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INTRODUCTION 
 
 

Global economic growth is based on a system that faces several sustainability 

challenges (Markard et al., 2012; Smith et al., 2010). Our industrial infrastructure, built 

on fossil fuels, is aging, antiquated, and requires substantial transformations (Rifkin, 

2011). There is broad consensus that the economic narrative needs to be transformed 

to reflect these concerns and allow for sustainable energy generation. The role that 

technology plays for both economic growth (Acemoglu, 2012: 546) and the transition 

towards a more sustainable use of resources is substantial (Jacobsson & Bergek, 2011). 

Over the last decades, global warming resulting into an increasing frequency and 

severity of natural disasters (Hughes, 2015; Wang et al., 2016) has emphasised the 

importance of sustainable and resilient electrical power systems (Gilani et al., 2020). 

Microgrids are a central building block in increasing the resilience, reliability, 

and sustainability of power networks. Microgrids, smaller localized grids, have been 

defined as “electricity distribution systems containing loads and distributed energy 

resources…that can be operated in a controlled, coordinated way either while 

connected to the main power network or while islanded” (Marnay et al., 2015a). 

Distributed energy resources (DERs) are small, localized power generating units 

comprising technologies such as solar photovoltaic (PV), wind turbines, gas turbines, 

heat and electricity storage (Hatziargyriou et al., 2007; Lasseter et al., 2002). The 

disconnected or islanded operation allows microgrids to supply power during grid 

failures and provides them with the ability to improve the reliability and resilience of 

the main power grid. Advanced microgrids facilitate the integration of renewable 

energy resources to diversify the power mix and support the transformation to a more 

sustainable and cleaner energy generation (EERE, 2020; IEA, 2020b).  

The 7 million km of transmission and 72 million km of distribution lines that 

make up the global electricity network (IEA, 2020b) are particularly vulnerable to 

extreme weather events. While power outages are not yet a significant problem in 

Europe, the last decade has shown how developed countries such as the United States 

can be repeatedly affected by outages due to an aging power infrastructure as well as 

increasing frequency and duration of extreme weather events. The United States 

reached 10 disaster events in the first six months of 2020 that caused material damage 

of at least USD 1 billion each. Between 1980 and 2020, the vast majority (90%) of 

years with 10 or more such devastating events were between 2008 and 2020, with only 
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one year (1998) reaching that scale before in the aforementioned period (NOAA, 

2020). An increase in microgrid adoption can relieve the pressure on electricity 

networks and reduce the need for long transmission and distribution lines which 

decreases energy losses and increases efficiency. Microgrids are also utilised as both 

an alternative and complementary option to the expansion of the centralized grid in 

order to electrify regions with limited access to a stable and reliable electricity network 

(Chaurey & Kandpal, 2010; Venkataramanan & Marnay, 2008). Overall, microgrids 

represent a technological innovation with ample relevance for management, 

organisation science, and policy researchers. It is argued that insights gained from 

studying microgrids can also be applied to other industries and product markets that 

face disruption through novel technologies.  

 

Overarching approach and motivation for research 

The main theme of this thesis is to explore the mechanisms through which an 

emergent, complex technology gains acceptance. To do so, I utilise three different 

perspectives that enable a focus on technology within the field of organisational 

science, an area of growing interest (Orlikowski & Scott, 2008).  

Technology has been a central topic within the management literature with studies 

exploring the interaction between strategy and technology (e.g. Itami & Numagami, 

1992), the effect of technology on performance (e.g. Powell & Dent‐Micallef, 1997), 

technology diffusion (e.g. Geroski, 2000), technology in organisations (e.g. 

Orlikowski, 1992), or technology commercialisation (e.g. Markman et al., 2008).  

I follow the long tradition of technology studies in management that trace and 

link industry dynamics to the evolution of technology (e.g. Bergek et al., 2008; 

Consoli, 2005; Grodal et al., 2015; Munir & Jones, 2004; Prencipe, 1997; Sinha & 

Noble, 2008) and studies that examine how technology influences institutions (e.g. 

Holmes Jr. et al., 2016; Lynn et al., 1996). This thesis is motivated by studies that have 

addressed criticisms by for example Orlikowski & Scott (2008: 466) to give 

technology a more central role within the management and organisation science 

literature. Studies of technological innovations such as those provided in Carlsson 

(1997) were an inspiration and the microgrid industry provided for a stimulating 

setting to apply technology-focused perspectives within management. 

Microgrids using renewable energy resources are one promising solution to 

address existing weaknesses of electrical distribution networks (Gilani et al., 2020). 
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The microgrid market plays an integral part in the future energy system. However, 

considering its significance for the transformation towards a more sustainable energy 

sector, it has not received the attention it deserves outside the technical literature. This 

thesis brings management and organisational theories to bear on this problem, while 

developing new conceptual frameworks to help us understand how technologies are 

adopted and institutionalized. This thesis shows how technology-focused lenses within 

the cognitive frames and neo-institutional theory can be applied and hopefully 

encourages scholars to explore similar trajectories.  

The thesis was further motivated by looking at solutions to the far-reaching 

consequences of the current energy transition and related problems. Microgrids have 

increasingly been proposed as a possible solution but are largely unknown to broader 

audiences. I therefore entered the field to explore how microgrids can contribute to the 

successful energy transition and what tensions exist that might hinder their adoption. 

It became clear that in order to pursue this route a deeper understanding of the 

technology and the markets through which it is bought, sold and eventually spread, is 

required. This motivated the industry study of paper one. The engagement with 

industry experts revealed that non-standardization of microgrid technologies is a key 

concern. This led to the second study to explore how the interpretation of a 

technology’s capabilities, focusing on standardizability, changes over time and affects 

the technology’s trajectory. This process unveiled that our understanding of how 

technologies become accepted often does not include the materiality of the technology 

as a central factor. This led to the third paper, that aims to give the technology itself a 

more central role in the proposed technology institutionalisation process model.  

 

Structure of the thesis 

The structure of this thesis is based on the three-paper model, which allowed 

me to study the broader phenomenon from three distinct technology-centred 

perspectives. This section provides a summary for each of the three papers that 

comprise my thesis. 

Paper 1 is an in-depth industry study of the emergence of the power sector and 

the microgrid industry. It integrates the global microgrid market into the historical 

context of energy transitions and decentralization and elaborates the technology’s 

relevance in these processes. Paper 1 raises theoretical questions on multiple levels 

that are explored along different trajectories in Paper 2 and 3.  
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Paper 2 applies the concept of complexity differentials to technological frames 

to provide new insights on frame transformation and destabilisation. This two-year 

qualitative study of the emerging microgrid market examines technological frames 

dynamics by considering the role of complexity.  

Paper 3 is a conceptual contribution in form of a model of technology 

institutionalisation. The paper builds on insights gained while studying the microgrid 

industry and presents a conceptual model, to guide future studies of the technology 

institutionalisation process. The study utilises an institutional theory lens to shed light 

on the technology institutionalisation process applying a micro, technological/ 

organisational field, and macro level perspective. 

In the following paragraphs, I briefly discuss each paper that comprises my 

thesis followed by a discussion about their interrelationships. 

 

Paper 1 

Paper 1, titled ‘The global microgrid industry: Emergence and Evolution’ is an 

industry study covering the electric power industry focusing on microgrids which play 

an integral role in the energy transformation towards a decentralized grid architecture.  

The industry study draws on a unique combination of archival data to provide a novel 

perspective on the microgrid technology and product market. Sources cover a wide 

spectrum from academic journal papers to practitioner industry proceedings, specialist 

industry publications, microgrid news websites and forums, consulting and research 

reports, as well as company white papers and websites. Paper 1 is organised into three 

parts: First, the historical dimension of the electric power industry is explored with an 

emphasis on energy transitions. Second, key aspects of modern energy systems such 

as distributed energy resources (DERs) and renewable energy sources (RESs) are 

introduced. The third and most elaborated part then covers the microgrid market and 

technologies. One central theme Paper 1 focuses on, is the decentralization process of 

the power grid architecture in which microgrids play an integral part.  

The paper’s main contribution is its unique perspective on the electric power 

industry and microgrid technologies reflecting recent developments by considering a 

wide spectrum of archival data sources. The industry study identified several 

theoretical issues that are further explored in Paper 2 and 3. One of the theoretical 

questions that arose was how frames specifically related to issues within the microgrid 

industry, such as the lack of standardization, change over time. A further question was 
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related to the mechanisms that drive the institutionalisation of emerging technologies 

which is explored in Paper 3. Paper 1 acted as a foundational piece for the deeper 

theoretical explorations of this thesis. Paper 2, which is introduced next, uses the 

industry study of Paper 1. The empirical setting of the emerging microgrid industry is 

complex and dynamic. It thus required the deep understanding of the historical 

dimension, market drivers, stakeholders, benefits and barriers of the technology that 

was developed in Paper 1, to successfully engage with industry experts that were the 

main data source for the technological frames study of Paper 2.  

 

Paper 2 

Paper, 2 titled ‘Technological Frames and Complexity Differentials: A Study 

of the Microgrid Industry and its Standardization Efforts’, is a qualitative empirical 

study based on two years of data collection. The primary data source consists of in-

depth semi-structured interviews with industry experts. This was complemented by 

data collected during field trips, practitioner conferences, numerous conversations 

with industry experts, and a comprehensive review of archival data. In paper 2, I draw 

on the concept of technological frames to develop the key contribution, which centers 

on the concept of complexity differentials. “Technological frames” (Orlikowski & 

Gash, 1994) guide interpretations among stakeholders regarding the value, function, 

and role of a technology (Gash & Orlikowski, 1991) and thus influence the dynamics 

of an evolving product market. Technological frames play a key role in guiding the 

evolution of product markets (Seidel et al., 2020) and provide for a useful lens to 

understand the effects complex technologies have on the perception of stakeholders 

(Davis & Hufnagel, 2007).  

A main purpose of frames is to help decision-makers to make sense of an 

uncertain and complex environment and thus to define the dimensions that are 

important to assess the performance of a technology (McKenzie et al., 2009; Bateson, 

1972). This study was motivated by my interest in better understanding the role of both 

technological frames and complexity in influencing the dynamics of an evolving 

product market. The focus hereby lies on complexity differentials between frames, 

technology, and the market. Whereas the majority of studies have examined the effect 

of frames on technology and innovation only few have focused on the content of the 

frames themselves (Grewatsch & Kleindienst, 2018). In their review, Cornelissen and 

Werner (2014: 203) called for further research that examines the “processual focus on 
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how technological frames are constructed and evolve”. The literature has not 

sufficiently examined the underlying mechanisms beyond political models that lead to 

dominant frames (Kaplan, 2008a) or the process by which frames are transformed and 

exchanged (El Sawy & Pauchant, 1988).  

My exploratory research design allowed me to enter the field with the aim to 

better understand how technological frames develop and transform. The microgrid 

market, due to its relatively small size, offered the opportunity to conduct interviews 

with key actors to better understand market dynamics with the feasibility to reach 

theoretical saturation. In summary, our study contributes to technological frame 

research by introducing the concept of complexity differentials as a mechanism that 

influences frame stability. I describe how technological frames with high complexity 

differentials dampen market progress with a growing differential leading to increasing 

pressure for frame transformation. 

This paper contributes to the debate on technological frames by highlighting 

the role of complexity and complexity differentials between the frame, technology, 

and the market. I argue that previous research has not sufficiently examined the role 

of ‘complexity differentials’ in determining the usefulness of technological frames. I 

refer to technological complexity as the perceived “existence of many interdependent 

variables in a given system, where more variables and higher interdependence mean 

greater complexity” (Rothwell, 2011: 562). Technological complexity differentials 

describe the difference between the complexity of a technology and the complexity of 

the technology’s environment (Schneider et al., 2016: 4). I apply complexity 

differentials to technological frames as I find this concept provides a valuable 

perspective for technological frames studies in determining factors leading to frame 

transformation and destabilisation. Technological frames, technologies, and their 

respective product markets and industries vary in complexity. I find that technological 

frames that either oversimplify or overcomplicate the technology they describe, and as 

such extensively deviate in complexity, become instable over time ultimately leading 

to their transformation or overall replacement. This perspective adds to the literature 

that examines the limitations of frames such as encouraging overconfidence in a 

technology (Starbuck, 1989), inhibit learning and problem-solving processes (Bolman 

& Deal, 1991), or reinforcing “unreflective reliance on established assumptions” 

(Orlikowsi & Gash, 1994: 177).  
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I also extend the literature on technological frames from consumer goods to 

investment and industrial goods. Empirical technological frames studies have mainly 

focused on specific IT products. Examples are Orlikowski & Gash’s (1994) study that 

examined the Notes system from Lotus Development Corporation. Mishra & Agarwal 

(2010) focused on the use of business-to-business (B2B) electronic markets for 

procurement.  

The vast majority of technological frames studies are published in information 

systems journals (e.g. ACM Transactions on Information Systems, European Journal 

of Information Systems, Information Systems Research, Information Technology for 

Development, Information Systems Journal, The Electronic Journal of Information 

Systems) and technology focused journals such as ‘Technology in Society’ or 

‘Information and Organization’. This paper aims to encourage more organisational 

scholars to apply the technological frame’s concept.   

The next paragraph introduces the third paper which proceeds with the 

technology-focused approach by arguing the central role of technological fields within 

the technology institutionalisation process.  

 

Paper 3 

Paper 3, titled ‘Technology institutionalisation: The Interplay of micro and 

macro mechanisms and field-level influences’ is a conceptual study of technology 

institutionalisation. The findings of the study have led to a multi-level model of 

technology institutionalisation. The study is situated within the field of neo-

institutional theory. In arguing for a more technology centred approach to investigate 

the institutionalisation process of novel technologies, the study conceptualises 

technology as an independent institution. The paper adds to technology-focused 

studies within institutional theory and addresses the call for multi-level models to 

explain the technology institutionalisation process. The technological field perspective 

allows for the consideration of technology-specific mechanisms that drive the 

institutionalisation process along with organisational field, micro, and macro 

mechanisms. A technological field refers to a ‘social space’ in which actors share a 

common meaning system related to a specific technology or set of technologies 

(Friedman, 1994b: 371; Granqvist, 2007: 9).  

The paper argues that both organizational and technological field-level 

mechanisms influence technology institutionalisation by moderating isomorphic 
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macro-level mechanisms and also directly influence the institutionalisation process. 

The multi-level model of technology institutionalisation proposed here emphasises 

that micro and macro-level of analysis should be regarded as complementary to each 

other and that both technological and organisational field-level mechanisms act as 

moderating forces within the technology institutionalisation process. The paper 

explores these interactions between micro and macro mechanisms while emphasising 

the importance of considering multiple moderating and direct field-level effects. 

 

Interconnection between papers 

The order of papers in this thesis reflects a progression from a practice oriented 

in-depth review of the microgrid industry and technology, to an empirical study that 

analyses the microgrid industry to investigate changes in technological frames, to a 

conceptual piece that uses insights gained during the research on microgrids to build a 

more abstract process model of technology institutionalisation that focuses on field-

level mechanisms.  

The papers use different lenses and concepts that allow for a deeper 

understanding of the technology and enable the incorporation of technology-specific 

mechanisms, in paper 2 these are conceptualised with the notion of a technological 

frames and in paper 3 with the notion of technological fields. The industry analysis of 

Paper 1 identified the lack of standardization in the microgrid industry as a major 

barrier. This lack of standardization is then explored in Paper 2 using a technological 

frames perspective. Paper 2 represents the central building block of this thesis. It builds 

on insights gained during the industry study in Paper 1. Paper 2 then spurred for the 

conceptualisation of the technology institutionalisation process described in Paper 3.  

In the following chapters, I present the three papers that comprise my thesis.
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PAPER ONE 

 
 

 
THE GLOBAL MICROGRID INDUSTRY: EMERGENCE 

AND EVOLUTION 
 
 

ABSTRACT 

Distributed energy systems and microgrids in particular have received 
increasing attention over the last decade. Microgrids are recognised globally 
as an option to address concerns related to an aging grid infrastructure and the 
ongoing energy transition from fossil fuels towards renewable energy 
resources. However, despite the numerous benefits of microgrids there are 
also several barriers and disadvantages that have slowed down their diffusion 
rate. This paper discusses the development of the global microgrid industry in 
the context of historic and current energy transitions. Central to the current 
transition is the shift from a centralized to a more decentralized grid structure. 
It is argued that microgrids need to be understood considering the historic 
dimension of energy advancements and transitions. This study provides a 
timely comprehensive review of the global microgrid industry, its historical 
background, geographic comparison of market drivers, stakeholders, 
segments, benefits and shortcomings.  

 

Keywords:  

Distributed energy systems; Energy transitions; Microgrids; Renewable 
energy integration  
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1. INTRODUCTION 
 
 About 800 million people globally have no access to electricity (Ayaburi et al., 

2020) and by the year 2040, global electricity demand is forecasted to be 60% higher 

than in 2017 (IEA, 2018). The electric power system is undergoing a vast reformation 

driven by a transition towards distributed energy resources (DERs) which often include 

carbon-free generating sources to address environmental concerns (Hanna et al., 2017). 

How can this decentralization process be supported while reducing energy poverty and 

meeting the growing global electricity demand? Microgrids represent an emerging and 

scalable technology to address this issue. Over the last decade the interest in the 

application of microgrids has been increasing around the world (Akinyele et al., 2018; 

Radhakrishnan et al., 2019). The growing attention can be related to the potential of 

microgrids to achieve higher supply reliability for energy consumers, supply energy to 

off-grid communities, increase grid resiliency, reduce emissions by integrating 

renewable energy resources, and possible economic benefits (AhmadiAhangar et al., 

2019; Akinyele et al. 2018; Parhizi et al., 2015; Radhakrishnan et al., 2019). Microgrid 

technologies play a crucial role in the transition from fossil fuels to clean energy but 

the financeability of these systems remains often questioned by institutional investors 

(DOE, 2012; Strahl et al., 2015). Microgrids face numerous challenges in their 

diffusion process with the lack of standardization being a major factor (Guerrero & 

Tan, 2017).  

 The motivation for this study was to establish a comprehensive review of the 

microgrid industry and technology. Previous studies and reviews focused mainly on 

specific dimensions of the technology with few attempting to translate these findings 

into a review of current knowledge that covers the broader field. This industry study is 

based on a broad review of the literature related to the empirical phenomenon of the 

decentralisation transition of the electricity industry and the emergence of innovations 

in form of microgrids. I relied on numerous resources reaching from academic journal 

articles over conference proceedings and industry publications to press articles and 

online resources and platforms covering microgrid news and analyses. This work 

therefore represents a unique collection and systemic integration of resources about the 

power system in general and microgrids in particular. The study is inspired by 

traditional industry studies of which Carlsson (1997) as well as Mowery and Nelson 

(1999) provide a selection of good examples. The industry study attempts to identify 
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the factors that have both driven and hindered the adoption of microgrid technologies 

and to illustrate cross-regional differences while integrating these current processes 

into the historical development of the electricity sector. I believe that this work is 

unique in relating the historical context to current advancements to explain how the 

microgrid technology emerged and grows. Another contribution is the consideration of 

a wide variety of sources (journal and magazine articles, microgrid online news 

platforms, industry and market research reports, and company websites) to shed light 

on the microgrid industry from several perspectives. Table 1 provides an overview of 

the data sources used for this review. 

 

Table 1: Overview of Considered Data Sources 
 

Type of Publication 
Number of 
Publications cited 

  

Journal Articles (e.g. Energy Policy) 110 
   Review Articles (e.g. Renewable and Sustainable Energy Reviews) 22 
Conference Proceedings (e.g. IEEE Electrical Power and Energy 
Conference) 

16 

Books (Chapters) 12 
Magazine Articles (e.g. IEEE Power and Energy Magazine) 17 
Industry/ Market Research/ Consulting Reports (e.g. Navigant 
Research; GTM Research) 

23 

Company Websites 46 

 
 The structure of this review reflects three broad chapters. I will first cover the 

emergence of the electric network and major energy transitions to provide the 

background information that puts microgrids into their historical context (1). I then 

introduce the key components of the more decentralized energy system including 

distributed energy resources and renewable energy sources (2). I then cover the 

microgrid market and technology in depth (3). 

 

2. THE EMERGENCE OF THE ELECTRIC NETWORK 
 

The electric power system is an outstanding technical, economic, and scientific 

achievement that has drastically influenced society from its introduction in the 19th 

century (Hughes, 1993a). Electric power systems consist of power generation, 

transformation, utilization, and control components, as well as transmission and 

distribution networks (Hughes, 1993: 7). The power network utilises two primary 
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systems, transmission and distribution with the former delivering power from 

generating stations to distribution substations and the latter delivering power from 

substations to end-consumers (Justo et al., 2013:390). Between 1880 and 1930 power 

generation consisted of prime movers such as steam engines as well as steam and water 

turbines with coupled generators. Transformers are responsible to change the 

characteristics of electricity supply during transmission and distribution. Energy 

utilization components included mainly lamps, motors, heating, and electro-chemical 

devices. Power transmission increased continuously during this period from short 

distances to thousands of miles. The control system regulates the supply system 

according to set voltage and frequency standards and optimises the performance of the 

system according to set goals such as efficiency and economic operation (Hughes, 

1993a).  

The electricity grid started with Edison’s power plant of 1882 with small-scale 

distributed generation as a microgrid. This decentralized approach of electricity 

generation was the standard in the early stages of electric power distribution systems. 

As demand for electricity increased, electricity provision evolved towards power grids 

connected through long transmission lines and the transition from independent 

microgrid systems to centralized and regulated electricity grids to improve resilience 

and reduce costs (Jenkins et al., 2000; Su, 2017). Centralized electricity generation 

refers to large-scale thermal-based power stations that provide electricity to multiple 

end-users through transmission and distribution grids (EPA, 2018; McDonald, 2008). 

The development of building increasingly larger power stations reached its peak before 

the 1990s. Since then, the attempt to reduce both CO2 emissions and transportation 

losses while increasing energy efficiency and resilience, have contributed to a shift 

towards smaller, distributed energy systems (DES) (Hossain et al., 2019). DES are a 

solution to address these weaknesses and are an alternative to the conventional 

centralized fossil-fuel based energy system (Adil & Ko, 2016). Improvements in 

distributed energy resource (DER) technologies have further contributed towards this 

shift (Chakraborty, 2011). 

 

2.1. Energy transitions 

 

From the late 1880s until the early 1900s, the so called ‘battle of the currents’ 

(Hughes, 1958: 143) between direct current (DC) and alternating current (AC) took 
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place (Sulzberger, 2003a; 2003b). The first public electricity supply in the world used 

AC power and was available in Godalming, UK from 1881. The Godalming system 

was, however, not sustainable and was abandoned in 1884 to revert to gas lighting 

(Strange, 1979). Holborn Viaduct power station in London, developed by Thomas 

Edison, opened in 1882 on a temporary basis. It was the world’s first substantial 

generating station for public electricity supply and used DC power (Tucker, 1977). 

Later in 1882, Edison opened the permanent Pearl Street Station in New York City 

that used low-voltage DC. Edison proved that electricity generating stations using DC 

technology could be successfully deployed. Edison’s dc systems were installed in 

numerous cities across the continent and dominated for several years (Sulzberger, 

2003a). These small-scale generating systems were the original DC microgrids. 

However, the Edison electric system, based on low-voltage DC technology, had 

several limitations. The high cost for copper wire and high transmission losses limited 

the distance of customers to the generation station and thus the service area 

significantly. Consequently, the DC generating stations had to be small in size, thus 

limiting the exploitation of economies of scale in generation and leading to higher 

costs (Sulzberger, 2003a).  

The invention of the transformer with the first commercial version developed 

by William Stanley available from 1886 with continuous improvements in the 

following years laid the foundation for the success of AC power enabling the 

adjustment of the voltage level (Guarnieri, 2013). A further milestone in AC 

technology development that resulted in severe competition to DC technology systems 

was Nikola Tesla’s filing of seven patents in 1887. The patents made up the foundation 

for AC electric power generation and transmission that is still utilised today 

(Sulzberger, 2003a). The patents were purchased by George Westinghouse in 1888 

who hired Tesla to develop and advance AC power systems. This marked the 

beginning the competition between Edison’s DC and Westinghouse’s AC system 

(Sulzberger, 2003b). Several key events ultimately led to the domination of AC 

systems and thus to a centralized grid architecture enabled through long distance 

transmission lines. These include the 1893 Chicago World’s Fair, in which both 

Edison and Westinghouse competed to install their respective electric generation 

systems to light the venue. Westinghouse’s AC system was able to offer the lighting 

for half the price as the DC system relied on a huge amount of expensive copper wire. 

The dominance of the AC system further strengthened by the decision to use an AC 
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system for the Niagara Falls power station that went into operation in 1895 and further 

expanded until 1905. AC was critical to enable the long-distance power transmission 

from the Niagara Falls to Buffalo, New York (Sulzberger, 2003b). These events 

marked the beginning of a consolidation and centralization process driven by a rise in 

electricity demand (Hirsch et al., 2018). The success of the centralized grid 

architecture based on high voltage AC was driven by benefits of power transmission 

over long distances from large-scale power stations. This made it possible to exploit 

economies of scale in both transmission and generation, increased reliability from 

aggregating numerous generating units, and enabled numerous diverse loads on a 

single grid (Barker et al., 2001; Hirsch et al., 2018). Until the 1990s, the centralized 

grid based on large power stations located in mostly remote areas with long 

transmission lines to distribution points, was the established model. The development 

of these large, centralized power systems has been discouraged since the 1990s 

(Hossain et al., 2019) and we have seen a global trend back towards decentralization 

(Ajaz, 2019; Hirsch et al. 2018). The fundamental reason why AC power dominated 

DC power was the ability to adjust voltage levels of the former. As a consequence, 

during the ‘battle of the currents’, DC power had the disadvantage to be transmitted at 

the same low voltage as it was distributed to consumers. This required short distances 

of power plants to end-consumers to reduce transmission losses and resulted in small-

scale power plants of which many were required (Purcell & Morin, 2013). 

Centralized energy production, delivery and consumption contributed 

significantly to the economic growth in the 20th century. However, in the 21st century 

the nation-wide grid has started to show signs of decay and the advantages seem to 

have reached their limits. A report by the American Society of Civil Engineers found 

that aging equipment, limited capacity to manage increasing demand, and rising 

impacts of severe weather events, ultimately will lead to longer and more frequent 

power interruptions if the significant investment gap is not closed (ASCE, 2017, 2019). 

The European Union (Altmann et al., 2010), Asia (Taggart et al., 2011) as well as other 

regions worldwide face similar challenges but the motivations to shift from a 

centralized to a decentralized approach vary significantly depending on country and 

region (Ajaz, 2019; Hirsch et al., 2019). These and previously mentioned limitations 

of the centralized grid structure have led to an increasing effort in developing 

alternative approaches in form of decentralized energy systems (DES). 
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Historically, the electricity market represented regulated geographic 

monopolies with utility firms, driven by economies of scale and high fixed costs, in 

which generation, transmission, distribution, and retail supply were vertically 

integrated (Joskow, 2006:3). Electricity markets performed differently with 

developing countries not performing well as they faced high system losses and low 

labour productivity. Utilities in developed countries showed a better performance 

(Joskow, 1997; 2006) but also faced high operating and construction cost, wide 

performance gaps between firms, and high retail prices (Joskow, 1998; 2000; 2006). 

In order to address these limitations, the major reform goal has been to transform the 

electricity sector from a centralized to a more open and competitive structure (Reeves, 

2013). The vertically integrated utilities were broken up into separate generation, 

retail, and network components. These deregulation and liberalization reforms had the 

aim to open-up electricity markets, optimise infrastructure use, and enable 

international trade. Retail reforms have enabled more consumers to choose their 

electricity supplier. There is significant uncertainty related to investments in power 

generation due to challenges related to the design and regulation of rapidly changing 

energy markets and slowing economic growth. Several drivers such as the move from 

fossil and nuclear to renewable electricity generation are causing a rapid change in 

energy markets requiring a new grid structure, market design, and regulations (Reeves, 

2013). Decentralised energy systems play an important part in achieving reduced 

emissions and higher energy efficiency goals while ensuring a supply-demand 

balance. Microgrids are increasingly being integrated in energy networks to increase 

power supply security, reduce greenhouse gases, and as a method to manage peak 

loads (Marks et al., 2010; Wouters, 2015). The latter is referred to as peak load shaving 

and involves shifting loads from peak demand and supply to times of lower load to 

flatten the load curve (Nourai et al., 2008). Increasing peak loads, if not managed 

sufficiently, lead to power system instability which is a major concern of utility firms 

(Chua et al., 2016). 

 

2.2. The electric power industry and reverse salients 

 

The concept of a reverse salient refers to a component of a technological 

system that is falling behind other components due to its inefficiencies or 

uneconomical performance (Hughes, 1983; 1993b). The concept of a reverse salient 
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applies to technological systems that are developed with a clear goal, such as to 

increase profitability, as only then the notion of ‘falling behind components’ is 

meaningful. Electrical systems provide good examples for goal-driven systems as 

operators have been concerned with minimising losses and costs while maximising 

profitability. As technological systems develop, reverse salients emerge, which are the 

parts of a system that require focused innovative efforts. Reverse salients provide a 

lens to link macro and micro-levels in a system analysis as they link the technological 

system to the wider society (Bijker et al., 2012).  

 A reverse salient emerges in a growing system when one system component is 

not well-aligned with or cannot develop at the same pace as the remaining system. 

This leads to reduced growth or stagnation of the system overall requiring corrective 

measures in form of concentrated invention and development actions to enable further 

expansion (Hughes, 1993). A reverse salient is the part of a technology system 

responsible for reduced growth due to uneven development of integrated components. 

Reverse salients or critical problems first need to be identified and defined to then 

focus inventive efforts to correct them (MacKenzie & Wajcman, 1999). They are often 

detected by system experts that analyse a growing system who find the reverse salient 

in form of inefficient and uneconomical components. The handling of reverse salients 

is in turn a major driver for inventive efforts and technological development (Hughes, 

1993b). The efficiency of electrical power systems can be increased by for example 

changing the characteristics of a generator which in turn requires the change of 

characteristics of other components such as of the motor to eliminate it as a reverse 

salient (Bijker et al., 2012). A reverse salient differs from the concepts of 

disequilibrium or bottleneck in that it is more complex and includes the consideration 

of accidents and trends and thus suggests uneven change.  

 The electric power industry provides a good example for reverse salients as its 

development was significantly hindered due to high costs resulting from transmission 

and distribution losses. The reverse salient of uneconomical transmission of DC power 

systems could not be corrected in the 1880s resulting in the development of another 

system to provide a solution. Hughes (1993b) argued that the response to correct the 

reverse salients of the electric system was the invention and development of a new 

system. Edison’s Pearl Street station that marked the beginning of the electric system 

in 1882 is usually regarded as a failure. Improvements of the DC system were largely 

ignored as the focus was mainly placed on the success of the rivalling AC system. 
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Improvements in DC generators, motors, and other components did not receive the 

attention they deserved. DC systems have had their advocates throughout history 

emphasising the profitability, reliability, and efficiency in densely populated 

environments. In the 1880s various improvements of the DC system ensured that 

reverse salients were eliminated which enabled the successful evolvement of the 

system for some time. The numerous patents that were filed during this time are 

evidence for the inventive effort and collective focus that was put into solving early 

critical problems. However, one reverse salient in form of high long-distance 

transmission and distribution costs could not be corrected. Edison identified the 

reverse salient while developing the DC system and responded two months after his 

Pear Street station opened by introducing, along other inventors, the three-wired 

distribution system. The three-wire system is still used today and saved 60% of copper 

wire needed compared to the usual two-wire DC system (Hughes, 1993b). The 

transmission and distribution reverse salient was also attempted to be solved by 

introducing battery storage technology in the DC power system. Cost-efficient high 

voltage DC was used for transmission and then fed into in series connected batteries 

to distribute the high voltage. After the batteries were charged, they were disconnected 

from generators and used to provide a low voltage to the distribution network. These 

battery technology advancements have often not received attention. The three 

simultaneous efforts, namely three-wired distribution system, battery technology 

integration, and high voltage DC systems, to reduce the high costs of low voltage DC 

transmission and distribution are proof of it being a reverse salient in the power 

industry. However, these inventions did not solve the reverse salient. Lucien Gaulard 

and John Gibbs achieved the breakthrough by showing that using transformers to 

regulate AC voltage results in an economic solution for long distance transmission of 

electricity. Transformers enabled high-voltage AC transmission and low voltage 

distribution solving the critical problem of high costs (Hughes, 1993b). Hughes 

(1993b) argued that this development can be described as an entire new system as 

opposed to advancing an old system due to several reasons. First, the AC system using 

transformers was already referred to as a new system during the time of the battle of 

the currents. Second, new components had to be introduced. Third, the analysis tools 

and engineering school courses differed between the AC and DC systems. It can 

therefore be concluded that there has been a process to move from one system (DC) to 

another (AC plus transformers) as the consequence from the former experiencing a 
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reverse salient that was corrected by the latter. The majority of electricity networks 

have not been designed for intermittent power sources such as solar and wind. This 

intermittency makes back-up generation in form of fossil-fuel, hydroelectric and 

nuclear plants a requirement. However, with increasingly competitive pricing of solar 

and wind, such standby energy sources become less economical despite the continuing 

need for them. This makes subsidies in form of capacity payments inevitable. It 

therefore requires a transformation of the grid, so it has sufficient storage capacity, 

flexibility, and is smart in matching demand to supply (The Economist, 2017). 

Technologies related to energy efficiency have been found to diffuse slowly despite 

being profitable (Jaffe & Stavins, 1994). The explanation has been that potential 

developers do not possess the required competence, are not focused on investments in 

such technologies, and might not regard their return on investment as sufficient 

(Maribu et al., 2007). The current shift from an energy system based on converting 

fossil fuels to one relying on non-fossil and renewable energies is a challenge and will 

take a significant amount of time. The speed of advances of global renewable 

conversions was relatively slow in the past with wind, geothermal, solar, and modern 

biofuels contributing 0.45% in 1990 and 0.75% in 2008 of all primary energy. This 

expansion is significantly slower compared to growth rates of coal mining, oil 

extraction, or gas production during the first decades after these technologies were 

introduced (Smil, 2010b). 

 

2.3. Drivers for the current transition 

 

The current transition to a more decentralized or distributed grid architecture 

has several drivers that vary in strength depending on political, country-specific, and 

socioeconomic factors (Aguirre & Ibikunle, 2014; Marques et al. 2010). The major 

drivers for the current transition phase are the global rise in electricity demand, the 

policy efforts by governments to reduce carbon emissions, the need to make the 

traditional outdated grid infrastructure more reliable and capable to integrate 

renewable energy resources, and technological innovations that have reduced the costs 

for solar energy and storage systems (Daghrour & Al-Rhia, 2019; Hanna et al., 2017). 

Another driver is the fact that fossil fuels are depleting while the world population and 

energy demand is rising (Obara & Morel, 2017). In order to make the current energy 

transition a success, novel technologies need to be developed and integrated to make 



 24 

the power system more intelligent. The resulting energy network is also referred to as 

a smart-grids (Daghrour & Al-Rhia, 2019). The development of microgrids could 

facilitate smart grids (Mahmoud, 2017). Smart Grids are electrical networks that use a 

set of technologies to optimise the management and monitoring of generation, 

transmission, distribution, consumption, and business of the power grid (ibid., 2019). 

Their main benefit is to improve instantaneous grid power balancing and demand 

response (Mahmoud, 2017). The technologies within a smart grid vary and 

components are increasing but have always the purpose to maximise the operational 

efficiency of the overall system. Two further key factors driving the transition have 

been privatisation and deregulation efforts by many governments (Larsen & Bunn, 

1999).  

The transition away from the traditional centralized energy system based on 

fossil fuels is vital as the established system is not sustainable considering its adverse 

effects on society, economies, and the environment (Grubler, 2012). The current 

transition towards a cleaner energy system integrating renewable resources faces 

several challenges as it requires significant technological and regulatory changes as 

well as adaptations in tariffs, pricing models, and user behaviours (Sovacool, 2016; 

2017). Further, history has shown that major energy transitions take several decades 

at least. It took coal more than 500 years from the first commercial coal mine to 

capturing 25 per cent of the global energy market. Oil required almost nine decades 

after the first commercial dwell was drilled to reach 25 per cent. Other sources have 

yet to reach that mark with nuclear energy currently covering five per cent and all 

renewables combined covering around 10 per cent of the global energy demand (IEA, 

2018; Sovacool, 2017). It can therefore be expected that the ultimate replacement of 

fossil fuels by renewable energy will take several decades to complete. This lengthy 

innovation and diffusion phase of novel energy technologies can be partially explained 

by the complexity and size of the world’s energy and infrastructural systems (Smil, 

2012) and the energy’s sector resistance to change due to long investment cycles of 

energy infrastructure and production projects (Lund, 2006; Sovacool, 2017).  

In general, a good electrical network can be operated economically, possesses 

a high flexibility to respond to demand fluctuations, has the ability to connect all 

producers with consumers, and has a high reliability (Daghrour & Al-Rhia, 2019). The 

existing electricity grid is facing several challenges to fulfil these criteria. There is a 

rising global electricity demand with many regions still not being electrified. Demand 
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also increasingly fluctuates between peak and non-peak hours which makes grid 

expansions necessary to reduce stress. In most markets there is an aging infrastructure 

that needs replacement to prevent a further increase in outages and blackouts as well 

as reducing transmission losses. The current grid also does not provide the flexibility 

required to efficiently integrate renewable energy sources to reduce carbon emissions 

and to match supply and demand in real time (Daghrour & Al-Rhia, 2019). The major 

issue with most renewable energy sources, such as wind and solar energy, are the 

variability of their outputs. This uncertainty can and often needs to be addressed by 

installing storage systems which represent a significant cost factor (Obara & Morel, 

2017). The integration of renewable energy sources, distributed storage systems, and 

advanced communication technologies into the existing grid increases the complexity 

of the power system (Pourbabak & Kazemi, 2014). The resulting change in topology 

and creation of bidirectional power flows leads to difficulties in controlling such a 

system (Kar et al., 2014).  

Despite the shift towards decentralization, the most likely scenario for the 

future energy system is a combination of centralized and decentralized sub-systems 

(Alanne & Saari, 2006). In developed countries, the transformation process from 

centralized to decentralized electricity generation is slowed down by already high 

electricity costs driven by aging networks, higher standards and fluctuations in 

electricity demand. The high prices may reduce the willingness to pay for additional 

expensive low-carbon investments (Reeves, 2013). The traditional profit oriented and 

regulated-monopoly business model was widely applied in the electricity industry and 

involves the ownership and operation of the generation, transmission, distribution, and 

related services by utilities (Bird & Hotaling, 2016; Joskow, 1997). The monopolistic 

structure of the electricity industry was justified by the infeasibility of competing 

transmission and distribution lines and by economies of scale due to large-scale 

generation (Borenstein & Bushnell, 2000). However, inefficiencies as well as 

reliability and resiliency issues of the centralised monopoly model did become obvious 

and were addressed with deregulation and restructuring (Bird & Hotaling, 2016). 

Deregulation has enabled third-party independent power suppliers to enter the industry 

which increased competition and provided consumers with choice (Joskow, 1997). 

This also acted as a driver for distributed generation (Zareipour et al., 2004), 

environmental concerns (Borenstein & Bushnell, 2015), and smart grids (Gungor et 

al., 2011). The latter referring to systems using bi-directional power and information 
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flows to form distributed and automated energy delivery networks (Souran et al., 

2016). Deregulation also led to an increase in small-scale power generation as large 

projects were perceived as too risky without the ability to transfer costs directly to 

customers (Zareipour et al., 2004). A further driver for the energy industry 

transformation has been renewable energy resources such as wind and solar PV which 

have become increasingly competitive to fossil-fuel-based generation due to 

technological advancements, economies of scale, improved supply chains, and 

increased developer expertise (Carrasco et al., 2006; IRENA, 2020; Rosa et al., 2018). 

Recent studies show that utility scale solar PV and onshore wind are now the most 

price competitive sources of newly build generation in almost all parts in the world 

and as a consequence contribute the most to newly added global capacity (BNEF, 

2020; IRENA, 2020). Decreasing prices have made natural gas more attractive over 

recent years which has also significantly influenced the electricity industry (Bird & 

Hotaling, 2016: 4). In addition, there has been an increase in weather-related power 

outages in the US (Campbell, 2012) which resulted in substantial costs for society 

(Gholami et al., 2016). Rentschler et al. (2019) found that power outages due to natural 

shocks, in particular storms, were responsible for 55% of all recorded power supply 

disruptions in the US between 2000 and 2017. In Europe between 2010 and 2016 

weather related outages accounted for 27% of total outages. Climate change is 

expected to further increase both frequency and intensity of natural shocks increasing 

the need for an improved power sector resilience (Nicolas et al., 2019). Microgrids 

have proven their value during such events providing power during severe disruptions 

(Bird & Hotaling, 16; Gholami et al., 2016). The combination of the various factors 

outlined above has provided microgrid technologies with the opportunity to become a 

valuable addition to the electricity network. 

 

2.4. The current energy transition: a threat to incumbents 

 

The growth in distributed generation in combination with increasing energy 

efficiency is a threat to the business model of utilities. Consumers in mature markets 

are increasingly becoming less dependent on the main grid due to the rise of distributed 

self-generation using mainly solar PV while the required electricity per household is 

declining due to efficiency gains. (Ganchinho et al., 2014; Sioshansi, 2016). Utilities 

will therefore have to adjust their business model in order to remain relevant. There 
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are several disruptive factors for the existing utility industry. The ongoing 

advancements and declining costs of distributed energy resources are a major factor. 

There has also been an increase in consumer, regulatory, and political interests in 

demand-side management to reduce overall energy usage. A decline in economic 

growth has further impacted electricity consumption leading to a trend of rising 

electricity rates to compensate for falling demand. Government subsidies and other 

incentives to encourage selected technologies such as roof solar (Nersesian, 2016). 

Another factor has been the declining price of natural gas which has and will further 

replace other sources such as nuclear and oil to generate electricity (IEA, 2018). Earlier 

energy market reforms focused mainly on increasing competition for both generation 

and retail but did not reduce the utility’s duty as a supplier of electricity to consumers. 

More recent developments driven by, amongst others, technological advances in 

distributed energy resources, demand management, and communication, have started 

the transformation process from one-way generation to a decentralized grid structure 

that will transform consumers to prosumers. This will require new business models 

and the creation of novel institutions offering a variety of new services to meet 

consumer demand. Competitively priced electric cars and the resulting higher adoption 

rate will further increase the need for this transformation (Reeves, 2013). There are 

several reasons for utility companies to be sceptical to the growing number of 

microgrids. Not all utilities have adopted the same stance towards microgrids. Some 

have been described as obstructers whereas other utilities have been actively involved 

in the development of microgrids (Wood, 2018b). Microgrids represent a threat to 

utilities and the overall electricity industry. They provide households and communities 

with the opportunity to supply their own power. Microgrid customers have a 

significantly reduced exposure to the increasing number of grid blackouts which affect 

millions of utility customers every year. Utility grids have become more affected by 

power outages. The increase in extreme weather events such as hurricane Sandy that 

led to over 8.5 million people losing access to power in 2012 and peak surges in 

electricity demand caused by extreme temperatures contribute to destabilising 

centralized power grids globally (Nersesian, 2016). 
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3. DISTRIBUTED ENERGY SYSTEMS, DISTRIBUTED 
GENERATION, DISTRIBUTED ENERGY RESOURCES, 
AND RENEWABLE ENERGY SOURCES  

 

Distributed energy systems (DES) refer to energy systems with local energy 

conversion and thus short distances to energy consumers. A consequence of the DES 

concept is a reallocation of decision-making processes, know-how, ownership, and 

energy security responsibility (Alanne & Saari, 2006). DES significantly reduce the 

need for investments into the transmission network (Pepermans et al., 2005), are less 

vulnerable to external risks, and have the potential to decrease emissions due to 

reduced transmission losses and integration of novel technologies (Alanne & Saari, 

2006). A DES can be compared to an information system, where decentralized systems 

are flexible, and risks are reduced through diversification. Information is, however, 

harder to find and the division of responsibility is less clear compared to a centralized 

system which is less flexible with more risks. In the past with higher limitations 

regarding information generation and processing, the traditional centralized energy 

system had advantages over a decentralized approach as it required significantly less 

effort in management and education (ibid., 2006).  

The literature uses various definitions for distributed generation (DG). A 

general definition proposed by Ackermann et al., (2001: 201) states: “Distributed 

generation is an electric power source connected directly to the distribution network 

or on the customer site of the meter.” 2017 marked the first year that the additions of 

annual installed power capacity of distributed generation exceeded centralized power 

plant capacity additions (Asmus, 2017; Gunjan, 2019).  

Distributed energy resources (DER) are small-scale power-generating 

technologies that are located near to energy loads (Maribu et al., 2007). More 

specifically they are “electricity-producing resources or controllable loads that are 

directly connected to a local distribution system or connected to a host facility within 

the local distribution system” (IESO, 2019). DERs comprise several technologies, 

such as photovoltaic solar panels, diesel engines, combined heat and power (CHP) 

plants, electricity storage devices, small natural gas-fuelled generators, electric 

vehicles, small wind turbines etc. (ibid., 2019; Jiayi et al., 2008; NERC, 2017). DER 

installations are considered microgrids if they have clearly defined electrical 

boundaries, a master controller that controls and operates DERs and loads as a single 
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entity, and if their generation capacity exceeds the peak critical load to enable a 

disconnection from the main grid and operate independently (Parhizi et al., 2015). 

Several studies (Gumerman et al., 2003; Iannucci et al., 2003) have examined the 

benefits of DERs which have significantly contributed to the decentralization process 

(Hirsch et al., 2018). The major benefits over centralized generation that were 

identified are reduced electricity costs, stable consumer electricity prices, increased 

reliability and quality, efficiency improvements, more consumer control, reduced 

security risk, reduced transmission losses, environmental emissions benefits, demand 

reduction, standby generation, and capacity deferral. However, there are also 

disadvantages related to the close proximity of DER units to people such as noise 

irritation and potential health risks due to indoor emissions (Gumernan et al., 2003).  

Power generation from renewable energy sources (RES) has seen a 

significant growth since the 1990s worldwide (IEA, 2018). Despite this growth, coal 

is still the main source of electricity, contributing about 40% of global generation 

(IEA, 2018). The adoption of RES shows an asymmetry between developed and 

developing countries. There are, however, also significant differences in deployment 

levels between countries with similar economic and geographic backgrounds. The 

variations in the diffusion of RES can be attributed to political (feed-in tariffs, R&D 

investments), socioeconomic (income and energy consumption) and country-specific 

(RES potential depending of geography) factors (Aguirre & Ibikunle, 2014; Marques 

et al. 2010). The drivers behind the growth in renewable energy sources include policy 

support and government commitments in form of feed-in-tariffs and power purchase 

agreements as well as cost reductions of renewable technologies (IEA, 2018).   

Advancing technology and declining costs for renewables, wind and solar in particular, 

have increased demand and made them the fastest growing sources for global power 

generation (Usher, 2019). The rising market share of renewables is further supported 

by changes in the transport sector replacing cars using combustion with cars using 

electric engines. The increasing development and R&D related to electric vehicles 

contributes to advancements in battery technologies and economies of scale. This 

plays a vital role in the energy transition process due to the intermittent nature of wind 

and solar energy making energy storage a key factor (Usher, 2019). Wind turbines and 

photovoltaic systems can already generate competitively priced electricity further 

increasing consumer demand (Usher, 2019).  
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An illustration of the relatively slow progress in advancing modern renewable 

energy sources, is provided by wind energy. One of the first large-scale onshore wind 

farms opened in 1986 in Altamont Pass, California and had an average turbine capacity 

of 94 kW with the largest wind turbines generating 330 kW. Two decades later the 

average capacity of wind turbines reached 1 MW, nearly a ten-fold increase equivalent 

to a doubling every 5.5 years and the largest turbines reached 6 MW, a doubling of 

capacity every 4.4 years (Smil, 2010b). As of 2017, the largest wind turbine capacity 

is 9.5 MW and is for offshore use (MHI Vestas Offshore Wind, 2017), adding 3.5 MW 

to the turbines from over one decade ago, a 1.6 increase, not nearly a doubling of 

maximum capacity in the last decade. This illustrates how difficult it is to accelerate 

the pace of technical innovation related to renewable energies. 

With regard to solar photovoltaic (PV) energy, there have been significant 

production cost reductions for PV cells from $100 per watt in 1970 to less than $1 per 

watt today (Smil, 2010b). One method to measure the competitiveness of the 

technology is grid parity, which is achieved when all electricity generated by the PV 

system can be sold at equal cost at which it may be purchased from the grid (Dufo-

López & Bernal-Agustín, 2013 In: Sarasa-Maestro et al., 2019:1). In a recent study, 

Sarasa-Maestro et al. (2019) found that achieving grid parity for PV systems depends 

on their size with medium and large-scale installations already achieving grid-parity. 

Small systems will achieve grid parity depending on a sufficient financial model and 

overall costs. However, even with electricity production costs that are equal between 

PV systems and the existing electricity grid, the actual retail price of PV modules is 

much higher and further installation costs need to be also considered. In the U.S. the 

average system installed costs for residential systems was $2.70 per watt in 2018, 

$1.83 for commercial, and $1.13 for utility-scale PV systems. Major drivers behind 

these cost reductions are higher module efficiency, lower permitting and 

interconnection cost, lower inverter price, and particularly for residential systems 

higher labour productivity and reduced supply chain costs. The average PV system 

size, as measured by electricity produced, for commercial and residential systems has 

not changed significantly between 2010 and 2017 (Fu et al., 2018). PV cells vary 

drastically in efficiency levels depending on type. The efficiency of single‐junction 

PV cells doubled from 8% to 16% between 1980 and 1995 and multiple‐junction cells 

reached about 30% in 1995 (Smil, 2010b). In 2018, the common single‐junction 

photovoltaic cells achieved an efficiency of around 22% (Multicrystalline silicon 
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cells). Multiple‐junction cells reached from 25% (Perovskite/Silicon) to 39% (5 

Junction cell) (Green et al., 2018). These measurements are taken in labs and therefore 

do not consider efficiency reductions due to dust deposition and other limiting factors 

(Pan et al., 2019). This means that even under optimal conditions the performance of 

single‐junction cells has only improved marginally, and multi-junction cells gained 

about 10% in the last two decades. The development for both wind and solar energy 

show that advances of renewable conversions have not been as rapid as sometimes 

portrayed (Smil, 2010b). 

The capacity factor, the percentage of actual energy produced with respect to 

the maximum possible output in a given year (Nuno et al., 2018), also should be 

considered when examining the efficiency of renewable energy sources. Nuno and 

colleagues (2018) measured the real capacity factors of wind and solar energy in 

different regions and their results show capacity factors between 10% (Germany) and 

20% (Spain) for solar energy and between 15% (Germany) and 24% (Spain) for wind 

energy. In comparison the capacity factor for coal powered plants was 54% (EIA, 

2019b) and for nuclear energy 92.6% (EIA, 2019c) in 2018.  As a consequence, in 

order to achieve high reliability using wind and solar generation requires a mix of 

energy storage, long-distance transmission, flexible generation, installation of more 

capacity, and demand management (Shaner et al., 2018). A broad adoption of DES 

and Microgrids would provide an alternative to these additionally required long-

distance transmission lines.  

The transformation of the electric grid is only feasible with the integration of 

energy storage as the technology is required to balance power fluctuations, shape peak 

demand, and enable the full use of intermittent renewable energy sources by making 

them dispatchable (Wold, 2019). Energy storage systems that meet grid 

interconnection standards (e.g. IEEE 1547 & UL 1741 for North America) lower costs 

by reducing custom engineering and site-specific approval processes (Kroposki et al., 

2008a:2). Microgrids often require distributed storage technologies as in particular 

with the integration of renewable energy sources and resulting power fluctuations the 

generation and loads can often not be matched. Storage technologies allow the 

microgrid to meet power and energy requirements despite power fluctuations of 

primary energy sources. They also permit the distributed generation units to produce 

a “constant and stable output despite load fluctuations” (Kroposki et al., 2008a:2). 

Energy storage further supports power systems during peak electricity demand and 
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provides a bridge during outages and disturbances (Kroposki et al., 2008b). Microgrids 

can utilise several forms of energy storage including different types of batteries, 

supercapacitors, and flywheels (ibid. 2008a). Batteries are direct current (DC) power 

systems that store electrical energy in form of chemical energy. Supercapacitors store 

energy electrostatically with no chemical reactions involved (Rufford et al., 2008). 

Flywheels store electrical power in form of rotational mechanical energy that can then 

be converted by generators into electrical power (Pena-Alzola et al., 2011). Energy 

storage systems are important in balancing power generation and energy demand (Eto 

et al., 2009) and improve the reliability of a microgrid (Hong et al., 2018). A storage 

system becomes essential when there is a cluster of microgrids in order to ensure an 

energy balance (Lasseter, 2002; Lasseter & Paigi, 2004). Micro-sources have large 

differences in response times. Storage devices therefore need to be integrated to deliver 

the required power to stabilise the system after events such as load changes and 

disturbances (Mahmoud, 2017). Some core requirements of microgrid energy storage 

systems are to: 

a) mitigate fluctuations and ensure a balance between power generation and power 

consumption (Daud et al., 2013); 

b) meet all energy demands when required and store energy during off-peak hours 

(Mahmoud, 2017:9); 

c) enable a smooth transition from grid-connected to islanded operation and vice 

versa (Dali et al., 2010); 

d) provide voltage support (Quesada et al., 2014) and to 

e) regulate system frequency (Serban & Marinescu, 2014). 

 

 

4. MICROGRIDS 
 

Since the late 1990s solutions to manage the integration of DERs have been 

explored. Microgrids represent such a decentralized solution and are a central building 

block in the development of a new grid architecture (Hirsch et al., 2018). Although 

microgrids have been researched for over a decade (Soshinskaya et al., 2014), there is 

still no universally accepted definition of microgrids with ongoing discussions among 

experts to find a consensus (Farhangi, 2016; Olivares et al., 2014). However, a broadly 

cited definition states that microgrids are a “group of interconnected loads and 
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distributed energy resources (DER) within clearly defined electrical boundaries that 

act as a single controllable entity with respect to the grid. A microgrid can connect and 

disconnect from the grid to enable it to operate in both grid connected and island 

mode” (DOE, 2012). Following this definition, a microgrid is “an integrated energy 

system consisting of DERs and multiple electrical loads operating as a single, 

autonomous grid either in parallel to or ‘islanded’ from the existing utility power grid” 

(Asmus et al., 2009:1). There are several basic technologies that need to be combined 

to make a microgrid. These are “distributed generation, distributed storage, 

interconnection switches, and control systems” (Kroposki et al., 2008a:1). Bob 

Lasseter, who coined the microgrid term in 2001, refers to microgrids as “self-

contained electric systems that can seamlessly connect and disconnect from the main 

power grid” (Lasseter, In: Hubbuch, 2019). An alternative definition defines 

microgrids as “electricity distribution systems containing loads and distributed energy 

resources, such as distributed generators, storage devices, or controllable loads, that 

can be operated in a controlled, coordinated way either while connected to the main 

power network or while is landed” (CIGRÉ C6.22 Working Group). A microgrid can 

therefore function irrespective of whether connected or disconnected to the grid. There 

is no set capacity of the distributed energy resources (DERs) or description of the types 

and combinations of technologies that should be integrated into a microgrid (Hirsch et 

al., 2018:403).  

An often referred to defining feature of a microgrid is its ability to disconnect 

from the main utility grid (Parhizi et al., 2015) which is also referred to as ‘islanding’. 

The procedure to smoothly disconnect and reconnect to the main grid is highly 

complex and grid-connected microgrids may only island during power outages which 

is below one per cent of overall operating time (Cherian & Asmus, 2016). This has led 

to alternative definitions of microgrids not based on their islanding capability but to 

consider it as an option that may or may not be included. According to this perspective 

the key requirement of a microgrid is its ability to “actively manage power and energy 

flow within some defined ranges” (ibid., 2) and not solely its ability to island. 

Microgrid experts do, however, have contrasting views on this matter which has 

contributed to the difficulties in finding a universally accepted definition of microgrids 

(Cherian & Asmus, 2016). Islanding can be either intentional or unintentional. The 

former refers to the intentional disconnection of a microgrid from the main grid to 

initiate backup generation in cases of a maintenance or other planned activities. The 
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latter refers to the disconnection of the microgrid due to disturbances in the grid (Llaria 

et al., 2011). Anti-islanding refers to a safety function that automatically shuts down 

grid-connected microgrids when an outage or fault in the main grid occurs to prevent 

unintentional islanding (McDonald, 2014).  

Microgrids started with basic applications relying mainly on diesel generators 

and combined heat and power (CHP) systems. Early microgrids were isolated units 

with local control that were mainly adopted to increase power reliability. Over the last 

decade, microgrids have increasingly become more sophisticated and complex. 

Microgrids increasingly integrate renewable energy sources, energy storage systems, 

and advanced control and energy management technology. Microgrid evolution is 

further driven by increasing distributed energy resources capabilities and automation. 

Interoperability of microgrids is expected to increase with microgrid clusters 

becoming more common (GTM Research, 2014; Tweed, 2014).   

Navigant Research (Asmus, 2018) has examined the yearly additions of 

distributed energy resources to microgrid capacity from 2010 to 2017. Energy storage 

has become a central component with strong growth from 2012 onwards. It can be 

noted that added wind energy capacity was stable with minor variations over the period 

examined. Capacity growth of solar PV was increasing steadily with stronger growth 

from 2015 onwards. Reciprocating engines including different kind of heat engines 

did make up a significant part of DER capacity additions. As of 2017, combined heat 

and power (CHP), which uses a heat engine to generate electricity and heat 

simultaneously, was the largest component (31%) in the DER technology mix used in 

microgrids. This was followed by Solar PV (19%), Diesel engines (18%), energy 

storage (11%), wind (7%), fuel cells (6%), Hydro energy (5%), and biomass 

accounting for 3% (Asmus, 2018). When compared to the forecasted scenario for 

2027, solar PV is expected to increase by 10% to 29% of overall microgrid capacity. 

Energy storage is forecasted to more than double to 25%. Capacity share of all other 

components of the DER mix are expected to decline. Most notably CHP is forecasted 

to make up less than half (15%) in 2027 of its share in 2017. Diesel engines, despite a 

small decline, are forecasted to still make up a considerable 14% of DER technologies 

used in microgrids (Asmus, 2018).   

Most distributed energy resources, such as wind turbines or solar PV, that are 

part of a microgrid system cannot be directly connected to the main distribution 

network due to the characteristics of the energy generated (Mahmoud, 2017). Power 
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electronics interfaces are essential in microgrids as they convert the energy generated 

by the various DERs into grid compatible alternating current (AC) power. Solar 

photovoltaic (PV) systems produce direct current and require a DC/AC converter to 

be connected to the broader distribution network. Wind turbines already generate AC 

power, but frequency and phase might not be compatible with the grid, requiring an 

AC/AC converter to connect the distributed generation unit to the main grid (Kroposki 

et al., 2008).  

Advanced control systems are indispensable for the stability and efficient 

operation of microgrids. The control system has the purpose to safely operate the 

system in both grid-connected and islanded mode (Kroposki et al. 2008a). The purpose 

of a control system is to regulate frequency and voltage, to ensure accurate load sharing 

and DER coordination, to control power flows and the synchronisation between the 

micro- and utility grid, and to optimise operating cost (Bidram & Davoudi, 2012; 

Mahmoud, 2017). The structure of a microgrid control system is hierarchical with 

“primary, secondary, and tertiary levels” (Bidram & Davoudi, 2012:1963). The 

primary level stabilises voltage and frequency, enables plug and play capabilities of 

DERs, optimises the share of active and reactive power among the distributed 

generators, and mitigates circulating currents. The secondary level of control, the 

microgrid central controller (MGCC), compensates for voltage and frequency 

deviations caused by the primary control. The tertiary control is responsible for the 

optimisation of both, the power flow between the microgrid and main grid and the 

economical operation (ibid.). There have been significant innovations in software 

controls for microgrids. This has contributed to strengthening the ability of microgrids 

to provide grid services. It has increased their acceptance as being a valuable part of 

providing grid stability as opposed to being mainly regarded as a threat to utilities 

(Wood, 2018b). 

 

4.1. The history of microgrids 

 

The first modern industrial microgrid in the USA was constructed in 1955 in 

Indiana (Asmus et al., 2009). However, the concept of a microgrid is much older as 

the power plant that Edison constructed in 1882 met already the criteria of a microgrid. 

There was no centralised grid established at that time, so his plant was self-contained, 

small with a limited distribution network, and with localised generation. It also already 
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included batteries to provide energy storage (Wolf, 2017). Edison’s firm continued to 

install another 57 microgrids in Manhattan until 1886. Thereafter, the electricity 

industry developed into a highly regulated monopoly market which led to a 

discontinuance of microgrid developments (Asmus, 2010). However, in more recent 

years, microgrids have experienced a revival. An event that has increased the 

awareness of microgrids was hurricane Sandy that hit the north-eastern part of the 

USA in 2012 and led to a significant loss of power in that region. However, some 

buildings were already equipped with either microgrids or distributed generation 

which allowed them to remain connected to power. This caught the attention of 

politicians and led to an increased integration of microgrids in the reconstruction of 

the power grid (Wolf, 2017). Scientists and engineers in the USA and Europe started 

in the late 1990s to explore solutions to integrate DERs into the grid architecture while 

maximizing reliability and resilience (Hirsch et al., 2018). This process led to the first 

foundational microgrid research programs that started with the Consortium for Electric 

Reliability Technology Solutions (CERTS) in the USA (Lasseter et al., 2002) and the 

European Union MICROGRIDS project (Hatziargyriou et al., 2006) in Europe (ibid., 

2018). The CERTS project, founded in 1999, has been credited as the inventor of the 

modern microgrid concept (Lasseter et al., 2002; Lopes et al., 2013). Bob and Richard 

Lasseter (2001; 2002) introduced the concept of microgrids in the academic literature 

as a solution for the reliable integration of DERs and significantly contributed in 

pioneering the technology (Olivares et al., 2014). Microgrids face legal, regulatory, 

and technical challenges resulting in a still limited number of advanced commercial 

microgrids in operation (Akinyele et al. 2018; Hirsch et al. 2018; Yoldaş et al. 2017). 

The current energy regulations have not been sufficiently adjusted to allow for 

microgrid islanding, hindering progress with regard to this technology. A majority of 

the investments used to modernise the world’s electric grid have instead been used for 

utility smart grid developments. Utilities focused on benefits that smart meter data 

delivers for them and did not focus on the consumer who often faced higher electricity 

bills as a result (Asmus, 2010). There has been an increasing awareness that the century 

old architecture of today’s electricity grid needs to be updated. Its top-down structure 

based on unidirectional energy flows is not suitable to deal with today’s challenges 

(Ackermann et al., 2001; Wouters, 2015). In case of a power outage this simple 

structure requires that all distributed generation, both renewable and fossil-fuelled, has 

to shut down. Here microgrids provide a valuable power source when the larger grid 
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fails. Microgrids can shift the control of energy services from a centrally controlled to 

a local level and have thus represented a threat to some utility companies. Utilities 

have therefore contributed to hindering the growth of microgrids (Asmus et al., 2009).  

Microgrids can also be grouped according to the power system their operation is based 

on, namely alternating current (AC) and direct current (DC) Microgrids (Justo et al., 

2013). AC microgrid systems utilise the existing standards for frequency, voltage, and 

operation for AC power networks (Justo et al., 2013). DC microgrid systems, on the 

contrary, maintain a DC bus to feed connected DC loads (Arif & Hasan, 2018). 

Advances in power electronics developments have enabled the voltage adjustment of 

DC power and thus have led to an increase of DC loads (Justo et al., 2013). The 

expanding use of DC devices such as solar PV systems have led to an increased 

consideration of DC microgrids (El-Shahat & Sumaiya, 2019). There are numerous 

DC devices requiring AC to DC conversion and DC based DG units that require the 

conversion from DC to AC to be compatible to the grid and often the repeated 

conversion to DC power required by many consumers. These conversions are often 

inefficient resulting in significant energy losses (Justo et al., 2013). DC microgrids can 

offer substantial efficiency, reliability, and stability gains (Peyghami et al., 2017). 

 

4.2. Benefits of microgrids 

 

The benefits of microgrids for different stakeholder groups have been widely 

documented in the literature (Savage et al., 2010; Parhizi et al., 2015; Venkataramanan 

& Marnay, 2008). Several technical, economic, and environmental benefits of 

microgrids have been identified (Chowdhury et al., 2009; Lopes et al., 2003; 2013). 

The decentralized architecture and consequential decrease of the distance between 

electricity generation and loads reduces transmission and distribution losses (Costa & 

Matos, 2009a) and feeder overload. Investments into transmission expansions and 

large-scale generating units can be reduced (Lopes et al., 2013). The voltage profile 

can be improved through a better reactive support of the power system (Madureira & 

Lopes, 2009). It has also been found that both power quality and reliability is 

improved. This effect can be attributed to an improved match of electricity demand 

and supply, a reduced impact of power outages, and improved voltage profiles 

(Madureira & Lopes, 2009; Lopes et al., 2013). Microgrids help to increase the number 

of participants in the electricity industry and thus reduce the market power of 
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established firms. This may contribute to a reduction in the price of energy if network 

investments and distributed generation utilization is balanced (ibid., 2013). Microgrids 

can also provide ancillary services such as “reactive power/voltage control, active loss 

balancing, and demand (load) interruptions capability” (Gomes & Saraiva, 

2010:1267). With regard to the environment, microgrids offer several advantages over 

large-scale centralized thermal power plants. Modern microgrids integrate renewable 

energy sources (RES) such as solar PV and wind turbines leading to a reduction of 

greenhouse gas emissions. Also, reducing the distance between power generation and 

consumption may increase the awareness of consumers to use energy rationally. 

Microgrids enable the integration of DERs while overcoming issues related to 

managing the various components within a network (Lasseter, 2002). The reliability 

of microgrids is superior to a traditional power system as a potential power failure has 

less impact and is better manageable due to the small-scale power generation (Bottrell, 

2013; Hossain et al., 2019). There are also reduced transmission losses and improved 

network efficiency due to distributed generation (DG) units located closer to power 

consumers resulting in lower resistance in the transmission line (Chiradeja, 2005). In 

times of increasing power demand, microgrids reduce the stress on transmission and 

distribution infrastructure (McDermott & Dugan, 2002). Microgrids facilitate the 

integration of renewable energy sources as DG technologies are already often based 

on renewable energy (Hossain et al., 2019). Microgrids with their DG units can 

improve the control of power networks for power system operators due to the reduced 

distance, compared to centralized power stations, between power generation and load 

centres (Justo et al., 2013). As independent systems, microgrids are also a cost-

effective solution to address low electrification rates of remote and underdeveloped 

areas (Su, 2017). Table 2 summarises the key benefits of the microgrid technology. 
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Table 2: Summary of Microgrid Benefits 
 

  

Benefit Reference 
  

Enhance flexibility and resiliency of power 
networks 

Dobakhshari et al. (2011) 

Increase grid reliability and stability Costa & Matos (2009b) 
Integrate distributed energy resources (DERs)  Wang et al., (2015) 
Enable islanded operation  Lasseter (2011) 
Facilitate intermittent renewable energy integration  Venkataramanan & Marnay (2008) 
Increase grid resilience Colson et al. (2011) 
Reduce impact of cyber attacks Mo et al. (2011) 
Reduce required investments in transmission and 
distribution networks 

Basu et al., (2011) 

Empower customers and end-users Joos et al., (2017) 
Provide ancillary services to the grid Hatziargyriou et al., (2006) 

 

 

4.3. Drivers for microgrid adoption 

 

The shift from a centralized to decentralized grid architecture has numerous 

motivations but with regard to microgrids three broad drivers for DES can be 

identified: Resilience, emission reductions, and energy democracy (Ajaz, 2019).  

 

4.3.1. Resiliency 

 

In the context of energy systems, Bahramirad et al., (2015: 51) define resiliency 

as the “capability of power systems to withstand low-probability, high-impact events 

by minimizing possible power outages and quickly returning to normal operating 

state”. Li et al., (2017: 1290) define resiliency as the ability “to prepare adequately for, 

respond comprehensively to, and recover rapidly from major disruptions due to 

extreme events”. Resilience differs from reliability in that it corresponds to rare events 

with high impacts whereas reliability measures average system performance by the 

frequency and length of power outages from more common events (Li et al., 2017). 

Resilient energy systems are needed to cope with the increasing number of extreme 

weather events (Du & Li, 2019) as well as sabotage, terrorism (Laldjebaev et al., 

2018), and cyber-attacks (Arghandeh et al., 2016). Decentralized energy systems, in 

particular as part of a network or cluster, are less vulnerable to such rare events (Alanna 

& Saari, 2006) and microgrids have been shown to increase the resilience of an energy 
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system in several studies (Ajaz, 2019). In their review, Prehoda and colleagues (2017) 

find that United States military bases that adopted microgrids using solar PV 

generation have improved their resilience and the authors recommend an increased 

adoption of microgrid systems. Marney et al. (2015) show how two microgrids in 

Japan were fully operational during and after the earthquake and tsunami of 2011 to 

maintain critical infrastructure. The success contributed to actions by the Japanese 

government in 2014 to further strengthen the development of decentralized energy 

systems (ibid.).  

 

4.3.2. Environment and transmission losses 

 

Environmental concerns related to the impact of fossil-fuel based energy 

systems have been growing over the last three decades. Carbon emissions and related 

risks have gained awareness with a growing world population, rising industrial 

activity, and resulting increase in energy consumption (Dincer, 1999). In order to 

protect the environment and enable a sustainable development, the transition to energy 

resources that release no carbon emissions are key (Dincer & Rosen, 1998). There has 

been a substantial increase in the frequency and intensity of extreme weather and 

climate events over the last decade that are causing power outages (Climate Central, 

2014). Urbanisation, the increased reliance on services requiring electricity, and longer 

durations of power outages contribute to a rising cost for societies, emphasising the 

growing need for grid resilience (Advisian, 2019; Mukherjee et al., 2018). Recent 

large-scale power outages in the US that affected millions of people show the 

vulnerability of the power grid (NOAA, 2019). It is therefore necessary to consider 

options such as microgrids to increase the resilience of the grid to minimise weather-

related power outages (Mukhopadhyay & Hastak, 2016). Governments world-wide 

have recognised the significance of this transition which is shown by consistent global 

investments in renewable energy above USD 300 billion annually since 2015 with 

solar PV, wind, and hydropower being the largest contributors (IEA, 2019). A 

significant portion of renewable energy is in form of small-scale decentralized 

systems. Microgrids as integrators of distributed energy resources and renewable 

technologies into electricity distribution networks offer a promising approach for a 

sustainable energy sector (Bouzid et al., 2015; Lasseter et al., 2002). Therefore, the 

integration of a higher share of renewable technologies to reduce carbon emissions is 
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a key driver for DES and microgrids (Chiradeja & Ramakumar 2004; Pasimeni, 2019). 

DES and microgrids also contribute to an increasing efficiency of the power system 

by cutting transmission losses by reducing the generation to consumption distance of 

electricity (Ackermann et al. 2001:199; Pepermans et al. 2005:789). The increase in 

energy efficiency through reduced transmission losses does not only reduce costs 

significantly but also reduces carbon emissions (Alanna & Saari, 2006; Sadegheih, 

2010). 

 

4.3.3. Energy democracy 

 

Energy democracy refers to the active participation of people in energy 

transitions with the aim to increase democratic ownership and control of energy 

production and governance (Healy & Barry, 2017; Szulecki, 2018). Central to the 

concept of energy democracy is the transition from centralized to decentralized energy 

systems with a focus on integrating renewable energy resources (ibid., 2018). The 

decentralization and decarbonization of energy systems with increasing use of 

renewable energy is an opportunity to democratise the system.  

The distributed energy resources can be adopted in various regions and enable a broad 

range of investors as opposed to large-scale centralized power plants (Szulecki, 2015; 

2018). Microgrids as decentralized energy systems provide a solution to achieve 

energy democracy. The role of consumers of electricity is changing from pure 

consumers to also contributors of electricity during the decentralization process of the 

energy market (Pasimeni, 2019). Microgrids facilitate this transition towards 

prosumers (Watson, 2014) as they often directly involve end-customers in their 

adoption and diffusion (Sauter & Watson, 2007).   

 

4.4. Microgrid disadvantages 

 

Despite the numerous advantages microgrids offer, they also face several 

challenges. The knowledge and familiarity with regards to the operation, management, 

and control of microgrid systems is limited leading to potential technical issues 

(Chowdhury et al., 2009; Lopes et al., 2003; 2013). However, the ongoing research 

will help to overcome these difficulties (Asano et al., 2007). The design, availability, 

and acceptance of competitively priced technologies for installing and operating 
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microgrids is one of the major challenges (Kroposki et al. 2008a). Barriers for the 

adoption of grid-tied microgrids are a lack of standardisation and regulations of key 

operations such as those related to connecting and disconnecting to the main grid 

(Ackermann et al., 2001; van Hende & Wouters, 2014).  

Ajaz (2019) identifies high costs and the fact that microgrids are not necessarily 

environmentally friendly as the major disadvantages for microgrids. Microgrids as a 

“group of interconnected loads and distributed energy resources” (DOE, 2012) do not 

by definition integrate renewable energy sources. The combined share of CHP using 

fossil fuels and traditional diesel generation was 49% in 2017 with solar, wind, and 

hydro energy only contributing 31% (Asmus, 2018). This shows that an increase in 

microgrids that predominantly use fossil fuels as part of their DER mix do not 

contribute to reducing emissions (Ajaz, 2019; Hirsch et al., 2018).   

Microgrids, despite their long history, are still seen as a new entrant in the 

energy market from a regulatory perspective. There is still a lack of regulations that 

determine under what rules microgrids can be operated, who can own microgrids, and 

what their legal standing is (Ajaz, 2019). In their review, Ali et al. (2017) found that 

regulatory and policy barriers are hindering microgrid diffusion. Formulation of 

specific regulations and policies for distributed generation and microgrids varies 

significantly with the EU being behind countries like the USA or China (ibid., 2017). 

Hirsch et al., (2018) identified two main legal questions affecting microgrids. First, 

should they be considered as electrical distribution utilities and thus regulated by state 

agencies? Second, can microgrids be successfully integrated into existing legal 

frameworks governing electricity trade, generation, and distribution? In order to 

increase the bankability of microgrids these legal questions need to be clearly 

answered to reduce uncertainty for investors (ibid. 2018; CEMTPP, 2010). 

The relatively high costs to install microgrids are a barrier for adoption. It 

should, however, be noted that other energy and power infrastructure also tends to be 

expensive. Microgrid projects have a relatively high failure rate which is often due to 

extensive upfront analysis, feasibility studies, and design-building phases that are 

required when microgrids are labelled as infrastructure projects. The resulting high 

costs lead to misinterpretations of the value microgrids can deliver and discourage 

potential investors, developers, utilities, and consumers (Cherian & Asmus, 2016). 

Microgrid costs vary significantly depending on the segment and complexity of the 

project (Hernandez et al., 2018). In general, the costs for generation units represent the 
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largest percentage in most segments regarding total system costs per megawatt. Energy 

storage systems contribute significantly to overall costs per megawatt with up to 25% 

for commercial microgrid projects. The high investment cost for sufficiently large 

energy storage systems (Safipour & Sadegh, 2018) is often regarded as a barrier for 

adoption but can reduce the operating cost of the microgrid (Abdulgalil et al., 2018; 

Xiong & Singh, 2015). Costs for microgrid controls vary significantly depending on 

the complexity of the system and make up 0.5% to 21% of total costs per MW (ibid., 

2018). The costs for solar PV generation and battery storage have been falling rapidly 

and are on track or have already achieved to match traditional electricity sources 

making microgrids more price competitive (Bilakanti et al., 2018; Hirsch et al., 2018). 

 

4.5. Microgrids as a threat 

 

Microgrids have been described as a threat to utilities, but they can likewise 

support them in the challenging task of integrating distributed energy resources. Utility 

distribution microgrids (UDMs) serve the distribution as well as being a new platform 

for innovative services for customers (Asmus, 2016). Microgrids as a disruptor to the 

power sector can be compared with the introduction of the automobile which 

individualised passenger traffic unlike the earlier dependency on trains. However, for 

microgrids becoming widely adopted and as such to generate the bulk of electricity, 

they still have to meet many challenges. They need to become more affordable, 

demonstrate their reliability, efficiency, and invulnerability, as well as overcoming 

regulatory hurdles (Nersesian, 2016). Many utilities have been sceptical towards 

microgrids and regarded them as disruptors to their business model. There is a threat 

of reduced revenues for utilities due to microgrid customers generating and consuming 

their own energy. This is also referred to as the ‘utility death spiral’ where an 

increasing gap between the electricity tariff and costs for self-generation increases the 

adoption of distributed generation capacity such as solar PV (Castaneda et al., (2017). 

This ultimately leads to declining demand for utility generated electricity, which 

increases the costs for remaining utility customers and as a consequence leads to a 

further increase in self-generation (Hirsch et al., 2018). The result would be a state in 

which utilities cannot recover their costs. Also, the mostly grid-connected microgrids 

integrate renewable DERs which are difficult to manage for utilities for which they are 

seeking compensation from microgrid owners (Hirsch et al., 2018). Utilities make 
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long-term investments into the grid infrastructure and increasing energy production by 

consumers make it more difficult to predict the output of energy that can be sold in the 

future to recover costs (Nersesian, 2016). One strategy to change the image of 

microgrids from being a threat to a valuable contribution to the grid is through energy 

market restructuring (Romankiewicz et al., 2014). Restructuring entails the 

unbundling of generation, transmission, and distribution services with independent 

power producers allowed to compete in the market (Hirsch et al., 2018). Services such 

as load-frequency control and local voltage support (Gomes & Saraiva, 2010) that 

microgrids can provide to the grid will be enhanced through real time electricity prices. 

This would allow microgrids to optimise the management of DERs and revenue 

streams. Market restructuring has, however, been slow and not universally applied 

(Borenstein & Bushnell, 2015). An important step in restructuring and to remove 

utility microgrid resistance is to decouple electric company revenues from electricity 

sales (Hirsch et al., 2018). This disassociation of a utility’s revenues from its sales 

insulates the utility from sales fluctuations and ultimately transforms the utility from 

a commodity to an energy service provider (Eto et al., 1997). New business models 

for utilities have to reflect the new functions (e.g. resilience, power security, and 

renewable energy integration) that the utility grid is expected to provide which are 

fundamentally different to what utilities were responsible for in the past. A solution is 

to shift the approach from cost-of-service to performance-based, incentivising utilities 

to invest in grid infrastructure as opposed to maximising energy sales (Hirsch et al., 

2018). Another factor that reduces the threat of microgrids is the possibility for utilities 

to get involved into the microgrid business themselves. Their existing customer base, 

knowledge, grid infrastructure, and franchise rights put utilities in a good position to 

provide microgrid services. This, however, is not universally allowed by regulators 

(Hirsch et al., 2018). One reason is that in restructured energy markets, where 

independent companies compete with utilities to supply power, utilities owning power 

generation infrastructure would have a competitive advantage. Here the defining 

question is whether microgrids should be considered power plants from a regulatory 

perspective. Another discussion is whether utilities may use ratepayers’ money to pay 

for microgrid projects. Advocates argue microgrids contribute to overall grid stability 

and service quality and thus benefit the majority whereas opponents argue that 

microgrids only benefit a minority (Wood, 2017). The task for utilities in the future 

could be to connect the various grids to improve overall efficiency and reliability with 
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the main electricity generation being supplied by microgrids. If microgrids succeed in 

becoming more bankable while convincing the market of their advantages, then they 

represent a valuable business model for utilities which need to find alternatives to 

outdated large-scale power plants. If utilities cannot adapt to the changing market 

structure, they eventually may face demise. Within the various drivers pushing the 

electricity market to a more decentralized structure, the declining costs for both solar 

power and battery storage technologies have been significant factors making 

distributed consumer owned electricity generation more competitive to rising utility 

rates. Customers defecting from the grid further increase the problems that utilities 

face (Nersesian, 2016).  

 

4.6. Microgrid standardization 

 

Microgrids face several issues related to a lack of standardization and 

regulations (Lopes et al., 2013). Microgrid projects are often highly customized, 

requiring expensive one-off engineering solutions and often depend on government 

subsidies as a consequence (Asmus et al., 2018). Standards are essential for microgrids 

to become an established part of the future energy system. Without standards 

microgrids could become prematurely obsolete or may cause security and safety 

issues. Also, a lack of standards may hinder future innovations and prevent the creation 

of a guiding framework for the development of renewable energy and related 

technologies (Daghrour & Al-Rhia, 2019). Further, only with standards sufficient 

economies of scale and scope can be established to create a competitive microgrid 

market and thus increase diffusion rates and benefits to the customer (Berker & 

Throndsen, 2017; NSTC, 2011). The following paragraphs provide an overview of 

existing microgrid standards.  

 

4.6.1. Interconnection regulations 

 

The various components of a microgrid are connected to the rest of the 

distribution system via an interconnection switch or point of common coupling. The 

microgrid faces the distribution network as a single controllable entity (Kroposki et 

al., 2008). Microgrids require standards that enable their interconnection with the 

utility grid as otherwise they are not able to operate in grid-connected mode to provide 
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lucrative grid services (Hirsch et al., 2018). Regulations for the connection of 

distributed generation to the main grid are therefore central for the business model of 

microgrids. Interconnection standards treat DER as potential sources of network faults. 

The underlying reason is the traditional centralized unidirectional operating paradigm 

of distribution networks which is fundamentally different to bidirectional power flows 

in decentralized systems. The anti-islanding requirements are an example of this 

attitude. This provision eliminates the possibility of DER to support a part of the power 

grid during an outage (Marnay et al., 2008) due to safety concerns (Asmus, 2014).  

The understanding and evaluation of microgrid systems has shifted over the last 

decade. The view of microgrids as islanded systems with the main purpose of 

providing backup generation and load has become more nuanced to reflect their 

potential to become a valuable component of future power networks. In response to 

the growing influence of microgrids, the IEC established a system evaluation group 

(SEG 6) to identify the standardization progress and gaps, stakeholders, use cases, 

technology needs as well as to assess the overall microgrid market (La Fauci et al., 

2018).  

IEEE 1547 is a series of interconnection standards that receives regular 

development, updating, and revisions. The presence of multiple moving 

interconnection standards as part of the 1547 series but also related standards such as 

California’s Rule 21 complicate and prolong integration and testing procedures 

(Bilakanti et al., 2018). The first of the series, the IEEE 1547 standard, approved as an 

American National Standard in 2003, laid the foundation for the safe interconnection 

of distributed energy resources with the distribution grid (Basso, 2014). Safety 

concerns were central to this standard with strict anti-islanding requirements to protect 

line workers and other grid participants. Until 2011 the main purpose of the 1547 series 

of standards and related interconnection policy was to ensure that DER would 

disconnect in the case of unintentional islanding (grid failure) as a safety measure to 

protect line workers. Then in 2011, IEEE 1547.4 was approved which is of key 

importance for microgrids as it regulates the design, operation, and integration of 

microgrids interconnected with the distribution grid and their safe intentional islanding 

and reconnection (Basso, 2014; Hirsch et al., 2018). However, even with the latest 

interconnection standards, there are several unresolved integration issues (Bilakanti et 

al., 2018). The latest revision in the series is IEEE standard 1547-2018 which mandates 

both voltage (VRT) and frequency ride-through (FRT) (ibid.). VRT and FRT standards 
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require large-scale renewable energy resources such as wind-power plants to remain 

in service during a network fault (Zamani et al., 2014). The standard continues, 

however, to mandate strict anti-islanding requirements forcing the DER to disconnect 

from the main grid after detection of grid faults which interferes with VRT and FRT 

requirements. The Underwriter laboratories (Ul) 1741 safety standard also requires 

anti-islanding. However, many power inverter devices that are UI 1741 certified 

enable islanding, contradicting the anti-islanding requirement (Asmus, 2014). With 

growing deployment of DER this may affect power system stability and it shows there 

is still work required in revising and updating interconnection standards (Bilakanti et 

al., 2018). Microgrids challenge this anti-islanding requirement (Asmus, 2014). 

California’s Rule 21 is a related series of standards that covers the operation of 

microgrids in both islanded and grid-connected mode, the transition between the two 

modes of operation, and the reconnection to the grid (Hirsch et al., 2018). Table 3 

provides an extended list of the standards discussed above. 

 

Table 3: Standards or Policies on Interconnection 
 

Country Standard 
  

US 

1. IEEE1547 
2. IEEE1547.1 
3. IEEE1547.2 
4. IEEE1547.3 
5. IEEE1547.4 
6. FERC Order No.2006 

California, US 

1. Rule 21 
2. California Interconnection Guidebook 
3. Glossary and Resources Rule 21- Working Group 
4. CEC 100-2005-003 

Canada 
1. CAN/CSA-C22.2 NO.257-06 
2. CAN/CSA-C22.3 NO. 9-08 

IEC 
1. IEC/TS 62257.9.1 
2. IEC/TS 62257.9.2 

EU  EN 50438 

UK 

1. ER G59/1 
2. ER G83/1 
3. K/EL/00318/REP 
4. ETR 113 

  

Source: Qo, M., Marney, C., Zhou, N., (2011). Microgrid Policy Review of Selected Major 
Countries, Regions, and Organizations, Environmental Energy Technologies Division, Lawrence 
Berkeley National Laboratory, p.7. 
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4.7. Bankability of microgrids 

 

Microgrids have primarily been standalone government-funded projects and financial 

support from institutional investors is required to scale up the microgrid market to a 

viable asset class (Strahl et al., 2015). However, there have been concerns with regard 

to the bankability of microgrid projects. Achieving a sufficient rate-of-return on capital 

to ensure financial viability is one important aspect but a microgrid project should also 

address any risks that could harm financial returns in order to be truly bankable. The 

evaluation of the return on investment for microgrid projects is highly complex and 

reduces their financial attractiveness. It requires detailed knowledge about generation 

and load characteristics, utility and financing structures, energy markets, ownership 

models, regulatory environment, and individual project risks. Institutional investors 

have shown little interest in remote microgrid projects. This can be explained by the 

high risks, low expected returns on investment, and unclear policies that are often 

associated with microgrid projects (Williams et al., 2015). Monroy and Hernandez 

(2005) found that electrification projects in rural areas, such as those of remote 

microgrids, are typically offering unattractive risk-return trade-offs making it difficult 

to secure private capital. Several studies (e.g. Schäfer et al., 2011; Schmidt et al., 2013) 

have emphasized the need for more work exploring the reasons of and solution to the 

absence of private investors in electrification activities (Williams et al., 2015). It is 

argued here that a better understanding of the technological frames that shape the view 

of microgrids and their standardization potential contributes to problem-solving 

activities related to the insufficient bankability of microgrid projects. The microgrid 

industry needs to attract institutional investors to follow the growth trajectory of the 

solar photovoltaic industry. One key driver for solar energy has been innovative 

financing in form of solar power purchase agreements (PPA) models that reduce 

investment risk for buyers while offering sufficient returns to attract investors. A major 

barrier for microgrid investments can be related to their complexity as there are no 

established methods to evaluate some of the key benefits of microgrids such as 

resiliency (Siemens, 2016; Strahl et al., 2015). 

 

4.8. Microgrid business models 

Microgrid business models define how microgrid projects are planned and 

implemented to achieve set goals (Asmus & Lawrence, 2016). These goals reach from 
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reducing energy costs, over improving resilience and reliability, to the value derived 

by the convenience to generate your own electricity (Hanna et al., 2017). 

There are four common business models for microgrids: Energy as a Service (EaaS), 

utility rate base (URB), Government Energy Service Contracts (GOV), and Owner 

Financing and Maintenance (OF) also referred to as single user business model. 81 per 

cent of installed microgrids globally are using an Energy as a Service (EaaS) business 

model. However, when capacity as opposed to total numbers is examined, then 

business model market shares are relatively evenly divided. EaaS and utility rate base 

(URB) feature the same leading market share (22%) for microgrids deployed globally 

(Asmus, 2019). Table 4 compares the various business models according to their 

percentage share of total microgrid capacity.   

 

Table 4: Microgrid Business Models’ Share of Capacity  
 

Business Models  % of Capacity (2Q2019) 
  

Energy as a Service (EaaS) 22 
Utility rate base (URB)  22 
Government Energy Service Contracts (GOV) 20 
Owner Financing and Maintenance (OF) 
Single User 

21 

Other 15 
  

Source: Asmus, P., (2019) 
 

In the long-term Energy as a Service (EaaS) is expected to become the leading 

business model. Examples of EaaS offerings include the provision of energy to data 

centres or charging stations for electric cars (Weil, 2018). EaaS includes power 

purchase agreements (PPAs), pay-as-you-go and other programs. The latter is often 

applied to smaller remote microgrids. The EaaS business model will particularly 

increase within the commercial and industrial (C&I) microgrid segment as it addresses 

the segment’s demand for microgrids as a service and converts capital expenses into 

operating costs (Aram, 2017). EaaS can drive microgrid growth in a similar way that 

the solar lease model drove solar PV system growth. It has, however, be noticed that 

microgrids are considerably more complex than PV systems and thus also entail more 

risk (Wood, 2018b). The complexity of microgrid projects stems from the broad range 

of factors that need to be considered such as the appropriate choice of technology, 

financing solutions, local policies and regulations, procurement policies, and utility 

needs (Aram, 2017).  



 50 

Power Purchase Agreements (PPAs) have gained importance as the common 

business model applied to solar PV projects. PPAs are performance-based contracts 

between energy consumers and producers that aim to reduce the risk for the parties 

involved in the agreement (Mendicino et al., 2019). Customers face no upfront costs 

and energy services are often priced similar or below to what the local utility firm is 

charging. PPAs for microgrids have increased over recent years and are particularly 

suited for private sector owned grid-tied microgrid projects. Microgrids deployed 

using PPAs have higher risks compared to solar PV systems due to their complexity 

and resulting performance risks. To reduce performance risks, customization needs to 

be limited (Asmus & Lawrence, 2016). 

Owner Financing and Maintenance or single owner business models refer to 

one entity that finances and maintains the microgrid (Asmus & Lawrence, 2016). It is 

the simplest among all available models and widely applied for grid-tied microgrids 

in particular in the campus microgrid segment. This business model is mostly applied 

to simple microgrids. The business model is likely changing to a EaaS model with 

increasing complexity of the microgrid due to the integration of additional components 

such as renewable energy sources and/or storage systems.  

The utility rate base model (URB) refers to microgrids that are deployed by 

utility firms which place their development and maintenance costs into their rate base 

and recover costs by charging users (Asmus & Lawrence, 2016). The rate base refers 

to the book value of the utility’s capital investment (Myers, 1972). This business model 

is mainly applied by public utilities that operate in remote areas with no grid 

connection (Asmus & Lawrence, 2016).  

Government Energy Service Contracts (GOV) include two common 

approaches: Energy savings performance contracts (ESPC) are long-term contracts 

based on identified and quantified energy savings that can be achieved through the 

integration of microgrids. ESPCs are therefore often used to improve the energy 

efficiency of existing projects. Utility energy services contracts (UESC) involve a 

utility firm with the aim to realise economies of scale (Asmus & Lawrence, 2016). 

 

4.9. The global microgrid market 

 

The microgrid market has recently entered the growth phase but is still 

relatively immature (Asmus et al., 2018). As of the third quarter of 2020 there have 
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been 7,968 microgrid projects identified representing 34.6 gigawatts (GW) of planned 

and installed power capacity (Guidehouse, 2020). The valuation of the global 

microgrid market varies significantly across the different research firms. According to 

Navigant Research, the global microgrids market had a value of $6.3 billion in 2018 

(Francklyn, 2018) with Pioneer Reports valuing it at $11.4 billion (Pioneer Reports, 

2019) and imarc (2019) stating a value of $19.3 billion for the same year. Global Data 

(2018) assigned a value of $15bn and Market Research Future a value of $18.7 billion 

for 2017 (Market Watch, 2019). The forecasted market value also differs among the 

research firms. Navigant expects the microgrid market to be worth $30.9 billion by 

2027 (Francklyn, 2018). Global Data (2018) predicts a $30 billion market already by 

2022. Market Research Future expects a value of $33 billion by 2023 (Market Watch, 

2019) and imarc forecasts a value of $36.3 billion by 2024 (imarc, 2019). Microgrid 

market growth is driven by increased government support. An example is the 

government of India that plans to implement 10,000 microgrid systems. Other 

governments also have ambitious microgrid investment plans. This is reflected by 

microgrids’ expected 23.5% share of total electricity access investments globally 

between 2018 and 2030 (Mortier, 2019).  

Microgrids have a global presence, but the market size as measured by total 

installed capacity varies significantly. As of 2019, Asia Pacific and North America are 

the leading microgrid markets with 37 and 33 per cent market share respectively. The 

Middle East & Africa and Europe follow with 14 and 11 per cent. Latin America is 

the region with the lowest installed microgrid capacity only accounting for 5 per cent 

(Asmus, 2019). While costs for different types of microgrids vary widely (Giraldez et 

al., (2018), overall microgrid costs have been declining. The drivers behind these cost 

reductions are falling prices of major microgrid components such as solar PV, wind, 

and battery storage technologies. The variance in costs is however high as it is affected 

by the size of the microgrid system, the vendors, manufacturers, type, controls used, 

and application. The microgrid controls have the highest cost differences due to 

different required complexity levels (Wood, 2018b).  

The microgrid market (Mishra et al., 2020) and its number of vendors have 

been increasing over the last years (Wood, 2018b). Major drivers of this growth have 

been battery manufacturing and microgrid control companies (ibid., 2018). There are, 

however, major corporations that previously entered the microgrid business and have 

then decided to discontinue their involvement. Examples of such companies are 
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Boeing, Bosch and Hitachi (Wood, 2018b). Despite the widely recognised benefits of 

microgrids, the microgrid market has long remained behind projected commercial 

growth (Soshinskaya et al., 2014). Among the most significant barriers for microgrid 

adoption in developed countries are standards and interconnection issues (Tweed, 

2014). Modern microgrids that integrate renewable energy sources require advanced 

storage technologies to ensure uninterrupted power supply. Improvements in both 

batteries as well as inverters have contributed to the growth of the microgrid market 

(imarc, 2019). Increasing threats involving cyber-attacks on power systems require 

novel security measures. Microgrids can supply high-risk sectors with power without 

being dependent on external power and communication technologies. Another driver 

is the aim to reduce transmission losses over long distances for which microgrids with 

their local power generation are a solution (imarc, 2019). The spending on 

infrastructure projects has been increasing due to population growth and urbanization 

in emerging countries such as China, India, and Mexico. This increases power demand 

substantially and drives microgrid implementation (Gran View Research, 2017). Low 

prices for natural gas are a further driver for more advanced microgrids (Tweed, 2014). 

Despite not part of the formal definition of microgrids, renewable energy sources such 

as solar PV and wind have become an important component of modern microgrids 

(Hafez & Bhattacharya, 2012; Su et al., 2013). The growth of renewable power 

generation is therefore an opportunity for microgrid diffusion. 

 

4.9.1. Actors driving microgrid adoption 

 

 Microgrids are complex projects that require several actors to collaborate to 

successfully plan, adopt, and operate (Soshinskaya et al., 2014; Warneryd et al., 2020). 

Microgrids differ from other decentralised energy systems such as solar PV systems 

for homes. Integrating microgrids into the existing grid infrastructure is challenging as 

they act as a parallel system that interferes with the macro power grid. They therefore 

may compete with utilities and have to meet stricter regulations (Ajaz & Bernell, 2020). 

High complexity and costs have led to a frontrunner role of state-related entities, such 

as university campuses or military bases, in early microgrid adoption (Aram, 2017; 

Hanna et al., 2017). Despite cross-country and regional differences, it can be concluded 

that government affiliated agencies play a central role in microgrid adoptions.  
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 Government agencies provided the majority of investments in early microgrid 

developments in the USA. In recent years large companies, banks, and utility firms 

have started to contribute to microgrid adoptions by privately financing projects 

(Roosa, 2021:219). The development of microgrids to foster sustainable energy 

production is increasingly driven by public-private partnerships (PPPs). The 

cooperation among stakeholders resulting from such partnerships is often represented 

by community microgrids (Roosa, 2021:226). 

 Commercial and industrial (C&I) companies represent a major market segment 

for microgrids (Asmus, 2019). Such companies finance microgrid projects either to 

secure their energy needs in off-grid areas, locations with unreliable power, or due to 

economic and environmental reasons (WBCSD, 2017). 

 The complexity of microgrids requires a revision of existing regulations and 

legislations to remove adoption barriers for actors (Warneryd et al., 2020). State actors 

in areas that suffer more from natural disasters, such as the United States and China, 

are more likely to be concerned regarding grid resilience and drive microgrid adoption 

compared to areas where such landscape factors are less frequent (Ajaz, 2019; Navigant 

Research, 2017a). Within large countries such as the United States, regions that 

experience repeated natural disasters such as California, state actors are more often 

involved in microgrid adoption (ibid., 2019). 

 State and federal actors are important decision-makers driving microgrid 

deployment through influencing policy, funding, and market demand (Feng et al., 

2018; Warneryd et al., 2020). In the EU the European Commission drives numerous 

microgrid development programmes (ibid., 2020). Utility firms responsible for the 

local electricity grid also play a central role in microgrid deployments (Feng et al., 

2018). Another group of key actors are technology providers that provide essential 

technology integration, development, and testing services for microgrid operations 

(Warneryd et al., 2020). In recent years financial investors, such as the Carlyle Group, 

have started to enter the microgrid market. Financial services firms often utilise an 

energy-as-a-service business model to operate microgrids and are increasingly 

establishing themselves as key actors (Spector, 2018). An example of how various 

actors are required to work together to realise a microgrid project in the United States 

is provided by Carter and colleagues (2019). For the Blue Lake Rancheria (BLR) 

Microgrid project, the California Energy Commission was the primary funding 

provider. The project leader, primary contractor, and engineering manager was the 
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Schatz Energy Research Center (SERC) located at the Humboldt State University. 

PG&E, the responsible utility firm, permitted and supported the project. BLR is the site 

host and owner of the microgrid (Carter et al., 2019; Warneryd et al., 2020). The 

microgrid adoption decision is commonly made by governmental agencies or research 

programs due to their high costs and still existing lack of regulations regarding their 

long-term value creation (Martin-Martinez et al., 2016; Warneryd et al., 2020). Table 

5 provides an overview of key actors involved in the adoption decision. 

 

Table 5: Key Actors by Country 
 

Country/ 
Political 
Union 

Key Actor Examples Description 

   

Australia Australian Renewable Energy Agency 
(ARENA) 

Governmental agency to manage 
Australia's renewable energy programs 

Council of Australian Governments 
(COAG) Energy Council  

Ministerial forum for the energy sectors 

Australian Energy Market Operator 
(AEMO) 

Agency responsible for coordinating 
the electricity market 

China State Council of the People's 
Republic of China 

Executive branch of the central 
government 

National Energy Administration Policy coordination agency 
Japan New Energy and Industrial 

Technology Development 
Organization (NEDO) 

National research and development 
agency 

EU European Commission (EC) Executive branch of the European 
Union 

E.ON Utility 
South 
Korea 

Ministry for Trade, Industry and 
Energy (MOTIE) 

Agency regulating economic policy of 
the country’s energy sectors 

Taiwan Ministry of Economic Affairs 
(MOEA) 

Ministry responsible for formulating 
policy and laws for the energy sector 

USA New York State Energy Research and 
Development Authority (NYSERDA) 

Public-benefit corporation 

California Energy Commission State agency responsible for energy 
policy and planning  

ComEd (Illinois) Utility 
PG&E (California) Utility 

   

Adapted from: Warneryd et al. (2020) 
 
 
4.9.2. Major industry players 

 

The microgrid industry continues to become more fragmented with more 

players entering due to improved opportunities. The spectrum of players reaches from 

highly specialised firms covering niche product offerings to fully vertically integrated 
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companies that both manufacture and distribute whole microgrid systems globally. Van 

den Berg et al., (2016), in their strategic analysis, grouped microgrid firms into three 

broad categories. First, there are large incumbents consisting of leading industrial 

manufacturers such as ABB, Schneider Electric, S&C Electric, and Siemens. The 

vertically integrated companies develop, manufacture, and distribute the technologies 

that microgrid end-customers such as utility firms require. Second, smaller new 

entrants that develop business models for software-based products related to renewable 

energy, grid management, and other grid infrastructure. The third group are system 

integrators that use components developed by group 1 and 2 to package microgrids 

systems for customers. Further, the authors name six major microgrid market 

stakeholders: “component manufacturing, systems engineering, system integration, 

installation and configuration, testing and certification, and operations and 

maintenance” (Van den Berg et al., 2016:9). In the following paragraphs a selection of 

key microgrid developers is introduced and collaborations between leading firms are 

discussed. Table 6 shows key microgrid firms along with their leading microgrid 

product.  

 

Table 6: Microgrid Industry: Selection of Key Players and Products 
 

Company Key Microgrid Products 
  

Large industrial developers: 

ABB Microgrid Plus System, PowerStore, MGHS100 
Duke Energy Microgrid Energy Solutions 
Emerson Electric Ovation microgrid control system 
Engie Giga Storage, HyESS, PowerCorner, PowerHouse control system, 

Prophet EMS microgrid optimization and control 
General Electric GridIQ microgrid control system, Mutilin U90 Plus Generation 

Optimizer 
Hitachi ABB e-mesh, PowerStore 
S&C Electric GridMaster Microgrid Control System 
Schneider Electric EcoStruxure Microgrid Advisior,  
Siemens SICAM control and monitoring system, Spectrum Power: Grid 

control solutions 
Distributed generation developers: 
Bloom Energy AlwaysON Microgrids, Bloom Energy Server 
Enchanted Rock Integrated Reliability on Call (iROC) 
Gridscape EnergyScope Microgrid Controller 
PowerSecure PowerBlock Generation Systems, NexGear Switchgear 
Tecogen InVerde e+ system 
Tesla Powerpack and Powerwall battery systems, Solar Roof 
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Asea Brown Boveri (ABB), established in 1988 through a merger between 

Allmänna Svenska Elektriska Aktiebolaget (ASEA) of Sweden and Brown, Boveri & 

Compagnie (BBC) of Switzerland, is headquartered in Zurich, Switzerland (ABB, 

2020a). ABB is a provider of power and automation technologies. The company offers 

a broad range of products and services to improve power grid reliability, increase 

industrial productivity, and enhance energy efficiency (ABB, 2020b; Bloomberg, 

2020a). ABB has been a frontrunner in the microgrid industry providing off-grid 

microgrids to remote locations for over 18 years (Wood, 2016b). The microgrid 

business was significantly strengthened in 2011 when ABB acquired Powercorp, an 

Australian renewable power automation company specialised in control solutions to 

manage the integration of renewable energy generation into microgrids. Powercorp’s 

flywheel-based system to stabilize frequency and voltage of microgrids was also a 

valuable addition to ABB’s microgrid business (ABB, 2011). In 2016 there were 

several strategic initiatives to further strengthen ABB’s microgrid business. ABB 

formed a strategic partnership with the Indian Institute of Technology Madras to build 

advanced microgrids and improve rural electrification (ABB, 2016a). This partnership 

is a driver for the Indian microgrid market. Also, in 2016, ABB launched a modular 

and scalable "plug and play" microgrid solution (ABB, 2016b) providing it with a 

competitive edge in the global microgrid market. A partnership between ABB, the 

Australian Renewable Energy Agency (ARENA), SunPower, and SunSHIFT has led 

to the world's first portable hybrid microgrid (ABB, 2016c). The portable hybrid 

microgrid combines “solar modules, conventional diesel/gas generators and optional 

energy storage” (Simpson, 2016). ABB and Rolls-Royce announced in 2019 a 

worldwide partnership on microgrid technologies and innovative automation to offer 

microgrid solutions for utilities, commercial and industrial entities (ABB, 2019).  

Duke Energy is an electric power holding company that owns and operates 

diverse power generation assets in the Americas (Duke Energy, 2020a; Bloomberg, 

2020g). Duke Energy has been a provider of microgrid solutions since 2013. As part 

of its microgrid developments the company also collaborated with Schneider Electric 

and Siemens (Duke Energy, 2020b).  

Engie SA is a French multinational electric utility firm that offers electricity, 

natural gas and energy services (Engie, 2020a). Through its EPS technological division 

and its Smart Cities activities, Engie offers decentralised energy generation, energy 

storage systems, and microgrid solutions (Engie, 2018; Engie, 2020b). A key product 
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in its microgrid business is PowerCorner, which is a containerised microgrid solution 

designed for rural environments based on a combination of generators, PV systems 

and battery technology (Engie, 2016).  

S&C Electric, founded in 1911, is a manufacturer and global provider of 

electric power systems, equipment, and services specialising in system switching, 

protection and control (Bloomberg, 2020f; S&C, 2020a). The company is an 

established microgrid provider offering a leading microgrid control system 

(GridMaster) and complete solutions (S&C, 2020b).  

Siemens AG, established 1847 and headquartered in Munich, Germany, is a 

leading electronics and electrical engineering company. Siemens mainly operates in 

the fields of electrification and power, automation and control, transportation, and 

medical diagnosis (Bloomberg, 2020b; Siemens, 2020a). Siemens is a major player in 

the microgrid business with a comprehensive portfolio of products, solutions, and 

services (Siemens, 2020b). In late 2015 Siemens and LO3 formed a partnership to 

collaborate on microgrid projects with the Brooklyn Microgrid being the first project. 

The Brooklyn Microgrid integrates solar PV to generate local electricity. Excess 

energy is sold to neighbours via peer-to-peer transactions using blockchain 

technology. The technology enables to count up and log every unit of energy created 

within the microgrid. These units of energy are then sold and bought in the community. 

In 2017 Siemens invested in LO3 Energy to strengthen the existing partnership (LO3 

Energy, 2016; Siemens, 2017). In 2018 Siemens and Solarkiosk joined forces with the 

aim to develop microgrid solutions for rural off-grid areas in Africa (Siemens, 2018).  

General Electric (GE), founded in 1892, is an industrial conglomerate 

headquartered in Boston, United States. GE is a diversified industrial, infrastructure 

and financial services corporation operating within power, renewable energy, aviation, 

and healthcare industries (Bloomberg, 2020c; GE, 2020). GE acquired the power and 

grid businesses of Alstom in 2015 to combine its Digital Energy business with Alstom 

Grid to form Grid Solutions (GS), a joint venture of GE and Alstom (GE, 2015). GS 

provides products and services to enable utilities and industry to effectively manage 

electricity from generation to consumption. This includes microgrid solutions for 

remote, utility, campus, military, smart city, and industrial sites (ibid., 2015).  

 Hitachi, Ltd., headquartered in Tokyo, Japan is a diversified multinational 

manufacturer of equipment, machinery, and services for e.g. the power, 

communications, and consumer electronics sectors (Bloomberg, 2020d). In mid-2020 
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Hitachi and ABB created a joint venture called Hitachi ABB Power Grids with the aim 

to become a leading power systems firm that amongst several activities will develop 

microgrid solutions (HitachiABB, 2020).  

Emerson Electric Co, founded 1890, is an American diversified 

manufacturing company operating in two broad business segments: ‘Automation 

Solutions’ which includes its electrical components products and distributed microgrid 

controller and control systems as well as ‘Commercial & Residential Solutions’ 

(Bloomberg, 2020e; Emerson, 2020). 

Schneider Electric SE, founded in 1995 and headquartered in France, is a 

multinational provider of electrical power products (Bloomberg, 2020h). Amongst a 

broad portfolio of microgrid solutions, the firm has recently started to offer modular 

microgrids in combination with an energy-as-a-service (EaaS) business model (John, 

2020). The following paragraph offers an overview of specialised microgrid providers.  

PowerSecure Inc, founded in 2000, and a subsidiary of Southern Company, a 

utility holding company, is a leading provider of distributed generation systems 

including advanced microgrid solutions (Bloomberg, 2020i; PowerSecure, 2020). 

According to company data it is the largest microgrid developer in the United States 

with 2 GW of installed and 1.6GW of controlled distributed generation systems 

(Southern Company, 2019).  

Bloom Energy was founded in 2001 and offers specialised distributed power 

generation equipment (Bloomberg, 2020j). The firm’s ‘Energy Server’ platform, the 

central building block of its microgrid solutions, is a customisable power generator 

utilising solid oxide fuel cell technology (Bloom Energy, 2019; 2020).  

Enchanted Rock ltd, founded in 2006, is an American provider of natural gas-

fuelled microgrid solutions (Enchanted Rock, 2020). The firm specialises in providing 

resiliency microgrid technology to critical infrastructure sectors (Microgrid 

Knowledge, 2020).  

Gridscape Solutions, founded in 2012, is a Californian company specialised 

in smart energy systems including microgrids and electric vehicle charging systems 

(Gridscape, 2018a). The firm through its EnergyScope product line offers resource 

management systems for distributed energy resources and microgrid controllers 

(Gridscape, 2018b).  
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Tecogen, a provider of Combined Heat and Power (CHP) distributed 

generation systems, was founded in 2000 and offers packaged CHP microgrids 

(Tecogen, 2020).  

Tesla, founded in 2003, provides electric vehicles, battery technology, and 

distributed energy solutions including microgrids to a wide range of customers 

including commercial organisations and utility firms (Bloomberg, 2020k; Tesla, 

2020a; b). 

 

4.9.3. Geographic differences in microgrid adoption and drivers 

 

Microgrids are adopted globally but there are major geographic differences in 

both market share and growth drivers. It can be observed that the scope and purpose 

of microgrid projects differ from country to country. Countries have different visions 

and requirements regarding the future of the power grid and face diverse challenges 

related to the required investments in their power grids. Some countries focus mainly 

on increasing the share of renewable energies whereas others want to improve the 

reliability and resilience of their grid (Daghrour & Al-Rhia, 2019). Whereas the US 

mainly requires investments into the aging grid infrastructure, Europe has reached a 

point where the further integration of renewables, particularly wind and solar, has 

become a challenge, and developing countries mainly in the Sub-Saharan region suffer 

from low electrification rates (John, 2013). In the US electricity prices have increased 

by over 12 per cent in the last decade (EIA, 2019a) with also substantial increases in 

the amount customers pay for grid infrastructure. However, the number of outages and 

their duration have increased at the same time. This can be interpreted as a sign for 

diminishing returns of grid investments (John, 2013). Microgrids are a promising 

alternative to substantial investments in the aging centralized grid infrastructure. Many 

countries also have restrictions on new transmission and distribution networks further 

strengthening the case for microgrids (Farzan et al., 2013). There are significant 

differences in the motivation to install microgrids between regions.  

Microgrid market drivers can be broadly grouped into those applicable to 

developed regions with an existing grid infrastructure and those drivers applicable to 

regions where electrification rates are below average (Hirsch et al., 2018). Some 

drivers such as fuel and cost savings as well as improved ancillary grid services are 

important to all regions (Hirsch et al., 2018). The developing world faces substantially 
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different challenges as there are still close to 800 million people with no access to 

electricity (Ayaburi et al., 2020) and continued rapid population growth in the least 

developed countries (United Nations, 2019). Countries with lowest electrification rates 

are predominantly located in sub-Saharan Africa and the region is expected to gain 

more than one billion people between 2019 and 2050 (ibid., 2019). Unreliable power 

has a negative effect on healthcare, education, and the environment (Practical Action, 

2013; 2018). Renewable energy sources provide the least expensive option to provide 

electricity access to remote areas largely due to the declining costs of small-scale solar 

photovoltaic (PV) systems (IEA, 2018). Microgrid technologies can therefore have a 

particular high impact in these regions. North America has seen a high growth on 

decentralized power generation in the industrial and municipal sector to increase the 

independence from the main grid. This development has a positive impact on 

microgrid market growth. The manufacturing and construction sector growth in Asia 

Pacific in combination with regulatory support promotes infrastructure investments 

with microgrids expected to benefit in particular in markets such as China and India. 

In Central & South America the abundance of mineral reserves and resulting need for 

distributed power generation is regarded as a major driver for microgrid market growth 

(Grand View Research, 2017). Table 7 provides a summary of the key differences in 

microgrid adoption drivers across regions.  

 

Table 7: Regional Differences in Microgrid Adoption Drivers 
 

Region  Main Driver for Microgrid Adoption 
North America Aging Grid Infrastructure and Natural Disasters 
Europe Integration of Renewable Energy 
Asia-Pacific Meet growing demand and electrification of remote areas 
Middle East and Africa Electrification of rural areas 
Central and South America  Reduce network losses 
World Fuel and cost savings, improving grid stability  

 
 

4.9.4. Microgrid markets 

 

The following paragraphs present information about the global distribution of 

and regional differences in microgrid diffusion and capacity.  
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a) North America 

North America, despite being outperformed by the Asia-Pacific region in terms 

of overall microgrid capacity, the region is still leading in grid-tied microgrids. The 

second largest microgrid market is mainly driven by the United States (Wood, 2018b). 

Market growth can be attributed to a growing need to improve resilience and reliability 

of the electricity grid. The US, in particular the North-Eastern region, faces a 

combination of outdated electrical grid infrastructure and an increasing number of 

severe weather events leading to power outages and significant costs. Microgrids are 

possible solutions to replace aged generation units and support the existing 

transmission and distribution system (Hirsch et al., 2018). Microgrids have been 

installed to protect critical facilities such as hospitals (Stluka et al., 2011), water 

supply, transportation, and information systems against blackouts (Abbey et al., 2014) 

but are increasingly applied to whole communities (Mengelkamp et al., 2018).  

 

b) United States 

When only countries are considered, then the U.S. has the highest microgrid 

capacity share in the world (Ajaz, 2019). Regional climatical and geographical 

differences are important factors determining DER attractiveness. The U.S. covers a 

broad range of these factors leading to significant differences in DER adoption across 

the country. The West-Coast with its densely populated regions in California, above 

average electricity prices, and a cooling and heating demand, is an attractive market 

for DER expansion. The North-eastern U.S. also represents a market with good DER 

potential. This potential is less pronounced in the Midwest and smallest in the south 

due to low electricity rates (Maribu et al., 2007). In a recent quantitative study, Ajaz 

(2019) examined microgrid adoption in the U.S. and found that states with higher 

frequencies of extreme weather events are more like to adopt microgrids. The author, 

in line with previous studies (Che et al., 2014; Lu et al., 2015; Marnay et al., 2015b), 

found that a key driver behind the adoption are resilience concerns that are higher in 

states that experience such disasters more frequently. Ajaz (2019) found that a 1% 

increase in disaster frequency led to a 0.06% increase in number of microgrid projects. 

It can be concluded that resilience to disasters contributes to grid decentralization 

(Khan, 2018). The study also shows that public support for energy choice and the 

environment does not significantly increase microgrid adoption. (Ajaz, 2019). The 

increase in both frequency and severity of extreme weather and climate events that are 
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causing power outages (Climate Central, 2014) shows the inability of the current 

electricity grid infrastructure to deal with this change, providing an opportunity for 

microgrids (Ajaz, 2019). The U.S. National Academy of Engineering named the 

electricity system as one of the 20 greatest engineering achievements of the 20th 

century (Constable et al., 2003). The current condition of the energy infrastructure in 

the U.S. does, however, not reflect this achievement with consistently bad ratings by 

the American Socierty of Civil Engineers (ASCE, 2019). The significant progress in 

the development of microgrids and their increasing technical and economic feasibility 

(Hirsch et al., 2018; Schneider et al., 2016) shows that microgrids, still being a niche 

innovation, can become a competitor to incumbent technologies further driven by the 

growing need for resilience (Ajaz, 2019).  

 

c) Europe 

Europe is only the fourth biggest microgrid market with 11 per cent of capacity 

(Asmus, 2019). This can be partially explained by the high existing grid reliability 

(Eurelectric, 2013; Fairley, 2014) which reduces the motivation to install microgrids 

based on power outages. Growth for Europe’s microgrid market is expected to be 

limited with the reduced need for new remote systems being a factor (Wood, 2018b). 

Distribution system operators (DSOs) in Europe face an increasing difficulty in 

integrating decentralised renewable energy sources with high variability in generation 

as well as new loads such as electric cars. The rising share of renewable energy makes 

investments into the distribution infrastructure necessary to maintain the high levels 

of reliability which will also increase microgrid investments (Eurelectric, 2013). 

In Europe, the reduction of global warming through the integration of renewable 

energy generation has been the major driver for microgrid adoption. Microgrids enable 

the local balancing of power supply and demand facilitating the integration of 

distributed energy resources. A major advantage of microgrids over standalone DERs, 

such as simple solar home systems using photovoltaic solar energy and battery storage, 

is their appearance as a single unit to the distribution utility. This significantly reduces 

the number of sources and consumers of electricity that have to be managed and 

coordinated and enables the modification of net load profiles to optimise the main grid 

(Lasseter et al., 2002). In Europe significant investments in transmission lines are 

required since utility scale renewable generation is often far away from the demand 

for electricity. The required grid expansion depends on the target for greenhouse gas 
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(GHG) emissions with ambitious reductions of 80% until 2050 requiring almost twice 

the investment and expansion length compared to 40% reductions (Egerer et al., 2013). 

Microgrids are flexible systems that facilitate the integration of DERs including 

renewable energy sources and can therefore be a solution for Europe’s transmission 

problem. Europe has less and shorter power outages compared to the US (Campbell, 

2012) but still faces a reliability challenge. Utilities and grid operators in Europe have 

to ensure that renewable energy sources such as wind and solar PV are integrated 

without endangering the stability of the grid network (Hirsch et al., 2018). The 

government funded fast increase of wind and solar power capacity has not been met 

with the required modernisation and expansion of grid infrastructure (Jorge & 

Hertwich, 2014). Major grid expansions and additional storage capacities are required 

as a consequence (Hammons, 2008; Müller et al., 2013). Major investments in new 

transmission lines are for example required to effectively accommodate the power 

produced by offshore wind parks (Bresesti et al., 2008). Jorge and Hertwich (2014) 

examined the effect on the environment resulting from the transition to a renewable 

power system. The authors, focusing on CO2 emissions from building the required 

additions of transmission infrastructure, found that projects for new and updated lines 

will emit significant amounts of CO2 which need to be considered when analysing the 

integration of renewable power sources. Microgrids minimise the distance between 

power generation and consumption and have therefore the potential to reduce CO2 

emissions otherwise required for building new grid infrastructure to accommodate 

renewable energy. Microgrids also reduce the complexity of controlling a huge amount 

of DER which facilitates the integration of new DER capacity in Europe. Microgrids 

integrate several DER and appear to the utility firm as a single source (Lasseter et al. 

2002).  

Electricity prices in the European Union are the highest in the world and are 

forecasted to modestly increase (IEA, 2018). This development further incentivises 

firms and individuals alike to consider the investment in distributed electricity 

generation. Utility rates are increasing due to required works on dated transmission, 

distribution, and generation systems, new investments in smart grids, increasing 

operating costs, and reduced demand due to higher energy efficiency and increasing 

consumer owned electricity generation. The reduced demand leads to a lower 

utilization rate of existing centralized power plants which ultimately forces utilities to 

increase rates (Nersesian, 2016).  
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d) Asia Pacific 

Asia Pacific (APAC) is the largest microgrid market with 37 per cent of overall 

capacity (Asmus, 2019). The region has surpassed North America as the largest 

microgrid market due to its significant population growth and less developed power 

grid infrastructure. The latter particularly drives the adoption of remote microgrids. 

Major markets within the APAC region are Australia, China, India, and Japan (Wood, 

2018b). A significant number of microgrids deployed in the Asia Pacific region are 

small and in remote locations often with mobile phone towers as main loads (Asmus, 

2014). The insufficient grid infrastructure and population growth creates opportunities 

for remote microgrids (Wood, 2018b). Companies have been increasingly investing in 

microgrid development in the APAP region. A significant number of microgrids are, 

however, demonstration projects with no clear business model attached. In order to 

advance the adoption and implementation of economical microgrids in the region, 

suitable business models need to be found. Overall, the forecast for the APAC 

microgrid market is positive with companies such as ABB and Schneider Electric 

predicting major growth in particular for remote, community, and industrial 

microgrids (Research and Markets, 2018). The APAC region comprises several 

developing nations and rural areas with insufficient energy infrastructure and resulting 

unreliable power quality and low electrification rates. The high number of islands in 

the region further complicate the building of required grid infrastructure. Microgrids 

are therefore an opportunity for the region to increase its electrification rate and reduce 

investments on transmission infrastructure (BIS Research 2018; Sriram, 2011). 

 

e) Middle East & Africa 

The Middle East & Africa is the third largest microgrid market with 14 per cent 

of total capacity (Asmus, 2019). Africa faces significant challenges due to energy 

poverty (Batinge et al., 2019) with a significant amount of the population (ca. 57%) in 

Sub-Saharan African countries lacking access to reliable electricity (Cozzi et al., 

2018), there is potential for microgrids to address this need. Costs to expand the 

existing power grid to unelectrified regions are high and most often exceed the costs 

for microgrids. Many households in rural sub-Saharan countries rely on biomass to 

cover their energy needs leading to high emission rates. The integration of renewable 

energy sources into microgrids will contribute to cut greenhouse gas emissions. The 

region benefits from good conditions for both solar PV and wind as renewable energy 
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sources (Longe et al., 2013). Countries with an insufficient grid infrastructure provide 

a good opportunity for microgrids as the relationship between a microgrid’s 

effectiveness and tying into an existing grid benefits them (Hubble & Ustun, 2016). 

However, despite the good growth potential for microgrids in the Middle East & Africa 

region, the pace of microgrid development has been limited. The lack of private sector 

investments has slowed down added capacity. Reasons for insufficient microgrid 

investment are unfavourable policies and utility rates. Utility rates in most emerging 

economies are often too low to enable a sufficient return on investment for microgrid 

investors (Reber & Booth, 2018). The rates often do not reflect the cost of service due 

to government subsidised utilities and donor-funded infrastructure projects (Bardouille 

et al., 2012). Microgrids do not receive the same subsidy benefit but are in many 

regions expected to offer a rate comparable to utilities and thus do not have a cost 

advantage which hinders their diffusion (Schnitzer et al., 2014). Stable cost-reflective 

rates and cost-recovery mechanisms are required to attract private investors and scale-

up microgrid projects (Reber & Booth, 2018). Investments in microgrid projects in the 

Middle East region have been limited and insufficient planning has further reduced 

adoption rates. Barriers for microgrid adoption are heavily subsidised utility electricity 

rates. However, there is increased effort to implement subsidy reform policies and 

mechanisms to accelerate the modernisation of the grid infrastructure.  Local utilities, 

technology firms, and governments need to collaborate with international microgrid 

vendors to facilitate microgrid diffusion in the Middle East (SEI, 2019).  

 

f) Central and South America 

Central and South America is the least developed market for microgrids with 

only 5 per cent of capacity (Asmus, 2019). Electricity generation in most Central and 

South American countries relies heavily on fossil fuels. The region has integrated 

significant conventional renewable energy generation into its power mix consisting of 

mainly large hydro power plants (De Nigris & Coviello, 2012). Hydro energy 

contributes to 51 per cent of power generation in the region (IEA, 2018) and renewable 

energy sources (i.e. wind, solar, biomass) only make up 12 percent of power generation 

capacity (IEA, 2018). Power generation in Central and South America is mainly 

centralised with negligible distributed generation. Countries in this region plan to 

increase the share of decentralised renewable energy sources in the energy mix which 

will also benefit microgrids. The expected added distributed generation capacity for 
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the region until 2023 is however behind all other regions (IEA, 2018). The limited 

growth potential for microgrids can be attributed to high electrification rates across the 

region with the exception of some remote areas which offer an opportunity for remote 

microgrids (Macri, 2017). Microgrids would be beneficial to reduce network losses 

and improve the energy management of mega-cities in the region (De Nigris & 

Coviello, 2012). 

 

4.9.5. Global microgrid market by end-use 

 

Microgrids can be broadly categorized into either grid-connected or remote 

systems. As of 2018, remote microgrids represented 41 per cent of total microgrid 

power capacity in the world. The remainder of 59 per cent represent the various 

microgrid segments that are grid-connected but do have the ability to be operated in 

island mode. The grid-tied market is therefore significantly larger than the remote 

segment representing 1,463 MW of annual capacity compared to 1,231 MW for remote 

systems in 2018. This gap of 232 MW is expected to further grow to 7,346 MW by 

2027, with remote systems accounting for 4,230 MW and 11,576 MW for grid-tied 

systems (Wood, 2018). This development can be explained by the preference for grid-

tied systems in developed markets such as North America (Asmus, 2019). 

Asmus et al. (2009) identify six major microgrid applications. First, community 

microgrids, with communities referring to geographic regions including residential 

customers. It is expected that standardization needs to progress, and regulatory barriers 

removed in order to achieve broad commercial acceptance of this class. Second, 

commercial/industrial microgrids, such as those used in the petrochemical industry. 

Third, institutional/campus microgrids offer the best near-term development 

opportunity due to the opportunity of common ownership. Fourth, remote off-grid 

microgrids, representing the most operated type of microgrids globally with the 

smallest average capacity. Fifth, military microgrids represent a growing market 

segment with a focus on the integration of renewables to become independent from 

fuel sources. A sixth segment is utility distribution that previously was combined with 

community microgrids, and a seventh segment included just recently are direct current 

(DC) microgrids (Asmus et al., 2009; Asmus, 2019). Remote microgrids, as already 

outlined, is the leading market segment with 41% of capacity. This is followed by 

commercial/industrial microgrids (36%) and utility distribution microgrids (8%). 
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Institutional/Campus and Military microgrids follow with 6 and 5 per cent 

respectively. Apart from the recently introduced DC microgrids with less than 1%, 

community microgrids are the smallest segment with 4 per cent (Asmus, 2019). The 

most capacity from Q2 to Q4 2018 was added by utility distribution projects 

contributing to 40% of new capacity followed by remote projects that contributed 34% 

of the growth. The combined capacity of all grid-connected microgrids is larger than 

the capacity of remote microgrids. The current gap of 232 MW is expected to further 

widen to 7,346 MW by 2027, increasing the capacity of grid-connected microgrids to 

more than 2.7 times of remote microgrids (Wood, 2018b). Microgrid costs vary 

according to their segment. According to Giraldez et al. (2018) community microgrids 

cost an average of $2.1 million per megawatt, campus microgrids cost $3.3 

million/MW, utility microgrids cost $2.6 million/MW, and commercial microgrids 

cost an average of $4 million/MW. The following table compares GTM’s and 

Navigant Research’s databases for their 2016 data on microgrid projects per market 

segment. The data varies significantly due to differences in the number of microgrid 

projects covered. Navigant’s microgrid database covers double the amount of remote 

microgrid projects compared to GTM’s (Giraldez et al., 2018). Table 8 provides a 

comparison between two of the major microgrid research firms with regard to the end-

users’ share of the type of microgrid. 

 

Table 8: Comparison of Navigant Research and GTM Data for Microgrid 
Adoption 

 

Type Navigant 
Research 
(2016) by 
Capacity 

Navigant 
Research 
(2016) by # 
Projects 

GTM (2016) 
by Capacity 

GTM 
(2016) by 
# Projects 

     

Remote 29.1% 32.6% 6.8% 16.7% 
Campus/Institutional 47.7% 24.7% 47.0% 40.1% 
Commercial 8.1% 21.3% 26.0% 16.7% 
Community 15.1% 21.3 20.2% 26.6% 
     

Source: Giraldez et al., (2018) 
 
 

4.9.6. Microgrid segments 

 

There are six major microgrid segments: military, commercial, campus, 

community, utility, and remote microgrids. 
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a) Military microgrids 

Microgrids used for military purposes only make up 5 per cent of all microgrid 

capacity globally but have been one of the premier use cases for the technology. The 

US Department of Defense (DOD), the largest consumer of energy, particularly 

petroleum, in the world aims to reduce its fossil fuel dependence (Hill, 2017, Walton, 

2017). Microgrid implementations are one solution to achieve this and DOD spending 

on microgrids is expected to increase from $453 million in 2017 to $1.4 billion in 2026 

(Navigant Research, 2017b). The DOD has significantly contributed to 

commercialising microgrids. The DOD is not the only but the largest implementor of 

military microgrids with other countries such as the UK, Canada, France, Russia, and 

China also expected to become more involved (Navigant Research, 2017c). For grid-

connected military microgrids the main driver is to provide energy security in case of 

outages to maintain critical operations (Van Broekhoven et al., 2012). The reliability 

of utilities serving major military bases has been declining and remote locations have 

no access to the grid. In both cases Diesel generators are most commonly used to 

ensure energy resilience. The reliance on fossil fuels, however, can be a disadvantage 

with significant challenges and costs involved to organise adequate supply. Microgrids 

integrating renewables and storage systems are an alternative strategy to ensure 

resilience that has been increasingly deployed (Merchant, 2019; Mojdehi, 2018). Next 

to energy security, cost savings and the implementation of renewable energy sources 

are further drivers to adopt military microgrids (Black & Veatch, 2019). Reducing the 

environmental impact of military operations is a significant factor. In the United 

States, the ‘Smart Power Infrastructure Demonstration for Energy Reliability and 

Security’ (SPIDERS) programme has the purpose to integrate microgrids in military 

bases to ensure power security (Stamp, 2012). The initiative uses new solar PV and 

energy storage and readily available diesel backup generators to support the loads of 

the entire base (Aram, 2017; Hirsch et al., 2018). 

  

b) Commercial/industrial microgrids 

Commercial and industrial (C&I) microgrids are expected to be the fastest 

growing and most innovative market segment in the coming years (Asmus, 2019). 

Historically C&I microgrids have the highest percentage of legacy assets but new 

assets in form of renewable energy generation are being added (Wood, 2018b). C&I 

microgrids often use existing diesel generators which make up the largest share of 
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integrated DER technologies, but energy storage, CHP, and solar PV are increasingly 

adopted (Giraldez et al., 2018). The global capacity of C&I microgrids is projected to 

grow from 448.3 MW in 2017 to 5,389.1 MW annually by 2026 (Navigant Research, 

2017d). The segment had, however, issues to gain traction as C&I microgrids were 

often not considered as an alternative to traditional backup generation, had an 

unsatisfactory return on investment, and no compelling business models existed. The 

lack of standards has also limited C&I projects globally (Navigant Research, 2017d; 

Aram, 2017). Novel business models such as power purchase agreements (PPAs) that 

allow customers to adopt C&I microgrids without capital expenditure have led to 

segment growth (Aram, 2017). C&I microgrids have benefitted from the diffusion of 

other microgrid segments and applications as this developed has increased the 

acceptance of the technology. The C&I microgrid segment benefits from clients with 

substantial investment capital interested in innovative business models. The reliability 

of microgrids is a highly valued aspect for C&I clients increasing their willingness to 

invest. The general declining cost trends for renewable energy technologies such as 

solar PV, batteries, and inverters as well as improved regulations make C&I 

microgrids an increasingly attractive investment (Navigant Research, 2017d). A major 

challenge the segment faces are the exceptionally low electricity rates offered to 

industrial clients decreasing the motivation to invest into alternatives. The intense 

competition for capital expenditures is a further barrier (Navigant Research, 2017d).  

 

c) Campus/institutional microgrids 

Next to military installations, universities and research facilities have also been 

among the first adopters of microgrids (Tweed, 2014). A major driver for research 

related microgrid applications has been power security. Universities have several 

critical facilities such as research labs that require energy backup in case the main grid 

faces power outages. It has also been shown that energy security is regarded as a 

positive characteristic in choosing universities (Aram, 2017). Another driver for 

universities to install microgrids is to make campuses more environmentally friendly 

and to meet the ambitious sustainability targets. A third driver is to use microgrids as 

research sites and for educational purposes. Some of the most advances microgrids 

have been installed at university campuses. Examples are the University of California, 

San Diego, Princeton University, and the University of Texas at Austin (Wood, 2017). 

University campuses and other institutions consume large quantities of energy for 
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cooling, heating, and power making them particularly suited for microgrid installations 

(Aram, 2017). Combined heat and power (CHP) and combined cooling, heat, and 

power (CCHP) microgrids have proven as a successful model and dominates 

generation capacity for this segment (Giraldez et al., 2018; Hirsch et al. 2018; Wood, 

2017). The existing electric and thermal infrastructure of universities with limited 

interconnection points with the utility reduces technical complexity and costs of 

microgrid projects. Existing campus microgrids are offering among the largest 

capacities of all segments (Hirsch et al. 2018; Wood, 2017). Campus microgrids are 

most often deployed in North America which is the region with the highest annual 

capacity and revenue. Total capacity in North America alone is expected to increase 

more than fivefold from 219 MW in 2015 to 1200 MW in 2024 (Aram, 2017). 

 

d) Community and building-integrated microgrids 

Community microgrids are often government supported programs to provide 

energy resilience in case of weather-related outages (Aram, 2017). Extreme weather 

events causing grid failures and the consequential loss of power to critical 

infrastructure lead to substantial losses and costs. An infamous example that highlights 

the vulnerability of urban communities was Superstorm Sandy that hit the North-

Eastern United States in 2012 and affected more than 8.5 million people (Mukherjee 

et al., 2018) causing up to $25 billion in lost business activity (Webley, 2012). The 

main driver for community microgrids is therefore to reduce the dependence on utility-

supplied energy to improve community resilience followed by the aim to lower carbon 

emission rates (Yuan et al., 2017). Power supply reliability also helps communities to 

attract companies that value resilience and the constant availability of critical 

infrastructure and public services. This in combination with the potential for reduced 

energy costs can strengthen a community’s economy (Advisian, 2019). Community 

microgrids currently represents the smallest segment with limited growth potential 

(Asmus, 2019). The segment faces numerous regulatory challenges such as ownership 

of the community microgrid, third-party generation participation, how to recover 

investments, and inclusion in the utility rate case (Bahramirad et al., 2015). 

Community microgrids involve several participants and electricity off-takers which 

causes technical and financial challenges. The numerous stakeholders represent a 

broad spectrum (hospitals, individual households, grocery stores etc.) which 

complicates the adoption of a suitable business model. There are, however, ongoing 
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efforts by governments to reduce these barriers (Aram, 2017). Further, since 

community microgrids are built upon the existing utility distribution network, they 

need the support of utilities to ensure a sustainable deployment (Bahramirad et al., 

2015). Communities often integrate existing diesel back-up and natural gas generators 

into new microgrid projects (Giraldez et al., 2018). Different approaches to residential 

microgrid have been discussed in the literature with the optimal level of microgrid 

aggregation being a central topic (Hirsch et al., 2018). One option is to deploy 

microgrid technology at the individual household level (Sechilariu et al., 2013), 

representing a fully decentralized approach. The advantages of this building-integrated 

microgrid approach include full customer control over DERs and that most changes 

necessary to add microgrid technology occur behind the utility meter. The latter results 

into less legal and regulatory barriers as opposed to large community microgrids that 

integrate households with no main grid connection (Hirsch et al., 2018; Sechilariu et 

al., 2013). The disadvantages of the building-integrated approach are its inability to 

capture full economies of scale and its low load and generation diversity. Community 

microgrids that rely on shared DERs and loads can be more cost efficient (Hirsch et 

al., 2018). In general, larger shared distributed generation units achieve superior 

economies of scale over micro-sources in individual households. There is a significant 

connection cost involved per DG unit to the utility and having a cluster of micro-

sources behind the meter as part of a community microgrid reduced the overall cost of 

the system (Lasseter, 2007). Another promising residential microgrid concept 

integrates PV systems, electric vehicle (EV) batteries, and energy storage systems 

(ESS). The PV system charges the ESS during daylight reducing over-voltages and at 

night the ESS charges the EV batteries reducing under-voltages (Rodriguez-Diaz et 

al., 2015). This reduces regulatory barriers as feed-in tariff policies are not required 

due to limited power exchange with the main electricity grid (Hirsch et al., 2018). 

 

e) Utility microgrids 

Utilities are increasingly exploring microgrids as potential revenue streams and 

options to upgrade grid infrastructure to meet the challenges of the current grid 

transformation. They are in the difficult position of maintaining centralized generation 

and distribution infrastructure while integrating an increasing amount of distributed 

energy resources (Navigant Research, 2018a). Several utilities in the US have 

microgrid projects. Aram (2017) lists the ‘San Diego Gas & Electric’s Borrego Springs 
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Microgrid’, ‘Duke Energy’s Mount Holly Microgrid’, and the ‘National Grid’s 

Potsdam Microgrid’ as examples. Microgrids are also beneficial for utilities by 

providing extra capacities during peak power demand and more flexibility to undertake 

system repairs without affecting end-customers (Kroposki et al., 2008). The increasing 

global interest, installed capacity, and regulatory support for microgrids has 

contributed to utilities investigating the role of microgrids in the energy market 

(Navigant Research, 2018b). 

 

f) Remote microgrids 

Remote microgrids represent the most mature and largest of all microgrid 

segments. They are characterised by constant operation in island mode as no 

connection to utilities exists, decentralized control systems, limited maximum power 

use, and looser power quality requirements compared to industrial microgrids 

(Majumder, 2013). The most common form of distributed energy resources used for 

remote microgrids are still diesel generators due to their affordability (Pelland et al., 

2012). However, renewable energy and energy storage capacity is continuously 

increasing (Giraldez et al., 2018). PV systems and less often also wind turbines are 

increasingly integrated into diesel-based remote microgrids, so called hybrid 

microgrids, to reduce operational costs and diversify generation (Nema et al., 2009; 

Shakya et al., 2016). A major driver for remote microgrids is the low electrification 

rate in some regions (Illindala et al., 2007; Williams et al., 2015). Remote microgrids 

deployed in electrically underdeveloped regions benefit from the same technological 

advancements that drive the energy transition in developed markets resulting in 

smarter microgrids for these regions (Hirsch et al., 2019). A major issue that reduces 

the profitability of remote microgrids is theft (ESMAP, 2000). The most common form 

of theft are unauthorized connections to the remote microgrid’s distribution line and 

meter manipulations (Buevich et al., 2014). Hybrid microgrids are designed to reduce 

overall fuel consumption. Diesel generators only operate at their best fuel efficiency 

when they operate at high loading. This is often not the case in hybrid microgrids as 

peak load requirements determine the size of generators and PV or wind additions 

further reduce the average load. This leads to suboptimal fuel efficiency due to 

generators operating at low loading for which they are not designed (Nayar, 2012). 

This may cause an increase, as opposed to a reduction, in fuel consumption of a PV-

diesel microgrid (Chalise et al., 2013). In order to prevent this, storage systems need 
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to be installed which act either as a source to support the generator in meeting load 

requirements or as a load to use the generator at full capacity (Chalise et al., 2016; 

Pelland et al., 2012).   

 

 

5. DISCUSSION AND CONCLUSIONS 

 
This industry study raises theoretical questions on multiple levels and provides 

several opportunities for further research. First, on a general level, future studies are 

encouraged to examine the wide-reaching societal implications of decentralized 

energy and microgrids. This work provides scholars with a useful foundation to 

examine policy implications of integrating distributed energy resources, renewable 

energy, and microgrids into the existing power infrastructure. Policy makers should 

investigate initiatives to support this decentralization process. This review 

demonstrates the potential for empirical studies to investigate the vast transformation 

the power sector is undergoing. Novel technologies such as microgrids increasingly 

put pressure on incumbents, challenge established structures, provide new solutions to 

existing while also creating new problems. Organisational scholars could apply a more 

technology-centred approach in studying these developments. Second, studies in the 

field of management could focus on the drivers and barriers of the decentralization 

process. This could include a cognitive perspective that investigates what influences 

stakeholders’ interpretations of novel technologies. Third, this review highlighted the 

importance of complexity within emerging product markets. Increasing levels of 

complexity for industries and markets have far reaching consequences for participants. 

Future studies are encouraged to investigate the role of complexity in shaping actors’ 

assumptions, expectations, and knowledge of a technology. The rising complexity of 

the electricity industry with its structural changes provides great opportunities for 

future studies in the fields of policy and organisation science to investigate challenges 

and wide-reaching impacts for society.  

This review of the electricity industry and microgrid market integrated the 

historical context of power networks with insights on microgrid technology 

development. The study emphasised the importance of microgrid technologies and 

related innovations for the successful transition to an energy system with sustainable 

generation and supply. I contribute to the existing literature on power systems and the 
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microgrid market by relying on a unique combination of data sources to form an in-

depth review of the microgrid market situated within the historical context of the 

power sector and its transitions. A further aim was to introduce microgrids and their 

importance for the current energy transition to the wider research community outside 

the technical literature on power systems. Microgrids might seem to be niche 

applications from afar but what this review has shown is their central role in enabling 

a transition to a more decentralized grid architecture and the successful integration of 

more renewable energy sources. 
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PAPER TWO 

 
 
 

TECHNOLOGICAL FRAMES AND COMPLEXITY 
DIFFERENTIALS: A STUDY OF THE MICROGRID 

INDUSTRY AND ITS STANDARDIZATION EFFORTS 
 

 

ABSTRACT 

Technological frames guide the sensemaking of individuals with regard to 
new products and thus influence the evolution of product markets. But what 
influences the transformation of technological frames themselves? This two-
year qualitative study of the emerging microgrid market examines how 
technological frames are shaped with a focus on the role of complexity as an 
important factor driving this process. This study offers several theoretical 
insights: By introducing the concept of complexity differentials to the 
literature on technological frames I show the importance of aligning frame 
complexity with market and technology complexity. The concept of 
complexity differentials describes the asymmetrical relationship in 
complexity between a technology and its environment. My argument 
contributes to the literature on cognitive frames and strategic management as 
I highlight the role of technological frames on market trajectories. In 
introducing the concept of complexity differentials, as perceived by actors, I 
offer an alternative explanation for frame transformation due to frame 
instability caused by increasing complexity differentials between the frame, 
technology, and the environment. 

 
Keywords: 
Technological frames; Complexity differentials; Microgrids; Distributed 
energy systems 
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INTRODUCTION 

 

The electric grid faces increasing challenges due to severe weather events 

causing outages, unsustainable power generation based on resource exploitation, an 

aging infrastructure, and inefficiencies due to long distance transmission lines (Amin, 

2008; Barrett, 2016; Mukherjee et al., 2018). Among a collective societal effort, it 

needs the adoption of technological innovations to address these challenges. 

Individuals hold and shape “technological frames” (Orlikowski & Gash, 1994) related 

to product innovations (Seidel et al., 2020). This paper explores how collective 

technological frames transform in relation to changing market conditions. 

Technological frames are a sub-type of cognitive frames. Goffman (1986: 21) 

describes cognitive frames as ‘schemata of interpretation’ that provide actors with a 

lens through which the complexity and ambiguity of the environment can be reduced. 

This allows actors to selectively organize and interpret signals and thus shapes their 

sensemaking and decision-making processes (Dutton & Jackson, 1987; Kaplan, 

2008a; Kaplan & Tripsas, 2008). Actors not only deploy frames to make sense of 

complex situations, but also to shape outcomes (Creed et al., 2002). For example, 

actors attempt to establish the legitimacy of their frames to influence the sensemaking 

of others while validating their own legitimacy as claims-makers (Benford & Snow, 

2000; Kaplan, 2008a; Lounsbury & Glynn, 2001). Cognitive framing is based on past 

learning and categorization (Mervis & Rosch, 1981) and may result in a confirmatory 

bias that shifts the focus from inconsistent signals to those which align to existing 

frames (Palich & Bagby, 1995). Prior research illustrates how framing can lead to sub-

optimal decision-making based on inaccurate information, stereotypic thinking, or the 

non-consideration of potentially important information leading to unintended 

outcomes (Dean & Sharfman, 1996; Hahn et al., 2014; Walsh, 1995).  

The literature has examined different underlying mechanisms leading to shifts 

and transformations of cognitive frames. The majority of mechanisms are related to 

integrating new information, learning processes, and the conflicts and tensions 

between existing frames. ‘Assimilation’ is the process by which new environmental 

information is integrated into existing frames. ‘Accommodation’ describes the process 

by which existing frames are altered as new information does no longer fit into 

established categories (El Sawy & Pauchant, 1988; Flavell, 1966). Further 

mechanisms related to the learning process are: ‘accretion’ which describes the process 



 77 

by which novel knowledge is integrated into existing frames, ‘structuring’ which refers 

to the process of new frame formation, and ‘tuning’ which is the ongoing process of 

modifying and integrating existing frames in order to improve their fit to the 

environment they describe (El Sawy & Pauchant, 1988; Norman, 1982). El Sawy and 

Pauchant (1988) emphasised more than three decades ago that the processes through 

which cognitive frames shift need to be better understood. Frame transformation also 

becomes necessary when frames “may not resonate with, and on occasion may even 

appear antithetical to, conventional lifestyles or rituals and extant interpretive frames” 

(Snow et al., 1986: 473). However, beyond these insights, we have very little 

understanding of the frame transformation process, particularly for technological 

frames. A technological frame influences the interpretation of what a technology 

entails, provides guidance whether it is useful (Kaplan & Tripsas, 2008: 791), and 

facilitates categorization and the selection of relevant performance criteria (Benner & 

Tripsas, 2012). Technological frames deeply influence stakeholders’ perception of 

technology, their related thought processes, problem solving, and strategy formulation 

(Klein & Kleinmann, 2002). Technological frames also shape the actors’ sensemaking 

of a technology with respect to how the technology is categorized in relation to other 

technologies and how its performance is evaluated (Kaplan & Tripsas, 2008).  

  Stable technological frames, that are widely shared and extended across space, 

are required for both the enactment of a product market by stakeholders and its 

existence (Seidel et al., 2020). Frames with a high stability are thus less likely to be 

transformed or replaced. The acknowledged importance of cognitive frames in general 

and technological frames in particular makes it important to understand where and 

how such frames are shaped and what factors influence their sustainability, stability, 

and reliability. This study therefore aims to address the following research question: 

How do frames evolve in the context of complex emerging technologies? This paper 

contributes to this question by analysing the alignment over time of technological 

frames, the product/technology, and market complexity. The findings show how these 

types of complexities, as perceived by industry actors, shape the evolutions of 

technological frames. In particular, I find that misalignment of technological frame 

complexity with the complexity of the environment may trigger efforts at collective 

frame transformation. I propose the concept of complexity differentials as a valuable 

addition to the thinking on technological frames.  
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CONCEPTUAL BACKGROUND 
 

Orlikowski and Gash (1992; 1994) introduced the concept of technological 

frames to address issues directly related to technologies that are not sufficiently 

covered in social cognition studies. The authors (1994: 178) define technological 

frames as the “subsets of members’ organizational frames that concern the 

assumptions, expectations, and knowledge they use to understand technology in 

organizations. This includes not only the nature and role of the technology itself, but 

the specific conditions, applications, and consequences of that technology in particular 

contexts”. Technological frames guide stakeholders as they direct perceptions and 

interpretations of the value, function, and role of a technology (Gash & Orlikowski, 

1991) and thus influence market development (Seidel et al., 2020). Identical 

technologies can therefore be viewed differently depending on the frame applied 

(Pinch & Bijker, 1984). They offer a useful analytic perspective for explaining and 

anticipating actions related to a novel technology that are “not easily obtained with 

other theoretical lenses” (Orlikowski & Gash, 1994: 174).  

Technical choices to either invest, support, or adopt a particular technology are 

influenced by the technological frame that is applied, affecting a technology’s 

evolution and legitimacy (Kaplan & Tripsas, 2008). Prior studies have shown that 

technological frames are shaped in interactions among stakeholders (producers, 

consumers, and the media). Henderson (1995) found that inaccurate shared beliefs of 

actors within an industry about the projected progress of technologies led to significant 

flaws in performance projections for firms operating in the industry. Shared beliefs of 

actors in emerging industries with novel technologies and users are particularly 

influential as decision-makers lack required industry data (Benner, 2010). Cognitive 

frames cannot solely be regarded as an individual-level concept. Individuals may hold 

contrasting frames, but collective technological frames may emerge (Seidel, 2020). 

Widely shared technological frames lead to common views and interpretations that 

may inform collective action (Weick et al., 2005).  

Several studies have shown the contribution of traditional media in shaping 

technological frames through influencing the legitimacy of producers or creating 

product categorisations (Navis & Glynn, 2010; Rao, 1994). Social media such as 

technology blogs also shape technological frames (Seidel et al., 2020). Rosa and 

colleagues (1999) found that magazines and industry trade journals shaped collective 
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technological frames related to novel product adoptions within the then emerging 

market of minivans.  

Issues may arise when outdated technological frames are applied during times 

of technological change, as it has been found with top management teams (Tripsas & 

Gavetti, 2000). Technical experts are particularly resistant to adopt updated frames 

and may miss critical information of new technologies as a consequence (Cohen & 

Tripsas, 2018; Henderson & Clark, 1990; Starbuck, 1996). Those with a profound 

understanding of an old technology may be the most resistant to information 

contradicting their beliefs (Starbuck, 1996). It can be concluded that outdated 

technological frames held by experts are particularly resistant to change and may lead 

to misinterpretations of novel technologies and sub-optimal decisions. 

 

Technology and complexity  

 

Building on the definition of technology as a “set of pieces of knowledge” 

(Dosi, 1982:151), the complexity of the world’s knowledge has been continuously 

rising (Aunger, 2010:776; Mewes & Broekel, 2020). Scholars have increasingly 

acknowledged the importance of studying complexity (Simon, 1996: 181) but no 

generally accepted definition has been established (Singh, 1997: 340). For the purpose 

of this study, systems and technologies are defined as complex when “a large number 

of parts…interact in a non-simple way” (Simon, 1962: 468). In other words, the 

complexity of a system depends on both the number of distinct components and their 

interconnections (Simon, 1962). A rise in components and interconnections leads to 

higher levels of complexity, making complexity a “matter of degree” (Simon, 1997: 

358). Complexity is generated due to the large number of components that limits 

observers’ ability to understand the structure as a whole and the difficulty in predicting 

the outcome of interactions on system performance (Ethiraj & Levinthal, 2004: 407).  

The level of complexity of any given structure is significantly affected by how it is 

described and represented by observers (Simon, 1962: 481). Complexity therefore also 

depends on the “eye of the beholder” (1976: 508). Rothwell (2011: 562) also 

emphasises that “technological complexity is subjective and must (also) be understood 

in terms of the user”. Increasing complexity requires higher information-processing 

capabilities reducing the ability of decision-makers to rationally account for all 

relevant factors (March & Simon, 1958) ultimately increasing the probability for 
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decision errors (Levinthal, 1997). Decision-makers need to engage in time consuming 

(Raaijmakers et al., 2015), effortful problem-solving (Walsh, 1995), and sensemaking 

(Weick, 1995) activities when they face complexity.  

I refer to complex systems, such as microgrids, as technology products in line with 

research on complex products and systems (CoPS). CoPS are defined as “high cost, 

high technology goods made in projects and small batches” (Hobday, 1998: 692). They 

are “highly customised, engineering-intensive goods which often require several 

producers to work together simultaneously” (ibid: 689).  

Central to Simon’s (1962) work on complex systems is the view that those that 

successfully develop possess a hierarchical nested structure among subsystems and are 

characterised by near-decomposability. The grouping of system components into a 

lower number of subsystems offers a possibility for observers to reduce and manage 

complexity of systems (Simon, 2000: 9; Langlois, 2002: 20). Simon (2001: 10-11) 

calls this ‘near-decomposability’ which describes systems with existing subsystems 

that show a higher number of connections and interactions within than across 

subsystems. In other words, the frequency of interactions within subsystems outweighs 

the frequency that occurs between subsystems (Murmann & Frenken, 2006). Near-

decomposability and a hierarchical structure facilitate the process by which systems 

become visible and understandable to the observer (Simon, 1996: 207). Nearly 

decomposable systems have advantages over non-decomposable systems as they are 

easier formed and can evolve and improve their performance at a faster rate (Simon, 

2001). Near-decomposability describes modularity as the concept of decoupling 

complex systems into subsystems that operate nearly independently of each other 

(Simon, 1962; Andriani & Carignani, 2014).  

Luhmann (1978: 97) states that within complex systems there needs to be some 

selectivity in the connections between elements as not all mathematically possible 

links can be realised. As a consequence, there is no full interdependence of elements 

within a complex system. It can thus also be concluded that complex systems are 

characterised by their high number of elements that requires a selection in how they 

are connected (ibid). 

Singh (1997) found that high technological complexity increases the risk of 

business failure compared to businesses that commercialise low-complexity 

technologies. The author argued that this higher failure rate can be explained by greater 

competency demands and higher costs. Technological complexity poses significant 
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challenges for businesses and markets in commercialising products. Adoption issues 

are often related to concepts such as newness, diversity, or sophistication of 

technology but empirical evidence shows that complexity might be the major barrier 

for technology commercialisation (Singh, 1997). Technological complexity between 

products is difficult to measure on an absolute scale as it is highly context specific 

(Singh, 1997: 341). This difficulty of non-practical comparisons leads most studies to 

use relative measures that compare the complexity between closely related 

technologies (ibid.).  

This study draws on different types of complexities to form the complexity 

differential construct that is utilised as a mechanism driving frame transformation. In 

the following paragraphs the technological frame, industry/market, and 

technology/system complexities are introduced before focusing on complexity 

differentials.   

 

Technological frame complexity 

 

Technological frames can also be characterised by different degrees of 

complexity. The level of differentiation and integration has been one method to 

describe frame complexity (Bartunek et al., 1983: 274; Gröschl et al., 2019: 743). 

Differentiation refers to the number of elements within a frame and integration refers 

to the degree of interconnectedness among these elements (Gröschl et al., 2019; Walsh, 

1995). Accordingly, a technological frame increases in complexity when its number 

of frame elements and the interdependence between them increase. Weick (1979) 

advised decision-makers to observe and understand events from more than one 

perspective as problems may have more than one cause. Weick argues that most 

individuals hold narrow cognitive frames that limit the variety of interpretations and 

understandings of situations. This leads to ineffective decision-making as many 

situations have a higher level of complexity that can be interpreted in more than one 

way. The aim therefore is to match the variety in their cognitive frames with the variety 

in the situation in order to allow for the best possible decisions and problem solving 

(Bartunek et al., 1983; Weick, 1979). A higher complexity of technological frames 

leads decision makers to consider a broader spectrum of available information as well 

as other stakeholders’ opinions (Hahn et al., 2014; Wong et al., 2011). The complexity 
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of the technological frame itself is of high significance in determining complexity 

differentials. 

 

Appropriate level of complexity 

 

Several scholars (e.g. Ashby 1957; Calori et al., 1994; Weick, 1979) have 

argued that the relationship between complexity and firm performance is not linear but 

curvilinear with moderate complexity levels being optimal as either too little or too 

extreme complexity will reduce profitability. From this stream of research, it can thus 

be concluded that there is an optimal level of complexity (McNamara et al., 2002). 

This suggests that there might be also an optimum level for complexity differentials. 

Ashby’s law of requisite variety (1956; 1957) states that a stable system that can cope 

with the challenges of its environment has a variety of responses that at least match 

the variety of the environment. In other words, the system needs to have sufficient 

complexity in order to be able to handle the complexity of the environment: “only 

variety…can force down variety” (Ashby, 1957: 207). Weick (1979) later confirmed 

this view on complexity matching.  

Weick (1979: 261) emphasises the importance of complication for decision-

makers in order to cope with environmental complexity. Voyer (1993) found a strong 

positive relationship between the complexity of knowledge structures and firm 

performance. He concluded from his study of the pharmaceutical industry that 

decision-makers with more complex mental models have the ability to grasp more pre-

existing dimensions about their industry and have the potential to better understand 

the behaviours of competitors by utilising more dimensions. Schneier (1979) connects 

the complexity of decision-makers knowledge structure to the ability to deal with 

inconsistent and ambiguous information. A certain degree of complexity is essential 

for business processes to be able to cope with environmental complexity (Flood & 

Carson, 1993: 23; Jackson, 2000: 73). However, too much complexity hinders 

standardization efforts (Barki & Pinsonneault, 2005; Mani et al. 2010) with increasing 

effort required the more complex the business process is (Schäfermeyer et al., 2012). 

In cases of high environmental complexity that cannot be reduced, business processes 

need to mirror this complexity, decreasing the feasibility for standardization (Lillrank, 

2003). Complexity can be advantageous and lead to a competitive advantage when it 

can be controlled and managed. However, unwanted complexity may hinder the 
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development of an organisation (Stratechi, 2020). Newman (2009) identified distrust 

for standardization as one of the key drivers of complexity. He finds that designers and 

engineers do see constrains and limitations in standardization and modularization as 

they are viewed as barriers to the creative development of novel products. The author 

argues that modularization aims to manage variety and not to limit it and that 

standardization enables product improvements through incorporating best practices. 

The importance of customized goods and services has increased for most 

industrial sectors over recent years. The increase in product variety and resulting 

component diversity has led to a rise in complexity. There is the general need for firms 

to control product complexity and costs while allowing for customization and 

maintaining quality standards (Franke et al., 2002; Thumm & Goehlich, 2015). One 

way to achieve such a robust product architecture is through standardization using a 

modularization strategy (Dai & Scott, 2007; Hanafy & Eimaraghy, 2013). Mass 

customization is a strategy that allows for custom products while controlling for costs 

and complexity (Schöning, 2007). It thus represents a compromise between mass 

production and individual customization. Robust business models manage complexity 

by finding a balance between as much variety as demanded and as little variety as 

possible (Thuesen & Hvam, 2013). Thus, the literature suggests that both complexity 

and complexity differentials have optimum levels. The complexity of a technological 

frame as well as the difference of the frame’s complexity relative to the technology 

and market complexities are likely drivers of a frame’s instability. Table 1 provides a 

summary of complexity definitions at various levels.  
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Table 1: Complexity Definitions 
 

 Complexity Definition 
  

Industry/ 
Market 

• the extent of competitiveness and heterogeneity of a firm’s operating 
environment (Aldrich, 1979; Dess & Beard, 1984) 

• the extent of competition and entrepreneurial activity (Khandwalla, 
1973; Starbuck, 1976; Williamson, 1965) 

• the number, diversity, and distribution of task-environment elements 
(Aldrich, 1979; Dess & Beard, 1984) 

System/ 
Technology  

• “a large number of parts…interact in a non-simple way” (Simon, 
1962: 468). 

• change in one unit or component requires the change in many other 
units or components (Larsen et al., 2013) 

• “an applied system whose components have multiple interactions and 
constitute a non-decomposable whole” (Singh, 1997: 340) 

• multiple interactions between components within and across 
subsystems at various hierarchical levels which lead to non-simple 
relationships (Simon, 1969) 

Frame  

• frame complexity refers to the degree of differentiation and integration 
(Bartunek et al., 1983: 274; In: Gröschl et al., 2019: 743) 

• technological frame complexity increases when the number of frame 
elements and the interdependence between them increase (Luhmann, 
1975, Rothwell, 2011; Schneider et al., 2016) 

 
Standardization and complexity 

 

A standard can be regarded as striking a balance between user requirements, 

technological possibilities, and constraints imposed by governments (Germon, 1986; 

Tassey, 2000). Standardization is the process by which this conformity is achieved. 

Standards have a significant effect on R&D, production, and the diffusion rate of 

technologies and as such influence the overall market structure and productivity 

(Tassey, 2000). Microgrid projects are often highly customized, requiring expensive 

one-off engineering solutions and often depend on government subsidies as a 

consequence (Asmus et al., 2018).  

Ahuja and Novelli (2017) identified standardization as one key mechanism 

through which firms can deal with higher complexity. Standardization reduces 

complexity by limiting changes in product features and interconnections between 

product features. Benefits of standardization are improved safety and security, cost 

and quality control, reduced complexity, and faster provisioning (von Faber, 2014). 

Standardization enables cost reductions through scaling effects and quality 
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improvements through more time devoted to solution optimization. Security and safety 

of technologies across applications and countries have increased in importance. 

Extensive complexity makes it difficult to maintain high levels of security and thus 

needs to be reduced. Standardization is one available tool to reduce complexity and to 

enable the same high level of security globally (von Faber, 2014). Standardization 

increases both quality and security up to a certain degree when it becomes costly and 

finally damaging due to decreasing flexibility and attention. Many organisations face 

increasing complexity as a result from a rising number and diversity of elements and 

interconnections within business relationships such as from customized products and 

services (Blecker et al., 2005; In: Schäfermeyer et al., 2012). Business processes with 

high complexity are more difficult and costly to standardize (Rosenkranz et al., 2010) 

and hinder problem-solving activities (Mani et al., 2010). 

 
Complexity differentials 

 

Central to this study is the concept of complexity differentials as a mechanism 

influencing frame stability and thus driving the technological frame transformation 

and replacement. According to social system theory the environment is necessarily 

more complex than the systems it contains (Luhmann, 1995). Schneider et al. (2016), 

drawing on social systems theory, found that systems need to increase their complexity 

when the difference between their own and the complexity of the environment 

becomes too large. This difference is referred to as the complexity differential. A too 

large complexity differential reduces the ability of organisations to make informed 

decisions (Daft & Lengel, 1986) and thus to respond to environmental demands 

sufficiently (Schneider et al., 2016). The authors argue that organisations react to 

overwhelming complexity by generating complexity themselves to reduce the 

complexity differential relative to their environment. The concept of complexity 

differentials has been developed within social systems theory, which provides a 

“complexity-based sociological perspective on how social systems respond to 

challenges in their environment” (Schneider et al., 2016:2). According to social system 

theory, complexity enforces selectivity, a process that reduces complexity through 

supporting systems that are less complex than their environment. The resulting 

asymmetrical relationship in complexity between the system and its environment is 

referred to as the complexity differential (Knodt, 1995). Systems cannot implement all 
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available information of their environment and are thus inevitably less complex than 

their environment (Luhmann, 1995; Seidl & Becker, 2006). Complexity differentials 

are essential to prevent undifferentiated chaos (Knodt, 1995). However, the differential 

cannot become too large to prevent systems from becoming unable to acquire or 

process the information required for optimal decision-making (Daft & Lengel, 1986) 

and to respond to environmental challenges (Schneider et al., 2016). In order to remain 

valid and survive, a system that faces an increasing complexity differential therefore 

has to “increase its own complexity relative to that of its environment” (Schneider et 

al. 2016: 2).  

 

SETTING 
 
The rising complexity of the electric power system 

 

There has been a general trend towards greater complexity of technological 

innovations. This has been shown by the increase of complex technologies of the 30 

most valuable world goods exports from 43% in 1970 to 84% in 1996 (Kash & Rycroft, 

2002; UN, 1975; 1996). In line with this trend, already complex energy systems 

(Afgan & Carvalho, 2008; Babrowski et al., 2014) are increasingly becoming more 

complex (Fang et al., 2020; Shiwen et al., 2017) with higher degrees of 

decentralization and integration of more diverse energy sources such as renewable 

energy (Pfenninger et al., 2014). In addition, business model complexity within the 

power sector has also increased (Hall & Roelich, 2016). One explanation for this rise 

in complexity is the vast transformation the electric power system is undergoing which 

is driven by a transition towards distributed energy resources (DERs) which often 

include carbon-free generating sources to address environmental concerns. The 

traditional power grid has a centralized structure with large generation plants from 

where the electricity is distributed via transmission and distribution lines to consumers. 

This structure is slowly shifting towards decentralized generation with users becoming 

prosumers by generating their own electricity and feeding unused electricity back into 

the grid, a process described as bidirectional electricity flows (Fang et al., 2012). The 

energy sector is therefore moving from centralized generation with unidirectional 

electricity flows towards decentralized generation with bidirectional electricity flows, 

which is increasing market and technological complexity. Figure A1 shows an 
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illustration of this transformation and Table A3 provides evidence for the growing 

complexity of the energy industry. 

 

Microgrids  

 

Microgrids represent an emerging and scalable technology to support the 

decentralization process and the transition from fossil fuels to clean energy while 

offering a solution to reduce energy poverty and meet the growing global electricity 

demand (Armstrong et al., 2016). Since Bob Lasseter coined the microgrid term in 

2001 (Hubbuch, 2019), various definitions of microgrids have emerged (Farhangi, 

2016; Olivares et al., 2014). In general, a microgrid refers to an “integrated energy 

system consisting of distributed energy resources (such as generators and storage 

systems) and multiple electrical loads operating as a single, autonomous grid either in 

parallel to or ‘islanded’ from the existing utility power grid” (Asmus et al., 2009). A 

microgrid can therefore function irrespective of whether it is connected or 

disconnected to the grid. For more technical definitions, please see Table 2. 

Microgrids, like many products in the electricity industry (Enberg et al., 2010), are 

highly complex artifacts. 

Over the last decade the interest in microgrids has been increasing around the 

world (Radhakrishnan et al., 2019). Microgrids have several benefits including 

improved energy efficiency, reduced emissions by integrating renewable energy 

sources, reduced energy consumption, improved power supply reliability and network 

stability (Marnay et al. 2015a). However, microgrids, being highly complex projects, 

face numerous challenges in their diffusion process with the lack of standardization 

being a major factor (Lopes et al., 2013).  
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Table 2: Microgrid Definitions 
 

Definition Reference 
  

“Electricity distribution systems containing loads and distributed 
energy resources, such as distributed generators, storage devices, or 
controllable loads, that can be operated in a controlled, coordinated 
way either while connected to the main power network or while 
islanded” 

CIGRÉ 
Working Group, 
In: Marnay et 
al., 2015a 

“A group of interconnected loads and distributed energy resources 
(DER) within clearly defined electrical boundaries that act as a single 
controllable entity with respect to the grid. A microgrid can connect 
and disconnect from the grid to enable it to operate in both grid-
connected and island mode” 

US Department 
of Energy 
(DOE), 2012 

 

 
Microgrids, complexity, and standardization 

 

In line with many infrastructure projects, the majority of larger and more 

complex microgrids have been custom engineered (Hirschbold, 2019). Large 

microgrid projects are also likely to depend on some degree of customization in the 

future despite significant progress in standardization efforts. Further, manufacturers 

and service providers serving the microgrid value chain are fragmented with produced 

components often not allowing for economies of scale complicating standardization 

efforts (van den Berg et al., 2016). The high complexity of advanced microgrids 

integrating numerous technologies with complex interactions requires individual 

optimisation (Stadler & Nasle, 2019). Large infrastructure developers as well as 

consultants benefitted from highly customized microgrids, but end customers, utilities, 

and other project developers require higher degrees of standardization (Cherian & 

Asmus, 2016).  

One central component of each microgrid is the control system. The basic 

functions of microgrid controllers are to transition the system from grid-connected to 

an islanded mode and to balance load and generation (Razeghi et al., 2018). Advanced 

controllers possess predictive analytics capabilities by, for instance, analysing weather 

data to predict renewable energy resources availability and use real-time pricing data 

to optimise the distributed energy resources mix (Microgrid Knowledge, 2019). The 

shift from basic to advanced controllers also reflects the higher levels of complexity 

of the technology. Table A4 provides representative evidence for the rising complexity 

of microgrids. 
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The microgrid market faces issues related to a lack of standardization and 

regulations (Lopes et al., 2013). Microgrid projects are often highly customized, 

requiring expensive one-off engineering solutions and often depend on government 

subsidies as a consequence (Asmus et al., 2018). Standards are essential for microgrids 

to become an established part of the future energy system. Without standards 

microgrids could become prematurely obsolete or may cause security and safety 

issues. Also, a lack of standards may hinder future innovations and prevent the creation 

of a guiding framework for the development of renewable energy and related 

technologies (Daghrour & Al-Rhia, 2019). Further, only with standards sufficient 

economies of scale and scope can be established to create a competitive microgrid 

market and thus increase diffusion rates and benefits to the customer (Berker & 

Throndsen, 2017; NSTC, 2011). Standards, when used properly, are tools of industrial 

progress that ensure quality through consistency (Hall, 1986). Due to the complexity 

of microgrid systems there are both de facto and de jure standards involved. De jure 

standards for microgrids are legally enforced by recognised standards organisations 

such as the ‘Institute of Electrical and Electronics Engineers (IEEE)’, the 

‘International Electrotechnical Commission (IEC)’ or the ‘European Committee for 

Electrotechnical Standardization (CENELEC)’. An example for de-facto standards are 

existing communication protocols (Cintuglu et al., 2015) that achieved a dominant 

position within the microgrid market. 

Microgrid developers face the challenge of making hardware and software 

components interoperable across distributed energy resources, storage and control 

systems, and user application technologies (van den Berg et al., 2016). Over recent 

years modular approaches to microgrids have contributed to the adopt- and 

adaptability of microgrids by facilitating the design, installation, and maintenance of 

microgrids. In general, modularization refers to the break-down of larger systems into 

smaller modules. The reduced costs of individual modules encourage competition 

(Baldwin & Clark, 2006). Applying modularization to microgrids means to divide 

large microgrid systems into smaller standardized modules (Cohn, 2017). A microgrid 

with a modular architecture may be expanded to achieve larger capacities by 

integrating additional modules (Lin et al., 2014). The modularity facilitates the ability 

to make microgrids plug-and-play, reduces the complexity of the required control 

systems, and simplifies the installation for utility firms (Cohn, 2017). The modular 

architecture of such microgrids with more standardized components have cost-
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advantages over custom-engineered projects and benefit from improved reliability 

(Asmus et al., 2018). A specific example of modular microgrids are container 

microgrids, defined as modular microgrids that fit inside a single shipping container 

(Francklyn, 2019). 

 

Barriers for microgrid market development 

  

Soshinskaya et al. (2014), in their review of thirteen case studies, found four 

major categories of microgrid implementation barriers: technological issues, 

regulatory barriers, high costs, and stakeholder cooperation. These four categories are 

often intertwined and are all related to the lack of standardization. The high costs 

related to still expensive distributed energy and storage technologies reduce the return 

on investment and are thus hindering market growth (Soshinskaya et al., 2014). Further 

barriers for market growth are technical and regulatory issues related to the bi-

directional power flow between the microgrid and grid network, power trading, 

control, and operation of the microgrid (Bellido et al., 2018; Soshinskaya et al., 2014). 

Stakeholder cooperation can be a barrier when the incorporation of prosumers leads to 

further complexity due to conflicting interests in the microgrid implementation and 

operation (Soshinskaya et al., 2014). Stadler and Naslé (2019) in their recent article 

argued that costly non-standardized approaches for microgrid planning result from 

treating every system as being unique. In addition to the high costs of this individual 

approach to planning, it prevents comparisons between projects and hinders market 

growth. Microgrid projects have had high failure rates also due to excessive non-

standardized feasibility studies that increase upfront costs and discourage investors 

(Cherian & Asmus, 2016). 

 

Microgrid business models 

 

The microgrid market has a broad spectrum of business models reaching from 

simple to highly complex. The level of complexity of the single user model is one of 

the lowest as there are not multiple end-users but loads are supplied to a single 

consumer (Castro, 2020) such as a hospital. The utility rate base model involves a 

utility firm that owns and operates the microgrid. The users of the microgrid are 

charged by the utility but are not responsible for investment and operational costs. The 
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main purpose for microgrids deployed by utilities is the integration of distributed 

energy resources and/or to reduce peak demand to improve the reliability and 

resilience of the distribution system controlled by the utility. It is more complex than 

the single user model as regulations change from country to country with regard to 

ownership of generation assets by distribution utilities (Asmus & Lawrence, 2016; 

Castro, 2020). The hybrid model is a combined ownership of assets by the utility and 

participants. Participants are therefore only partially responsible for the investment 

and operational costs (Castro, 2020). The multi-user model involves a third party that 

builds, operates, and maintains the microgrid serving several participants who pay a 

regular fee for the service. It can be agreed that assets are transferred to participants 

once the third party recovered its investment costs (Castro, 2020). Energy as a Service 

(EaaS) business models represent the highest level of complexity and innovation. 

Third party providers finance, operate, and maintain the microgrid and advise end-

users on energy management. For these services customers pay a fee over an agreed 

period (Castro, 2020). More complex business models such as multi-user and EaaS 

can involve peer-to-peer energy trading, which allows one or several participants of 

the same microgrid to trade energy with each other using blockchain technology 

(Castro, 2020). Figure A2 illustrates the shift towards more complex microgrid 

business models. 

 

DATA AND METHODS 
 

Microgrids were chosen for two reasons. First, they are complex products that 

are systemic and comprise components that interact in non-simple ways requiring 

coordination. The complexity of these systems is further increased by the relative low 

degree of standardization. Second, as I will show below, they are an emergent 

technology that has undergone significant changes in both technical and market 

dimensions. Thus, this technology offers an excellent opportunity to examine how 

technological frames adapt to changes in the technical and market domains. Within the 

possible frames, I looked at those relating to standardization for two reasons. First, 

standardization issues appeared to be particularly salient to participants, who often 

referred to them as central to the industry’s future. Second, as shown in the literature 

review above, standardization is key in dealing with complexity. Technological frames 

referring to the standardizability of technologies are particularly significant for the 
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progress of a novel technology as they influence the perceived scalability of the 

product.  

 

Study design 

 

I applied a triangulation approach consisting of in-depth semi-structured 

interviews, a documentation review, and observational data. This approach was used 

to ensure consistency, data trustworthiness, and internal validity of the study (Denzin, 

1978; Woodside, 2010). The collection and review of documental data was the first 

step in the research process to gain a deep understanding of the microgrid market in 

general and its growth barriers in particular before proceeding to other information 

sources. The review also helped to identify key actors to be included in the purposeful 

sampling for the next step of data collection via semi-structured in-depth interviews. 

These two phases eventually overlapped. Interviews functioned as the main data 

source on microgrid market dynamics with archival data serving as supplementary 

sources to expand the covered time period, support existing and gain additional 

perspectives on central issues. Observations at field configuring events such as 

practitioner conferences served as an additional information source on key issues. Data 

collection, inductive analysis, and the selection of new informants using the 

snowballing technique were iterative and simultaneous processes. This resulted into 

increasingly focused data and ultimately led to ‘theoretical saturation’ (Glaser & 

Strauss, 1967) when further data collection and analysis stopped yielding further 

insights with respect to the research question. 

 

Sampling 

  

Purposive sampling has been identified as the most suited technique for this 

study. This non-probabilistic sampling strategy is based on the assumption that the 

investigator wants to discover, comprehend, and gain insight and thus needs to choose 

a sample according to its suitability (Chein, 1981). This allowed me for selecting 

information-rich cases from which a lot can be learned about the topic of interest 

(Patton, 2002; Merriam, 2009). The selection criteria for the purposive sampling were 

established through the review of archival data. First, I explicitly chose informants that 

would be considered experts in the field and thus would be able to inform me on my 
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main research question concerning the barriers hindering microgrid market growth. 

Key informants were found in the best position to provide important insights on the 

specialised product market that microgrids represent. Once I identified and established 

access to key informants, I then used snowball sampling, asking my existing 

informants to recommend contacts suitable to address my core questions, to identify 

information-rich cases (Suri, 2011). During the sampling process I took steps to ensure 

that the sample accurately represented a broad spectrum of experts on the product 

market. 

 

Semi-structured interviews 

 

In 2018 I carried out 34 in-depth interviews with selected microgrid industry 

experts which were all recorded and subsequently transcribed. Interviews lasted on 

average 46 minutes. I employed semi-structured interviews as they allowed me more 

freedom, compared to structured interviews, in following up on the angles the 

interviewee regarded as important. Compared to unstructured interviews, the 

interviewer can better influence the focus of the conversation to address issues related 

to the research study (Brinkmann, 2013). Interviews were used to collect both 

retrospective and real-time accounts by industry experts on the evolution of the 

technology. Interview questions were adapted along with the progression of the study. 

Interviewees covered a wide spectrum of industry experts. Table A1 provides an 

overview of interviewees and interview durations. 

 

Archival data and observations 

 

The archival data consisted of proceedings from practitioner conferences, 

industry publications and magazines, microgrid news and company websites, white 

papers, case studies, and academic journal articles. Industry news websites such as 

microgridknowledge.com and utilitydive.com allowed me to keep track with industry 

developments on a weekly basis throughout the duration of this study. Regular updates 

were also accessed via specialist consulting and research firms such as Guidehouse 

(formerly Navigant) guidehouseinsights.com. I examined these sources regularly and 

subscribed to available newsletters. I also scheduled regular calls with one key 

informant to discuss the industry’s progress.  
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I used several opportunities to engage with experts directly and observe both the work 

of experts and the technology. Specialist conferences and events helped providing 

access to world-leading experts on microgrids. Two events have particularly 

contributed to this study: A two-week field study visit to California in 2018 enabled 

me to gain first-hand impressions of a leading working microgrid (Stone Edge Farm) 

and to experience the work of leading microgrid developers. California is a leading 

state when it comes to microgrid development. I had the opportunity to interview 

experts from two universities in San Diego: The University of California San Diego 

(UCSD) and the University of San Diego. The former is home to one of the most 

advanced campus microgrids, showing the State of California’s and San Diego’s 

leading role in the development and implementation of microgrid projects. A further 

example of the region’s leading role in microgrid development is ‘San Diego Gas & 

Electric’s (SDG&E)’ microgrid at Borrego Springs. During my visit I was based at a 

leading microgrid software developer which enabled me to engage in daily 

conversations with industry stakeholders. Notes were taken either while engaging in 

conversations and during visits or directly afterwards. After the trip ended, I kept in 

touch with one industry expert for frequent phone calls and email exchanges that lasted 

for the full duration of this study and beyond.  

The second event was the International Microgrid Symposium in 2018. This invite-

only yearly event has been taken place since 2005 and has the purpose of providing a 

platform for world-leading microgrid experts to exchange insights on the current state 

of microgrid research. Key events during my study are listed in Table 3.  

 

Table 3: Conferences and Events 
 

Conference/ Event Title Location  Date 
   

Westminster Energy, Environment & Transport 
Forum Keynote Seminar 

London, UK 12.12.2017 

Field study visit  California, USA 13.04.2018 – 
28.04.2018 

International Microgrid Symposium Bucharest, Romania 02.09.2018 – 
05.09.2018 

Westminster Energy, Environment & Transport 
Forum Keynote Seminar 

London, UK 09.06.2020 
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Data analysis 

 

I applied an analytic induction strategy in order to systematically examine 

“similarities within and across cases to develop concepts, ideas, or theories” (Pascale, 

2011: 53). The analysis was done simultaneously with data collection as suggested by 

Glaser and Strauss (1967). I followed Bogdan and Biklen (2007) as a guideline and 

inductively coded data while collecting it. This allowed me to identify patterns and 

formulate possible explanations of these patterns while also ensuring that the data is 

not unfocused or repetitive (Brinkmann, 2013; Merriam, 2009). This approach gave 

me the flexibility in data collection to account for the fact that I could not know what 

exactly will be discovered and which informants will contribute the most (Merriam, 

2009). I used Corley and Gioia (2004) and Gioia et al. (2013) as a guideline for my 

data analysis. I first applied an open coding technique to identify initial concepts in the 

transcripts and grouped them into categories relying on 1st-order codes to not change 

the language used by informants. Next, I applied axial coding to seek relationships 

between these categories to establish 2nd order themes. Finally, I combined themes into 

overarching dimensions. This represented a recursive process that continued until the 

theoretical relationships became clear. 

 

FINDINGS 

 

My findings document the emergence and transformation of a collective 

technological frame. I begin by presenting a brief overview of the case. I then draw on 

my processual and thematic analysis to explain the factors leading to a misalignment 

of the technological frame and ultimately to key actors perceiving the necessity for an 

active frame transformation. I show how complexity differentials act as a mechanism 

for frame transformations. I find that applying the concept of complexity differentials 

to technological frames improves our understanding of frame dynamics. I follow the 

trajectories of the market and technology focusing on relative complexity levels 

captured by the complexity differential concept. I show how a technological frame 

with a stable level of complexity then became misaligned leading to a growing 

complexity differential. This was shown by some actors perceiving an excessive 

difference between the complexity of the frame and the complexity of the technology 

and market environment. The increasing perception of a complexity differential led to 
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frame instability and ultimately to a frame transformation. This transformation 

produced a shift from the dominance of one cohesive frame to a group of broadly 

similar but fragmented frames that better matched the complexity of the technology 

and the market. Thus, I show that the increasing perception of a complexity differential 

between the frame’s content, technology, and the product market leads to a frame 

transformation and shift in dominance of the technological frames (Figure 1). 

 

Figure 1: Increasing Complexity Differential between Technological Frame and 
Technology & Market Complexity 

 

 

Early developments: the age of the one microgrid frame 

 

Microgrids vary in their degree of complexity. A very simple microgrid may 

be used to power a single household in a remote area using two forms of distributed 

energy generation, a simple microgrid controller, and is not connected to the main grid. 

On the other end of the spectrum is a highly complex microgrid that supplies multiple 

loads using a broad spectrum of distributed energy resources including renewable 

energy, uses an advanced control system and sophisticated energy storage system and 

can smoothly connect and disconnect from the main grid (Wood, 2016a). Complex 

microgrids are characterised by several distributed energy resources which may not 

have a common voltage, are connected according to a complex topology, and require 

advanced microgrid controllers to orchestrate and optimise the microgrid’s 

components (Bidram & Davoudi, 2012; Cucuzzella et al., 2017; Han et al., 2016; 

Mahmoud, 2017).  

Historically, microgrids used fossil-fuels to generate power for remote 

locations with limited access to electricity with the purpose of establishing or 

increasing power reliability (Vine & Morsch, 2017; SEPA & EPRI, 2016). More 

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Technology and Market Complexity

One Microgrid Technological Frame Complexity

Growing Complexity Differential
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recently this was followed by an increase in integrating renewable energy resources 

focusing on solar energy and as a consequence of intermittent resources also the 

integration of energy storage technologies into microgrids (Vine & Morsch, 2017). 

The first adopters of such more advanced, complex microgrids were military bases, 

universities, and research facilities (Deloitte, 2016). However, as the industry 

developed, complex microgrids became increasingly widespread (AhmadiAhangar et 

al., 2019; Wang et al., 2014). Because the technology was still developing and there 

was limited standardization, as discussed above in the ‘Setting’ chapter, interworking 

protocols to create a ‘plug and play’ platform were missing [ref]. Thus, complex early 

microgrids were typically highly customized projects. “For years during the microgrid 

industry’s infancy, the criticism has been that yes, microgrids provide valuable 

services, but they are too expensive. That has largely been because each one typically 

involves its own unique and bespoke ‘science project’ approach” (Kelly-Detwiler, 

2019). Indeed, customization and integration efforts are extremely expensive and can 

contribute up to 60% of the total project costs (van den Berg et al., 2016). This 

translated in a concern with lack of standardization “I define three main barriers to 

microgrids: One is the non-standardization, second is the complexity of the system, 

and the third one is the rigidness of the design” (07, 2018). Table 4 provides further 

evidence for that these beliefs were widespread.  

 

Table 4: Non-standardization as a Barrier to Microgrid Adoption 
 

Non-
standardization 
issues 

Evidence Source 

   

Market-wide 
problem  

“If you want to summarize the microgrid problems in 
on word, it’s customization, right. Every single 
product is different, and you need to customize it.” 

07, 2018 

“The ‘hyper-specific’ nature of microgrid projects 
has held back their growth.” 

Walton, 2015 

“Where the gap is, is to have a really standardized 
approach that utilities are comfortable with in terms 
of the way they operate the distribution system 
because it’s very important that a microgrid be 
considered part of that overall grid. Utilities, it has to 
be part of their planning process, the tools to 
integrate that technology with their operation so that 
they can see it and control it. It all has to be 
standard.”  

03, 2018 
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Table 4: Non-standardization as a Barrier to Microgrid Adoption (cont.) 
 

Non-
standardization 
issues 

Evidence Source 

   

Held back 
microgrid 
technology 
adoption 

“An obstacle to adoption is the fact that the technology 
is not standardized.” 

Runyon, 
2017 

High costs “…customization…has one major downside—time 
and money costs.” 

Asmus, 
2019 

Reduced 
accessibility 

“Developers were building microgrids in a one-off 
fashion: an approach that unfortunately made 
microgrids available to the few and not the many.” 

Wood, 2018 

Interconnection 
difficulties 

“Standardization can also help overcome regulatory 
obstacles, such as the complexity of interconnecting to 
utilities—often a big hurdle to both microgrid and 
solar developers.” 

Goodman, 
2019  

Investment risks 

“Standardized designs can also decrease real or 
perceived risk on system performance for prospective 
investors.” 

Weston et 
al., 2018 

“At the end of the day, microgrid projects have to 
make business sense and have to have a solid business 
case. With the current approach to microgrids, when 
everything is re-engineered from the ground up for 
each project, it makes it difficult to see the value with 
confidence.” 

Stadler, In: 
Cohn, 2018 

 

 

An issue that was particularly central to this view was that lack of 

standardization hindered market growth. Soam Goel, Partner at Anbaric Development 

Partners, a company specialising in large-scale electric transmission and storage 

solutions (Anbaric, 2020), stated in 2017 that microgrids require a combination of 

utility adoption and higher degrees of standardization to overcome market growth 

barriers (Nussey, 2017; Runyon, 2017). Ustun and colleagues noted in 2011 that “For 

microgrids to be embraced rapidly and implemented easily, there is a need for 

systematic standardization and universalization in all aspects of this field. This would 

not only help in bringing different organizations together but also encourage more 

people to accept transition to microgrid. If standard procedures are implemented and 

universalized components/ interfaces are utilized instead of re-inventing the wheel for 

every single microgrid project, past experiences can easily be put into practice” (Ustun 

et al., 2011: 4040). Four years later the non-standardization remained a perceived 

barrier for market development: “In a market where every (microgrid) project is very 

different, it makes it difficult to produce the standardized, cookie-cutter platform 



 99 

which is often sought-after” (Saadeh, 2015). Thus, the lack of standardization has been 

identified as a major barrier for microgrid adoption and market development for a long 

time and has been a continuous conversation topic within the microgrid community 

(e.g. Cohn, 2017; 2018; IEC, 2014; Klustner, 2015; Kroposki et al., 2007; 2008). At 

the same time, lack of standardization was largely perceived as inevitable. The reasons 

included factors such as the high variety of vendors, applications, distributed energy 

resources (DERs), customer requirements, and location-specific requirements. Table 

5 provides evidence for each of these factors.  

 

Table 5: Rationales for justifying Non-standardizability 
 

Source of 
uniqueness 

Evidence Source 

   

High variety of 
vendors for 
components 

“If you literally want to make your house into a full 
fledge microgrid, you're going to have to deal with 
many different vendors and I don't think anyone's 
going to … that's not scalable.”  

09, 2018 

“I think the problem right now is (that) there’s too 
much variability” 

 

High variety of 
microgrid 
applications 

“Talk about standards for microgrids is to talk about 
a soviet plan city where every apartment block is 
exactly identical to each other.” 

21, 2018  

High variety of 
possible DER 
combinations 

“Every microgrid is unique because it integrates a 
range of distributed energy generation.”  

UL, 2016 

High variety of 
customer 
requirements and 
needs 
 

“When you’ve seen one microgrid, you’ve seen one 
microgrid. This saying exists for a reason: The one 
thing everyone does agree on is that there’s not 
necessarily a ‘standard microgrid’, by definition, 
each project is designed and engineered to meet a 
specific customer’s set of requirements.” 

Chenoweth, 
2018 

“A common refrain was ‘If you’ve seen one 
microgrid, you’ve seen one microgrid’. Attendees 
agreed that microgrid solutions are often bespoke 
and built to serve unique customer needs.” 

GI Energy, 
2019 

“Microgrids are unique, with customer-specific 
customization occurring on many levels.” 

Dupont, 
2019 
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Table 5: Rationales for justifying Non-standardizability (cont.) 
   

Source of 
uniqueness 

Evidence Source 
   

Location-specific 
differences in 
regulations and 
preferences 

“We worked with a Microgrid setup in Norway, in 
Germany, and on Malta. And all countries differed in 
regard to the specifics of regulation, they differed in 
regard to customer preferences, and so on.”  

19, 2018 

“On the physical side, every site is absolutely different 
and there's no way to standardize microgrids from that 
perspective.” 

29, 2018 

“Over the last two years, everything that’s been done 
has been kind of an engineering project. Everybody kind 
of hand-picked their components, had to design their 
architecture from scratch and then installed it. Then it 
takes two to three months to get everything working and 
talking together.” 

Colthorpe, 
2018 

“You realize each microgrid … is installed in different 
locations for different customers that have very different 
engineering requirements and financial requirements.” 

08, 2018 

“Each one (microgrid) is entirely unique in its precise 
features and … structure because of the necessity of 
adapting to each location on an individual basis. What 
works in one place may not work in another so as Art 
says, ‘If you’ve seen one microgrid, you’ve seen one 
microgrid’.” 

Martin, 
2019 

“We cannot standardize because we have to do it 
(develop microgrid projects) case by case.”  

13, 2018 

 

A technological frame describes the assumptions, expectations, and knowledge 

of actors to understand the microgrid technology. The quotes I have discussed above 

point to a technological frame that is built on knowledge gained through past 

experience in microgrid projects. Frame holders assume microgrids to be too 

technologically complex and too linked to individual customer requirements to be 

standardisable; and expects this state of affairs to be unchangeable as they construct 

complexity and customization as inherent characteristic of microgrids. This frame 

became encapsulated in the ‘one microgrid’ phrase: “If you have seen one microgrid, 

you’ve seen one microgrid”. The phrase was reportedly coined by David Chiesa, one 

prominent member - S&C Electric‘s former senior director for global business 

development, at an industry conference in 2013. The phrase gained industry-wide 

attention in the following years as it quickly spread through microgrid industry 

conferences with various interpretations and meanings assigned to it. The phrase 

achieved such a presence over the years that the S&C Electric Company included it as 

a myth in one of its education reports (S&C Electric, 2018). The technological frame 

this study focuses on has become an industry mantra by originating from a well-
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established actor and being widely shared at practitioner as well as academic 

conferences and through trade journals and articles leading to industry-wide 

recognition. 

The phrase provided a definitive shape to the technological frame and thus 

facilitated its diffusion. For instance, Wood (2018a) devoted an entire article to the 

‘one microgrid’ phrase in late 2018 stating that: “Some quotes become sticky. Such is 

the case with: If you’ve seen one microgrid, you’ve seen one microgrid”. Further 

evidence provided in Table 6 shows how the ‘one microgrid’ phrase became a 

commonly used shorthand to refer to the dominant industry frame that had the non-

standardizability of microgrids at its core.   

 

Table 6: References to ‘One Microgrid’ Phrase  
 

Quote Source 
  

“’When you’ve seen one microgrid, you’ve seen one microgrid’ is a 
common refrain in the energy world for a reason.” 

Jutras, 2018 

“Last, another respondent replied: “If you’ve seen one 
microgrid…you’ve seen one microgrid,” to highlight the uniqueness of 
each microgrid project.” 

Giraldez et al., 
2018 

“First off, there’s a saying that if you’ve seen one microgrid you’ve only 
seen one microgrid, ‘cause they’re all different.” 

31, 2018 

“As the industry saying goes You’ve seen one microgrid—you’ve seen 
one microgrid” 

Asmus, 2019 

 

The ‘one microgrid’ technological frame gained prominence among 

stakeholders because it reflected and addressed a key characteristic of many microgrid 

projects, namely their high customization. Frame holders frequently referred to the 

non-standardizability of microgrid projects as a given characteristic while 

acknowledging that higher standardization would be beneficial to the market. The 

customization requirement as emphasised by the technological frame was accepted as 

a fact with no exceptions “…because they are all different” (31, 2018) despite the 

market’s awareness of it being a major drawback. Actors frequently referenced the 

non-standardizability of the technology in form of the ‘one microgrid’ technological 

frame as a given fact not questioning its accuracy – it was a taken-for-granted ‘truth’ 

about the industry. Stakeholders perceived the technological frame to be accurately 

aligned with what they believed to be the un-addressable customization of the 

technology despite the general awareness that the lack of standardization had held back 

market growth.  
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The emergence of microgrids with higher levels of standardization and multiple 

business models 

 

Despite the dominance of the ‘one microgrid’ frame, microgrids with a higher 

level of standardization compared to the highly customized microgrids described 

earlier increased throughout the observed period. “People have started to pre-package 

complete systems with inverters, batteries, switchgear and then you tie that in with the 

generator and you drop-ship pretty much a complete system to a site where you’re then 

just making external connections rather than wiring the entire system onsite” 

(Colthorpe, 2018).  

One way to classify microgrids according to their level of standardizability is 

to divide them into engineered systems, packaged systems, and productized systems 

(Hepp, 2019). Engineered systems, which were implemented first, represent highly 

customized microgrids with site-specific engineering and custom designs (Hepp, 

2019). Packaged systems have some degree of standardization of components but still 

provide customers with some flexibility for customization and allow for site-specific 

optimisations. These systems have a simplified design and are easier to install and 

operate compared to engineered systems (Naik-Dhungel, 2017). Productized systems 

represent the most standardized microgrids. The highly standardized microgrid 

systems are pre-tested and offer only few options for customization (Hepp, 2019). 

Both packaged and productized systems have been available for several years. Early 

studies exploring the feasibility of packaged and productized microgrids date back to 

2008, while the first commercially available systems were developed around the mid-

2010s (John, 2016). Options to standardize microgrids in form of packaged or 

productized systems were therefore introduced several years ago and have consistently 

gained prominence while the ‘one microgrid’ technological frame remained dominant. 

Table 7 summarises key characteristics of these three systems across five dimensions: 

standardization of components, service, flexibility in integrating distributed energy 

resources (DERs), cost effectiveness, and design. This classification allows us to 

analyse the transformation in technological frames of microgrid stakeholders as 

reflecting a shift from narrow framing only considering engineered systems to a 

broader framing with higher complexity that also considers packaged and productized 

systems. For an overview of early studies and articles that introduced the concept and 

provides evidence for implemented microgrids with higher degrees of standardization 
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in form of modular and containerized microgrids (packaged and productized systems) 

see Table 8. Increased standardization was key in attracting utilities “So as it happens, 

utilities will not put one offs all over their system, that's just not what they're gonna 

do” (33, 2018). The increased interest by utilities and other larger investors further 

contributed to the diffusion on more standardized microgrids.  

 

Increasingly diverse business models 

 

In parallel to the emergence and diffusion of more standardized microgrids, 

which made the product space more complex introducing the packaged and 

productized options, the market space also became more complex through the increase 

in the number of microgrid business models over the last decade. The single-user 

business model represents the base model with the lowest level of complexity (Bellido 

et al., 2018). Single-user and owner microgrids are financed, owned, and maintained 

by a single entity (Asmus & Lawrence, 2016). Under this model, the microgrid is only 

supplying loads to one consumer, such as a hospital or university campus, who will 

also be responsible to bear all the costs and risks (Castro, 2020). This business model 

therefore has a low level of complexity and, being the traditional format, is not 

innovative. With increasing complexity of microgrids through the integration of a 

higher number and variety of distributed energy resources, advanced energy storage 

systems, and loads, the simple single-user business model becomes less suitable 

restricting their growth potential, since the high complexity prevents most single 

entities with limited capabilities to implement and operate advanced microgrids 

(Bellido et al., 2018). The increase in complexity thus often leads to a shift to private 

developers and the application of energy-as-a-service (EaaS) business models (Asmus 

& Lawrence, 2016). More advanced and complex business models such as the multi-

user and EaaS business models become more relevant with increasing complexity of 

microgrid systems along with technological progress, falling cost of DERs, and 

reduced regulatory barriers which also increasingly attracts utility firms (Bellido et al., 

2018). The introduction of more complex business models has contributed to the 

overall market complexity (see Table A2).  
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The one-microgrid frame becomes increasingly inadequate 

 
The ‘one microgrid’ technological frame [TF1] possessed a low level of 

complexity as its content and structure were simple, as it did not contain multiple 

interacting elements – it simply stated the uniqueness of each microgrid. The ‘one-

microgrid’ framing thus only accommodated custom microgrids with site-specific 

engineering. As many interviewees stated: “All systems are different” (e.g. 07; 08; 29; 

31). As a consequence of this narrow framing, other types of microgrids with higher 

degrees of standardization, that emerged throughout the covered period, such as pre-

engineered packaged systems and productized systems were excluded leading to an 

increase in complexity differentials. The ‘one microgrid’ technological frame filtered 

valuable information as it did not reflect those types of microgrid products that were 

standardizable and available in the market. While the technological frame accurately 

reflected the microgrid market at an early stage, it increasingly failed to recognise 

innovation in form of more standardized microgrids.  

 

Table 7: Types of Microgrid Systems 
 

 Engineered 
Systems 

Packaged Systems Productized 
Systems 

    

Standardization of 
components 

Low 
 
Project-specific 
customization 

Moderate/High 
 
Pre-engineering of 
subsystems 
 
Standardized 
components and 
controller 

High 
 
Factory built  
 
 
Standardized 
components and 
controller 

Service Custom Standard Packages Standard Packages 
Flexibility High 

 
Custom integration 
of DERs 

Moderate 
 
Flexibility to use 
many DERs 
 
Some flexibility in 
subsystem 
components but site-
specific control and 
automation schemes 

Low 
 
Pre-selected DERs 
and product options 

Cost effectiveness Low Moderate/High High 
Design  Custom design 

High site-specific 
engineering 

Engineered-to-Order Configured-to-
Order 

    

Adapted from: Hepp (2019). Microgrid Solutions: IDEA Campus Energy 2019 
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Table 8: Early Studies of Modular and Containerized Microgrids 
 

Type of 
Study/Article 

Title Reference/ Year 

   

Modular 

Design considerations for rural modular microgrids Cronje et al., 
2012 

Modular power architectures for microgrid clusters Lin et al., 2014 
A novel design for an expandable, modular 
microgrid unit 

Falahati et al., 
2016 

An Update from the World’s First Modular 
Microgrid 

John, 2016 

Containerized 

Promotion of microgrids and renewable energy 
sources for electrification in developing countries 

Alzola et al., 2008 

Polygeneration energy container: Designing and 
testing energy services for remote developing 
communities 

Paleta et al., 2014 

A novel flow invariants-based approach to 
microgrid management 

Gamage et al., 
2014 

 

 

It should be noted that technological frames should facilitate decision-making 

by reducing uncertainty and complexity through simplification. A complexity 

differential between a technological frame and underlying technology is necessary as 

frames have the purpose to reduce the perceived complexity of the technology and 

product market they describe. This, however, should not be achieved by excluding key 

information necessary to accurately judge the technology and its adoptability. The 

advancements and innovation of the market and technology increased the number of 

elements that were not captured by the frame which led to an increased misalignment. 

The ‘one microgrid’ technological frame oversimplified both the technology and 

market it described. The changes described above, made key actors within the 

microgrid market increasingly uncomfortable with the ‘one microgrid’ technological 

frame. Stakeholders became gradually aware that demands of many customers can be 

met with fairly standard products. The issue I am describing in the following therefore 

does not relate to the complexity differential per se but to its growth over the observed 

period due to an increase in the technology’s and market’s complexity. The static 

complexity of the ‘one microgrid’ technological frame in combination with increases 

in complexity of the underlying technology and market led to a growing complexity 

differential. The growth in the complexity differential is illustrated in Figure 2. The 
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complexity differential reflects the growing misalignment between the technological 

frame and the technology and market it describes.  

Figure 2: Growing Complexity Differential 

 

 

 

The ascendency of the pro-standardization frame 

 

The tensions between the ‘one microgrid’ technological frame dominating the 

industry and the evolution of microgrids came to a head in 2018, when after around 

five years in existence and increasing challenges, key actors moved to achieve a frame 

transformation (Figure 3). The frame transformation emerged as a consequence from 

the described technology and market dynamics leading to a growing dissatisfaction of 

key stakeholders with the ‘one microgrid’ frame.  

 

Figure 3: Growing Complexity Differential leading to Frame Transformation in 
2018 
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The following quote represents the re-framing activities initiated by Chiesa to 

transform his phrase that developed into the ‘one microgrid’ technological frame: “I'm 

trying to kill that phrase now because we're at the point in time where we should no 

longer be focusing on this uniqueness of microgrids. We need to make them more 

production-oriented where we get some standardization into the marketplace.” 

[Chiesa, D., 2018]. 

 

Table 9 provides evidence for reframing efforts of actors who want to transform the 

framing from focusing on technology uniqueness towards a higher degree of 

standardization.  

 

Table 9: Frame Transformation 
 

Drivers Evidence Source 
   

Simplification 
through 
standardization 

“We need to work on simplification to get the 
adoption curve moving faster.” 

Chiesa, 
2018, In: 
Wood, 
2018a 

Re-focusing on 
implementation 

“We're at the point in time where we should no 
longer be focusing on this uniqueness of microgrids. 
We need to make them more production-oriented 
where we get some standardization into the 
marketplace.” 

33, 2018 

“There was one gentleman who is sort of a leader in 
microgrids around here, from S&C Electric, who 
used to use the phrase, ‘if you've seen one microgrid 
you've seen one microgrid’. So at this year's 
conference in May in Chicago, he got up on stage 
and he said, ‘I want to basically kill that phrase. It 
no longer applies.’” 

27, 2018 
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Table 9: Frame Transformation (cont.) 
 

Drivers Evidence Source 
   

Re-focusing on 
implementation 

“Our main market is utilities and we're talking about 
rolling this out in a large deployment. So as it 
happens, utilities will not put one offs all over their 
system, that's just not what they're gonna do. So you 
look at it, it's a safety issue for the utilities, it's a 
management issue for the utilities so that they don't 
have to have stocks and shares and everything else, 
and it's a cost issue for the supplier, which is us, in 
that we need to be competitive with all the other 
companies that are coming into the area. So, 
standardization really covers all of those problems. 
It covers all the customer problems, it covers all the 
supplier problems, and makes them all better.” 

33, 2018 

“At the end of the day, microgrid projects have to 
make business sense and have to have a solid 
business case. With the current approach to 
microgrids, when everything is re-engineered from 
the ground up for each project, it makes it difficult 
to see the value with confidence.” 

Stadler, In: 
Cohn, 2018 

Re-focusing on 
replicability 

“Almost every microgrid was unique. So the 
industry lacked replicability, stifling its ability to 
grow, drive down costs and achieve scale. Now, 
however, it is time to retire the [‘one-microgrid’] 
phrase.” 

Wood, 
2018a 

 

 

The reframing activities of the ‘one microgrid’ technological frame have the 

purpose to shift the view of microgrid stakeholders being pessimistic towards 

standardization to consider a broader more complex perspective that seeks to make 

microgrids more production oriented and bankable. The frame was not rendered 

obsolete by market dynamics alone. It required the support of active re-framing 

activities to at least partially correct the misalignment with the market in particular 

with customer expectations. The re-framing activities aligned the complexity of the 

‘one-microgrid’ technological frame more with the complexity of the technology and 

market.  

The following quote illustrates the view of the group of actors that have 

distanced themselves from the ‘one microgrid’ frame by applying a higher resolution 

to the product market: “I'm not saying that there aren't custom microgrids going on, 

because a big complex site is gonna want any kind of energy project to be customized. 
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But these are the smaller commercial and industrial facilities that don't need that kind 

of customization and are just fine with a small modular container microgrid” (27, 

2018). While this technological frame has been present for a while, it was only 

supported by a minority in the early development stages of the technology market. We 

name this frame the pro-standardization frame. Holders of the pro-standardization 

(TF2) group of technological frames were confident that the necessary standardization 

is both important and achievable. Table 10 provides further evidence for the pro-

standardization frame holders’ problem-solving approach towards standardization. 

 

Table 10: Representative Evidence for the Pro-Standardization Frame 
 

 Evidence Reference 
   

Problem-
solving 
approach 
towards 
standardization 

“Because microgrid projects are complicated, the 
industry needs to find ways to standardize them.” 

Goodman, 
2019 

“The end goal should be configurable standardization, 
stripping out costs linked to inefficiency while 
delivering greater customer value through creative 
plug-and-play platforms. Though few microgrids are 
identical, the industry can build upon the tremendous 
technological progress with devices such as smart 
inverters, ES, and software that has occurred over the 
past 5 years” 

Cherian & 
Asmus, 2016 

“Well, if you have unique devices all over your system, 
if you've seen one microgrid, you've seen one 
microgrid, then the lineman doesn't know how to 
approach that, and these are still high-voltage 
systems.” They can get people hurt. So, as a result, you 
have to at some point get towards standardization 
really as a safety issue” 

33, 2018 

“If you nail one (microgrid) comprehensively, 
mathematically, financially, then minor variations will 
work for all such microgrids worldwide and that kind 
of standardization is necessary and not too difficult in 
my opinion.” 

34, 2018 

Emphasising 
advantages of 
standardization 

microgrid systems with higher degrees of 
standardization are “…cheaper, smaller, they're easier 
to install, they're more universal.”  

27, 2018 
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Complexity of the Pro-Standardization Frame 

 

The pro-standardization frame had a more complex structure compared to the 

‘one microgrid’ frame. The complexity is reflected by the higher number of elements 

that enabled frame holders to consider a broader spectrum of technology systems. As 

one interviewee told us “There are a dozen aspects, not just technologies, but a dozen 

aspects of microgrids that would benefit from standardization and potential 

certification” (08, 2018). Table 11 provides an overview of key metrics comparing 

TF1 with TF2 and Table 12 shows the broader spectrum of frame elements in 

comparison to the one element (all microgrids are the same in their uniqueness) of the 

‘one microgrid’ technological frame. 

 

Table 11: Key Content of Technological Frames and their Complexities 
 

 Technological Frame 1 
[‘one microgrid’ frame] 

Technological Frame 2  
[‘pro-standardization’ frame] 

   

Key content Each microgrid is unique 

Standardization is possible and 
required to reduce complexity. More 
than one type of microgrid with 
varying degrees of standardization 

Complexity 
[number of 
Frame 
Elements] 

Lower Higher 

Rationale for 
Complexity 
Level 

Narrow Framing Broader Framing 

Non-consideration of various 
methods to increase 
standardization 

Consideration of methods to 
standardize  

Discouraging problem-solving Encouraging problem-solving 

Differentiation  No differentiation Differentiated perspective 
 

 
Frame granularization 
 

The newly dominant frame, as a consequence from its complex structure, was 

not as unified and cohesive as the ‘one-microgrid’ frame. Thus, rather than a single 

frame, we can see a granularization of technological frames. Vaccaro et al., (2011) 

introduced the concept of ‘granularization’ to frames to describe the decomposition of 

a frame into sub-components. This facilitates innovation as frame holders can focus 
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on specific sub-problems while being aware of the broader issue (Cornelissen & 

Werner, 2014). I refer to the overarching frame that includes sub-frames that have their 

holders’ positive attitude towards product standardizability in common as the pro 

standardization frame. The granularization allows frame holders to address the 

problem of non-standardization from different perspectives by focusing on a variety 

of key aspects related to the microgrid technology that require standardization. The 

granularization can be explained by the higher complexity of the pro-standardization 

technological frames. They incorporated more frame elements and were thus able to 

show a broader variety of the available technology options in comparison to the 

simpler ‘one-microgrid’ frame. Actors within this group thus agreed on 

standardizability but differed in their opinion of what should be standardized. Table 

12 provides evidence for the granularization of the pro-standardization technological 

frames (TF2).  

 

Table 12: Representative Evidence for Variations in Pro-Standardization 
Frames  

 

Type of 
granularization 

Quote Source 

   

Engineering/ 
Design 

“A containerized microgrid with a limitation in size based 
on solar plus storage is a solution to standardize on the 
engineering side.”  

30 

Financing “To standardize the financing approach, the energy as a 
service business model is a solution.” 

30 

Regulations “What needs to be standardized is the regulatory framework 
but not the microgrid itself.” 

17 

Modelling  
“We have to standardize how we model different 
technologies because then we could compare the different 
approaches and maybe assess how accurate they are?” 

02 

Purchase/ 
Installation 

“The client has to go to three different people, everyone is 
telling different things. At the end of the day, you don't 
know what to do, then just give up. It should be a 
standardized approach like how you purchase a car, for 
example.” 

02 

Communication “The communication of the microgrid with the central grid 
needs standardization through regulation but not beyond.” 

17 

Interoperability “Standardization should mainly centre around the 
interoperability of systems.”  

35 

 

TF2 enabled its holders to perceive the technology from more than one perspective, 

allowing for a variety of interpretations with regard to the standardizability of the 

technology. This may contribute to both the understanding of the technology and to a 

problem-solving approach that facilitates innovation. The pro-standardization frame 
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(TF2) with its more complex structure and content encouraged decision-makers to scan 

their environment more broadly and use a wider variety of information sources.  

 

Summary of findings 

 

First, I described the non-standardization issue in the product market that led 

to the emergence of the dominant ‘one microgrid’ technological frame. I then showed 

the increase in technology and market complexity and introduced the concept of 

complexity differentials as a concept to analyse the growing misalignment between 

the simple structure of the frame and rising complexity of the market. Second, I 

showed that growing complexity differentials between the product market and the 

technological frame destabilised the frame as it was not able to capture the 

opportunities the market offered. Third, I found that active intervention by key actors 

in form of re-framing activities became necessary as the dominant technological frame 

deviated too much in its complexity from the technology and market it described. The 

pressure for frame transformation stems from the increasingly negative consequences 

from belief systems that are preserving existing problems as opposed to encouraging 

problem-solving activities. The re-framing activities led to a frame transformation that 

shifted the dominance from the ‘one microgrid’ frame to a group of frames that better 

captured the rising variety of products in the market. The higher complexity of this 

group of frames also led to a more fragmented field of frames in comparison to the 

unified ‘one microgrid’ frame. 

 

DISCUSSION AND CONCLUSIONS 
 

Management studies have been criticised for not sufficiently acknowledging 

the role and importance of technology considering its growing influence for 

organisations (Orlikowski & Scott, 2008; Zammuto et al., 2007). One of several 

possible explanations for this paradox is the growing complexity of technological 

systems over the last decades (Zammuto et al., 2007), which increasingly contributes 

to the creation of black boxes that pose challenges to scholars not trained in 

technologies (Orlikowski & Scott, 2008). To address this, I adopted a technological 

frames perspective that allowed me to establish a focus on technology innovation. My 

findings suggest that complexity is an important construct in the study of technological 
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frames. The main outcome and contribution of this work is the introduction of 

complexity differentials to the study of technological frames. 

Figure 4 summarises my findings related to the difference in technological 

frame resolution between the ‘one microgrid’ and pro-standardization technological 

frames. The two dimensions, system flexibility (vertical axis) and standardization 

(horizontal axis), are based on Table 7 and refer to the flexibility of microgrid systems 

to integrate a wide spectrum of components (DERs) and the standardization of the 

microgrid systems. The frame resolution of the ‘one-microgrid’ frame is coarse and 

thus only captures engineered systems that are highly flexible to integrate components 

but lack standardization. The pro-standardization frame, on the other hand, possesses 

a finer resolution that enables its holders to capture the broader spectrum of available 

microgrid systems, adding packaged and productized systems to the frame.  

 

Figure 4: Microgrid Systems and Frame Resolution 

 

Figure 5 summarises the processes and dynamics described above along a time 

dimension (horizontal axis) and market, technology, and frame complexity (vertical 

axis). I follow Luhmann (1995:25-26) in arguing that the environment is always more 

complex than the systems or technologies themselves. Based on this, microgrid market 

complexity [1] is illustrated as being higher compared to technology (microgrid) 

complexity [2]. Both market and technology complexity increased leading to growing 

complexity differentials for both TF1 and TF2. TF2’s complexity differential was, 

however, reduced compared to TF1 as it possessed a higher frame complexity. The 
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reduced differential provided the frame with a higher stability as it more accurately 

reflected its environment.   

Figure 5: Market, Technology, and Frame Complexity  

 

 

The reduced complexity differentials between TF2 and both the market and 

technology complexity are illustrated by the red arrows in Figure 3. I found an increase 
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My analysis suggests that when a technological frame’s complexity deviates too much 

from the technology it refers to, then the complexity of such a frame needs to increase 

in order to reduce overall complexity. In line with the concept of ‘requisite variety’, 

which states that a system that increases its complexity has a broader range of actions 

to cope with environmental complexity (Ashby, 1957; Luhmann, 1995; Schneider et 

al., 2016), technological frames also need to appropriately represent the system and 

market complexity in order to address it. This can only be achieved if the frame itself 

possesses a sufficient degree of complexity. Applying the concept of requisite variety, 

it is proposed that perceived market and technology complexity may be reduced by 

increasing the complexity of technological frames. Allowing for more frame elements, 

in our specific case by acknowledging a higher degree of standardizability through a 

broader variety of systems, increases the complexity of the frame itself but decreases 

the perceived complexity of the system. Re-framing activities can be applied to 

achieve a frame transformation and shift that increases frame complexity. This may 

lead to a more accurate interpretation of standardization options and opportunities. 

Based on my findings, I suggest the following propositions:  

 

Proposition 1: Technological frames that restrict valuable information are 

threats to market development  

 

I argue that the non-standardization (‘one microgrid’) framing observed in my 

study has similar effects than what the literature refers to as ‘threat framing’ (e.g. 

Gilbert, 2006) and the pro-standardization frame has similar effects than ‘opportunity 

framing’ (e.g. Dutton, 1992). Threat framing has been found to restrict information, to 

focus on controlling existing resources instead of searching for novel solutions (Dutton 

& Jackson, 1987), and reduce both the number of alternatives that are being considered 

(Shaw et al., 1981) and the number of decision-makers (Hermann, 1963). Opportunity 

framing, in contrast to threat framing, opens search processes, relaxes the inflexibility 

produced by threat (Dutton, 1992), and creates new sources of entrepreneurial growth 

(Stevenson & Jarillo, 1990). However, opportunity framing has been found to create 

less commitment than threat framing, resulting in a cognitive paradox. Flexible plans 

are created by opportunity framing which fails to inspire organisational commitment 

with threat framing creating the necessary commitment but failing to produce flexible 
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plans (Gilbert, 2006). My study shows that technological frames that restrict 

information are more likely to be transformed and/or replaced. 

  

Proposition 2: Curvilinear relationship between frame complexity differentials 

and benefits 

 

I propose a curvilinear relationship between technological frame complexity 

differentials and benefits [see Figure 6 for an illustration]. Future studies could test 

this proposition empirically that neither a too low nor too high frame complexity 

achieves the same level of benefits as moderate complexity levels. I find that frames 

that deviate significantly in complexity from the product or technology they refer to, 

are either oversimplified and thus might miss important information of the technology 

or they are overcomplicated which defeats their purpose of reducing complexity. I 

therefore argue for a curvilinear relationship between frame complexity and benefits 

[see Figure 6 for an illustration]. The complexity differential can be illustrated also in 

terms of resolution. If the frame’s resolution is too coarse to appropriately reflect the 

technology, then it will need to be adjusted or reframed to obtain a finer resolution that 

provides a better fit. 

 

Figure 6: Curvilinear Relationship between Frame Complexity and Benefits 
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Conclusions 

 

I find that an increasing complexity differential destabilises existing 

technological frames and ultimately leads to their transformation or replacement. This 

research explored the emergence and transformation of technological frames and what 

role complexity plays in those processes. Actors had conflicting technological frames 

about the standardizability of a technology system and about the direction the industry 

is taking. Key actors engaged in framing and reframing practices to shape the view on 

standardization within the market. I propose to apply the notion of complexity 

differentials to technological frames to offer a novel perspective on frame stability. In 

this paper I set out to explore the factors leading to changes in cognitive schemata of 

interpretation in form of technological frames. I applied a complexity differential 

perspective to technological frames to explain why frames may become unstable over 

time leading to their transformation and/or replacement. My study provides a novel 

perspective to conceptualise the dynamics leading to technological frame 

transformation and/or replacement. 

Finally, my findings have some useful implications for practicing managers. 

There is a potential for managers to influence the progress of their technology and 

market by identifying collective frames with high complexity differentials and engage 

in re-framing or frame transformation activities to abandon such problematic frames. 

This study also has some limitations. My focus on a single industry is a limitation but 

a multi-industry study would not have allowed me to achieve the same in-depth 

knowledge on framing dynamics. Also, I understand that complexity is a highly 

abstract concept that poses challenges with regard to operationalization and thus 

replicability.  

It seems fair to say that my findings related to complexity differentials between 

technological frames and the technology/market based on my expert informants are 

also likely to be applicable beyond this particular market setting. Technologies often 

possess high levels of complexity and require framing to be understood by 

stakeholders. The relevance of the complexity the framing itself entails on the stability 

of technological frames seems a transferable finding to other product markets. My 

findings thus provide future studies on technological frames with an additional 

perspective that should be considered when examining market dynamics. 
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APPENDIX 

 
Figure A1: Increasing Complexity of the Energy Industry 

 
Transition of Grid Architecture 

Adapted from: Navigant Consulting (2018)
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Figure A2: Increasing market complexity with shift from single to multi-entity ownership and operation 
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Table A1: Overview of Interviewees with Background and Position held 
 

Interview 
Ident. # 

Background Position(s) Interview 
Duration 

    

1 Entrepreneur/Founder/MBA Co-Founder/CEO  

2 
Entrepreneur/ Academic/ Mechanical/ Electrical 
Engineer Chief Technology Officer 00:34:00 

3 Electrical Engineering   Vice President Grid Technologies 00:43:38 
4 Entrepreneur/MBA Managing Partner 00:29:04 
5 Entrepreneur/Founder/Consultant Consulting Project Manager  00:49:56 
6 Researcher/ Civil Engineer Principal Scientific Engineering Associate 00:49:38 
7 Engineer/Entrepreneur Lead Engineer & Co-founder 00:48:14 

8 Academic/ Mechanical Engineering Assistant Professor, Head of Research, Director of Energy 
Research Laboratory  00:27:00 

9 Academic/ Mechanical/Industrial/Systems Engineering Assistant Professor 00:58:56 
10 Energy Company Technical Director, Smart Power & Power Economics 01:00:57 
11 Entrepreneur/Engineer Partner / Principle  01:03:58 
12 Entrepreneur/Engineer Co-founder and COO 00:45:01 
13 Academic/Electronic Engineering/ Microgrids Professor, Microgrids specialisation 00:56:00 
16 Mechanical Engineer/Advisor Microgrid Advisor, Director of Energy Engineering  00:46:03 
17 DER Company Managing Director  00:39:00 
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Table A1: Overview of Interviewees with Background and Position held (cont.) 
 

Interview 
Ident. # 

Background Position Interview 
Duration 

    

18 Consultant/ Electrical Engineer Senior Consultant  00:31:33 

19 Academic Assistant Professor of Energy and Sustainability Management  00:48:20 

20 Entrepreneur/ Founder/ Consultant Co-Founder and CEO, Advisor at the U.S. Department of Energy  00:57:34 
21 Consultant/ Mechanical Engineer Director / Associate Director - Energy / Smart Grid  00:57:46 
22 Consultant/ Civil and Environmental Engineer Managing Consultant, Strategic Planning and DERs  00:43:13 
23 Consultant/ Artist  Director 00:58:16 
25 Consultant/ Environmental/Chemical Engineer Associate Director  00:47:35 
27 Editor/ Writer Editor/Writer 00:52:13 
28 Energy Management/ Economics Director of Energy Services 00:48:07 
29 Consultant/ Mechanical Engineer/ Strategy Senior Research Analyst - Distributed Energy Strategy  00:55:21 
30 Consultant/ Journalist Research Director: Microgrids 00:44:01 
31 Engineer/ MBA/ Mechanical Engineer Microgrid Sales and Business Development Manager 00:35:12 
32 Academic / Environmental Engineer Microgrid Researcher 01:09:06 

33 Sales, Strategy, Economics Senior Director - Global Business Development, Microgrids, 
Renewables  00:40:54 

 
 
 
 
 
 



 122 

Table A1: Overview of Interviewees with Background and Position held (cont.) 
 

Interview 
Ident. # 

Background Position Interview 
Duration 

    

34 Academic/ Chemical Engineer Founder and Visiting Professor  00:54:53 
35 Material/ Nuclear Engineer/ Microgrid Developer Vice President  00:38:00 
36 Nuclear physicist/ Academic Visiting Fellow; Founding Member 00:37:41 
 Revisited   
8 Academic/ Mechanical/Industrial/Systems Engineering Assistant Professor, Industrial and Systems Engineering 00:17:15 
32 Academic / Environmental Engineer Microgrid Researcher 00:47:14 
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Table A2: Representative Evidence for Increasing Market Complexity through Business Model Diversification 
 

Quote Reference 
  

“Microgrids have come to embody resiliency. However, in recently deployed and prospective projects, a mixed-ownership model is aligning 
microgrids with broader energy goals.” 
 
“The microgrid has traditionally been a skeleton concept with no one-size fits-all solution. A rise in multi stakeholder ownership models illustrates 
that different institutions and communities can find their own value proposition, building on the microgrid together to create an attractive and 
mutually beneficial business case.” 

Chen, 2016a 

“A shift away from single-entity owned and operated projects is greatly improving microgrid project economics in the U.S. microgrid market.” 
 
“A key driver of recent growth for the U.S. microgrid market, multi-stakeholder ownership models, arose from a surge in regulated utility interest 
to co-develop microgrids as a ‘non-wires’ alternative to capital infrastructure investments”. 
 
“While microgrids have historically focused on behind-the-meter benefits for end customers, recent ownership trends suggest a very different 
future.” 

Chen, 2016b 

“While customer-owned microgrids are standard, the new business model, Microgrids-as-a-Service (MaaS), offers a flexible ownership structure 
and an opportunity to capitalize on the growing market.” Engerati, 

2014 “Customer-owned microgrids vs MaaS- Based on an industrial base case, with 10 MW of generation from solar and natural gas, as well as energy 
storage, the returns for the customer-owned microgrid and MaaS are exactly the same. However, with the customer-owned model, the customer 
has to carry all the financial risk”. 
“Until recently, a large portion of microgrids has been third-party installations serving a single customer. However, utility-owned microgrids are 
also being developed, primarily due to state-level policies and directives. In tandem, technology maturity and expanding microgrid applications 
are also facilitating their development.” 

SEPA & 
EPRI, 2016 

“…the hybrid ‘unbundled’ model (is now emerging) based on public-private partnerships, which could offer more flexibility and opportunities for 
collaboration.” 

Engerati, 
2017 

According to Navigant Research, “while in its early stages, the EaaS market consists of third-party vendors, utility services companies, and 
potential business model disruptors deploying niche technical, financing, or procurement solutions like solar [photovoltaic] power purchase 
agreements, energy services performance contracts, and deregulated electricity market retail brokerage services.” “As the EaaS market matures, it 
could spur outsourcing of energy portfolios and turnkey vendors equipped with a comprehensive set of technical, financing, and deployment 
model options.” 

Proctor, 
2018 
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Table A3: Representative Evidence for the Increasing Complexity in the Energy Industry 
 

Description Quote Reference 
   

Systems “Energy systems become more and more complex” Pina et al., 2018: 1 

Increasing 
Decentralization 

  
“Conventionally, power plants have been large, centralized units. A new trend is developing toward distributed 
energy generation, which means that energy conversion units are situated close to energy consumers, and large 
units are substituted by smaller ones.” 

Alanne & Saari, 
2006: 539 

“Deployment of Distributed Energy Resources (DER) is already a reality for electricity supply and the debate 
whether distributed generation is going to replace almost totally or partially the current centralized generation 
paradigm is currently in place.” 

Martín-Martínez et 
al., 2017: 850 

“The global electric power industry is facing a transformation from centralized generation toward a more 
decentralized grid with two-way energy flows. New global DER capacity deployments—including distributed 
generation, DER, plug-in electric vehicle (PEV) charging load, demand response, and energy efficiency—are 
outpacing the deployment of new centralized generation capacity.” 

Danigelis, 2019 

“Electric power systems are riding the wave of decentralization through the deployment and use of ‘distributed 
power’ technologies. Originally established when Thomas Edison built the first power plant in 1882, distributed 
power technologies are used more and more today to provide electrical and mechanical power at or near the 
point of use.” 

Owens, 2014: 10 

“A big push to decentralization in the field of renewable energy has been given, in the last two decades, by 
public incentives, almost worldwide.” 

Di Silvestre et al., 
2018: 486 
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Table A3: Representative Evidence for the Increasing Complexity in the Energy Industry (cont.) 
 

Description Quote Reference 

   

Integration 
challenge 

“The large-scale deployment of distributed energy resources presents many unique challenges in terms of grid 
integration.” 

Kroposki & Mather, 
2015: 18 

“Solar energy …is characterized by variability, intermittency, unpredictability, and location dependency and thus 
required energy storage systems for backup.” 

Naderipour et al., 2017 

Rise in 
Complexity 

  

“With increasing complexity and interconnectivity of the electric power grid, the scope and complexity of grid 
operations continues to grow.” 

Greitzer et al., 2008: 1 

“From centralized to decentralized power production; where both generation configurations mix together making it 
somehow complex.”  

Petinrin & Shaaban, 
2012: 896 

“The addition of significant levels of renewable generators, such as PVs or WTs, may increase the complexity of these 
analyses due to the uncertain nature of the energy sources. For example, the time and location dependency of wind 
generators require extra care when combined with feeder location and load variability.” 

Naderipour et al., 2017 

“The recent changes in the area of power systems have significant effects on the complexity of the distribution and 
transmission system operation imposing new requirements. Prominent among these changes are: 
• Increase of penetration of Renewable Energy Sources (RES). 
• Increase of distributed generation and storage. 
• Market driven operation with prospective participation of small generation and simple consumer. 
• Demand for increased Power Quality with special focus on uninterruptible power supply and network self-healing 
capabilities.” 

Dimeas & 
Hatziargyriou, 2007 

“The introduction of microgrids in the power system introduces considerable complexity in the operation of the grid, 
but at the same time, it can provide distinct benefits to the overall system performance, if managed and coordinated 
efficiently.” 

Dimeas & 
Hatziargyriou, 2007 
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Table A4: Representative Evidence for Increasing Microgrid Complexity 
 

 Quote Reference 
   

Complex 
Systems 

“Microgrids contain all the elements of complex energy systems.” Shah, 2020 
“As MGs are complex installations, different actors are required in the 
planning, implementation and operational stages.” 

Warneryd et al., 2020 

“A community MG is a complex technical system.” Warneryd et al., 2020 

Rising 
complexity 

“The increasing complexity of microgrids caused an ongoing demand for more detail studies...” AhmadiAhangar et al., 
2019 

“Most microgrids today are basic, one-generator affairs, but more complex microgrids are popping up all over.” Roberts & Chang 
2018 

“As the number of distributed generation options expands, microgrids are becoming more complicated.” Krueger, 2020 
“Today’s high proliferation of distributed energy resources (DERs) often makes microgrids more complex than in 
the past.” 

Nordloh, 2018 

“A wide range of research works in different aspects of microgrids, including control, protection, and optimal 
structure for energy management, shows that microgrid systems will become more and more complex and selective 
according to the needed applications.” 

Sechilariu & Locment, 
2016: 30 

“Since the microgrid technology develops, the microgrid system becomes more and more complicated.” Liu et al., 2014: 933 
“As they grow in number and complexity, microgrids will require sophisticated digital automation and smart 
management in order to become reliable alternatives to the conventional grid. Today’s high proliferation of DERs 
often makes microgrids more complex than in the past.” 

IEEE, 2020 

“Multi energy coupling also complicates the plan and operation of microgrids. Firstly, coupled components are 
much more complicated, causing it hard to control. Secondly, one network operation may influence another 
network, and the coordination of different network are required.” 

Suyanto & Irawati, 
2017: 162 

“The complexity of Microgrid Energy Scheduling (MES) is increasing with the integration of Electric Vehicles 
(EVs) and Renewable Generations (RGs). Moreover, it is challenging to determine optimal scheduling strategies to 
guarantee the efficiency of the microgrid market and to balance all market participants’ benefits.” 

Fang et al., 2020 

“In a MG (microgrid), energy management will be more complex and difficult if the DER includes two or more 
types of resources.” 

Wang, Mao, & Nelms, 
2015 

Interactions 
between systems 

“Increasingly, today’s electric power grids are interacting with microgrids and in more complex ways.” Rys, 2019 
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PAPER THREE 

 

TECHNOLOGY INSTITUTIONALISATION: THE 
INTERPLAY OF MICRO AND MACRO MECHANISMS 

AND FIELD-LEVEL INFLUENCES 
 

ABSTRACT 

 

I develop a process model of technology institutionalisation that incorporates 
macro, field, and micro mechanisms and the interaction effects between them. 
The model centres on the concept of technological fields, which are structured 
around the production, use, definition, and control of a specific technology, in 
addition to organisational fields. I propose to apply the notion of a 
technological field to address the neglected role of materiality in institutional 
processes. I address the call for more multi-level approaches to examine the 
institutionalisation process by incorporating micro, organisational and 
technological field, as well as isomorphic macro-level mechanisms into a 
model of technology institutionalisation. I emphasise the need for institutional 
theorists to engage more with technology as an independent institution 
considering its unique characteristics and importance for organisations. 
Further, the lack of focus on materiality in institutional theory is addressed by 
conceptualising technology as an institution and emphasising the moderating 
role of the technological field in the institutionalisation process.  
 

Keywords:  

Multi-Level technology institutionalisation model; Technology as an 

institution; Technological field 
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1. INTRODUCTION 
 

Technology is everywhere. The global economy and organisations 

increasingly rely on technologies. One that has gained significantly in importance over 

the last decades is information technology (IT). Organisations collect and use more 

data than ever to improve their decision-making (George et al., 2014) and require IT 

to manage the immense data volumes. Orlikowski & Barley (2001) addressed already 

almost 20 years ago the need for organisational scholars to give more attention to 

technology. Neo-institutional theory, being still a novel perspective to be applied to 

information technology (IT), provides a rich and diverse conceptualisation of 

technology as it explains the role of institutions in technology innovation (King et al., 

1994) and offers insights into phenomena that are not sufficiently explained by 

economic-rationalist models (Currie, 2011). Given the increasing reliance on 

technologies (Castelo & Lehmann, 2019; Grissinger, 2019), it is surprising that the 

conceptualisation of the technology institutionalisation process has been given little 

attention by management scholars and new institutionalists (Currie, 2011; Zucker, 

1991). Fountain (2001) argues that the role of information technology (IT) needs to be 

better conceptualised and accounted for by institutional theory. The author emphasises 

the importance of information technology for organisations and the necessity to apply 

an institutional perspective to this phenomenon (Fountain, 2001: ix).  

In order to better understand the evolution of microgrids, this paper attempts 

to develop a model of institutionalisation applicable to all technologies. I will draw 

primarily on the literature on information systems (IS), as this is the literature that has 

most explored institutionalization. This conceptual study develops a framework for 

thinking of technology institutionalization as a process driven by interacting micro, 

specific field, and macro mechanisms. The literature in institutional theory has already 

uncovered a plethora of mechanisms through which institutionalisation in general 

occurs (Davis & Marquis, 2005; Schneiberg & Clemens, 2006) but scholars 

acknowledge it is difficult to compare and differentiate how these mechanisms operate 

because of the range of empirical contexts in which this research was conducted (Li, 

2017). Scott (2014: 151), in his review of institutionalisation mechanisms, has likewise 

already proposed that there are often several mechanisms that “interact with and 

reinforce each other” within institutionalisation processes, but this insight operates at 
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a general level rather than helping to explain the institutionalization of new 

technologies in organisations and society.  

To address these limitations in our understanding, the overarching research 

question of this paper is: How does a technology become an institution? The more 

precise research question is: How can technologies become institutionalised through 

an interplay of macro and micro institutional mechanisms and how do field-level 

mechanisms influence this process? I will first provide a detailed explanation as of 

why technology is conceptualised as an independent institution by also defining 

institutions and institutionalisation in general, to then introduce technology 

institutionalisation processes. This is followed by an analysis of the micro and macro 

mechanisms of technology institutionalisation. The concepts of organisational and 

technological fields and their respective mechanisms, which are relevant for 

technology institutionalisation, are presented. Finally, the multi-level technology 

institutionalisation model is explained, followed by a discussion and future research 

directions. 

The key contribution of this paper is to highlight the importance of specific 

organisational and technological field-level mechanisms in models of technology 

institutionalisation. Furthermore, I argue that these differentiated field-level 

mechanisms also moderate macro level institutional mechanisms, the coercive, 

normative, and mimetic pressures (DiMaggio & Powell, 1983) that identify forces or 

motives for processes of institutional change (Beckert, 2010; Scott, 2014).  

 

A multi-level perspective on technology institutionalisation 

 

For the purpose of this study, I differentiate between macro-level forces in form 

of isomorphic pressures and technological- and organisational field-level mechanisms. 

Here it is argued that focusing on mechanisms specific to the organisational and 

technological field is a way to improve our understanding of the technology 

institutionalisation process. It allows us to differentiate field level mechanisms that 

relate to specific services, products, and technologies from larger isomorphic macro 

mechanisms. The focus on smaller distinct subfields, such as the technological field, 

is based on more recent studies that recognise that larger fields are not necessarily 

uniform but can be characterised by heterogeneity (see Quirke, 2013 for an overview). 
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Technological fields and related mechanisms relate to certain technologies and their 

characteristics and can thus be described as subfields. 

 

2. TECHNOLOGY AS INSTITUTIONS  
 

Before discussing the view of technologies as institutions, it is important to 

define the term ‘technology’. I refer to technology as a “set of pieces of knowledge, 

both directly ‘practical’ (related to concrete problems and devices) and ‘theoretical’ 

(but practically, applicable although not necessarily already applied), know-how, 

methods, procedures, experience of successes and failures and also, of course, physical 

devices and equipment” (Dosi, 1982: 151-152). 

This paper contributes to neo-institutional theory and I refer to Jepperson’s 

(1991: 145) definition of institutions as “social patterns that, when chronically 

reproduced, owe their survival to relatively self-activating social processes”. The 

institutionalisation process leads to taken-for-granted and standardised patterns of 

activities that are ultimately viewed as objective and exterior (Zucker, 1977). Zucker 

(1977: 728) further refers to institutionalisation as “both a longitudinal process and a 

property variable”. For the purpose of this study, I will focus on institutionalisation as 

a process. It is important to differentiate between institutionalisation and diffusion as 

the former ultimately leads to a permanent state of things whereas the latter refers to 

how things are spreading (Colyvas & Jonsson, 2011: 28). Institutions represent 

stability but this does not entail that this stability cannot fade over time when no effort 

is made to maintain it (Zucker, 1988). The process that describes the weakening of 

institutions is referred to as deinstitutionalisation (Scott, 2014: 166).  

Jepperson (1991) was one of the first who conceptualised information 

technology as an institution. Using DOS as an example he argued that the software is 

a technological institution as it provides a constraining set of rules that dictate how it 

interacts with computer hardware. The example of DOS also illustrates that a 

technological institution does not need to be visible to be powerful as DOS remained 

an integral building block for other applications and operating systems such as older 

versions of Microsoft Windows (Pinch, 2008). The taken-for-granted usage and 

frequent discussion of technology in everyday life without questioning its legitimacy 

are two central arguments to conceptualise technology as an institution (Wiredu, 

2012). This consideration helps to explain how a technology exercises an independent 
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causal influence (Wiredu, 2012) and emphasises the importance to understand the 

institutional field of the respective technology (Avgerou, 2000; 2002). Avgerou (2000) 

follows Jepperson (1991) and draws on the conceptualisation of technology as an 

institution in its own right. However, Avgerou’s (2000) paper has mainly been cited 

in information systems research studies with few exceptions (e.g. Volkoff et al., 2007). 

This is exemplary for information systems studies drawing on institutional theory with 

organisation studies rarely doing the reverse (Orlikowski & Barley, 2001). 

Orlikowski (2007) argues that organisational research could acknowledge the 

importance of technology more to reduce the risk of taking it for granted and thus to 

limit its theorisation. Barad (2003: 801) refers to this as “…the only thing that does 

not seem to matter anymore is matter”. Social theory needs to address the materiality 

that can be found in the things the social world is built of and in the social action that 

is mediated by materiality. She concludes that technologies must be institutions, 

bearing in mind that institutions themselves are made from things and people (Barad, 

2003). 

Comparing IT innovation with organisational practice, Avgerou (2000:235) 

refers to both as institutions but with distinct mechanisms, legitimating elements, and 

levels of institutionalisation. She concludes while IT institutionalisation is well 

advanced and self-justified, established organisational structures and practices are 

often in a process of deinstitutionalisation due to actors challenging their legitimacy 

(ibid.). The technological and organisational institutionalisation processes are 

intertwined but do not run in parallel (ibid.). While there might be an increasing 

confidence and resulting taken-for-grantedness in the capabilities and progress of 

technology representing an institutionalisation process, there might be organisational 

structures that are viewed as less convincing and thus losing legitimacy reflecting a 

deinstitutionalisation process. The institutional substance of technology in general and 

information technology in particular can be argued based on its recognised value for 

society and the existence of dedicated experts, regulations, and professional 

organisations focused on technology development and policy (Avgerou, 2000:237). 

The IT diffusion process is sustained not only based on rational arguments but because 

professionals as well as people in their personal lives have started to place their trust 

and hopes on the technology (ibid). Wiredu (2010: 99) agrees with Avgerou (2000) in 

stating that “both, IT and bureaucracy are distinct institutions with their own orders”.  
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Three interrelated technology institutionalisation phases have been identified. First the 

“development of IT, communications, and related services industries”. Second, 

“government policy and legislation regarding R&D, production and use of 

technologies” and third, “the development of the IS [information systems] function 

within ‘user’ organisations” (Avgerou, 2000: 238).  

Munir & Phillips (2005) also found that a technology can become an institution 

through processes of social construction. When a technology is implemented in the 

workplace it is often perceived as an institutional property. The technology users’ 

behaviour is mediated through norms, interpretive schemas, and resources that are 

embedded in it. Information technology with its institutionalised properties shapes 

human action by supporting or constraining specific outcomes (Orlikowski & Robey, 

1991: 161). Grant (1988), for example, found in her study on computerised 

performance monitoring systems that characteristics of the information technology 

affected the work life by, for example, shifting supervisory responsibilities to more 

qualitative work aspects.  

In this study I suggest that classifying technologies as institutions allows for a 

better understanding of how the institutionalisation of technology differs from 

organisational practices. It is proposed that technology institutionalisation is a process 

that is driven by multiple micro-, organizational/technological field, and broad macro 

mechanisms that interact with each other. This perspective further emphasises the 

importance of viewing technology as a theoretically relevant element with its distinct 

institutionalisation mechanism and not solely as the empirical context.  

 

3. THE TECHNOLOGY INSTITUTIONALISATION 
PROCESSES 

 

The social process by which institutions are produced and reproduced and by 

which individuals acknowledge a common definition of social reality is referred to as 

institutionalisation (Phillips et al., 2004; Scott, 1987). Studying this process means to 

focus on the “creation and transmission of institutions”, how they are resisting change, 

and maintain the status-quo (Zucker, 1991: 104). Institutionalisation processes can 

take place at several levels and institutionalised practices are “infused with value 

beyond the technical requirements of the task at hand” (Green, 2004: 657). A 

simplified but broadly accepted description of the institutionalisation process consists 
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of objects that are first recognised, then sparely accepted, to finally being broadly 

diffused and established within a field (Lawrence et al., 2001: 626). 

Green (2004) found that at pre-institutionalisation stages, the technology still 

requires justifications and thus taken-for-grantedness is low, whereas at later stages 

leading to full institutionalisation, these justifications disappear and taken-for-

grantedness is high. There are two processes of interplay which reinforce technology 

institutionalisation: (1) organisational processes shaping the technology and (2) the 

use of technology that shapes the culture and functioning of the organisation and leads 

to changes in them (Baptista, 2009). The institutionalisation makes the technology a 

natural extension of the user, ultimately becoming forgotten, invisible, or as Heidegger 

phrased it “ready-at-hand” (ibid.; Damsgaard & Scheepers, 2000). An institutionalised 

information technology is then becoming ‘part of the furniture’ (Currie, 2004) and is 

considered a taken-for-granted tool that is unnoticed and is no longer seen as an 

innovation (Silva & Backhouse, 1997). Such institutionalised information technology 

is only becoming visible when it stops functioning (ibid.) with the invisibility being 

an indicator for the level of institutionalisation (Baptista, 2009). When practices and 

procedures linked with the technology have become routines that also are 

organisational habits then the technology can be considered as institutionalised (Silva 

& Backhouse, 2003). It has been found that there are significant shortcomings in the 

literature regarding the processes supporting technology institutionalisation in 

organisations (Bansler et al., 2000; Baptista, 2009). Following the perspective of 

Zucker (1987), technology becomes institutionalised when it appears invisible and its 

use becomes unnoticed (Silva and Backhouse, 1997; Damsgaard & Scheepers, 2000). 

A considerable amount of literature has studied the institutionalised rules that reveal 

themselves in how people make decisions, pursue behaviours, and frame issues 

(Jepperson, 1991; Powell & DiMaggio, 1991; Scott, 1995; 2001). The conformity to 

these rules or existing institutions and its effect on organisations has been widely 

studied (Arthur, 1989; David, 1985; North, 1990) but institutional theory has paid 

relatively little attention to the institutionalisation process, how these institutions come 

into existing (Garud et al., 2002). The institutionalisation process needs to be better 

understood to comprehend why and how individuals rely on pre-existing institutions 

and how institutions can be formed for a future with novel technological requirements 

(Garud et al., 2002). Garud and colleagues (2002) focused on the actors’ role in the 

creation of institutions. In general, there are two perspectives to examine this process: 
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a rational economic view and an institutional theory perspective to investigate how 

actors build their targets and procedures into the developing institution (Fligstein, 

1999; Garud et al., 2002; Hirsch, 1975; Meyer & Rowan, 1977). This shaping of 

emerging institutions constitutes “acts of institutional entrepreneurship” (Garud et al., 

2002: 196; DiMaggio, 1988) which becomes more important with new technologies 

that break open the institutional black box with its taken-for-granted assumptions 

(ibid., 2002). Technologies require their separate institutional space with “rules that 

govern the production, distribution, and consumption of associated artifacts” (Garud 

et al., 2002: 197). Technological fields are part of the institutional space that shapes 

them (Garud & Jain, 1996) with technological standards being an integral part of this 

environment (Garud et al., 2002: 197). 

Common technological standards are often required for users to exchange 

products in a marketplace by offering the necessary framework (Garud & Karnøe, 

2003; Garud & Rappa, 1994). Firms can benefit from influencing common standards 

as they can build characteristics of their technology into evolving institutional 

structures (Garud et al., 2002). Firms operating in information technology fields that 

produce distinct components of larger technological systems are particularly able to 

benefit due to network externalities (Katz & Shapiro, 1985) and increasing returns 

(Garud et al., 2002; Shapiro & Varian, 1999). Meyer & Rowan (1977: 344) argue that 

institutionalised technologies function as “myths”. Technical processes “become 

taken-for-granted means to accomplish organisational ends”. Institutionalised 

techniques provide an organisation with legitimacy and their use reflects responsibility 

but not efficiency (Meyer & Rowan, 1977). Technologies, and information 

technologies in particular, play an integral part in enabling organisational stability 

(Baptista et al., 2010; Czarniawska, 2008). Tolbert and Zucker (1983) found that early 

adopters of technology make decisions based on technical factors and later adopters 

follow institutional pressures to gain legitimacy (Lawrence et al. 2001).  

Baptista (2009) and Baptista et al. (2010: 177) identified, using empirical data, 

six categories of characteristics that describe institutionalised technologies: 

representative, formalised, functional, importance, familiar aesthetics, and ease of use. 

Their typology focuses on socio-material properties of technology. In the case studied, 

the technology (intranet) and users were so deeply intertwined that a separation 

seemed impossible. The first group of characteristics are representative and the 

background to this concept is that institutionalised technology is perceived as exterior 
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or independent to individuals’ or other stakeholders’ interests (Baptista et al., 2010). 

The second group is referred to as formalised and identifies that “institutionalised 

technology becomes part of the formal functioning of organisations” (Baptista et al., 

2010:177). The technology gains legitimacy as it is seen as the correct way of doing 

things (Baptista et al., 2010). The third group of features is called functional, 

describing institutionalised technology characterised by being embedded and aligned 

with the organisation’s functioning and as such offers an accepted method for doing 

things (ibid.). The fourth set of features is grouped into the term importance and states 

that a technology is institutionalised when it is increasingly integrated in business 

processes and used for important tasks (ibid.). The fifth group is called familiar 

aesthetics referring to institutionalised technology as being familiar to users who 

perceive it as a feature of everyday life (ibid.; Schutz, 1962). The sixth category of 

characteristics that describe an institutionalised technology is called ease of use and 

refers to the technology becoming easier and natural to use and thus usage becomes 

intuitive (ibid.; Davis, 1989).   

 

3.1. The three-stage technology institutionalisation process  

 

An important aspect in understanding and conceptualising the 

institutionalisation process are the determinants of changes in institutionalisation 

levels (Tolbert & Zucker, 1996). Tolbert and Zucker (1996) define technology 

institutionalisation as a three-stage process consisting of habitualisation, 

objectification, and sedimentation to emphasise the variability in institutionalisation 

levels. The authors built their multistage model on the notion of ‘objectification’ 

identified by Berger and Luckmann (1967). The authors define an institution as a 

“reciprocal typification of habitualized action by types of actors” (1967: 72). 

Reciprocal typification refers to “the development of shared definitions or meanings 

that are linked to these habitualised behaviours” (Tolbert & Zucker, 1996: 180). These 

behaviours are habitualised until actors can evoke them with minimal decision-making 

effort (ibid.). The meanings associated with an habitualised action are generalised and 

thus are independent of actors with Zucker (1977) referring to this process as 

‘objectification’ (ibid.). Based on these insights there are at least two sequential 

processes involved in the institutionalisation process: habitualisation and 

objectification with the former referring to the formation of problem-solving 
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behaviours and their association with specific stimuli and the latter referring to the 

development of common social meanings related to these behaviours (Tolbert & 

Zucker, 1996). Exteriority, as the third aspect of institutionalisation, refers to 

institutions that are “experienced as possessing a reality of their own, a reality that 

confronts the individual as an external and coercive fact” (Berger & Luckman, 1967: 

76). Sedimentation describes the processes through which actions obtain exteriority 

(Tolbert & Zucker, 1996). Objectification and exteriority were found to be positively 

related to the degree of institutionalisation (Zucker, 1977). Further, institutionalisation 

was also positively related to transmission, maintenance, and resistance to change of 

actions (ibid.). Nelson and Winter (1982; 2009) found that the more institutionalised 

routines are, the easier they are transmitted to new employees. Transmission increases 

the exteriority of behaviours making them more institutionalised and thus facilitating 

further transmissions (Tolbert, 1988; Tolbert & Zucker, 1996). The three-stage process 

described by Tolbert and Zucker implies different levels of institutionalisation are 

possible and thus patterned behaviours can also vary in their degree of embeddedness, 

in terms of objectivity and exteriority, in a social system (ibid., 1996). 

 

a. Habitualisation 

The habitualisation process produces technologies that can be considered as 

pre-institutionalised. At this stage, there may be relatively few adopters who likely are 

interconnected but use different implementation forms. Thus, there is no formal 

theorising (Strang & Meyer 1993) of these structures which will remain largely 

unknown among non-adopters (Tolbert & Zucker, 1996). Adoption of a technology 

can be predicted according to its level of technical and economic viability for an 

organisation (Anderson & Tushman, 1990; Leblebici et al., 1991) and by the inner 

political arrangements of organisations that influence their receptiveness for change 

(March & Simon, 1958; Tolbert & Zucker, 1996).  

 

b. Objectification 

Objectification refers to the processes by which organisational actors achieve 

some degree of consensus regarding the value of a technology. Based on this 

consensus the adoption process advances (Tolbert & Zucker, 1996). Consensus is 

achieved through either a risk assessment of adopting the new technology using a 

variety of sources or through so called ‘champions’ which are people with a “material 
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stake in the promotion of the structure” (DiMaggio, 1988, In: Tolbert & Zucker, 1996: 

183). To achieve consensus among adopters, champions need to complete two tasks 

of theorisation. The first refers to specifying a general organisational problem for 

which a local innovation is a solution and the second involves the justification of the 

innovation as a “solution to the problem on (either) logical or empirical grounds” 

(Tolbert & Zucker, 1996: 183). Objectification is partially a result of competitor 

monitoring by organisations and their aim to improve their relative competitiveness 

(ibid.). The number of organisations adopting a certain structure positively influences 

the likelihood that decision-makers believe that the benefits of adopting a new 

structure outweigh the costs (ibid.). This argumentation is in line with models of 

sequential decision-making (Banerjee, 1992) which assume that decision-makers use 

the choices of others as well as their own assessment to gain information to make the 

best decision. Thus, the more adopted a given structure becomes, the more likely 

decision-makers follow the choice of others, and the less they trust their own 

assessment (Tolbert 1985; Tolbert & Zucker, 1996). 

After the objectification process, a technology is relatively widely diffused and 

can be described as semi-institutionalised. The motivation for diffusion moves from 

imitation to a normative base, reflecting an increase in theorisation of technologies 

which leads to reduced variance of technologies across organisations (Tolbert & 

Zucker, 1996). Such technologies have a higher survival probability than those not yet 

institutionalised but they are not excluded from distinction. Thus, due to their 

relatively short history, technologies at that stage have a fashion-like quality with some 

normative acceptance but adopters are cautious with regard to their untested quality 

and effectiveness (ibid., 1996). 

 

c. Sedimentation 

Sedimentation, or full institutionalisation (Greenwood et al., 2002), describes 

the stage at which a technology is completely spread within the group of actors that 

was theorised as suitable adopters. Those technologies are characterised by their high 

stability and at this stage the tendency of actors to independently evaluate the 

technology declines (Tolbert & Zucker, 1996). In order to understand the 

sedimentation process, it is central to identify factors affecting the degree of diffusion 

and long-term stability of a technology. An example are actors who are negatively 

affected by the technologies and who can collectively rally against them (ibid.: 184). 
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Sedimentation as a stage can be destabilised when there is no clear link between the 

innovation and desired outcomes. If the impact of an innovation cannot be 

demonstrated, then the development and promotion of alternatives with a similar 

purpose leads to the replacement of the innovation (Abrahamson 1991; Tolbert & 

Zucker, 1996). Full institutionalisation therefore depends on the interplay of several 

factors such as relatively little resistance, cultural support and promotion, and a 

positive relationship with desired outcomes. Opposing groups can limit the diffusion 

of an innovation and to counteract destabilising tendencies it is necessary to have 

demonstrable benefits and continued promotion (Tolbert & Zucker, 1996; Zucker, 

1988). Heugens and Lander (2009), using a meta-analysis, shed light in the structure 

versus agency debate in institutional theory. Structuralists argue that social structures 

such as isomorphic pressures determine organisational behaviour whereas agency 

theoreticians stress that such social structures are only platforms for organisational 

actors and increased institutionalisation may eventually lead to change (Giddens, 

1979; Schneiberg, 2005; Washington & Ventresca, 2004). Heugens and Lander (2009) 

showed that all three isomorphic pressures identified by DiMaggio and Powell (1983) 

have a homogenising effect on organisations, emphasising the effect of social structure 

on organisational behaviour. 

 

4. MICRO AND MACRO MECHANISMS OF TECHNOLOGY 
INSTITUTIONALISATION 

 

The literature in institutional theory has acknowledged the importance of 

mechanisms through which institutionalisation occurs (Davis & Marquis, 2005; 

Schneiberg & Clemens, 2006) but they have mainly been left unstructured and thus 

hard to compare and differentiate (Li, 2017). Ylikoski (2012: 22-23) identified four 

characteristics of mechanisms: First, they are “identified by the kind of effect or 

phenomenon” they create. Second, they are an “irreducibly causal notion” referring to 

“the entities of a causal process that produces the effect of interest”. Third, 

mechanisms have both a structure and fourth, a hierarchy. Anderson and colleagues 

(2006) argue based on Weick (1989) that the central aspect of theory construction is 

to explicitly explain the linkage between an input and an output to reveal the 

transformation process. Focusing on mechanisms for theory construction is therefore 

a promising endeavour as it also puts the emphasis on the bigger picture of a 
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phenomenon instead of focusing on linkages between individual variables only 

(Anderson et al., 2006).  

Scholars have recognised the importance of including multiple levels of 

analysis when examining constructs (Klein et al., 1994) or organisational phenomena 

(Kozlowski & Klein, 2000). The institutionalisation of technology is driven by both 

macro and micro level mechanisms. A multi-level analysis to study technology 

institutionalisation has therefore been suggested (Thornton et al., 2012.). The majority 

of studies examining the institutionalisation process focus on the role of macro level 

mechanisms, in form of institutional isomorphic pressures (Zucker & Schilke, 2020). 

This, however, has not been the case in early studies of institutional theory (e.g. 

Zucker, 1977) which understood the importance of examining micro mechanisms in 

explaining institutionalisation processes (ibid., 2020). The macro-perspective in 

isolation cannot sufficiently explain the overall institutionalisation process. It is 

important to also understand micro-level mechanisms and the interplay between macro 

and micro mechanisms (Thornton et al. 2012) and treat them as complementary 

perspectives to the sole focus on macro mechanisms (Barney & Felin, 2013). Scott 

(2014: 151), in his review of institutionalisation mechanisms, concludes that there are 

often several mechanisms involved that “interact with and reinforce each other” with 

institutionalisation processes occurring on multiple levels. Here mechanisms are a 

defined “class of events” (McAdam et al., 2001: 24) that influence the 

institutionalisation process. A multi-level analysis considering multiple mechanisms 

to study technology institutionalisation has therefore been suggested. This requires the 

identification of relations between variables at multiple levels (Rousseau, 1985: 8). I 

focus here on the interplay between macro and micro mechanisms for technology 

institutionalisation and how technological field-level mechanisms moderate this 

interaction. 

 

4.1. Micro mechanisms: people interacting with technologies  

 

A complementary approach to the macro perspective and only recently 

rediscovered is the micro-level approach to the analyses of institutionalisation 

processes (Zucker & Schilke, 2020).  While a micro-level perspective to analyse 

institutions is not new (e.g. Berger & Luckmann, 1967; Zucker, 1977), most studies in 

organisational research have focused since on the organisation and field-level (Powell 
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& Colyvas, 2008; Schneiberg & Clemens, 2006). Micro mechanisms consider the role 

of individuals in the development of institutions (Zucker & Schilke, 2020) and how 

their interactions shape and are shaped by institutions (Thornton et al. 2012). A number 

of institutional theorists have rediscovered the importance of examining the micro-

foundations of institutions (e.g. Gehman et al., 2016; Powell & Colyvas, 2008). The 

micro perspective offers valuable insights in the longitudinal creation and maintenance 

of technology through institutional work (Lawrence & Suddaby, 2006). Zucker (1977: 

742) in her seminal micro-level study found that the degree of institutionalisation is 

positively related to the “resistance to change through personal influence”. She showed 

with her study the importance of considering the micro-foundations to explain the 

institutionalisation process. Scott (2008) argues that organisations are active players 

able to strategically and innovatively respond to institutional pressures. The literature 

examining the efficiency and value in technology institutionalisation or the 

institutional elements that influence this process for efficiency and legitimacy 

purposes has been very limited (Pishdad et al., 2014). The micro-level perspective 

focuses on the emergence of patterns of behaviour and shared meanings in 

organisations and views institutionalisation as a source for reproduced institutional 

behaviour and not as the result (Baptista, 2009). At the micro level, technology 

institutionalisation occurs through the continuing embedding of technologies in the 

practises and routines of individuals leading to socially constructed behaviour that 

becomes gradually more stable (Pishdad et al., 2014). Institutional entrepreneurship, a 

notion introduced by DiMaggio (1988), investigates the role of individuals in changing 

existing or creating novel institutionalised practices and technologies (Battilana et al., 

2009). The important role of the individual in the institutionalisation process has been 

emphasised by several studies. Managers were found to influence the diffusion of 

practices through their rhetoric (Green, 2004; Green et al., 2009). Technology 

institutionalisation has been found to be driven and hindered by ‘organizing visions’, 

which are community ideas of a technology (Currie, 2004; Swanson & Ramiller, 1997: 

460) as well as by the power of individuals (Silva, 2007).  

Baptista (2009) studied the institutionalisation of an information technology 

(intranet), applying a micro-level approach. Technology institutionalisation is 

explained as a bottom-up process driven by the growing familiarity of users with the 

technology, the technology’s increasing role in users’ routines and habits, and the 

users’ perception that the technology is embedded in the organisation’s formal 
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functioning (Baptista, 2009). The process increases the compatibility of the technology 

with the organisation and helps the organisation to adapt current work practices to the 

potentials of the new technology. The micro institutional mechanisms driving 

technology institutionalisation the study identified are: governance, senior support, 

business alignment, perceived importance and benefits, familiarity, usefulness, and 

ease of use (Baptista, 2009: 317). Technology institutionalisation is viewed as a 

bottom-up process that builds on fluctuations in behaviour at the micro-level. The 

process creates institutionalised actions through integrating the technology in the 

traditions and routines of actors (Baptista, 2009). When micro-level actors and higher 

field and macro levels are viewed as separate and independent, an explanation of how 

lower-order actions and structures constitute macro-level structures becomes 

impossible (Hoffman & Ventresca, 2002). It therefore has been suggested to 

conceptualise the micro-macro relation as a process of institutionalisation in which 

“habitualised actions and intentions are transformed into macro-level structure” (Li, 

2017: 4).  

 

4.2. Macro mechanisms 

 

The macro perspective considers the environment as central to creating 

institutionalised behaviour. Meyer and Rowan (1977) apply this approach and 

introduce isomorphism to explain the diffusion of practices across organisations. 

Institutionalised practices move across organisations promoting the convergence of 

practices through the three types of institutional pressures (DiMaggio & Powell, 1991). 

The macro level explains institutionalisation by focusing on an organisation’s ability 

to achieve legitimacy (Deephouse & Suchman, 2008; Lawrence et al., 2001). 

Organisations that incorporate institutionalised elements protect themselves from 

having their legitimacy questioned (Meyer & Rowan, 1977: 349) and therefore efforts 

are made to create and maintain legitimacy (Dillard et al., 2004). Institutions have the 

ability to influence organisations to “adopt practices consistent with institutional 

practices” (Greening & Gray, 1994: 471). In this sense the “adaptation of an 

institutional practice by an organisation” is referred to as isomorphism (Dillard et al., 

2004: 509). The macro-level institutionalisation mechanisms are “coercive, normative, 

and mimetic isomorphic processes” (DiMaggio & Powell, 1983: 147) through which 

an organisation forms, preserves, and changes its rules, ideals, and practices (Pishdad 
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et al., 2014). Coercive pressures stem from political influence and legitimacy issues. 

Mimetic pressures result from uncertainty while normative pressures stem from 

professionalisation (DiMaggio & Powell, 1983). In general, isomorphic processes are 

regarded as legitimacy-providing (Deephouse & Suchman, 2008) and therefore as 

desirable (Suchman, 1995). To comprehend the institutionalisation process of 

technology it is also important to consider the effects of institutional change and 

deinstitutionalisation (Claig & Bailey, 2007; Greenwood et al., 2002). An increase in 

institutional isomorphic pressures initiates the institutionalisation process but a 

decrease leads to deinstitutionalisation, a process reflecting the destruction of existing 

and establishment of new institutions (Pishdad et al., 2012; Seal, 2003). 

Pishdad et al. (2012) explain the technology institutionalisation process using 

the concept of isomorphic pressures. Regarding coercive isomorphism, an 

organisation adopts and routinises a technology to conform to the requirements of a 

more powerful firm in order to maintain business relationships, have access to 

resources, or make transactions more efficient (Delmestri, 2007; DiMaggio & Powell, 

1983). The progressive use of a technology can be explained by normative 

isomorphism. In this case, a technology is adopted to avoid a damage to legitimacy 

from the perspective of the industry and other institutions. Also, if a technology is 

frequently used by an organisation’s supplier and customer, then the organisation 

might become aware of the technology and adopt it itself. Mimetic isomorphism 

explains the adoption and implementation of a technology with the desire of 

organisations to follow the actions of competitors in the same industry (Scott, 2008). 

An organisation’s perception of these institutional pressures will affect its 

interpretation of its technology adoption intention (Pishdad et al., 2012). 

Institutionalisation processes at the macro level need to be repeated at the micro level 

to avoid substitution by innovations which demonstrates their intertwining of the two 

levels (Zucker, 1988 In: Baptista, 2009).  

 

4.3. The interplay between micro and macro  

 

It can be claimed that cross-level studies are not particularly attractive to 

institutionalists due to their difficult realisation. However, considering that 

institutional stability and change, being central issues in institutional theory, are the 

result of cross-level interactions (Barley, 2011), then the lack of attention to level 
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issues is surprising (Bitektine & Haack, 2015). It is essential to consider the interplay 

between levels to understand the micro-level processes that create, change, 

institutionalise, and deinstitutionalise institutions (Bitektine & Haack, 2015: 49-50), 

field level processes specific to a technology, and macro-level institutional processes. 

The hierarchical structure of mechanisms means that while mechanisms at one level 

assume the presence of certain entities, the existence of lower-level mechanisms to 

explain them is also expected (Ylikoski, 2012: 23). Institutionalisation can also be 

described as the process by which micro-level actions and intentions are transformed 

into “macro-level structures and objective meaning systems” (Li, 2017: 522).  

 

 

5. THE MISSING PERSPECTIVE: TECHNOLOGICAL 
FIELD-LEVEL MECHANISMS OF 
INSTITUTIONALISATION  

 

This study argues that a focus on technological fields in addition to 

organisational fields adds to the predictive power of a technology institutionalisation 

model. Several studies in institutional theory have focused on within-field variability 

in isomorphic processes (Boxenbaum & Jonsson, 2008), examining the level of 

homogeneity (DiMaggio & Powell, 1983) and conformity (Oliver, 1991) of 

organisations in a field. The influence of between field-level mechanisms on 

isomorphic processes has, however, been examined less. It has been found that field-

level mechanisms have a moderating influence on macro-level institutional pressures 

(Heugens & Lander, 2009). Several explanations of the directionality of the 

moderating effect of field-level factors on isomorphic processes have been suggested. 

The pull factor of isomorphic forces has been argued to increase when 

professionalization increases, state interactions are frequent, and the number of known 

alternatives for organising in a field is low (DiMaggio & Powell, 1983: 155-156). 

Further, it has been suggested that fields with weak boundaries experience a lower 

effect of these forces on isomorphism (Greenwood & Hinings, 1996: 1028-1031).  

Heugens and Lander (2009) also found that organisational field–level factors 

actively moderate isomorphic processes with fields in which there is high interaction 

between organisations and state agencies experiencing stronger isomorphic pressures 

(Heugens & Lander, 2009). Thus, a further exploration of micro foundations of 

diffusion mechanisms and processes is useful (ibid.). The authors suggest focusing 



 144 

future research on the ‘processual dimension of isomorphism’ to better understand 

how organisations experience, interpret, and learn from them (Heugens & Lander, 

2009: 76). Also, studies contributing to a better understanding of how field-level 

isomorphic processes influence collective organisational action would be a further 

opportunity for research (ibid.; Lee & Pennings, 2002). There have been several 

explanations for the existence of collective actions underlying isomorphic processes 

such as viewing them as strategies for minimising shared regrets (Landman, 1993), 

strengthening collective identities (Hardy et al., 2005), or a joint need to avoid negative 

feelings arising from nonconformity (Scheff, 1988). Such micro-sociological 

processes can connect the concept of isomorphic pressures to organisational actions, 

deserving more attention by institutionalists (Mizruchi & Fein, 1999; Heugens & 

Lander, 2009). Following Heugens and Lander (2009) it is argued here that applying 

the concept of a technological field, with its focus on the technology of interest, offers 

important opportunities in identifying mechanisms that have a direct influence on 

technology institutionalisation, act as moderators in isomorphic processes and specify 

micro technological mechanisms. 

Pishdad et al. (2014: 6) found that interactions between macro environmental 

institutional mechanisms and organisational and technological institutional logics may 

be actively managed to increase an organisation’s legitimacy and performance. The 

technological field specifies the technological aspects that are relevant for the 

institutionalisation process. By using the concept of the technological field as a 

moderator as well as direct influence in the technology institutionalisation, highlights 

the material dimension such as design considerations in this process.  

Central to technological fields are technological systems which provide utility to users 

through an interacting set of components (Garud et al., 2002). The compatibility 

among system components, achieved through a design reflecting a common standard, 

together with the performance of the components themselves determine a system’s 

overall performance (Garud et al., 2002). The existence or non-existence of a design 

reflecting a common standard has a direct impact on innovation within a technological 

field. Firms operating in a technological field with no common standard have 

difficulties to coordinate their innovation activities whereas interdependent firms 

operating in a field with common standards might be hindered in innovating due to the 

fear of introducing incompatibilities (Brunsson & Jacobsson, 2000; Garud et al., 

2002). 
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The technological field also specifies the technological aspects, micro-level 

mechanisms, that are relevant for the institutionalisation process. The concept 

emphasises distinct mechanisms relevant for the institutionalisation of technology and 

is therefore complementary to the concept of an organisational field. Both concepts 

describe field-level factors, but the technological field is defined around the 

development and use of a technology which allows for the identification of other 

relevant institutionalisation mechanisms. We have learnt that a technology is more 

likely to become institutionalised when it is compatible with a specific standard in the 

technological field. This standard deviates from the standard defined in the 

organisational field concept. It is argued here that both the organisational and 

technological field mechanisms have a moderating influence on macro-level 

institutional pressures but also exert a direct influence on the institutionalisation 

process of technologies.  

 

5.1. The technological field 

 

Friedman (1994a: 139) introduced the concept of a technological field, which 

he defines as a “social space within which structuring of people and institutions occurs 

in relation to a bundle of techniques.” He defines the information technology field as 

the “social space structured around the production, use, definition, and control of 

information technology” (Friedman, 1994b: 371). Information technology (IT) is a 

collection of “techniques that relate to computer based administrative or information-

handling systems” (ibid. 1994a: 139). Institutions and individuals can belong to several 

fields as for example an information systems (IS) specialist can also be a 

mathematician and an organisation using IS can also use optical technology 

(Friedman, 1994a). Information technology serves as the underlying technology for 

information systems and includes the bundle of techniques for “developing, 

implementing, and maintaining computer-based information systems” as well as the 

“design and characteristic materials used in computer hardware, software, and 

peripheral equipment” (Friedman, 1994b: 371). In a technological field, a shared set 

of technologies is the focus of organisational activity and thus the field refers to a 

community of organisations that develop, use, regulate, or exploit a technology or set 

of technologies while sharing a common meaning system and being in frequent 

interaction among each other (Granqvist, 2007: 9).  There are alternative technological 



 146 

trajectories within a new technological field that compete in a challenge for dominance 

(Suarez, 2004; Garud et al., 2002). The organisation and dynamics of the technological 

field determines the firms’ negotiation process leading to either cooperation or 

competition. The population of technological fields consists of research communities 

in specific disciplines and firms operating along the value system of the product-

market domain (Suarez, 2004: 279) such as scientists, government officials, or 

entrepreneurs (Grodal, 2007). 

The meanings of artifacts and patterns of interaction within a technological 

field develop through a negotiated process (Bijker et al., 1987). Studies that apply the 

concept of a technological field to institutionalisation processes need to choose how 

broad (e.g. microgrid technology) or narrow (e.g. microgrid control systems) they want 

to define it as this will shift the focus from higher generalisability to higher specificity 

(Bergek et al., 2005).     

 

5.1.1. Technological field and institutionalisation of technologies 

 

The strategic relevance of a technology (or other resource) depends on firm 

related characteristics with complementarity being a central issue (Makadok & Coff, 

2002). It can be concluded that a technology that is compatible with a specific standard 

in the technological field is more likely to become institutionalised (ibid.). A wider 

technical environment that influences the development of information systems 

functions within organisations is called the information systems (IS) field (Borum et 

al., 1992). Depending on their specific frames, different actors in a technological field 

‘enact their realities’ (Garud & Karnøe, 2001: 10). The actors’ perspective as either a 

regulator, user, or producer influences their identification and ascription of particular 

meanings to the objects comprising the technological field and ultimately these 

meanings become internalised within actors (Garud & Karnøe, 2001: 10). During this 

process of reality enactment, actors engage in a debate to negotiate the relevance of 

objects and behaviours, which eventually results in institutionalised practices and 

meanings shaping the frames and actions of actors. These intersection processes 

provide shape and meaning to the technological field (Garud & Karnøe, 2001: 10) and 

lead to the desire for simplicity, resulting in a taken-for-grantedness of meanings and 

practices (Hughes, 1983, In: Garud & Karnøe, 2001). Actors subsequently become 

‘embedded in self-reinforcing processes’ of the technological field they have 
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contributed to generate (Garud & Karnøe, 2001: 10). The authors (2001: 11) therefore 

argue that a technological field stabilises through interaction processes between 

elements of the field which leads to their alignment and mutual reinforcement. The 

negotiation process gives meanings to objects that constitute the field leading to their 

provisional stabilisation (ibid.; Levy & Scully, 2007). 

 

5.2. The organisational field 

 

DiMaggio and Powell (1983: 148) describe an organisational field as “those 

organizations that, in the aggregate, constitute a recognised area of institutional life: 

key suppliers, resource and product consumers, regulatory agencies, and other 

organizations that produce similar services or products.” This unit of analysis does not 

solely involve competing firms or networks of interacting organisations but the 

entirety of relevant actors (DiMaggio & Powell, 1983). Organisational fields must, 

through a process of structuration, be institutionally defined to exist (ibid.). This 

process consists of four parts: “an increase in the extent of interaction among 

organizations in the field; the emergence of sharply defined inter-organizational 

structures of domination and patterns of coalition; an increase in the information load 

with which organizations must contend, and the development of a mutual awareness 

among participants in a set of organizations that are involved in a common enterprise.” 

(ibid.: 148). This definition links micro-level actions to field-level structures, refers to 

actors as knowledgeable, and suggests that institutions both result from and restrict 

social action (Barley & Tolbert, 1997). The organisational field is a core concept to 

institutional theory representing the level between the society and an organisation. It 

is instrumental to processes leading to dissemination and reproduction of socially 

constructed expectations and practices (Greenwood et al., 2002; Scott, 1995). Quirke 

(2013) argues that a field is best defined by organisations facing the same regulatory 

and environmental factors. The literature moved from describing organisational fields 

as uniform to acknowledging that fields may be segmented, may contain both diversity 

and homogeneity clusters, and that subfields within may face different isomorphic 

pressures (Quirke, 2013). 
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5.2.1. Organisational Field and institutionalisation of technologies 

 

Technologies diffuse at varying speeds throughout an organisational field 

(Lawrence et al., 2001: 627). Despite the usual stability of an organisational field 

(DiMaggio & Powell, 1983; Meyer & Rowan, 1977), fields can undergo change 

triggered by disruptive events leading to a process of deinstitutionalisation followed 

by re-institutionalisation (Fligstein, 1991; Jepperson, 1991). Lawrence et al. (2001) 

define the speed of institutionalisation as the duration an innovation requires to diffuse 

across an organisational field. Institutionalised practices, rules, technologies, or a 

combination of them are the outcome of an instance of institutionalisation meaning 

that they have become and remain diffused throughout an organisational field (ibid.). 

This defines the stage of legitimation, in which practices or technologies are widely 

diffused throughout the field but stability, durability, and influenceability of the 

institution remain unclear (ibid.). 

 

5.3. Distinguishing between technological field and organisational field  

 

A technological field is similar to an organisational field as both comprise a 

shared set of meanings, with the technological field representing relationship patterns 

between artifacts and individuals related to a specific product-market (Garud & 

Karnøe, 2001; Garud et al., 2002) such as microgrids. Despite these similarities, it is 

argued here that the application of the technological field concept to the analysis of 

technology institutionalisation enables a better understanding of such processes 

compared to solely considering the organisational field. The technological field 

emphasises a focus on the technology and material aspects and thus provides the 

researcher with a different set of mechanisms that influence the institutionalisation 

process. In order to understand how a technology is institutionalised, it is important to 

consider both, the organisational field (e.g. the electric power industry) and the 

technological field (e.g. microgrid systems). When considering mechanisms specific 

to an organisational field for the institutionalisation process of technologies, then all 

“those organizations that, in the aggregate, constitute a recognised area of institutional 

life: key suppliers, resource and product consumers, regulatory agencies, and other 

organisations that produce similar services or products” (DiMaggio &Powell, 1983: 

148) will be considered. This reflects a substantially larger group that is considered for 
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the technology institutionalisation process i.e. organisations operating in the electric 

power industry compared to the focus on microgrid technology stakeholders what the 

technological field considers.  

Hargadon and Douglas (2001) emphasised the importance that both individuals 

and organisations understand a new technology and how to respond to it in order to 

institutionalise it. The authors found that an innovation’s design is at the centre of this 

process. This design is specific to the technology studied which is reflected by the 

technological field and not the organisational field characteristics. The specific 

attention to technological field mechanisms as opposed to solely focusing on the 

organisational level, gives materiality a more central role within the institutionalisation 

process. Attributes related to a technology’s materiality such as complexity (Sun & 

Zhang, 2006), design (Garud et al., 2002), and compatibility (Makadok & Coff, 2002) 

influence its institutionalisation process (see Table 1). 

 

5.4. How organisational and technological field-level mechanisms interact 

with micro and macro levels 

 

Bitektine and Haack (2015) developed a multi-level model of organisational 

legitimacy that explains institutional stability and change by describing the 

communicative and cognitive mechanisms that link individual judgements and higher-

level agreements. They approach organisational legitimacy as a judgment (also see 

Bitektine, 2011), decided by individuals at the micro level and by a group of actors at 

the field level (Bitektine & Haack, 2015). Their theory suggests that in stable 

institutional conditions, the legitimacy process is controlled by organisational field 

level influences that are passed down to the micro level. The legitimacy judgement 

that is institutionalised at this level creates macro level isomorphism among individual 

evaluators due to conformity pressures (Bitektine & Haack, 2015). Even those actors 

who keep relying on their own propriety judgements will apply the taken-for-granted 

set of norms which results in the same institutionalised judgement (ibid.). However, in 

situations of institutional change, due to unprecedented events (Greenwood et al., 

2002) or institutional entrepreneurship (Maguire et al., 2004), the level of deviant 

judgements increases which in turn decreases institutional stability. If there is no 

consensus in the field then organisational field level validity cues are less trusted, 

leading to a higher reliance on independent judgements (Bitektine & Haack, 2015). 
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Independent judgements are less influenced by validity and are therefore prone to 

initiate a change process by questioning the status-quo, illegitimating the current 

validity judgement, and proposing legitimate alternatives to established technologies 

(ibid.). Table 1 lists the mechanisms that have been identified to influence the 

technology institutionalisation process.  
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Table 1: Technology Institutionalisation Mechanisms 
 

Analytical 
Level 

Mechanism Description Reference 
    

Micro    
    

 rhetoric "discourse calculated to influence an audience toward some end" (Gill & Whedbee, 
1997: 157). Actors influence the legitimacy of technologies by making convincing 
arguments to validate technologies.  
 

Green et al. (2009) 

 organising visions “a focal community idea for applying IT in organizations” (Swanson & Ramiller, 1997) 
 
 

Swanson & Ramiller, 
(1997); Ramiller & 
Swanson, (2003) 

 familiarity the technology replicates the values and beliefs of the organisation to appear familiar  
 

Baptista (2009) 

 usefulness users acquire an understanding of how to use the technology and recognise new 
potentials  
 

Baptista (2009) 
 

 governance structure technology functions are aligned with those of the organisation. The organisational 
structure dictates the roles and responsibilities for the technology. 
 

Baptista (2009) 

 senior support senior staff support the technology which becomes a central part of the organisation. 
Internal regulations advocate its use and alternatives are eliminated. 
 

Baptista (2009) 

 business alignment the technology was developed to meet a specific business need and is adapted 
accordingly 

Baptista (2009) 

    

Organisational Field  
Moderating Factors 

  

    

 fields populated by 
public organisations 

isomorphic forces are stronger in “fields populated by public organizations” DiMaggio and Powell 
(1983); Heugens & 
Lander (2009: 74) 

 fields with impermeable 
boundaries 

the power of isomorphic forces is higher in fields with strong boundaries than in more 
permeable fields 
 

Greenwood & Hinings 
(1996); Heugens & 
Lander (2009: 74) 
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Table 1: Technology Institutionalisation Mechanisms (cont.) 

 

Analytical 
Level 

Mechanism Description Reference 

    

 fields with fewer 
alternative templates 

isomorphism is more likely to arise in fields in which there are fewer alternative 
organising templates to choose from 
 

DiMaggio & Powell 
(1983); Heugens & 
Lander (2009: 74) 

 previously legitimated 
templates in other fields 

isomorphic forces are stronger for exogenous, previously legitimated templates than for 
recently established templates that are endogenous to the field. Legitimacy is difficult to 
create, making the adoption of already legitimated templates attractive.  

Heugens & Lander 
(2009: 74) 

    

Technological Field  
Moderating Factors 

  

 technology alternatives  a technological field with relatively few alternatives, experiences stronger isomorphic 
pressures for technology institutionalisation 

Adapted from: Heugens 
& Lander (2009) 

    

 complexity technological complexity  
 

Sun & Zhang (2006) 

 design the compatibility among technology components, achieved through a design reflecting a 
common standard 
 

Garud et al., (2002) 
 

 complementarity a technology that is compatible with a specific standard in the technological field is more 
likely to become institutionalised 

Makadok & Coff, 
(2002) 

    

Macro    
 coercive an organisation pushes a technology through the institutionalisation process to conform 

to the requirements of a more powerful firm and gain legitimacy 
Delmestri, (2007); 
DiMaggio & Powell, 
(1983) 

 mimetic adoption and implementation of a technology with the desire of organisations to follow 
the actions of competitors in the same industry 

Scott, 2008). 
 
 

 normative technology is adopted to avoid a damage to legitimacy from the perspective of the 
industry and other institutions 

DiMaggio & Powell, 
(1983); Pishdad et al., 
(2012) 
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6. A MODEL OF THE TECHNOLOGY INSTITUTIONALISATION 
PROCESS  

 
The technology institutionalisation model (Figure 1) illustrates how the 

institutionalisation process of technologies, as described by Tolbert & Zucker (1996), 

is influenced by micro, field, and macro mechanisms and their interactions. The model 

summarises the theoretically and empirically grounded relationships that have been 

described and discussed above. 

At the core of the model is the institutionalisation process as described by 

Tolbert & Zucker (1996) and applied to the field of technology following Pishdad & 

Haider (2015). The technology institutionalisation process starts with an innovative 

technology that goes through a three-stage process consisting of habitualisation, 

objectification and sedimentation. This process is influenced by macro, 

organisational/technological field, and micro-level mechanisms which also show 

interactions among each other. Field-level mechanisms have a direct influence on the 

technology institutionalisation process [link c and d] but also moderate macro 

institutional mechanisms (coercive, normative, and mimetic pressures) [link a and b]. 

It is argued here that mechanisms can be identified that are specific to either the 

organisational field [link a and c] or technological field [link b and d]. In comparison 

to the organisational field concept, the technological field has a clearer focus on the 

technology (design considerations etc.), which is at the centre of the institutionalisation 

process as described in this study. The technological field also specifies the 

technological aspects [micro-level mechanisms, link f] that are relevant for the 

institutionalisation process [link h]. Further, I have described the macro-level 

institutional pressures [link e] that have a direct influence on the technology 

institutionalisation process. There is also an interaction between macro and micro 

mechanisms that influence this process [link g]. Micro mechanisms influence 

technology institutionalisation directly [link f] but habitualised actions and intentions 

can also be transformed into macro-level structure (Li, 2017: 4) through link g which 

then influence the technology institutionalisation process.  
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Figure 1: The Multi-Level Technology Institutionalisation Model 
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7. DISCUSSION AND FUTURE RESEARCH DIRECTIONS  
 

This article contributes to research on institutionalisation processes in two 

ways. First, institutional theory has mainly focused on isomorphic pressures as macro-

level mechanisms that influence the institutionalisation process. I, however, have 

argued that a better understanding of this process requires the incorporation of micro, 

field-specific, and macro-level factors. A major aim of this research has been to 

encourage institutionalists to a more active engagement with technology. In this article 

I have directed attention to the interactions between micro and macro mechanisms as 

well as field-level influences that both moderate the influence of institutional pressures 

and influence the institutionalisation process of technology directly. The concept of 

the technological field is introduced as a complement to organisational fields to 

emphasise the focus on the technology with its specific mechanisms that contribute to 

its institutionalisation. This article extends existing research on institutional theory and 

institutionalisation processes by suggesting a multi-level and multi-field perspective. 

Particularly, I have argued that a model of technology institutionalisation needs to 

incorporate micro, field, and macro levels of analysis and treat them as complementary 

perspectives. I have drawn on the conceptualisation of technology as an institution in 

its own right to emphasise its independent influence in the institutionalisation process. 

This conceptualisation has rarely been used in institutional theory also due to the 

underrepresentation of technology in this stream of research.  

The sparse literature on technology institutionalisation has mainly focused on 

information technology and systems as they represent forms of technology that are 

omnipresent in organisations. It has to be noted, however, that IT institutionalisation 

is only a narrow view of technology institutionalisation. This paper, despite referring 

to information technology as a prime example, aims to develop a more holistic view 

of technology institutionalisation that can also be applied to other types of 

technologies. Institutional theorists are therefore encouraged to apply a multi-level 

perspective to empirically examine the institutionalisation process of other types of 

technologies.  

Further research is needed to empirically test the suggested model and to 

further specify boundary conditions. Since the generality of mechanisms is limited, 

more research investigating technology mechanisms is required. A promising avenue 

for future research would be to further investigate additional mechanisms that 
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influence technology institutionalisation. I emphasised the need for organisational 

studies and institutionalists in particular to engage more with information technology 

as a phenomenon with distinct characteristics and an ever-increasing influence on 

organisations. We need to better understand how information technologies are 

institutionalised in order to realise the potential unintended consequences from overly 

relying on taken-for-granted institutions. I therefore encourage future studies 

examining the risks associated with technology institutionalisation. From a strategic 

management perspective, a fruitful area of research would be to examine the 

implications of technology institutionalisation on performance for both the 

organisation and technological field that adopts the technology.  
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