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Abstract
The rise of microgrid‐based architectures is modifying significantly the energy control
landscape in distribution systems, making distributed control mechanisms necessary to
ensure reliable power system operations. In this article, the use of Reinforcement
Learning techniques is proposed to implement load frequency control (LFC) without
requiring a central authority. To this end, a detailed model of power system dynamic
behaviour is formulated by representing individual generator dynamics, generator rate
and network constraints, renewable‐based generation, and realistic load realisations. The
LFC problem is recast as a Markov Decision Process, and the Multi‐Agent Deep
Deterministic Policy Gradient algorithm is used to approximate the optimal solution of
all LFC layers, that is, primary, secondary and tertiary. The proposed LFC framework
operates through centralised learning and distributed implementation. In particular, there
is no information interchange between generating units during operation. Thus, no
communication infrastructure is necessary and information privacy between them is
respected. The proposed framework is validated through numerical results and it is shown
that it can be used to implement LFC in a distributed and cost‐efficient manner.

1 | INTRODUCTION

Electrical systems are undergoing major changes. There is a
large number of deployed distributed generation systems that is
slowly substituting large electromechanical generators [1]. In the
past, the majority of the load was met by large generation units,
such as coal or nuclear plants. Nowadays, every single house can
be a prosumer, that is, it can produce and consume energy and
deliver excess energy to the network. This is facilitated by new
market designs, for example, peer‐to‐peer markets.

This paradigm shift is shaping our understanding of energy
and bringing us a whole new range of opportunities as well as
challenges. In this context of decentralisation, coordination
amongst generators to balance generation and load [2] is more
taxing. Traditionally, a hierarchical control system is used to
meet this objective, that is, primary, secondary and tertiary
frequency control. Primary control keeps the frequency be-
tween some acceptable limits, secondary control restores the
frequency to the nominal value, and tertiary control does so in
a cost‐efficient way. Secondary and tertiary control layers need

a central authority to send appropriate control signals to gen-
erators to shift their generation to meet the load. However, in
this new paradigm where there are numerous generators
participating in frequency control, the centralised approach
shows important limitations in terms of computation and
privacy concerns. In this regard, new distributed schemes are
necessary to deal with the aforementioned challenges [3].

Different approaches have attempted to tackle this problem
by implementing the traditional hierarchical control in a
distributed manner (see e.g. [3–5]). In [6], the authors propose a
methodology for primary control to mimic droop control stra-
tegies which are by nature decentralised algorithms that act upon
each generator. The proposedmethodology explicitly represents
the modified system dynamics of having electronic inverters
instead of large turbines. Moreover, efforts have been made to
implement a decentralised secondary control scheme, for
example, the centralised averaging proportional integral (PI)
control presented in [7] and the distributed averaging PI control
in [8]. These algorithms use weighted averages of the frequency
as the integral feedback. Despite their theoretical appeal, such

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is
properly cited.

© 2021 The Authors. IET Energy Systems Integration published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology and Tianjin University.

IET Energy Syst. Integr. 2021;3:327–343. wileyonlinelibrary.com/journal/esi2 - 327

https://doi.org/10.1049/esi2.12030
https://orcid.org/0000-0003-1042-7502
mailto:sergiorozada12@gmail.com
https://orcid.org/0000-0003-1042-7502
http://wileyonlinelibrary.com/journal/esi2


approaches suffer from lack of robustness, and their commu-
nication demands make them difficult to implement in real‐life
scenarios [9]. Recently, several nature‐inspired optimisation
techniques have been proposed to solve the primary and
secondary layers of the load frequency control (LFC) problem.
Some of themost relevant ones are thewater cycle algorithm (see
e.g. [10, 11]), the yellow saddle goatfish (see e.g. [12]) and the
butterfly optimisation (see e.g. [13]). However, none of these
methods take the economic cost into consideration. Regarding
tertiary control, it is usually common to solve a primal‐dual
algorithm that converges to the solution of the dual problem
(see e.g. [4], [14–17]), where the communication between nodes
enables joint global actions. Nevertheless, as with other
approaches, communication is intense between nodes and the
system may become very complex. Multi‐Agent Reinforcement
Learning (MARL) is a promising alternative to implement LFC
in a decentralised way (see e.g. [18, 19]). The main drawback of
these methods is their computational complexity, which grows
exponentially with the number of agents. However, the rise of
Deep Learning has opened the door to new techniques and al-
gorithms that address these scalability issues in the LFC problem
(see e.g. [20, 21]).

In MARL, various software agents learn optimal policies by
negotiating, cooperating and/or competing [22]. MARL has
already been used in several power system applications, namely
autonomous voltage control (see e.g. [23]), home energy man-
agement frameworks (see e.g. [24]) and power system resilience
(see e.g. [25]). A review on Reinforcement Learning (RL) for
decision‐making and control in power systems is given in [26]. In
terms of LFC, an initial introduction of RL techniques for such
purposes was performed in [27]. Next, more recent further work
has been performed in this field. The authors in [28] propose an
LFC framework with stability guarantees. The focus of this work
is on primary frequency control, and through simulations it is
shown that the proposed algorithm outperforms the optimal
linear droop control. In [29], a MARL framework is proposed
that develops controllers that only use local area state informa-
tion to cooperatively minimise the frequency deviations and
unscheduled tie‐line power flows for all the areas. In [30, 31],
MARL techniques for multi‐area power systems’ frequency
control are developed; however, in these methods, individual
generators are not specifically modelled. In [32], the authors
include the economics’ element by proposing a multi‐objective
secondary control framework that takes into account the fre-
quency deviation as well as the frequency mileage payments.

The proposed framework advances research in the field of
MARL in LFC by using a realistic representation of the com-
ponents that comprise the overall system and by achieving both
restoration of frequency and cost minimisation. In this regard,
we formulate the Balancing Authority (BA) area dynamic
behaviour, the individual generator dynamics and its generation
rate constraints, a simplified network representation, and wind‐
based generation output. Next, we recast the LFC problem as a
Markov Decision Process (MDP), as is standard in RL prob-
lems. We define the states, which are the frequency deviation,
the control action of each generator, and their action space. We
model the dynamic behaviour of the generators and the

network to determine the probability state transition function
of the MDP.We design the reward function of the agents so that
frequency deviation and total cost are minimised. The design of
the reward function is critical, since it determines the behaviour
that each agent will learn. In order to determine the reward
function, we make use of the frequency deviation as well as the
optimality conditions of the economic dispatch problem to
incorporate the cost component in the proposed framework.
We use this setup to estimate the action‐value function of each
state‐action pair with the Multi‐Agent Deep Deterministic
Policy Gradient (MADDPG) algorithm. MADDPG is an actor‐
critic algorithm; this means that the architecture of each agent is
split into two in which first, the actor directly estimates an ac-
tion, and then, the critic assesses the suitability of such action by
estimating the action‐value function of the state‐action pair. In
MADDPG, the critics use central information to teach each
actor the dynamics of the environment as well as the behaviour
of the rest of the agents. In operation, actors only use local
information since they have learnt how other actors behave
during the training phase. Each actor and critic is modelled with
a Long Short‐Term Memory (LSTM) Network so that previous
history is stored and acted upon. The proposed LFC framework
operates through centralised learning and distributed imple-
mentation. In particular, there is no information interchange
between generating units during operation. Thus, no commu-
nication infrastructure is necessary between agents and infor-
mation privacy between them is respected. We validate the
proposed framework through realistic case studies and
demonstrate that the proposed framework can implement the
LFC in a distributed and cost‐efficient manner.

To summarise, the contributions of the article are as fol-
lows: (i) reformulation of the LFC problem as an MDP; (ii) use
of a detailed model taking into account the network,
renewable‐based generation, generator dynamics and generator
rate constraints; (iii) design of the reward function of the agents
so that frequency deviation and total cost are minimised; (iv)
development of the proposed framework to manage the
optimal LFC in a fully distributed manner with the use of local
information only; and (v) validation of its robustness against
uncertainty introduced from renewable‐based generation. This
problem was initially introduced in [20] and is extended in this
article to implement tertiary control or economic dispatch, that
is, the generation units modify their output to meet the change
in load in a cost‐efficient way to include a detailed power
system model by explicitly incorporating the network, wind
generation, and a more realistic design of the synchronous
generator with its dynamics and generator rate constraints.

The remainder of the article is organised as follows: In
Section 2, we describe the power system model that we adopt
to develop our analysis framework. In Section 3, we formalise
the frequency control problem as an MARL problem. In
Section 4, MADDPG is used to implement primary, secondary
and tertiary control in a multi‐agent problem. In Section 5, we
present numerical studies to demonstrate that the proposed
methodology is a valid alternative to solve LFC in a distributed
and cost‐efficient manner. In Section 6, we summarise the
results and make some concluding remarks.
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2 | PRELIMINARIES

In this section, we present the secondary and tertiary control
models that we utilise to develop our framework. More
specifically, we introduce dynamic models for synchronous
generators, the automatic generation control (AGC) system,
the network, and the economic dispatch.

The frequency of the system indicates whether supply and
demand are properly balanced. When the generated power
exceeds the load, the system frequency increases. Similarly, the
frequency decreases if generation is not sufficient to meet the
load. Thus, controlling the frequency is a standard approach to
balancing demand and supply [33]. Frequency control is
structured as a hierarchy of three layers: primary, secondary
and tertiary control. In primary control, generation and
demand are rapidly balanced since the synchronous generators
are either speeding up or slowing down due to the load
generation imbalance. This is achieved by a decentralised
proportional control mechanism called droop control [34].
Then, a secondary control layer implements an integral control
that compensates for the steady‐state error derived from droop
control. AGC [35] implements the secondary control layer,
collecting information from all generation units in a centralised
way. Finally, the tertiary control layer is related to the economic
aspect of power system operations. This layer establishes the
load share between the sources so that the operational costs
are minimised [36]. Tertiary control is implemented through
the economic dispatch, which calculates the optimal operating
point in an offline process. Next, we present two models, that
is, Model I and Model II, for the description of the power
system dynamics. These two models will be used to formulate
the frequency control problem of a power system with n
generators denoted by G ¼ fG1;…;Gng.

2.1 | Model I: Balancing authority area
dynamics

It is common in power systems’ operations to model the
dynamic behaviour of the entire BA area instead of each in-
dividual generator. In this regard, we define by Δω the devia-
tion of the centre of inertia speed from the synchronous speed;
the total mechanical power produced by PSV ¼

P
i∈G PSV i,

with PSV i the mechanical power of generator i; and the total
secondary command by ZG ¼

P
i∈G zi, with zi the participa-

tion of generator i to AGC. Then the BA area dynamics are as
follows:

M
dΔω
dt

¼ PSV − PG − DΔω; ð1Þ

TSV
dPSV
dt

¼ −PSV þ ZG −
1
RD

Δω; ð2Þ

where M ¼ 2H
ωs
, with H denoting the system inertia constant

and ωs the synchronous speed; TSV ¼

P
i∈G

TSVi
n , where TSV i is

the time constant of the mechanical power dynamics of
generator i; D¼

P
i∈G Di, with Di representing the machine i

damping coefficient; 1
RD
¼
P

i∈G
1
RDi
, with RDi representing the

governor droop of generator i. We neglect the network effects
and set PG = PL(1 + ρ), where PL is the system load and
ρ denotes the sensitivity of the losses with respect to the
system load. The normalised participation factor of bus load
changes ΔPLi with respect to the total system load change ΔPL
is denoted by σi, the output of generator i, Pi, and then ρ,
which denotes the sensitivity of the losses with respect to the
system load is

ρ¼
X

i∈G

σi
∂Plosses
∂Pi

: ð3Þ

2.2 | Model II: Synchronous generator
dynamics

In Model II, the individual generators’ dynamics are repre-
sented. For the ith synchronous generator, the three states
are the rotor electrical angular position δi, the deviation of the
rotor electrical angular velocity from the synchronous
speed Δωi, and the mechanical power PSV i. We denote by zi
the participation of each generator i in AGC. The evolution of
the three states of the generator i is determined by the
following:

dδi
dt

¼ Δωi; ð4Þ

Mi
dΔωi

dt
¼ PSV i − Pi − DiΔωi; ð5Þ

TSV i

dPSV i

dt
¼ −PSV i þ zi −

1
RDi

Δωi; ð6Þ

where the inertia constant is Hi, the synchronous speed is ωs
and Mi ¼

2Hi
ωs
,; the machine damping coefficient is Di, the

governor droop is RDi,; and the parameter zi is an input
provided by the AGC. The definitions of the machine
parameters may be found in [34]. The output of generator i Pi
is determined by Equation (11).

2.3 | Network

Let us consider a power system with N nodes and PLi repre-
sents the real power load at bus i. Further, let Qi and QLi
denote the reactive power supplied by the synchronous
generator and demanded by the load at bus i, respectively.
Then, we model the network using the standard non‐linear
power flow formulation (see e.g. [34]); thus, for the ith bus,
we have that
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Pi − PLi ¼ V i
XN

k¼1

VkðGikcosθik þ BiksinθikÞ; ð7Þ

Qi − QLi ¼ V i
XN

k¼1

VkðGik sin θik − Bik cos θikÞ; ð8Þ

where Gik + jBik is the (i, k) entry of the network admittance
matrix and θik = θi −θk.

We assume that (i) bus voltage magnitudes are |Vi| = 1 p.u
for i = 1, …, N, (ii) lines are lossless and characterised by their
susceptances Bik = Bki > 0 for i, k = 1, …, N with i ≠ k,
(iii) reactive power flows do not affect bus voltage phase angles
and frequencies and (iv) the coherency between the internal
and terminal voltage phase angles of each generator so that
these angles tend to swing together, that is, δi = θi. As a result,
we neglect Equation (8) and simplify Equation (7) to be the
following:

Pi − PLi ¼
XN

k¼1

i≠k

Bikðδi − δkÞ: ð9Þ

If bus i does not contain a generator then Pi = 0.
In order to increase the accuracy of Equation (9), we

can slightly modify it by incorporating an approximation
of the losses. We define the normalised participation factor
of bus load changes ΔPLi with respect to the total system
load change ΔPL by σi and then ρi, which denotes the
sensitivity of the losses with respect to the system load at
bus i and is

ρi ¼ σi
∂Plosses
∂Pi

: ð10Þ

Then Equation (9) becomes the following:

Pi − ð1þ ρiÞPLi ¼
XN

k¼1

i≠k

Bikðδi − δkÞ: ð11Þ

2.4 | Economic dispatch

The economic dispatch process is formulated as an opti-
misation problem, where the objective function that needs
to be minimised is the sum of the individual costs of all
generating units, ci(Pi), for i ∈ G; this is typically a quadratic
function that computes the production cost of each gen-
eration unit. Here, the constraint is that the system has to
keep the generation and load balanced; if the generation
and load are balanced then frequency is also nominal. The
economic dispatch problem may be formulated as follows:

minimize
Pi

P

i∈G

ciðPiÞ

subject to
P

i∈G

Pi ¼ ð1þ ρÞPL:
ð12Þ

2.5 | Wind generation

The increasing penetration of renewable‐based resources in the
system introduces a source of uncertainty in power system
operations and thus in LFC problems. In this regard, we
investigate the effect of wind generation units in the proposed
framework. The relationship between the wind speed and the
generated power can be efficiently modelled as a linear
dynamical system [37]. More specifically, PW denotes the real
wind generation power output, Δv the variation of the wind
speed, αW 1 and αW 2 are parameters that depend on the
wind turbine characteristics, Wt is a Wiener process and βW 1

and βW 2
are coefficients that represent prior knowledge of the

wind speed probability distribution. Then, the dynamics of the
wind generation power output are formulated as follows:

dΔPW
dt
¼ αW 1ΔPW þ αW 2Δv; ð13Þ

dΔv¼ βW 1
Δvdt þ βW 2

dWt: ð14Þ

3 | MULTI‐AGENT REINFORCEMENT
LEARNING FOR LOADFREQUENCY
CONTROL

In this section, we formulate the LFC problem as an MARL
problem. RL is an area ofMachine Learning strongly related with
the notion of software agents [38]. RL studies how autonomous
agents interact with the environment to maximise their long‐
term performance. We use MARL to train a collection of
agents on how to implement the LFC problem in a distributed
way. In this article, an agent physically represents the controller
of a generation unit. As such, by using theMARL scheme, which
allows for a fully distributed control architecture, LFC can be
achieved with no communication infrastructure between the
agents. The controller’s physical circuit of each generator does
not have to be connected with any of the other controllers, thus
allowing a physical “distribution” of the LFC system. A diagram
of the entire architecture and how the RL‐based AGC design fits
in the power system dynamics is shown in Figure 1.

RL problems are mathematically formalised through an
MDP [39] that is defined as the tuple:

MDP ¼ 〈S;A; P;R〉; ð15Þ

where each term is as follows:

� S or state space: all possible states where the agent can be
in the environment. There are two continuous states in

330 - ROZADA ET AL.



LFC: the deviation from synchronous speed, which is
quantified by Δωi for each generator i or by Δω in the case
of the BA area model, and zi, the current control action of
each generator i. These states provide to the agent infor-
mation about the difference between demand and supply
and how much they are contributing to the total generation.

� A or action space: all possible actions that an agent can take
in each state. Our agent generators can increase or decrease
the control action zi in order to modify the state of the
environment.

� P or probability state transition function: it defines the
dynamics of the environment, modelling the transition be-
tween states. For the BA area model or Model I described in
Section 2.1, the transition equations derived from Equa-
tions (1) and (2) are as follows:

M
dΔωnew

dt
¼ PoldSV − ð1þ ρÞPL − DΔωold; ð16Þ

TSV
dPnewSV
dt
¼ −PoldSV þ Znew

G −
1
RD

Δωold; ð17Þ

Znew
G ¼

P

i∈G

znewi ; ð18Þ

znewi ¼ zoldi þ Δzi; ð19Þ

Δωnew ¼ Δωold þ
dΔωnew

dt
Δt; ð20Þ

PnewSV ¼ PoldSV þ
dPnewSV
dt

Δt: ð21Þ

For the detailed modelling of Model II given in Section 2.2,
the transition equations based on Equations (4–6) and (11) are
as follows:

dδnewi
dt
¼ Δωold

i ; ð22Þ

Mi
dΔωnew

i
dt

¼ PoldSV i
− Pi − DiΔωold

i ; ð23Þ

TSV i

dPnewSV i

dt
¼ −PoldSV i

þ znewi −
1
RDi

Δωold
i ; ð24Þ

znewi ¼ zoldi þ Δzi; ð25Þ

Δωnew
i ¼ Δωold

i þ
dΔωnew

i
dt

Δt; ð26Þ

δnewi ¼ δoldi þ
dδnewi
dt

Δt; ð27Þ

PnewSV i
¼ PoldSV i

þ
dPnewSV i

dt
Δt; ð28Þ

Pi − ð1þ ρiÞPLi ¼
PN

k¼1

i≠k

Bikðδnewi − δnewk Þ;
ð29Þ

where Δzi is the increase or decrease in power generation by
each unit i in G estimated by each agent. MADDPG is used to
estimate Δzi, as described in Section 4.

� R or reward function: it defines a numerical signal or
reward expressing the value of being in a state and
performing an action. The reward function considers two
different dimensions in our case: frequency deviation and
operational costs. The specific rewards are defined in
Section 4.

MARL attempts to learn an optimal policy π: S↦A that
maximises the cumulative reward or return. However, the
reward is instantaneous and does not address the global nature
of the task, that is, one bad action can lead to an extremely
good position from which the agent can obtain a good reward.
Thus, action‐value functions Qπ are used in RL to express the

F I GURE 1 Diagram of the proposed load
frequency control scheme
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expected long‐term reward achievable from being in a state,
taking an action and following a policy π:

Qπðst; atÞ ¼ Eπ Rtjst; at½ � ¼ Eπ
X∞

k¼0

γkrtþkþ1jst; at

" #

; ð30Þ

where E½⋅� is the expectation operator, γ is the discount factor,
which expresses the fidelity in long‐term predictions ofQπ, the
cumulative reward achievable in the long run Rt, and the
reward rt at time t. Most RL algorithms use value functions,
such as Q‐learning [40]. To support the learning process, the
action‐value function associates a value Qπ to each state‐action
pair. However, when the number of states and actions is very
large, it becomes computationally expensive to estimate them
efficiently. Recent work has merged the field of RL with Deep
Learning, giving birth to a powerful algorithm called Deep Q‐
learning [41]. This algorithm uses deep neural networks as
parametric function approximators to estimate the action‐value
function of each state‐action pair.

The spectrum of existing algorithms to solve MARL
problems is wide. Most of them use game‐theoretic approaches
to augment Q‐learning, that is, Nash Q‐learning or minimax
Q‐learning [42]. In our case, state and action spaces are
continuous and the interaction of various agents is required.
This limits the range of algorithms available in the literature.
MADDPG addresses both the constraints at the same
time [43].

4 | MULTI‐AGENT DEEP
DETERMINISTIC POLICY GRADIENT

In this section, we present a multi‐agent actor‐critic algorithm
that takes into account the design of the reward function and
the fact that state and action spaces are continuous and.

MADDPG is an actor‐critic algorithm. This means that
the architecture of each agent, or generation unit, is split into
two. First, the actor directly estimates an action and then, the
critic assesses the value of the action by estimating the
action‐value function Qπ of the state‐action pair. The Qπ

estimated by the critic is used by both the critic and the actor
to learn how to behave in the environment. In MADDPG,
the critics use central information to teach each actor the
dynamics of the environment as well as the behaviour of the
rest of the agents. In operation, actors only use local infor-
mation because they have learnt how other actors will behave.
As such, no communication infrastructure between agents is
necessary.

We describe here the actor‐critic algorithm for the BA
model or Model I. This is the same for Model II presented in
Section 2.2; the only difference is that instead of the devia-
tion from the centre of inertia, in Model II, the input to the
actor and the critic is the deviation of the rotor speed from
the synchronous speed of each generator Δωi. For the BA
area model given in Section 2.1, we have each actor i that
estimates Δzi, given the state of the environment Δω and its

current zi. Each critic assesses each state‐action pair defined
by the environment and the actions of all the actors. The
critic estimates each state‐action value that is used during the
actor’s training, as can be seen in Figure 2. We denote by
Δz−i (Δz−j), the action predicted by all other actors besides i
(j), and z−i (z−j) is the control action of all other actors
besides i (j).

Deep Recurrent Neural Networks, specifically LSTMs [44],
are used to model each actor and critic. LSTMs implement
memory so that previous history is stored and acted upon [45].
In MDPs, the Markov assumption dictates that the current
state comprises all the information needed to choose an action.
However, in the frequency control problem the dynamics are
quite complex and the Markov assumption may not hold.
Thus, LSTMs help to correct the violation of the Markov
assumption.

The actor network, see Figure 3, has as inputs Δω and zi
and computes Δzi. The critic network, depicted in Figure 4, has
as inputs the frequency state of the network Δω, the secondary
control action zi, the change in the action predicted by the
actor associated to that critic Δzi, the secondary control action
z−i, and the change in the action predicted by all other actors
Δz−i. The critic network then computes the Qπ(⋅) value of the
state‐action pair estimated by the actor associated with that
critic. As seen in the respective figures, both networks consist
of 100‐neuron LSTM that implements memory and three more
1000, 100 and 50 fully connected hidden layers. Generation
rate constraints can be easily introduced in this neural network

F I GURE 2 MADDPG schema in a frequency control scenario
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based approach. More specifically, the output Δzi of each actor
can be bounded by applying a non‐linear function (e.g. sigmoid
function, hyperbolic tangent etc.) at the output of the network;
so the agent has to learn that it cannot generate at an unrealistic
rate.

The proposed method includes offline centralised learning
towards the global objective of frequency restoration in a cost‐
efficient way and online distributed implementation by only
using local information. As such, no communication infra-
structure is necessary between the agents as the implementa-
tion of the proposed method is based only on local
information. In particular, during the training phase the critics
collect the information of all the generation units. Then, in the
operation phase each ith actor observes the frequency state of
the network Δω and its own secondary control signal zi, both
of which are local variables. The action taken by the ith actor is
the change in its own secondary control action Δzi. None of
the actors need the secondary control action zj, j ≠ i; j ∈ G of
the rest of the actors to operate. Contrary to traditional ACG,
where all secondary control signals zi, ∀i ∈ G are centralised,
the proposed framework operates in a fully distributed manner.
In operation, there is no communication between agents/ac-
tors. The implications of this point are, on the one hand, that
we do not have to consider synchronisation issues, commu-
nication burden or information leaks. On the other hand,
privacy is completely guaranteed since each generation unit
does not share any type of information with the rest of the
generation units during operation.

The design of the reward function is critical, since it
determines the behaviour that agents will learn. Designing a
reward function is much of an art as it is strongly problem‐
dependent. One principle is to effectively reflect the control
goal, which in our case is to restore the system frequency and
achieve this with minimum cost after net load disturbances
occur. As such, usually quadratic, exponential, absolute value
and other sophisticated reward functions are used (see e.g.
[20, 26]). Ideally, the reward function of this problem in-
corporates two different components: (i) the frequency state of
the environment to solve the primary and secondary problem
and (ii) the operational cost associated with the system to solve
the tertiary control problem. Incorporating the frequency
component in the reward function is straightforward since we
set a higher reward for smaller frequency deviations. Next, we
need to determine how the reward function can be defined in
order to take into account the cost component. In this regard,
we study the case where the cost functions of generators are of
the form ciðPiÞ ¼ aiP2i þ βiPi þ γi, for i ∈ G [4]. Cost
minimisation is part of the tertiary control in the hierarchical
control setting, the formulation of which may be found in (12).
For quadratic cost functions under no generation limits we can
find the optimal solution in an analytical way [33]. The
Lagrangian may be written as

L ðPi; λÞ ¼
X

i∈G

ciðPiÞ þ λ ð1þ ρÞPL −
X

i∈G

Pi

 !

;

where λ is the dual variable of the power balance constraint.
The conditions necessary for a minimum are

∂L

∂Pi
¼ 0 ⇒

dci
dPi

− λ¼ 0 ⇒ 2aiPi þ βi ¼ λ; ∀i ∈ G: ð31Þ

The solution to the problem above defines the base point
operation of tertiary control. We now define with the aid of
participation factors how a generator would participate in a
load change so that the new load is served in a cost‐efficient
way. We start from a given base point λ0 as found from (31).
Assume that the change in load is ΔPL; the system incremental
cost moves from λ0 to λ0 + Δλ. For a small change in power
output on unit i, ΔPi, we have

Δλ ≈
d2ci
dP2i

ΔPi ⇒ ΔPi ¼
Δλ
d2ci
dP2i

; ∀i ∈ G: ð32Þ

Thus, we require that each generator i changes its output
so that the following holds:

Δλ¼
d2ci
dP2i

ΔPi ¼
d2cj
dP2j

ΔPj; ∀i; j ∈ G; ð33Þ

that is, for each generator a change in the action Δzi, where for
i ∈ G we require that

F I GURE 3 Architecture of the MADDPG actor

F I GURE 4 Architecture of the MADDPG critic
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Δzi
d2ci
dP2i

− Δzj
d2cj
dP2j

�
�
�
�
�

�
�
�
�
�
¼ 0;∀i; j ∈ G: ð34Þ

Now we use these two conditions, that is, frequency de-
viation and cost information, to determine the reward func-
tions for each modelling approach.

4.1 | Reward function: Model I

We construct two conditions that will be used in the formu-
lation of the reward function. The first condition is as follows:

C1 : jΔωj < ϵ1;

where ϵ1 is some selected tolerance; this condition ensures that
the reward function r will reward actions that help in frequency
restoration. The second condition is as follows:

C2 :

P
i∈G

P
j∈G;j>i zi

d2ci
dP2i

− zj
d2cj
dP2j

�
�
�
�

�
�
�
�

ðn − 1Þ!
< ϵ2;

where ϵ2 is some selected tolerance; this condition ensures that
r will reward actions that follow the cost‐efficient path.

When only the primary and secondary control problems
need to be solved, the reward function may be formulated
using C1 as

r ¼ d; if C1;
0; otherwise;

�

; ð35Þ

where d is a constant. On the other hand, by taking these two
conditions into account we may formulate a general form of

the reward function to solve all the levels of control, from
primary to tertiary as

r ¼

d1; if C1 ∧ C2;

d2; if C1 ∨ C2;

0; otherwise;

8
>><

>>:

; ð36Þ

where ∧ is the logical and; ∨ is the logical or; and d1, d2 are
constants with d2 < d1. This reward function facilitates fre-
quency restoration in a cost‐efficient way, since the critic values
actions higher if the frequency of the system is close to
nominal and the cost is small.

4.2 | Reward function: Model II

In order to ensure frequency restoration, that is, secondary
control, we require that |Δωi| < ϵ for all i ∈ G. To this end,
we formulate the reward function as follows:

r ¼

d01; ∃i : jΔωij < ϵ

d02; ∃i; j : j ≠ i; jΔωij ∧ jΔωjj < ϵ;

d03; ∃i; j; j0 : j ≠ j0 ≠ i; jΔωij ∧ jΔωjj ∧ jΔωj0 j < ϵ;

⋮

d0n; jΔω1j ∧ jΔω2j ∧ ⋯ ∧ jΔωnj < ϵ;

0; otherwise

8
>>>>>>>>>>><

>>>>>>>>>>>:

;

ð37Þ

where ∧ is the logical and sign and d01; d
0
2;…; d0n are con-

stants with d01 < d02 < d03 < ⋯ < d0n. This formulation ensures

F I GURE 5 Diagram of the training process for developing the proposed load frequency control scheme
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that the reward is higher when the frequency deviation is
smaller than a specified tolerance. In this work, we have not
performed tertiary control for Model I. The reward function
integrates the training loop, informing each agent whether
its actions are desirable or not. After each time step, the
agents receive a reward based on the state of the environ-
ment and the actions taken. Then, these rewards are used to
optimise the weights of the networks of the actors and the
critics. A flow diagram of the training process involved in
determining the RL‐based control for each agent is shown
in Figure 5.

5 | NUMERICAL RESULTS

We validate the MARL methodology using three test systems.
We formulate the reward function and present the results of the
primary and secondary control problems forModel I and for the
detailed modelling of Model II, taking into account the network
effects. We also demonstrate the flexibility of the proposed
methodology to incorporate generation rate constraints as well
as its robustness against the uncertainty introduced due to wind
generation. Then, we formulate the reward function and present
the results of all levels of control for one single BA area using
Model I. We demonstrate that the generators are able to restore
the system frequency back to nominal and operate at a point
close to optimal when a change in load occurs in a distributed
way. We compare the results with a standard distributed optimal
load frequency controller [14].

5.1 | Secondary control: Model I

The test case used to validate the secondary control using
Model I comprises a group of eight generating units or agents

TABLE 1 Eight‐generator and one‐load power system data

Nominal frequency f nom = 50 Hz

Initial operating point Pi = 0.375 pu, i = 1, …, 8

Inertia parameter M = 0.1 pu

Droop RD = 0.1 pu

Load damping D = 0.0160 pu

Generator time constant TSV = 30 s

(a)
(b)

(c) (d)

F I GURE 6 Secondary control Model I: Change in load by 0.15 pu
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that interact with a load. The parameters of the environment
can be found in Table 1. In each training episode, the load
varies around a nominal set point randomly. The modification
is indicated by PL ±ΔPL = 3 ± β pu, where β follows a uniform
distribution. The reward function has been derived following
(35) and is defined by the following:

r ¼ 10; if C1
0; otherwise :

�

During operation, only the actors interact with the
environment. They can only observe the local information about
the frequency of the system and the control action that they are
executing. Following training, they knowhow to act according to
the state of the environment in order to keep the load and
generation balanced. The validation of training is tested by
changing the load by 0.15 pu and observing how the generators
modify their output.

In Figure 6a, the cumulative reward obtained by the agents
is depicted. The agents can obtain 1000 at maximum per
episode, that is, the maximum reward per step is 10 and the
number of steps per episode is 100. The agents learn how to
obtain higher rewards as the number of episodes increases,
since if that was not the case, the cumulative reward function
would oscillate around small values near zero.

In Figure 6b,c, the centre of inertia speed and power
response of an eight‐generator system when a single load in-
creases by 0.15 pu is depicted. However, as can be seen in
Figure 6d, the solution may be unrealistic given that the
operational cost component is neglected in this test case. As
such, one agent learns to balance the entire system while the
others have zero output. Further analysis on secondary control
using Model I may be found in [20].

In order to highlight the ability of the proposed framework
to implement generation rate constraints, we have used Model I
to conduct numerical analyses of the response of a two‐agent
system, whose data can be seen in Table 2 and is depicted in
Figure 7, when the generation rate of each unit is bounded by
different values. We modify the load by 0.15 pu and limit the
output of each actor Δzi to 0.1, 0.05 and 0.01 pu, respectively, by
using a hyperbolic tangent function. As depicted in Figure 8a,
although the system manages to meet the new load, the gener-
ation rate constraints affect the elapsed time until the new steady
state is reached. This can be also inferred byobserving Figure 8b,
where the actual values of Δzi are shown. When the generation
rate is more constrained, that is, the generators are allowed to
modify their output in smaller increments, the system spends
more time balancing the generation and demand, as expected.

Next, we validate that the proposed framework is robust
against the uncertainty introduced by wind generation,
as described in Section 2. We model a wind generator as a sto-
chastic process with parameters αW 1 ¼ −0:002, αW 2 ¼ 0:01,
βW 1
¼ −0:5, and βW 2

¼ −0:4. We train the two‐agent system of
Table 3 to balance the load under such conditions. In
Figures 9a,b, it can be seen that the load is met and the frequency
is close to nominal under the scenario that the wind generation

TABLE 2 Two‐generator and one‐load power system data

Nominal frequency fnom = 50 Hz

Initial operating point P1 = 1.5 pu, P2 = 1.5 pu

Inertia parameter M = 0.1 pu

Droop RD = 0.1 pu

Load damping D = 0.0160 pu

Generator time constant TSV = 30 s

F I GURE 7 One‐line diagram of a two‐generator and one‐load power
system

(a) (b)

F I GURE 8 Secondary control Model I: change in load by 0.15 pu, with Δzi bounded at different levels
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evolves randomly. More specifically, minor variations appear in
the frequency response as the agents adapt to rebalance the load.

5.2 | Secondary control: Model II

Analogously, we have designed a test case to validate the per-
formance of the proposed solution using the detailed Model II.
The dynamic behaviour of two generators that are part of a BA
area as well as the network is explicitly taken into account. The
configuration of the system that has two loads, that is, PL1 and
PL2, can be found in Figure 10. The parameters of the envi-
ronment can be found in Table 3. In each training episode, each
load varies around a nominal set point randomly. The modifi-
cation of each load is indicated by PLi � ΔPLi ¼ 1:5� β pu,
where β follows a uniform distribution.

The reward function has been derived following Equation
(37). We set ϵ = 0.05 pu, d10 = 100, and d20 = 200. The reward
function is formulated as follows:

r ¼
100; ∃i : jΔωij < 0:05
200; jΔω1j ∧ jΔω2j < 0:05
0; otherwise

:

8
<

:

Figure 11a shows the cumulative reward obtained by the
agents during training. Again, we notice that the agents are
learning and have discovered how to obtain higher rewards. In

this case, the agents learn how to jointly balance generation and
demand.

Following the same schema, we change both loads by 0.15
pu and observe how the frequency and the output of each
generator change. The rotor electrical angular velocity of
each generator is restored, as can be seen in Figure 11b. The
generation output of the two generators is depicted in
Figure 11c,d; Figure 11c is a zoomed‐in version of Figure 11d.
In Figure 11c, where the timescale is up to 100 s, we notice that
the total power of the generators meets the new load, thus
restoring frequency. However, the secondary control system
sends signals to the generators to modify their output, as seen
in Figure 11d,e. The system frequency is nominal since, even if
the output of the two generators changes, the summation of
the output remains constant and equal to the new load.

We have demonstrated that the proposed framework can
be applied to solve primary and secondary control problems,
with the detailed modelling of Model II. This is achieved in a
distributed way, that is, without centralising any kind of in-
formation the agents learn how to balance the system. Here,
the agents learn that keeping Δωi close to 0 for all the gen-
erators is associated with high rewards.

5.3 | Tertiary control: Model I

The test case designed to check the performance of all levels of
LFC in a single BA area comprises two generation units or
agents that interact with a load whose configuration during
training can be found in Figure 7. The parameters of the
environment are specified in Table 2, with cost functions for
generator 1 c1 ¼ 2P21 [£/pu] and generator 2 c2 ¼ P22 [£/pu].
In each episode, or training simulation, the load varies
randomly around a nominal set point. The load varies as PL ±Δ
PL = 3 ± β pu, where β follows a uniform distribution.

The reward function has been derived following (36). We
set ϵ1 = 0.05 pu, ϵ2 = 0.2 pu, d1 = 200, and d2 = 100. Thus, we
have two conditions as follows:

TABLE 3 Two‐generator and two‐load power system data

Nominal frequency f nom = 50 Hz

Initial operating point P1 = 1.5 pu, P2 = 1.5 pu

Inertia parameter M1 = 0.1 pu, M2 = 0.15 pu

Droop RD1 ¼ 0:1 pu, RD2 ¼ 0:08 pu

Load damping D1 = 0.0160 pu, D2 = 0.0180 pu

Generator time constant TSV 1;TSV2 ¼ 30 s

(a) (b)

F I GURE 9 Secondary control Model I: change in load by 0.15 pu with wind generation
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C1 : jΔωj < 0:05;

and

C2 : j2z1 − z2j < 0:2:

Taking these two conditions into account, we may
formulate the reward function as

F I GURE 1 0 One‐line diagram of a two‐generator and two‐load
power system

(a)
(b)

(c) (d)

(e)

F I GURE 1 1 Secondary control Model II: change in load by 0.15 pu
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r ¼
200; if C1 ∧ C2
100; if C1 ∨ C2
0; otherwise

8
<

:
ð38Þ

The reward function is used only during the training
period. In the operation phase, the actors interact with the
environment without experiencing any reward. Agents only

(a)
(b)

(c) (d)

(e) (f)

F I GURE 1 2 Tertiary control Model I: change in load by 0.15 pu
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observe the frequency of the system and their own control
action zi. They have learnt during training how to behave ac-
cording to the evolution of the environment to balance supply
and demand while minimising operational costs. For the
operation phase, we change the load by 0.15 pu and then
observe how the agents restore the system frequency.

We can observe in Figure 12a the cumulative reward ob-
tained by the agents. The agents can obtain 20,000 at maximum
per episode, that is, the maximum reward per step is 200 and
the number of steps per episode is 100. The agents learn how
to obtain higher rewards as the number of episodes increases.
If that were not the case, the cumulative reward function would
oscillate around small values near zero.

In Figure 12b,d, we see how the agents restore the frequency
to the nominal set point, thus balancing supply and demand. In
Figure 12c, the rate of change in frequency (RoCoF) that mea-
sures the dynamic performance of the system is depicted. The
maximum, minimum and mean RoCoF values are 0.607,−0.712
and 0.002 Hz/s, respectively, thus being within the admissible
limits of 1 Hz/s recommended by ENTSO‐E [46]. Actors learn
how to balance generation and demand without exchanging
information. The agents have learnt that keeping Δω close to 0 is

the key to obtaining high rewards. Thus, the agents are able to
perform primary and secondary control in a totally distributed
manner.

In order to test the optimality of the solution provided by
the proposed approach in terms of cost, we need to calculate
the optimal point when the load in the system is
PL = 3 + ΔPL = 3.15 pu for the cost functions given in this
case study. By solving the economic dispatch problem as given
in (12), we have P1 = 1.05 pu and P2 = 2.10 pu. In Figure 12e,f,
the behaviour of each generator output and its associated cost
are depicted. It can be observed that the agents operate near
the optimal solution, namely that generator 2 generates twice
as much as generator 1. As seen in Figure 12e, the control
action of agent 1 stabilises around a set point that is approx-
imately half of the control action of agent 2. This does not
coincide with the optimal solution (slightly above half
the production, i.e. 60%), but through the training process the
agents learn how to keep load and supply balanced in a fully
distributed cost‐efficient way. The performance of the agents is
determined by those actions they learn during training that lead
to high rewards. Thus, the reward function is the main tool for
showing each agent what the optimal action is. The reward

(a) (b)

(c) (d)

F I GURE 1 3 Change in load by 0.15 pu using the benchmark algorithm

340 - ROZADA ET AL.



function defined in (38) builds a reward combining two
different dimensions: cost and frequency. This means that the
reward function can show various maxima depending on the
combination of both the reward dimensions. The agents learn
by trial and error a behavioural heuristic to obtain high re-
wards, but they can converge to a local optimum that may be

different from the global one. Indeed, a modification of the
reward function (38) could improve the results.

We compare the proposed framework with [14], neglecting
the network effects. In [14], a distributed LFC algorithm that
restores system frequency in a cost‐effective way is presented.
This is achieved by exchanging some information between the

(a) (b)

(c) (d)

(e)

F I GURE 1 4 Tertiary control Model I: change in load by 0.15 pu followed by continuous changes in the load
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generators during the operation phase. The algorithm is based
on a partial primal‐dual gradient scheme to solve the optimal
LFC problem, which is the standard in the literature. We refer
to this algorithm as the benchmark algorithm. In Figure 13a,b,
it can be seen that the benchmark algorithm manages to bal-
ance generation and demand, although it converges slightly
slower than the proposed approach. In Figure 13c,d, the sec-
ondary control action and the cost of each agent are shown.
The response of the benchmark algorithm is smoother than
the proposed approach and the generation cost is minimised.
However, this solution still needs to share dual information
across units. On the other hand, although there are no opti-
mality guarantees in the proposed framework, the results show
that a sub‐optimal solution is reached, and it is fully distributed,
that is, no information is shared between the agents and they
only use local information.

We also run a numerical experiment implementing a more
realistic scenario, where an initial load increase of 0.15 pu is
followed by a continuous change in the load sampled from a
uniform distribution defined in the [−0.1, 0.1] interval. We can
observe in Figure 14a,c that the agents manage to keep gener-
ation and demand balanced, although the load is continuously
changing. The dynamic behaviour of the system is depicted in
Figure 14b, where it can be seen that the RoCoF does not go
beyond the admissible 1 Hz/s bound (maximum, minimum and
mean RoCoF are 0.595, −0.708 and 0.002 Hz/s, respectively).
Interestingly, it is shown in Figure 14d,e that the agents keep
generating in a close‐to‐optimal ratio despite the continuous
change in the load that increases the difficulty of the task.

In the numerical studies, we have shown that LFC may be
performed efficiently in a distributed manner. More specif-
ically, we demonstrated that instead of solving the economic
dispatch to obtain the optimal operating point, the MARL
framework can be used to infer the production costs while
balancing demand and supply. The benefits of the proposed
approach is that the agents can act in real time in a distributed
way, restore the system frequency to the nominal value by
satisfying the LFC performance criteria, and achieve a near
optimal cost when doing so. Once trained, they do not need to
centralise information at all. Dynamics that only use local in-
formation are embedded in the agents. We focussed on small‐
scale systems to demonstrate the performance of the proposed
framework. In this way, we can provide insights into and
physical interpretations of the presented results. In particular,
we perform simulation studies for systems up to eight gener-
ators that participate in LFC. As such, the overall system that
contains the generators could be up to some decades (see e.g.
[29]). The conditions under which the system operates are
realistic, since uncertainty in the net load is represented. For
future work, we plan on implementing the proposed frame-
work in large‐scale systems (hundreds or thousands of nodes).
Furthermore, modifications of the current framework will be
investigated to further improve scalability. Some preliminary
results for improving scalability concerns of such methods are
given in [47, 48]. In [47], the authors propose a MARL
framework with observation embedding, which is used to
reduce computation through dimensionality reduction and

parameters sharing. In [48], the authors exploit other agents’
policies in a MARL framework in the training phase to reduce
computational burden.

6 | CONCLUDING REMARKS

In this article, we proposed a MARL alternative to implement
LFC in a distributed and cost‐efficient way. To this end, we have
expressed the LFC problem in anMARL setup and designed the
reward functions based on insights on the economic dispatch
problem. We have used MADDPG to implement this solution.
Through numerical examples, we have shown that the proposed
framework performs LFC in a satisfactory way. In particular, we
demonstrate that all levels of control are achieved usingModel I,
that is, frequency is restored to the nominal value in a cost‐
efficient way and that secondary control is performed under
the detailed modelling of Model II. Moreover, we have shown
that the proposed methodology can cope with generation rate
constraints and uncertain sources efficiently.

There are natural extensions of the work presented here.
For instance, different elements of the MARL paradigm can be
enhanced, that is, the reward function, the LSTM architecture
and the introduction of domain knowledge could be further
analysed to come up with agents that are able to improve their
performance. More specifically, other architectures such as
gated recurrent units could be used instead of an LSTM. An
exhaustive search for the appropriate architecture, parameters
and hyperparameters is necessary. Another obvious extension
consists of adding the tertiary control layer to the network
model. In the future, we also plan on studying the applicability
and scalability of these techniques in more complex scenarios.
In addition, we will investigate the performance of MADDPG
when dealing with different types of generation resources and a
large‐scale power system.
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