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Retinal asymmetry in multiple sclerosis

Axel Petzold,1,2,3 Sharon Y. L. Chua,4 Anthony P. Khawaja,4 Pearse A. Keane,4 Peng T.
Khaw,4 Charles Reisman,5 Baljean Dhillon,6 Nicholas G. Strouthidis,4 UK Biobank Eye and
Vision Consortium,† Paul J. Foster4,‡ and Praveen J. Patel4,‡

†Appendix 1.

‡These authors contributed equally to this work.

The diagnosis of multiple sclerosis is based on a combination of clinical and paraclinical tests. The potential contribution of retinal

optical coherence tomography (OCT) has been recognized. We tested the feasibility of OCT measures of retinal asymmetry as a

diagnostic test for multiple sclerosis at the community level. In this community-based study of 72 120 subjects, we examined the

diagnostic potential of the inter-eye difference of inner retinal OCT data for multiple sclerosis using the UK Biobank data collected

at 22 sites between 2007 and 2010. OCT reporting and quality control guidelines were followed. The inter-eye percentage differ-

ence (IEPD) and inter-eye absolute difference (IEAD) were calculated for the macular retinal nerve fibre layer (RNFL), ganglion cell

inner plexiform layer (GCIPL) complex and ganglion cell complex. Area under the receiver operating characteristic curve

(AUROC) comparisons were followed by univariate and multivariable comparisons accounting for a large range of diseases and

co-morbidities. Cut-off levels were optimized by ROC and the Youden index. The prevalence of multiple sclerosis was 0.0023

[95% confidence interval (CI) 0.00229–0.00231]. Overall the discriminatory power of diagnosing multiple sclerosis with the IEPD

AUROC curve (0.71, 95% CI 0.67–0.76) and IEAD (0.71, 95% CI 0.67–0.75) for the macular GCIPL complex were significantly

higher if compared to the macular ganglion cell complex IEPD AUROC curve (0.64, 95% CI 0.59–0.69, P = 0.0017); IEAD

AUROC curve (0.63, 95% CI 0.58–0.68, P50.0001) and macular RNFL IEPD AUROC curve (0.59, 95% CI 0.54–0.63,

P50.0001); IEAD AUROC curve (0.55, 95% CI 0.50–0.59, P50.0001). Screening sensitivity levels for the macular GCIPL com-

plex IEPD (4% cut-off) were 51.7% and for the IEAD (4 lm cut-off) 43.5%. Specificity levels were 82.8% and 86.8%, respective-

ly. The number of co-morbidities was important. There was a stepwise decrease of the AUROC curve from 0.72 in control subjects

to 0.66 in more than nine co-morbidities or presence of neuromyelitis optica spectrum disease. In the multivariable analyses greater

age, diabetes mellitus, other eye disease and a non-white ethnic background were relevant confounders. For most interactions, the

effect sizes were large (partial x2 4 0.14) with narrow confidence intervals. In conclusion, the OCT macular GCIPL complex

IEPD and IEAD may be considered as supportive measurements for multiple sclerosis diagnostic criteria in a young patient without

relevant co-morbidity. The metric does not allow separation of multiple sclerosis from neuromyelitis optica. Retinal OCT imaging

is accurate, rapid, non-invasive, widely available and may therefore help to reduce need for invasive and more costly procedures.

To be viable, higher sensitivity and specificity levels are needed.
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Introduction
Multiple sclerosis is a disease that predominantly affects a

young adult population in the prime of their working life.

Accurate and early diagnosis of multiple sclerosis is import-

ant because of access to FDA-approved, effective disease-

modifying treatments for a disease which affects more than

2 million individuals globally (Reich et al., 2018). In the

USA �400 000 patients suffer from multiple sclerosis and

the annual economic burden is ~$10 billion (Reich et al.,

2018). There is a need to improve on the diagnostic work-

up, incorporating technologies that are scalable to a popula-

tion level in order to improve screening for this disabling

condition. The last revision of the diagnostic criteria for mul-

tiple sclerosis highlighted the importance of interrogating the

diagnostic value of retinal optical coherence tomography

(OCT) for refinement of diagnostic criteria (Thompson

et al., 2018a; London et al., 2019; Riederer et al., 2019).

Could inclusion of the optic nerve as a fifth CNS location

for dissemination in space or time improve on the overall

diagnostic sensitivity/specificity levels? Many multiple scler-

osis lesions, including those of the optic nerve, are asymp-

tomatic and detecting them earlier will permit for an earlier

diagnosis (London et al., 2019; Riederer et al., 2019).

The rationale for considering OCT for the diagnostic

work-up of patients stems from the high level of reproduci-

bility of retinal layer atrophy measures from two systematic

meta-analyses spanning two decades of work (Petzold et al.,

2010, 2017). The accuracy of the OCT data is such that the

degree of peripapillary retinal nerve fibre layer (pRNFL) at-

rophy in eyes affected by multiple sclerosis associated optic

neuritis (MSON) was almost identical in repeatability stud-

ies. A normal pRNFL has a global average thickness of

�100 lm. Following MSON, time domain OCT data

revealed atrophy of the pRNFL of 20.38 lm [95% confi-

dence interval (CI) 17.91–22.86 lm] (Petzold et al., 2010).

A decade later, spectral domain OCT data confirmed almost

to the decimal point identical pRNFL atrophy values of

20.10 lm (17.44–22.76 lm) (Petzold et al., 2017). Optic

nerve lesions are the main cause of retinal thinning across

the spectrum of clinical multiple sclerosis phenotypes

(Pulicken et al., 2007; Costello et al., 2009; Balk et al.,
2014). Longitudinal studies add weight to the argument that

this is genuine pRNFL atrophy progressing at a rate of

–0.36 to –0.53 lm/year in optic neuritis in absence of mul-

tiple sclerosis (Petzold et al., 2017). This is relevant because

MSON is a frequent presenting sign in multiple sclerosis and

identified in 80% of patients post-mortem (Green et al.,

2010). Because of the asymmetry of pRNFL thickness be-

tween the two eyes following MSON, a consensus recom-

mendation was to consider an inter-eye difference of 420%

(based on the 20-lm difference from a �100 lm global

average normal value) for the pRNFL as diagnostic evidence

of an episode of MSON (Petzold et al., 2014). A subsequent

Dutch cohort analysis did, however, show that the original

20% estimate might be too conservative (Coric et al., 2017).

An inter-eye percentage difference (IEPD) of 9% for the

pRNFL, but only 4% of the compound macular ganglion

cell and inner plexiform layers (mGCIPL) distinguished be-

tween patients with MSON and healthy controls with high

diagnostic accuracy and 9 lm for the pRNFL inter-eye abso-

lute difference (IEAD) (Coric et al., 2017; Xu et al., 2019).

This finding has since been reproduced independently in two

US cohorts (Nolan et al., 2018; Xu et al., 2019) and the

international IMSVISUAL multi-centre study (Nolan-Kenney

et al., 2019). All four studies suggest that about a 4%

(IEPD) or 4 lm (IEAD) difference in the macula have a high

diagnostic sensitivity.

Important limitations to these studies were the small num-

ber of controls with data on the GCIPL (n = 63) (Coric

et al., 2017), n = 31 (Nolan et al., 2018), not specified (Xu

et al., 2019), n = 259 (Nolan-Kenney et al., 2019). All con-

trols were healthy volunteers. This is an inclusion bias,

which may limit the usefulness of the IEPD/IEAD in clinical

practice where patients present with multiple diseases. None

of the studies included data on the main public health prob-

lems known to affect OCT data such as diabetes mellitus,

glaucoma and alcohol habits (Khawaja et al., 2020). None

of the studies presented data on key ophthalmological varia-

bles influencing OCT data such as intraocular pressure

(IOP) and refraction (Khawaja et al., 2020). Finally, most

studies focused on MSON only rather than multiple sclerosis

(Nolan et al., 2018; Nolan-Kenney et al., 2019; Xu et al.,
2019). However, asymmetry in the retinal thickness is also

present in patients with optic neuritis in the absence of mul-

tiple sclerosis (Gabilondo et al., 2013). Cumulatively, these

shortcomings are limited in adequately informing how the

IEPD/IEAD may contribute to future refinements of the diag-

nostic criteria in multiple sclerosis (Thompson et al., 2018a).

We therefore conducted the present study using data from

a large community cohort with rich phenotyping

(Chua et al., 2019). The main cause for asymmetric atrophy
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of inner retinal layers is MSON (Nolan et al., 2018; Nolan-

Kenney et al., 2019; Xu et al., 2019). Therefore, patients

with documented optic neuritis were excluded from the

study. A smaller degree of atrophy can be attributed to dam-

age to the retino-cortical projections (de Vries-Knoppert

et al., 2019). A pathologically frequent location of multiple

sclerosis lesions is the periventricular white matter

(Thompson et al., 2018a), where the retino-cortical projec-

tions pass (Petzold et al., 2010). Statistically the distribution

of multiple sclerosis lesions is not symmetrical between the

right and left hemisphere. The hypothesis tested is that there

is a significant degree of retinal asymmetry in patients with

multiple sclerosis, which can be quantified by the IEPD/

IEAD (Coric et al., 2017). In clinical practise, visual fields in

patients with multiple sclerosis are never as homonymous as

the idealized sketches shown in a textbook may suggest

(Fujimoto and Adachi-Usami, 1998; Gündüz et al., 1998;

Lycke et al., 2001). The reported asymmetry in the visual

fields can also be observed anecdotally in the thickness maps

of the macular OCT (see Figure 1 in Gabilondo et al.,

2013). There is always a degree of incongruity that is helpful

to note for region of interest-based OCT analysis (de Vries-

Knoppert et al., 2019). Importantly, the robustness of the

IEPD/IEAD as a complementary diagnostic test for multiple

sclerosis was tested against a large list of co-morbidities,

public health issues and ophthalmological variables.

Materials and methods

Study design and participants

UK Biobank is a community-based cohort of 502 656 UK resi-
dents aged 40–69 years and registered with the National Health
Service (NHS). Examinations were carried out between 2007
and 2010 at 22 study assessment centres. The North West
Multi-Centre Research Ethics Committee approved the study in
accordance with the principles of the Declaration of Helsinki.
The overall study protocol (http://www.ukbiobank.ac.uk/resour
ces/) and protocols for individual tests (http://biobank.ctsu.ox.
ac.uk/crystal/docs.cgi) are available online.

In brief, participants answered a wide-ranging touch-screen
questionnaire covering demographic, socio-economic and life-
style information, environmental exposures, and personal as
well as family medical history. In 2009–10, additional examin-
ation components were added, including the eye examination.
Visual acuity, autorefraction/keratometry (Tomey RC5000),
Goldmann-corrected IOP, (IOPg) and cornea-corrected IOP
(IOPcc) (Ocular Response Analyzer, Reichert) were collected
from 110 573 consecutive participants in 2009–10, and retinal
OCT measurements were undertaken in 67 321 of these partici-
pants. The OCT protocol was described in detail (Patel et al.,
2016; Ko et al., 2017) and is compliant with the APOSTEL
guidelines (Cruz-Herranz et al., 2016). In brief, high resolution
spectral domain OCT imaging of undilated eyes was performed
in a dark enclosed room using the Topcon 3D OCT 1000 Mk2
(Topcon Corp), on the same day as other physical measure-
ments. We excluded OCT scans of poor imaging quality accord-
ing to the OSCAR-IB criteria (Tewarie et al., 2012). The R-

criterion was not used to permit for analyses of ocular co-mor-
bidities. A flow chart of selection of participants is presented in
Fig. 1.

Ethical approval

The North West Multi-Centre Research Ethics Committee
approved the study (reference no. 06/MRE08/65), in accordance
with the tenets of the Declaration of Helsinki. Detailed informa-
tion about the study is available at the UK Biobank website
(www.ukbiobank.ac.uk).

Statistical analysis

Analyses followed EQUATOR Reporting Guidelines and were
consistent with the STROBE outline for cohort studies (https://
www.equator-network.org/reporting-guidelines/). The data used
in this manuscript are from the UK Biobank Data Repository.
The coding names for the variables used in this manuscript are
spelled out for transparency. We used SAS version 9.4 (SAS
Institute Inc., 100 SAS Campus Drive, Cary, NC 27513-2414,
USA) for all analyses. Data distribution was checked by the
Shapiro–Wilk test and visually. Normally distributed data are
presented as mean and standard deviation (SD). The median
and interquartile range are shown for non-Gaussian data.
Categorical data are presented as number (percentage). As be-
fore, the quality assessment included exclusion of the top and
bottom 1% percentile of the EDTRS grid-based measurements
(Patel et al., 2016). The inter-eye differences were calculated as
described (Coric et al., 2017; Nolan et al., 2018). For each ana-
lysis we used both the IEPD (a dimensionless metric) and IEAD
(in micrometres) from the ETDRS grid.

First, the diagnostic accuracy of the IEPD and IEAD were
compared for inner retinal layer measurements used in previ-
ous studies. We adhered to the APOSTEL nomenclature
(Cruz-Herranz et al., 2016): the macular retinal nerve fibre
layer (mRNFL), the macular ganglion inner plexiform layer
(mGCIPL) and the composite of these two, the ganglion cell
complex (mGCC). Performance of each of these measures
was tested using receiver operator characteristics (ROC)
curve analyses. Statistical comparison of ROC curves area
under the curve (AUC) and 95% CI for the incremental con-
tribution of each inter-eye measure was performed using the
Wald test for the entire cohort (Seshan et al., 2012). To maxi-
mize statistical power only the most statistically significant
IEPD/IEAD measures were selected.

Second, patients were categorized in the main level 1, ICD-10
disease groups (clinician controlled). A total of n = 836 diagnos-
tic coding data fields (variables s_41202_0_0 to s_41205_0_11)
were revised per patient. The ICD-10 code for multiple sclerosis
G35 is applicable to all forms of multiple sclerosis, but does not
specify which tests were used to reach a diagnosis. Patients with
multiple sclerosis who also had optic neuritis documented were
excluded. For ‘other eye diseases’ we pooled the ICD-10 catego-
ries H53, H54, H40, H42, H30, H31, H33, H34, H35, H36.
This includes all forms of glaucoma, pathology of the vitreous
body and globe, retina and choroid, other forms of visual dis-
turbances and blindness, which can influence OCT measures.

Next, we calculated the cumulative disease burden per pa-
tient. For each disease group relevant variables known to influ-
ence OCT data were included: age (variable n_21003_0_0),
gender (n_31_0_0), ethnicity (n_21000_0_0), the body mass
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index (BMI, n_23104_0_0), smoking habits (n_20160_0_0) and
alcohol consumption in previous 24 h (n_100022_0_0). For the
diabetes mellitus status (type I and type II), ICD-10 coding was
double-checked with field (n_2443_0_0). Likewise, we included
for each eye: logMAR visual acuities [OD (right eye) =
n_5206_0_0, OS (left eye) = n_5208_0_0], refraction in
dioptres (dpt, OD = n_5084_0_0, OS = n_5085_0_0), refrac-
tion based anisometropia (4 1 dpt), and IOP (OD =
n_5262_0_0, OS = n_5262_1_0).

We used ROC curve analyses for comparing patients with
multiple sclerosis to control subjects and different combinations
of disease groups. The diagnostic value was rated as good for
an AUC 4 0.7 (Coric et al., 2017; Nolan-Kenney et al., 2019).
Cut-off points for sensitivity/specificity levels were determined
graphically and calculated with the Youden index (Coric et al.,
2017; Nolan-Kenney et al., 2019). Univariate and multivariable
analyses were performed using odds ratios (OR) to adjust for

potential confounders (Lingsma et al., 2010). The OR also per-
mit to estimate of the effect sizes for categorical variables (for
example, diabetes mellitus yes/no). To complement the statistical
comparisons of continuous variables we also calculated effect
sizes for a within-subjects variability. We used the partial x2

and its standard deviation (alpha = 0.1). This is because for fu-
ture power analyses and sample size calculations the x2 has less
of a bias than h2, which generally suggests a larger effect size
(Albers and Lakens, 2018). The effect size is reported as very
small for x2 0–0.01; small for x2 0.01–0.06; medium for x2

0.06–0.14 and large for x2 4 0.14. For the forest plot, logistic
regression was fitted including the multiple sclerosis status as
the dependent variable and the mGCIPL, IEPD, and IEAD as
the predictors. We did not impute data. We provided the exact
number of data-points for each analysis and variable in order to
account for missing observations. The null hypothesis was
rejected if P50.05.

Figure 1 Study flow chart for the UK Biobank participants. Inclusion/exclusion criteria for the macular SD-OCT data used in our analy-

ses are summarized. QC = quality control; SD = spectral domain.
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Data availability

The corresponding author can provide the dataset used or docu-
mentation on the analysis performed upon reasonable request.
The data can also be downloaded directly from the UK Biobank
(http://www.ukbiobank.ac.uk).

Results
Between 2009 and 2010, 78 505 individuals underwent

OCT imaging. Of these, 72 120 had matching high quality

OCT imaging from both eyes permitting calculation of the

inter-eye differences (Fig. 1). The prevalence of multiple

sclerosis (ICD-10 coding) in the cohort was 168/74 568

(0.23%). After exclusion of optic neuritis there remained

71 939 control subjects and 144 patients with multiple scler-

osis (Table 1).

The diagnostic accuracy of the inter-eye differences for

mRNFL, mGCIPL and mGCC were determined by ROC

(AUC, 95% CI, Table 2). The highest AUC was achieved

for the inter-eye differences from the mGCIPL. The discrim-

inative performance of IEPD (mGCIPL) and IEAD

(mGCIPL) were significantly better than for the mRNFL and

mGCC (Table 2). The IEPD (mGCIPL) had a marginally

better discriminatory power than the IEAD for all retinal

layers. The inter-eye differences for the mRNFL were of no

or low discriminatory power. The IEPD and IEAD for the

mGCIPL were selected for further comparisons.

Figure 2A illustrates that the number of co-morbidities is

relevant. The highest discriminatory power is achieved for

the IEPD (AUC 0.74) and IEAD (AUC 0.73) for separating

patients with multiple sclerosis from healthy controls. The

diagnostic discriminatory power of the IEPD and IEAD for

multiple sclerosis is reduced if the number of co-morbidities

increases from zero in healthy control subjects to between

one to four co-existing disease categories (Fig. 2A).

Thereafter the IEPD and IEAD become poor (AUC 5 0.7).

Both tests are near useless if more than nine co-morbidities

co-exist.

Figure 2B illustrates that the good discriminatory power

(AUC 4 0.7) of the IEPD and IEAD are also influenced by

individual groups of diseases. The IEPD (mGCIPL) performs

consistently better than the IEAD for 15 of 15 group com-

parisons. Detailed demographic data and description of po-

tential confounders are presented in Supplementary Table 1.

The results of the univariate and multivariable analyses

are summarized in Fig. 3A and B. As detailed in the

‘Materials and methods’ section, the results of the multivari-

ate analyses were shown for each of the dichotomized demo-

graphic and clinical variables. For each subgroup in the

forest plot, the number of patients that entered the analyses

is given.

Taken together, in Fig. 3 the ORs were highly significant

for making a diagnosis of multiple sclerosis for the IEPD

(OR 1.13, 95%CI 1.1–1.16, P5 0.0001, Fig. 3A) and the

IEAD (OR 1.16, 95%CI 1.13–1.2, P5 0.0001, Fig. 3B)

compared to the control cohorts (Table 1). Both measures

retained their level of significance for making a diagnosis of

multiple sclerosis for a whole range of covariates.

Significance was, however, lost for four covariates (high-

lighted in red in Fig. 3A and B). These were higher age

(465 years), a non-white ethnic background, presence of

other eye conditions, or diabetes mellitus. Significance of the

OR was not affected by ocular covariates: visual acuity, IOP

or need for refraction.

Table 3 summarizes the effect size calculations for the

mGCIPL IEPD and IEAD to distinguish patients with mul-

tiple sclerosis from the control subjects. The IEPD has a

small effect size (x2 0.0376) with a small CI (0.0108). The

IEAD has larger effect size (x2 0.3325) and CI (0.024). For

the IEPD, effect sizes always increase through interaction.

For the IEAD, only the interaction with visual acuity

Table 1 Subject characteristics and OCT data used in

this study

All controls Multiple sclerosis

n 71 939 144

Age, years 56.67 ± 8.05 55.20 ± 7.82

Female sex (%) 38 633 (54) 110 (74)

Optic neuritis (%) 0 (0%) 0 (0)

mRNFL OD, lm 30.38 ± 6.42 26.84 ± 7.02

mRNFL OS, lm 28.04 ± 6.01 25.32 ± 7.12

IEPD mRNFL, % 13.35 ± 12.54 17.13 ± 15.08

IEAD mRNFL, lm 0.60 ± 6.92 2.44± 7.42

mGCIPL OD, lm 72.36 ± 6.28 67.21 ± 7.04

mGCIPL OS, lm 72.45 ± 6.23 67.65 ± 7.05

IEPD mGCIPL, % 2.76 ± 3.56 6.51± 6.23

IEAD mGCIPL, lm 2.03 ± 2.63 4.62± 4.62

mGCC OD, lm 102.74± 9.65 94.05 ± 12.12

mGCC OS, lm 100.49± 9.13 92.97 ± 11.78

IEPD mGCC, % 2.40 ± 7.40 6.90± 9.69

IEAD mGCC, lm 2.63 ± 7.97 7.06± 10.17

The pooled data for all control subjects are shown next to the data for people suffer-

ing from multiple sclerosis. The mean ± standard deviation and numbers (percentage)

are shown. mGCC = macular ganglion cell complex; mRNFL = macular retinal nerve

fibre layer; OD = right eye; OS = left eye.

Table 2 The inter-eye differences of the mRNFL,

mGICPL and mGCC

Inter-eye

difference

AUC 95% CI P-value P-value

IEPD mGCIPL 0.7110 0.6646–0.7575 Reference 0.318

IEAD mGCIPL 0.7075 0.6621–0.7529 0.318 Reference

IEPD mGCC 0.6483 0.5979–0.6987 0.0073 0.011

IEAD mGCC 0.6419 0.5925–0.6912 0.003 0.0043

IEPD mRNFL 0.5948 0.5451–0.6445 50.0001 50.0001

IEAD mRNFL 0.5859 0.5383–0.6334 50.0001 50.0001

Both the absolute (IEAD) and percentage (IEPD) differences are presented for sepa-

rating patients with multiple sclerosis from the pooled cohort of UK Biobank subjects

(Table 1). The ROC AUC, 95% Wald CI are shown. For each measure the ROC of the

IEPD mGCIPL and IEAD mGCIPL are compared as reference to the other ROC curve

analyses (AUC). mGCC = macular ganglion cell complex; mRNFL = macular retinal

nerve fibre layer.
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increases the effect size. For all other interactions, the effect

size decreases to become non-significant for alcohol.

The diagnostic sensitivity and specificity levels were calcu-

lated for the entire pooled control cohort (Table 1). Based on

the previously published cut-off levels (Coric et al., 2017;

Nolan-Kenney et al., 2019) for the IEPD (mGCIPL, 4%) and

IEAD (mGCIPL, 4 lm), the sensitivities were 51.7% and

43.5%, respectively. Specificity levels were 82.8% and 86.8%.

The positive predictive values were 0.6% and 0.7%. The nega-

tive predictive values were 99.9% and 99.9% (Table 4).

Subgroup analysis

The cohort description for patients with neuromyelitis spec-

trum disorder is presented in Supplementary Table 3. The

corresponding sensitivity, specificity, positive predictive and

negative predictive values in this context were poor

(Table 5).

Discussion
The main finding of this study was that the previously

published inter-eye difference of mGCIPL is specific

(�82–87%), but not sensitive (�44–52%) for identifying

multiple sclerosis in a large cohort drawn from UK com-

munities. Most specifically, this applies to the IEPD

(mGCIPL) and IEAD (mGCIPL). For the first time, evidence

is provided that there are relevant co-variables that influence

the discriminatory power of both measures. These are age

over 65 years, a non-white ethnic background, presence of

eye pathologies and presence of diabetes mellitus. This is

also the first study to test the value of OCT for contributing

to a diagnosis of multiple sclerosis not only in comparison

with control subjects (Petzold et al., 2010, 2017), but also

compared to other diseases. There is a stepwise decrease of

the discriminatory power of the IEPD/IEAD with increasing

number of co-morbidities. The predominance of participants

of white ethnic background and a slight female excess in our

study is consistent with the epidemiology of multiple scler-

osis (Thompson et al., 2018b). The prevalence of multiple

sclerosis in this study, 0.0020 (95%CI 0.0023–0.0031), was

within the expected range for the UK of 100 to 300:100 000

(=0.003) (Thompson et al., 2018b). The study is therefore

in line with expected prevalence of disease and an inclusion

bias is unlikely.

Previous studies on IEAD only assessed the value of mak-

ing a diagnosis of unilateral MSON, but not system-wide

multiple sclerosis per se (Nolan et al., 2018; Nolan-Kenney

et al., 2019; Xu et al., 2019). For the IEPD, Coric et al.

(2017) reported an AUC of 0.77 for multiple sclerosis if

compared to healthy controls. The present data confirm that

this observation also holds for a community sample includ-

ing a broad range of pathologies with a ROC AUC of 0.71

(95%CI 0.67–0.76).

The best AUCs for the mGCIPL were reported for unilat-

eral MSON (Coric et al., 2017; Nolan et al., 2018; Nolan-

Kenney et al., 2019). The AUC decreased from 0.91 (IEPD)

in a single-centre study (Coric et al., 2017) to 0.79 (IEAD)

in a US multi-centre study (Nolan et al., 2018), to 0.77

(IEAD) in an international multi-centre study (Nolan-

Figure 2 The usefulness of the mGCIPL IEPD and IEAD as a paraclinical test for multiple sclerosis. The graph shows group com-

parisons. The reference group are patients suffering from multiple sclerosis. The other groups are composed of participants with a range of other

diseases. Because patients can have more than one disease, they could be included in more than one group in this analysis. We analysed both the

number of diseases co-existing in patients and the type of disease. All analyses were based on statistical comparisons of the AUC between differ-

ent ROCs (see also Supplementary Fig. 1). (A) The impact of the number of co-morbidities is illustrated. The more diseases co-exist in patients,

the less useful the IEPD and IEAD become as a diagnostic test for multiple sclerosis. For all comparisons, the IEPD (black bars) performs better

than the IEAD (grey bars). (B) The influence of other disease groups (ICD-10) on making the diagnosis of multiple sclerosis. The best results are

achieved for the conditions listed on the top of the graph (control subjects). The test is clinically useful if located to the right of the vertical refer-

ence line (40.7). This is the case for horizontal bars where the small vertical tick (ROC AUC value, indicated by arrow) on top of the horizontal

bar (95% CI) is located to the right of the vertical reference line. Supplementary Fig. 1 illustrates this step in more detail. The patient numbers

per group for the comparison to patients with multiple sclerosis (n = 144) are presented to the right of the bar chart and respective demographic

data are summarized in Supplementary Table 1.
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Figure 3 Univariable and multivariable analysis of the IEPD and IEAD as a supportive test for multiple sclerosis. The graph

shows the group comparison between people suffering from multiple sclerosis and the control group from Table 3. (A) In the univariate analysis

the IEPD provides a robust supportive diagnostic test for multiple sclerosis (OR 1.11) with narrow 95% CI (1.09–1.13). The multivariable analyses

show that significance is retained for all but three combinations, highlighted in red (IEPD at age 465 years, IEPD in non-white subjects, IEPD in

patients with diabetes mellitus). (B) The IEAD has very similar properties in the univariate and multivariable analyses with higher age, non-white

ethnicity and diabetes mellitus being relevant covariates.
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Kenney et al., 2019). This is marginally better than the AUC

of 0.73 for the IEAD comparing patients with system-wide

multiple sclerosis to control subjects without co-morbidities

(Fig. 2A) in the present study. We assume that this difference

in performance of the IEPD and IEAD from previous studies

results from inclusion of younger participants with fewer co-

morbidities, which would inflate the discriminative power of

the test. In the Nolan et al. (2018) study, control patients

were 35.3 years of age compared to 40.6 years for patients

with MSON. This is relevant because present data reveal

age to be a relevant covariate (Fig. 3). Therefore, our

reported AUC of 0.73–0.74 for both the IEPD and IEAD in

age-matched patients with multiple sclerosis and control sub-

jects is more representative.

It is important to highlight the relevance that an inclusion

bias can have on the potential over-interpretation of the

diagnostic value of a new test. Clearly, Fig. 2 illustrates that

the highest discriminatory power for the inter-eye differences

is found in comparison of control subjects without co-mor-

bidities with patients who suffer from multiple sclerosis. In

the presence of any other disease, the discriminatory power

of the inter-eye differences drops. This was also shown in

the subgroup analysis for NMOSD. Likewise, presence of

multiple co-morbidities severely limits the value of the IEPD

and IEAD as a diagnostic test for multiple sclerosis.

Consistent with previous reports, the retinal layer with the

highest discriminatory power is the mGCIPL. This is reassur-

ing because it is in line with multi-centre studies assessing

the accuracy of individual retinal layer segmentation

(Oberwahrenbrock et al., 2018). We discourage the use of

the mRNFL as a measure in this context because of the

much higher likelihood of automated segmentation error

due to the presence of common ocular disorders such as epi-

retinal membrane, among many other causes (Tewarie et al.,

2012; Oberwahrenbrock et al., 2018).

Importantly, some of the exclusion criteria previously

listed, such as refraction of 45 dpt (Tewarie et al., 2012)

were not found to be relevant for the discriminatory power

of the IEPD/IEAD. This can be explained by relative sym-

metric effects of myopia and hypermetropia on both eyes in

the same subject (Cameron et al., 2017). The inter-eye differ-

ence is not affected by this, but the individual absolute ret-

inal layer thickness values are. Therefore, the present data

suggest that the IEPD/IEAD may also be of diagnostic value

in patients across a range of refractive errors. Anticipating

even more detailed future retinal imaging capabilities, we

note that there will be no perfect symmetry in healthy con-

trol subjects because a small degree of asymmetry between

eyes is part of nature’s strategy to optimize processing of

sensory input (Cameron et al., 2017).

A key challenge in making a diagnosis of multiple sclerosis

is the lack of test specificity. For example, it has been shown

that the diagnostic specificity of MRI brain scans for mul-

tiple sclerosis was only 29% using the American Academy

of Neurology criteria if compared to MRI brain scans from

patients with other neurological diseases (Nielsen et al.,
2005). Inclusion of spinal MRI scans and updated diagnostic

criteria over the past decade have since improved diagnostic

sensitivity and specificity (Filippi et al., 2016, 2018;

Thompson et al., 2018a). For optic neuritis 3D-double inver-

sion recovery (DIR) is of high sensitivity (London et al.,

2019; Davion et al., 2020). But even cutting edge MRI crite-

ria using the central vein sign are dependent on optimization

of cut-off level sensitivities for diagnosing multiple sclerosis

against other diseases as low as 2.0% to reach a 100% spe-

cificity level (Sinnecker et al., 2019). In the same study the

highest sensitivity levels reached were 89.7%, with specific-

ities down to 54.9% (Sinnecker et al., 2019).

Likewise there are limitations to the use of visual evoked

potentials (VEPs), which can give false positive results in a

whole range of conditions (Petzold et al., 2014). The need

for rigorous standardization of electrodiagnostic assess-

ments, incorporating an electroretinogram, has been noted

(Odom et al., 2016), but is not systematically done. Finally,

the diagnostic specificity for multiple sclerosis drops for CSF

oligoclonal bands from 94% in healthy controls to only

61% in patients with other inflammatory conditions

(Petzold, 2013). In this context, the low diagnostic specific-

ities of the OCT metrics on previously published cut-off lev-

els (Coric et al., 2017; Nolan-Kenney et al., 2019) IEPD

(mGCIPL, 82.8%) and IEAD (mGCIPL, 86.8%) are not in-

congruous. But the effect sizes if used in isolation (x2 , see

Table 3) and the low OR emphasize the need to improve the

performance of the IEPD and IEAD further.

An important question, which this study cannot answer, is

if retinal OCT is superior to other tests in (i) detecting

asymptomatic optic nerve involvement; and (ii) monitoring

progression of neurodegeneration longitudinally. This point

Table 3 Effect sizes of the mGCIPL IEPD and IEAD for

separating patients with multiple sclerosis from control

subjects

OCT Interaction x2 LI UI Effect

size

IEPD – 0.0223 0.0182 0.0268 Small

IEPD IOP 0.3655 0.3498 0.3808 Large

IEPD Refraction 0.3111 0.2934 0.3283 Large

IEPD BMI 0.2981 0.2862 0.3099 Large

IEPD VA 0.2340 0.2220 0.2460 Large

IEPD Height 0.1505 0.1403 0.1609 Large

IEPD Alcohol 0.1984 0.0897 0.1059 Large

IEPD Age 0.0976 0.0892 0.1063 Medium

IEAD – 0.0496 0.0467 0.0525 Small

IEAD VA 0.3419 0.3172 0.3656 Large

IEAD IOP 0.2896 0.1789 0.3797 Large

IEAD Refraction 0.2504 0.1391 0.3422 Large

IEAD BMI 0.2198 0.1788 0.2580 Large

IEAD Age 0.1876 0.1698 0.2051 Large

IEAD Height 0.0971 0.0727 0.1210 Medium

IEAD Alcohol –0.0850 0 0 NS

The partial x2 values are shown for the IEPD and IEAD alone (no interaction is indi-

cated with a dash) and continuous variables. Interactions are sorted in descending

according to the effect size. BMI = body mass index; IOP = intraocular pressure; NS

= not significant; VA = visual acuity.
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is relevant because of the likelihood that asymptomatic optic

nerve/tract/radiation involvement contributed to the retinal

asymmetry findings.

Other limitations of our study include that we have not

studied specific subtypes of multiple sclerosis, particularly a

well-defined clinically isolated syndrome cohort with simul-

taneous recording of VEP may be of future interest.

Likewise, we do not have long-term follow-up data on clin-

ical scales, disability progression and MRI metrics as in pre-

vious studies (Coric et al., 2017; Nolan-Kenney et al., 2019;

Xu et al., 2019). Patients with multiple sclerosis were rela-

tively old because of the UK Biobank age inclusion criteria

(Chua et al., 2019). We did, however, have data on presence

or absence of optic neuritis in other conditions and these

data are listed in Table 3. But we do not know how long

ago an episode of optic neuritis prior to the OCT was. It is

very likely that the incidence of optic neuritis, known to be

�40–80% multiple sclerosis, is under-reported in the UK

Biobank, at only 2%. We do not know about disease dur-

ation or the treatment history with disease-modifying treat-

ments. The granularity of data to answer these questions

will come from smaller sized multiple sclerosis cohort stud-

ies. It can therefore not be excluded that better sensitivity

and specificity levels may be reached with deeper phenotyp-

ing including the recognition of small, asymptomatic mul-

tiple sclerosis lesions, which included asymptomatic optic

neuritis (London et al., 2019; Davion et al., 2020).

Recognizing these shortcomings, there are strengths to this

study as well. One is that the examination of ophthalmo-

logical problems has been carried out in far greater detail,

particular with regard to IOP and glaucoma, than any of the

OCT studies in multiple sclerosis (Petzold et al., 2010,

2017). The UK Biobank did not include imaging of the optic

disc and we are therefore unable to comment on the

pRNFL. Likewise, the problem of systemic co-morbidities in

patients with multiple sclerosis has—to the best of our

knowledge—not been addressed in any of the previous OCT

studies in multiple sclerosis. On balance, this community-

based study offers certain advantages that add valuable data

to the literature.

Whist this study was under review, three more studies on

the inter-eye difference of the GCIPL have been published

(Behbehani et al., 2020; Davion et al., 2020; Outteryck

et al., 2020; Villoslada et al., 2020). Taken together, these

studies are in line with present data. If compared to a

healthy control group the inter-eye GCIPL difference gives

near perfect sensitivity (100%) and specificity (98%) values

(Behbehani et al., 2020). Separating MRI confirmed symp-

tomatic from asymptomatic lesions, optimized inter-eye

GCIPL differences gave sensitivity levels of 88.2% and

89.3%, respectively (Outteryck et al., 2020). The corre-

sponding specificity levels were 83.3% and 72.6%. But if

comparisons are made with diseased, even if asymptomatic,

control subjects’ sensitivity drops to 67.3% with a specificity

of 67.4% (Davion et al., 2020).

It is likely that the use of artificial intelligence (AI)-based

approaches, notably deep learning, will further improve on

the diagnostic value of retinal OCT data in multiple scler-

osis, similar to what has been achieved for retinal diseases

(Fauw et al., 2018). Such an AI approach should be guided

by the insights on ‘pattern recognition’, which led to the pre-

sent study. First, reliable retinal layer segmentation on high

quality scans and second, use of inter-eye differences rather

than single eye measurements. The use of a region of inter-

est-based OCT approach (de Vries-Knoppert et al., 2019)

should be investigated in order to optimize detection of ret-

inal asymmetry visible in individual cases (Gabilondo et al.,

2013). This extends on our introductory remark on the

known incongruous appearance of visual field defects in

multiple sclerosis (Fujimoto and Adachi-Usami, 1998;

Gündüz et al., 1998; Lycke et al., 2001). Expanding on this,

there may be an additional role for outer retinal layers

Table 4 The sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) for the

mGCIPL IEPD and IEAD as a supportive diagnostic test for multiple sclerosis

mGCIPL Cut-off References Specificity Sensitivity PPV NPV

IEPD 20 % Petzold et al., 2014 99.4 2.7 0.998 0.01

IEPD 4 % Coric et al., 2017 82.8 51.7 0.6 99.9

IEAD 4 lm Nolan-Kenney et al., 2019 86.8 43.5 0.7 99.9

The levels were calculated for the published cut-off levels for the Heidelberg Spectralis OCT (Petzold et al., 2014; Coric et al., 2017; Nolan-Kenney et al., 2019). All values presented

in the table were calculated from the comparison of patients with multiple sclerosis to all controls (as summarized in Table 1).

The IEPD/IEAD qualifies as a supportive test for diagnostic criteria, but would not yet be sustainable as a screening test on a population level.

Table 5 Subgroup analysis multiple sclerosis compared to NMSOD

mGCIPL Cut-off References Specificity Sensitivity PPV NPV

IEPD 20 % Petzold et al., 2014 2.7 100 29.2 100

IEPD 4 % Coric et al., 2017 72.8 51.7 82.6 37.7

IEAD 4 lm Nolan-Kenney et al., 2019 76.3 43.5 35.2 82.1

All values presented in the table were calculated from the comparison of patients with multiple sclerosis to patients with NMOSD (as summarized in Supplementary Table 1). NPV

= negative predictive value; PPV = positive predictive value.
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(Saidha et al., 2011) and assessment of the retinal vascula-

ture (Kleerekooper et al., 2020). Further improvement may

come from quantification of atrophy progression over time

(Aly et al., 2020). For such future AI-based studies, addition-

al statistical requirements will need to be met, including

cross-validation of cut-off values. The UK Biobank and a

global collaborative initiative, IMSVISUAL (http://www.

imsvisual.org) provide OCT datasets ideally suited for train-

ing and validation of such future algorithms.

Taken together, previous studies (Coric et al., 2017;

Nolan-Kenney et al., 2019; Xu et al., 2019; Behbehani

et al., 2020; Davion et al., 2020) left at least three open

questions. First, how do IEPD and IEAD perform when used

in a large community, including some individuals with other

pathologies, rather than ‘hyper-normal’ controls? An import-

ant conclusion from this study is that the much smaller

cut-off values compared to earlier studies will demand a

rigorous handling of OCT quality control criteria in clinical

practise. Even small artefacts by poor OCT technique can

mask the small difference observed. Second, is there an ad-

vantage in applying either the IEPD or IEAD? And third, do

IEPD/IEAD also have a diagnostic role in generalized mul-

tiple sclerosis rather than only MSON? We made use of

cross-sectional data in a large community cohort study to

address these three questions. The challenge is open for AI-

based analyses of retinal asymmetry in multiple sclerosis to

improve sensitivity and specificity levels. We conclude that

presently, the IEPD and IEAD can both be recommended for

consideration as an additional supportive paraclinical test in

young subjects with less than five co-morbidities for future

revisions of multiple sclerosis diagnostic criteria.
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