument, and therefore

Varτ (M(y − 1, τ + 1)) = V (y − 1, τ)− V (y − 2, τ)

Consequently

Varτ (γy
(τ + 1)) + (1−Dτ−y+1)

2ρ2Varτ (M(y − 1, τ + 1))

= dτ−y+1σ
2 + ρ2

(

d2τ−y+1 + (1−Dτ−y+1)
2
)

V (y − 1, τ)

− (1−Dτ−y+1)
2ρ2V (y − 2, τ)

= dτ−y+1σ
2 + ρ2

(

(1−Dτ−y+1 + dτ−y+1)
2 − 2(1−Dτ−y+1)dτ−y+1

)

V (y − 1, τ)

− (1−Dτ−y+1)σ
2 − V (y − 1, τ) using Equation 33 on V (y − 2, τ)

= (1−Dτ−y)σ
2 + ρ2(1−Dτ−y)

2V (y − 1, τ)− V (y − 1, τ)

− 2ρ2(1−Dτ−y+1)dτ−y+1V (y − 1, τ)

= V (y, τ)− V (y − 1, τ)− 2ρ2(1−Dτ−y+1)dτ−y+1V (y − 1, τ)

Therefore

Varτ (M(y, τ + 1)) = V (y, τ)− V (y − 1, τ)

+2(1−Dτ−y+1)ρ
(

Covτ (γy
(τ + 1),M(y − 1, τ + 1))− ρdτ−y+1V (y − 1, τ)

)

and so Equation 31 will hold if and only if

Covτ (γy
(τ + 1),M(y − 1, τ + 1)) = ρdτ−y+1V (y − 1, τ)
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To show that this calculation holds, we decompose the covariance as

Covτ (γy
(τ + 1),M(y − 1,τ + 1)) = dτ+1−yCovτ (γ

τ+1−y
y ,M(y − 1, τ + 1))

= dτ+1−y

∞
∑

s=0

Þτ−y+2,sρ
sCovτ (γ

τ+1−y
y , γ

y−1−s
(τ + 1))

= dτ+1−y

∞
∑

s=0

Þτ−y+2,sρ
sdτ+2−y+2Covτ (γ

τ+1−y
y , γ

τ+2−y+s
y−s−1 )

= dτ+1−y

∞
∑

s=0

Þτ−y+2,sρ
sdτ+2−y+sρ

s+1Þτ+1−y,s+1
σ2

dτ+2−y+s

from Equation 20

= ρdτ+1−y

∞
∑

s=0

(1−Dτ+1−y+s)Þ
2
τ+1−y,s+1ρ

2sσ2

= ρdτ+1−yV (y − 1, τ)

from the definition of V (y, τ) in Equation 10. Therefore, Equation 31 does in-
deed hold and models involving a set of cohort parameters are self-consistent
in the real-world P-measure.

A.2 Self-consistency in the market-consistent measure

Together, the results of Section 3.1 and Appendix A.1 show that the forward
mortality rates are self-consistent in the historical P-measure, as expected.
We now demonstrate that they are self-consistent in the market-consistent
Q-measure, i.e.,

EQ
τ νQ

x,t(τ + 1) = νQ
x,t(τ)

From Equation 12, we have

νQ
x,t(τ + 1) = exp

(

β⊤
xVar

P
τ+1(κt)λ+ λγVarPτ+1(γt−x)

)

× νP
x,t(τ + 1)

= exp

(

αx + β⊤
xE

P
τ+1κt +

1

2
β⊤

xVar
P
τ+1(κt)βx + EP

τ+1γt−x

+
1

2
VarPτ+1(γt−x) + β⊤

xVar
P
τ+1(κt)λ+ λγVarPτ+1(γt−x)

)
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and also from Equation 11

EQ
τ ν

Q
x,t(τ + 1) =

EP
τ

[

exp
(

−λ⊤κt − λγγt−x

)

νQ
x,t(τ + 1)

]

EP exp
(

−λ⊤κt − λγγt−x

)

Looking first at the denominator

[

EP exp
(

−λ⊤κt − λγγt−x

)]−1
=

exp

(

λ⊤EP
τκt −

1

2
λ⊤VarPτ (κt)λ+ λγEP

τγt−x −
1

2
λγ 2VarPτ (γt−x)

)

Next, let us consider the numerator

EP
τ

[

exp
(

−λ⊤κt − λγγt−x

)

ν
Q
x,t(τ + 1)

]

=

exp

(

αx + β⊤
xE

P
τ+1κt +

1

2
β⊤

xVar
P
τ+1(κt)βx + EP

τ+1γt−x

+
1

2
VarPτ+1(γt−x) + β⊤

xVar
P
τ+1(κt)λ+ λγVarPτ+1(γt−x)− λ⊤κt − λγγt−x

)

= exp

(

αx +
1

2
β⊤

xVar
P
τ+1(κt)βx +

1

2
VarPτ+1(γt−x) + β⊤

xVar
P
τ+1(κt)λ+ λγVarPτ+1(γt−x)

)

× EP
τ exp

(

βxE
P
τ+1κt − λ⊤κt + EP

τ+1γt−x − λγγt−x

)

Since all expectations and variances are under the measure P (unless stated
otherwise), we drop the superscripts for simplicity. Considering only the
expectation

Eτ exp
(

βxEτ+1κt − λ⊤κt + Eτ+1γt−x − λγγt−x

)

=

exp

(

βxEτκt − λ⊤Eτκt + Eτγt−x − λγEτγt−x +
1

2
β⊤

xVarτ (Eτ+1κt)βx +
1

2
λ⊤Varτ (κt)λ

+β⊤
xCovτ (Eτ+1κt,κt)λ+

1

2
Varτ (Eτ+1γt−x) +

1

2
λγ 2Varτ (γt−x)− λγCovτ (Eτ+1γt−x, γt−x)

)

Looking at each of the variance terms, we use the results

Varτ (Eτ+1X) = Varτ (X)− Varτ+1(X)

Covτ (X,Eτ+1X) = EτCovτ+1(X,Eτ+1X) + Covτ (Eτ+1X,Eτ+1X)

= 0 + Varτ (Eτ+1X)

= Varτ (X)− Varτ+1(X)
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to give

Eτ exp
(

βxEτ+1κt − λ⊤κt + Eτ+1γt−x − λγγt−x

)

=

exp

(

βxEτκt − λ⊤Eτκt + Eτγt−x − λγEτγt−x +
1

2
β⊤

x [Varτ (κt)− Varτ+1(κt)]βx

+
1

2
λ⊤Varτ (κt)λ+ β⊤

x [Varτ (κt)− Varτ+1(κt)]λ+
1

2
Varτ (γt−x)−

1

2
Varτ+1(γt−x)

+
1

2
λγ 2Varτ (γt−x)− λγVarτ (γt−x) + λγVarτ+1(γt−x)

)

Putting all three parts together and cancelling terms, we find

EQ
τ ν

Q
x,t(τ + 1) = exp

(

αx + β⊤
xEτκt +

1

2
β⊤

xVarτ (κt)βx + Eτγt−x +
1

2
Varτ (γt−x)

+β⊤
xVarτ (κt)λ+ λγVarτ (γt−x)

)

= exp
(

β⊤
xΛVarτ (κt)βx + λγVarτ (γt−x)

)

νP
x,t(τ)

= νQ
x,t(τ)

i.e., that forward mortality rates are self-consistent martingales under the
market-consistent Q-measure. From this, we also see that

EP
τν

Q
x,t(τ + 1) = EP

τ exp
(

β⊤Varτ+1(κt)λ+ λγVarτ+1(γt−x)
)

νP
x,t(τ + 1)

= exp
(

β⊤Varτ+1(κt)λ+ λγVarτ+1(γt−x)
)

νP
x,t(τ)

= exp
(

β⊤ [Varτ+1(κt)− Varτ (κt)]λ+ λγ [Varτ+1(γt−x)− Varτ (γt−x)]
)

νQ
x,t(τ)

i.e., the change of measure introduces a distortion which prevents market
consistent forward rates being self-consistent in the real-world P-measure.
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