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Original Article

Cooperative path-planning and tracking
controller evaluation using vehicle models
of varying complexities

Husain Kanchwala1, Icaro Bezerra Viana2 and Nabil Aouf3

Abstract

This paper discusses cooperative path-planning and tracking controller for autonomous vehicles using a distributed

model predictive control approach. Mixed-integer quadratic programming approach is used for optimal trajectory gen-

eration using a linear model predictive control for path-tracking. Cooperative behaviour is introduced by broadcasting

the planned trajectories of two connected automated vehicles. The controller generates steering and torque inputs.

The steering and drive motor actuator constraints are incorporated in the control law. Computational simulations are

performed to evaluate the controller for vehicle models of varying complexities. A 12-degrees-of-freedom vehicle model

is developed and is subsequently linearised to be used as the plant model for the linearised model predictive control-

based tracking controller. The model behaviour is compared against the kinematic, bicycle and the sophisticated high-

fidelity multi-body dynamics CarSim model of the vehicle. Vehicle trajectories used for tracking are longitudinal and

lateral positions, velocities and yaw rate. A cooperative obstacle avoidance manoeuvre is performed at different speeds

using a co-simulation between the controller model in Simulink and the high-fidelity vehicle model in CarSim. The

simulation results demonstrate the effectiveness of the proposed method.

Keywords

Applied mechanics, automobile, automotive control, control theory, dynamics, dynamic modelling, dynamic systems,

electric vehicle, intelligent control, mathematical modelling

Date received: 27 August 2019; accepted: 14 June 2020

Introduction

The main components of an autonomous vehicle are
perception, planning and control. This paper dis-
cusses the planning and control aspects. For collision
avoidance, generally a hierarchical control scheme is
used with high level path-planner1 and low level track-
ing controller.2

Significant research has been done in path-plan-
ning strategies using mixed-integer quadratic pro-
gramming (MIQP),3 polynomials,4 B-splines,5 elastic
bands6 and potential fields.7 In the research commu-
nity, the path-planning problem has been widely stu-
died for a single vehicle while in an autonomous
driving environment multiple vehicles are present.
A challenging research task is to achieve coordination
by considering the trajectories of other autonomous
vehicles. Schouwenaars et al.8 used an optimal path-
planning approach for multiple vehicles based on
MIQP. Frese and Beyerer9 compared several coopera-
tive path-planning algorithms like tree search, elastic
bands, priority-based approach, etc. for their compu-
tational times.

The lower level path-tracking controller ensures
that a collision-free path is generated while a success-
ful obstacle avoidance manoeuvre is achieved by
making the vehicle precisely follow the planned tra-
jectory. Trajectory tracking methods use fuzzy logic,10

proportional–integral–differential,11 pure pursuit
strategy,12 linear quadratic regulator,13 sliding-mode
control,14 robust control15 and model predictive con-
trol.16 MPC-based controllers easily handle actuator
constraints and other uncertainties.17

Tracking controller requires vehicle model for
mapping the reference trajectories. Researchers have
widely used simplified models like kinematic model,18

1Warwick Manufactruing Group, University of Warwick, Coventry, UK
2Centre for Electronic Warfare, Information and Cyber Cranfield

University, Shrivenham, UK
3Department of Electrical and Electronic Engineering City University of

London, London, UK

Corresponding author:

Husain Kanchwala, Warwick Manufacturing Group, University of

Warwick, Coventry CV4 7AL, UK.

Email: husain.kanchwala@warwick.ac.uk

Proc IMechE Part C:

J Mechanical Engineering Science

0(0) 1–20

! IMechE 2020

Article reuse guidelines:

sagepub.com/journals-permissions

DOI: 10.1177/0954406220945468

journals.sagepub.com/home/pic

https://doi.org/10.1177/0954406220945468
journals.sagepub.com/home/pic
http://crossmark.crossref.org/dialog/?doi=10.1177%2F0954406220945468&domain=pdf&date_stamp=2020-07-28


bicycle model,19 planar lateral dynamics full car
model20 and models ignoring effects of roll, pitch
and heave motions for developing the tracking con-
troller.21 Moreover, when the chassis angular motions
are considered, a general assumption is made that the
vehicle rolls and pitches about the centre of gravity
(CG), while in fact the vehicle rolls and pitches about
roll and pitch axis respectively.22 For low-speed man-
oeuvres, simplified models capture the vehicle dynam-
ics characteristics sufficiently well but at higher vehicle
speeds and limits of handling there are significant dif-
ferences in the predictions of these simplified.23 These
models are routinely linearised about an operating
point but they deviate significantly from the nonlinear
models at other operating points. To overcome this
limitation, some researchers have used linear time-
varying bicycle model but effect of out-of-plane
motions is not captured.24 Our contribution in this
direction is to develop a linear time-varying model
that captures the coupling effects of roll, pitch and
heave motions.

Moreover, the limitation of simplified models is
that only a limited number of vehicle states can be
controlled. A vehicle model of intermediate complex-
ity between a sophisticated commercial multibody
dynamics model25 and these simplified vehicle
models is desirable for a real-time application. We
developed a four-wheel vehicle model considering
the effects of roll, pitch and unsprung mass motions,
which can emulate real vehicle dynamic characteristics
with low computational expense.

The main contribution of this paper is to develop a
cooperative path-planning and tracking algorithm
and evaluate it using models of varying complexities.

The cooperative path-planning architecture is
based on a distributed MPC approach, where path-
planner for each vehicle optimises its optimal trajec-
tory according to the planned trajectories of their
neighbouring vehicles that is broadcasted at each
time step. In the tracking controller, a future input
sequence of steering angle and drive torque is calcu-
lated for a predefined prediction horizon. The vehicle
trajectories that are tracked are the positions and
velocities in longitudinal and lateral directions.

The paper is organised as follows: methodology is
described at first followed by the vehicle dynamics
model. Four different vehicle models, namely, the
kinematic model, bicycle model, a 12-degrees-of free-
dom (dof) model of intermediate complexity and a
high-fidelity CarSim model are discussed in the vehi-
cle model section. A relative comparison study of the
vehicle trajectories obtained from various vehicle
models for a single lane change manoeuvre is per-
formed. The nonlinear vehicle model is subsequently
linearised to be used in the MPC formulation for
tracking. Next, the path-planning algorithm devel-
oped using model predictive control and MIQP is dis-
cussed followed by the formulation of the tracking
controller. The results are discussed for a cooperative

double lane change manoeuvre and finally conclu-
sions are discussed.

Methodology

The proposed hierarchical scheme is shown in
Figure 1. On the upper level, given a set of vehicles

V ¼
�

1, 2, . . . ,Nvf g, a path-planner for each vehicle

generates the trajectory XðiÞp or rðiÞp ¼
�
½xðiÞp yðiÞp

vðiÞx,p v
ðiÞ
y,p�

T
2 R

4
8i 2 V to follow a pre-defined route.

To generate the collision-free reference trajectories,
we assume that at every time step k, each vehicle i

receives the future plans of the others agents Xð j Þp or

rð j Þp ¼
�
½xð j Þp yð j Þp vð j Þx,p v

ð j Þ
y,p�

T
2 R

4 over a finite horizon,

where j denotes the jth surrounding vehicle.

On the lower level, the tracking controller tracks
the trajectory (i.e. a set of way-points) rðiÞp generated
by the path-planning layer, which is then used as the
reference trajectory rt. The subscripts p and t are used
to represent the trajectories for the path-planner and
the controller, respectively. The tracking controller
computes the drive torque T and the steering wheel
angle �sw necessary to control the vehicle. Note here
that this is different from the road wheel angle �,
which can be obtained by dividing the steering
wheel angle with the steering ratio. The assumptions
made in this approach are that the route is known
beforehand, i.e. a start and a goal position and the
current state of the vehicle is estimated based on the
measurements from the vehicle sensors and are avail-
able for feedback.

MPC-based path-tracking algorithm is presented to
follow desired speeds while allowing to temporary devi-
ate from desired paths in Funke et al.26 The underlying
idea of optimisation with both velocity and position
states is quite useful.27 In addition to tracking of
the longitudinal and lateral positions and velocities,
we also track the yaw rate reference. Therefore, the
vehicle control output vector is given by

Figure 1. Proposed algorithm of path planning and tracking.
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Y ¼ x y vx vy !
� �

Vehicle model

Four vehicle models are described in the following
sections.

Kinematic model

The kinematic vehicle model is shown in Figure 2(a).
The inputs to the model are vehicle speed v and steer-
ing angle �. From Figure 2(a), the longitudinal and
lateral velocities of the centre of mass G are given by

_x ¼ v cosð þ �Þ; _y ¼ v sinð þ �Þ ð1Þ

This model assumes no-slip condition. This implies
that the velocities of each wheel points in the same
direction of wheel and are equal. As there is no-slip
condition, there lies an instantaneous centre of rota-
tion ‘O’ about which the vehicle rotates and the rota-
tion rate of the vehicle � is given by

� ¼ _ ¼
v

R
; R ¼

lr
sin �

ð2Þ

where R is the instantaneous radius of rotation.
Eliminating R we obtain the governing equations of
motion as

_x ¼ v cosð þ �Þ; _y ¼ v sinð þ �Þ; _ ¼
v

lr
sin �

From Figure 2(a)

�OBG,OBA : � ¼ tan�1
lr
l
tan �

� �
ð3Þ

Bicycle model

The bicycle model is shown in Figure 2(b).

Under small steering angle approximation, the
front and rear slip angles are given by

�f ¼ �þ
�lf
V
� �; �r ¼ ��

�lr
V

ð4Þ

The lateral acceleration of the CG ay can be
obtained from the fixed and rotating coordinate
system representation as

ay ¼ V _�þ _V�þ�V ð5Þ

The lateral force balance equations for the bicycle
model (again under small angle approximation) is
given by

Fyf þ Fyr ¼ may ¼ mðV _�þ _V�þ�VÞ ð6Þ

Fyf and Fyr are the front and rear cornering forces
given by

Fyf ¼ �C�f�f; Fyr ¼ �C�r�r ð7Þ

From equations (4), (6) and (7) we obtain

mðV _�þ _V�þ�VÞ ¼ �C�f �þ
�lf
V
� �

� �

� C�r ��
�lr
V

� � ð8Þ

The longitudinal force balance (under small steer-
ing angle � approximation) yields

mð _V��V�Þ ¼ Fxr � Fyf�� Fd � Fr ð9Þ

Fd is the aerodynamic drag and Fr is the rolling
resistance given by

Fd ¼
1

2
�CdAu

2; Fr ¼ CrW ¼ Crmg ð10Þ

Cd is the drag coefficient, Cr is the coefficient
of rolling resistance, A is the car frontal area
and W is the vehicle weight. For simplicity we
assume no longitudinal slip, which implies that,
Fx ¼

T
rw
.

Finally, yaw moment balance about the CG ‘G’
yields

Iz _� ¼ lfFyf � lrFyr

¼ �C�f �þ
�lf
V
� �

� �
lf þ C�r ��

�lr
V

� �
lr

ð11Þ

Equations (8) to (11) represent governing equations
of motion.

(a) (b)

Figure 2. (a) Kinematic model; (b) bicycle model.
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12-dof model

The 12-dof model is shown in Figure 3.
This model consists of three translational dof cor-

responding to longitudinal, lateral and vertical
motion; three rotational dof corresponding to roll,
pitch and yaw; four dof (one for each wheel) for
wheel jounce; two dof for the angular rotation of
rear left and right wheels. Note that in our present
study, we have considered a vehicle with rear wheel
drive and so we are interested only in the rear wheel
velocities for longitudinal slip calculation as described
in the section on the wheel model.

Coordinate system. It is convenient to write the equa-
tions of motion in noninertial (moving) reference
frame Oðx, y, zÞ instead of the inertial frame
CðX,Y,ZÞ (see Figure 4). The fixed or inertial

coordinate system is attached to the ground with X-
axis in the forward, Y-axis in the lateral and Z-axis in
the vertical direction such that a right-handed
Cartesian coordinate system is formed. The noniner-
tial or rotating coordinate system is attached to the
vehicle, which is rotating about the z-axis with
angular velocity � (see Figure 4). The x-axis points
forwards and lies both in the ground plane and in the
plane normal to the ground that passes through
the so-called roll axis. The y-axis points to the left
and the z-axis points upwards and passes through
the CG at zero roll and pitch.28

For deriving all equations of motion, small angle
approximation for roll, pitch and wheel steering angle
is considered. Eventually, the nonlinear equations of
motion are linearised and are represented in the state-
space form.

Planar motions. In this section, we study the planar
motions of the chassis in x, y directions and yaw
about z-axis.

Longitudinal and lateral dynamics:
The absolute position of the vehicle CG is given by

r ¼ rO þ rG ð12Þ

The position vector rG is given by

rG ¼ dp� î� dr� ĵþ h k̂ ð13Þ

Since Oðx, y, zÞ is a rotating coordinate system with
angular velocity : ¼ �k̂, therefore the absolute vel-
ocity of the CG is given by

_r ¼ v ¼ _rO þ _rG þ:� rG ð14Þ

For small pitch and roll angles, above equation
reduces to

v ¼ ðvx þ dp _� þ dr��Þîþ ðvy � dr _�þ dp��Þ ĵ ð15Þ

where vx and vy are the velocities of the moving coord-
inate system. Correspondingly, the acceleration is
given by

a ¼ _vþX� v ð16Þ

which yields

a ¼ ð _vx þ dp €� þ 2dr _��þ dr� _�� vy�� dp��
2Þ î

þ ð _vy � dr €�þ 2dp _��þ dp� _�þ vx�þ dr��2Þ ĵ

ð17Þ

Sum of the external forces is equal to the rate of
change of linear momentum P. Applying force bal-
ance equation

P
F ¼ P

:

, and taking x and y compo-
nents (planar motion) yield

Figure 3. 12-degrees-of-freedom vehicle model.

Figure 4. Fixed and rotating coordinate systems.
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X
Fx ¼ max;

X
Fy ¼ may ð18Þ

where ax, ay are î, ĵ components of the acceleration
vector a.

For small values of wheel steering angle � and side-
slip angles �i, the equations can be linearised and the
resultant forces in x and y directions are given by
(There is a small difference between left and right
wheel steering angles for normal handling situations.
Using the same steering angle for both inner and
outer wheels is an acceptable approximation for hand-
ling analyses.29)

X
Fx ¼ Fx3 þ Fx4 � ðFy1 þ Fy2Þ�� Fd �

X
Frr,i;X

Fy ¼ Fy1 þ Fy2 þ Fy3 þ Fy4

ð19Þ

It is important to note here that the vehicle used for
this study has rear wheel drive and therefore the lon-
gitudinal forces are generated by rear tyres only (see
Figure 3).

Fd is the aerodynamic drag and Frr,i is the rolling
resistance acting on each wheel (i) given by

Fd ¼
1

2
�CdAv

2
x; Frr,i ¼ CrrFzi ð20Þ

where Cd is the drag coefficient, Crr is the coefficient
of rolling resistance, A is the car frontal area and
Fzi is the normal load on the tyre (see ‘Suspension
dynamics’ section) with index i 2 f1� 4g correspond-
ing to front left/right and rear left/right wheel,
respectively.

Yaw dynamics:
To study the yaw dynamics, we begin with the cal-

culation of the angular momentum. The angular
momentum HG around CG G of a rigid body can
be written as

HG ¼ I� x ¼ ðIxx!x � Ixy!y � Ixz!zÞî

þ ð�Iyx!x þ Iyy!y � Iyz!zÞĵ

þ ð�Izx!x � Izy!y þ Izz!zÞk̂

ð21Þ

The elements Ixx, Iyy and Izz are the inertia
moments and Ixy, Iyz and Izx are inertia products
and are the off-diagonal terms of the inertia tensor.
The components of the angular velocity x ¼

½!x !y !z� in x, y and z direction are !x ¼ _�,!y ¼ _�
and !z ¼ �. Considering sprung mass to be symmet-
ric in x–z plane, Ixy ¼ Iyz ¼ 0 and Izx¼ Ixz in the
above equation yields

HG ¼ ðIxx _�� Ixz�Þîþ Iyy _�ĵþ ðIzz�� Izx _�Þk̂ ð22Þ

For calculating the angular momentum HO about
any arbitrary point O, we consider the transfer the-
orem as

HO ¼ HG þ rG � P ð23Þ

Finally the moment balance equation is given by

X
M ¼ _HO ð24Þ

Considering the moment balance in z direction
about O in Figure 5 we obtain

ðIzz þmsððdr�Þ
2
þ ðdp�Þ

2
ÞÞ _�� Ixz €�

¼
X

Mz �msðdr�ax þ dp�ayÞ
ð25Þ

The external moment
P

Mz is given by

X
Mz ¼ ðFy1 þ Fy2Þlf � ðFy3 þ Fy4Þlr

þ ðFx4 � Fx3Þ
t

2
þ ðFy1 þ Fy2Þ�

t

2

ð26Þ

It is important to note that the input given by the
driver is the steering wheel angle �sw and in order to
obtain the road wheel angle �, the steering wheel angle
has to be divided by the steering ratio (SR). On sub-
stituting the values of

P
Mz from above equation and

the values of ax and ay from equation (17), simplifying
and neglecting small terms we obtain

Izz _�� Ixz €�þms½dr�ð _vx � vy�Þ þ dp�ð _vy þ vx�Þ�

¼ ðFy1 þ Fy2Þlf � ðFy3 þ Fy4Þlr

þ ðFx4 � Fx3Þ
t

2
þ ðFy1 þ Fy2Þ�

t

2
ð27Þ

Finally, the in-plane motions can be studied using
longitudinal and lateral force balance equations in
(18) and yaw moment balance equation in (27).

Out-of-plane motions. In this section, out-of-plane
motions: roll, pitch, heave and wheel jounce motions
are analysed.

Figure 5. Lateral dynamics model.
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Roll dynamics:
The vehicle rolls about the roll axis passing

through the front and rear suspension roll centres.30

The distance between the CG and the roll axis (roll
centre) is the roll moment arm dr (see Figure 6). The
roll centre height varies with suspension travel but for
the sake of simplicity this variation is neglected.

ðIxx þmsd
2
r Þ

€�þ ðIzz � IyyÞ _��� Ixz _�

¼Mx þmsaydr þmsgdr�

where, Mx ¼Mxs þMxu

ð28Þ

Mxs and Mxu are sprung mass and unsprung mass
roll moments given by

Mxs ¼M�f þM�r ¼ �ðK�f þ K�rÞ�� ðC�f þ C�rÞ _�,

Mxu ¼
X4
i¼1

Fyihr;

K�f,r=C�f,r ¼
t2

2
Kf,r=Cf,r

ð29Þ

K�f,r and C�f,r are front/ rear roll stiffness and roll
damping, respectively. From equations (28) through
(29) we obtain

ðIxx þmsd
2
r Þ

€�þ ðIzz � IyyÞ _��� Ixz _��msdrðay þ g�Þ

þ ðK�f þ K�rÞ�þ ðC�f þ C�rÞ _��
X4
i¼1

Fyihr ¼ 0

ð30Þ

Pitch dynamics:
As similar to the roll dynamics, the vehicle pitches

about the pitch centre P in Figure 3. The distance

between the CG and the pitch centre is the pitch
moment arm dp (see Figure 7). Considering the pitch
moment balance (small pitch angle approximation)
about the pitch centre P we obtain

ðIyy þmsd
2
pÞ

€� þ ðIxx � IzzÞ _��msgdp� þmsaxdp��

¼ ðFz3 þ Fz4Þlr � ðFz1 þ Fz2Þlf � ðFx3 þ Fx4Þhp

ð31Þ

Suspension dynamics:
In this part, we will study the heave motions of the

chassis and wheel jounce. To study this, we will consider
the 7-dof ride model of the car as shown in Figure 8.

Considering the force balance in z direction, the
governing equation for the chassis heave motion z is
given by

msaz ¼
X

Fz ¼ �
X4
i¼1

Kiðzi � zuiÞ þ Cið _zi � _zuiÞð Þ,

8i 2 f1� 2g, Ki,Ci ¼ Kf,Cf else Kr,Cr

ð32Þ

where the corner displacements zi are given by

Figure 6. Roll dynamics model.

Figure 7. Pitch dynamics model.

Figure 8. 7-dof ride model. In the present study, the vehicle

moves on a flat road so ground deflections are not considered.
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z1 ¼ zþ
t

2
�� lf�; z2 ¼ z�

t

2
�� lf�;

z3 ¼ zþ
t

2
�þ lr�; z4 ¼ z�

t

2
�þ lr�

Considering the force balance in z direction for
each unsprung mass we obtain the wheel jounce zui as

mu1 €zu1 ¼ Kfðz1 � zu1Þ þ Cfð _z1 � _zu1Þ � Ktzu1 � Ct _zu1;

mu2 €zu2 ¼ Kfðz2 � zu2Þ þ Cfð _z2 � _zu2Þ � Ktzu2 � Ct _zu2;

mu3 €zu3 ¼ Krðz3 � zu3Þ þ Crð _z3 � _zu3Þ � Ktzu3 � Ct _zu3;

mu4 €zu4 ¼ Krðz4 � zu4Þ þ Crð _z4 � _zu4Þ � Ktzu4 � Ct _zu4

ð33Þ

The vertical forces on the tyres is given by

Fzi ¼ mg
l� li
l

� �
� Ktzui � Ct _zui;

8i 2 f1� 4g; l1,2 ¼ lf, l3,4 ¼ lr

ð34Þ

Wheel model:
The longitudinal and lateral forces are generated

by the wheels. As pointed out earlier, we have con-
sidered a rear wheel driven vehicle. As a result, the
longitudinal force is generated only by the rear wheels
while the lateral forces are generated by all the four
wheels.

The first step in calculating the forces generated by
a tyre, is to compute the longitudinal slip sxi, and
lateral slip syi. To calculate wheel slip we require
wheel corner velocities and wheel angular speeds,
which are obtained from Figure 9.

The wheel corner velocities depend on vehicle vel-
ocity, yaw rate and geometrical parameters of the
chassis as

vx1,3 ¼ vx ��
t

2
; vx2,4 ¼ vx þ�

t

2
;

vy1,2 ¼ vy þ�lf; vy3,4 ¼ �lr � vy

ð35Þ

The theoretical slip quantities are defined as31

sxi ¼
vxi � !irw
!irw

; syi ¼
vyi

!irw
¼ tan�ið1þ sxiÞ

ð36Þ

The overall or total slip at each tyre is defined by

si ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2xi þ s2yi

q
ð37Þ

Next the total friction coefficient using Pacejka’s
‘magic formula (MF)’ is given by

�ðsiÞ ¼ D sinðCtan�1ðBsiÞÞ ð38Þ

Assuming symmetric tyre characteristics, the total
friction force for each tyre lies within the friction
circle and the longitudinal and lateral tyre forces are
given by32

Fxi ¼
sxi
si
�ðsiÞFzi; i 2 f3� 4g

Fyi ¼
syi

si
�ðsiÞFzi; i 2 f1� 4g:

ð39Þ

In the above equations, the wheel angular velocity
!i ¼ _�i is calculated using the driving torque and the
longitudinal force generated in the contact between
the road and the tyre as shown in Figure 9(b).

Iw _!i ¼
T

2
� Fxirw; i 2 f3� 4g ð40Þ

In our case, the engine torque T is equally distrib-
uted to both the rear wheels as the vehicle considered
for study is a rear wheel driven car with an open dif-
ferential of gear ratio 1. As a result, only the longitu-
dinal slips of rear wheels come into picture
ði 2 f3� 4gÞ while the lateral forces are generated by
all the four wheels ði 2 f1� 4gÞ. This brings us to an
end of vehicle modelling. These nonlinear vehicle
models are finally linearised to be used in the linear
MPC based tracking controller. The linearisation pro-
cedure is described in the ‘Linearisation’ section.

In addition to these we have developed a sophisti-
cated multi body dynamics vehicle model in CarSim
which represents a real world vehicle and will be even-
tually used to evaluate the tracking controller.

CarSim model:
The CarSim modeling interface is shown in

Figure 10. The vehicle model was built for a prototype
Westfield Sports Car.33 The weight, inertia, CG loca-
tion of the vehicle, suspension and steering properties
were obtained from measurements. The vehicle par-
ameters used in this model are reported in Table 1.
The vehicle is equipped with double wishbone suspen-
sions in both front and rear axles with a rigid roll-cage
chassis. The values for spring and damper parameters,
roll centre height, track width, spin inertias and com-
pliance coefficients were used to build the suspension
model. The suspension kinematics and compliance
characteristics were fed as look-up tables in CarSim
to model the suspension characteristics. An approxi-
mate linear relationship between handwheel andFigure 9. (a) Corner velocities; (b) wheel angular dynamics.
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roadwheel steer angle is found for the range of �3	
(three and a half turns). The steering ratio is found to
be equal to 13. Also, other parameters like caster,
kingpin angle, lateral offset were modelled based on
measurements. These details were obtained from
the manufacturer and not discussed here for the
sake of brevity. A magic formula based tyre model
was used and the tyre vertical, longitudinal and lateral
characteristics were inputted by means of look-up
charts, which were obtained from Westfield Cars.
The inputs to the CarSim model are engine troque
and steering wheel angle. The default powertrain
was replaced by an external drive torque command
and the traditional rack and pinion steering system
was replaced by external steering command coming
from the tracking controller.

The mathematical model so developed has 57 dof,
which in turn solves 114 first-order differential equa-
tions to calculate the vehicle responses. This model is
exported as an S-function and in Simulink and a co-
simulation interface is setup to assess the performance
of the tracking controller.

Model comparisons

So far we developed four vehicle models, namely,
kinematic model, bicycle model, 12-dof model and
the CarSim model. These models differ from each
other in terms of complexity. The kinematic model
is the simplest with only three states. It does not
take into account tyre compliance and is geometry
based. The bicycle model is a further correction of
the kinematic model with tyre lateral compliance
taken into account. The 12-dof model takes suspen-
sion compliance, out-of-plane motions and wheel
jounce into account and is a model of intermediate
complexity as opposed to the sophisticated high-dof
CarSim model.

The predictions of these vehicle models differ sig-
nificantly at high lateral accelerations. To demon-
strate this, the vehicle trajectories obtained from
various models for a lane change manoeuvre at
80 km/h are compared in Figure 11. A sinusoidal
steering wheel angle of 26 � is given to achieve a lane

Figure 10. CarSim modeling interface.

Table 1. Vehicle parameters used to develop the mathematical model.

Notation Description Value Notation Description Value

m Vehicle mass 950 kg l Wheel base 2350 mm

ms Sprung mass 850 kg lf Wheel base front 1350 mm

mu Unsprung mass (each) 25 kg lr Wheel base rear 1000 mm

Cd Drag coefficient 0.3 t Track width 1500 mm

A Car frontal area 1.6 m2 Kf, Kr Spring stiffness front, rear 45, 60 N/mm

SR Steering ratio 13 Cf, Cr Shock damping front, rear 3.5, 4 N s/mm

Crr Rolling coefficient 0.01 Kt Tyre stiffness 250 N/mm

Ixx Roll inertia 325 kg m2 Ct Tyre damping 0.75 N s/mm

Iyy Pitch inertia 1000 kg m2 Iw Wheel inertia 2.1 kg m2

Izz Yaw inertia 1200 kg m2 rw Wheel radius 325 mm

Ixz Product of inertia 140 kg m2 B, C, D Tyre parameters (MF) 7, 1.6, 1

dr Roll moment arm 125 mm hr Roll centre height 200 mm

dp Pitch moment arm 150 mm hp Pitch centre height 175 mm

C�f
Tyre cornering stiffness (front) 4.4 kN/rad C�r

Tyre cornering stiffness (rear) 6 kN/rad
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change manoeuvre. The vehicle path X – Y, lateral
velocity vy and yaw rate � trajectories are obtained
for each model.

From Figure 11, it is evident that the predictions
from Kinematic model substantially differ from that
of the sophisticated CarSim model. Bicycle model
gives a better prediction of the yaw rate response
but it fails to give a representative prediction of lateral
velocity and correspondingly the lateral position tra-
jectories. The 12-dof proposed model is midway in
complexity as opposed to the CarSim model and it
fairly captures all the necessary vehicle dynamic hand-
ling characteristics.

For subsequent implementation, we have chosen
12-dof model and will compare its response against
the bicycle model after integrating path-planning and
tracking controller. Now, we discuss the linearisation
of these models.

Linearisation

The governing equations of the vehicle dynamics
model developed in the earlier section, can be written
in first-order form as

X
:

¼ f ðX,UÞ ð41Þ

where X is the state vector and U is the control vector.

Next, the above nonlinear model can be
linearised by expanding around the equilibrium
point (Xe,Ue) as

Xe

:

þ� _X ¼ f ðXe,UeÞ þ
@f

@X
�Xþ

@f

@U
�U ð42Þ

The resultant linearised model is given by

_X ¼ AXþ BU; Y ¼ CX ð43Þ

where the time-variant linear system matrices (state
matrix A and input matrix B) are obtained using
Jacobian matrix as (To obtain the linearisation
point (Xe,Ue), equation (41) is symbolically written
in Matlab to obtain Jacobian matrices using
Jacobian function.)

A ¼
� @f

@X

����� X ¼ Xe

U ¼ Ue

2 R
n�n; B ¼

� @f

@U

����� X ¼ Xe

U ¼ Ue

2 R
n�m

ð44Þ

where n is the number of states and m is the number
of control inputs. In equation (43), the state vector X,
the control vector U and the output vector Y are
given by

Figure 11. Responses of different models for a sinusoidal steering wheel angle input for a lane change maneuver at 80 km/h.
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For bicycle model, X ¼ x y � vx vy �
� �T

:
For 12-dof model

X ¼
x y z � � � z1 z2 z3 z4 vx

vy vz _� _� � !3 !4 _z1 _z2 _z3 _z4

( )T

Y ¼ x y vx vy �
� �T

; U ¼ �sw T
� �T

Output matrix, C 2 R
o�n (o¼ 5, the number of out-

puts). To test the path-planning and tracking algo-
rithm, a scenario of vehicle running at vx ¼ 60 km/h
is considered. Correspondingly, the linearisation point
ðXe,UeÞ is:

For bicycle model

Xe ¼ 0 0 0 vx 0 0
� �T

; Ue ¼ �sw 0
� �T

For 12-dof model

Xe ¼ ½0�1�10 vx ½0�1�5
vx
rw

vx
rw
½0�1�4

� �T
,

Ue ¼ �sw 0
� �T

The ground wheel angle � is obtained by dividing
the handwheel steering angle �sw by the steering ratio
(SR).

Finally, the state matrices are discretised to obtain
a discrete time state-space model as

Xðkþ 1Þ ¼ AdXðkÞ þ BdUðkÞ,

YðkÞ ¼ CdXðkÞ
ð45Þ

For bicycle model: Ad 2 R
6�6, Bd 2 R

6�2 and
Cd 2 R

5�6.
For 12-dof model: Ad 2 R

22�22, Bd 2 R
22�2,

Cd 2 R
5�22.

These discrete time matrices are obtained using the
zero-order hold (ZOH) discretisation method in
Matlab, with an integration step of �T¼ 0.05 s.

Path-planning

The path-planner generates optimal trajectories using
a mixed-integer quadratic programming approach
with collision avoidance constraints in a receding-hor-
izon fashion.34

Collision avoidance

Collision avoidance between two autonomous vehi-
cles is ensured by following linear inequality convex
constraints

jxp1 ðkÞ � xp2 ðkÞj5�ex AND jyp1ðkÞ � yp2 ðkÞj5�ey

ð46Þ

Big-M method is used to rewrite the collision
avoidance constraints in terms of binary variables
brðkÞ as

xpi ðkÞ � xpj ðkÞ5�ex �MbrðkÞ, r 2 f1� 2g

ypiðkÞ � ypjðkÞ5�ey �MbrðkÞ, r 2 f3� 4g

X4
r¼1

brðkÞ43, M� 0 a large number

ð47Þ

The binary variables brðkÞ 2 f0, 1g are additional
decision variables in the optimisation problem added
at each time step k. If br¼ 0, then the ith constraint in
equation (47) is activated. However, if br¼ 1, then
that constraint is relaxed.

Remark 1. To achieve obstacle avoidance with static
objects, we incorporate the same constraints set as
described in equation (47) replacing the planned tra-

jectories rð j Þp ¼
�
½xð j Þp yð j Þp �

T
2 R

2 with the coordinates of

obstacles O 2 R
2.

The location of the obstacles is known. This
assumption can be satisfied by using cameras, for
example light detection and ranging (LiDAR)
system attached to the vehicle.35

State-space model

The state-space model used in MPC formulation
for the path-planning problem is discussed here. The
model for the path-planning stage consists of the
following double integrator differential equation
describing vehicle dynamics as

_x ¼ vx , _vx ¼ ax, _y ¼ vy, _vy ¼ ay ð48Þ

Subsequently the linear discrete time-invariant
model is

Xpðkþ 1Þ ¼ AdXpðkÞ þ BdUpðkÞ,

YpðkÞ ¼ CdXpðkÞ, where

Ad ¼

1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1

2
666664

3
777775, Bd ¼

T2

2 0

T 0

0 T2

2

0 T

2
666664

3
777775, Cd ¼ I4

ð49Þ

Ad 2 R
4�4, Bd 2 R

4�2 and Cd 2 R
4�4 are obtained

using the ZOH discretisation method, with integra-
tion step T.
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Collision avoidance is ensured by incorporating
integer constraints, and minimising the objective func-
tion given by

JðXp,UÞ ¼
XN
j¼1

½Xpðkþ j jkÞ � Xp�
TQ½Xpðkþ j jkÞ � Xp�

þ
XM
j¼1

½�Upðkþ j� 1jkÞ�TR½�Upðkþ j� 1jkÞ�

ð50Þ

Overprediction and control horizon of length N
and M. Q 2 R

m�m and R 2 R
p�p are symmetrical

weighting matrices, with Q50 and R> 0. The dis-
crete-time state space model of equation (49) can be
rewritten in an incremental form as


ðkÞ ¼
�XpðkÞ

YpðkÞ

� 	
;


ðkþ 1Þ ¼ ~A
ðkÞ þ ~B�UðkÞ;

YðkÞ ¼ ~C
ðkÞ

ð51Þ

The incremental state matrices are defined as

~A ¼
Ad 04�4

CdAd I4

� 	
~B ¼

Bd

CdBd

� 	
~C ¼

04�4

I4

� 	T
ð52Þ

where �XpðkÞ ¼ XpðkÞ � Xpðk� 1Þ is incremental
state vector, �U ¼ UðkÞ �Uðk� 1Þ is the control
input vector, I and 0 are identity and zero matrices
of appropriate sizes.

Once the optimal solution is calculated, the set of
waypoints serves as the reference trajectory rt for
tracking controller.

Prediction model

The prediction model following the incremental state-
space formulation,36 can be obtained as

XN ¼ G�UM þ F ð53Þ

where XN 2 R
4N�1 stacks the predicted values of the

state vector along N, �UM 2 R
2M�1 stacks the incre-

mental control inputs along M,

G ¼
�

~C ~B 04�2 . . . 04�2
~C ~A ~B ~C ~B . . . 04�2

..

. ..
. . .

. ..
.

~C ~A
M�1 ~B ~C ~A

M�2 ~B . . . ~C ~B

..

. ..
. ..

.

~C ~A
N�1 ~B ~C ~A

N�2 ~B . . . ~C ~A
N�M ~B

2
66666666664

3
77777777775
2 R

4N�2M

F ¼
�

~C ~A

~C ~A
2

..

.

~C ~A
N

2
66664

3
77775
ðkÞ 2 R4N

Road constraints

The road constraint for the vehicle position rp is
defined using rmin, rmax 2 R2, which depict the min-
imum and maximum values of the x–y coordinates of
the road via the following linear convex inequality
constraint

rmin4rp4rmax ð54Þ

Repeating equation (54) along the prediction hori-
zon N, yields

½rmin�N4XN4½rmax�N ð55Þ

which can be rewritten in terms of �UM using equa-
tion (53), providing

A�UM4� ð56Þ

where

A ¼
� �G

G

� 	
2 R

4N�2M; and � ¼
� ½rmax�N � F

F � ½rmin�N

� 	
2 R4N

Note that in this study only straight roads are con-
sidered to formulate the road boundary constraints.
The model responses are evaluated for vehicle running
on a three-lane straight road though the same formu-
lation can be used to model more complex scenarios
of curved roads too with appropriate modifications
for road geometry, curvature, etc.

Collision avoidance constraints

The inequality convex constraints for the distances
between the autonomous vehicle and the HDV in
matrix form can be written as (recall equation (46)),

rp � rð j Þ5� ð57Þ

The vector � 2 R
2 corresponds to the error bound-

aries �x,�y. Repeating equation (57) along the pre-
diction horizon N yields

XN � ½r
ð j Þ�N5½��N ð58Þ

where ½rð j Þ�N 2 R
2N�1 stacks the value of the sur-

rounding vehicle position along the prediction hori-
zon N.

Replacing the prediction model of equation (53)
into equation (58), and rewriting in terms of the opti-
misation vector X 2 R

ð2MþndNÞ, with nd representing
the number of binary variables, one can obtain

T X4% ð59Þ
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where

X ¼
� �UM

bi

� 	
; T ¼

�
�G �MInd

2 N
0nd

2 N�
nd
2 N

G 0nd
2 N�

nd
2 N
�MInd

2 N

" #

with T 2 R
ndN�ð2MþndNÞ and the vector X is

expressed by

% ¼
� �½��N þF � ½r

ð j Þ�N
�½��N �F þ ½r

ð j Þ�N

� 	
2 R

ndN

Guaranteeing activation of at least one constraint
of (47) by

0N�2M 1ndN

 �Th i

X4½4�N

Path-planning controller

In this work, both path-planner and tracking control-
lers obtain optimal control vector U�ðkÞ by minimis-
ing cost function of the form in equation (50).
Rewritten using notation matrix as

min
X

JðkÞ ¼
1

2
XTHX þM

T
X ð60Þ

where the optimisation vector X ¼
�
½�UM bi�

T, is aug-
mented by additional binary decision variables bi.

The matrix H and the vector v define the terms of
the cost function as follows

1

2
H ¼ G

T
QG þR,MT

¼ 2ðF � ½rðiÞp �NÞ
T
QG ð61Þ

where the controlled output weighting matrix is
Q ¼ �� I4N and the control input weighting matrix
is R ¼ �� I2M.

The optimal control vector U�ðkÞ computed at the
discrete-time instant k is given by U�ðkÞ ¼ �U�ðkÞþ
U�ðk� 1Þ, where �U�ðkÞ is the first control vector of
�U�M, which in turn is obtained by solving the opti-
misation problem in (61) subject to the constraints

SX4# ð62Þ

The matrix S and the vector v define the linear
inequality constraint set on the optimisation variables

S ¼
� A

T

� 	
2 R

ðndþ4ÞN�ð2MþðndÞNÞ, # ¼
� �

%

� 	
2 R

ðndþ4ÞN

Tracking controller

An adequate mathematical model of the system is an
important step in designing a control system. A plant
cannot be stabilised if the model description is
inadequate.

The tracking controller needs an accurate descrip-
tion of vehicle dynamic characteristics in order to con-
trol the vehicle behavior. In the present work, we have
used a linear MPC to design the tracking controller.
The controller performance is evaluated for two dif-
ferent plant models, namely, the bicycle model and
the 12-dof model.

Tracking references

As discussed in previous section, the outputs of both the
linear vehicle models are Y ¼ x y vx vy �

� �T
.

In order to map these output variables a set of reference
inputs have to be assigned to the tracking controller Yref.
The first four reference inputs namely the longitudinal
and lateral positions and velocities are obtained from the
path-planning MPC as shown in Figure 1. The last input
is the reference yaw rate �ref, which is obtained using a
steady-state yaw rate command.37 Though a dynamic
scenario is considered, yet the steady-state (instantan-
eous) yaw rate is useful in giving an indication of vehicle
handling behaviour.38 It is a function of the longitudinal
velocity vx, vehicle characteristic speed Vch, steering
angle � and wheelbase l and is given by

�ref ¼ �ss ¼
vx�

l 1þ vx
Vch

� 
2� � ; Vch ¼

ffiffiffiffiffiffiffi
gl

Kus

s
ð63Þ

In equation (63), Kus is the understeering gradient.
The value of Kus for the vehicle under study is 0.95

�/g.

Cost function

The objective function to be minimised to ensure the
vehicle follows desired trajectories is the same as given
in equation (50) with the difference that the states here

are X 2 R
6 and R22 for the bicycle and 12-dof model

respectively instead of Xp 2 R
4 and U ¼ fT �swg

T

instead of Up ¼ fa
p
x apyg

T.

Prediction model

The prediction model remains the same as given in
equation (53) with appropriate change in dimensions
of system state matrices of vehicle models instead of
path-planner.

Control constraints

The control constraints are incorporated in the
scheme and are written in terms of U as

Umin4U4Umax, Umin ¼ ½�sw T�T, Umax ¼ ½ ��sw �T�T

ð64Þ
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where Umin and Umax are the bounds on the control
signals. Rewriting the constraint (64) in terms of �U
we obtain

UðkÞ ¼ Uðk� 1Þ½ �N þ T N�UðkÞ ð65Þ

where

T N ¼

I2 02�2 	 	 	 02�2
I2 I2 	 	 	 02�2

..

. ..
.
	 	 	 ..

.

I2 I2 	 	 	 I2

2
664

3
775 2 R

2N�2M

From equations (65) and (64) we obtain

Umin½ �N4 Uðk� 1Þ½ �N þ T N�UðkÞ4 Umax½ �N ð66Þ

Finally, equation (66) can be written in terms of
�UM as

� �UM4� ð67Þ

where � 2 R
4N�2M and � 2 R

4N are given by

� ¼
� T N

�T N

� 	
, � ¼

Umax½ �N � Uðk� 1Þ½ �N
Uðk� 1Þ½ �N � Umin½ �N

� 	

Model predictive controller

Finally, we obtain an optimal control vector U�ðkÞ by
minimising the cost function in equation (50) sub-
jected to the additional control constraints but with-
out considering mixed-integer collision avoidance
constraints

Table 2. Parameters of the MPC path-planner.

Variables Values

Prediction horizon: N¼ 40

Control horizon: M¼ 5

Sampling time: �T ¼ 0:05 s

Control output weights: � ¼ ½1 1 1 1 1�T

Control input weights: � ¼ ½20 15�T

Control constraints: �sw ¼ �630
�

, T ¼ 0 N m

��sw ¼ 630
�

, �T ¼ 400 N m

(a)

(b) (c)

Figure 12. (a) Scenario description: double lane change event; (b) steering wheel angle; (c) engine torque.
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min
�U

JðkÞ ¼
1

2
�UTH�U þMT�U ð68Þ

subject to the control constraints in equation (67).
The objective function of equation (68) is mini-

mised using Matlab’s built-in function quadprog to
obtain the optimisation vector �UM for the tracking
controller. For path-planning, the mixed-integer
quadratic programing problem needs to be solved in
order to take care of the collision avoidance con-
straints. For this purpose, cplexmiqp solver from
IBM39 is used in Matlab to calculate the optimisation
vector.

MPC and control constraint parameters are given
in Table 2. The sampling time of 0.05 s is chosen in
view of real-time implementation capabilities of the
proposed controller. A large prediction horizon N
and a small control horizon M was chosen for less
aggressive control action. Moreover, small M results
in computation of fewer variables in the QP solved
at each control interval, thereby promoting faster
computations.40 M<N is essential otherwise some
manipulated variable moves might not affect any of
outputs and small M promotes an internally stable
controller. As a rule of thumb M and N should
be chosen as 54M420 and N=35M5N=2.41 The
optimisation was performed in MATLAB using the
cplex solver from IBM, which can handle binary vari-
ables to solve the MIQP problem. For the 12-dof
model, the optimisation is computed in 150ms to
600ms using an Intel Core i7-6700U CPU clocked
at 3.40GHz with 16GB of RAM. The simulation
time increases to around 600ms when the vehicle
approaches the obstacle as the controller has to com-
pute steering and torque control commands. Once the
vehicle is past the obstacle the simulation time
decreases drastically. The code execution time is
faster for the bicycle model and it varies from
100ms to 500ms. It is evident that the 12-dof model
is fast enough for real-time application.

The actuator constraints are set according to the
saturation limits. An equal weight is given to all con-
trol outputs g in order to track all vehicle dynamics

characteristics (X,Y,Vx,V� y and �) with an equal
precision. A higher value of weight is given to the
steering angle as opposed to the vehicle torque in
the input control weighing �. This is because of the
fact that naturally a driver gives more emphasis in
steering the vehicle �sw than braking (torque T)
while avoiding the obstacle. The steering wheel turns
three and half turns from one end to the other corres-
pondingly the lower and upper bounds of the steering
angle are calculated as �630

�

. The peak driveline
torque is 400N m.

Results

The scenario description for the cooperative obstacle
avoidance manoeuvre is shown in Figure 12(a).
The vehicles are sharing plans with one another.
Vehicle 1 is in the first lane (x ¼ 0, y ¼ 0) and vehicle
2 is in the second lane (x ¼ 0, y ¼ 4). The obstacle is
at a distance of 200m and initial velocity of both
vehicles is 60 km/h.

The co-simulation study was performed using the
path-planning and tracking controller model and the
nonlinear complex vehicle dynamics model built in
CarSim. Both the vehicles are able to negotiate the
obstacle in a cooperative manner. The results are dis-
cussed below.

The control inputs (steering �sw and torque T) are
shown in Figure 12(b) and (c). Vehicle 1 steers to the
left as it first encounters the obstacle. Once it starts to
steers in lane 2, vehicle 2 starts to steer in the third
lane to make way for the first vehicle (see the inset 1 in
Figure 12(b)). After vehicle 1 has negotiated the obs-
tacle, it returns back to its lane and requires a larger
steering input then vehicle 2. It is because of the fact
that vehicle 2 started changing its lane after vehicle 1,
so it has to take less corrective action to return back
to its original lane (see 2 in Figure 12(b)).

Initially, both vehicles start their motion with the
same torque. This is because the vehicle has to
overcome the rolling resistance and aerodynamic
drag which is roughly equal to 125N for the
vehicle speed of 60 km/h. This force has to be coun-
teracted by an engine torque of 40N m in order to
maintain a constant speed of 60 km/h. Vehicle 1
brakes more aggressively as it sees the obstacle first
as a result the torque decreases. Once it negotiates
the obstacle by turning towards the left, the torque
increases again to avoid the obstacle quickly.
Eventually it comes back in the same lane and the
torque again becomes constant, i.e. 40N-m
(torque required to maintain the same reference
preset speed of 60 km/h). Vehicle 2 on other hand
just swivels out on lane 3 and its torque increases to
avoid colliding vehicle 1.

The trace of vehicle trajectory obtained from the
animation interface of CarSim cosimulation is shown
in Figure 13. The tracking controller responses are
shown in Figure 14. The model outputs (shownFigure 13. Cooperative double lane change event in CarSim.
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using solid lines) are compared against the references
(shown with broken lines) generated by the path-plan-
ner and steady-state yaw rate reference.

The vehicle path x – y trajectories are shown in
Figure 14(a). Vehicle 1 starts in lane 1 and vehicle 2
starts in lane 2. Both the vehicles share each other
trajectories (x, y coordinates and longitudinal and lat-
eral velocities vx, vy). Vehicle 1 can foresee the station-
ary obstacle in addition to the shared states of vehicle
2. As it encounters the obstacle, it steers to left moves
in the second lane and eventually returns back to the
same lane. At the same time, vehicle 2 moves in the
third lane in order to make way for vehicle 1 and
returns back to its lane after the later has negotiated
the obstacle. The important thing to note here is that
the motion of vehicle 2 is delayed as it takes steering
action only when vehicle 1 starts manoeuvring into its
lane. Both vehicles are able to track the reference tra-
jectories and a smooth lane change manoeuvre is
made. The tracking errors are shown in Figure 15.

The vehicle longitudinal velocity is shown in
Figure 14(b). The velocity of vehicle 1 decreases initially
because the torque input decreases as it approaches the
obstacle. After it negotiates the obstacle, its velocity
increases and returns back to the preset reference
value of 60km/h. The velocity variation for vehicle 2
is not substantial. Both the vehicles are able to track the
lateral velocity and yaw rate inputs sufficiently well as
shown in Figure 14(c) and (d).

The evolution of other remaining states of the 12-
dof model for both vehicle 1 (solid-lines) and vehicle 2
(broken-lines) is shown in Figure 16. The CG

displacement z shows a minor variation due to load
transfer. As the vehicle encounters the obstacle, it
swivels out of the lane towards left. Due to the lateral
load transfer, the outer left wheels are compressed and
the inner right wheels jack up as seen in wheel jounce
responses. As the vehicle rolls out of the turn (anti-
clockwise direction), the roll angle is positive and a
little over 1�. The vehicle pitch also shows a similar
trajectory though it value is very small as the vehicle is
operating nearly at a constant speed. The rear wheel
speeds initially decreases because of reduction in
wheel torques as the vehicle approaches obstacle.
They regain their initial preset references once the
vehicle pasts obstacle.

As suggested by an anonymous reviewer, the lat-
eral acceleration and lateral and vertical wheel forces
resulting from load transfers are shown in Figure 17.

(a) (b)

(d)(c)

Figure 14. Comparison of model outputs against the reference inputs for the cooperative path planning and tracking controller: (a)

Longitudinal versus lateral position; (b) Longitudinal velocity; (c) Lateral velocity; (d) Yaw rate.

Figure 15. Lateral tracking errors of vehicles 1 and 2.
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It gives the reader an idea of the magnitude of forces
encountered in a normal on-road driving scenario far
away from the boundaries of the dynamic envelope.

Model evaluations

In this section we investigate the performance of our
model at different speeds and compare the responses
obtained from our model against the bicycle model
predictions.

Performance evaluation at different speeds. To evaluate
the performance of the 12-dof model for a range of
operating speeds we have compared the tracking con-
troller results at 40, 60 and 80km/h in Figure 18(a), (b)
and (c), respectively. For this we used different initial
conditions of vehicle velocity vx for linearing the 12-dof
model as Xe ¼ ½0�1�10 vx ½0�1�5

vx
rw

vx
rw
½0�1�4

� �T
.

A brief discussion of performance evaluation results is
given below.

1. Vehicle longitudinal and lateral positions X – Y.
2. The vehicle is able to track reference path trajec-

tory sufficiently well in all three cases. A suffi-
ciently smooth double lane change manoeuvre is
performed. The tracking is better at low speed and
inferior at high speeds but still the match is pretty
good. This is obvious because of lag in following
the reference path at high speeds because of the
second-order actuator dynamics.

3. Lateral velocity vy.
4. The vehicle is able to track the lateral velocity

quite well in all the three cases. The lateral velocity
decreases as speed increases.

5. Yaw rate �.
6. The vehicle roughly maps the yaw rate input. The

reason for the in all three cases mismatch is
because a steady-state yaw rate measure is used
as a tracking reference which is slightly less than
dynamic yaw rate.

Comparison against the bicycle model. The vehicle
dynamic responses (�sw, x, y, vx, vy and �) of the
12-dof model are compared against the bicycle
model for vehicle 1 for the above mentioned obstacle
avoidance scenario in Figure 19.

The steering angle input computed by the tracking
controller using bicycle model is on the higher side as
compared with the 12-dof model (see Figure 19(a)).
We have earlier seen in Model comparisons section
that for the same steering angle input the dynamic
behaviour of the vehicle obtained from the 12-dof
model matches closely with the sophisticated CarSim
model. This implies that if higher values of steering
wheel angle are used in a real vehicle according to
bicycle model predictions it will result in high values
of other dynamic characteristics, which will eventually
result in inaccurate tracking of the reference
trajectories.

Figure 16. Evolution of the remaining vehicle states for the cooperative path planning and tracking controller using 12-dof model.

Figure 17. Lateral acceleration, lateral and vertical tyre forces for vehicle 1 undergoing the obstacle avoidance manoeuvre.
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Figure 18. Tracking controller responses at different speeds: (a) Longitudinal versus lateral position; (b) Lateral velocity; (c) Yaw

rate.

(a) (b)

(d)
(c)

Figure 19. Comparison of model responses of 12 dof model and bicycle model: (a) Steering wheel angle; (b) Lateral versus long-

itudinal position; (c) Lateral velocity; (d) Yaw rate.
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Regarding path tracking, the bicycle model under-
predicts the lateral position as compared to the high
fidelity model as shown in Figure 19(b) even though it
uses a high value of vehicle steering input. This justi-
fies the need of a model of increased complexity for
tracking the vehicle trajectory.

There is a substantial amount of difference in the
lateral velocity vy and yaw rate � responses between
the two models (see Figure 19(c) and (d)). The reason
for this mismatch is the unmodelled lateral dynamics
of the bicycle model as opposed to the 12-dof model.
For instance, refer to equation (5) and ĵ component of
a in equation (17).

Bicycle model, ay ¼ V _�þ _V�þ�V:

12� dof : ay ¼ _vy � dr €�þ 2dp _��þ dp� _�

þ vx�þ dr��2

The effect of pitch � and roll � angle is evident on
the value of lateral acceleration ay, which is missing in
the bicycle model but captured in the 12-dof model.
This shows the superiority of the 12-dof model in
tracking the reference trajectories generated by the
path-planning MPC.

Conclusion and future work

This work gives a useful insight by evaluating the con-
troller performance for different models. The high fidel-
ity nonlinear vehicle model of intermediate complexity
inclusive of roll, pitch and suspension jounce motions is
developed. In addition to this, two simplified models
namely the kinematic model and the bicycle model
were also developed. The models have been compared
for a single lane change manoeuvre and it has been
established that the 12-dof model emulates the real
vehicle dynamic characteristics fairly well. This non-
linear model is subsequently linearised to take an
account of different operating conditions.

In the next part, the paper addressed the problem
of path-planning and tracking controller for an
autonomous vehicle considering the trajectories of
other autonomous vehicle. The problem is solved
using a hierarchical MPC design with MIQP at the
planning layer. Integer constraints are incorporated to
ensure collision avoidance between the autonomous
vehicles and stationary obstacle. Control actuation
constraints have also been incorporated in the pro-
posed approach. To evaluate the effectiveness of the
method, numerical simulations are performed for a
cooperative double lane change manoeuvre, which
demonstrate the effectiveness of the proposed
method. The tracking controller is able to follow the
references and the method is quite appropriate to
attain the on-road autonomous driving environment.
This is because the linear tracking controller uses only
22 state variables to control the high fidelity nonlinear
vehicle model in CarSim.

In future, the current method with linear MPC will
be compared with nonlinear MPC and other alterna-
tives will be evaluated to account for probabilistic tra-
jectories and soft constraints. An initial investigation of
these concepts has been evaluated by the Viana et al.42

Moreover the goal is to demonstrate cooperative
autonomy in an urban environment where the obs-
tacles are moving human-driven vehicles as opposed
to stationary obstacles. This work will be extended to
incorporate moving obstacles with probabilistic trajec-
tories coming from the human driver model.43

Finally, this algorithm is planned to be imple-
mented in a real-time vehicle operation and that can
be taken up as the future developmental work.
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