

City, University of London Institutional Repository

Citation: Popov, P. T., Strigini, L. & Romanovsky, A. (1999). Choosing effective methods

for design diversity - How to progress from intuition to science. COMPUTER SAFETY,
RELIABILITY AND SECURITY, 1698, pp. 272-285. ISSN 0302-9743

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/263/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Presented at SAFECOMP'99
© Springer-Verlag 1999
Published in Lecture Notes in Computer Science
(http://www.springer.de/comp/lncs/index.html)

Choosing Effective Methods for Design Diversity
- how to progress from intuition to science

Peter Popov1, Lorenzo Strigini1,
Alexander Romanovsky2

1Centre for Software Reliability, City University, Northampton Square,
London EC1V OHB, U.K.
{ptp,strigini}@csr.city.ac.uk

2Centre for Software Reliability, University of Newcastle-upon-Tyne,
Newcastle upon Tyne NE1 7RU, U.K.

Alexander.Romanovsky@newcastle.ac.uk

Abstract. Design diversity is a popular defence against design faults in
safety critical systems. Design diversity is at times pursued by simply
isolating the development teams of the different versions, but it is
presumably better to "force" diversity, by appropriate prescriptions to the
teams. There are many ways of forcing diversity. Yet, managers who have
to choose a cost-effective combination of these have little guidance except
their own intuition. We argue the need for more scientifically based
recommendations, and outline the problems with producing them. We focus
on what we think is the standard basis for most recommendations: the
belief that, in order to produce failure diversity among versions, project
decisions should aim at causing "diversity" among the faults in the
versions. We attempt to clarify what these beliefs mean, in which cases
they may be justified and how they can be checked or disproved
experimentally.

1 Introduction

This paper is a preliminary discussion of the main hitherto un-addressed questions in
achieving effective design diversity, i.e., producing diverse-redundant systems with
low probability of common-mode failures of the channels.

Developers of critical systems often employ diversity between redundant channels.
Redundancy protects the system against physical failures of the individual channels,
but leaves it vulnerable to design faults which, if repeated in them all, can cause
common-mode failures. So, in applications such as nuclear plant protection it is
common to employ parallel, diverse channels. Each channel separately inputs and
processes plant data and can trigger a safe shut-down if it detects indications of unsafe
conditions. Two current trends are increasing the interest for design diversity:
increased reliance on off-the-shelf products, which may lack complete documentation

Popov, Strigini, Romanovsky: Choosing Effective Methods for Design Diversity

p. 2

of quality development procedures, and the practical disappearance of non-software
based alternatives (e.g., non-smart sensors) for many functions.

For software, design diversity is sought by having two or more separate teams
develop variants (often called versions) of a program. It is hoped that, if one version
fails, the other[s], being internally different, will not fail at the same time: if they
contain bugs, these will not cause failures in exactly the same circumstances in all
versions. The versions must exhibit the same functional (externally visible)
behaviour. The two or more versions are then run in a redundant configuration, so
that failures in a subset of the versions may be masked or at least detected. More
refined arrangements are possible, e.g. with some version only performing a
monitoring or auditing function on others which have active control functions [1, 2].
Other benefits are also sought from implementing multiple versions, e.g., "back-to-
back" testing provides a cheap, though imperfect, oracle for automated testing.

An important problem with design diversity (as with most other techniques for
reducing or tolerating design faults) is that the reliability gain that it produces is
difficult to evaluate. We know that one cannot assume diverse versions to fail
independently, and all other techniques for assessing high levels of reliability are no
less problematic for multiple-version than for ordinary software. For a summary of
research results on this problem readers can refer to [3-5].

The other important question is how best to achieve effective diversity, i.e., a low
probability that the versions will fail together. A project manager can indirectly
control this by various decisions. To preserve diversity, the teams developing the
versions are typically not allowed to exchange information about the development.
Considering that people engaged in similar activities often make similar mistakes,
they may also be given explicit directives for diversifying the internal structures of
their products (e.g., using different algorithms). However, how do we know that
these decisions will actually improve the delivered multi-version product?

The existing literature, and even standard documents, contain lists of such
decisions that a design manager can apply to pursue diversity, which can be seen as
"common-sense" advice (e.g., [6] gives developer-oriented advice, [7, 8] give
customer-oriented requirements). For brevity, we shall call them "DSDs", for
"diversity-seeking decisions". A complete list of plausible DSDs would span the
whole development process, from team selection, to using different development
environments, different tools and languages at every level of specification, design and
coding, implementing each function with different algorithms, applying different
V&V methods, etc. Some DSDs (like choice of algorithms) will be specific to an
individual product.

But how can a project manager choose from such a "shopping list"? One may
think that the more DSDs are applied, the better. But most of them have a cost:
duplication of activities, added co-ordination effort, need for staff with specific skills.
How many DSDs are enough for the desired level of assurance against design faults,
or what is a cost-effective set of DSDs? There is currently no scientific answer to this
question. We are not even sure that the advantages from various DSDs add up. We
could think, for instance, that a DSD (say, specifying diverse algorithms for the
various versions) produces benefits by giving a team a "scrambled" version of the

Popov, Strigini, Romanovsky: Choosing Effective Methods for Design Diversity

p. 3

problem seen by another team, so that they are not likely to make the same
mistakes. However, perhaps there is a point beyond which further "scrambling"
produces no further advantage: the problems seen are already as different as they can
be. Then, applying a second DSD (say, using very different design methods for the
various versions), possibly just as effective as the first one when used alone, would
not give any additional advantage when used in combination with it.

In short, to decide which DSDs should be applied in a given project one needs to
answer questions about their effectiveness (individually and in combinations). Then, a
rational choice would become possible, considering known costs and other practical
constraints. But the effectiveness of the various, plausibly useful DSDs is unknown.
Instead, a project manager or system-level designer now has little to rely on except
intuition, guided by personal experience. Experience is a poor guide for drawing
general laws on how to avoid problems that are very rare in the first place; and
intuition has been shown repeatedly to fail on these matters: the issues with diversity
are subtle, and difficult even to define properly. For instance, some developers
maintained that design-diverse channels would obviously fail independently, until this
was proven wrong by theory and experiments alike. Even now, the assumption is
often made that "functional diversity" (in which the channels perform similar system-
level functions, but using different input data, different actuators and generally
different techniques) guarantees independence of failures, a view that is refuted in [9].

In this paper, we examine how the technical community can gain better
understanding of how useful diversity is generated, and thus projects can better choose
among DSDs. The first step is to define more clearly the questions to be asked and
recall what is known about the answers (Section 2). Next, we will examine what
evidence can be produced of the efficacy of a DSD (Section 3). In Section 4, we detail
the most common form of intuitive argument in favour of a DSD, which is based on
its presumed efficacy in causing "diverse" development errors and/or "diverse" defects
in the versions. In Section 5, we try and formalise these arguments via models that
could be used in practice: we describe situations in which the empirical data could
give a strong scientific basis for trusting a DSD. Section 6 contains our conclusions.

2 What Is Useful Diversity and What Is Known About It

2.1 Essential Terminology

We first need to define a few terms. We will say that a version (or a system) fails
when its behaviour deviates from what it should be. We will say that a failure is
caused by a defect or fault in the code. Any human error that caused the defect to be in
the code as executed will be called a mistake (although this term is often given a
more specialised meaning in psychology [10]). A mistake could be, for instance,
mis-stating or omitting to state a required function in a requirement document; failing
to notice a defect in a specification document during an inspection; accidentally using
the wrong variable as target of an assignment statement, during coding; omitting to
test under a certain condition that would reveal a fault.

Popov, Strigini, Romanovsky: Choosing Effective Methods for Design Diversity

p. 4

To keep things simple, we will always refer to the simplest diverse-redundant
configuration: two versions in a "1-out-of-2" configuration, in which proper
operation of one version is sufficient for the whole system to function properly.

Most discussions about diversity use the terms "diversity" and "independence" in a
rather informal way. We need to clarify their meaning, if we wish to learn more
about them by scientific methods. First of all, the term "diversity" may designate
several concepts (Fig. 1). DSDs produce "process diversity". They presumably cause
the versions to be visibly different in their structure and internal operation ("product
diversity"). They also cause -one hopes- the versions to be less likely to contain
identical defects than if the DSD were not employed in the first place ("fault
diversity"). And finally, if successful, they reduce the probability that the versions
will fail in the same way on the same demands ("failure diversity"). Failure diversity
is the actual goal of DSDs. All the rest are means to this end, and without more
analysis we cannot even be sure that they are necessary means, rather than
unnecessary side-effects.

Process
'diversity'

Product 'diversity'

'Diversity' of product
failure behaviour

Diversity-seeking decision (DSD)
creates

Process BProcess A

constrains development,
producing

common environment
 selects demands

Version A Version B

pattern of correct
responses and failures

determines which
demands will fail

constrains development,
producing

determines which
demands will fail

pattern of correct
responses and failures

Fig. 1. The causal links from DSDs to failure diversity

"Independence" of failures between two versions means simply that the probability
of the two failing together on a demand is the product of their individual
probabilities. Many practitioners and some standards [7, 8] advocate (or prescribe)
that versions be developed "independently" to achieve effective diversity. Strict
separation between the teams seems the solution. However, modelling has shown [3]
that even if we can achieve this perfect "causal independence", we should expect, on
average, positive correlation between version failures; while "forced diversity" may in
theory achieve lower correlation between version failures, including independence or

Popov, Strigini, Romanovsky: Choosing Effective Methods for Design Diversity

p. 5

even negative correlation. "Forced diversity" means, in the terminology of this paper,
applying some DSD[s]; and those demanding "independent development" would
usually agree that it is desirable. However, DSDs may actually impose more
common constraints on the developments, and generally mean that the developments
are not "statistically independent" (as one attempts to achieve negative correlation
between some characteristics that are deemed important). So, the word
"independence" is applied to development to mean a form of statistical dependence;
while it is applied to failures in the statistical sense.

2.2 Modelling Diversity: the Need for Probabilities

The explanation of the modelling results quoted above [3, 4] is that one can see the
development of a version as an uncertain process. The versions actually produced are,
in practice, picked (independently, by assumption, when modelling perfectly
independent developments) from a distribution of versions that could have been
produced. The problem that they have to solve is the same for them all. Presumably,
some of the demands pose a more difficult problem than others, in the specific
sense that versions are more likely to fail on the former than on the latter. The
mathematics then shows that this uneven distribution of "difficulty", common for all
versions, causes, on average, positive correlation among their failures, when averaged
over the profile of demands to which the versions will be subjected. However, by
forcing diversity, i.e., by DSDs that cause process diversity, one might cause two
teams to encounter different distributions of "difficulty": the demands that are
especially difficult for the team using one process may be the easier ones for a team
using the other process. This of course decreases the risk of common failures.

The conclusion is that forcing diversity - by adopting a DSD - is certainly
beneficial (on average) if the DSD creates two process variants that offer the same
guarantees of reliability. When this is not true, we have to trade off the degree of
diversity between versions against the risk of lower reliability in the version
developed with the worse method. Consider for instance an organisation that uses two
languages, A and B. Suppose that experience has shown that the choice of language
does not seriously affect program reliability. Having to develop a two-version
system, the right choice is then to develop one version in language A and the other
in B. However, if this organisation had found language A to produce generally more
reliable programs than B, deciding whether the two-version system should be an A-A
or an A-B system would require far more information (see [3] for details).

This leads to another consideration about any search for effective DSDs: effective-
ness is judged in terms of future results, but these will vary among projects that ap-
ply a given DSD. So, effectiveness must be stated in terms of probabilities. As for
measures of effectiveness, many choices are possible. A DSD could be judged effec-
tive enough if it reduces by 1/2 the probability of common failures among two ver-
sions (in a project of a certain type); or if it reduces by 1/2 the probability of com-
mon failures being more likely than 10-3; and so on. The choice depends on one's re-
quirements. The problem in arriving at such statements is one of prediction. As usual

Popov, Strigini, Romanovsky: Choosing Effective Methods for Design Diversity

p. 6

in engineering, one can only decide how to achieve certain results by assessing the ef-
fects that the means proposed will have on the products "in general". In other words,
by deciding how much the use of a certain DSD should increase one's confidence in
the product delivered, before the product is actually built. So, the prediction is about
the statistical effects of the DSD on the products that may be developed for a given
requirement, without the benefit of information about the individual product of inter-
est. The fact that precise predictions are probably infeasible should not discourage us:
for decision-making it is usually sufficient to know whether a certain decision is
"substantially better than" (or even simply "at least as good as") another one.

2.3 Empirical Evidence

We know very little about the general efficacy of any specific DSD. Experiments [2,
1] have seldom been analysed from this viewpoint (attempts are presented in [11,
12], and some interesting considerations in [13]). In any case, they only provide
anecdotal evidence: each experiment only developed multiple versions of one
program, leaving open the doubt whether a DSD that appeared beneficial would be so
when developing another program. In addition, most experiments have developed toy
programs in artificial, non-industrial environments. Industrial examples exist, and
companies publicise the DSDs they use. For instance, the CBI railway signalling
system uses C and assembly language for diverse channels [14]; Airbus has used a
specialised process control specification language with a code generator side by side
with a conventionally developed version [15]; software in the ELEKTRA railway
signalling system [16] has a "conventional" primary channel side by side with a rule-
based safety-monitoring channel. But published failure data from these products only
indicate that they are very reliable. Reasoning about whether different DSDs (or none
at all) would have produced much different reliability would require detailed analysis,
which, though worth attempting, risks being inconclusive when based on a handful
of failures or of defects. On the other hand, even if all channels in such products were
perfectly fault-free, this would not mean that the DSDs used by these companies were
useless (an argument occasionally heard is "if diversity has not prevented any
accident, why not drop it and save the extra cost?"). The purpose of DSDs is to
ensure that even if the versions contained faults (which developers try to make
unlikely anyway, but cannot make impossible), these faults would be less likely to
cause system failures. In practice, observing an association between a DSD and high
system reliability will not be enough to argue that one caused the other, unless we
understand the causal mechanisms by which the DSD promotes high reliability.

3 Demonstrating the Efficacy of a Development Decision

Suppose we wish to decide whether a certain DSD is likely to be effective enough to
be employed in our next 2-channel system. For the sake of concreteness, imagine the
DSD is the use of the Ada language in one version and of C in the other. To

Popov, Strigini, Romanovsky: Choosing Effective Methods for Design Diversity

p. 7

convince ourselves that a certain DSD is sufficiently effective for a certain use, we
can in theory proceed in different ways:
1. since the only measure that matters is the reliability of 2-version systems, we

could collect reliability data about many pairs of versions developed with the Ada-
C DSD, and many pairs which did not employ it (i.e., used either Ada only or C
only). Statistical analysis would allow us to filter out the effects of other factors
(general quality and effort spent in the various projects, for instance). Clearly, this
approach is not generally practical. Pairs of programs performing essentially the
same functions exist, but they are produced under so many different conditions
that the data filtering exercise would be close to hopeless, even if the
organisations concerned could provide the data in comparable formats. Two-
channel systems are rare; separate programs that perform similar functions in
different systems may be subject to different demand profiles, so that failure data
may not be comparable. For programs of very high quality, failures might be so
rare that we could not estimate the advantage brought by diversity.
We could produce multiple pairs via controlled experiments, but costs would
limit us to toy programs or non-professional developers. To believe that whatever
results we obtain extend to real industrial developments, we would need first to
understand the cause-and-effect chains via which the DSD affects reliability, so
well to believe that they are the same in the lab and in an industrial environment.

2. we could use the models described in [3, 4]: by estimating how "difficulty" varies
among demands for versions developed with either Ada or C. However, "dif-
ficulty" is not defined here in terms of the likelihood that developers make mis-
takes when dealing with certain design problems, i.e., something of which we
may have direct experience from the past. It is defined in terms of the
probabilities that these mistakes cause failures on certain demands, weighted with
the probabilities of those demands. To confidently evaluate our DSD, we would
need hard empirical evidence. But to collect it, we would have the same problems
indicated above, of scarcity of data, multiplied by the fact that we would need
detailed reliability data for individual demands (which is impossible) or classes
thereof (which is demanding), rather than for the whole operation of each
program.

3. last, we could try and refine the common intuition that "a DSD in some sense
causes 'fault diversity'; 'fault diversity' in some sense causes 'failure diversity'"
(we are using "fault diversity" as shorthand for "tendency of versions to exhibit
qualitatively different fault patterns"). If we can model these two cause-effect
links, we could then try and demonstrate their existence separately. In particular,
the "fault diversity" effect of a DSD may be relatively easy to measure.
Practitioners have experience of the relative frequencies of different kinds of
defects in different development processes. Besides, some DSDs make some types
of fault impossible in one of the versions. Psychologists have studied human
error [10], and their knowledge could be applied either to argue that our DSD
should indeed cause "fault diversity", or to design economical experiments to
check such conjectures.
There is less evidence for a link between fault diversity and failure diversity. Last

Popov, Strigini, Romanovsky: Choosing Effective Methods for Design Diversity

p. 8

but not least, what we wish to be able to demonstrate is that the two links of the
chain, if both proven, combine to prove the property of interest, i.e. that the
DSD causes failure diversity. For a start, this requires one to define "fault
diversity" in a similar way for both links, and this definition to be such that
"fault diversity" and its effect on failure diversity can be measured by feasible
experiments. One also needs a mathematically tractable model of how they would
combine.

This third, two-step method of demonstrating the efficacy of a DSD is appealing
as it would allow greater reuse of knowledge than the other two. If we could show
that a certain kind of 'fault diversity' has a useful effect on 'failure diversity' as a
general rule, we could evaluate a DSD without expensive measurements on failures,
as required by methods 1 and 2. We would only need evidence about the 'fault
diversity' it causes, and even this could in some cases be based on general
psychological knowledge about the effects of different problem-solving constraints on
human error. The rest of the paper is devoted to studying method 3 in more detail.

4 The Fault-Failure Chain: Informal Discussion

In this section, we describe difficulties with the intuitive notion that diversity
"propagates" down the fault-failure chain. This appealing notion cannot be taken for
granted. The similarity of the terms "failure diversity" and "fault diversity" is
misleading. Failure diversity refers to "failing on different demands" (or "failing with
different failure behaviours albeit on the same demand"), and specifically high failure
diversity means a low probability that both versions will fail equally on the same
demand. Fault diversity is a subtler concept: a tendency of versions to exhibit
qualitatively different faults. When we compare the faults in two programs, we can
decide whether we think they are different from some viewpoint, e.g., because they
seem to be caused by qualitatively different mistakes (a programmer's typo vs
misinterpreting the specifications) or they cause different failure behaviours (e.g., a
memory violation trap vs taking a wrong branch). However, we are now interested in
how a DSD affects the potential for diversity among the unknown faults that may
remain in a pair of versions when deployed.

Our problems in linking fault diversity to failure diversity arise from:
1. the difficulty of linking faults (defects in the code) to the specific demands on

which they would cause failures;
2. the fact that the importance of a fault depends on the probability of those demands

on which it causes failures.
About item 1, we notice that a fault can be identified in two ways (neither method
guarantees unique identification - i.e., that all analysts will agree on the list of the
faults in a given product- but we can neglect this difficulty for the time being):
- as a code defect, defined by its position in the code and its type. This presents a

difficulty. Two defects in diverse versions, which use different variable identifiers,
and possibly different languages, will hardly ever look identical, even when they

Popov, Strigini, Romanovsky: Choosing Effective Methods for Design Diversity

p. 9

would cause common failures. So, versions may always have "different" faults,
and useful metrics of "how different" they are become difficult to define;

- as the set of demands on which the defect causes the version to fail (a "failure
region" in the "demand space"). This is a less common view, but with it one can
decide objectively whether two failure regions are disjoint, overlapping (and by
how much) or coincident, and from this information define measures of diversity.
Unfortunately, there is no general, intuitive law linking failure regions to the

defects that create them. Defects that appear similar either in type or location may
never cause failures on the same demands, while defects that are different in
appearance and caused by different mistakes may produce failures on the same
demands.

Since two versions may be such that recognising faults as identical between the
two may be impossible, and yet a pair of faults (one per version) that affected
overlapping sets of possible demands would of course cause system failures, "fault
diversity" must somehow be referred to "types of faults", or "positions of faults"
rather than to individual faults. Many schemes for fault classification are in use (e.g.
[18]), so that statistics are available about the frequencies of the various types.
Whether these data can be used for our investigation is yet to be seen.

Different considerations apply to diversity in the location of faults. If we can create
a mapping between the parts of code that perform similar functions in the two
versions, we can in principle measure the frequency with which a certain pair of
processes (a DSD) creates defects in the same parts of the two versions. A lower
frequency would be an indication of a more effective DSD. Intuitively, the reason for
considering this form of "fault diversity" desirable is that defects that affect
"corresponding" parts of the code in two versions are more likely to cause failures on
the same demands than defects affecting "non-corresponding" parts. This cannot be
taken for granted, but is plausible and can be studied empirically.

5 The Fault-Failure Chain: Special Cases

We have argued that if one chose a DSD at random from those that are commonly
advocated as useful, one would be hard put to produce a convincing argument that it
is indeed so. We now consider a related question: are there special (and plausible)
circumstances that would demonstrate that a certain DSD is useful? We are not
looking for an exemption from scientific rigour. Few useful engineering techniques
have been found by working from first principles. More simply, engineers have
demonstrated that a specific technique worked, and then adopted it. So, if researchers
can state a set of verifiable, sufficient conditions for a DSD to be practically useful,
they will have given practitioners a chance of confirming that a specific DSD is
useful (or perhaps that it is not) in their circumstances, though no guarantee that they
can reach such definitive judgements on all possible DSDs.

Popov, Strigini, Romanovsky: Choosing Effective Methods for Design Diversity

p. 10

5.1 First Scenario: Relying on Experience of Mapping between
Fault Classes and Failure Classes

Suppose that experience has shown that (for the class of software considered) the vast
majority of failures are due to faults that affect (for each version) disjoint sets of
demands, and these sets are the same for all versions. An example could be those
faults that are due to misinterpreting the specified response for some particular class
of demands. We could then define the set of all possible faults, {F1, F2, ..., FN}, and
similarly index the sets of demands on which each fault causes failures (failure
regions): {R1, R2, .., RN}. Our DSD creates two development processes, A and B.
These determine the probabilities of each fault being present in versions produced
with either process: PA(F1), PA(F2), ..., PA(FN) and PB(F1), ..., PB(FN). The
operational environment will determine the probabilities of demands that belong to
the various regions: P(R1), P(R2), ..., P(RN). If the two versions are developed
"truly independently" (i.e., if the only commonalities between the development
efforts for these two versions are in the problem to be solved, which would affect any
development of versions for this system, rather than being due to interactions
between these two specific development efforts), the probability of failure is:

i N∈
∑
[,]1

PA(Fi) P(Ri)
for a single version produced with process A

i N∈
∑
[,]1

(PA(Fi))2 P(Ri)
for 2 versions, both produced with process A

i N∈
∑
[,]1

PA(Fi) PB(Fi) P(Ri)
for 2 versions, produced with processes A and B

It can be shown that if both processes give the same average reliability, an A-B
system is better, on average, than either an A-A or a B-B system. If, say, process A
gives the higher average reliability, then a B-B pair should be avoided, but the choice
between an A-A and an A-B pair depends on the values of all the individual probabili-
ties in the formulas. Since we would not know the detailed set {F1, F2, ..., FN}, we
could not decide on this basis. However, we may well know the relative frequencies
of different classes of faults observed with process A and with process B in the past,
and thus have estimates for their relative frequencies in the current project. It is con-
ceivable that we know that different classes of faults typically affect different sets of
possible demands. For instance, perhaps initialisation defects and defects concerning
the sequencing of concurrent activities tend to affect different kinds of demands. But
even with this one-to-one mapping between defects in the code and subsets of the
demand space, theorems in [5] show that predicting the overall failure rate requires the
unknown parameters (probabilities of individual faults and of the demands that would
trigger them) to satisfy special conditions. In conclusion, one cannot use this form of
argument about the fault-failure chain without first proving by experiment several
rather strong laws governing software development in the environment of interest.

Popov, Strigini, Romanovsky: Choosing Effective Methods for Design Diversity

p. 11

5.2 Second Scenario: Relying on Probability of No Faults

Another possibility may present itself for organisations with a high-quality process:
it may turn out that a given process (say, A) can be trusted with a certain probability
(say, 1-PA(i)) completely to avoid faults that would affect a given category of
demands, i. In this case, a basis for dependability assessment could be the probability
of having any failure at all during the lifetime of a two-version system. A certain
probability of no faults of a given category is a lower bound on the probability of
none of the failures that they might cause happening over the whole system lifetime
(see [19] for a detailed discussion). So, for instance, in the simple scenario below the
decision would clearly be that an A-B pair is to be preferred to an A-A pair, although
process A produces on average better versions.

upper bound on prob. of failure

class of demands
probability of
demand class

process
A

process
B minimum

demand class 1 0.7 1% 10% 1%
demand class 2 0.3 5% 3% 3%
upper bound on probability of system failure: 0.022 0.079 0.016

5.3 Third Scenario: Diversity in the Positions of Faults

We now switch to the apparently more promising, alternative measure of "fault
diversity" in terms of differences in the positions of the faults (cf end of Section 4).
An interesting shortcut now appears possible for collecting empirical evidence of the
efficacy of a DSD. The main intuitive basis for believing that defects affecting
different parts of the code are likely to give low probability of common failure is the
belief that these different parts of the code will often be invoked by different demands.
It is then apparent that we could directly try and measure the effects of DSDs on the
probabilities of non-null intersections between failure regions in different versions.
The costs of experiments would still be high, but there is an interesting
simplification compared to procedure 1 in section 3. If the failure regions in two
versions have null intersection, the two versions will never fail together, no matter
what distribution of demands they are subjected to. So, experimenters would not need
to test the versions with realistic demand profiles, and be concerned that different
profiles would invalidate the experimental results. An analysis of the "static"
characteristics of failure regions would be substituted for a "dynamic" measure of
failure probabilities. Such experiments could at least demonstrate the efficacy of a
DSD at the "programming-in-the-small" level (e.g. at the level of individual
procedures). If this were proven, then a separate study could examine how failure
diversity "in the small" is related, if at all, to failure diversity at the system level.

Popov, Strigini, Romanovsky: Choosing Effective Methods for Design Diversity

p. 12

6 Discussion

We have shown that there are traps in the intuitive ways of reasoning about the
effectiveness of diversity-seeking decisions (DSDs) in project management, and there
is room for progress towards more scientific decision-making. Our first contribution
is simply to point out the possible pitfalls in intuitive reasoning: this knowledge in
itself is a safeguard for the decision maker.

We have explored the intriguing possibility of giving a scientific basis to the
common belief that - at least in some cases - failure diversity can be expected as a
result of "fault diversity". If this could be shown for specific DSDs, decisions could
be based to some extent on general laws of human error behaviour instead of having
to be re-validated for every combination of processes and product requirements. There
is no guarantee of success, but we are working on specifying experiments to provide
more empirical evidence. Initial experiments and analysis of existing data should aim
at excluding un-promising theories and concentrate effort on those that may give
practically useful rules for project decisions.

As for the example models in Section 5, the first two scenarios are unlikely, but
we conjecture that the main theorems we used would still be true under less
restrictive assumptions: we are working on mathematically tractable models for more
general and realistic classes of situations. For instance, the formulas in Section 5
assume that all failure regions are fully disjoint. Yet, it is clear that similar formulas
should apply if failure regions are usually disjoint, and a way of defining this
"usually" should be adopted that can be verified by practical statistical observations.
The third scenario (in 5.3) is much more plausible, though making it a practical
possibility would still require much new experimental work.

The methods we have outlined for evaluating DSDs will be appropriate in those
cases in which tractable models can represent the essential terms of the situation (all
the important factors determining the probability of common failures for the specific
system of interest, though not all factors), and parameters can be estimated with
enough precision (the actual bounds on these estimates determine whether the method
will show that the DSD is useful). There will certainly remain useful DSDs for
which it will be impossible to prove their usefulness with the methods discussed
here. Whether these will still be worth adopting will depend on the other evidence
available and their costs.

This discussion has many limits. It is a preliminary discussion, about questions
that have not been asked before in such detailed terms. For reasons of space, we have
omitted considerations of several additional aspects of the problem which we believe
to be ripe for investigation. For instance:
- we only talked about the average reliability to be expected from a certain DSD. In

reality, it would be desirable to have an idea of the distributions of these
probabilities - an idea of how likely we are to satisfy a given reliability
requirement. We have shown elsewhere [20] that diversity may be seen essentially
as a means for reducing the unavoidable variance in the results of software
development. We are currently extending this line of research. However, even

Popov, Strigini, Romanovsky: Choosing Effective Methods for Design Diversity

p. 13

indications about averages would be more help for the decision makers than what
is now available;

- there are ways a DSD may affect failure diversity that we have not yet considered.
For instance, differences in structure between two complex versions may imply
that essentially similar defects, even if triggered by similar sets of demands,
produce errors that propagate differently in the two versions, resulting in failure
diversity;

- we do not know yet how to reason about combinations of multiple DSDs. For
some practical situations, it would be sufficient to be able to demonstrate that
combining two given DSDs is no worse than applying either one of them alone.
This seems a plausible conjecture, but we intend to clarify which conditions must
apply for it to be true.
In any case, the necessary research involves the collection of empirical evidence,

guided by models determining which kinds of evidence are needed and what the
statistics should be like in order to demonstrate usefulness (or lack thereof) of specific
project decisions.

Acknowledgements

This work was supported in part by Scottish Nuclear under the DISPO project
(DIverse Software PrOject, Contract No. PP/79405/MB), and by the U.K.
Engineering and Physical Sciences Research Council under the DISCS project
(Diversity In Safety Critical Software, grant GR/L07673).

References

1. Voges, U. (Ed.): Software diversity in computerized control systems. Springer-Verlag,
Wien (1988)

2. Lyu, M.R. (Ed.): Software Fault Tolerance. Wiley (1995)
3. Littlewood, B., Miller, D.R.: Conceptual Modelling of Coincident Failures in Multi-

Version Software. IEEE Transactions on Software Engineering SE-15 (1989) 1596-
1614

4. Littlewood, B.: The impact of diversity upon common mode failures. Reliability
Engineering and System Safety 51 (1996) 101-113

5. Popov, P., Strigini, L.: Conceptual models for the reliability of diverse systems - new
results. In Proc. 28th International Symposium on Fault-Tolerant Computing (FTCS-
28), Munich, Germany (1998) 80-89

6. Lyu, M.R., He, Y.: Improving the N-Version Programming Process Through the
Evolution of a Design Paradigm. IEEE Transactions on Reliability R-42 (1993) 179-
189

7. MoD 00-55 Def Stan 00-55, Requirements for Safety Related Software in Defence
Equipment. U.K. Ministry of Defence, Issue 2 (1997)

8. MoD 00-56 Def Stan 00-56, Safety Management Requirements for Defence Systems.
U.K. Ministry of Defence, Issue 2 (1996)

Popov, Strigini, Romanovsky: Choosing Effective Methods for Design Diversity

p. 14

9. Littlewood, B., Popov, P., Strigini, L.: A note on reliability estimation of functionally
diverse systems. Reliability Engineering and System Safety, to appear (1999)

10. Reason, J.: Human Error. Cambridge University Press (1990)
11. Lyu, M.R., Chen, J., Avizienis, A.: Experience in Metrics and Measurements for N-

Version Programming. International Journal of Reliability, Quality and Safety
Engineering 1 (1994) 41-62

12. Avizienis, A., Lyu, M.R., Schuetz, W.: In search of effective diversity: A six-
language study of fault-tolerant flight control software. In Proc. 18th International
Symposium on Fault-Tolerant Computing, Tokyo, Japan (1988) 15-22

13. Kersken, M., Saglietti, F. (Ed.): Software Fault Tolerance: Achievement and
Assessment Strategies. Springer-Verlag (1992)

14. Mongardi, G.: Dependable Computing for Railway Control Systems. In Proc. 3rd
IFIP Int. Working Conference on Dependable Computing for Critical Applications
(DCCA-3), Mondello, Italy (1993) 255-277

15. Briere, D., Traverse, P.: Airbus A320/A330/A340 Electrical Flight Controls - A
Family Of Fault-Tolerant Systems. In Proc. 23rd International Symposium on Fault-
Tolerant Computing (FTCS-23), Toulouse, France, 22 - 24 (1993) 616-623

16. Kantz, H., Koza, C.: The ELEKTRA Railway Signalling-System: Field Experience
with an Actively Replicated System with Diversity. In Proc. 25th IEEE Annual
International Symposium on Fault -Tolerant Computing (FTCS-25), Pasadena,
California (1995) 453-458

17. Bishop, P.G., Pullen, F.D.: Failure Masking: A Source of Failure Dependency in
Multi-version Programs. In Proc. 1st IFIP Int. Working Conference on Dependable
Computing for Critical Applications (DCCA-1), Santa Barbara, USA (1989) 53-73

18. Chillarege, R.: Orthogonal Defect Classification. In Lyu, M.R. (Ed.): Handbook of
Software Reliability Engineering: Computing, McGraw-Hill and IEEE Computer
Society Press, (1996) 359-400

19. Bertolino, A., Strigini, L.: Assessing the risk due to software faults: estimates of
failure rate vs evidence of perfection. Software Testing, Verification and Reliability 8
(1998)

20. Popov, P., Strigini, L., Pizza, M.: The efficacy of diverse redundancy against design
error: some practical considerations. In Proc. INucE Third International Conference on
Control and Instrumentation in Nuclear Installations, Edinburgh, U.K. (1998)

