
              

City, University of London Institutional Repository

Citation: Higgins, B. E., Montesano, G., Binns, A. M. & Crabb, D. P. (2021). Optimising 

assessment of dark adaptation data using time to event analysis. Scientific Reports, 11(1), 
8323. doi: 10.1038/s41598-021-86193-3 

This is the published version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/26136/

Link to published version: https://doi.org/10.1038/s41598-021-86193-3

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


1

Vol.:(0123456789)

Scientific Reports |         (2021) 11:8323  | https://doi.org/10.1038/s41598-021-86193-3

www.nature.com/scientificreports

Optimising assessment of dark 
adaptation data using time 
to event analysis
Bethany E. Higgins 1, Giovanni Montesano 1,2, Alison M. Binns 1 & David P. Crabb 1*

In age-related macular degeneration (AMD) research, dark adaptation has been found to be a 
promising functional measurement. In more severe cases of AMD, dark adaptation cannot always be 
recorded within a maximum allowed time for the test (~ 20–30 min). These data are recorded either 
as censored data-points (data capped at the maximum test time) or as an estimated recovery time 
based on the trend observed from the data recorded within the maximum recording time. Therefore, 
dark adaptation data can have unusual attributes that may not be handled by standard statistical 
techniques. Here we show time-to-event analysis is a more powerful method for analysis of rod-
intercept time data in measuring dark adaptation. For example, at 80% power (at α = 0.05) sample 
sizes were estimated to be 20 and 61 with uncapped (uncensored) and capped (censored) data using a 
standard t-test; these values improved to 12 and 38 when using the proposed time-to-event analysis. 
Our method can accommodate both skewed data and censored data points and offers the advantage 
of significantly reducing sample sizes when planning studies where this functional test is an outcome 
measure. The latter is important because designing trials and studies more efficiently equates to 
newer treatments likely being examined more efficiently.

Dark adaptation (DA) is recovery of light sensitivity in a dark environment after exposure to bright light which 
has bleached a significant proportion of visual  pigment1. There is accumulating evidence that the impairment of 
DA is a functional measure of age related macular degeneration (AMD)1–10. This impairment has been found to 
increase with presence of reticular  pseudodrusen11. The time taken for DA to occur is dependent upon the rate 
at which visual pigment is regenerated by the outer retina, a process in which the retinal pigment epithelium 
plays a central  role12. Abnormal DA results in a slowed recovery of photoreceptor sensitivity following exposure 
to a bleaching light source. Measurable aspects of DA include the rates of rod and cone recovery and the time 
taken to reach the rod cone  break13.

Measuring DA is fraught with issues around excessive test duration and minimal standardised testing 
 methods14. However, more efficient dark adaptometers have been developed and are now commercially avail-
able. For example, the AdaptDx dark adaptometer (MacuLogix, Hummelstown, PA) has been used in a number 
of clinical and research  studies3,14–17. AdaptDx assesses the rod-intercept time (RIT), an estimate of the time 
duration for the rods to recover to an established criterion sensitivity (i.e. 5 ×  10−3 scot cd/m2 (3 logarithmic units 
of attenuation of the stimulus)) after focal  bleaching17. For example, when a photoflash bleaching approximately 
83% of visual pigment is applied to a location 5° in the inferior vertical meridian, DA has subsequently been 
categorised as ‘normal’ if the RIT falls within the range of ≤ 12.3 min, or ‘impaired’ if  longer17. This reference limit 
was determined by normative testing on young and old participants by Jackson et al., dictated by the protocol 
 utilised17. A shorter duration protocol may be employed if the bleach intensity is reduced to 76%, whereby an 
adaptation time exceeding 6.5 min is considered to be ‘abnormal’, providing a diagnostic sensitivity and specific-
ity for AMD both exceeding 90%14.

Assessment of DA in AdaptDx relies on a precise measurement of RIT. At times, especially for advanced AMD 
cases but sometimes even for those with early and intermediate AMD (iAMD), recovery cannot be recorded 
within a maximum allowed time for the test (usually 20–30 min)3,18,19. These are recorded either as censored 
data-points or as an estimated recovery time based on the trend observed from the data recorded within the 
maximum recording time. Therefore, RIT data represents a challenge for statistical analysis. Many authors use 
standard statistical approaches to analyse groups of RIT values such as a t-test2, 5,15,16,20,21 or non-parametric 
 equivalents3,11,14,18,20. However, the t-test may not be appropriate when capping distorts the distribution of data. 
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Furthermore, the value of non-parametric tests is limited by their relative lack of power and inability to generate 
confidence intervals (CI). Resampling methods, such as bootstrap techniques, could provide p-values and CIs 
without the distributional assumptions of asymptotic parametric tests. Yet these methods do not address the issue 
of bias in the estimates arising from truncation/censoring in the data. Another approach is to consider the failure 
to recover within the test time as a categorical  variable11, although this limits the applicability of the analysis to 
longitudinal studies, where it is desirable to monitor a change in the variable over time.

We propose a ‘time-to-event’ analysis, commonly referred to as survival analysis, to be applied to RIT data. 
Time-to-event analysis is widely used in medical  literature22 and is a method for assessing the length of time 
until the occurrence of a defined end-point of interest. Here we use the approach to describe the cumulative 
proportion of people within each group reaching the rod intercept as a function of time after cessation of the 
bleach. We hypothesise this method offers better statistical power than standard techniques when applied to 
these types of data. Potential gains could translate into fewer study participants (reduced sample sizes) for trials 
and studies using measures of DA. We used a previously published dataset to illustrate the method and test the 
 hypothesis19. In addition, we developed and published a web-based app to implement this technique; this can be 
freely used by researchers and clinicians wanting to compare groups of people for which RIT values have been 
measured (https:// betha nyelo rahig gins. shiny apps. io/ Time- to- Event Analy sis/).

Results
Of those who participated in the previous study, 14 people with variable stages of AMD and eight age-similar 
controls provided valid data for the 76% bleach, 12° eccentricity test condition and were used to determine opti-
mal test conditions for acquiring RIT with the AdaptDx instrument. The study reported no significant difference 
in age (mean controls: 69 years ± 8 standard deviation (SD); mean iAMD: 71 years ± 8 SD, independent samples 
t-test, p = 0.73) between control participants and those with  AMD19. Table 1 summarises the demographic char-
acteristics of the included participants.

Fitted curves are shown in Fig. 1. The central estimates for the three methods are reported in Table 2. A statis-
tically significant difference (at p < 0.05) between groups was only detected with the time-to-event model (Table 2) 
in the original data. The p-values for the original and the scaled uncapped RITs were identical, the second being 
simply the same data scaled by a constant. With capped data, both the Generalised Linear Model (GLM) and the 
linear model yielded very biased estimates, especially in the AMD group (larger number of capped values). In 
contrast, the results of the time-to-event model were much closer to the values obtained without capping. With 
capped data, the CIs were larger for the time-to-event model but smaller for both the GLM and the linear model.

When we investigated the power of the three methods via bootstrap, the time-to-event model was superior. 
This is demonstrated by the power curves as a function of sample size in Fig. 2. The number of subjects needed 
per group to detect a significant difference (α = 0.05) at 80% power are reported in Table 3. When censored obser-
vations were introduced, the power of all methods was decreased, but the time-to-event model still performed 

Table 1.  Clinical characteristics of all participants. AMD graded according to the Beckman initiative severity 
scale. In short, eyes were grouped as normal ageing [1], early AMD [2], intermediate AMD [3], and late AMD 
[4] (geographical atrophy and/or neovascular lesions)33.

Participant ID logMAR test eye AMD status test eye AMD status fellow eye RIT (minutes)

RR0013 0.16 1 1 7.5

JE0008 0.00 1 1 6.3

JC0032 0.16 1 1 5.2

GM0035 − 0.04 1 1 1.8

BW0037 0.00 1 1 5.0

MI0033 0.16 1 1 2.7

SF0034 0.10 1 1 2.0

FJ0038 0.16 1 1 5.8

KM0003 0.16 2 2 3.6

DH0005 0.44 3 3 2.6

MM0006 0.20 3 3 6.7

GE0010 0.00 3 3 6.8

PS0012 0.20 3 3 6.9

GD0014 − 0.04 3 3 6.0

VC0015 0.02 3 4 10.2

PN0009 0.06 3 4 5.9

JB0018 0.00 3 3 10.1

WP0032 0.40 3 3 14.4

JG0027 0.20 4 4 12.3

EC0011 0.44 4 4 8.7

AF0028 0.50 4 4 3.2

PF0031 0.12 4 4 2.3

https://bethanyelorahiggins.shinyapps.io/Time-to-EventAnalysis/
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better than the linear model and GLM, and this is noteworthy. The estimated effect was much less affected by 
capping with the time-to-event model compared to the other two methods; this offers a considerable practical 
advantage in studies where participants’ RIT could exceed the maximum time set in a protocol.

A supplementary analysis was conducted to further demonstrate the applicability of our proposed meth-
odology in a second, censored  dataset19. Sixteen people from the same cohort used for the main analysis with 
various stages of AMD and eight age-similar controls provided valid data for the 76% bleach, 5° eccentricity test 
condition. This dataset features censored data because three RITs were not accrued within the test time and were 
capped at 30-min. Demographic characteristics of the included participants in this second analysis can be found 
in Supplementary Table S1 online. In this supplemental dataset, it is clear that the survival analysis offers a smaller 
p-value when testing the difference between the two groups, compared to both the GLM and linear model. This 
result is in line with the improved statistical power shown with our bootstrap experiment. Furthermore, the CIs 
for the central estimates are wider, exemplifying that censored data only provide limited information. However, 
as for our main calculations, accounting for censored data provides larger differences because it reduces the 
downward bias induced by capped data. See Supplemental Table S2 and Fig. S1 online for details.

Discussion
We have shown how time-to-event analysis can be applied to the data yielded from psychophysical measure-
ments of DA. Compared to alternative statistical methods, the proposed time-to-event model achieved higher 
statistical power in discriminating between people with AMD and healthy controls. Our method is statistically 
correct, by which we mean it can accommodate for both skewed data and censored data points. Time-to-event 
analysis offers the advantage of significantly reducing sample sizes when planning studies where this functional 
test is an outcome measure. The latter is important because designing trials and studies more efficiently equates to 

Figure 1.  Empirical curves for the original (top) and the transformed (bottom) data, scaled to illustrate RITs 
that surpass a cut off time. The vertical dashed line acts as a marker, representing this capping limit of 20-min. 
Note that the actual underlying distribution of RIT values is depicted in the figure, so no censoring is shown 
here. However, the survival model is fitted considering all values beyond 20 min as censored. For the scaled data, 
both the fitted survival curves from the mode (dashed curves) and the median values (vertical solid lines) were 
calculated from capped data. However, the time-to-event model fits the data well even beyond the cut off time. 
For the scaled AMD data, the time-to-event model correctly predicts a median value beyond the capping limit. 
Figure generated using the ggplot2  package32.



4

Vol:.(1234567890)

Scientific Reports |         (2021) 11:8323  | https://doi.org/10.1038/s41598-021-86193-3

www.nature.com/scientificreports/

Table 2.  Central estimates [95% confidence intervals (CIs)] of RIT values (in minutes) with the three methods 
considered (first and second columns). For the linear model (t-test) and the GLM, the mean is reported. For 
the survival model the estimate for the median is reported. The third column reports the effect [95% CIs] 
measured by the three methods, which is the basis for the calculation of the p-value. Significant p-values at an 
alpha level of 0.05 are shown in bold. The effect is the ratio between the mean RITs of AMD and controls for 
the survival model and the GLM, and the difference between the two groups for the linear model. Notice how 
the estimate from the survival model is much less affected by capped values.

Estimate [95% CIs]

Effect [95% CIs] p-valueAMD Controls

Original data

Survival model 6.94 [5.13, 8.75] 4.29 [2.91, 5.68] 1.62 [1.1, 2.37] 0.014

GLM 7.12 [5.26, 8.98] 4.54 [5.26, 8.98] 1.57 [1.02, 2.42] 0.055

Linear model 7.12 [5.44, 8.81] 4.54 [5.44, 8.81] 2.58 [− 0.21, 5.38] 0.085

Scaled data, uncapped

Survival model 20.81 [15.38, 26.25] 12.88 [8.72, 17.03] 1.62 [1.1, 2.37] 0.014

GLM 21.36 [15.78, 26.95] 13.61 [15.78, 26.95] 1.57 [1.02, 2.42] 0.055

Linear model 21.36 [16.31, 26.42] 13.61 [16.31, 26.42] 7.75 [− 0.62, 16.13] 0.085

Scaled data, capped

Survival model 21.64 [13.48, 29.79] 13.06 [8.34, 17.79] 1.66 [0.97, 2.84] 0.066

GLM 16.49 [13.33, 19.64] 13.3 [13.33, 19.64] 1.24 [0.9, 1.7] 0.199

Linear model 16.49 [13.63, 19.34] 13.3 [13.63, 19.34] 3.19 [− 1.55, 7.92] 0.202

Figure 2.  Power curves as a function of sample size for the three methods considered with and without capping 
for the scaled data. The power curves for the original data (not scaled) are identical to the scaled uncapped data 
and are therefore not reported (10,000 bootstrap simulations for each step in the sample size). Figure generated 
using the ggplot2  package32.

Table 3.  Sample size (to whole number) of each group required to reach 80% power at α = 0.05 with the three 
methods considered.

Uncapped data Capped data

Sample size at 80% power (per group) Sample size at 80% power (per group)

Survival model 12 21

GLM 18 44

Linear model 20 45
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newer treatments likely being examined more efficiently. Our method may also have application to longitudinal 
studies and trials such as evaluation of proof-of-concept or phase II clinical trials aimed at early intervention. 
Moreover, this model offers flexibility and allows for additional covariates to be added to the analysis (e.g. pres-
ence of pseudodrusen or age), making a wide range of RIT analysis possible. We have made the technique freely 
available via a simple App.

Both the GLM and the time-to-event model are able to account for the skewed distribution of the data; the 
former employs a Gamma distribution for the error, whereas the latter makes use of a Weibull distribution. 
However, time-to-event analysis can also accommodate censored observations. This feature is expected to prove 
useful for the assessment of DA impairment in people with AMD because examination time is usually capped 
at a maximum for practical reasons e.g. 20–30 min; a deficient RIT may exceed the maximum time of the  test16. 
This issue has been addressed in different ways in previous studies, for instance simply using the capped value as 
if it was an actual measured  RIT16,17,19,21. We adopted the same solution for our simulated capping when using the 
GLM and the linear model. Of course, the major drawback of artificial capping is that it will create a false peak 
at the capped value. This is similar to what is observed in sensitivities in visual field examination with standard 
automated perimetry, where thresholds below 0 dB cannot be tested, resulting in a zero inflated  distribution23. 
With our results, we showed that such an approach can severely bias the central estimates (Table 2). For example, 
in the scaled capped data for people with AMD (the group with largest amount of capped values), the estimates 
for the mean are much smaller than the correct values obtained from uncapped data. Moreover, the CIs are 
narrower with capped data and do not include the correct value for the mean. In contrast, the estimate of the 
median from the time-to-event model is very close to the value calculated without capping. The CIs are also 
wider, correctly reflecting the fact that censored data only provide partial information. Finally, the time-to-event 
model can correctly predict a median value beyond the capping limit (20-min). This would not be possible with 
a raw calculation of the median.

One alternative solution to deal with capped data is to use values estimated from the DA recovery curve. The 
AdaptDx is able to fit a decay model to the acquired values and extract a RIT value by projecting the estimated 
curve forward in time. This is allows for missing data points and has been employed by some  researchers3. 
However, this is subject to the assumptions of the fitted curve and to measurement variability in the acquired 
data; it is unable to fit the decay model where limited recovery has taken place within the duration of the test, 
and thus capped data points still remain.

Our technique should have wide application in the context of studies measuring DA. For example, func-
tional deficit in DA has been shown to become apparent before other clinical measures of visual function are 
 affected16,24. Moreover, evidence suggests that delayed DA may manifest before the appearance of structural 
features of AMD such as drusen and focal pigmentary  changes1–9, indicating that DA is a pertinent clinical 
measure. Indeed, a series of studies, of varying quality, have shown a measure of DA to be a diagnostic indicator 
of  AMD9,13,17,24. The rate of DA has been shown to increase with increasing severity of  AMD3,11,14,18.

The unusual statistical properties and subsequently skewed distribution of RIT values has been largely over-
looked in previous  reports5,20. This can have important negative effects on the power of statistical tests, as illus-
trated by our power analysis (Fig. 2). In many cases, researchers resorted to non-parametric tests, acting on the 
ranks of the data, because they do not make assumptions on the distribution of the data. However, classical non-
parametric tests are less powerful than their parametric alternatives and they do not provide CIs on the estimates.

There are some limitations to what we have proposed. For the purposes of this study, we did not attempt to 
distinguish between stages of AMD. However, the use a disease vs. non disease dataset was sufficient to dem-
onstrate the reduction in sample size associated with the statistical techniques used, and the methods would 
be equally applicable to studies designed to discriminate between different disease severities. Our method is 
primarily meant to compare RIT values among groups of people involved in a study or clinical trial. In fact, it is 
focused on the estimation of group effects as global changes in time scale of recovery and would provide little 
information on individual subjects. Future work could focus on the application of our methodology to larger 
datasets and longitudinal data; we hope our App for using this technique will help facilitate this.

Another perceived limitation of our study is our use of a dataset that does not feature RITs > 15-min and 
scaling the dataset to reflect censored data. However, this allowed us to demonstrate the strength of the time-
to-event method by showing how the estimates obtained with capped data would compare to those obtained 
from fully measured RITs. Such a comparison would have been impossible had censoring been present in the 
original data, because the true underlying distribution of RITs would have been unknown. However, we have 
also included a supplemental analysis on a second dataset with actually censored RIT values to further highlight 
the real-life applicability of this methodology.

The RIT measurement itself has limitations as it is not only dependent on DA kinetics but also on parameters 
such as pupil size and the number of photoreceptors (known to vertically scale sensitivity). Analysis of other 
metrics of DA measurements such as slope of the S2 component may be more demonstrable of DA  kinetics12,13,25. 
Furthermore, the intent of this report was only to assess the RIT as produced by the analysis responses from the 
machine. We have not reanalysed the responses themselves in order to offer a different strategy for estimating the 
RIT. Larger datasets would also provide the opportunity to test other distributions for our time-to-event analysis. 
In fact, despite being widely used in parametric time-to-event analyses for its flexibility, the Weibull distribution 
might not necessarily be the best choice for this type of data. Finally, as explained in the methods section, these 
models do not describe the data in exactly the same way: both the GLM and the time-to-event model perform 
the comparisons in the logarithmic scale. This implies that, opposite to the linear model, they model the changes 
as proportions rather than linear differences. This is a common choice in many fields where strictly positive val-
ues are expected (such as with RIT values) since this data usually exhibit a heteroscedastic behaviour whereby 
the variance increases with the predicted mean. Log-scale models account for this  behaviour26. Moreover, the 
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logarithmic scale reduces the influence of large values which would otherwise greatly affect the mean calculated 
in the linear scale.

One final important aspect is that different conventions to calculate p-values are used for survival analyses 
(Wald test) and linear models/GLMs (t-test). We address this issue in a supplemental analysis, where we show 
that the improvement in power obtained with the time-to-event analysis is unchanged when the p-values are 
calculated using the Wald test for all the models (See Supplementary Fig. S2). In summary, the use of a time-to-
event analysis is a more powerful statistical measure compared to other statistical approaches, for the assessment 
of RITs of people with AMD. We propose that time-to-event curves are a useful tool to visualise RIT in groups 
of people. We make full use of this in our freely available app, providing a user-friendly interface for clinical 
scientists to visualise and analyse RIT data more efficiently.

Methods
Participants. We retrospectively analysed data collected for a previous study by Binns et al.19. Institutional 
research ethical approval was approved by School of Health Sciences, City, University of London. All procedures 
adhered to the tenets of the Declaration of Helsinki and were carried out in accordance with relevant guide-
lines and regulations. All the data were anonymised for this study and informed consent was obtained from all 
subjects. Details on recruitment and inclusion/exclusion criteria can be found in the original  paper19. In brief, 
age-similar visually healthy controls and people with early AMD, iAMD and non-central geographic atrophy 
were recruited. Inclusion criteria consisted of best corrected visual acuity of logMAR 0.7 or better in study 
eye, > 55 years of age, adequately clear ocular media and acceptable pupillary dilation and fixation to allow for 
quality fundus photography. Exclusion criteria included significant disease, other retinal pathology in the study 
eye, or a history of medication known to disturb visual  function19. For the scope of our analysis, we did not dis-
tinguish between different stages of AMD.

Dark adaptation procedure. For the purposes of our work, we used the values obtained with the optimal 
testing conditions as determined by Binns et al. (76% bleach at 12° eccentricity)19. Full details of the DA proce-
dure have been published  previously19. Briefly, prior to assessment the participant was dark adapted for 30-min 
in a darkened room. An appropriate spherical lens was used (+ 3.00 DS plus spherical distance prescription) 
and a patch placed over the non-tested eye. The participant then viewed a fixation stimulus from a chin rest. 
Alignment was monitored using an infra-red camera and adjusted by the examiner. Pupil diameter was meas-
ured before the administration of the bleaching, 505 nm bleaching flash (4° diameter, centred 12° in the inferior 
visual field, 0.8 ms duration, 1.8 × 104 scot cd/s.m2, bleaching an estimated 76% of rod visual  pigment27). The 
test stimulus was subsequently shown at the same location as the bleach. Fifteen seconds after the photoflash, 
the threshold was measured for a 505-nm, 2° diameter target starting. The participant was asked to keep looking 
at the fixation light and to press a response button when a flashing target became visible. A modified staircase 
procedure was utilised to estimate the threshold until the RIT was attained or the cut-off time was reached (30-
min). A 15-s break was given after each threshold. If the RIT was not reached within the test, it was set at the 
maximum test duration (30-min). As in previous studies utilising the  AdaptDx14, if fixation errors exceeded 30% 
of threshold points, the test was deemed  unreliable19.

To further demonstrate the applicability of our methodology, the same analysis was conducted on a second, 
supplementary dataset obtained from Binns et al.19 (76% bleach at 5° eccentricity). The DA protocol used was 
identical except the 505 nm bleaching flash was centred at 5° in the inferior visual field.

Time-to-event analysis. We used a parametric time-to-event model widely used in medical literature to 
describe the time taken for an event such as tumour recurrence or time to death after a  treatment22. Here we use 
the approach to describe the cumulative proportion of people within each group reaching the rod intercept as 
a function of time after cessation of the bleach. RIT was not treated as the event itself, but rather the time taken 
for the participant to recover sensitivity to a stimulus intensity of 5 ×  10−3 scot cd/m2 (a decrease in threshold of 
3 logarithmic units). In this respect, the event recovery can be used in a time-to-event analysis, since the RIT is 
for all intents and purposes the time passed until such an event is observed. In other words, we model RIT values 
within each group as the cumulative occurrence of recovery over time; a cumulative distribution function F(t). 
RIT values can be plotted as survival curves (see Fig. 3) using a Kaplan–Meier  estimator28. These curves report 
the time from bleaching on the horizontal axis and the percentage of recovered subjects on the vertical axis. This 
is a step graph and changes occur at each observed RIT (downward step). Censored data can be represented with 
a marker, as shown in Fig. 1 and Supplemental Fig. S1. An example of how the survival curve can be plotted from 
RIT values is reported in Fig. 3.

Its inverse is the time-to-event function S(t) = 1 – F(t). The function F(t) can be modelled as the cumulative 
distribution function of a variety of distributions. One of the most common is the Weibull distribution, which 
is then assumed to be the distribution of the observed times-to-event. This is called Accelerated Time Failure 
model (Eq. 1).

Here T represents the time to recovery, Group denotes the assignment of the subject i (for example AMD or 
Control), σ denotes a scale factor for the errors and W is the assumed distribution that has F(t) as cumulative 
distribution function (Weibull in this case).

Additional predictors and interactions can be added to the right hand side of the function if needed as in 
a multivariable linear regression (a treatment arm, for example). In our scenario, the expectation is the AMD 
group will have a proportional increase in “time-to-event time” since more time is needed for the event (recovery 

(1)log (T) = β0 + β1 ∗ Group+ σW
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from bleaching) to happen, i.e. longer RIT values. One advantage of parametric time-to-event models (as the 
one proposed) over a semi-parametric Proportional Hazard model (Cox model) is that the baseline time-to-
event function is explicitly modelled, thus allowing estimates and inference on time-to-event times. Moreover, 
delayed/accelerated recovery in one group with respect to the baseline level (for example, AMD with respect to 
Controls) can be simply calculated as exp(β1) , where exp() denotes the exponential function. So, for example, a 
value of β1 = 0.7 indicates a two-fold increase in recovery time.

Handling censored data is a key feature of time-to-event  analysis29. In our application, right-censoring hap-
pens when the RIT is longer than the maximum time allowed for the test; this can be denoted using a binary 
variable, commonly assuming a value of 1 when the RIT has been recorded and a value of 0 otherwise. In our 
dataset the maximum recording time was set at a lengthy 30  min19; no subject exceeded this limit. In other 
studies, especially in a clinical use scenario, this limit is likely lower, e.g. 20-min (Fig. 1). Therefore, in order to 
demonstrate how the time-to-event analysis can be used with censored data, we transformed the data with a 
multiplicative constant (c = 3) and subsequently capped the data at 20-min. This allowed us to explore how the 
estimates from different modelling approaches change between the capped and the full series. In this specific case 
the censoring is non-random, as it is set by a predetermined stopping time. The strength of time-to-event analysis 
is that, using censoring, it is still possible to extract information from unrecorded RIT values as time-to-event 
analysis can account for the fact that, at termination time (20-min), a percentage of subjects have not recovered 

Figure 3.  The change in  Log10 sensitivity for three control subjects and three patients with AMD is plotted in 
the top panel (filled dots) with the corresponding Rod Intercept Time values (vertical strokes) provided by the 
device. The horizontal dashed line represents the 3 log-step change in sensitivity used by the device to define 
the event (recovery from bleaching). The RIT time for each recovery “event” is used to build the survival curves 
(bottom panels). In this case, the vertical coloured lines also identify the same RIT values recorded for the 
curves plotted in the top panels. Notice how each vertical line corresponds to a downward step change in the 
survival curve (in black). The same process is applied for all RIT values in the dataset to calculate the other step 
changes that make up the rest of the survival curve. A marker demonstrating the cut off time has been added. 
Figure generated using the ggplot2  package32.
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from bleaching. By contrast, any other method would require to either exclude participants with unrecorded 
RIT values or to impute the values for the missing data.

Other parametric methods. The time-to-event model was compared with two parametric models, the 
t-test and a GLM. Both make strong assumptions concerning data structure, such as the independence of each 
data point and the correct scale of the data. However, the GLM can better accommodate for skewed error distri-
butions. Of course, the former can be interpreted as simple linear model, where the predictor is a binary factor 
with only two classes (Group). It can be formulated as Eq. (2).

In this case, the response variable is the RIT for the subject i, the parameter β0 (Intercept) represents the mean 
RIT for the baseline Group (Controls in this case), the parameter β1 represents the estimated difference between 
the two groups, and ǫi is the error, assumed to be Gaussian.

This linear model formulation can be extended to GLM, which uses a link function for the mean of the 
 response26 (in this specific case, the natural logarithm). This effectively allows the model to have a Gamma dis-
tribution (instead of Gaussian) for the error, accounting for the skewed distribution of the data. Note that this 
is different from a log-transformation of the data: the link function is applied to the mean of the response and is 
therefore invertible, i.e. the inverse log of the mean response from the GLM produces the corresponding estimate 
of the RIT in the linear scale. On the contrary, with a log-transformation of the data, the model will estimate the 
mean of the log-response, which cannot be converted back to the mean of the original response. For both these 
models, censored data are replaced by the maximum recordable value (20 min or 30 min).

Power calculation. Power calculations were used to compare the efficiency of the different statistical 
approaches. To avoid distributional assumptions on the real data as much as possible, we used a bootstrap pro-
cedure to estimate the power of the three methods at different sample sizes. We used random sampling, with 
replacement, with N subjects from the controls and the same number from the AMD group. Due to replacement, 
the same subject could be extracted multiple times and arbitrarily large samples could be produced. At each 
extraction, the three methods were applied and the p-value on the null hypothesis of no difference between RIT 
in people with AMD and controls from each method was recorded. The sampling was repeated 10,000 times at 
different sample sizes (N from 3 to 50 per Group). The power for each value was calculated as the proportion 
of extractions where the p-value was below 0.05. As a clarification, the bootstrap was not used to calculate the 
p-value, which was instead derived from each parametric test, but just to generate the random samples on which 
the tests were performed. We have used a similar approach in previously published  work30 to perform a post-hoc 
power calculation.

For our main analysis, when computing the p-values, we adopted the statistical convention for each model: 
t-test for the parameter derived from the linear model and GLM and the Wald test for the parameters derived 
from the survival analysis  model31. However, to prove that the differences in power between the three method-
ologies were not due a different calculation of the p-values, we performed an additional power analysis using 
the Wald test for all the models.

Web application. We designed a purpose written, interactive application to demonstrate the time-to-event 
analysis technique for RIT data. The application uses Rstudio’s Shiny framework and is available in the public 
domain. It allows a user to upload their own RIT data in .csv format to use the statistical test and produce a time-
to-event plot to illustrate the data. The application has the option to use the data illustrated in this paper. (https:// 
betha nyelo rahig gins. shiny apps. io/ Time- to- Event Analy sis/).

All analyses were performed in R 3.5.2 (http:// www.r- proje ct. org/) under R Studio, version 1.1.463 (RStudio, 
Boston, MA, USA). For time-to-event analysis the parametric time-to-event regression provided in the Survival 
package for R was  implemented28. Figures were generated using the ggplot2  package32.

Data availability
The application and hence analysis used in this paper can be accessed through https:// betha nyelo rahig gins. shiny 
apps. io/ Time- to- Event Analy sis/. All data used in this paper was sourced from Binns et al.19.

Code availability
The application and hence analysis used in this paper can be accessed through: (https:// betha nyelo rahig gins. 
shiny apps. io/ Time- to- Event Analy sis/), the code details will be made available on direct request to the author.
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